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ABSTRACT 

 

Wireless networks based on IEEE 802.11 are becoming increasingly widely 

deployed. However, 802.11 systems fail to make optimal use of the available network 

resources because of a lack of coordination between different system components, in 

particular, the absence of any form of coordination between access points and mobile 

nodes. Consequently, wireless network installations may not make optimal allocation of 

mobile nodes to access points, leading to imbalances in the load distribution and 

potentially reducing the network bandwidth available to users. This thesis presents the 

Sabino system: a lightweight management architecture that coordinates the actions of 

access points and mobile nodes to ensure, where possible, a more balanced load 

distribution and hence better utilization of system resources. Sabino as an architectural 

solution is applicable for many other applications and future wireless deployments in 

which mobile nodes have different Quality-of-Service requirements and are serviced by 

different network technologies. Key aspects of the Sabino system include easy and 

incremental deployment, flexible architectural topology, minimal overhead and effective 

management of resources. This thesis presents evidence of some of the problems in 

existing 802.11 systems and it describes the design, the implementation and the 

evaluation of the Sabino system as an effective solution to these problems. 
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Chapter 1 
 

Introduction  
 

Over the past decade there has been a rapid growth in the popularity of Wireless 

Local Area Networks (WLANs). Like their wired counterparts, WLANs are designed to 

provide high bandwidth to users in limited geographic areas. However, WLANs allow 

users to maintain connectivity as they move without being tethered by the constraints of 

physical connections. Schools and universities are installing WLANs to bridge students 

to the Internet [Hills, 96], [Comer, 95]. Malls are providing customers with wireless 

access allowing them to retrieve prices, search shops and purchase products [Bahl, 00]. 

Tourist sites are providing wireless devices to aid tourists in navigating areas, exploring 

sites and learning about attractions [Friday, 01]. Moreover, with the deployment of 

Fourth Generation (4G) networks, WLANs are expected to be an integral component of 

the public wireless network infrastructure [Nakajima, 01].   

 

Embraced by many vendors, IEEE 802.11 has become the de-facto wireless LAN 

standard. The benefits of standardization coupled with the low cost of deploying 802.11 

based networks have made it a popular solution for providing wireless connectivity. 

However, 802.11 systems face numerous challenges, for example, the increase in 

bandwidth demanding applications requires efficient allocation and sharing of network 

resources between mobile hosts. These challenges have resulted in a significant body of 

research aimed at improving the performance of 802.11 networks. Such research has 

studied, for example, Quality-of-Service (QoS) [Deng, 99], [Kopsel, 01], resource 

allocation [Pradhan, 98], handoff management [Caceres, 96] and various Medium Access 

Control (MAC) enhancements [Weinmiller, 96]. These efforts have typically focused on 

improvements within a single cell and have required changes to the MAC architecture. 

However, one of the unique characteristics of wireless systems is that it is possible to 

have multiple cells covering a single geographic area. In fact, it is possible to have 

multiple networks covering the same geographic area creating so-called overlay networks 

[Katz, 96]. This results in aggregating the bandwidth in these overlapping coverage areas. 

In previous research it has been shown that handoffs can be achieved between vertical 

network overlays [Stemm, 97], [Wang, 99] to improve the end-end communication 

quality available to mobile nodes. Using overlapping cells belonging to a single network 

is not without problems: applications must tolerate the changes in bandwidth as mobile 

nodes roam across different cells that might be subject to different loads or might support 

lower bandwidths. Existing 802.11 systems fail to make optimal use of the resources 

available in such configurations due to the lack of coordination between various system 

components. In particular, current installations lack any kind of coordination between 

overlapping access points and mobile nodes, leading to imbalances in the load 

distribution and potentially wasting unused network resources. 
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This thesis describes a novel architectural solution to solve this problem: the Sabino 

system. Sabino is a suite of software designed to run on (or close) to 802.11 access points 

and mobile nodes. It provides a coordination framework to manage network resources 

using the underlying supported network primitives such as Simple Network Management 

Protocol (SNMP) and Management Information Base (MIB) objects [McCloghrie, 91]. 

Sabino coordinates the association and dissociation of nodes to access points, therefore 

performing better load balancing, which results in an overall improved system 

performance.  Moreover, Sabino as an architectural solution is applicable for future 

wireless deployments in which overlapping cells might use different MAC protocols 

targeted at different traffic types. In such cases, Sabino can manage the network 

resources using the appropriate primitives supported by each network technology to 

provide improved overall utilization of resources. Finally, it is worth noting that unlike 

numerous research efforts, the architecture presented does not require any changes to the 

MAC protocol, which makes it easily deployable. 

 

The remainder of this thesis is structured as follows. Chapter 2 provides a brief 

overview of the IEEE 802.11 standard, focusing on its mechanisms for creating 

associations between mobile nodes and access points, the roaming mechanism it uses and 

how Agere Orinoco 802.11 products implement load balancing and the technical flaws in 

their scheme.  Chapter 3 contains a detailed description of the Sabino system including 

the different topological architectures possible, the interaction interfaces required and 

detailed interaction scenarios that illustrate the operation of the system. Chapter 4 

presents a discussion of the implementation of the different components of Sabino and 

the experimental setups used to conduct our experiments. Chapter 5 presents the results 

of these experiments and a detailed analysis and evaluation of the implementation. 

Finally, chapter 6 discusses plans for future work and some concluding remarks. 
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Chapter 2 
 

 Overview of 802.11  
 

The IEEE 802.11 standard [IEEE, 99a] was designed to specify a cheap, robust 

wireless networking technology. The standard provides two modes of network 

configuration: ad-hoc and infrastructure. The former provides a means to create a group 

of mobile nodes without any infrastructure support, while the latter is typically used to 

provide continuous network coverage in certain geographic areas using base stations 

known as access points. 802.11 supports 14 partially overlapping channels of which 3 

channels do not overlap, allowing network designers to aggregate the bandwidth within 

highly loaded geographic areas by overlapping access points using non-interfering 

channels. The standard specifies two distinct MAC protocols, namely Distributed 

Coordination Function (DCF) and Point Coordination Function (PCF), that offer 

contention based medium access and contention-free medium access respectively [IEEE, 

99a].  

 

The IEEE 802.11 workgroup has extended the original standard by introducing the 

802.11b specifications [IEEE, 99b] for high data rate support including two new speeds 

5.5 Mbps and 11 Mbps. In addition, a task group known as 802.11e [IEEE, 01b] has been 

formed to enhance the current 802.11 MAC protocols and to expand support for 

applications with QoS requirements. The QoS baseline proposal [Godfrey, 01] contains 

two different access methods and three QoS levels to accommodate the needs of 

Integrated Services and Differentiated Services. The former provides end-to-end 

connection-oriented QoS with support for streaming and centralized scheduling, while 

the latter provides a simple mechanism for prioritizing traffic within each cell.  

 

2.1 Association in 802.11 
 

Typically, 802.11 systems are configured with multiple access points, of which, some 

overlap to provide higher aggregate bandwidth within heavily loaded geographic areas. 

802.11 supports the association/re-association/dissociation of mobile units with access 

points to enable roaming. Each mobile node is equipped with a wireless adapter that 

implements the roaming algorithm. Creating the initial association of a mobile node with 

an access point starts with a process called scanning. The IEEE 802.11 standard defines 

two methods of scanning: passive scanning, where the station switches to a channel and 

listens to beacons from access points that use that channel and active scanning, where the 

station switches to a channel and issues a so-called Probe Request, to which a Probe 

Response is expected within a given time frame. Most 802.11 product vendors implement 

active scanning as it provides a faster and a more efficient mechanism for detecting the 

access points in the vicinity of the mobile nodes. Performing a series of scans on different 

frequencies is called sweeping. There are two types of sweeps: full sweeping which goes 

through all the channel-list and short sweeping which skips the channels that do not have 
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sufficient frequency distance from known active channels [Lucent, 98b]. Figure 1, 

illustrates a scenario with a single mobile node trying to associate with one of two 

overlapping access points. The mobile node is in the overlapping coverage area of AP1 

and AP2, it associates with AP1 as it has a stronger Signal-to-Noise Ratio (SNR). 

 

 

AP1 AP2

Laptop

1. 1.

2.
2.

3.

4.

Steps to Associate  (Active
Scanning)

1. Mobile Node sends a Probe

Request.

2. Access Point sends Probe Reply.

3.Mobile Node sends an

Association Request.

4.Access Point sends Association

Response.

 
 

Figure 1: Association in 802.11 Networks 

 

Information about available access points is stored in the wireless adaptor card. After 

updating the access point list stored in the card, the mobile node sends an Association 

Request to the access point with the strongest signal strength (AP1). Assuming that the 

mobile node is not denied access, the access point responds with an Association Response 

that in effect binds the mobile unit to the access point.  

 

While having multiple overlapping cells is typical in 802.11 networks, mobile nodes 

can only re-associate with new access points in two situations: during roaming or for load 

balancing purposes. The following sections describe in detail these two features. 

 

2.2 Roaming in 802.11 
 

When a mobile unit moves away from the access point, the SNR of the link drops, 

and will eventually drop below a threshold value known as the cell search threshold. 

When this event occurs, it triggers the roaming algorithm to start looking for other access 

points to associate with. In this process, the mobile unit initiates a sweeping that 

constructs an updated access point list. When the SNR drops below a second threshold 

known as cell switching threshold and defined as ‘cell search threshold – Delta SNR’, the 

roaming algorithm triggers a re-association by selecting another access point from the 

access point list and it issues an association request to it as described earlier. Figure 2 

shows the relationship of the SNR of two access points as a mobile node roams from AP1 

to AP2. 
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Figure 2: Roaming and SNR in 802.11 

 

In most commercial implementations of 802.11, it is possible to associate a network 

name (SSID) with an access point. Mobile nodes can choose to associate with any access 

point or to restrict their selection by providing a network name that must match the 

access point they want to associate with. In this way, it is possible to create multiple 

logical networks within a given geographic area by using different network names for 

different sets of access points. One caveat is that mobile nodes do not roam between 

logical networks. Moreover, even if a node does not specify a network name, once an 

association has been made to a named access point the node will only roam to access 

points with this same network name.  

 

Finally, it is worth noting that manufacturers such as Agere allow a single physical 

access point to have two separate wireless network interfaces, each with a logical 

network name (the network names may be the same or different depending on the 

configuration). This is essentially an optimization and can be thought of as two logically 

separate access points that happen to be co-located. For example, it is possible for a 

mobile node to roam between two different network interfaces provided by a single 

access point (assuming they have the same logical network name). In this thesis when 

access points are discussed, we are assuming a logical view unless otherwise stated. 

 

At present there is no standard for inter-access point coordination. However, an IEEE 

task group known as 802.11f has been formed to design a protocol called Inter Access 

Point Protocol (IAPP) [IEEE, 01a]. This protocol will include hand-over procedures to 

update the learning bridges on different access points and to support the interoperability 

of different 802.11 products. 

 

2.3 Load balancing in 802.11 Products 
 

Many 802.11 systems [Lucent, 98a] implement a basic load balancing mechanism, for 

example, Agere Orinoco 802.11 wireless products trigger a load-balancing algorithm 
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once 4 consecutive beacons are lost by a mobile node. Beacons are special packets that 

are used to maintain synchronization between mobile nodes and access points. They are 

sent at nominal rates by 802.11 access points, for example, Orinoco AP-1000 access 

points issue a beacon every 100 milliseconds. It is assumed by Orinoco products that 

losing 4 consecutive beacons is an indication of contention in accessing the shared 

medium, as a result, the load balancing algorithm gets triggered to search for an 

alternative overlapping access point to associate with. Fundamental to examining the 

validity of this assumption is to understand the reasons that cause beacon loss, and this 

requires analyzing how 802.11 resolves contention to the shared medium.  

 

There are two factors that determine who seizes the shared medium in 802.11:  a 

static element represented by a fixed Inter-Frame Space (IFS) and a random backoff 

interval. Figure 3, shows the relationship of these intervals as mobile units send their 

frames. 

 

DIFS

Busy Medium

DIFS

PIFS

SIFS

Defer Access

Backoff Window

New Frame

 

Figure 3: Medium Access in 802.11 

 

IFSs provide fixed priority levels for accessing the wireless media. The standard 

defines four IFSs in ascending order of time: Shortest IFS (SIFS), PCF IFS (PIFS), DCF 

IFS (DIFS) and Extended IFS (EIFS). Control packets such as acknowledgments use 

SIFS, while data packets and management packets (such as beacons) use DIFS. 

Therefore, in an event of a contention, acknowledgements will have higher priority than 

data and management packets. It is worth noting that the IFSs are fixed values 

determined by the physical layer. 

 

The random backoff scheme in 802.11 is designed to minimize collisions when they 

are likely to occur, in particular, when the medium is idle. The backoff algorithm gets 

triggered in 2 situations: when either physical carrier sensing or virtual carrier sensing 

fail. Physical carrier sensing refers to the detection of a collision through listening to the 

shared medium, while virtual carrier sensing refers to the detection of an ongoing 

Request-To-Send/Clear-To-Send (RTS/CTS) soft reservation by a contending mobile 

node.  All packets including beacons are subject to backoff delays due to contention like 

any other packets, however, access points delay all data and control packets until delayed 

beacons get transmitted. 802.11 uses two different ways for computing the random 

backoff for beacons and data packets. The following equations define how the 

computation is done: 
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aSlotTimeCWrandomTimeBackoffData ×= ),0(  

aSlotTimeCWrandomTimeBackoffBeacon ××= )2,0(
min

 

 

random(min,max) is a function that generates a pseudorandom number using a 

uniform distribution from the range [min,max] inclusive. aSlotTime is a value determined 

by the physical properties of the shared medium. CW can take any value between 

CWmin=7 and CWmax=255 in a predefined exponentially increasing series. Possible 

values are defined by the following list (7,15,31,63,127,255). Initially when the station 

starts up, CW is initialized to CWmin. If collisions start to occur, CW takes the next 

higher value in the series, therefore expanding the contention window from which a 

random value is generated and in effect reducing the probability of colliding with a 

competing mobile node [IEEE, 99a].  

 

From the above equations, we draw some intuitive observations that explain why 

Orinoco AP-1000 fails to achieve proper load balancing, in particular, we explain why 

losing 4 consecutive beacons is ineffective as an indicator of contention in accessing the 

shared medium.  AP-1000 access points (equipped with Orinoco Silver cards) can 

support a bandwidth of 5.5 Mbps and can transmit packets of size 1500 bytes. Therefore, 

the transmission time for one packet is computed using the following equation: 

 

RateData

SizePacket
TimeonTransmissiPacket =

 

sec2.2

105.5

81500
6
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×
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In addition, AP-1000 sends a beacon every 100 milliseconds, therefore in order to miss 4 

consecutive beacons, the medium must stay busy for at least 300 milliseconds. The 

following equation computes how many transmissions are required to occupy that 

amount of time: 

TimeonTransmissiPacket

TimeonTransmissiTotal
onsTransmissiofNumber =

 

onsTransmissi136

2.2
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≈
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Therefore, at least 136 consecutive transmission attempts are needed (prior to having a 

successful beacon transmission) in order to trigger the load balancing algorithm. These 

transmissions can succeed or can fail due to collisions. It is important to emphasize that 

mobile nodes cannot seize the shared medium more than once in an event of having a 

delayed beacon at the access point (unless their retransmission timer times out), this is a 

result of the access point delaying the acknowledgments (which takes place if a beacon 

gets delayed).  

 

Given the previous observations, assume there is a single mobile node in the coverage 

area, it is impossible for it to seize the medium for 136 consecutive transmissions for the 

simple reason that the access point will delay the acknowledgments destined to the node 

in an event of having a delayed beacon, therefore the beacon will be delayed by at most 1 

preceding transmission. However, having an additional mobile node makes it possible to 

seize the medium for 136 consecutive transmissions, this can occur if the 2 mobile nodes 

start transmitting simultaneously, and their packets collide with each other for 136 

consecutive transmissions and the backoff random number that they select from their 

contention window is always smaller than the backoff random number chosen by the 

access point for the beacon backoff time. Notice that each collision will cause an 

expansion to the contention window, therefore the probability of selecting the same 

backoff time for both mobile nodes will decrease as collisions occur and the probability 

of the random number being smaller than the random number chosen for the beacon 

backoff time will also decrease. It is clear that the probability of this happening for 136 

consecutive times is extremely low. In addition, as the number of mobile nodes in the 

coverage area increases, the probability of collisions occurring increases leading to an 

increase in the size of the contention windows, therefore increasing the probability that 

beacons will succeed as the range of the contention window for mobile nodes will 

become much larger than the range of selections for beacons. It is important to emphasize 

that providing a probability model for beacon loss is out of the scope of this thesis, 

however, it is intuitive that the backoff mechanism used by 802.11 does not permit the 

loss of 4 consecutive beacons easily. Finally, IEEE 802.11 does not suggest any 

mechanism for load balancing across multiple access points, products such as Agere 

Orinoco AP-1000 have devised their own mechanisms. 

 

The next chapter presents a detailed design of Sabino. Sabino overcomes the 

limitations that exist in the load balancing scheme used by Agere Orinoco 802.11 

products. This is achieved by effectively coordinating the association and dissociation of 

mobile nodes to access points. However, this is one application of Sabino. In fact, Sabino 

is a management framework that can be used to optimize many different attributes, one of 

which is load balancing.  
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Chapter 3 
 

Design of The SABINO System 
 

3.1 Deployment Scenario  
 

Figure 4 illustrates a typical deployment scenario of an 802.11 based network in 

public access environments. Three access points (AP1, AP2 and AP3) are being used to 

provide coverage of a certain geographic area. AP1 and AP2 provide almost complete 

coverage of the area required and AP3 has been added to offer increased throughput for 

the most heavily loaded area and to fill any coverage holes left by AP1 and AP2.   

 

 

AP1 AP2AP3Access points

Cell 1 Cell 3 Cell 2

Backbone

network

MN1

MN4

MN2

MN3

 
 

Figure 4: Example Wireless Network Installation 

 

Given an initial configuration of the system in which several mobile nodes (MN1, 

MN2, MN3 and MN4) are connected to AP1 and none are connected to AP2 or AP3, as 

the load in AP1 increases, the probability of each of the mobile nodes seizing the shared 

medium decreases and the probability of having collisions increases as the mobile nodes 

attempt transmitting their packets simultaneously. Therefore, the overall throughput of 

the system will decrease since the mobile nodes are contending for only the channel 

provided by AP1. It is clear that the overall throughput of the system could be increased 

if one or more mobile nodes moved from AP1 to another overlapping access point to 

reduce the contention in cell 1, for example, AP1 and AP3 are visible for MN3, therefore, 

if MN3 decides to move to AP3 the load on AP1 will decrease. Also, AP1, AP2 and AP3 

are visible to MN4, therefore if MN4 decides to move to AP2 or AP3 the load on AP1 

will decrease as well. However, in current systems this form of load balancing does not 
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take place. The experiments, described in detail in chapter 5, confirm that even products 

such as Agere’s Orinoco 802.11 (that encompass elementary load balancing mechanisms) 

do not prove effective at supporting that form of system optimization.  In more detail, the 

Agere system enhances the basic 802.11 roaming algorithm by introducing an implicit 

load-balancing scheme that triggers a re-association if 4 consecutive beacons transmitted 

by an access point are missed by the mobile node. Of course such a scheme is unable to 

distinguish between bursts of interference and excess load in a cell. Moreover, by means 

of simple experimentation we were able to demonstrate that such a simplistic load 

balancing approach does not perform well in practice. We established a test network of 

two overlapping cells provided by a single Orinoco access point configured with two 

wireless cards. This network was used to support two mobile nodes that initially 

connected to the same wireless interface on the access point. As we increased the load 

generated by these nodes the system failed to cause either of the mobile nodes to effect a 

handoff to the alternative wireless interface that was providing an overlapping network 

cell. As a consequence, the overall throughput of the system was significantly reduced 

when compared to a system in which the mobile nodes connected to different wireless 

interfaces on the access point. The intuitive explanation for this failure in effecting a 

handoff is explained in section 2.3. 

 

In the following sections we describe in detail the architectural design of the Sabino 

system. Sabino is a suite of software components designed to run on access points and 

mobile nodes, it provides a mechanism for effective load balancing to address the 

problems described above. It is important to emphasize that load balancing is one 

parameter that Sabino can optimize. In fact, Sabino provides a management framework 

that enhances the coordination between various system components to improve the 

overall performance of the network. 

 

3.2 Architectural Topologies  
 

No Infrastructure

Support

Infrastructure

Support
LessMore

Extent of
Infrastructure

Support

 
 

Figure 5: Architectural Topologies for Sabino 

 

One key design decision is the extent of infrastructure support needed to run Sabino 

effectively. Figure 5 illustrates the spectrum of topological choices for Sabino, it extends 

from having an architecture with no infrastructure support to having one with 

infrastructure support only. Running Sabino on the infrastructure with no support on the 

mobile nodes is an attractive solution, particularly, because of the transparency of this 

approach since mobile nodes will not be required to run any additional software. 

However, the collaboration between different system components decreases and the 

architecture becomes more centralized which creates some limitations. Alternatively, the 
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other end of the spectrum suggests an architectural solution that runs with no 

infrastructure support, therefore, only mobile nodes will be required to run Sabino. This 

solution might be more economic since no additional components will be added to the 

infrastructure. However, the overhead of the interaction between the distributed mobile 

nodes will be greater, therefore reducing the shared bandwidth. In addition, the 

interaction protocol between the mobile nodes is likely to be more complex than a more 

central one (with some infrastructure support). In this section, we explore three 

architectural choices, an infrastructure based topology that collects all the load 

information in a single node on the infrastructure and requires no additional assistance 

from any of the mobile nodes in the coverage area, a no-infrastructure based topology 

that runs with no infrastructure support and requires the collaboration of mobile nodes, 

and finally, a hybrid topology that requires both infrastructure support and mobile node 

support. 

 

3.2.1 Infrastructure Topology 
 

This is the simplest architectural choice, it is based on client-sever interaction, with a 

single station (an access point or a dedicated machine) on the infrastructure managing a 

number of access points and keeping track of the load information on each one of them. 

If the load increases above a specific threshold, the station selects a node to move from 

one access point to another overlapping one. We describe the main component in this 

topology, namely, the Network Manager. 

 

3.2.1.1 The Network Manager 

 

The central component to this topology is the Network Manager: a station (access 

point or a dedicated machine) that is designated as the manager of several access points. 

It runs a management module that stores a list of all the access points on the network and 

has privileges to access each one of them. The Network Manger can modify the 

configuration of any access point in its list, this includes specifying which mobile nodes 

get to connect to which access points. However, reconfiguring an access point is an 

expensive operation that requires restarting the access point, in particular, the access 

point must reload its kernel. The Network Manager is also responsible for keeping track 

of the load information on each access point in the system. Our system is agnostic with 

respect to the method used for extracting this kind of information from the access points. 

For example, we could run the manager on a gateway to which all access points are 

connected, and simultaneously, run on it a monitoring module to infer load information, 

another possible way for extracting such information is through using special 

management interfaces such as SNMP. Deciding on a specific strategy for extracting this 

information is dependant on the protocols supported by the access points and any 

available vendor specific APIs.  

 

It is clear that this topology gathers all load information required to perform load 

balancing from different access points in one single repository namely, the Network 

Manager. However, an additional important piece of information is required by the 

Network Manager to take a suitable decision on which nodes to move, that is, the 
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visibility of access points to mobile nodes. This requires issuing requests to mobile nodes 

to retrieve the list of visible access points to each one of them. This cannot be achieved 

by having an infrastructure topology because additional software will be required on each 

mobile node to extract the required information and to send it back to the Network 

Manager. However, based on the partial information gathered by the Network Manager, 

it is possible to issue a move request to a mobile node, but it could fail, in particular, 

when the mobile node receives a request to move (from the Network Manager) and the 

new access point is not visible to it. This limitation is an outcome of the inability of the 

Network Manager to negotiate a decision with the mobile nodes bound to the loaded 

access point prior to selecting a candidate node for moving, consequently, it diminishes 

the practical use of this topology. For example, we could imagine a scenario with many 

mobile nodes losing their connections due to move requests to access points that are not 

visible to them, leading to an overall reduction in the network throughput. However, it is 

possible to enhance the Network Manager with additional logic that infers whether a 

mobile node was successful in associating with the new access point or not. For example, 

the Network Manager could store the MAC addresses of the newly moved mobile nodes 

in a cache until a packet is monitored with the moved mobile node as its source and 

accordingly, the Network Manager infers that the move was successful. If that is not 

detected within a certain time frame, the Network Manager concludes that the mobile 

node was unable to associate with the new access point. Therefore, the Network Manager 

can undo the changes by restoring the original privileges of the mobile node on its old 

access point. Clearly, this is a complication to this topology and in fact it will only work 

properly, if the mobile node sends packets through the gateway that runs the Network 

Manager. However, the advantage of this approach is its transparency; mobile nodes are 

not required to run any additional software to interact with the Network Manager, 

furthermore, there is no additional overhead on the wireless part of the network as all 

packets are exchanged between the Network Manager and the access points through the 

backbone. 
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Access Points
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AP1 AP2

MN2

MN1

1 2

4
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2
3

1.Request Load and
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2.Reply With Load and
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Figure 6: Example Component Interaction, Infrastructure Topology 
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We now give a detailed description of the control protocol between the Network 

Manager and the access points it manages. 

 

3.2.1.2 Network Manager Control Protocol 

 

REMOVE_ACCESS_LIST 

When the load on an access point increases above a specific threshold, the 

Network Manager sends a management message (such as SNMP) to the 

current access point of a selected mobile node to remove its MAC address 

from the list of nodes allowed to use the access point as a bridge.  This 

will alter the configuration of the access point, therefore requiring it to 

reinitialize. Reinitializing might take significant time, for example, 

Orinoco AP-1000 reinitializes itself by reloading the kernel, which takes 

nearly 10 seconds. 

 

ADD_ACCESS_LIST 

When the load on an access point increases above a specific threshold, the 

network manager sends a management message (such as SNMP) to the 

new access point (that overlaps with the old one) to add the MAC address 

of the selected mobile node to its access list, therefore allowing the mobile 

node to bind to the new access point and to send packets through it. 

Similar to REMOVE_ACCESS_LIST, this action alters the configuration 

of the access point, therefore it requires reinitializing the access point. 

 

GET_MOBILE_NODES_LIST (optional) 

The Network Manager uses this message to extract a list of mobile nodes 

connected to an access point. This message is optional as explained earlier 

since we could simply monitor the network to infer this information. 

 

GET_LOAD (optional) 

The Network Manager uses this message to query access points about 

their load, for example, retrieving the number of incoming or outgoing 

packets through the access point. This message is optional. It is possible to 

infer load information by monitoring the network. 

 

3.2.1.3 Example Component Interactions 

 

Figure 6, illustrates the infrastructure topology (with no additional mobile node 

support) for Sabino. Two access points (AP1 and AP2) are available and are managed by 

the Network Manager. Stations MN1 and MN2 are initially connected to access point 

AP1. The manager continuously probes the access points for information about the load 

in each cell and the list of mobile nodes connected to them (1 and 2). It is important to 

emphasize that this interaction might not be required, for example, as explained earlier, 

we could setup the Network Manager as a gateway to which all access points are 

connected and run on it a monitoring module to infer load information, thus eliminating 
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the need for probing access points for such information. When the load exceeds a certain 

threshold, a selection algorithm gets triggered at the Network Manager: it conducts an 

analysis of the load in each cell using the latest gathered statistics. In addition, it 

evaluates the possibility of moving one or more mobile nodes to a different overlapping 

cell in order to improve the overall system performance. Based on the information 

available to the selection algorithm, a selection is made (in our figure, MN2 is selected). 

The Network Manager issues a REMOVE_ACCESS_LIST (4) command to the old 

access point (AP1) of the mobile node (MN2) and at the same time issues an 

ADD_ACCESS_LIST (3) command to the new access point (AP2). After this action, the 

packets sourced from or destined to the mobile node (MN2) will be denied access to the 

old access point (AP1). After a certain period of time, MN2 will detect that the 

connection has been lost, consequently, MN2 triggers a sweeping phase to search for and 

associate with a new access point as explained in section 2.1. Clearly, the only access 

point that will allow that association is AP2. As a result, roaming will take place and the 

load on AP1 will decrease provided that MN2 is in the vicinity of AP2. In case, MN2 is 

unable to associate with AP2 for any reasons, the Network Manager will undo the actions 

after a specific time frame, particularly, when it fails to detect any packets sourced from 

the mobile node that just moved. The Network manager will attempt to select different 

mobile nodes to move instead of the ones that failed. 

 

3.2.2 No-Infrastructure Topology 
 

The second architectural choice that we explore is based on a distributed architecture 

that requires no infrastructure support. Each mobile node runs a Mobile Node Controller 

module that is responsible for monitoring the load in the current cell, negotiating 

decisions with other mobile nodes and issuing commands to the wireless interface to 

associate or dissociate with access points. We describe the main component of this 

topology, namely, the Mobile Node Controller.  

 

3.2.2.1 The Mobile Node Controller (MNC) 

 

The main component in this topology is the MNC: every mobile node runs an 

instance of this software. It is designed to communicate with access points to extract load 

information. The MNC keeps track of the load information of the access point that the 

mobile node is associated with. Unlike the central topology explained earlier, load 

information of access points is not gathered in any single entity in the system, instead it is 

distributed across the mobile nodes in the coverage area. In addition, MNCs must interact 

with each other in order to select a mobile node to move from heavily loaded cells to less 

loaded ones. This negotiation takes place if the load in any cell exceeds a specific 

threshold. It is worth noting that we do not require running any additional software on the 

infrastructure to support that functionality, in fact MNCs only use the primitives 

supported by the network components such as SNMP. In addition, the MNC includes a 

module that controls the operation of the wireless interface attached to each mobile node. 

This module issues association and dissociation requests to the MAC controller during 

roaming, also, it can extract the list of access points visible to the mobile node and any 

additional information required such as the signal strength of the beacons arriving from 
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visible access points. Since that topology does not require any support in the 

infrastructure, deploying it might be more economic, however, it assumes that it is 

possible for mobile nodes to retrieve load information from access points which might 

require some privileged access to the infrastructure, therefore, creating security hazards.  

 

There are several limitations to this topology. The mobile node and the operating 

system running on it must provide drivers or management APIs that could control the 

associations and dissociations made by wireless interfaces. Such support is uncommon in 

current systems, for example, the latest Linux release (kernel 2.4.18) does not support 

such functionality. However, Windows XP provides specialized APIs for that kind of 

control  [Ayyagari, 01], [Bahl, 00a], [Bahl, 00b]. Another limitation results from the 

negotiation process that takes place in selecting a mobile node for moving. It creates 

significant overhead on the wireless part of the network, in particular, mobile nodes that 

are able to move respond to the negotiation request with packets that include information 

about the possibility of them roaming to different access points, as a result, these packets 

add significant overhead on the wireless part of the network. Another critical limitation to 

this architecture is the inability of mobile nodes to retrieve from the new access points 

(that they are moving to) load information prior to issuing a handoff, therefore, it is 

possible that a mobile node switches to a new access point that is already heavily loaded 

and as a result, reducing the throughput of the new cell and possibly the whole network. 

The hybrid architecture that is presented later overcomes this limitation by having 

additional minimal infrastructure support. 

 

We describe the interaction protocol required between different system components 

to implement a distributed topology. 

 

3.2.2.2 MNC Interaction Protocol 

 

GET_LOAD  

The MNC uses this message to query access points about their load, for 

example, retrieving the number of incoming or outgoing packets through 

the access point. This message gets issued periodically, in particular, after 

the mobile node waits for a backoff interval that consists of a constant 

interval of time and an additional random interval. The constant interval 

controls how many messages could be issued in a certain time frame, 

while the random interval reduces the possibility of having multiple 

mobile nodes issuing GET_LOAD requests simultaneously. 

 

LOAD _REPLY 

This message returns the load information on an access point at a given 

time. Typically, access points keep track of the packets going through 

them in a Management Information Base (MIB), in addition, they export 

interfaces to allow the retrieval of such information. However, this might 

require privileged access, for example, in Agere Orinoco AP-1000 access 

points, it is necessary to have access to an SNMP password to be able to 

retrieve this information. 
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BROADCAST_LOAD 

The MNC broadcasts a UDP message with the load information that it just 

received (from a LOAD_REPLY message) to all mobile nodes in the cell. 

The message is sent to an IP multicast group that contains all the IPs 

assigned to the mobile nodes. Upon receipt of a BROADCAST_LOAD 

message, MNCs update their cached load information, and reinitializes 

their backoff timers that determine when the next load update is to be 

received. 

 

SWITCH_REPLY 

The MNC broadcasts a UDP message to the IP multicast group indicating 

that it is possible for it to move to an overlapping cell. The message 

includes the access point to which the mobile node wants to associate. 

This message is issued after receiving a BROADCAST_LOAD message 

or a LOAD_REPLY message with the load information exceeding a 

specific threshold. If the mobile node is unable to move to an access point, 

it ignores the BROADCAST_LOAD or the LOAD_REPLY messages.  

 

BROADCAST_SWITCH 

The MNC that decides to switch notifies all the mobile nodes about its 

selection using a BROADCAST_SWITCH message. This is done by 

sending a UDP broadcast packet to an IP multicast group that includes all 

the mobile nodes. Upon receiving this message, MNCs add extra delay to 

the backoff interval of the next GET_LOAD message to allow the load on 

the access point to decrease after the mobile node associates with the new 

access point. This avoids the situation of having unnecessary mobile nodes 

switching while the load is decreasing.  
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3.2.2.3 Example Component Interaction 
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Figure 7: Example Component Interaction, No-Infrastructure Topology 

 

Figure 7 illustrates an interaction in a typical distributed operational scenario with no 

infrastructure support. The network is configured with two overlapping cells (AP1 and 

AP2). Initially, two mobile nodes (MN1 and MN2) are bound to access point AP1. Each 

mobile node maintains a local backoff timer that is initialized to the sum of a constant 

interval and a random interval, in our interaction scenario we initially assume that the 

backoff interval of MN1 is less than the interval of MN2, when the backoff interval of 

MN1 reaches zero it sends a GET_LOAD (1) message to the access point it is attached to 

(AP1). The access point replies with a LOAD_REPLY (2) message that includes the 

required load information on the access point, for example, it could indicate the number 

of outgoing and incoming packets during a specific time frame. MN1 receives the 
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information and stores it locally, in addition, it issues a BROADCAST_LOAD (3) 

message to all the mobile nodes in the IP multicast group and finally it reinitializes its 

backoff timer for the next round of interaction. Similarly, when MN2 receives the 

BROADCAST_LOAD (3) message, it updates its local cached load information and it 

reinitializes its backoff timer. In the next round of interactions, the access point (AP1) 

load increases above a specific threshold, MN2 consumes its backoff interval before 

MN1, therefore, it issues a GET_LOAD (4) message to the access point (AP1). AP1 

replies with a LOAD_REPLY (5) message showing the increase in load. Similar to the 

first interaction MN2 broadcasts the load information to update the caches of all mobile 

nodes, however, the MNC will notice the increase in the load, therefore, mobile nodes 

that can move will reply with a broadcast SWITCH_REPLY (7) message. 

SWITCH_REPLY messages are preceded with a random backoff element that avoids 

switching multiple nodes at the same time. It is worth noting that mobile nodes select the 

access point to switch to using the available signal strength information. The 

SWITCH_REPLY(7) message informs all mobile nodes that there is indeed a node that is 

switching and therefore, they need not switch or reply to the BROADCAST_LOAD (6) 

message. Finally, when a mobile node moves (MN1), it must issue a 

BROADCAST_SWITCH (8) message to all mobile nodes to indicate that a handoff has 

taken place, consequently, mobile nodes must add additional delay to their GET_LOAD 

backoff timers to allow the load on the access point to decrease.  

 

3.2.3 Hybrid Topology 
 

The third architectural choice that we explore is a hybrid of both previous topologies. 

The hybrid topology requires support on both the mobile node and the access points. It 

consists of two main components: 

 

I.The Cell Manager. An instance of a cell manager runs on each access point in 

our system. The component monitors the load within a cell, exchanges this 

load information with other cell managers and issues control commands to 

mobile hosts within its cell in order to achieve load balancing within the 

system.  

II.The Mobile Host Control Module (MHCM). An instance of the MHCM runs 

on each mobile host in our system. The component controls the host’s 

wireless PC card and communicates with the cell manager, supplying the cell 

manager with information about the host and responding to control commands 

issued by the cell manager. 

 

Typically cell managers gather load information from MHCMs and other instances of 

cell managers and based on this information issue commands to MHCMs to disassociate 

from their current access point and reassociate with a different, less heavily loaded, 

access point. 

 

It is important to stress that it is not necessary for our components to be installed on 

all access points and mobile nodes in a given network. Rather, the more widely deployed 
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our components are, the more effective the system will be at improving overall system 

performance.  

 

3.2.3.1 The Cell Manager 

 

The cell manager is responsible for monitoring load on its access point and, when this 

load exceeds a specified threshold, determining which, if any, of the currently registered 

mobile hosts should be asked to move to a new access point providing overlapping 

coverage. Our system design is agnostic with respect to the precise method used for 

determining the current load in a cell. For example, this information is currently available 

from most access points via management interfaces or it could be obtained by monitoring 

traffic on the access point’s network segment. 

 

In order to achieve load balancing the cell manager also requires knowledge of the 

load on access points providing overlapping cells and the visibility of these access points 

to mobile hosts. The knowledge of the load on access points providing overlapping cells 

is obtained by observing periodic announcements from neighboring cell managers. Our 

system does not demand that this information be consistent across all access points since 

the figures provided are used only as an indication of an access point’s current load rather 

than an absolute measure. We describe the protocol we use to maintain this state in 

section 3.2.3.2. 

 

The final piece of information required by the cell manager is a list of visible access 

points from each mobile host currently associated with the cell manager’s access point. 

When the load on its access point increases beyond a specified threshold, the cell 

manager issues a request to the mobile hosts associated with the access point to solicit 

from each a list of the access points visible to the host together with the signal strength 

associated with each access point.  

 

Based on the information that the cell manager has gathered from the access points, it 

is possible to determine the overlapping cells that have significantly less load. Assuming 

that such an access point exists, the cell manager runs a decision algorithm whose task is 

to select one or more clients to move to one or more of the overlapping cells (each node 

can only be associated with a single access point at any point in time). Clearly, the 

selection process must take into account the signal strength detected by each client for 

these candidate destination cells, along with the information characterizing the traffic 

demands of each mobile node. The aim is to reduce the load on the current cell to a level 

at which it is not significantly impacting on mobile node’s communications while 

avoiding overloading neighboring cells or moving nodes unnecessarily. In our current 

implementation, we use a simplistic decision algorithm that selects the candidate mobile 

unit that reports the strongest signal strength for an overlapping cell. We describe the 

algorithm in more detail in section 4.2.1. 

 

Once the cell manager decides on one or more clients to move, it negotiates this 

decision with the overlapping cells. The cell manager checks with the destination cell 

managers to confirm their willingness to host the candidate mobile units. This avoids the 
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problem of overloading destination cells or moving clients to destination cells that reject 

the creation of the new association. Finally, the cell manager confirms the movement 

with the destination access point(s) and issues a move request to the mobile nodes (who 

may or may not choose to implement the request).  

 

3.2.3.2 The Cell Manager Coordination Protocol 

 

The cell manager coordination protocol is used to exchange information and control 

messages between cell managers running on different access points. The principle 

messages supported are: 

  

BROADCAST_LOAD  

The cell manager periodically broadcasts UDP messages with the latest monitored 

load on its access point along with the logical network name of the access point. 

The message is sent to an IP multicast group that contains all of the cell managers 

that wish to coordinate their activities. Typically, this would include all cells 

within a given installation or administrative domain. If the number of cells is very 

large separate groups can be created since only those cells that might possibly 

overlap need exchange information. Upon receipt of a BROADCAST_LOAD 

message, cell managers update their cached load information for the broadcasting 

access point. Requiring cell managers to periodically broadcast load information 

maintains the soft state of the whole network load in each cell manager.  

 

SOLICIT_LOAD_INFO 

The SOLICIT_LOAD_INFO message is sent by cell managers when they wish to 

rebuild their cache contents without waiting for periodic messages from all of the 

other cell managers in the group. The most obvious application of this is when an 

access point recovers from a failure or reboot. Cell managers receiving a 

SOLICIT_LOAD_INFO message respond with a BROADCAST_LOAD 

message. Individual cell managers wait a random period before sending this 

message to minimize the possibility of collisions.  

 

HOSTING_REQUEST 

Prior to issuing a move request to a mobile node, the cell manager must send a 

request to the destination access point’s cell manager. This message includes load 

information for the mobile nodes to be moved. The destination cell manager 

should respond to this message with a HOSTING_RESPONSE message. 

 

HOSTING_RESPONSE 

Upon receipt of a HOSTING_REQUEST message, the cell manager examines the 

latest load information captured by its local monitoring module. Assuming that 

the load in the cell is below a predetermined threshold, and consequently is able 

to accommodate more mobile nodes, a HOSTING_RESPONSE is sent to the cell 

manager that issued the HOSTING_REQUEST with an approval flag. If the cell 

is heavily loaded and cannot accommodate more clients, a 

HOSTING_RESPONSE is sent to the cell manager that issued the 
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HOSTING_REQUEST with a denial flag. If the cell manager responds positively, 

it is assumed that it will reserve resources for the incoming mobile node. More 

specifically, cell managers should not agree to accept an arbitrary number of 

incoming mobile nodes but should keep track of the total load they are likely to 

experience when the nodes complete their move. 

 

HOSTING_CONFIRM 

Once a cell manager has received a positive HOSTING_RESPONSE it should 

confirm the move with the cell manager that has been selected as the final 

destination. This two phase protocol allows cell managers to enquire about mobile 

node hosting with multiple possible destinations and then confirm the status of the 

move with the final destination cell. As an optimization cell managers can send 

negative confirm messages to any cells that were enquired of but not finally 

selected to ensure any reserved resources are released in a timely fashion. 

 

3.2.3.3 The MHCM 

 

The MHCM suite is designed to run on mobile hosts in our system. The MHCM 

interfaces with the PC card installed on every mobile unit, gathering the required 

statistical information and controlling the association and the dissociation with access 

points. In more detail, the MHCM issues low-level control commands to query the PC 

card MIB (Management Information Base) about current signal information and visible 

access points. In addition, the MHCM issues configuration commands to change the 

access point to which the client is bound.  

 

3.2.3.4 Cell Manager/MHCM Control Protocol 

 

GET_ACCESS_LIST 

When the load on an access points increases above a specified threshold, 

cell managers send a UDP broadcast message to all mobile nodes in their 

cell asking them to retrieve the list of access points visible to them.  

 

SEND_ACCESS_LIST 

Each mobile node is continuously listening to requests from their cell 

managers. Upon receipt of a GET_ACCESS_LIST request the mobile 

node issues a command to the network adaptor and retrieves a list of the 

visible access points along with their signal strengths. It formats the 

information and sends it back to its cell manager using a 

SEND_ACCESS_LIST message. 

 

MOVE_REQUEST 

When a mobile node receives a MOVE_REQUEST, it attempts to move to 

the logical network name associated with the request. If the move fails the 

mobile host may respond with a MOVE_RESPONSE message. 
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MOVE_RESPONSE 

If a mobile node receives a MOVE_REQUEST message and the move 

fails the mobile host may respond with a MOVE_RESPONSE message 

indicating the cause of this failure. Since the cell manager can determine 

whether or not the mobile node successfully moved independently of this 

message, this is simply an optimization to provide further information to 

the cell manager in the case of failure. Note that we do not, of course, send 

a positive MOVE_RESPONSE message since the mobile node may not be 

able to communicate with the instigating access point once it has 

completed the move operation.  

 

3.2.3.5 Example Component Interactions 
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THRESHOLD EXCEEDED

AP2 AP1 MN1 MN2

AP LIST REQUEST (3)

AP LIST REQUEST (3)

AP LIST RESPONSE (4)

AP LIST RESPONSE (4)

HOSTING REQUEST (5)

HOSTING RESPONSE (6)

HOSTING CONFIRM (7)

MOVE REQUEST (8)

MOVE RESPONSE (9)

HOSTING CONFIRM (10)

LOAD REDUCED

 
Figure 8: Example Component Interaction, Hybrid Topology 
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Figure 8 illustrates the interactions between our components in a typical operational 

scenario. Two access points are shown (AP1 and AP2) along with two mobile nodes 

(MN1 and MN2), both of which are assumed to be associated with AP1. The cell 

managers running on AP1 and AP2 periodically broadcast their load information (1). At 

some point the load on AP1 increases beyond its threshold and it begins the process of 

attempting to reduce the load below this threshold. Its first action is to broadcast an 

update of its load information (2) to warn other cell managers that it is not a good target 

for accepting new mobile hosts. AP1 must then gather information from its mobile hosts 

regarding the other APs that they can see, and hence could associate with. This 

information is solicited using a broadcast message to the hosts currently associated with 

AP1 (3). Mobile hosts respond with a unicast message to AP1 (4).  

 

At this point AP1 has all the information it requires to determine which mobile hosts 

are candidates for moving to a new cell. Once it has selected a candidate (in this case 

MN1), it first checks with the target destination cell (AP2) to ensure that it is willing to 

accept the new mobile unit (5). The destination access point responds with an accept or a 

reject message (in this case an accept) (6). AP1 can now send a confirmation message to 

AP2 telling it that the mobile unit will be asked to move (7) and sends a message to the 

mobile unit itself telling it to move, and specifying the destination AP (8). 

 

Under normal circumstances the mobile node will move and the process will 

complete. However, the final decision to move rests with the mobile node itself. If it 

decides not to move it can inform AP1 (9) and AP1 can pass this information on to AP2 

(10) allowing AP2 to release any resources it may have reserved for the incoming mobile 

host. Messages (9) and (10) are optimizations since AP1 will, in any case, be able to 

observe whether the mobile node leaves its area of coverage. However, a negative 

response from a mobile host can be used to accelerate the process of releasing resources 

at the destination access point (AP2) and informing the current access point why the 

request was rejected. 

 

3.2.4 Discussion 
 

This chapter discussed three different architectural topologies for Sabino, namely, an 

infrastructure topology with Sabino running on the infrastructure with no additional 

support from the mobile nodes, a no-infrastructure topology with Sabino running on the 

mobile nodes with no infrastructure support and a hybrid topology that requires both 

infrastructure support and support from the mobile nodes. The infrastructure approach 

has an attractive characteristic, that is, the transparency of the system to the mobile nodes 

in the coverage area. Association and dissociations are done without the involvement of 

any of the mobile nodes. One important benefit of this approach is that it does not require 

the mobile nodes to run any additional software, for example, in practical public access 

installations, it might not be feasible to require mobile nodes to install Sabino. Therefore, 

an infrastructure-based topology becomes more suitable as a solution in such domains. 

However, mobile nodes might suffer from periods of disconnection, in particular, mobile 

nodes can be forced to switch to access points that are not visible to them. This limitation 
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is an outcome of the inability of mobile nodes to send the list of access points (visible to 

them) to the Network Manager. Another limitation to this approach is that it requires 

every access point to modify its configuration on every handoff. Typically, this requires 

reinitializing the access point, which might take significant time. The second topological 

architecture that was discussed required no infrastructure support. This resulted in several 

limitations, for example, mobile nodes are unable to retrieve load information from 

access points that they are not connected to, as a result, mobile nodes might take the 

decision to switch to heavily loaded cells, therefore, reducing the overall throughput of 

the network. Finally, we introduced a hybrid topology that requires both infrastructure 

support and mobile node support. The topology overcomes many of the limitations of 

both preceding approaches, for example, mobile nodes can determine the load 

information on any access point in the system, in addition, mobile nodes can exchange 

the list of visible access points with any other node, therefore, it is guaranteed that mobile 

nodes will switch to access points that are visible to them, as a result, it is no longer 

possible to have disconnection periods during roaming. It is clear that having a topology 

that requires both infrastructure and mobile nodes support is advantageous compared to 

other solutions.  

 

The next chapter discusses two implementations of Sabino: the no-infrastructure 

topology and the hybrid topology. In addition, the chapter describes the experimental 

setups and the different components in the implementation. 
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Chapter 4 
 

Implementation 
 

This chapter describes the implementation of the Sabino system. We have 

implemented two different architectural topologies: the no-infrastructure topology and 

the hybrid topology. The two core components in the former topology are the MNC and 

the mobile nodes interaction protocol. The three core components of the latter topology 

are the cell manager, the MHCM and the cell Manager/MHCM Protocol. The 

implementation of the inter-cell manager protocol is a topic for future work. 

 

4.1 Experimental Configuration  
 

Our basic implementation environment is shown in figure 9. 
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Logical Network 1 Logical Network 2Logical Network 1Logical Network 2
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Same Subnet
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Figure 9: Experimental Setups 

 

In setup (a), we have two Agere Orinoco AP-1000 access points that are configured 

to provide two overlapping areas of coverage, each utilizing a non-interfering frequency 

to maximize the throughput. Each access point is given a different logical network name 

(SSID), this is required to be able to force handoffs, since current cards do not support 

associations with access points but with logical network names. In setup (b), a single 

Pentium II 397 MHz machine runs Linux kernel 2.4.2 and acts as a router with two 

interfaces, one connected to the wired Ethernet backbone and the other connected to an 
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Agere Orinoco AP-1000. The AP-1000 is configured to provide two overlapping areas of 

coverage, each utilizing a non-interfering frequency to maximize the throughput. It is 

configured to work as a bridge with the two wireless interfaces given different logical 

network names (SSIDs). In both experimental setups, the two logical networks are 

connected to the same physical subnet, therefore mobile nodes can maintain their IP 

addresses as they move between logical networks. As a result, we do not require mobile 

IP in order to maintain connections as mobile nodes move between access points. In an 

event of a handoff the learning bridges in the access points will adjust their entries to 

correctly route the packets to their destination. Two IBM Thinkpad laptops, equipped 

with Agere’s Orinoco silver cards, are used in our experiments. One laptop is a Pentium 

III 697 MHz running Windows XP Professional while the other is a Pentium II 996 MHz 

running Windows 2000. 

 

Setup (a) is used for the no-infrastructure based topology experiments. Setup (b) is 

used for the hybrid topology experiments, the router is acting as a host for our cell 

manager software (that would ideally be placed in the access point) and ensures that the 

cell manager is capable of monitoring the packets sent by the mobile units and destined to 

the wired backbone, hence enabling us to gather the necessary load information for the 

access point. 

 

4.2 System Components  
 

4.2.1 Cell Manager 

 

The cell manager is part of our hybrid architecture, it runs on the router shown in 

figure 9 (b) and is responsible for collecting information on the network load and 

visibility of access points to mobile nodes and issuing control commands to mobile 

nodes. The cell manager consists of two separate threads that run in parallel. The first is 

responsible for capturing network load information and utilizes the libpcap library. This 

thread sets the Ethernet interface connected to the access point in promiscuous mode 

enabling it to monitor all the packets coming through the interface. Based on this 

information, the monitor thread updates a cache that keeps track of the load information 

of each mobile unit bound to the access point. Each cache entry includes the relative load 

of each mobile unit and its IP address. An alternative implementation approach would be 

to obtain the load information from the access point itself similar to the approach 

presented later in the no-infrastructure topology, particularly, using SNMP management 

packets. 

 

The cell manager’s cache is flushed and refreshed every 1 second to keep the 

information up-to-date. Prior to flushing the cache, the monitor thread initiates a 

performance evaluation check that uses the information populating the cache to ensure 

that the overall load on the access point is below a certain threshold. If the load exceeds 

the threshold it begins the process of selecting an appropriate mobile node and issues 

commands to the mobile node to move to a new access point. In our current 

implementation, we are using a simple approach for selecting the candidate mobile node 

based on the signal strength detected at each node. More specifically, we simply move 
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the client that reports the best quality signal to an alternative access point that is not itself 

excessively loaded. Clearly this algorithm could be the subject of much investigation. For 

example, it is unclear how to trade-off access point visibility against load when 

considering whether to move a mobile node.  

 

The second thread in the cell manager is the mobile listener thread. This thread 

captures the information sent by the mobile units during the negotiation process and 

populates the cell manager’s cache with this information. 

 

4.2.2 The MHCM 

 

The MHCM is the second main component in the hybrid topology. It runs on mobile 

units. The MHCM relies on features from the underlying operating system and network 

adaptor to provide information such as the list of currently visible access points. 

Currently these features are only supported in Microsoft Windows XP  [Ayyagari, 01] 

[Bahl, 00a] [Bahl, 00b]. In particular, a number of new OIDs (Object Identifiers) are 

available via Windows Management Instrumentation (WMI) and are required to be 

supported by Network Interface Card (NIC) drivers in XP environments while being 

optional for Windows 2000 drivers. These OIDs provide the ability to retrieve the list of 

all access points detected (including attributes such as the signal strengths and the MAC 

addresses), to cause the NIC to request a survey of potential access points using active or 

passive scanning, to associate, dissociate or re-associate the network adaptor with a 

different logical network and to associate, dissociate or re-associate the network adaptor 

with a specific access point (not yet supported).  

 

The MHCM runs as a single thread of execution that listens to a specific port for cell 

manager requests. When it receives a message it performs the action required and replies 

to the cell manager. In our current prototype, we have implemented the following 

operations: 

 

I. retrieving the list of access points visible to the mobile host along with their 

signal strengths, and, 

II. switching to a new logical network specified by a logical network name. 

 

It is worth emphasizing at this point that the MHCM can only switch between logical 

networks and not between access points within the same network. This explains the 

configuration shown in figure 9 (b) in which the access point’s two network interfaces are 

configured with separate network names. One practical implication of this is that clients 

are unable to roam between the networks since 802.11 only supports roaming within a 

single logical network. However, our set-up enables us to evaluate the feasibility of our 

ideas until such point as support for the association with a specific access point is 

provided by the firmware.  
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4.2.3 The MNC 

 

The MNC is the main component in the no-infrastructure topology, it is similar to the 

MHCM in the hybrid topology but with some modifications and some additional features. 

Similar to the MHCM, the MNC relies on features from the underlying operating system 

and network adapter, in particular, the APIs provided by Microsoft Windows XP that can 

control the wireless interface as explained earlier. The MNC runs with two threads of 

execution: the first listens to a specific port for mobile node broadcasts, it is responsible 

for updating the cached load information of the access point and responding for move 

requests if the load exceeds a specific threshold. The second MNC thread is responsible 

for issuing SNMP requests to the access point that the mobile node is connected to. The 

MNC uses winsnmp2 libraries in Windows XP to construct messages with OID codes 

that query the number of packets that have passed through the access point interfaces. 

When an access point receives an SNMP message it retrieves the count of the incoming 

and outgoing packets from the MIB, and sends the information back to the requesting 

node. After retrieving the information, the SNMP thread broadcasts the load to all mobile 

nodes serviced by the access point.  It is worth noting that AP-1000 access points 

maintain a single packet count entry for both of its wireless interfaces, therefore, it is not 

possible to isolate the load on each interface using SNMP. This explains the 

configuration shown in figure 9 (a) in which two access points are required to be able to 

obtain load information in two separate cells using SNMP messages. 

 

The next chapter discusses the experiments that were conducted to evaluate Sabino as 

an architectural solution. 
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Chapter 5 

 

Analysis 
 

We have conducted a series of initial experiments with our prototype system to 

validate the Sabino system.  

 

5.1 Load Balancing in Existing Systems 
 

As mentioned earlier, the Agere Orinoco system supports an implicit load balancing 

scheme. If a mobile node misses multiple consecutive beacons from its current access 

point, it attempts to locate a new access point to associate with [Lucent, 98a]. The loss of 

beacons could be caused by any number of factors such as interference or access point 

failure or, according to, the network becoming heavily loaded. To test whether this 

feature operates correctly, we performed two simple tests in which we carried out two 

parallel 40 MB FTP transfers to two mobile nodes connected to the same access point 

using the setting shown in figure 9 (b) and we carried out another two 60 MB FTP 

transfer to two mobile nodes connected to the same access point using the setting shown 

in figure 9 (a). An overlapping cell with the same logical network name was available for 

the nodes to associate with if they desired in both settings. If the existing load balancing 

system was working correctly we would expect that one of the mobiles would switch to 

this second access point as the initial access point becomes heavily loaded.  

 

In practice, we found that despite extremely heavy load in the initial network, at no 

point did either of the nodes switch to the alternative, and otherwise unloaded, access 

point. Table1 and Table2 provide figures for the typical transfer rates we obtained in 

these scenarios. We conclude therefore that current load balancing schemes are not 

effective in practical network settings.  

 

Node File Size Transfer Time 

(sec) 

Data Rate 

(Kbps) 

MN1 40 MB 132.21 2440 

MN2 40 MB 133.2 2422 

Table 1 : File transfer measurements using the standard load balancing scheme with 1 

access point 

 

Node File Size Transfer Time 

(sec) 

Data Rate 

(Kbps) 

MN1 60 MB 261.17 1840 

MN2 60 MB 258.47 1864 

Table 2 : File transfer measurements using the standard load balancing scheme with 2 

access points 
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5.2 Roaming Overheads 
 

Clearly, the success of any load balancing system is heavily dependent on the time 

taken for a mobile node to disassociate from one access point and reassociate with a new 

access point, i.e. the handoff overheads. To measure this overhead, we created a test 

environment with two access points each with distinct logical network names (SSIDs). 

We created a simple process that streamed UDP packets to clients associated with one of 

these access points. We then set up a mobile node such that it was initially connected to 

the other access point and measured the time interval between issuing an 

OID_802_11_SSID command to the mobile host’s NIC telling it to switch networks, and 

the point at which we received the first packet from the streaming server. After repeated 

tests, we found that this interval was approximately 1 second. It should be noted that the 

mobile node was able to maintain its IP address when it moved to the new network and 

hence this figure does not include any overheads that would be incurred in a system that 

used mobile IP. While a handoff time of 1 second is not negligible, we believe that in 

most practical applications the benefits of moving to a less heavily loaded cell will 

quickly outweigh this cost. In the following section we provide evidence to substantiate 

this claim.  

 

5.3 Performance Gains From Using the Sabino System  
 

In order to test whether significant benefits could be accrued from load balancing in a 

practical network setting, we re-ran the tests described in section 5.1 Load Balancing in 

Existing Systems but this time with our software installed on the mobile nodes. We also 

set the two overlapping cells to have distinct logical network names in order that we 

could effect a move between them. With the existing systems we observed that it took 

approximately 133 seconds for each mobile node to download a 40 MB file in the setting 

shown in figure 9 (b). With the Sabino system operational the cell manager quickly 

detected the overloaded state of the network and reacted by requesting that one of the 

mobile nodes move to the overlapping cell. This resulted in an average download time of 

81 seconds for each mobile node. Table 3 summarizes these results.  

 

Node File Size Transfer Time 

(sec) 

Data Rate 

(Kbps) 

MN1 40 MB 81.63 3952 

MN2 40 MB 81 3978 
Table 3 : File transfer measurements when using the Sabino system with 1 access point 

 

In the setting shown in figure 9 (a), we observed that it took approximately 260 

seconds for each mobile node to download a 60 MB file. With Sabino running, the 

mobile nodes quickly detected the overloaded state of the network and reacted by 

negotiating the move of one node to the overlapping cell. This resulted in an average 

download time of 130 seconds for each mobile node. Table 4 summarizes these results. In 

this experiment, MN2 roamed from an access point that serviced no nodes except MN1 

and MN2 to an access point that is used by many other users, this explains the difference 

in transmission times between MN1 and MN2. 
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Node File Size Transfer Time 

(sec) 

Data Rate 

(Kbps) 

MN1 60 MB 116.63 4120 

MN2 60 MB 143.93 3336 

Table 4 : File transfer measurements when using the Sabino system with 2 access points 

 

5.4 Overhead of Rescanning to Obtain Access Point Visibility 

Information 
 

The final issue with which we were concerned is the effect of issuing rescanning 

requests to the NIC adapters. We created a simple experiment to measure this by 

transferring a 40 MB file to a server without issuing any rescan requests. This 

measurement provided a baseline for subsequent measurements. We then re-ran the same 

experiment while periodically invoking OID_802_11_BSSID_LIST_SCAN operations. 

We varied the interval between issuing consecutive scanning requests and measured the 

file transfer time. We observed a significant effect associated with issuing scans: our 

measurements show a 15 % reduction in the data rate when we issue scan requests every 

1 second. Table 5 shows the effect of invoking rescan operations with different intervals. 

Even when the scan requests are issued every 5 seconds, as suggested by Microsoft 

MSDN documentation’s description of the call, the data rate is reduced by approximately 

6%. This reduction can be attributed to the fact that the Orinoco cards we are using 

implement only active scanning, as described in section 2.1. We have yet to explore the 

effect of multiple hosts issuing active scans within a similar geographic area.  

 

Scan Interval 

(sec) 

Data Rate 

(Kbps) 

1 3948 

2 4196 

3 4218 

5 4250 

9 4297 

13 4406 

no scan 4622 
Table 5 : Impact of scanning for access points on data transfer rate 

  
It is clear that Sabino was able to effectively perform load balancing across several 

overlapping access points. Sabino outperforms the mechanisms used in commercial 

products. In the next chapter we explore the potential for future work. 
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Chapter 6 

 

Conclusion  
 

6.1 Discussion and Future Work 
 

One of the advantages of Sabino is that it can be incrementally deployed. More 

specifically, it is not necessary for every access point or every mobile node in the system 

to have Sabino software installed. A minimum installation would be two access points 

running our software and one mobile node. As the number of access points and mobile 

nodes that support our software increases, so do the potential performance gains. This 

clearly has important benefits in terms of the viability of deploying the Sabino system in 

any real-world environment. The only configuration that must be carried out is the 

creation of a multicast group that contains all of the cell managers in a system or the 

mobile nodes serviced by access points. The Sabino system is also largely independent of 

any decisions taken regarding mobility support at the network level. Specifically, in our 

test environment we did not run mobile IP but the system would have performed in the 

same fashion if mobile nodes were to run mobile IP. The only important factor that would 

need to be taken into account is that the overhead of switching to a new cell may increase 

and this would need to be reflected in the cell manager and the mobile nodes decision-

making algorithms. 

 

It is important to emphasize that load balancing is one of many other attributes that 

Sabino can optimize. For example, 802.11 supports two classes of medium access control 

as described in chapter 2. The 802.11 standard suggests alternating between these two 

modes of operation, namely DCF and PCF. Sabino could effectively be used to 

dynamically coordinate the switching of these two medium access schemes according to 

the information gathered by the cell managers.  Another potential area for using Sabino is 

the integration of the system with the QoS primitives supported in 802.11 networks. 

IEEE 802.11e introduces a set of priority classes that are part of QoS enhancements in the 

standard. These schemes are designed to support QoS at the cell level, yet fail to provide 

a global view of the whole network. Integrating Sabino in such environments would 

provide another dimension for managing the network. As a specific example, different 

overlapping cells could be established, each tailored for specific classes of traffic. Sabino 

could then be used to switch mobile nodes to the most appropriate cell based on their 

traffic profile. In general, we envision Sabino as a lightweight layer that provides 

mechanisms for managing network resources at an inter-cell level. Thus one important 

challenge is to combine this inter-cell management with existing and emerging intra-cell 

schemes.  

 

Furthermore, it is important to evaluate the scalability of Sabino in practical 

environments, for example, Sabino can be installed in public access networks or across 

several overlapping networks that use different MAC protocols. In addition, Sabino must 
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be subjected to a variety of traffic such as streaming applications, ftp transmissions and 

telnet sessions, as a result, we will be able to better evaluate the implementation. Also, 

the way by which mobile nodes are selected for switching is subject of further 

investigation. For example, it is unclear how to trade-off different parameters such as the 

visibility of access points or the load contributed by each mobile node when considering 

whether to move a mobile node or not.   

 

6.2 Concluding Remarks 
 

The Sabino system demonstrated that existing 802.11 systems fail to make optimal 

use of the available network resources because of a lack of coordination between the 

various system components. In particular, the absence of any form of coordination 

between access points means that wireless network installations may not make the 

optimal allocation of mobile nodes to access points, leading to imbalances in the load 

distribution and potentially reducing the network bandwidth available to users. The 

solution presented in this thesis takes the form of a lightweight management architecture 

that coordinates the actions of access points and mobile nodes to ensure, where possible, 

a more even load distribution and hence better utilization of system resources. Key 

aspects of the Sabino architecture include easy and incremental deployment, low 

overhead when system management is not required and effective management of 

resources when the network becomes loaded. The results presented have shown that 

Sabino offers significant benefits over existing load balancing systems when deployed in 

a simple experimental setting. Possible future work is to validate the architecture within 

the context of a larger network installation and to explore the relationship between inter 

and intra cell management.   
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