
Activating Storage Systems with Agents1

John H. Hartman Scott Baker Ian Murdock

TR 02-01

Abstract

Swarm is a scalable, modular storage system that allows high-level services to influence low-level storage

functions such as data layout, metadata management, and crash recovery via agents. An agent is a program

that is attached to data in the storage system and invoked when particular events occur during the data’s

lifetime. For example, when Swarm needs to write data to disk, agents attached to the data are invoked to

determine a layout policy. Agents can be persistent, so that they remain attached to the data they manage

until the data are deleted; this allows agents to continue to affect how the data are handled long after the

application or storage service that created the data has terminated. Swarm and its agent mechanism are

implemented as a Linux kernel module. In this paper, we present Swarm’s agent architecture, describe

the types of agents that Swarm supports and the infrastructure used to support them, and discuss their

performance overhead and security implications. We describe how several storage services and applications

use agents, and the benefits they derive from doing so.

June 18, 2002

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1This research was supported in part by DARPA Contract F30602-00-2-0560 and NSF grant EIA-0080123.



1 Introduction

Traditional storage systems are inflexible, providing

fixed storage abstractions, access protocols, and data

management policies. In contrast, the Swarm storage

system [5] may be configured to support multiple stor-

age services simultaneously, each implementing its own

abstractions, access protocols, and data management

policies. Swarm accomplishes this by decoupling high-

level abstractions and functionality from low-level data

storage. Rather than providing high-level abstractions

directly, Swarm provides an extensible, layered infras-

tructure that allows high-level storage functionality to be

composed in a modular fashion, with each layer aug-

menting, extending, or hiding the functionality of the

layers below it.

Swarm employs agents to allow applications, file sys-

tems, and other storage services to influence and con-

trol key storage functions such as data layout, metadata

management, and crash recovery. An agent is a program

that is attached to data in the storage system and invoked

when particular events occur during the data’s lifetime.

For example, when Swarm needs to write data to disk,

agents attached to the data are invoked to determine a

layout policy. Agents are stored alongside the data they

manage and are persistent, allowing the agents to con-

tinue managing the data even after the applications or

file systems that created them exit or are unmounted.

Agents add a new dimension of flexibility, extensibility,

and power to storage systems. Agents allow applications

and storage services to extend Swarm in application-

specific ways, without requiring Swarm to have any im-

plicit knowledge about how the application or storage

service works. For example, agents allow Swarm to up-

date metadata without knowledge of the metadata struc-

tures, and to implement application-specific data layout

policies without knowledge of or assumptions about fu-

ture access patterns. Furthermore, because agents are

programs, they are inherently more powerful than static

policies: agents can take advantage of current system

state to determine a policy that is optimized for a partic-

ular situation.

Swarm is implemented as a loadable module for the

Linux 2.2 kernel. We have developed and experimented

with several Swarm-based services that use agents, in-

cluding a local file system called Sting that stores files

and directories in Swarm, a cleaner service that reclaims

unused portions of Swarm’s log, a simple logical disk

that presents a virtual disk abstraction on top of Swarm’s

log abstraction, a web layout agent that clusters web

pages and their embedded images in the log, and a read-

ordered layout agent that organizes file blocks according

to previous read access patterns. The different agents

employed by these services and the resulting perfor-

mance improvements demonstrate the usefulness of the

agent infrastructure. The overhead of invoking an agent

is less than 1us, and a simple agent requires about 4us

per block of computation, making the agent mechanism

a viable way of implementing high-level policy deci-

sions in low-level storage functions.

This paper describes Swarm’s agent mechanism and how

it is used to improve the performance and flexibility of

applications and storage services that run on Swarm.

We first provide an overview of Swarm, then describe

Swarm’s agent mechanism and the infrastructure that

supports it. The agent section also includes a discus-

sion of the performance overhead incurred, and security

considerations. Finally, we describe the Swarm-based

services we developed that use agents, and the benefits

they derive from doing so.

2 Swarm Overview

Swarm [5] is a storage system that provides scalable,

reliable, and cost-effective data storage. At its low-

est level, Swarm provides a log-structured interface to

a cluster of storage devices that act as repositories for

fixed-sized pieces of the log called fragments. The stor-

age devices have relatively simple functionality, so they

are easily implemented using inexpensive commodity

hardware or network-attached disks [4]. Individual stor-

age devices are optimized for cost-performance and ag-

gregated to provide the desired absolute performance.

Swarm clients use a striped log abstraction [6] to store

data on the storage devices. This abstraction simplifies

storage allocation, improves file access performance,

balances server loads, provides fault-tolerance through

computed redundancy, and simplifies crash recovery.

Each Swarm client creates its own log, appending new

data to the log and forming the log into fragments that

are striped across the storage devices; RAID-style parity

allows missing portions of the log to be reconstructed

when a storage device fails. Clients cache blocks in

memory and write them to the log in batches, allowing

blocks within the batch to be ordered to improve read

performance, and also improving write performance by

writing multiple blocks to the log in a single operation.

Each client maintains its own log and parity, and there-

fore does not need to coordinate with other clients to



Application

ARU

Cleaner

Agent

Raw Log

Parity

Striper

Disk Net

Figure 1: Swarm Architecture. A particular instance

of Swarm is constructed by layering Swarm modules to

obtain the desired functionality for the storage system.

Each layer augments, extends, and/or hides the function-

ality of the layers below it. The agent layer is responsi-

ble for implementing the agent infrastructure described

in this paper.

perform these functions; this results in improved scala-

bility, reliability, and performance over centralized file

servers.

Swarm is a storage system, not a file system, because

it can be configured to support a variety of storage ab-

stractions and access protocols. For example, a Swarm

cluster could simultaneously support Sun’s Network File

System (NFS) [14], HTTP, a parallel file system, and

a specialized database interface. Swarm accomplishes

this by decoupling high-level abstractions and function-

ality from low-level storage. Rather than providing these

abstractions directly, Swarm provides an infrastructure

that allows high-level functionality to be implemented

above the underlying log abstraction easily and effi-

ciently. This infrastructure is based on layered modules

that can be combined together to implement the desired

functionality (Figure 1). Each layer can augment, ex-

tend, or hide the functionality of the layers below it.

For example, an atomicity service can layer above the

log, providing atomicity across multiple block writes. In

turn, a logical disk service can layer above this extended

log abstraction, providing a disk-like interface to the log

and hiding its append-only nature.

D
E

LE
T

E

C
R

E
A

T
E

C
R

E
A

T
E

C
R

E
A

T
E

�
�
�

�
�
�

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

Figure 2: Log Format. The light objects are blocks, and

the dark objects are records. Each CREATE record indi-

cates the creation of a block, and each DELETE record

indicates a deletion; the arrows show which block is af-

fected by each record and represent references visible to

the log layer. Note that the contents of the blocks them-

selves are uninterpreted by the log layer.

2.1 Log Layer

The striped log is the central abstraction in Swarm. The

striped log abstraction and corresponding interface are

implemented in the log layer. The log layer is respon-

sible for forming data written by higher levels into an

append-only log and striping the log across the underly-

ing storage devices. The layers above the log are called

storage services (services for short) and are responsi-

ble for implementing high-level storage abstractions and

functionality. The log layer’s main function is to multi-

plex the underlying storage devices among multiple ser-

vices, allowing storage system resources to be shared

easily and efficiently.

2.1.1 Log Format

The log itself is an ordered stream of blocks and records

(Figure 2). It is append-only: blocks and records are

written to the end of the log and are immutable.

Block contents are service-defined and are not inter-

preted by the log layer. Once written, blocks persist

until explicitly deleted, though their physical locations

in the log may change as a result of cleaning or other

reorganization. New blocks are always appended to the

end of the log, allowing the log layer to batch together

small writes into fragments that may be efficiently writ-

ten to the storage devices. Once written, a block may

be accessed using its log address, which consists of a

unique fragment identifier and an offset within the frag-

ment. Given a block’s log address and length, the log

layer retrieves the block from the appropriate storage de-

vice and returns it to the calling service. When a service

stores a block in the log, the log layer responds with its

log address so that the service may update its metadata

appropriately.



Data

Metadata Sections

Agents

Layout Agent #1

Layout Agent #2

Commit Agent

Store Agent

Section #1 Section #2 Section #3

Physical Disk Block
Swarm Record

Figure 3: Record Format. Each record contains a

pointer to an associated data block (if any), a variable

number of sections in which each service stores service-

specific recovery information, and references to each

agent that has been attached to the record.

Records are used to recover from client crashes. A

crash causes the log to end abruptly, potentially leav-

ing a service’s data structures in the log inconsistent. A

record contains information necessary to recover from

the crash, enabling services to repair inconsistencies by

re-applying the state changes indicated by the records

(Figure 3). For example, a file system might append

records to the log as it performs high-level operations

that involve changing several data structures (e.g., as

happens during file creation and deletion). During re-

play, these records allow the file system to easily redo

(or undo) the high-level operations. Records are implic-

itly deleted by checkpoints, special records that denote

consistent states. The log layer guarantees atomicity of

record writes and preserves the order of records in the

log, so that services are guaranteed to replay them in the

correct order.

2.1.2 Log Layout

As applications and storage services write data to

Swarm, the log layer caches the blocks in memory and

writes them to the log in batches. As the log layer cre-

ates the log from the blocks in the cache, it must make

decisions about how the blocks are organized in the log.

Proper data layout is important, since it affects the per-

formance of subsequent log accesses. Blocks that are

accessed together but distributed throughout the log are

much slower to access than if they were clustered to-

gether, due to the high cost of disk seeks and lost oppor-

tunities to perform large data transfers.

The log layer has no implicit knowledge about the con-

tents of the blocks that it stores, so without help from

the services that created the blocks, it does not know

how to organize them in the log. To address this prob-

lem, the log layer provides an ordered sets abstraction

that allows services to express block layout preferences.

Each set contains a list of blocks that should be clustered

together in-order in the log. The services that are using

the log create the sets and assign blocks to them. A ser-

vice can create as many sets as it likes, and assign an

arbitrary number of blocks to each set.

To store blocks in the log, the service submits the sets

containing the blocks to the log layer. The log layer

packs the sets into log fragments so that no set spans a

fragment boundary. If a set is too large to fit into a frag-

ment it must obviously span a boundary; the log layer

simply splits an oversized set arbitrarily into sets that fit

into fragments. A service that wishes to avoid this can

do so by ensuring that every set fits into a fragment.

In some cases, a service may want to express layout poli-

cies that require blocks to appear in multiple sets. For

example, a file system might use a set to specify that the

blocks of a file should be laid out consecutively and con-

tiguously, and use another set to specify that all files in

the same directory should be clustered together. In this

situation, blocks will be members of a file set and a di-

rectory set. Swarm attempts to pack all sets with blocks

in common into the same log fragment, thus ensuring

that blocks are clustered properly. If the sets do not all fit

into a fragment, then Swarm is forced to split the blocks

of some sets across fragment boundaries. In this case,

the set priorities are used to decide which set a block is

clustered with, and which sets are split. For example,

giving a file set higher priority than a directory set indi-

cates that it is more important to cluster the blocks of a

file than it is to cluster files in the same directory. If all

the files in a directory cannot fit in the same fragment,

then the directory set is split so that some of the files are

stored in different fragments.

The log layer uses the following algorithm for placing

blocks in the log based on set membership and priori-

ties, and splitting sets when necessary. First, the sets are

ordered from lowest priority (1) to highest (N ). The sets

with priorityN are packed into log fragments so that two

sets are placed in the same fragment if there is a priority

N � 1 set that contains blocks from both of the priority

N sets. Once the blocks in the priorityN sets have been

packed, the blocks in the priority N � 1 sets are packed

by considering common membership in priority N � 2

sets, and so on. For example, if each priority N set con-

tains blocks from the same file, and each priorityN � 1

set contains blocks from files in the same directory, then



the algorithm packs file sets into the same fragment if

they have blocks belonging to the same directory set.

Packing sets into fragments according to priorty ensures

that the log layer favors splitting lower-priority sets over

higher-priority. If the same block appears in multiple

sets with the same priority, then one of the sets is ar-

bitrarily chosen and the others ignored. Intuitively, this

indicates that it is equally important that the block be

clustered with the other blocks in the different sets, so

the log layer is free to choose any set that it wants. If

the service has a preference, it should use the set priority

mechanism to express it.

3 Agent Infrastructure

Swarm provides an infrastructure for building storage

services on top of the striped log, allowing applications

to tailor the storage system to their exact needs. Swarm

is implemented as a collection of modules that are lay-

ered to build storage systems in much the same way

that protocols may be layered to build network commu-

nications subsystems [7]. Each module in Swarm im-

plements a storage service that communicates with the

lower levels of the storage system through a well-defined

interface, and exports its own well-defined interface to

higher levels. Storage systems are constructed by layer-

ing the appropriate modules such that all interfaces be-

tween modules are compatible.

To provide a clean separation between layers, Swarm al-

lows storage services to attach agents to the records that

move up and down the service stack. Agents are pro-

grams that are invoked at various points in the record’s

lifetime to influence or control how the record and its as-

sociated data block are managed in the storage system.

Agents allow services to inject service-specific function-

ality into the lower levels of the storage system, and to

do so in a way that does not require the lower levels

to have any knowledge about how the storage service

works. For example, agents allow Swarm to implement

application-specific data layout policies without knowl-

edge of application access patterns, and to update appli-

cation metadata without knowledge of application meta-

data structures.

Agents allow mechanism to be effectively and efficiently

decoupled from policy in the implementation of storage

services. The mechanism for organizing blocks in the

log is the ordered sets abstraction. A set tells the log

that the blocks it contains should be stored consecutively

typedef Status (AgentFunc) (Interface *iPtr,

RecordRef *recordList, void *agentData);

/* register an agent */

Status

RegisterAgent(Agent_Interface *agentPtr,

char *name, AgentFunc *func,

int agentType, int flags,

void *agentData, AgentId *id);

/* attach an agent to a record */

Status

AttachAgent(Agent_Interface *agentPtr,

Record *record, int level, AgentId id,

int flags, void *recordData);

/* invoke all agents of a given type */

Status

InvokeAgents(Agent_Interface *agentPtr,

Record *record, int agentType);

Figure 4: Agent Routines. The agentData is an

opaque data field that is specified to RegisterAgent

when the agent is created, and passed to the agent when

it is subsequently invoked. The recordData is speci-

fied when the agent is attached to a record, and is avail-

able to the agent when it processes the record. The

level parameter specifies the service’s level in the

Swarm stack.

and contiguously. It does not tell the log layer why they

should be stored that way, so the log layer has no idea

under what conditions the set memberships remain valid.

Instead of augmenting the set abstraction with attributes

that communicate these sort of policies to the log layer,

Swarm uses agents that codify the policies for placing

blocks into sets.

Agents implement policies, and express them by creat-

ing sets. Sets are only used to place the block in the log

once, after which they are discarded. If a block needs

to be rewritten to the log (e.g. because it was modi-

fied), its agents are again invoked to assign the block

to sets. Agents not only provide a convenient decou-

pling of mechanism and policy, but also provide a much

more powerful mechanism for specifying policy than the

ordered sets themselves, since an agent can take into ac-

count the current state of the system each time a block is

written.

The agent infrastructure is implemented in the agent

layer. The agent layer is responsible for flushing the

cache and invoking service-provided agents to assign the



blocks and records in the cache to ordered sets. The

agent layer provides an interface for services to create

agents and attach them to records (Figure 4). Although

each record could have its own unique agents, typically

a single agent will be attached to multiple records that

should be handled similarly.

Agents introduce a potential security hole, since they run

inside the Swarm environment and affect Swarm’s func-

tionality. Without proper precautions, a buggy or ma-

licious agent could corrupt data structures belonging to

other services or Swarm itself. Swarm must be able to

protect itself from agents, and agents must be able to

protect themselves from each other. Swarm must also

ensure that agents do not consume an undue amount of

resources. These concerns are addressed in Section 3.5.

3.1 Agent Types

The agent layer implements four native types of agents:

layout, commit, store, and replay. Layout agents are in-

voked when the agent layer flushes the cache, allowing

services to specify a layout policy for the records and

blocks being flushed. Commit agents are invoked after

the log layer has assigned a log address to a record and

its associated block, allowing the service to update its

metadata to reflect the new address. Store agents are in-

voked after the record and its associated block have been

written to the log, allowing the service to clean up any

record state. Replay agents are invoked when replaying

records after a crash, allowing services to take actions

appropriate for crash recovery.

The agent layer also provides facilities for services to

define new types of agents and cause them to be in-

voked when appropriate. This functionality is used by

the cleaner, for example, to create a new type of agent

that handles cleaning a block.

3.1.1 Layout Agents

Layout agents are responsible for deciding how blocks

and records should be laid out in the log. A layout agent

is invoked when blocks are flushed from the cache and

written to the log. When it is invoked, the layout agent

is provided a list of all records to be written that have the

agent attached to them. The agent processes the list and

puts the records into ordered sets. The log layer uses the

ordered sets to determine where blocks are placed in the

log; it attempts to store the blocks in each set contigu-

ously and in-order. The layout agent can use whatever

method it chooses to allocate blocks to sets. For exam-

ple, a layout agent for a file system may assign blocks

from each file to a different set, in the order in which

they appear in the file. This ensures that file blocks are

laid out contiguously and in-order.

To simplify the implementation of higher-level services

that do not care about layout, the agent layer provides

a default layout agent. This agent simply assigns all

records to the same set, creating a new set when the cur-

rent one reaches the size of a fragment.

3.1.2 Commit Agents

The commit agent for a record is invoked once the raw

log layer has placed a record’s set in the log, and has

therefore committed to writing the record’s block at a

particular log address. When it is invoked, the agent

is provided with the block’s record and the log address

where it will be written. The commit agent typically uses

this information to update any metadata that refers to the

block. For example, a commit agent for a file system

would update the file’s inode and indirect block meta-

data to contain the new log address for the data block.

The agent layer also provides a default commit agent

to simplify service implementation. This agent requires

that the recordData be a list of log addresses, and it up-

dates them to contain the block’s address. This is ade-

quate for services with simple metadata.

3.1.3 Store Agents

The store agent is invoked after a record and its associ-

ated data block have been successfully stored in the log.

Typically, a store agent is responsible for cleaning up the

block’s state, for example, by removing the block from

the cache. This cannot be done until the block has been

stored. As another example, a synchronous block write

can be implemented by registering a store agent on the

block before submitting it to the log layer. When the

agent is invoked, it wakes the thread that is writing the

block.

3.1.4 Replay Agents

The replay agent is invoked when replaying the log dur-

ing server recovery. The agent is given records from the



log in the order in which they appear in the log. The re-

play agent is often similar to the commit agent in that it

updates the block’s metadata to reflect its position in the

log. Processing isn’t exactly the same because the server

may have crashed, causing the log to be truncated, which

in turn may affect how the records are handled.

3.2 Agent Interface

When the agent is invoked, it is passed a list of records

to which it was attached. Furthermore, when an agent

is attached to a record, a fixed-size opaque data field

(called recordData) can be provided that is stored in

the record and available to the agent when it processes

the record. The agent is also passed an agentData

parameter that was provided when the agent was cre-

ated. The agentData contains agent-specific informa-

tion that also helps the agent perform its function.

Agents are invoked beginning with the lowest-level ser-

vice and working toward the highest (i.e., in the reverse

order in which they were attached to the record). Con-

ceptually, agents are attached to records as they pass

down through the layers, and the agents are invoked as

the response passes back up through the layers. Swarm

does not have provisions for allowing different agent or-

derings, perhaps specified when the agents are created or

when they are attached to records. A general facility for

this would require inter-layer knowledge to allow their

agents to be ordered properly. Instead, Swarm invokes

the agents in layer order.

3.3 Agent Persistence

Typically, an agent is persistent, in that it remains at-

tached to a record until the record is deleted. A persis-

tent agent is stored in the log by the agent layer so that it

is not affected by machine crashes, and can be invoked

after the machine recovers. For example, replay agents

are always persistent because they are only invoked af-

ter a crash and therefore must survive the crash. Layout

agents are also usually persistent since they are invoked

throughout the block’s lifetime each time it is cleaned.

The agent layer also supports transient agents, agents

that are invoked only once and not retained across ma-

chine reboots. These agents are used for processing that

should not be done after a reboot, such as cleaning up

in-memory data structures. The best example of a tran-

sient agent is the one that is used for synchronous log

writes. This agent is attached to a record when it is sub-

mitted, after which the submitting thread blocks. The

agent is invoked once the block is stored in the log, and

it resumes the waiting thread. Since it is transient, it is

only invoked once, as desired, and it does not survive

machine reboots, which is also desirable since the wait-

ing thread will not either.

3.4 Overhead

The agent layer does add overhead to the storage func-

tions provided by Swarm. Agents are invoked when

records are laid-out, committed, stored, replayed, and

cleaned. Of course, different agents perform different

amounts of computation, so it is impossible to character-

ize the overall performance effect of agents. The intent is

that the overall system performance improvements that

agents enable offsets the overhead of running the agents.

Section 4 describes the different agents developed and

how much they improved system performance.

An agent is invoked when a particular event occurs to

a record. The agent is expected to respond to the event

by manipulating the state of the system, e.g. by adding

the record to a set, or updating metadata. For this rea-

son, agents are invoked synchronously by Swarm. The

overhead of invoking an agent consists of the cost of a

procedure call, plus the cost of packaging up the records

on which the agent should act. We measured the cost of

invoking a null agent (one that does no work) at less than

1 microsecond.1

We also measured the overhead of the default layout

and commit agents described in Section 3.1.1 and Sec-

tion 3.1.2, respectively. These default agents are proba-

bly the minimal useful agents for those agent types. The

default layout agent requires 21 microseconds per block,

of which memory allocation consumes 16 microseconds,

and manipulating the set data structures 4 microseconds.

The memory allocation overhead is clearly too high, and

is something we plan to rectify. Once that is fixed, the

cost per block for the default layout agent should be

around 5 microseconds. The default commit agent does

much less work than the layout agent, and therefore re-

quires only 4 microseconds per block.

1All performance numbers presented in this paper were measured

on a 166Mhz Intel Pentium Pro PC with 64MB of RAM, running

Linux version 2.2.16. The Swarm log is stored on a Quantum Fireball

SE4.3 SCSI disk connected to an Adaptec 2940W SCSI host adapter.



3.5 Protection and Security

Swarm must ensure that agents do not interfere with

each other, or the proper functioning of Swarm itself. It

must also ensure that they do not consume an inordinate

amount of resources. There are many possible solutions

to these problems, since these same issues arise in many

contexts. One is to write the agents in a type-safe lan-

guage, such as Java. The use of such a language would

limit the agents to accessing only those data structures

to which they are granted access; this would prevent an

agent from accessing anything but its own blocks. The

use of Java will likely reduce agent performance, but this

is probably acceptable since the agents are invoked as

part of a relatively slow I/O operation. Another down-

side of this approach is that it requires a Java Virtual

Machine inside of the Swarm infrastructure, which in-

creases Swarm’s resource requirements and complexity.

Other possible protection mechanisms include running

the agents in a separate process, using proof-carrying

code [10] to verify the agents’ correctness, or using soft-

ware fault isolation [16, 15] to isolate the agents. All of

these should be acceptable, although running agents in a

separate process will likely have high overheads.

Our current prototype does not protect against malicious

or buggy agents; for expediency, the agents are written

in C and no mechanisms are employed to isolate them.

When an agent is invoked it is passed a list of blocks

to which it has been attached. The agent has no direct

access to blocks belonging to other services and agents,

preventing it from doing so trivially. Nonetheless, a de-

ployed version of Swarm’s agent infrastructure would

require protection mechanisms. Software fault isolation

is probably the best match for our current prototype as it

allows the agents to be written in C, but still isolate them.

Software fault isolation has the added advantage that the

Vino project has already used it to isolate untrusted code

inside an operating system kernel, allowing us to lever-

age that body of work when applying it to Swarm.

4 Examples

We have implemented several types of agents in the

Swarm prototype. These agents are linked into the Linux

kernel module, and are attached to records by services

as part of each service’s processing of the record. This

section describes the services to which we added agents,

how they use agents, and what benefits they derive from

their use.

4.1 Cleaner

As in other log-structured storage systems, Swarm uses a

cleaner that periodically garbage-collects unused blocks

in the log to make room for new segments [13]. In

Swarm, the cleaner is implemented as a layer above the

log, hiding the log’s finite capacity from higher-level

services. The cleaner monitors the blocks and records

written to the log, allowing it to track which portions

of the log are unused. The cleaner is also responsible

for free space management, enforcing quotas on higher-

level services, initiating cleaning to move live data out

of underutilized stripes so that the space they occupy

can be used for new log data, and reserving the appro-

priate number of stripes so that cleaning always makes

progress.

In Swarm, the cleaner operates by attaching agents to

records as they are submitted to the log. The cleaner

uses store agents to track which blocks in the log contain

live data and which have been deleted. The store agent

attached to creation records updates the cleaner’s data

structures to indicate that the associated blocks contain

live data; conversely, the store agent attached to deletion

records marks the associated blocks as deleted, and also

deletes stripes that become empty as a result.

The cleaner also creates a new type of agent called a

cleaning agent that is used by the upper layers to clean

blocks. The cleaner invokes a record’s cleaning agent

when it decides the block must be cleaned. The cleaning

agent takes whatever actions are necessary to clean the

block. For example, the cleaning agent for the Sting file

system cleans a block by reading it into the file cache

and marking it as dirty, causing it to be written back out

to the log the next time the cache is flushed.

4.2 Sting

Sting is a local file system that we have implemented as

part of Swarm (Figure 5). When loaded into the Linux

kernel, it allows application programs to access standard

UNIX files and directories that are stored in Swarm.

Sting is log-structured, and uses a variety of agents to

ensure that data are stored in the log efficiently, and that

metadata are kept up-to-date.

Sting uses layout agents to implement a data layout pol-

icy similar to that of FFS [9]. Sting uses two layout



Application Layer

Ext2

File System

VFS

Sting

File System

Buffer Cache

Disk Driver Network Driver

Figure 5: Sting. Sting is implemented as a Swarm mod-

ule. The entire Sting/Swarm system is loaded into the

Linux kernel below the VFS layer and above the buffer

cache and network drivers. Sting uses the buffer cache

to access local disks, and the network driver to access

remote Swarm storage servers.

agents: FileLayout and DirectoryLayout. The FileLay-

out agent creates a set for each file, putting the blocks of

the file into the set in the order in which they appear in

the file; this tells the log layer that a file’s blocks should

be laid out in the log contiguously and in-order. The

DirectoryLayout agent creates a set for each directory,

putting all blocks belonging to files in the directory into

the set; this tells the log layer that files from the same di-

rectory should be clustered together in the log. The sets

created by the DirectoryLayout agent have lower prior-

ity than the FileLayout agent; this tells the log layer that

it is more important to keep the blocks of a file together

than it is to cluster files from the same directory.

Sting uses two commit agents for metadata manage-

ment: a DataCommit agent for data blocks and indirect

blocks, and an InodeCommit agent for blocks that con-

tain inodes. The DataCommit agent stores the address of

the block in the proper inode or indirect block, reading

it into the cache if necessary. The InodeCommit agent

stores the inode’s log address in the inode map.

The Sting store agent is responsible for cleaning up after

a dirty block has been written, by releasing all relevant

locks and marking the block as clean. The Linux page

cache is then free to replace the block as necessary.

The Sting replay agent performs much the same func-

tion as the traditional Unix fsck program that fixes file

system metadata after a crash. During normal operation,

file namespace operations such as creating a file or di-

rectory, creating a hard link, or unlinking a file or direc-

tory generate records that are stored in the log. During

replay, the replay agent processes Sting’s records from

the log in order, using them to reconstruct the correct

namespace.

Sting’s cleaning agent cleans blocks by reading them

into the cache and marking them as dirty. The file

cache will then write them back out to the log at a later

time. As a sanity check, the cleaning agent first cross-

references the block with the file metadata to verify that

it is still in-use. If it isn’t, it is simply deleted.

4.3 Simple Logical Disk

The simple logical disk (SLD) service presents the ab-

straction of a logical disk, one in which blocks are ac-

cessed via fixed addresses. The SLD insulates higher-

level services from the log by maintaining a mapping

from SLD addresses to log addresses. When a block is

moved within the log, this mapping changes, but not the



SLD address. This allows traditional file systems, such

as ext2, to run on Swarm without modification.

The SLD agents are responsible for maintaining the

mapping table. SLD uses two commit agents to accom-

plish this. The BlockCommit agent is attached to data

blocks, and is used to update the block’s log address in

the mapping table. The TableCommit agent is attached

to blocks that contain the mapping table itself, and is

used to store the table block’s address in the SLD su-

perblock. This is a good example of a service that has

two types of metadata (the mapping table and the su-

perblock), and that uses different agents to keep the two

up-to-date.

SLD also attaches a replay agent to all records that reads

the SLD superblock and mapping table from the disk and

updates them with the log addresses of the blocks being

replayed.

4.4 Application Layout Agents

Swarm’s agent mechanism is also available to applica-

tion programs. This is useful, for example, to application

programs that store files in Sting but want to influence

how Sting organizes blocks in the log. By attaching its

own layout agent to records, an application can imple-

ment block layouts that differ from Sting’s. In this sec-

tion, we present two sample application layout agents: a

web page agent and a read-ordered agent. The web page

agent clusters web pages with their embedded images,

and the read-ordered agent lays out blocks according to

previously-observed read access patterns.

4.4.1 Web Page Layout

HTML pages often contain embedded images. These

images are referred to by URL in the HTML document,

and are stored in a separate file in the web server’s file

system. If a browser reads a page, it is almost certain

to read the embedded images too. The web page layout

agent attempts to cluster pages together with the embed-

ded images they contain.

The simplest way to determine the images embedded in

a page is to parse the page’s HTML. The web page lay-

out agent relies on a user-level program to parse the web

pages and present the image information to the agent in

an easily processed form. The layout agent is attached to

all the records for the web pages and images, and when

it is invoked, it creates a set that contains all the blocks

for the web page and its images. The blocks of the web

page are put into the set first, followed by the blocks of

the images, in the order in which the links to the images

appear in the page. This causes the log layer to clus-

ter the blocks on the disk in the order in which they are

likely to be accessed.

We performed a simple experiment to demonstrate such

an agent is easily implemented, and can result is sig-

nificant performance gains. The agent consists of only

about 300 lines of C code. For the experiment, a process

reads two HTML files, each containing four embedded

images. This simulates a web browser viewing the two

pages. The pages and their images are stored in the same

directory. The default Sting agents will cluster all of the

blocks together because the files are in a single directory,

but in an unspecified order. Ext2 will store the blocks

similarly.

With 4KB images, the pages and images are read a factor

of 1.7 times faster using the web-layout agent than Sting

alone, and 7.7 times faster than ext2. Larger images re-

duce the benefit of the smaller seek times the agent pro-

vides, but with 64KB images the read time was still 1.3

times faster than Sting alone, and 1.9 times faster than

ext2. These experiments are not intended to be definitive

on how to organize web pages on disk, but do demon-

strate that agents allow applications to deviate from the

default layout policies, and that doing so can result in

substantial performance gains.

4.4.2 Read-Ordered Layout

The read-ordered layout agent puts blocks into sets in

the order in which they were previously read. Most files

are read sequentially and in their entirety, so this agent

might seem uninteresting, but it does improve start-up

performance for executables, whose pages are typically

not read in-order.

The read-ordered agent has two components: a facility

that records the read pattern, and the layout agent itself.

In our current prototype, the recording is turned on and

off by the user. The recorded access pattern is then used

by the layout agent to order the blocks in the file the

next time they are cleaned. The layout agent itself is rel-

atively simple, consisting of about 250 lines of C code.

It reads the recorded access pattern for a file and puts

the file’s blocks into sets in the order in which they were

read. This causes the log layer to store the blocks in

the same order. We measured the improvement in start-



up times of three applications, emacs, gdb, and jikes (a

Java compiler). Using the read-ordered agent improved

the emacs start-up time by a factor of 1.7 (from 1.2 to

0.7 seconds). Similarly, gdb improved from by a fac-

tor of 1.67 (0.5 to 0.3 seconds), and jikes by a factor of

1.5 (0.3 to 0.2 seconds). We consider these respectable

performance improvements from such a simple agent.

Swarm’s agent infrastructure makes this possible, by al-

lowing the agent to organize the blocks according to past

access patterns.

5 Status

The agent infrastructure and services described in this

paper have been implemented in the Swarm prototype,

with the exception of persistent agents. The reference to

a persistent agent is stored in the records, but the agent it-

self is not stored in the log. Instead, the system relies on

the service or application to re-register the agent with the

agent layer on system startup. This solution assumes that

agents’ identifiers and functionality doesn’t change be-

tween reboots, which may not be reasonable. Requiring

agents to be re-registered is not a problem for services

that are initialized on startup, such as Sting, but doesn’t

work well for agents that were created by applications.

We are currently working on adding the functionality to

store persistent agents in the log.

On a related note, there is a tradeoff between how much

functionality should be encapsulated in the agent, and

how much the agent can get from its environment. En-

capsulating all functionality in an agent makes the agent

self-sufficient, but increases the size of the agent and

may complicate the design and implementation of the

service. On the other hand, a minimal agent is smaller

and probably doesn’t affect the service’s organization

as much, but it requires a richer environment in which

to run. As an example, the Sting agents interpret and

modify Sting’s metadata, such as inodes, indirect blocks,

and directories. In the current implementation, the Sting

agents rely on routines in the Sting service to perform

much of this work. This reduces the agent complexity,

but requires that the Sting service exist in order for them

to run. This violates the premise of persistent agents,

that they will continue to do their work after the service

that created them ceases to exist. Ideally, one should be

able to configure a system without Sting, yet continue

to have the cleaning agents attached to Sting’s records

function. This does not work in the current system.

We might be able to simply reorganize functions so that

the agents are self-contained, but it may take refactoring

how Sting is architected to reach this goal.

6 Related Work

Swarm is log-based, and as such is heavily influenced

by the Log-Structured File System (LFS) [13]. Swarm’s

use of a log as the only storage abstraction mirrors LFS,

and Sting’s use of inodes and an inode map are also bor-

rowed from LFS. Swarm differs from LFS in the use of

agents to affect log layout, metadata management, and

cleaning. This allows the file system, Sting, to be de-

coupled from the storage system, Swarm. In LFS, these

two functions are tightly coupled. This decoupling is

also one of the features that distinguishes Swarm from

Zebra [6].

Organizing data on disk to improve access performance

has a long history and many examples. Probably the

closest to our work are the layout policies of the Fast

File System (FFS) [9]. Sting’s layout agents’ policies

are inspired by FFS, in that both attempt to lay out files

contiguously and cluster files from the same directory

together. Sting differs from FFS slightly in that FFS

has an upper limit on the number of file blocks it will

store contiguously before moving to a different area of

the disk. For simplicity, we did not implement such a

limit in Sting.

Other file systems have allowed applications to specify

data layout, typically through small, notational program-

ming languages. MPI-IO [3], for example, allows each

file to have layout attributes (info) such as the stripe

width, size of each striping unit, and the size of each ar-

ray element for files that store arrays. This information

allows the underlying storage system to store the file ef-

ficiently, but has limited semantics. The Scalable I/O

File System [1] has similar functionality and limitations.

Extensible operating systems allow entire subsystems to

be added and replaced, including file systems. Typically,

the entire file system is installed as a whole, which does

allow file system functions such as layout to be tailored

to an application’s needs, but is a very heavy-weight

mechanism for doing so. Linux provides loadable kernel

modules that allow entire file systems to be loaded in this

fashion. Mach provides for external pagers [11], which

are user-level daemons that move virtual memory pages

between memory and disk. This mechanism could also

be exploited by an application to affect layout policies,

but is also a heavy-weight solution. The Xok exoker-

nel [8] supports user-level library file systems (libFSes).



The underlying disk storage is multiplexed among libF-

Ses via XN, the exokernel’s in-kernel storage system.

Each libFS is responsible for managing its portion of

the underlying storage, allowing it to implement its own

metadata and layout policies. XN provides protection

between libFSes using untrusted deterministic functions,

which interpret libFS-specific metadata for XN. These

functions allow XN to determine which blocks belong

to which libFSes. Swarm uses ACLs for protection, al-

though a discussion of this topic is outside the scope of

this paper. Xok is similar to Swarm in that it multiplexes

the underlying storage among multiple storage services,

but has very different mechanisms for doing so.

The Logical Disk (LD) [2] aggregates multiple physical

disks into a single virtual disk, thus hiding the storage

system’s organization from the file system that is using

it. LD provides a list abstraction that helps accomplish

this. LD attempts to cluster blocks on the same list to-

gether, allowing the file system to express relationships

between blocks and how they should be stored. Simi-

larly, the block lists themselves can be placed in a larger

list, expressing locality between lists. LD attempts to

store lists that are near one another in the meta-list close

together on the disks. Swarm’s set abstraction is similar

to LD’s lists, but Swarm’s agent abstraction has no par-

allel in LD. LD has no inherent mechanism for creating

and changing lists.

Active disk technology [12] makes use of processing

power on the disk drive to run application code. This can

dramatically improve application performance by mov-

ing processing closer to the disk, avoiding I/O bus bot-

tlenecks, and by taking advantage of the inherent par-

allelism in running application code on multiple disks.

The active disk work thus far has been confined to run-

ning application algorithms on the disk drives; Swarm’s

agent technology focuses on using agents to influence

the functioning of the storage system itself.

7 Conclusion

Agents provide a flexible mechanism for services and

applications to implement policies that affect low-level

storage system functions, such as data layout, metadata

management, and crash recovery. Swarm must multi-

plex a single log between multiple services efficiently,

and do so without understanding the internals of those

services. Agents provide the means of doing this. A ser-

vice can attach a service-specific agent to a record when

it is passed to the log for storage. The agent will be in-

voked when its associated event occurs (e.g., the block

is assigned a log address), allowing the service to take

service-specific actions in response. In this way, Swarm

can be organized in layers, such that the higher lay-

ers augment the functionality of the lower layers, with-

out the lower layers having to know anything about the

higher layers. For example, the cleaning layer can clean

the blocks belonging to higher layers without knowing

implicitly how the blocks should be organized on disk,

or the format of the block’s metadata.

We have implemented several services that use agents.

The cleaner not only uses agents to implement clean-

ing, but also creates a new type of agent, a cleaning

agent, that higher-level services can use to influence the

cleaner. The Sting file system uses agents to imple-

ment basic file system functionality, including laying out

a file’s blocks contiguously, and updating metadata to

record block locations. The SLD service uses agents

to implement a simple logical disk. Finally, we have

implemented several application-level layout agents to

demonstrate that applications that use a file system can

use agents to influence how the file system organizes

blocks on disk. The web agent clusters a web page

and its included images on the disk, improving web

server performance, and the read-ordered agent orga-

nizes blocks in the order in which they are accessed, im-

proving read performance. Both of these agents demon-

strate the value of agents in file system design.

Acknowledgments

We would like to thank Tammo Spalink and Rajesh

Sundaram for their help in designing and implementing

Swarm.

References

[1] Peter F. Corbett, Jean-Pierre Prost, Chris

Demetriou, Garth Gibson, Erik Reidel, Jim

Zelenka, Yuqun Chen, Ed Felten, Kai Li, John

Hartman, Larry Peterson, Brian Bershad, Alec

Wolman, and Ruth Aydt. Proposal for a com-

mon parallel file system programming interface.

http://www.cs.arizona.edu/sio/api1.0.ps, Septem-

ber 1996. Version 1.0.

[2] Wiebren de Jonge, M. Frans Kaashoek, and Wil-

son C. Hsieh. The logical disk: a new approach



to improving file systems. In Proceedings of the

14th ACM Symposium on Operating Systems Prin-

ciples (SOSP ’93), pages 15–28, Asheville, North

Carolina, December 1993.

[3] Message Passing Interface Forum. Mpi-2:

Extensions to the message-passing interface.

http://www.mpi-forum.org/docs/mpi-20.ps.Z.

[4] Garth A. Gibson, David F. Nagle, Khalil Amiri,

Fay W. Chang, Eugene M. Feinberg, Howard Gob-

ioff, Chen Lee, Berend Ozceri, Erik Riedel, David

Rochberg, and Jim Zelenka. File server scal-

ing with network-attached secure disks. In Pro-

ceedings of the 1997 ACM SIGMETRICS Interna-

tional Conference on Measurement and Modeling

of Computer Systems, June 1997.

[5] John H. Hartman, Ian Murdock, and Tammo

Spalink. The Swarm scalable storage system. In

Proceedings of the 19th IEEE International Con-

ference on Distributed Computing Systems (ICDCS

’99), June 1999.

[6] John H. Hartman and John K. Ousterhout. The

Zebra striped network file system. ACM Trans-

actions on Computer Systems, 13(3):274–310, Au-

gust 1995.

[7] Norman C. Hutchinson and Larry L. Peterson. The

x-kernel: An architecture for implementing net-

work protocols. IEEE Transactions on Software

Engineering, 17(1):64–76, January 1991.

[8] M. Frans Kaashoek, Dawson R. Engler, Gregory R.

Ganger, Héctor M. Briceño, Russell Hunt, David

Mazières, Thomas Pinckney, Robert Grimm, John

Jannotti, and Kenneth Mackenzie. Application per-

formance and flexibility on exokernel systems. In

Proceedings of the 16th ACM Symposium on Oper-

ating Systems Principles (SOSP ’97), pages 52–65,

Saint-Malô, France, October 1997.

[9] Marshall K. McKusick, William N. Joy, Samuel J.

Leffler, and Robert S. Fabry. A fast file system for

UNIX. ACM Transactions on Computer Systems,

2(3):181–197, August 1984.

[10] George Necula and Peter Lee. Safe kernel exten-

sions without run-time checking. In Proceedings

of the Second Symposium on Operating Systems

Design and Implementation (OSDI ’96), October

1996.

[11] R. Rashid, A. Tevanian, M Young, D. Golub,

R. Baron, D. Balck, W. J. Bolosky, and J. Chew.

Machine-independent virtual memory manage-

ment for paged uniprocessor and multiprocessor

architectures. IEEE Transactions on Computers,

37(8):896–908, August 1988.

[12] Erik Riedel. Active Disks - Remote Execution for

Network-Attached Storage. PhD thesis, Carnegie

Mellon University, November 1999. Available as

Technical Report CMU-CS-99-177.

[13] Mendel Rosenblum and John K. Ousterhout. The

design and implementation of a log-structured file

system. ACM Transactions on Computer Systems,

10(1):26–52, February 1992.

[14] Russel Sandberg, David Goldberg, Steve Kleiman,

Dan Walsh, and Bob Lyon. Design and implemen-

tation of the Sun Network File System. In Pro-

ceedings of the Summer 1985 USENIX Conference,

June 1985.

[15] Margo I. Seltzer, Yasuhiro Endo, Christopher

Small, and Keith A. Smith. Dealing with disaster:

Surviving misbehaved kernel extensions. In Pro-

ceedings of the Second Symposium on Operating

Systems Design and Implementation (OSDI ’96),

October 1996.

[16] Robert Wahbe, Steven Lucco, Thomas E. Ander-

son, and Susan L. Graham. Efficient software-

based fault isolation. In Proceedings of the 14th

ACM Symposium on Operating Systems Principles

(SOSP ’93), December 1993.


