
A Fuzzy Visual Query Language for a

Domain-Spe
i�
 Web Sear
h Engine

Christian S. Collberg

Department of Computer S
ien
e

University of Arizona

Tu
son, AZ

ollberg�
s.arizona.edu

Abstra
t

A�goVista is a web-based sear
h engine that assists

programmers to �nd algorithms and implementations

that solve spe
i�
 problems.

A�goVista is not keyword based but rather requires

users to provide | in a very simple textual language

| input)output samples that des
ribe the behavior of

their needed algorithm. Unfortunately, even this simple

language has proven too
hallenging for
asual users.

To over
ome this problem and make A�goVista more

a

essible to novi
e programmers, we are designing and

prototyping a visual language for
reating A�goVista

queries. Sin
e web users do not have the patien
e to

learn fan
y query languages (be they textual or visual),

our goal is to make this language and its implementa-

tion natural enough to require virtually no explanation

or user training.

A�goVista operates at http://algovista.
om.

1 Ba
kground

Frequently, working software developers en
ounter a

problem with whi
h they are unfamiliar, but whi
h|

they suspe
t| has probably been previously studied.

Just as frequently, algorithm developers work on prob-

lems that they suspe
t have pra
ti
al appli
ations.

A�goVista

1

is a web-based, intera
tive, sear
hable,

and extensible database of problems and algorithms

designed to bring together applied and theoreti
al
om-

puter s
ientists. Programmers
an query A�goVista

to look for relevant theoreti
al results, and theoreti
al

omputer s
ientists
an extend A�goVista with prob-

lem solutions.

1

Pronoun
ed /algovista/.

Unlike most other sear
h engines, A�goVista is not

keyword-based. Keyword-based sear
hing fails exa
tly

in those situations when we are in the most need for

a

urate sear
h results, namely when we are sear
h-

ing in a new and unfamiliar domain. For example, a

programmer looking for an algorithm that solves a par-

ti
ular problem on graphs will not get any help from

a keyword-based sear
h engine if she does not know

what the problem is
alled. A Google keyword sear
h

for pgraph algorithmsq, for example, returns 300,000

hits that the user has to browse manually.

Instead, A�goVista requires users to provide one or

more input)output examples that give a (usually fuzzy

and in
omplete) des
ription of the problem they are

looking for. This te
hnique turns out to be remarkably

su

essful: when looking for links to parti
ular graph

algorithms, for example, A�goVista often returns the

requested results in a few se
onds.

In the
urrent version of A�goVista su
h

input)output examples are given in a simple text-

based query language. Although this language should

only take a few minutes to master, most users are too

impatient to read the ample on-line do
umentation or

even learn by trying out the
anned example queries

available at the site.

Rather, immediately after the A�goVista web-page

has been loaded, typi
al users will enter a few keywords

and then hit the submit button. This will not yield

any interesting results sin
e, as we have already noted,

A�goVista's query language is not keyword-based. As

a result, the user will get dis
ouraged and leave to look

for a di�erent sear
h engine.

The web, fueled by the MTV generation, has per-

manently ushered in the era of instant grati�
ation and

the sub-se
ond attention-span.

1

Figure 1. The A�goVista user interface.

Cycle through
all possible
semantic
interpretations
of the drawing

Cycle through
visual query
examples

Textual query
generated from
drawing

Recursive
edit canvas

Template canvas Drawing canvas

generated from
textual query

Prose query

indicates
semantic
grouping

Convex hulls

1.1 A�goVista’s Visual Interface

In this paper we will des
ribe the design and im-

plementation of a visual query language for A�goVista.

Our hopes are that this visual language will prove more

intuitive and faster to learn than its textual
ounter-

part.

The visual language and its a

ompanying user in-

terfa
e have been designed to be as self-explanatory as

possible. A web user who is unwilling to learn a textual

query language will be unwilling to learn a visual one as

well, if it means reading more than a short paragraph

of do
umentation. Our main language design strategy

is summarized by these three points:

1. Give the user
omplete freedom in drawing his

query, be
ause no web user will take the time to

learn
omplex visual grammars or semanti

on-

2

straints.

2. Let the user
hoose herself between di�erent pos-

sible semanti
 interpretations of the visual query,

be
ause no web user will take the time to under-

stand why
ertain parses are valid and others are

not.

3. Make ea
h visual query a learning experien
e.

More spe
i�
ally: we let the user draw something, we

show her the possible interpretations of this drawing,

and we allow her to sele
t the most appropriate inter-

pretation. At the same time, we show her the textual

query
orresponding to the visual one, in the hope that,

in time, she will subliminally a
quire this language.

This may
ome in handy if, at some later date, she

needs to submit a more
omplex query best des
ribed

textually.

The textual and visual languages will be des
ribed

in detail later on in the paper. For now,
onsider

A�goVista's visual user interfa
e in Figure 1. We note

that the interfa
e has a main drawing window in whi
h

the user
an enter her query by dragging elements from

the template window on the left. When a query has

been entered the user
li
ks the parse button, the

drawing is analyzed, and a textual query is produ
ed

in the query window.

At the same time, two things happen to help the

user understand the query she just entered:

1. the query is translated into English prose whi
h is

shown at the bottom of the s
reen;

2.
onvex hulls are drawn around those elements of

the drawing that the parser has de
ided belong

together.

If the user is happy about the interpretation of her

drawing she
li
ks the submit button, and the textual

query is sent to the A�goVista server for pro
essing and

sear
h results are returned to the user. If she does not

believe the interpretation to be the
orre
t one, she
an

ontinue to hit the parse button to
y
le through all

possible interpretations until the desired one is found.

2 A�goVista | A Sear
h Engine for

Programmers

Before we
ontinue our des
ription of A�goVista's

textual and visual query languages, we will brie
y mo-

tivate the need for spe
ialized sear
h engines for
om-

puter s
ientists. We will also give some examples of

how A�goVista
an help a working programmer
las-

sify problems and sear
h for algorithms that solve these

problems. As we will see, A�goVista is parti
ularly

helpful when you are attempting to
lassify a problem

outside your area of expertise and you have no knowl-

edge of the terminology in this area.

2.1 Interacting with A�goVista

A programmer will typi
ally intera
t with A�goVista

by providing input)output samples that des
ribe the

problem they are looking to
lassify. A�goVista will

then sear
h its database of problem des
riptions look-

ing for problems that map input to output.

We will next
onsider four
on
rete examples.

Example 1: Consider a programmer, Bob, who is

working on the design of a spreadsheet program. He's

got most everything working, ex
ept for a few minor

problems: re-evaluation of the expressions seems to

take a long time, and sometimes the program seems

to enter an in�nite loop. Bob realizes that, if he
ould

�nd an optimal evaluation order ea
h expression would

only have to be evaluated on
e. This might also help

with the in�nite loop problem whi
h seems to happen

when expressions are de�ned in terms of themselves.

Sear
hing for an algorithm for his problem is very

diÆ
ult if, as is in
reasingly the
ase, Bob is a program-

mer without any formal training in Computer S
ien
e.

But, even if he has no knowledge of Computer S
ien
e

nomen
lature, he
ould still go to A�goVista and enter

a query des
ribing the desired behavior of the algo-

rithm he is looking for:

[a->
,a->d,b->
,d->
,d->b℄ ==> [a,d,b,
℄

Here, a, b,
 and d represent elements of expres-

sions in the spreadsheet, and a->
 represents the fa
t

that
 depends on the value of a. This query asks:

\Suppose that from the linked stru
ture on

the left of the) I
ompute the list of nodes

to the right. What fun
tion f am I then
om-

puting?"

Visually, the query
ould be expressed as:

f

a

c

b

d

!

=) [, , ,a d b c
℄ :

The A�goVista sear
h engine might respond with:

\This looks like a topologi
al sort of

a dire
ted a
y
li
 graph. You
an

read more about topologi
al sorting at

http://hissa.n
sl.nist.gov/~bla
k/

CRCDi
t/HTML/topolog
sort.html. A Java

3

implementation
an be found at http://

www.math.grin.edu/~rebelsky/Courses/

152/97F/Outlines/outline.49.html".

Example 2: Suppose Bob is trying to write a pro-

gram that identi�es the lo
ations for a new fran
hise

servi
e. Given a set of potential lo
ations, he wants

the program to
ompute the largest subset of those lo-

ations su
h that no two lo
ations are
lose enough to

ompete with ea
h other. It is trivial for him to
om-

pute whi
h pairs of lo
ations would
ompete, but he

does not know how to
ompute the feasible subset. He

starts by trying to
ome up with an example of how

his program should work:

� If there are three lo
ations a; b;
 and a
ompetes

with b and
, then the best fran
hise lo
ations are

b and
.

If Bob is unable to
ome up with his own algorithm

for this problem he might turn to one of the sear
h-

engines on the web. But, whi
h keywords should he

use? Or, Bob
ould
onsult one of the algorithm repos-

itories on the web, su
h as http://www.
s.sunysb.

edu/~algorith/, whi
h is organized hierar
hi
ally by

ategory. But, in whi
h
ategory does this problem

fall? Or, he
ould enter the example he has
ome up

with into A�goVista at algovista.
om:

[a--b,a--
℄==>[
,b℄

This query expresses:

\If the input to my program is two relation-

ships, one between a and b and one between

a and
, then the output is the
olle
tion

[b,
℄."

Another way of thinking about this query is that the

input is a graph of three nodes a, b, and
, and

edges a-b and a-
, but it is not ne
essary for Bob to

know about graphs. A�goVista returns to Bob a link

dire
tly to http://www.
s.sunysb.edu/~algorith/

files/independent-set.shtml whi
h
ontains a de-

s
ription of the Maximal Independent Set problem.

From this site there are links to implementations of

this problem.

Example 3: Suppose instead that Bob is writing a

simple DNA sequen
e pattern mat
her. He knows that

given two sequen
es ha; a; t; g; g; g;
; ti and h
; a; t; g; gi,

the mat
her should return the mat
h ha; t; g; gi, so he

enters the query

([a,a,t,g,g,g,
,t℄,[
,a,t,g,g℄)==>[a,t,g,g℄

into A�goVista whi
h (within se
onds) re-

turns the link http://evo.apm.tuwien.a
.

at/AlgDesignManual/BOOK/BOOK5/NODE208.

HTM#SECTION03178000000000000000 to a des
ription

of the longest
ommon subsequen
e problem.

Finally, A�goVista is also able to
lassify some sim-

ple
ombinatorial stru
tures. Given the following query

[a--
,a--d,a--f,b--
,b--d,b--e℄

or, visually:

c d e f

a b

A�goVista might respond with:

\This looks like a
omplete bipartite graph.

You
an read more about this stru
-

ture at http://www.treasure-troves.
om/

math/CompleteBipartiteGraph.html."

2.2 Program Checking

A�goVista
an be seen as a novel appli
ation of pro-

gram
he
king, an idea popularized by Manuel Blum [1℄

and his students. The idea is that rather than testing a

pro
edure or attempting to prove it
orre
t, we
he
k,

at runtime, that the pro
edure indeed produ
es the

right output for ea
h given input. The A�goVista prob-

lem des
ription database
ontains su
h program
he
k-

ers, and the eÆ
ien
y and a

ura
y of these
he
kers

is what makes A�goVista so su

essful.

[4℄
ontains an indepth des
ription of the design of

the A�goVista sear
h engine and the sear
h algorithms

it employs.

A�goVista
urrently
ontains some ninety problem

des
riptions, some of whi
h are listed in Table 1.

3 The Query Language

The A�goVista query language was designed to be as

simple as possible, while still allowing users to des
ribe

omplex algorithmi
 problems.

The language primitives in
lude integers,
oats,

booleans, lists, tuples, atoms, and links. Links are (di-

re
ted and undire
ted) edges between atoms that are

used to build up linked stru
tures su
h as graphs and

trees. Spe
ial syntax was provided for these stru
tures

sin
e we anti
ipate that many A�goVista users will be

wanting to
lassify graph stru
tures and problems on

graphs.

The following grammar shows the
on
rete syntax

of the query language:

4

Table 1. Partial list of problem and graph descriptions found in A�goVista.
Eulerian graph Maximal independent set Transitive
losure

Longest
ommon subsequen
e Mat
hing Clique problem

Independent set Proper edge
oloring Permutation

Perfe
t mat
hing Euler
y
le Spanning Tree

AVL Tree Bi
onne
ted Graph Undire
ted Graph

Complete graph Conne
ted graph Single destination shortest path

All pairs shortest path Single pair shortest path Strongly
onne
ted Graph

Single sour
e shortest path Bipartite Graph Combination

Maximum bipartite mat
hing Clique Least
ommon multiple

Dire
ted A
y
li
 Graph Maximum
onse
utive subsequen
e Hamiltonian
y
le

Arti
ulation points

S ! int j float j bool j

S �==>� S j

atom [�/�S ℄ j

atom �->� [�/�S ℄ atom j

atom �--� [�/�S ℄ atom j

�[�[S f �,�S g ℄ �℄� j

�(� S �,� S �)�

bool ! �true� j �false�

atom ! �a� : : : �z�

int ! �0� : : : �9� f �0� : : : �9� g

float ! int �.�int

pS ==> Sq maps inputs to outputs, p(S , S)q rep-

resents a pair of elements, and p[S f ,S g ℄q rep-

resents a list of elements. Atoms, patom [/S ℄q, are

one-letter identi�ers that are used to represent nodes

of linked stru
tures su
h as graphs and trees. They

an
arry optional node data. Links between nodes

an be dire
ted patom -> [/S ℄ atomq, or undire
ted

patom -- [/S ℄ atomq, and
an also
arry edge data.

These simple primitives
an be
ombined to produ
e

omplex queries. For example, the query

[a->b,b->
℄==>[a->a,a->b,a->
,b->b,b->
,
->
℄

asks whi
h fun
tion maps

a

b c
to

a

b c

(Transitive
losure). The query

([3,7℄,[5,1,6℄) ==> [5,1,6,3,7℄

asks what fun
tion maps the lists [3,7℄ and

[5,1,6℄ to the list [5,1,6,3,7℄ (List append).

The re
ursive stru
ture of the grammar allows

queries to be deeply nested, although this is fairly un-

ommon. For example, the query

[a->/[1℄b,a->/[3,4℄
℄ ==> [1,3,4℄

looks for an algorithm that maps a tree to a list of

integers, where ea
h tree edge is labeled with a set of

integers.

4 The Visual Query Language

A�goVista's visual query language is
losely modeled

on its textual
ounterpart. A user
onstru
ts a query

by dragging primitive elements from a template region

on the user interfa
e (Figure 1) onto the drawing
an-

vas. Atoms are modeled by named
ir
les, links by the

obvious lines and arrows, booleans and the ==>-arrow

by themselves, and numbers are entered by
li
king and

typing. There are, however, no obvious visual
ounter-

parts to the pairs and element-lists of the textual lan-

guage. These are instead inferred from the positioning

of the visual elements.

For example, instead of entering a topologi
al sort-

ing query textually:

[a->
,a->d,b->
,d->
,d->b℄ ==> [a,d,b,
℄

it
ould instead be drawn like this:

The textual query is inferred from the drawing, and the

English prose query is derived from the textual query.

5

Re
ursive queries
ould be handled in a variety of

ways. Many graph editors parse node and edge labels

by proximity; that is, a graphi
al element is inferred to

be the label of a node a if it is \
lose enough" to a.

This puts a heavy burden on the parser as well as on

the
asual user who needs to have some understanding

of the prin
iples under whi
h the parser operates.

We have instead opted for a mu
h more lightweight

solution: if the user double-
li
ks on an atom or link

a new, simpler, drawing window (bottom right in Fig-

ure 1) opens up, allowing the user to enter the sub-

drawing. This strategy has the advantage of both

being simple to implement and trivial to explain to

the user. It is now easy to
reate arbitrarily
omplex

queries, where, for example, the nodes of a graph
ould

be labeled with lists of trees, whose edges are labeled

with. . . , et
:

4.1 Parsing Visual Queries

Be
ause of the limited set of graphi
al elements that

A�goVista supports, parsing visual queries is relatively

straight-forward. The ==>-arrow separates inputs from

outputs, whi
h means that anything to the left of the

arrow is an element of the input, anything to the right

belongs to the output.

As we have seen, re
ursive queries are
reated by the

user expli
itly opening up atoms and links (by double-

li
king on them) and drawing the label in a sub-editor

pane. This limited amount of stru
ture editing greatly

simpli�es parsing, sin
e it is always
lear if an element

is the label of an atom or link, rather than a free-

standing element.

The main
hallenge in parsing visual queries is that

grouping of elements is not always evident from the

drawing. Consider the following query:

There are four
onne
ted
omponents to the left of the

==>-arrow, and it is not
lear whi
h of those, if any,

form sub-groups. For example, the nodes a, b, and

ould form a (dis-
onne
ted) graph, or a and b
ould

form one graph and
 another.

Many visual parsers use proximity to infer element

grouping. In a web-situation where many
asual users

will visit a site for only a minute or two, there simply is

no time to explain what heuristi
s the parser employs.

So, again, we prefer a lightweight and user-
entri
 so-

lution. We will simply guess the user's intentions, and

then report ba
k what that guess was. In this
ase,

the parser's �rst guess was that ea
h
onne
ted
om-

ponent is a unique argument in the query. It indi
ates

this by drawing a
onvex hull (dashed lines) around

ea
h
omponent.

If, however, the user's intentions were di�erent, she

an simply ask the parser to produ
e a di�erent parse,

by
li
king the parse-button one or more times. This

will
y
le through all the di�erent possible parses of the

query, ea
h des
ribed visually (using a
onvex hull),

formally (using an A�goVista query), and informally

(using English prose). For example, it
ould be that

the user had planned for the node
 to belong to a

three-node graph:

or for the two integer elements to be part of a pair:

6

or for the input part of the query to
onsist of two

elements, a graph and a pair of integers:

In most
ases there are few possible parses and it

is immediately
lear to the user whi
h is the one she

is looking for. To
ut down the number of possible

parses we
an exploit the fa
t that A�goVista queries

are typed. The type system
orresponds almost one-

to-one to the
on
rete syntax given in Se
tion 3. The

following type assignments map
on
rete syntax into

types:

T [int℄ = Int

T [float℄ = Float

T [true℄ = Bool

T [false℄ = Bool

T [S

1

�==>� S

2

℄ = Map(T [S

1

℄; T [S

2

℄)

T [�(� S

1

�,� S

2

�)�℄ = Pair(T [S

1

℄; T [S

2

℄)

T [�[�[S

1

f �,�S

2

g ℄ �℄�℄ = if T [S

1

℄ = T [S

2

℄

then Ve
tor(T [S

1

℄)

else ?

T [atom=S℄ = Node(T [S℄)

T [atom �->�=S atom℄ = DEdge(T [S℄)

T [atom �--�=S atom℄ = UEdge(T [S℄)

For example, the query p([1,2℄,[3,4℄)==>[4,6℄q has

the type

Map(Pair(Ve
tor(Int),Ve
tor(Int)),Ve
tor(Int)).

During parsing we may �nd that
ertain groupings

of elements do not type
he
k, in whi
h
ase we never

present them to the user.

The above dis
ussion is summarized by the following

algorithm:

pro
edure parse(elements)

sort elements by hx; yi
oordinates

left elements left of '==>'

right elements right of '==>'

input
onne
ted
omponents(left)

output
onne
ted
omponents(right)

for all i merge(input) & o merge(output) do

query
onstru
t query(i, o)

if type
he
k(query) then

prose query2english(query)

yield (query,prose)

parse generates a sequen
e of possible interpretations

of the graphi
al elements on the
anvas. We �rst sepa-

rate the input from the output elements, and then
on-

stru
t a set of
onne
ted
omponents for ea
h. We then

generate all possible type-
orre
t queries by merging

adja
ent
onne
ted
omponents. Finally, ea
h query is

translated to English and presented to the user, along

with the textual query and a
onvex hull around ea
h

omponent.

5 Related Work

Rekers [7℄ provides a ni
e overview of graphi
al

parsing algorithms They note that most graph pars-

ing algorithms are worst-
ase exponential. The paper

also presents a new multi-stage graph parsing method

with separate phases for determining obje
t lo
ations

and spatial relationships, and a �nal grammar-based

rewrite phase.

In a web-based visual interfa
e su
h
omplex, and

potentially slow, parsing methods are una

eptable.

In [6℄, Liu presents a visual interfa
e to a CASE

tool, where boolean queries are
onstru
ted in a syntax-

dire
ted fashion. Users pro
eed top-down from a

\root" query, iteratively expanding non-terminal nodes

until the query is
omplete.

Novi
e (as well as expert!) users typi
ally �nd

syntax-dire
ted iterative re�nement
umbersome to

use. There is a reason why programmers prefer free-

form editors like ema
s over syntax-dire
ted ones, even

though the latter ensures that only
orre
t programs

an be
onstru
ted. For this reason, A�goVista is

a mostly free-form graph editor, and syntax-dire
ted

editing is reserved for re
ursive edits.

7

The web ought to present many opportunities for

introdu
ing more people to dire
t-manipulation in-

terfa
es. However, we have found few su
h exam-

ples. Marmotta [2℄, a graphi
al front-end to online

databases, is an ex
eption.

6 Summary

A�goVista provides a unique resour
e to
omputer

s
ientists to enable them to dis
over des
riptions and

implementations of algorithms without knowing the-

oreti
al nomen
lature. However, by monitoring the

queries submitted to the web-site we have determined

that the textual query language that A�goVista em-

ploys is an impediment to many
asual users. It is our

belief that the visual language presented here will prove

easier to use and faster to learn.

To motivate why this will be the
ase,
onsider the

following two episodes that provided the original inspi-

ration for A�goVista's prin
ipal designers:

Working on the design of graph-
oloring register

allo
ation algorithms, Todd Proebsting showed his

theoreti
ian
olleague Sampath Kannan the following

graphs:

t

s

t

s

t

s

t

s

t

s

t

ss

t

\Do these graphs mean anything to you?" Todd

asked.

\Sure," Prof. Kannan replied, \they're series-

parallel graphs."

This was the beginning of a
ollaboration whi
h re-

sulted in a paper in the Journal of Algorithms [5℄.

In a similar episode, the present author showed his

theoreti
ian
olleague Clark Thomborson the following

graph-transformation:

)

\Do you know what I am doing here?" Christian

asked.

\Sure," Prof. Thomborson soon replied, \you're

shrinking the bi
onne
ted
omponents of the under-

lying graph."

This result be
ame an important part of a joint pa-

per on software watermarking [3℄.

It's important to note that in both these episodes

the queries were visual in nature, and, in fa
t, took

pla
e while drawing on a white-board. It is our hope

that A�goVista will prove to be a useful \virtual theo-

reti
ian" that working programmers
an turn to with a

problem, qui
kly sket
h it out | visually or textually

depending on the nature of the problem | and qui
kly

re
eive a useful answer.

We have stressed throughout this paper that web

users are a �
kle lot and that speed and simpli
ity is the

key to su

ess for any web-based interfa
e: any
ode

must be small enough to download instantaneously

(or the user will go elsewhere), and no user training

must be required (or the user will go elsewhere). The

A�goVista visual interfa
e was designed with this in

mind: it employs no fan
y graph parsing algorithms

and any ambiguities are resolved by the user simply

y
ling through all possible parses.

A fully fun
tioning prototype of the A�goVista

visual interfa
e has been implemented and
an

be downloaded from http://www.
s.arizona.edu/

~
ollberg/Resear
h/AlgoVista. It
urrently fun
-

tions as a stand-alone appli
ation but we expe
t to

laun
h it as an applet on the A�goVista web-page (at

http://AlgoVista.
om) shortly.

Referen
es

[1℄ M. Blum. Program
he
king. In S. Biswas and K. V.

Nori, editors, Pro
eedings of Foundations of Software

Te
hnology and Theoreti
al Computer S
ien
e, volume

560 of LNCS, pages 1{9, Berlin, Germany, De
. 1991.

Springer.

[2℄ F. Capobian
o, M. Mos
oni, and L. Pagnin. Progres-

sive http-based querying of remote databases within the

Marmotta i
oni
 VQS. In VL'95, 1995.

[3℄ C. Collberg and C. Thomborson. Software wa-

termarking: Models and dynami
 embeddings.

In POPL'99, San Antonio, TX, Jan. 1999.

http://www.
s.arizona.edu/~
ollberg/Resear
h/

Publi
ations/CollbergThomb%orson99a.

[4℄ C. S. Collberg and T. A. Proebsting. A�goVista

| A sear
h engine for
omputer s
ien-

tists. Te
hni
al Report 2000-01, 2000.

http://www.
s.arizona.edu/~
ollberg/Resear
h/

Publi
ations/CollbergProeb%sting2000a.

[5℄ S. Kannan and T. A. Proebsting. Register allo
ation in

stru
tured programs. Journal of Algorithms, 29(2):223{

237, Nov. 1998.

[6℄ H. Liu. A visual interfa
e for querying a CASE reposi-

tory. In VL'95, 1995.

[7℄ J. Rekers and A. S
h�ur. A graph grammar approa
h to

graphi
al parsing. In VL'95, 1995.

8

