
Adaptive and Incremental Processing for

Distance Join Queries �

Hyoseop Shiny Bongki Moonz Sukho Leey

ySchool of Computer Engineering zDepartment of Computer Science

Seoul National University University of Arizona

Seoul, Korea Tucson, AZ 85721

fhsshin@db,shlee@cseg.snu.ac.kr bkmoon@cs.arizona.edu

Technical Report 02-03

Abstract

A spatial distance join is a relatively new type of operation introduced for spatial and multimedia database appli-

cations. Additional requirements for ranking and stopping cardinality are often combined with the spatial distance

join in on-line query processing or internet search environments. These requirements pose new challenges as well as

opportunities for more efficient processing of spatial distance join queries. In this paper, we first present an efficient

k-distance join algorithm that uses spatial indexes such as R-trees. Bi-directional node expansion and plane-sweeping

techniques are used for fast pruning of distant pairs, and the plane-sweeping is further optimized by novel strategies

for selecting a sweeping axis and direction. Furthermore, we propose adaptive multi-stage algorithms for k-distance

join and incremental distance join operations. Our performance study shows that the proposed adaptive multi-stage

algorithms outperform previous work by up to an order of magnitude for both k-distance join and incremental distance

join queries, under various operational conditions.

September 2002

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

�This work was sponsored in part by National Science Foundation CAREER Award (IIS-9876037), NSF Grant No. IIS-0100436, and Research

Infrastructure program EIA-0080123. It was also supported by Korean Science and Engineering Foundation under Exchange Student Program. The

authors assume all responsibility for the contents of the paper.

1 Introduction

A spatial distance join operation was recently introduced to spatial databases to associate one or more sets of spatial

data by distances between them [16]. A distance is usually defined in terms of spatial attributes, but it can be defined

in many different ways according to various application specific requirements. In multimedia and image database

applications, for example, other metrics such as a similarity distance function can be used to measure a distance

between two objects in a feature space.

In on-line decision support and internet search environments, it is quite common to pose a query that finds the best

k matches or reports the results incrementally in the decreasing order of well-matchedness. This type of operations

allow users to interact with database systems more effectively and focus on the “best” answers. Since users can say

“It is enough already” at any time after obtaining the best answers [9], the waste of system resources can be reduced

and thereby delivering the results to users more quickly.

This ranking requirement is often combined with a spatial distance join query, and the ranking requirement pro-

vides a new opportunity of optimization for spatial distance join processing [10, 12]. For example, consider a query

that retrieves the top k pairs (i.e., the nearest pairs) of hotels and restaurants:

SELECT h.name, r.name

FROM Hotel h, Restaurant r

ORDER BY distance(h.location, r.location)

STOP AFTER k;

For a relatively small stopping cardinality k, the processing time can be reduced significantly by sorting only a fraction

of intermediate results enough to produce the k nearest pairs, instead of sorting an entire set of intermediate results

(i.e., a Cartesian product of hotels and restaurants).

A spatial distance join query with a stopping cardinality can be formulated as follows:

�

dist(r;s)<D

max

(R 1 S)

where dist(r; s) is a distance between two spatial objects r 2 R and s 2 S, and D
max

is a cutoff distance that is

determined by a stopping cardinality k and the spatial attribute values of two data sets R and S. It may then be argued

that a spatial distance join query can be processed by a spatial join operation [1, 7, 8, 18, 19, 23] followed by a sort

operation. Specifically, if a D
max

value can be predicted precisely for a given stopping cardinality k, we can use a

spatial join algorithm with a within predicate instead of an intersect predicate to find the k nearest pairs of

objects. Then, a sort operation will be performed only on the k pairs of objects.

In practice, however, it is almost impossible to estimate an accurateD
max

value for a given stopping cardinality k,

and, to the best of our knowledge, no method for estimating such a cutoff value has been reported in the literature. If

the D
max

value is overestimated, then the results from a spatial join operation may contain too many candidate pairs,

which may cause a long delay in a subsequent stage to sort all the candidate pairs. On the other hand, if the D
max

value is underestimated, a spatial join operation may not return a sufficient number of object pairs. Then, the spatial

join operation should be repeated with a new estimate of D
max

, until k or more pairs are returned. This may cause a

significant amount of waste in processing time and resources.

There is another reason that makes it impractical to apply a spatial join algorithm to spatial distance join queries.

A spatial join query is typically processed in two steps, filter and refinement, as proposed in [21]. In a filter step,

MBR approximations are used to find pairs of potentially intersected spatial objects. Then, in a refinement step, it is

guaranteed that all the qualified (i.e., actually intersected) pairs can be produced from the results returned from the

filter step.

In contrast, it is completely unreasonable to process a spatial distance join query in two separate filter and re-

finement steps, because of the fact that a filtering process is based on MBR approximations. A set of object pairs

sorted by distances measured by MBR approximations does not reflect a true order based on actual representations.

This is because, for any two pairs of spatial objects hr
1

; s

1

i and hr
2

; s

2

i, the fact that dist(MBR(r

1

);MBR(s

1

)) <

dist(MBR(r

2

);MBR(s

2

)) does not necessarily imply that dist(r
1

; s

1

) < dist(r

2

; s

2

). Consequently, any process-

ing done in the filter step will be of no use for finding the k nearest object pairs.

In this paper, we propose new strategies for efficiently processing spatial distance join queries combined with

ranking requirements. The main contributions of the proposed solutions are:

1

� New efficient methods are proposed to process distance join queries using spatial index structures such as R-

trees. Bi-directional node expansion and optimized plane-sweep techniques are used for fast pruning of distant

pairs, and the plane-sweep is further optimized by novel strategies for selecting a sweeping axis and direction,

and by using maximum distance for breaking tied pairs.

� Adaptive multi-stage algorithms are proposed to process distance join queries in a way that the k nearest pairs

are returned incrementally. When a stopping cardinality is not known a priori (e.g., in on-line query processing

environments or a complex query containing a distance join as a sub-query whose results need to be pipelined

to the next stage of the complex query), the adaptive multi-stage algorithms can produce pairs of objects in a

stepwise manner.

� We provide a systematic approach for estimating the maximum distance for a distance join query with a stopping

cardinality. This estimated distance allows the adaptive multi-stage algorithms to avoid a slow start problem,

which may cause a substantial delay in the query processing. This approach for estimating the maximum

distance also allows the size of memory to be parameterized into a queue management scheme, so that data

movement between memory and disk can be minimized.

The proposed algorithms achieve up to an order of magnitude performance improvement over previous work for both

k-distance join and incremental distance join queries, under various operational conditions.

The rest of this paper is organized as follows. Section 2 surveys the background and related work on process-

ing spatial distance join queries. Major limitations of previous work are also discussed in the section. In Section 3,

we present a new improved algorithm based on bi-directional expansion and optimized plane-sweep techniques for

k-distance join queries. In Section 4, adaptive multi-stage algorithms are presented for k-distance join and incre-

mental distance join queries. A queue management scheme parameterized by memory capacity is also presented.

Section 5 presents the results of experimental evaluation of the proposed solutions. Finally, Section 6 summarizes the

contributions of this paper.

2 Background and Previous Work

A spatial index structure R-tree and its variants [3, 6, 14] have been widely used to efficiently access multidimensional

data – either spatial or point. Like other tree-structured index methods, an R-tree index partitions a multidimensional

space by grouping objects in a hierarchical manner. A subspace occupied by a tree node is always contained in the

subspace of its parent node. This hierarchy of spatial containment between R-tree nodes is readily used by spatial

distance join algorithms as well as spatial join algorithms.

(a) Tree−Structured Spatial Index (b) Spatial Containment

r

r1 r1 r3

s

s1 s2 s3

dist(r,s)r s
r1

r2

s1

s2
r3

dist(r3,s2)

s1

s2
s3

Figure 1: Hierarchy of Spatial Containment of R-Tree Nodes

Suppose r and s are non-leaf nodes of two R-tree indexesR and S, respectively, as in Figure 1. Then, the minimum

distance between r and s is always less than or equal to the minimum distance between one of the entries of r and one

of the entries of s. Likewise, the maximum distance between r and s is always greater than or equal to the maximum

distance between one of the entries of r and one of the entries of s. This observation leads to the following lemma.

2

Lemma 1 For two R-tree indexes R and S, if neither r 2 R nor s 2 S is a root node, then

dist(r; s) � dist(parent(r); parent(s));

dist(r; s) � dist(r; parent(s)); (1)

dist(r; s) � dist(parent(r); s):

where dist(r; s) is the minimum distance between the MBR representations of r and s.

Proof. From the observation above.

Lemma 1 allows us to limit the search space, while R-tree indexes are traversed in a top-down manner to process

a spatial distance join query. For example, if a pair of non-leaf nodes hr; si turn out to be too far from each other (or

their distance is over a certain threshold), then it is not necessary to traverse further down the tree indexes below the

nodes r and s. Thus, this lemma provides the key leverage to processing distance join queries efficiently using R-tree

indexes.

2.1 Incremental Distance Join and k-Distance Joins

During top-down traversals of R-tree indexes, it is desirable to store examined node pairs in a priority queue, where

the node pairs are kept in an increasing order of distances. We call it a main queue as opposed to a distance queue

we will describe later. The main queue initially contains a pair of the root nodes of two R-tree indexes. Each time

a pair of non-object nodes are retrieved from the main queue, the entries of one node are paired up with the entries

of the other to generate a new set of node pairs, which are then inserted into the main queue. This process that we

call node expansion is repeated until the main queue becomes empty or until stopped by an interactive user. If an

element retrieved from the main queue is a pair of two objects, the pair is returned immediately to the user as a query

result. This is how a spatial distance join query is processed incrementally. Figure 2 depicts a typical framework of

processing an incremental distance join (IDJ) query using R-tree indexes.

Main Queue

Node Expansion

Module

If object pair Return as

an answer

If non-object pair
<root of R, root of S>

At beginning

Newly generated pairs

A pair with

Minimum distance

Figure 2: Framework of Incremental Distance Join (IDJ) Processing

A distance join query is often given with a stopping cardinality k as in the “stop after” clause of the sample query

in Section 1. Since it is known a priori how many object pairs need to be produced for a distance join query, this

knowledge can be exploited to improve the performance of the query processing. Suppose a maximum of k nearest

pairs of objects are to be retrieved by a query. One plausible approach is to maintain k candidate pairs of objects

during the entire course of query processing. As they are the k nearest object pairs known at each stage of query

processing, any pair of nodes (and any pair of their entries) whose distance is greater than all of the k candidate pairs

cannot be qualified as a query result. Thus, we can use another priority queue to store the k minimum distances, and

3

use the queue to avoid having to insert unqualified pairs into the main queue during the node expansions. We call the

priority queue a distance queue. Figure 3 depicts a typical framework of processing a k-distance join (KDJ) query

using R-tree indexes and both main and distance queues.

Both main and distance queues can be implemented by heap structures. A main queue is normally implemented as

a min-heap, because the query results are produced in an increasing order of distances. In contrast, a distance queue

should be implemented as a max-heap that can store at most k distance values. The cutoff distance is determined by

the maximum value among the k distances stored in the distance queue. (When the distance queue contains less than

k distances, the cutoff distance is set to an infinity.) Pruning node pairs by the distance queue was shown to be very

efficient from our experiments, especially when k was rather small. In the rest of the paper, we use qD
max

to denote

the cutoff distance from the distance queue.

Main Queue

Node Expansion

Module

If object pair Return as

an answer

If non-object pair
<root of R, root of S>

At beginning

Newly generated pairs

A pair with

Minimum distance

Distance Queue

qDmax

If pair.distance > qDmax

If pair.distance <= qDmax

pruned

Figure 3: Framework of k-Distance Join (KDJ) Processing

2.2 Previous Work

In [16], the authors present both uni-directional and bi-direction node expansion, but conclude based on their experi-

ments that the former provides better performance due to fewer node pairs being produced by their algorithm. When a

pair of nodes hr; si are retrieved from a main queue, either node r is paired up with the entries of s, or node s is paired

up with the entries of r. None of the pairs are generated from an entry of r and an entry of s. The advantage of the

uni-directional expansion is that the number of pairs generated at each expansion step is limited to the fanout of an

R-tree index being traversed, and an explosion of the main queue can be avoided. As is acknowledged by the authors

of the algorithms, however, the main disadvantage of this approach is that the uni-directional expansion may lead to

each node being accessed from disk more than necessary. And also, the uni-directional expansion requires pairing up

node r exhaustively with all the entries of node s or vice versa.

For a spatial distance join query with a relatively small stopping cardinality k, the use of a distance queue is an

effective means to prevent distant pairs from entering a main queue. For a large k value, however, the distance queue

may not work well as an effective pruning tool, because the cutoff value stored in the distance queue may remain too

high for a long duration. This may in turn lead to a long delay particularly in the early stage of query processing. For

these reasons, the previous algorithms suffer from poor performance for a k-distance join query with a large k and an

incremental distance join query, for which k is unknown in advance.

Moreover, there is an important issue that was not fully addressed in [16]. A hybrid memory/disk technique was

proposed as a queue management scheme, which partitions a queue based on the distance range. This technique keeps

a partition in the shortest distance range in memory, while the rest of partitions are stored on disk. However, no

mechanism was provided to determine a boundary distance value between the partition in memory and the rest, which

may have a crucial impact on the performance of queue management.

4

Recently, a few recursive and iterative algorithms have been proposed [11]. These algorithms make use of various

distance metrics such as MinMax, MinMin,MaxMin andMaxMax to find k closest pairs. Without using a main

queue, the recursive algorithms access R-tree nodes recursively following priorities given to the entry pairs within a

pair of the parent nodes. The iterative algorithm (called heap algorithm) is fairly similar to Hjaltason and Samet’s

distance join algorithm [16] in that both the algorithms use a distance queue to maintain k candidate pairs during node

expansion. One notable difference is that heap algorithm does not store object pairs in the main queue to minimize

the size of a main queue. Instead, the heap algorithm uses a distance (or candidate) queue to store the k closest pairs

of objects. Although this does not guarantee that the main queue always fits in memory, the performance gain by not

storing object pairs in the main queue could be non-trivial, given the potentially large number of object pairs produced

by node expansion. Since the heap algorithm maintains only the k candidates, the stopping cardinality k must be

known a priori. In other words, the heap algorithm cannot be used for incremental distance join queries.

Several closely related studies for nearest neighbor queries have been reported in the literature. Among those are

nearest neighbor search algorithms based on Voronoi cells [2, 5] and branch and bound techniques [26, 27], a nearest

neighbor search algorithm for ranking requirement [15], and multi-step k-nearest neighbor search algorithms [17, 28].

Another closely related issue is estimating spatial join selectivity. Some estimation techniques proposed to use

supplementary structures such as histograms [24] and wavelets [29]; other estimation techniques were based on uni-

formity assumption [22] and fractal dimensions for self joins [4]. Recently, Faloutsos et al. [13] proposed a power

law to predict the selectivity of spatial join and to estimate the distance of the k-th closest pair. This power law will be

used to estimate cutoff distances for the adaptive distance join algorithm proposed in this paper.

3 Optimized Plane-Sweep for Fast Pruning

In this section, we propose a new distance join algorithm B-KDJ (Bidirectional expanding k-Distance Join) using

a bi-directional node expansion, in an attempt to avoid redundant accesses to R-tree nodes. As is pointed out in

Section 2, distance join algorithms based on an uni-directional expansion require accessing an R-tree node more than

those based on bi-directional expansions. Under the bidirectional node expansion, for a pair hr; si, each of the entries

of r is paired up with each of the entries of s. This is essentially a Cartesian product, which may generate more

redundant pairs than the uni-directional expansion does. Nonetheless, we will show B-KDJ algorithm can effectively

avoid generating redundant pairs by a plane sweeping technique [25] and novel strategies for choosing an axis and a

direction for sweeping. The B-KDJ algorithm is described in Algorithm 1.

3.1 Bidirectional Node Expansion

Like the distance join algorithms proposed in [16], B-KDJ algorithm uses qD
max

from the distance queue Q
D

as a

cutoff value to examine node pairs. If a pair of nodes hr; si removed from the main queue are a pair of objects, then

the object pair is returned as a query result. Otherwise, the pair is expanded by the PlaneSweep procedure for further

processing.

Assume that a sweeping axis (i.e., x or y dimensional axis) and a sweeping direction (i.e., forward or backward)

are determined, as we will describe in Sections 3.2 and 3.3. Then, the entries of r and s are sorted by x or y coordinates

of one of the corners of their MBRs in an increasing or decreasing order, depending on the choice of sweeping axis

and sweeping direction. Each node encountered during a plane sweep is selected as an an
hor, and it is paired up with

entries in the other group. For example, in Figure 4, an entry r
1

of r is selected as an anchor, and the entries s
1

; s

2

; s

3

and s
4

of s are examined for pairing, as they are within qD
max

distance from r

1

along the sweeping axis (lines 11-14

and line 16).

Since an axis distance between any pair hr; si is always smaller than or equal to their real distance (i.e., axis -

distan
e(r; s) � real distan
e(r; s)), real distances are computed only for nodes whose axis distances from the

anchor are within the current qD
max

value (line 17). Given that a real distance is more expensive to compute than

an axis distance, it may yield non-trivial performance gain. Then, each pair whose real distance is within qD

max

is

inserted into the main queueQ
M

(line 18). If it is a pair of objects, then update the current qD
max

value by inserting

the real distance of the object pair into the distance queueQ
D

(line 19).

5

Algorithm 1: B-KDJ: K-Distance Join Algorithm with Bi-directional Expansion and Plane Sweep

1: set AnswerSet an empty set;

2: set Q
M

, Q
D

 empty main and distance queues;

3: insert a pair hR:root; S:rooti into the main queueQ
M

;

4: while jAnswerSetj < k and Q
M

6= ; do

5: set
 dequeue(Q
M

);

6: if
 is an hobje
t; obje
ti then AnswerSet f
g [AnswerSet;

7: else P laneSweep(
);
end

procedure PlaneSweep(hl; ri)

8: set L sort axis(fentries of lg); // Sort the entries of l by axis values.

9: set R sort axis(fentries of rg); // Sort the entries of r by axis values.

10: while L 6= ; and R 6= ; do

11: n a node with the min axis value 2 L [R; // n becomes an anchor.

12: if n 2 L then

13: L L� fng; SweepPruning(n;R);

else

14: R R � fng; SweepPruning(n;L);

end
end

procedure SweepPruning(n;List)

15: for each node m 2 List in an increasing order of axis value do

16: if axis distan
e(n;m) > qD

max

then return; // No more candidates.

17: if real distan
e(n;m) � qD

max

then

18: insert hn;mi into Q
M

;

19: if hn;mi is an hobje
t; obje
ti then insert real distan
e(n;m) into Q
D

; // qD
max

modified.
end

end

There are alternatives as to what pairs are to be inserted into a distance queue: (1) any pairs encountered during

node expansions, or (2) pairs of objects only. If a pair of non-object R-tree nodes is inserted into a distance queue,

then its distance value should be the maximum distance (instead of minimum distance), and the minimum number of

object pairs that can possibly be generated from the node pair should be maintained in the distance queue, as pointed

out in [16]. The minimum number of object pairs can be estimated based on the minimum node occupancy. Since the

maximum distance tends to be larger than those of pairs of objects, most of non-object pairs are inserted into a distance

queue only to be removed from the distance queue without reducing qD
max

value. Consequently, the potential benefit

from inserting non-object pairs is expected to be insignificant. More often than not in our experiments, the query

processing slowed down slightly due to the overhead of inserting non-object pairs. Thus, we decide to follow the

second option in this paper.

For a relatively small qD
max

value and two sets of evenly distributed spatial objects, the number of pairs for which

B-KDJ algorithm computes real distances and performs queue management operations is expected to be roughly

O(jrj+jsj). This justifies the additional cost of sorting entries for plane-sweeping, because the overall cost of B-KDJ

algorithm would otherwise be O(jrj � jsj) by Cartesian products.

3.2 Sweeping Axis

We can improve B-KDJ algorithm one step further by deciding the sweeping axis and direction on an individual pair

basis. Intuitively, if entries (or data objects) are spread more widely along one dimension (say, x) than the other

dimensions, then the bi-directional node expansion is likely to generate a smaller number of node pairs to compute the

real distances for by plane-sweeping along the dimension x. This is because, when the nodes are more widely spread

along a sweeping axis, the chance that a pair of nodes are within a qD
max

distance along the sweeping axis is lower.

For a pair of parent nodes shown in Figure 5, as an example, it would be better to choose y-axis as a sweeping axis, as

the entries are more widely spread along the y-dimension. On the other hand, if x-axis is chosen as a sweeping axis,

6

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

qDmax

Figure 4: Bidirectional Node Expansion with Plane Sweeping

no pair of the entries will be pruned by x-axis distance comparison with qD
max

, because the x-axis distance between

any pair of the entries is shorter than the qD
max

value.

y−axis

x−axis

qDmax

qDmax

r

s

Figure 5: Effect of Right Selection of the Sweeping Axis

Formally, we define a new metric sweeping index as follows, and we use the metric to determine which axis a

plane-sweep will be performed on. For a given pair hr; si of R-tree nodes and a given qD
max

value, we can compute a

sweeping index for each dimension. Conceptually, a sweeping index is a normalized estimation of the number of node

7

|s|x

|r|x

t

|r|x qDmax+ −

t

|s|x

|r|x
0

qDmax
window

qDmax−
2

qDmax−()
2

Overlap

Overlap
β

β

ββ

Figure 6: Sweeping Index

pairs we need to compute the real distances for, based on the assumption that data objects are uniformly distributed.1

Sweeping Index
x

=

Z

jrj

x

0

Overlap(qD

max

; r; t)dt

+

Z

jsj

x

0

Overlap(qD

max

; s; t)dt (2)

In the first integral term of the equation above, jrj
x

is the side length of node r along the dimension x. The function

Overlap(qD

max

; r; t) is a portion of the side length of s along the dimension x, overlapped with a window of length

qD

max

whose left end point is located at a point t within jrj
x

(i.e., 0 � t � jrj

x

). (See the left diagram in Figure 6.)

Thus, Overlap(qD
max

; r; t)=jsj

x

represents a fraction of s’s entries intersected with a window [t; t + qD

max

]. The

value of the function varies as the window moves along the dimension x from [0,qD
max

] to [jrj
x

; jrj

x

+ qD

max

].

Therefore, the first integral term represents a relative estimation of the number of s’s entries encountered during the

plane-sweeps performed for all the entries of r. The second integral term is symmetric with the first integral, and an

identical description can be offered by exchanging r and s.

A smaller sweeping index indicates that the bi-directional expansion needs to compute real distances for a smaller

number of nodes pairs. For the reason, B-KDJ algorithm chooses a dimension with the minimum sweeping index as

a sweeping axis.

One thing we may be concerned about is the cost of computing a sweeping index for each dimension. The sweeping

index may appear expensive to compute, as it includes two integral terms. For given jrj
x

and jsj
x

values and the current

qD

max

value available from the distance queue, however, the sweeping index is reduced to a formula that involves only

a few simple arithmetic operations. Suppose nodes r and s are not intersected along a dimension x, the minimum x-

axis distance between them is �, and node r appears before node s in the plane-sweep direction along x-axis. (Again,

see the left diagram in Figure 6.) Then, the second integral term of Equation (2) becomes zero, because all the entries

of r have already been swept when the first entry of s is encountered. The first integral term varies depending on the

conditions among qD
max

, jrj
x

and jsj
x

values and the proximity (i.e., �) of nodes r and s along a chosen dimension.

The right diagram in Figure 6 illustrates how we can compute the first integral term and obtain a simple expression

when a condition � � qD

max

� � +minfjrj

x

; jsj

x

g is satisfied.

If nodes r and s are not separated, both the integral terms of Equation (2) become non-zero. By a similar reasoning,

each integral term is also transformed into a formula with only a few simple arithmetic operations. Table 1 summaries

the formulae of the sweeping index for nodes r and s that are in three different spatial relationships: s is separated

from, intersected with, or contained in r. The values of �, � and Æ in Table 1 are determined by the side lengths of r

and s and their spatial relationship as illustrated in Figure 7.

Considering that each R-tree node may contain hundreds of entries, it will be a trivial cost to compute a sweeping

index for each dimension, while the performance gain by the sweeping axis selection is expected to be significant.

This is empirically corroborated by our experiments in Section 5.

1 An actual number of node pairs for which we need to compute the real distances would be computed by counting

the number of s’s entries within qD
max

axis distance from each entry of r, counting the number of r’s entries within

qD

max

axis distance from each entry of s, and then adding all the counts and dividing the count sum by two. However,

this process will be very expensive.

8

r

s

α β δ

r

s

α β δ

r

s

α β δ

(a) Separated (b) Intersected (c) Contained

Figure 7: Spatial relationships between nodes r and s and their projected intervals

r and s The first integral term of Equation (2)

Separated

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

0 if qD
max

< �;

(qD

max

��)

2

2jsj

x

if � � qD

max

< � +minfjrj

x

; jsj

x

g;

2jrj

x

(qD

max

��)�jrj

x

2

2jsj

x

if jrj
x

+ � � qD

max

< jsj

x

+ �;

qD

max

� � �

jsj

x

2

if jsj
x

+ � � qD

max

< jrj

x

+ �;

jrj

x

�

(maxfjrj

x

+jsj

x

+��qD

max

;0g)

2

2jsj

x

if maxfjrj

x

; jsj

x

g+ � � qD

max

:

Intersected

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

qD

max

+

qD

max

(qD

max

�2Æ)

2jsj

x

if qD
max

< minf�; Æg;

2jrj

x

qD

max

��

2

2jsj

x

if � � qD

max

< Æ;

qD

max

�

Æ

2

+(maxfqD

max

��;0g)

2

2jsj

x

if Æ � qD

max

< jsj

x

+ �;

�+

jsj

x

2

�Æ

2

2jsj

x

if jsj
x

+ � � qD

max

:

Contained

8

>

>

>

<

>

>

>

:

qD

max

if qD
max

< �;

qD

max

�

(qD

max

��)

2

2jsj

x

if � � qD

max

< jsj

x

+ �;

�+

jsj

x

2

if jsj
x

+ � � qD

max

:

r and s The second integral term of Equation (2)

Separated 0

Intersected

8

>

<

>

:

qD

max

�

qD

max

(2��qD

max

)

2jrj

x

if qD
max

< jrj

x

� �;

(jrj

x

��)

2

2jrj

x

if jrj
x

� � � qD

max

:

Contained

8

>

>

>

>

>

<

>

>

>

>

>

:

qD

max

jsj

x

jrj

x

if qD
max

< Æ;

2qD

max

jsj

x

�(qD

max

�Æ)

2

2jrj

x

if Æ � qD

max

< jsj

x

+ Æ;

jsj

x

(jsj

x

+2Æ)

2jrj

x

if jsj
x

+ Æ � qD

max

:

Table 1: The first and second integral terms of the sweeping index for r and s (the values of �; � and Æ are determined

by the relative positions of r and s as illustrated in Figure 7.)

3.3 Sweeping Direction

Once a sweeping axis is determined, a sweeping direction can be chosen to be either a forward sweep or a backward

sweep. For a pair of nodes r and s, we can define the forward and backward sweeps as follows.

9

� A forward plane-sweep scans the entries of r and s in an increasing order of coordinates along the chosen

sweeping axis.

� A backward plane-sweep scans the entries of r and s in a decreasing order of coordinates along the chosen

sweeping axis.

Consider nodes r and s projected on a sweeping axis. The projected images generate three consecutive closed intervals

on the sweeping axis, unless the projected images are completely overlapped. For example, if nodes r and s are

intersected as in Figure 7(b), an interval in the left is projected from r, one in the middle from both r and s, and one

in the right from s. The interval in the middle may be projected from none of r and s, if r and s are separate as in

Figure 7(a). Both the intervals in the left and right may be projected from the same node, if one node is contained in

the other as in Figure 7(c).

However, it does not matter which node an interval is projected from, because a sweeping direction is determined

solely on the relative length of the intervals in the left and right (i.e., � and Æ). A sweeping direction is determined by

comparing the length of the left and right intervals: if the left projected interval is shorter than the right one (� < Æ),

then a forward direction is chosen. Otherwise, a backward direction is chosen. By this strategy of choosing a sweeping

direction, a pair of nodes closer to each other are likely to be examined earlier than those farther from each other. This

in turn allows a pair of closer nodes to be inserted into the main queue (and the distance queue as well if they are an

object pair), and helps reduce the qD
max

value more rapidly.

In summary, the sweeping axis selection improves the bi-directional node expansion step by pruning more pairs

of entries whose axis distances are larger than the qD

max

value, while the sweeping direction selection does so by

reducing the qD
max

value more rapidly.

3.4 Maximum Distance As a Secondary Priority

The main queue maintains node pairs generated by node expansion in an increasing order of their distances. An issue

we have not addressed is how we order node pairs of an equal distance in the main queue. This is a non-trivial issue

particularly because a pair of intersected nodes are considered to have zero distance between them. Since there may be

many pairs of intersected nodes in the main queue, the performance impact by the way of breaking ties is potentially

high.

Hjaltason and Samet used the depths of R-tree nodes to break tie [16]. For given two pairs of nodes of an equal

distance, they proposed to give preference to a pair that contains a node with the maximum tree depth among the four

tree nodes. This approach may assist their distance join algorithms in getting to leaf nodes and data objects as quickly

as possible. However, it is not always beneficial to process node pairs in depth-first order, because it does not always

accelerate the reduction of qD
max

value.

pair ’A’
pair ’B’

level=1

level=1

level=1

level=2

maximum distance

Figure 8: Breaking ties for node pairs of an equal distance

Consider two node pairs A and B in Figure 8 as an example. If we follow the depth-first approach, node pair

B will be placed before node pair A in the main queue, because the former contains a node whose depth is deeper

than those of the nodes in the latter. However, it is very likely that node pair A contains more pairs of entries with

shorter distances than node pair B does, because the maximum distance of node pair A is shorter than that of node

10

pair B. Based on this observation, we propose to use the maximum distance of a node pair to break ties. By choosing

the maximum distance of a node pair as a secondary priority of heap (i.e., the main queue), node pairs with shorter

distances can be processed in the earlier stage of distance join. Consequently, qD
max

value can be reduced more

rapidly and the number of distance computations and queue insertions can be reduced.

4 Adaptive Multi-Stage k-Distance Join

In B-KDJ algorithm, qD
max

value is initially set to an infinity and becomes smaller as the algorithm proceeds. The

adaptation of the qD
max

value has a crucial impact on the performance of B-KDJ algorithm, as qD
max

is used as a

cutoff to prevent pairs of distant nodes from entering the main queue. If the qD
max

value approaches to the realD
max

value slowly, the early stage of B-KDJ algorithm will be delayed considerably for handling too many pairs of distant

nodes. Consequently, at the end of the algorithm processing, the main queue may end up with a large number of distant

pairs whose insertions to the main queue were not necessary. The performance effect of slow start is more pronounced

for a larger k, as the main queue and distance queue tend to grow large for a large k, and thereby increasing the qD
max

value. ¿From our experiments with k as high as 100,000, we observed that more than 90 percent of execution time of

k-distance join algorithms was spent to produce the first one percent (i.e., 1,000 pairs) of final query results.

In this section, we propose new adaptive multi-stage distance join algorithmsAM-KDJ and AM-IDJ that miti-

gate the slow start problem by aggressive pruning and compensation.

4.1 Adaptive Multi-Stage k-Distance Join

The slow start problem is essentially caused by a pruning strategy using qD
max

, whose value is dynamically updated

as tree indexes are traversed and therefore not under direct control of the distance join algorithms. To circumvent this

problem, we introduce a new pruning measure eD
max

, which is an estimated D
max

value for a given k. The eD
max

value is set to an initial estimation at the beginning and adaptively corrected during the algorithm processing. We will

discuss techniques for initial estimation and adaptive correction in Section 4.3.

AM-KDJ algorithm is similar toB-KDJ algorithm in that both the algorithms use a bi-directional node expansion.

However, unlike the single-stage B-KDJ algorithm, where only qD
max

is used for pruning, both qD
max

and eD

max

are used as cutoff values for pruning distant pairs inAM-KDJ algorithm. Specifically, in the aggressive pruning stage

(described in Algorithm 2),

� eD

max

is used for pruning based on axis distances for aggressive pruning and thereby limiting the size of main

and distance queues (line 23),

� qD

max

is used for further pruning on real distances for nodes whose axis distances are within eD

max

, in the

same way as B-KDJ.

With a properly estimated eD
max

value,AM-KDJ algorithm can prune a large number of distant pairs in the first

stage and avoid a significant portion of delay due to the slow start. However, if AM-KDJ algorithm becomes too

aggressive by choosing an underestimated eD

max

value, even close enough pairs may be discarded incorrectly. To

avoid any false dismissals, we introduce another queue called compensation queue (Q
C

). The compensation queue

stores every non-object node pair retrieved from the main queue (line 11), except those for whom all entries have been

examined. Note that qD
max

but not eD
max

is used for nodes whose axis distances are within eD

max

(line 24). If

eD

max

values are used instead, this algorithm does not guarantee the correctness due to potential false dismissals.

Using qD
max

values also makes the performance of AM-KDJ fairly insensitive to estimated eD
max

values.

For example, in Figure 9 (drawn from Figure 4), an anchor node r
1

is paired up with nodes s
1

and s
2

but not with

s

3

and s

4

in the aggressive pruning stage, because only s

1

and s

2

are within eD

max

from the anchor node r
1

. Thus,

AM-KDJ algorithm inserts only two pairs (hr
1

; s

1

i, hr
1

; s

2

i) into a main queue, instead of all four pairs (hr
1

; s

1

i,

hr

1

; s

2

i, hr
1

; s

3

i, hr
1

; s

4

i) that would be enqueued byB-KDJ algorithm. Then, the pair hr; si currently being expanded

is inserted into a compensation queue.

The aggressive pruning stage ends when one of the following conditions is satisfied: (1) the main queue becomes

empty (line 5), (2) k or more query results have been returned (line 5), or (3) the distance of a node pair retrieved from

11

Algorithm 2: AM-KDJ: Adaptive Multi-Stage K-Distance Join Algorithm (Aggressive Pruning)

1: set AnswerSet an empty set;

2: set Q
M

, Q
D

,Q
C

 empty main, distance and compensation queues ;

3: set eD
max

 an initial estimated D
max

;

4: insert a pair hR:root; S:rooti to the main queueQ
M

;

5: while jAnswerSetj < k and Q
M

6= ; do

6: set
 dequeue(Q
M

);

7: if
 is an hobje
t; obje
ti then AnswerSet f
g [AnswerSet;

else

8: if qD
max

� eD

max

then eD

max

 qD

max

; // overestimated eD
max

9: if
:distan
e > eD

max

then

reinsert
 back into Q
M

;

break; // Terminate the Aggressive Pruning stage.
end

10: AggressivePlaneSweep(
);

11: enqueue(Q
C

,
);
end

end

12: if jAnswerSetj < k then execute Algorithm 3;

procedure AggressivePlaneSweep(hl; ri)

13: set L sort axis(fentries of lg); // Sort the entries of l by axis values.

14: set R sort axis(fentries of rg); // Sort the entries of r by axis values.

15: while L 6= ; and R 6= ; do

16: n a node with the min axis value 2 L [R; // n becomes an anchor.

17: if n 2 L then

18: L L� fng; AggressiveSweepPruning(n;R);

19: n:
ompensate a node in R with the min axis value and not yet paired with n;
else

20: R R � fng; AggressiveSweepPruning(n;L);

21: n:
ompensate a node in L with the min axis value and not yet paired with n;
end

end

procedure AggressiveSweepPruning(n;List)

22: for each node m 2 List in an increasing order of axis value do

23: if axis distan
e(n;m) > eD

max

then return; // No more candidates.

24: if real distan
e(n;m) � qD

max

then

25: insert hn;mi into Q
M

;

26: if hn;mi is an hobje
t; obje
ti then insert real distan
e(n;m) into Q
D

; // qD
max

modified.
end

end

the main queue becomes greater than eD
max

(line 9). When the condition (2) is satisfied, obviously it is not necessary

to execute the compensation stage of the AM-KDJ algorithm. (An overestimated eD

max

can also be detected by

comparing with qD

max

value (line 8). In this case, instead of terminating the first stage, AM-KDJ behaves exactly

the same as B-KDJ algorithm by using qD

max

alone as a cutoff value.) When the condition (3) is satisfied, eD
max

must have been underestimated, because all the object pairs returned after this point will have a greater distance than

eD

max

. Since an object pair with the k-th largest distance has not been obtained by the time when the aggressive

pruning stage comes to an end, the compensation stage (described in Algorithm 3) begins its processing by inserting

all the pairs stored in the compensation queue to the main queue.

In the compensation stage, the pairs in the main queue are processed in a similar way as B-KDJ algorithm, but

there are two notable differences from B-KDJ algorithm. First, the entries are not sorted again, if they have already

been sorted in the first stage. Second, for the pairs already expanded once in the first stage, only child pairs not

examined in the first stage are processed by plane sweeping. This is feasible by bookkeeping done in the first stage

(lines 19 and 21), which stores the information in an additional field (n:
ompensate) attached to a pair being inserted

12

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

eDmax

remembered as r1.compensate

qDmax

Figure 9: Aggressive pruning with qD
max

and eD
max

Algorithm 3: AM-KDJ: Adaptive Multi-Stage K-Distance Join Algorithm (Compensation Stage)

1: insert all elements in Q
C

into Q
M

;

2: while jAnswerSetj < k and Q
M

6= ; do

3: set
 dequeue(Q
M

);

4: if
 is an hobje
t; obje
ti then AnswerSet f
g [AnswerSet;

5: else CompensatePlaneSweep(
);
end

procedure CompensatePlaneSweep(hl; ri)

6: L f entries of l sorted in Stage Oneg; // fL[1℄; L[2℄; : : : ; L[jLj℄g

7: R f entries of r sorted in Stage Oneg; // fR[1℄; R[2℄; : : : ; R[jRj℄g

8: while L 6= ; and R 6= ; do

9: n a node with the min axis value 2 L [R; // n becomes an anchor.

10: if n 2 L then

11: L L� fng; R0

 fnode list in R not paired with n in the Stage One g;

// f R[n:
ompensate℄; R[n:
ompensate+ 1℄; : : : ; R[jRj℄g

12: SweepPruning(n;R

0

);
else

13: R R � fng; L0 fnode list in L not paired with n in the Stage One g;

// f L[n:
ompensate℄; L[n:
ompensate+ 1℄; : : : ; L[jLj℄g

14: SweepPruning(n;L

0

);
end

end

13

into the compensation queue. For these reasons, the cost of the compensation stage is not considerable compared with

the cost of restarting the algorithm. In summary,AM-KDJ algorithm uses eD
max

to avoid the slow start problem in

the aggressive pruning stage and speeds up the query processing.

4.2 Adaptive Multi-stage Incremental Distance Join

Consider on-line query processing and internet database search environments, where users interact with database

systems in a way the number of required matches can be determined interactively or changed at any point of query

processing. Consider also a complex query that pipelines the results from a spatial distance join to a filter stage.

Under these circumstances, the number of pairs (k) that should be returned from a distance join is not known a priori,

and hence a k-distance join algorithm proposed in [16] and B-KDJ algorithm presented in Section 3 cannot be used

directly.

An important advantage ofAM-KDJ algorithm proposed in the previous section is that AM-KDJ algorithm can

be extended to an incremental algorithm (we call AM-IDJ) to support the interactive applications described above.

The main difference between AM-KDJ and AM-IDJ algorithms is that AM-IDJ does not maintain a distance

queue. Thus,AM-IDJ algorithm uses eD
max

alone as a cutoff value for pruning distant pairs, because qD
max

would

be drawn only from a distance queue.

Without qD
max

, AM-IDJ works as a stepwise incremental algorithm. First, AM-IDJ starts by determining an

initial value k
1

and estimating an initial eD
max

1

for k
1

. Then, it performs the same way as the first stage ofAM-KDJ

algorithm without qD
max

. However, the first stage may terminate before producing enough object pairs (i.e., less than

k

1

), if eD
max

is underestimated. If that happens, AM-IDJ algorithm estimates eD
max

2

value for k
2

(k

2

> k

1

) and

initiates a compensation stage.

Even when a sufficient number of object pairs have been returned from the first stage, users may request more an-

swers. Then, AM-IDJ initiates a compensation stage by determining k
2

and estimating a new eD

max

2

accordingly.

As shown in Figure 10 (drawn from Figure 4), the compensation stage can initiate another compensation stage at the

end of its processing, by choosing k
3

and eD

max

3

. This process continues until users stop requesting more answers.

In this way, AM-IDJ algorithm can be used to produce query results incrementally without limiting the maximum

number of pairs in advance. Except the first stage of AM-IDJ algorithm where the AggresiveP laneSweep proce-

dure (in Algorithm 2) is used, the CompensateP laneSweep procedure (in Algorithm 3) is used to prune distant pairs

in the rest of the compensation stages.

4.3 Estimating the Maximum Distance (eD
max

)

Both AM-KDJ and AM-IDJ algorithms process a distance join query based on an estimated cutoff value eD
max

.

Thus, there should be a way to obtain an initial estimate and correct the estimate adaptively as the algorithms proceed.

Assuming data sets are uniformly distributed, we provide mechanisms to choose an initial estimate of eD
max

, and to

adaptively correct it.

If the distribution of a data set is skewed, then a larger number of close pairs can be found in a smaller dense

region of the data space. We expect that the formulae given in this section tend to overestimate eD

max

value for

non-uniformly distributed data sets, especially when a stopping cardinality k is far smaller than the number of all pairs

of objects (i.e., k � jRj � jSj). This was corroborated by our experiments as described in Section 5.4.

4.3.1 Initial estimation

Let jRj and jSj be the number of data objects in MBRs R and S, respectively. Suppose that most regions of R and S

overlap. Then, for a data object r in R contained in the region shared by R and S, the expected number of objects in

S within distance d from r is approximated by jSj � ��d

2

area(R\S)

, assuming the circle centered at r of radius d is fully

contained in the shared region (i.e., R\S). Thus, by considering all data objects in R, the total number of object pairs

within distance d can be approximated by jRj � jSj � ��d

2

area(R\S)

:

When the target number of object pairs, k, is given with a query, we can obtain the initial estimation of D
max

by

14

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

eDmax1

eDmax2

eDmax3

r4

r3

(1) (2) (3)

(1) : covered in FirstStage(k1, eDmax1)
(2) : covered in CompensatingStage(k2, eDmax2)
(3) : covered in CompensatingStage(k3, eDmax3)

Figure 10: Step-Wise Incremental Distance Join

setting k to the above formula, as follows

k = jRj � jSj �

� � d

2

area(R \ S)

;

and then by replacing d with eD
max

. Therefore, for a given stopping cardinality k, the initial estimation of D
max

can

be obtained by the following equation.

eD

max

=

p

k � � (where � =

area(R \ S)

� � jRj � jSj

): (3)

Evidently this equation can be applied only when R and S overlap. Nonetheless, it is unlikely this will be a serious

limitation, because overlapping node pairs always come before non-overlapping pairs in the main queueQ
M

. For two

sets of data objects to be joined by distance, the root nodes of two corresponding R-trees are commonly expected to

overlap each other under most practical circumstances. We can then make an initial estimation of D
max

from the pair

of root nodes.

4.3.2 Adaptive Correction of Estimated Distance eD
max

The performance ofAM-KDJ andAM-IDJ algorithms can be further improved by adaptively adjusting the value of

eD

max

at runtime. Adaptive correction of eD
max

can be done at any point of query processing by estimating a new

eD

max

from the number of object pairs k
0

(k

0

< k) obtained up to the point and the real distance of the k
0

-th object

pair, D
max

(k

0

)

. Specifically, the new estimate eD
max

0 can be computed from Equation (3) as

eD

max

0

=

q

D

max

2

(k

0

)

+ (k � k

0

)� (4)

15

by arithmetic correction, or as

eD

max

0

= D

max

(k

0

)

�

p

k=k

0

(5)

by geometric correction if D
max

(k

0

) 6= 0. In practice, we propose computing eD
max

0 in both ways, and then choose

the minimum if the query processing should be on the aggressive side. Otherwise, the maximum is chosen as eD
max

0.

Note that the new estimate eD
max

0 can sometimes grow beyond the previous estimate. If this happens, some pairs

whose distances are larger than the previous estimate but smaller than the new estimate could have already been pruned

and will never be examined in the current processing stage under the new estimate. Thus, to guarantee the correctness

of the distance join, the algorithm should initiate a compensation stage, as soon as a pair whose distance is smaller

than the smallest eD
max

is dequeued from the main queue.

4.4 Queue Management

Efficient queue management is one of the key components of the distance join algorithms proposed in this paper.

Each of the B-KDJ, AM-KDJ, and AM-IDJ algorithms relies on the use of one or more priority queues for query

processing. In particular, the main queue (Q
M

) is heavily used by all of the proposed algorithms, and its performance

impact is significant. In the worst case, the main queue can grow as large as the product of all objects of two R-tree

indexes. That is, the size of Q
M

is in O(jR
obj

j � jS

obj

j), where jR
obj

j and jS
obj

j are the number of all objects in R

and S, respectively. Thus, it is not always feasible to store the main queue in memory.

It was reported in [16] that a simple memory-based implementation might slow down query processing severely,

due to excessive virtual memory thrashing. A hybrid memory/disk scheme [16] and a technique based on range

partitioning [10] have been proposed to improve queue management and to avoid wasted sorting I/O operations. We

adopt a similar scheme for queue management, which partitions a queue by range based on distances of pairs. A

partition in the shortest distance range is kept in memory as a heap structure, while the rest of partitions are stored on

disk as merely unsorted piles.

When the in-memory heap becomes full, it is split into two parts, and then one in the longer distance range is

moved to disk as a new segment. When the in-memory heap becomes empty, a disk-resident segment in the shortest

distance range or a part of the segment is swapped in to memory to fill up the in-memory heap. Each of the split and

swap-in operations requiresO(n logn) computational cost for a heap of n elements as well as I/O cost for reading and

writing a segment. Thus, it is important to minimize the required number of those operations, which largely depends

on the partition boundary values between the in-memory heap and the first disk-resident segment, and between those

consecutive segments. However, as it is impossible to predict an exact D
max

value for a given k, so is it difficult to

determine optimal distance values as segment boundaries.

To address this issue, we use Equation (3) to determine the boundary distance values. Suppose n is the number

of elements that can be stored in an in-memory heap. Then, the boundary value between the in-memory heap and the

first disk-resident segment is given by
p

n� �, and the boundary value between the first and second segments is given

by
p

(2� n)� �, and so on.

In addition to a main queue, multi-stage algorithms AM-KDJ and AM-IDJ use a compensation queue (Q
C

)

in the compensation stage. Unlike the main queue, a compensation queue does not store any pair of objects. In

other words, a compensation queue can store pairs of non-object R-tree nodes only. Thus, the size of Q
C

is in

O(jR

node

j � jS

node

j), where jR
node

j and jS
node

j are the number of nodes (both internal and leaf nodes) in R and S,

respectively. This is a significantly lower upper-bound than a main queue has. We also observed from our experiments

that compensation queues were several orders of magnitude smaller than main queues. As for a distance queue used

by B-KDJ and AM-KDJ algorithms, its size is always bounded by a given k value. For these reasons, under most

circumstances, we assume either a compensation queue and a distance queue fits in memory. If any of these queues

outgrows memory, the same partitioning technique used for a main queue will be applied.

5 Performance Evaluation

In this section, we evaluate the proposed algorithms empirically and compare with previous work. In particular, the

proposed B-KDJ, AM-KDJ and AM-IDJ algorithms were compared with Hjaltason and Samet’s k-distance and

16

incremental distance join algorithms (hereinafter denoted as HS -KDJ and HS -IDJ, respectively) for k-distance join

(KDJ) and incremental distance join (IDJ) queries. We also include the performance of an R-tree based spatial join

algorithm [8] combined with a sort operation (denoted as SJ -SORT) in most of the experiments. For each distance join

query, a spatial join operation was performed with a real D
max

value to generate the k nearest pairs. Then, an external

sort operation was performed to return the query results in an increasing order of distances. Note that SJ -SORT

cannot be applied without knowing a real D
max

value, and we made a favorable assumption for SJ -SORT that the

real D
max

value was known to SJ -SORT a priori. Thus, we conjecture that SJ -SORT followed by an external sort

yields the best known lower bound performance for distance join processing.

5.1 Experimental Settings

Experiments were performed on a Sun Ultrasparc-II workstation running on Solaris 2.7. This workstation has 256

MBytes of memory and 9 GBytes of disk storage (Seagate ST39140A) with Ultra 10 EIDE interface. The disk is

locally attached to the workstation and used to store databases, queues and any temporary results. We used the direct

I/O feature of Solaris for all the experiments to avoid operating system’s cache effects, and the average disk access

bandwidth was about 0.5 MBytes/sec for random accesses and about 5 MBytes/sec for sequential accesses.

Data sets To evaluate distance join algorithms, we used real-world data sets in TIGER/Line97 from the U.S.

Bureau of Census [20]. The particular data sets we used were 633,461 streets and 189,642 hydrographic objects from

the Arizona state. Throughout the entire set of experiments, the same page size of 4 KBytes was used for disk I/O and

R*-tree [3] nodes.

Metrics We measured the performance of various algorithms based on the following metrics to compare the

algorithms in different aspects such as computational cost and I/O cost.

1. number of distance computations: The cost of computing distances between pairs of nodes (or objects) con-

stitutes a significant portion of the computational cost of a distance join operation. Thus, the total number of

distance computations required by a distance join algorithm provides a direct indication of its computational

performance.

2. number of queue insertions: The task of managing a main queue is largely I/O intensive as well as CPU intensive.

Inserting a node pair into the in-memory portion of the queue is CPU intensive, while inserting into the disk

resident portion is I/O intensive. We measured the CPU and I/O cost separately for the two different queue

insertions.

3. number of R-tree node accesses: The number of R-tree nodes accessed during distance join processing is another

I/O intensive metric. We measured actual number of nodes fetched from disk with varying R-tree buffer sizes.

4. response time: Actual query response times were measured for overall performance of distance join algorithms.

CPU and I/O costs were considered separately in measuring the response times.

5.2 Evaluation of k-Distance Joins

In this set of experiments, we varied a stopping cardinality k from 10 to 100,000 to compare the performance of

HS -KDJ, B-KDJ andAM-KDJ algorithms. The sizes of in-memory portion of a main queue and R-tree buffer were

fixed to 512 KBytes each. ForAM-KDJ algorithm, we used Equation (3) to estimate eD
max

values, and we observed

a tendency for eD
max

values to be overestimated with respect to real D
max

values. For example, for k = 100; 000,

eD

max

was about 2.3 times larger than a real D
max

.

Figure 11(a) shows that both B-KDJ and AM-KDJ reduced the number of distance computations significantly.

The numbers of distance computations required by the two algorithms were smaller than those required by HS -KDJ

algorithm by up to two orders of magnitude. AM-KDJ was almost identical to SJ -SORT by this metric. This

demonstrates that the optimized plane-sweep method was very effective in pruning pairs generated by bi-directional

expansions. On the other hand, HS -KDJ algorithm examines all possible pairs exhaustively in uni-directional expan-

sions.

In Figure 11(b), Both B-KDJ and AM-KDJ achieved significant reductions in queue insertions for all k values.

AM-KDJ was always better than B-KDJ particularly for large k values. This result confirms our conjecture that the

17

10

20

30

40

50

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

2

4

6

8

10

10 100 1000 10000 100000

N
u
m

b
e
r

in
 1

0
0
K

K : Number of Pairs

No. of Queue Insertions

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

3000

6000

9000

12000

15000

10 100 1000 10000 100000

N
u
m

b
e
r

o
f
R

-t
re

e
 N

o
d
e
s

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

20

40

60

80

100

120

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

CPU Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

30

60

90

120

150

180

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

I/O Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

100

200

300

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 11: Performance of k-Distance Joins

optimized plane-sweep method can prevent an explosion of a main queue that would be caused by bi-directional node

expansions without the optimized plane-sweep.

Figure 11(c) shows the number of R-tree nodes fetched from disk for distance join processing by each algorithm.

For large k values, the proposed B-KDJ and AM-KDJ algorithms required a far smaller number of R-tree node

accesses than HS -KDJ algorithm. For small k values, on the other hand, HS -KDJ algorithm was slightly better than

the other algorithms, due to its more localized node access patterns for small k. Table 2 compares the number of

R-tree nodes that would be fetched from disk with R-tree buffer size set to zero. Apparently, the bi-directional node

expansion used by B-KDJ and AM-KDJ algorithms requires much less number of R-tree node accesses than uni-

directional node expansion used by HS -KDJ algorithm. It should be noted that the number of R-tree node accesses

for B-KDJ, AM-KDJ and SJ -SORT algorithms are all identical in Table 2. This is because these algorithms use

the same bi-directional node expansion and access the same collection of R-tree nodes, though they may traverse an

R-tree index in different orders.

The total CPU time spent on executing each algorithm is shown in Figure 11(d). The B-KDJ and AM-KDJ

algorithms consistently outperformedHS -KDJ up to an order of magnitude. This significant improvement in compu-

tational cost is due mainly to the reduced number of distance computations. Recall that the uni-directional expansion

requires distance computations for an exhaustive set of node pairs, while bi-directional node expansion with plane

sweeping requires distance computations only for node pairs whose axis distances are smaller than qD

max

value at

the top of the distance queue. Additionally, the proposed algorithms are further optimized by techniques for selecting

sweeping axis and direction and by using maximum distance as a secondary priority for the main queue.

The total I/O time shown in Figure 11(e) reflects mostly the combined effects of queue insertions and R-tree

node accesses in Figure 11(b) and Figure 11(c), respectively. Figure 11(f) shows the response time of each algorithm

with the CPU and I/O times combined together. Both B-KDJ and AM-KDJ algorithms outperformed HS -KDJ

algorithm by a factor of two or three in response times. AM-KDJ performed better than B-KDJ for large k values,

demonstrating that AM-KDJ deals with the slow start problem better than B-KDJ does. For small k values, both

B-KDJ andAM-KDJ were comparable with SJ -SORT. Even for large k values, the response time ofAM-KDJ was

within about 80 percent above that of SJ -SORT, which we conjecture yields the best known lower bound performance.

18

KDJ Stopping cardinality k

Algorithms 10 100 1,000 10,000 100,000

HS -KDJ 186,184 186,403 186,801 188,354 197,113

B-KDJ 12,652 12,660 12,672 12,688 12,916

AM-KDJ 12,652 12,660 12,672 12,688 12,916

SJ -SORT 12,652 12,660 12,672 12,688 12,916

Table 2: No. of R-tree Node Accesses for k-Distance Joins

0

5

10

15

20

25

10 100 1000 10000 100000

No. of Pairs

N
o
.

in
 M

il
li

o
n
s BKDJ(basic)

BKDJ(sweeping index)

BKDJ(max. distance)

BKDJ

0

2

4

6

8

10

10 100 1000 10000 100000

No. of Pairs
N

o
.
in

 1
0
0
K

s BKDJ(basic)

BKDJ(sweeping index)

BKDJ(max. distance)

BKDJ

(a) Distance Computations (b) Queue Insertions

Figure 12: Improvements by Optimized Plane Sweep for B-KDJ

5.3 Impact of Optimized Plane-Sweep and Secondary Priority

We have proposed optimization techniques for B-KDJ in Section 3. One is for selecting sweeping axis and direction,

which is mainly aimed at reducing the number of distance computations. The other is using the maximum distance

between node pairs as a secondary priority of the main queues, which is mainly aimed at reducing the number of queue

insertions. To further analyze the performance impacts of the optimization techniques, we measured the performance

of B-KDJ (1) with both optimizations turned on, (2) with the sweeping index only, (3) with the secondary priority

only, (4) with both optimizations turned off. For the cases with sweeping index turned off, the sweeping index and

direction were fixed to x-axis and forward direction.

The sweeping index method alone reduced the number of distance computations by up to 20 percent as shown in

Figure 12(a). The use of the maximum distance as a secondary priority alone reduced the number of queue insertions

by up to 15 percent as shown in Figure 12(b). The use of the maximum distance also helped decrease the qD

max

value more quickly and reduce the number of distance computations slightly as shown in Figure 12(a). However,

the synergistic effect of the two optimization techniques was rather insignificant. As they improve the performance

of distance join processing largely independently in two different aspects, we recommend that both the optimization

techniques be used together.

5.4 Evaluation of Incremental Distance Joins

As in the previous section, we varied a stopping cardinality k from 10 to 100,000 to compare the performance of

incremental distance join algorithms HS -IDJ and AM-IDJ. Like the previous experiments for k-distance joins, the

sizes of in-memory portion of a main queue and R-tree buffer were fixed to 512 KBytes.

In Figures 13(a) and 13(b), AM-IDJ algorithm required 75 to 98 percent less distance computations and queue

insertions than HS -IDJ algorithm did. For large k values, as shown in Figure 13(c), AM-IDJ algorithm required a

much smaller number of disk accesses than HS -IDJ algorithm. This is becauseAM-IDJ accesses R-tree nodes using

bi-directional node expansion, in the same way asAM-KDJ does. The significant improvement in these three metrics

in turn led to improvement in response time by an order of magnitude in Figure 13(f). Specifically, the improvement

in CPU time (Figure 13(d)) is attributed to the reduction in distance computations and queue insertions, and the

19

10

20

30

40

50

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-IDJ
AM-IDJ

SJ-SORT

10

20

30

40

50

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n
s

K : Number of Pairs

No. of Queue Insertions

HS-IDJ
AM-IDJ

SJ-SORT

0

3000

6000

9000

12000

10 100 1000 10000 100000

N
u
m

b
e
r

o
f
R

-t
re

e
 N

o
d
e
s

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-IDJ
AM-IDJ

SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

50

100

150

200

250

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

CPU Time

HS-IDJ
AM-IDJ

SJ-SORT

0

200

400

600

800

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

IO Time

HS-IDJ
AM-IDJ

SJ-SORT

0

300

600

900

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

Response Time

HS-IDJ
AM-IDJ

SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 13: Performance of Incremental Distance Joins

improvement in I/O time (Figure 13(e)) is attributed to the reduction in queue insertions and R-tree node accesses.

Like AM-KDJ algorithm, Equation (3) in Section 4.3.1 was used to estimate eD
max

values forAM-IDJ algorithm.

Now it is well worthwhile investigating the performance impact of the stopping cardinality k. Generally, KDJ

algorithms make use of the apriori knowledge of the k value to minimize the distance computations and the number of

queue insertions. Thus, KDJ algorithms are expected to be much faster than IDJ algorithms. From our experiments,

however,HS -KDJ required almost as many distance computations as HS -IDJ did. This indicates that HS -KDJ does

not take advantage of the stopping cardinality enough to achieve performance gain in the distance computations.

In contrast, AM-KDJ required only about 70 percent of distance computations that AM-IDJ did (Figure 13(a)

and Figure 11(a)), and required only 8 percent of queue insertions that AM-IDJ did (Figure 13(b) and Figure 11(b)).

This is because KDJ algorithms need not insert a node pair into main queue if its distance is greater than qD

max

value. The number of queue insertions has direct impact on both CPU and I/O times. The response time ofAM-KDJ

algorithm was about 60 percent less than that of AM-IDJ algorithm (see Figure 13(f) and Figure 11(f)).

5.5 Impact of Memory Size

In this set of experiments, we examined the performance impact of memory constraint on queue management and

R-tree access. The sizes of in-memory portion of a main queue and R-tree buffer were varied from 64 KBytes to

1024 KBytes. We measured the response time of HS -KDJ, B-KDJ and AM-KDJ algorithms for a fixed stopping

cardinality k = 100; 000.

5.5.1 Buffer Size for Main Queue

No measurement for SJ -SORT algorithm appears in Figures 14(a) through 14(c), because SJ -SORT algorithm need

not use the main queue for distance join processing. As we expected, in Figures 14(a) and 14(b), the cost of queue

management decreased in terms of both the number of required write operations and time spent on the write operations.

More noticeable improvement was observed in handling the overflow and underflow of the in-memory portion of

queue, by split and swap-in operations respectively. (The split and swap-in operations are descibed in Section 4.4.)

The time spent on the split and swap-in operations was improved substantially for all three algorithms in Figure 14(c).

It should be noted that the cost of queue management can be further reduced by not storing object pairs in the

main queue, as proposed in the recent work by Corral et al. [11]. It is straightforward to modify the distance queue

20

0

2000

4000

6000

64K 128K 256K 512K 1024K

N
u
m

b
e
r

o
f
B

lo
c
k
 W

ri
te

s

Queue Memory Size

No. of Disk Queue Block Writes

HS-KDJ
B-KDJ

AM-KDJ
0

20

40

60

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

Queue Memory Size

Queue Block Write Time

HS-KDJ
B-KDJ

AM-KDJ
0

10

20

30

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

Queue Memory Size

Split/Swapin Time

HS-KDJ
B-KDJ

AM-KDJ

(a) Queue Block Writes (b) Queue Block Write Time (c) Split/Swapin Time

0

20

40

60

80

100

120

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

Queue Memory Size

CPU Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

50

100

150

200

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

Queue Memory Size

IO Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

100

200

300

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

Queue Memory Size

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 14: Impact of Queue Buffer Size

to store k object pairs for B-KDJ and AM-KDJ algorithms. The reason we did not use the optimization was that the

optimization cannot be applied to incremental distance join queries and it was desired to evaluate the performance of

KDJ and IDJ algorithms on the same basis.

While the CPU time remained almost unchanged in Figure 14(d), the I/O time was improved with more memory

for all the algorithms shown in Figure 14(e). The improved response time was mainly attributed to the improved I/O

time. The proposed B-KDJ andAM-KDJ algorithms showed consistently better performance in queue management

thanHS -KDJ all over the examined range of memory size. This is becauseB-KDJ andAM-KDJ algorithms reduced

the number of required queue insertions and queue write operations.

5.5.2 Buffer Size for R-Tree

As shown in Figures 15(a) and 15(b), a considerable amount of improvement in R-tree accesses was observed by

increasing the size of buffer for R-tree. For example, by increasing the buffer size from 64 KBytes to 1024 KBytes,

the R-tree access time was reduced by 46 percent for B-KDJ and AM-KDJ algorithms. Recall that B-KDJ and

AM-KDJ algorithms, which are based on bi-directional node expansion, show the same behavior in R-tree access.

Like the queue management in the previous section, the CPU time spent on R-tree accesses remained almost

unchanged, as shown in Figures 15(c). It was again the I/O time that affected the response time most in Figures 15(d)

and 15(e).

5.6 Impact of Duplicates and Zero-Distance Pairs

In real-world applications, spatial data sets often contain duplicates (i.e., different objects with identical spatial extents

or positions). These duplicates may cause query processing procedures to behave differently than normally expected.

To evaluate the performance impact of duplicates for distance join processing, we carried out another set of experi-

ments with slightly different data sets. Specifically, several thousands of data objects were added to the hydragraphic

data set and the street data set, so that about 10,000 pairs of hydragraphic objects and streets are intersected (i.e., within

zero distance).

Figure 16 shows the performances of k-distance joins for the datasets with duplicates. For all the k values, the

proposed algorithms, B-KDJ and AM-KDJ, outperformed HS -KDJ, and AM-KDJ was better than B-KDJ for

large k values due to the slow-start problem of B-KDJ. However, for small k values, the performance gap between

21

0

3000

6000

9000

12000

15000

64K 128K 256K 512K 1024K

N
u
m

b
e
r

o
f
R

-t
re

e
 N

o
d
e
 A

c
c
e
s
s
e
s

R-Tree Buffer Size

Actual R-tree Node Accesses

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

50

100

150

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

R-Tree Buffer Size

IO Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(a) R-Tree Node Accesses (b) R-Tree Node Access Time

0

50

100

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

R-Tree Buffer Size

CPU Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

50

100

150

200

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

R-Tree Buffer Size

IO Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

100

200

300

64K 128K 256K 512K 1024K

T
im

e
 i
n
 S

e
c
o
n
d
s

R-Tree Buffer Size

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(c) CPU Time (d) I/O Time (e) Response Time

Figure 15: Impact of R-Tree Buffer Size

10

20

30

40

50

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

2

4

6

8

10

10 100 1000 10000 100000

N
u
m

b
e
r

in
 1

0
0
K

K : Number of Pairs

No. of Queue Insertions

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

6000

9000

12000

15000

10 100 1000 10000 100000

N
u
m

b
e
r

o
f
R

-t
re

e
 N

o
d
e
s

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

20

40

60

80

100

120

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

CPU Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

30

60

90

120

150

180

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

I/O Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

0

100

200

300

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 16: Performance of k-Distance Joins for Datasets with Duplicates

these algorithms was rather small compared with the case for data sets without duplicates. (See Figure 11.) This is

because a large number of zero-distance pairs diminishes the distinctions among different KDJ algorithms.

Contrary to our conjecture, SJ -SORT was worse than all three k-distance join algorithms in response times for

small k values (k � 10; 000). This is again due to the fact that there were about 10,000 pairs of zero distance. No

matter what distance cutoff was provided for the SJ -SORT algorithm, an exhaustive set of zero-distance pairs were

returned as a distance join query results, which turned out a significant overhead for small k values.

For the incremental distance join algorithms HS -IDJ, AM-IDJ and SJ -SORT, we observed the same trend in

22

10

20

30

40

50

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-IDJ
AM-IDJ

SJ-SORT

10

20

30

40

50

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n
s

K : Number of Pairs

No. of Queue Insertions

HS-IDJ
AM-IDJ

SJ-SORT

0

3000

6000

9000

12000

10 100 1000 10000 100000

N
u
m

b
e
r

o
f
R

-t
re

e
 N

o
d
e
s

K : Number of Pairs

Actual Number of R-Tree Node Accesses

HS-IDJ
AM-IDJ

SJ-SORT

(a) Distance Computations (b) Queue Insertions (c) R-Tree Node Accesses

0

50

100

150

200

250

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

CPU Time

HS-IDJ
AM-IDJ

SJ-SORT

0

200

400

600

800

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

IO Time

HS-IDJ
AM-IDJ

SJ-SORT

0

300

600

900

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

Response Time

HS-IDJ
AM-IDJ

SJ-SORT

(d) CPU Time (e) I/O Time (f) Response Time

Figure 17: Performance of Incremental Distance Joins for Datasets with Duplicates

the performance from the data sets with duplicates. (See Figure 17.) AM-IDJ was always better than HS -IDJ for all

k values, and AM-IDJ yielded better response time than SJ -SORT in small k values(k � 1000).

5.7 Impact of eD
max

Estimation on AM-KDJ Performance

We designed two sets of experiments to characterize the performance of AM-KDJ algorithm with respect to the

accuracy of estimated eD
max

values. In Section 5.7.1, instead of using Equation (3) to estimate eD
max

, we varied the

eD

max

value from 0:1 � D

max

to 10 � D

max

. Recall that D
max

is a real distance between the k-th nearest pair of

objects. In Section 5.7.2, we used Equation (3) and power law proposed in [13] to compute eD
max

values. Again, the

sizes of in-memory portion of a main queue and R-tree buffer were fixed to 512 KBytes.

5.7.1 Robustness of AM-KDJ

While fixing a stopping cardinality k to 100,000, we varied the eD
max

value from 0:1�D

max

to 10�D

max

. When

eD

max

is overestimated (eD
max

> D

max

), the compensation stage of AM-KDJ algorithm is not necessary, because

all the k nearest pairs will be produced in the first (aggressive pruning) stage. Even when eD

max

is overestimated,

AM-KDJ guarantees that eD
max

is always smaller than or equal to qD
max

(obtained from a distance queue) through-

out the first stage. Thus,AM-KDJ always requires no more distance computation and queue insertion operations than

B-KDJ algorithm does.

On the other hand, if eD
max

is underestimated (eD
max

< D

max

), the node pairs in the compensation queue will

be revisited in the compensation stage. Thus, the cost of tree traversals will increase, but it will be bounded by twice

the cost of B-KDJ algorithm. Although there is no such a bound on the cost of queue management, we observed in

most of our experiments that the cost of queue management was lower than that of B-KDJ algorithm. This is because

a large number of insertions to a compensation queue were prevented by aggresive pruning, and the compensation

queue was several orders of magnitude smaller than the main queue. As discussed in Section 4.1, for a pair already

expanded once in the first stage, only child pairs not examined in the first stage are paired up in the compensation stage

and thereby wasting no time for redundant work. The value of qD
max

is likely to have become quite close to a real

D

max

value in the compensation stage. So, AM-KDJ algorithm usually prunes distant pairs much more efficiently

in the compensation stage than B-KDJ algorithm would do in a single stage. Therefore, AM-KDJ outperforms the

k-distance join algorithms HS -KDJ and B-KDJ, despite the additional cost of compensation stage.

23

0

10

20

30

40

50

0.2 0.4 0.6 0.8 1 3 5 7 9

N
u
m

b
e
r

in
 M

ill
io

n
s

ratio of eDmax / Dmax

No. of Distance Computations

HS-KDJ

B-KDJ

AM-KDJ SJ-SORT

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1 3 5 7 9

N
u
m

b
e
r

in
 1

0
0
K

ratio of eDmax / Dmax

No. of Queue Insertions

B-KDJ

HS-KDJ

AM-KDJ

SJ-SORT

0

100

200

300

0.2 0.4 0.6 0.8 1 3 5 7 9

T
im

e
 i
n
 S

e
c
o
n
d
s

ratio of eDmax / Dmax

Response Time

HS-KDJ

B-KDJ

AM-KDJ

SJ-Sort

(a) Distance Computations (b) Queue Insertions (c) Response Time

Figure 18: Performance Impact of eD
max

Figure 18 shows that as eD
max

approaches to a real D
max

value, the performance of AM-KDJ improves con-

sistently in all three metrics. When eD

max

increases far beyond the real D
max

value, the performance of AM-KDJ

converges to that of B-KDJ algorithm. More importantly, however, AM-KDJ always outperformed B-KDJ, not to

mention HS -KDJ, with eD
max

in a wide spectrum of estimated value range.

We have not measured the cost of compensation queue management. A compensation queue contains pairs of

non-object R-tree nodes. During the first (aggressive pruning) stage of AM-KDJ algorithm, The number of pruned

pairs is far larger than the number of non-object pairs inserted into a compensation queue. In most of our experiments,

the size of a compensation queue was less than 0.5 percent of the size of a main queue. Thus, the additional cost

required for the compensation queue was almost negligible. This is one of the reasons why AM-KDJ algorithm

always outperformedB-KDJ, which does not need a compensation queue.

5.7.2 Uniformity Assumption and Power Law

Faloutsos et al. [13] proposed a power law to predict the selectivity of spatial join and to estimate the distance of

the k-th closest pair. We used the box-occupancy-product-sum method as proposed in [13] to determine the values of

coefficient (C) and slope (s) of the power law. Then, we used the following formula to estimate eD
max

for different k

values.

eD

max

= L�

�

k

C

�

1=s

(6)

Here L is the maximum length of a data domain along x or y axis. For the data sets without duplicates, C was

3:85894� 10

11 and s was 1.812235. For the data sets with duplicates, C was 3:96152� 10

11 and s was 1.806431. L

was 5766370 in both cases.

Figures 19(a) and 19(b) show real D
max

and estimated eD

max

values for k values varying from 10 to 100,000.

eD

max

values estimated by Equation 3 are labeled Uniform; those estimated by the power law are labeled Power

Law. For the data sets without duplicates, the eD
max

estimation by the power law was very accurate, while Equation 3

consistently overestimated. However, for data sets with duplicates, even the power law was not as accurate and it

overestimated for small k values.

In the experiments, both Equation 3 (uniformity assumption) and Equation 6 (power law) overestimated D
max

values. As we discussed in the previous section, the compensation stage of AM-KDJ is not necessary when eD

max

is overestimated. To demonstrate the performance impact of eD
max

estimation, we measured response times of

AM-KDJ algorithm using real D
max

values and estimated eD
max

values in Figures 19(c) and 19(d). Evidently, the

response times ofAM-KDJ were not so affected by eD
max

estimation for both data sets with and without duplicates.

This is another evidence that AM-KDJ yields very stable performance under various circumstances, and Equation 3

based on uniformity assumption is a viable method to estimate eD
max

values for real-world data sets.

5.8 Stepwise Incremental Execution of AM-IDJ

Incremental distance join algorithms do not require a preset stopping cardinality k. Thus, in this set of experiments, we

simulated a situation where users repeatedly requested a set of 10,000 nearest pairs at a time until a total of 100,000

24

0

500

1000

1500

2000

2500

10 100 1000 10000 100000

d
is

ta
n
c
e

K : Number of Pairs

Dmax vs. eDmax

Uniform
Power Law
real Dmax

0

500

1000

1500

2000

2500

10 100 1000 10000 100000

d
is

ta
n
c
e

K : Number of Pairs

Dmax vs. eDmax

Uniform
Power Law
real Dmax

(a) eD
max

for data sets without duplicates (b) eD
max

data sets with duplicates

0

30

60

90

120

10 100 1000 10000 100000

T
im

e
 i
n

 S
e
c
o
n
d
s

K : Number of Pairs

Response Time

Uniform
Power Law
real Dmax

0

30

60

90

120

10 100 1000 10000 100000

T
im

e
 i
n

 S
e
c
o
n
d
s

K : Number of Pairs

Response Time

Uniform
Power Law
real Dmax

(c) Response time for data sets without duplicates (d) Response time for data sets with duplicates

Figure 19: eD
max

estimation based on uniform distribution and Power Law

nearest pairs were generated. Incremental algorithms HS -IDJ and AM-IDJ each were executed once in a single

experiment run, until a total of 100,000 nearest pairs were generated. The sizes of in-memory portion of a main queue

and R-tree buffer were fixed to 512 KBytes both for HS -IDJ and AM-IDJ.

For SJ -SORT, which is not an incremental algorithm, we restarted its processing each time i � 10; 000 nearest

pairs were generated for i (1 � i � 9). Thus, the performance measurements of SJ -SORT presented in Figure 20

are cumulative. For example, the response time of SJ -SORT for k = 20; 000 includes the times spent on executing

SJ -SORT twice, once for k = 10; 000 and another for k = 20; 000. For each run of SJ -SORT, we used a real D
max

value for each of different stopping cardinalities.

In Figure 20, we measured the response time ofAM-IDJ algorithm in two different ways: (i) with eD
max

values

estimated by Equation (3), and (ii) with real D
max

values provided for 10 different k values. When estimated eD
max

values were provided,AM-IDJ needed compensation processing only after generating 30,000 pairs and 90,000 pairs,

due to overestimated eD

max

values. In the second case (denoted by AM-IDJ (Dmax) in Figure 20), a real D
max

value was provided for each of k values from 10,000 through 100,000, to simulate a situation where the next set

of 10,000 pairs of objects were repeatedly requested by a user. Consequently, AM-IDJ was forced to initiate a

compensation stage, each time the next set was requested. This overhead slowed down the processing due mainly

to redundant R-tree node accesses. Overall, AM-IDJ showed a fairly consistent performance over varying eD

max

estimates, as AM-KDJ did in Section 5.7. For all the k values, AM-IDJ with estimated eD

max

improved the

response time by a factor of two to four, when compared with HS -IDJ.

6 Conclusions

We have developed new distance join algorithms for spatial databases. The proposed algorithms provide significant

performance improvement over previous work. The plane-sweep technique optimized by novel strategies for selecting

a sweeping axis and direction minimizes the computational overhead incurred by bi-directional node expansions. The

25

0

200

400

600

800

1000

20000 40000 60000 80000 100000

T
im

e
 i
n

 S
e

c
o

n
d

s

K : Number of Pairs

Response Time

SJ-Sort

HS-IDJ
AM-IDJ

AM-IDJ(Dmax)
SJ-SORT

Figure 20: Step-Wise Incremental Execution

node expansions are further optimized by using maximum distance for breaking tied pairs. We have shown that this

optimized plane-sweep technique alone improves processing of a k-distance join query considerably.

The adaptive multi-stage algorithms employ aggressive pruning and compensation methods to further optimize

the distance join processing. These algorithms address a slow start problem by using estimated maximum distances

as cutoff values for pruning distant pairs. Our experimental study shows that the proposed algorithms outperformed

previous work significantly and consistently for all the stopping cardinalities over a wide spectrum of estimated max-

imum distances. Ample evidence was observed that the adaptive algorithm yielded significant improvement in query

processing time regardless of the techniques used for maximum distance estimations. For a relatively small stopping

cardinality, the proposed algorithms achieved up to an order of magnitude improvement over previous work. Assum-

ing data objects are uniformly distributed, we have developed strategies to choose an initial estimate and to correct the

estimate adaptively during the query processing.

When the stopping cardinality of a distance join query is unknown (as in on-line query processing environments

or a complex query that contains a distance join as a sub-query), the adaptive multi-stage algorithms process the query

in a stepwise manner so that the query results can be returned incrementally.

References

[1] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jeffrey. S. Vitter. Scalable sweeping-

based spatial join. In Proceedings of the 24th VLDB Conference, pages 259–270, New York, USA, June 1998.

[2] Sunil Arya, David M. Mount, and Onuttom Narayan. Accounting for boundary effects in nearest neighbor

searching. In Proc. 11th Annual Symp. on Computational Geometry, pages 336–344, Vancouver, Canada, 1995.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R

�-tree: An efficient and

robust access method for points and rectangles. In Proceedings of the 1990 ACM-SIGMOD Conference, pages

322–331, Atlantic City, NJ, May 1990.

[4] Alberto Belussi and Christos Faloutsos. Estimating the selectivity of spatial queries using the correlation fractal

dimension. In Proceedings of the 21st VLDB Conference, pages 299–310, Zurich, Switzerland, September 1995.

[5] Stefan Berchtold, Bernhard Ertl, Daniel Keim, Hans-Peter Kriegel, and T. Seidl. Fast nearest neighbor search in

high-dimensional spaces. In Proceedings of the 14th International Conference on Data Engineering, Orlando,

Florida, September 1998.

[6] Stefan Berchtold, Daniel A. Keim, and Hans-Peter. Kriegel. The X-tree: An index structure for high-dimensional

data. In Proceedings of the 22nd VLDB Conference, Bombay, India, September 1996.

[7] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-step processing of spatial

joins. In Proceedings of the 1994 ACM-SIGMOD Conference, pages 197–208, Minneapolis, Minnesota, May

1994.

[8] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial joins using R-Trees.

In Proceedings of the 1993 ACM-SIGMOD Conference, pages 237–246, Washington, DC, May 1993.

26

[9] Michael J. Carey and Donald Kossmann. On saying “enough already!” in SQL. In Proceedings of the 1997

ACM-SIGMOD Conference, pages 219–230, Tucson, AZ, May 1997.

[10] Michael J. Carey and Donald Kossmann. Reducing the braking distance of an SQL query engine. In Proceedings

of the 24th VLDB Conference, pages 158–169, New York, NY, August 1998.

[11] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassilakopoulos. Closest pair queries

in spatial databases. In Proceedings of the 2000 ACM-SIGMOD Conference, pages 189–200, Dallas, TX, May

2000.

[12] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic optimization of top N queries. In Proceedings of

the 25th VLDB Conference, Edinburgh, Scotland, September 1999.

[13] Christos Faloutsos, Bernhard Seeger, Agma Traina, and Caetano Traina Jr. Spatial join selectivity using power

laws. In Proceedings of the 2000 ACM-SIGMOD Conference, pages 177–188, Dallas, TX, May 2000.

[14] Antonin Guttman. R-Trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM-

SIGMOD Conference, pages 47–57, Boston, MA, June 1984.

[15] Gisli R. Hjaltason and Hanan Samet. Ranking in spatial databases. In Proc. of 4th Intl. Symposium on Large

Spatial Databases(SSD’95), pages 83–95, September 1995.

[16] Gisli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for spatial databases. In Proceedings

of the 1998 ACM-SIGMOD Conference, pages 237–248, Seattle, WA, June 1998.

[17] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, and Zenon Protopapas. Fast nearest neighbor

search in medical image databases. In Proceedings of the 22nd VLDB Conference, pages 215–226, June 1996.

[18] Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded trees. In Proceedings of the 1994 ACM-

SIGMOD Conference, pages 209–220, Minneapolis, Minnesota, May 1994.

[19] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-join. In Proceedings of the 1996 ACM-SIGMOD Con-

ference, pages 247–258, Montreal, Canada, June 1996.

[20] Bureau of the Census. Tiger/Line Precensus Files: 1997 technical documentation. Washington, DC, 1997.

[21] Jack A. Orenstein. A comparison of spatial query processing techniques for native and parameter spaces. In

Proceedings of the 1990 ACM-SIGMOD Conference, pages 343–352, Atlantic City, New Jersey, May 1990.

[22] Dimitris Papadias, Nikos Mamoulis, and Yannis Theodoridis. Processing and optimization of multiway spatial

joins using r-trees. In Proceedings of the 1999 ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, pages 44–55, June 1999.

[23] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In Proceedings of the 1996 ACM-

SIGMOD Conference, pages 259–270, Montreal, Canada, June 1996.

[24] Viswanath Poosala. Histogram-based Estimation Techniques in Databases. PhD thesis, University of Wisconsin-

Madison, 1997.

[25] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introdution. Springer-Verlag, New

York, NY, 1985.

[26] V. Ramasubramanian and K. K. Paliwal. Fast k-dimensional tree algorithms for nearest neighbor search with

application to vector quantization encoding. IEEE Trans. on Signal Processing, 40(3):518–531, March 1992.

[27] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent. Nearest neighbor queries. In Proceedings of the 1995

ACM-SIGMOD Conference, pages 71–79, San Jose, CA, May 1995.

[28] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor search. In Proceedings of the 1998

ACM-SIGMOD Conference, pages 154–165, Seattle, Washington, June 1998.

[29] Jeffrey S. Vitter and Min Wang. Approximate computation of multidimensional aggregates of sparse data using

wavelets. In Proceedings of the 1999 ACM-SIGMOD Conference, pages 193–204, June 1999.

27

