
A Fuzzy Visual Query Language for a

Domain-Spei� Web Searh Engine

Christian S. Collberg

Department of Computer Siene

University of Arizona

Tuson, AZ

ollberg�s.arizona.edu

Abstrat

A�goVista is a web-based searh engine that assists

programmers to �nd algorithms and implementations

that solve spei� problems.

A�goVista is not keyword based but rather requires

users to provide | in a very simple textual language

| input)output samples that desribe the behavior of

their needed algorithm. Unfortunately, even this simple

language has proven too hallenging for asual users.

To overome this problem and make A�goVista more

aessible to novie programmers, we are designing and

prototyping a visual language for reating A�goVista

queries. Sine web users do not have the patiene to

learn fany query languages (be they textual or visual),

our goal is to make this language and its implementa-

tion natural enough to require virtually no explanation

or user training.

A�goVista operates at http://algovista.om.

1 Bakground

Frequently, working software developers enounter a

problem with whih they are unfamiliar, but whih|

they suspet| has probably been previously studied.

Just as frequently, algorithm developers work on prob-

lems that they suspet have pratial appliations.

A�goVista

1

is a web-based, interative, searhable,

and extensible database of problems and algorithms

designed to bring together applied and theoretial om-

puter sientists. Programmers an query A�goVista

to look for relevant theoretial results, and theoretial

omputer sientists an extend A�goVista with prob-

lem solutions.

1

Pronouned /algovista/.

Unlike most other searh engines, A�goVista is not

keyword-based. Keyword-based searhing fails exatly

in those situations when we are in the most need for

aurate searh results, namely when we are searh-

ing in a new and unfamiliar domain. For example, a

programmer looking for an algorithm that solves a par-

tiular problem on graphs will not get any help from

a keyword-based searh engine if she does not know

what the problem is alled. A Google keyword searh

for pgraph algorithmsq, for example, returns 300,000

hits that the user has to browse manually.

Instead, A�goVista requires users to provide one or

more input)output examples that give a (usually fuzzy

and inomplete) desription of the problem they are

looking for. This tehnique turns out to be remarkably

suessful: when looking for links to partiular graph

algorithms, for example, A�goVista often returns the

requested results in a few seonds.

In the urrent version of A�goVista suh

input)output examples are given in a simple text-

based query language. Although this language should

only take a few minutes to master, most users are too

impatient to read the ample on-line doumentation or

even learn by trying out the anned example queries

available at the site.

Rather, immediately after the A�goVista web-page

has been loaded, typial users will enter a few keywords

and then hit the submit button. This will not yield

any interesting results sine, as we have already noted,

A�goVista's query language is not keyword-based. As

a result, the user will get disouraged and leave to look

for a di�erent searh engine.

The web, fueled by the MTV generation, has per-

manently ushered in the era of instant grati�ation and

the sub-seond attention-span.

1

Figure 1. The A�goVista user interface.

Cycle through
all possible
semantic
interpretations
of the drawing

Cycle through
visual query
examples

Textual query
generated from
drawing

Recursive
edit canvas

Template canvas Drawing canvas

generated from
textual query

Prose query

indicates
semantic
grouping

Convex hulls

1.1 A�goVista’s Visual Interface

In this paper we will desribe the design and im-

plementation of a visual query language for A�goVista.

Our hopes are that this visual language will prove more

intuitive and faster to learn than its textual ounter-

part.

The visual language and its aompanying user in-

terfae have been designed to be as self-explanatory as

possible. A web user who is unwilling to learn a textual

query language will be unwilling to learn a visual one as

well, if it means reading more than a short paragraph

of doumentation. Our main language design strategy

is summarized by these three points:

1. Give the user omplete freedom in drawing his

query, beause no web user will take the time to

learn omplex visual grammars or semanti on-

2

straints.

2. Let the user hoose herself between di�erent pos-

sible semanti interpretations of the visual query,

beause no web user will take the time to under-

stand why ertain parses are valid and others are

not.

3. Make eah visual query a learning experiene.

More spei�ally: we let the user draw something, we

show her the possible interpretations of this drawing,

and we allow her to selet the most appropriate inter-

pretation. At the same time, we show her the textual

query orresponding to the visual one, in the hope that,

in time, she will subliminally aquire this language.

This may ome in handy if, at some later date, she

needs to submit a more omplex query best desribed

textually.

The textual and visual languages will be desribed

in detail later on in the paper. For now, onsider

A�goVista's visual user interfae in Figure 1. We note

that the interfae has a main drawing window in whih

the user an enter her query by dragging elements from

the template window on the left. When a query has

been entered the user liks the parse button, the

drawing is analyzed, and a textual query is produed

in the query window.

At the same time, two things happen to help the

user understand the query she just entered:

1. the query is translated into English prose whih is

shown at the bottom of the sreen;

2. onvex hulls are drawn around those elements of

the drawing that the parser has deided belong

together.

If the user is happy about the interpretation of her

drawing she liks the submit button, and the textual

query is sent to the A�goVista server for proessing and

searh results are returned to the user. If she does not

believe the interpretation to be the orret one, she an

ontinue to hit the parse button to yle through all

possible interpretations until the desired one is found.

2 A�goVista | A Searh Engine for

Programmers

Before we ontinue our desription of A�goVista's

textual and visual query languages, we will briey mo-

tivate the need for speialized searh engines for om-

puter sientists. We will also give some examples of

how A�goVista an help a working programmer las-

sify problems and searh for algorithms that solve these

problems. As we will see, A�goVista is partiularly

helpful when you are attempting to lassify a problem

outside your area of expertise and you have no knowl-

edge of the terminology in this area.

2.1 Interacting with A�goVista

A programmer will typially interat with A�goVista

by providing input)output samples that desribe the

problem they are looking to lassify. A�goVista will

then searh its database of problem desriptions look-

ing for problems that map input to output.

We will next onsider four onrete examples.

Example 1: Consider a programmer, Bob, who is

working on the design of a spreadsheet program. He's

got most everything working, exept for a few minor

problems: re-evaluation of the expressions seems to

take a long time, and sometimes the program seems

to enter an in�nite loop. Bob realizes that, if he ould

�nd an optimal evaluation order eah expression would

only have to be evaluated one. This might also help

with the in�nite loop problem whih seems to happen

when expressions are de�ned in terms of themselves.

Searhing for an algorithm for his problem is very

diÆult if, as is inreasingly the ase, Bob is a program-

mer without any formal training in Computer Siene.

But, even if he has no knowledge of Computer Siene

nomenlature, he ould still go to A�goVista and enter

a query desribing the desired behavior of the algo-

rithm he is looking for:

[a->,a->d,b->,d->,d->b℄ ==> [a,d,b,℄

Here, a, b, and d represent elements of expres-

sions in the spreadsheet, and a-> represents the fat

that depends on the value of a. This query asks:

\Suppose that from the linked struture on

the left of the) I ompute the list of nodes

to the right. What funtion f am I then om-

puting?"

Visually, the query ould be expressed as:

f

a

c

b

d

!

=) [, , ,a d b c
℄ :

The A�goVista searh engine might respond with:

\This looks like a topologial sort of

a direted ayli graph. You an

read more about topologial sorting at

http://hissa.nsl.nist.gov/~blak/

CRCDit/HTML/topologsort.html. A Java

3

implementation an be found at http://

www.math.grin.edu/~rebelsky/Courses/

152/97F/Outlines/outline.49.html".

Example 2: Suppose Bob is trying to write a pro-

gram that identi�es the loations for a new franhise

servie. Given a set of potential loations, he wants

the program to ompute the largest subset of those lo-

ations suh that no two loations are lose enough to

ompete with eah other. It is trivial for him to om-

pute whih pairs of loations would ompete, but he

does not know how to ompute the feasible subset. He

starts by trying to ome up with an example of how

his program should work:

� If there are three loations a; b; and a ompetes

with b and , then the best franhise loations are

b and .

If Bob is unable to ome up with his own algorithm

for this problem he might turn to one of the searh-

engines on the web. But, whih keywords should he

use? Or, Bob ould onsult one of the algorithm repos-

itories on the web, suh as http://www.s.sunysb.

edu/~algorith/, whih is organized hierarhially by

ategory. But, in whih ategory does this problem

fall? Or, he ould enter the example he has ome up

with into A�goVista at algovista.om:

[a--b,a--℄==>[,b℄

This query expresses:

\If the input to my program is two relation-

ships, one between a and b and one between

a and , then the output is the olletion

[b,℄."

Another way of thinking about this query is that the

input is a graph of three nodes a, b, and , and

edges a-b and a-, but it is not neessary for Bob to

know about graphs. A�goVista returns to Bob a link

diretly to http://www.s.sunysb.edu/~algorith/

files/independent-set.shtml whih ontains a de-

sription of the Maximal Independent Set problem.

From this site there are links to implementations of

this problem.

Example 3: Suppose instead that Bob is writing a

simple DNA sequene pattern mather. He knows that

given two sequenes ha; a; t; g; g; g; ; ti and h; a; t; g; gi,

the mather should return the math ha; t; g; gi, so he

enters the query

([a,a,t,g,g,g,,t℄,[,a,t,g,g℄)==>[a,t,g,g℄

into A�goVista whih (within seonds) re-

turns the link http://evo.apm.tuwien.a.

at/AlgDesignManual/BOOK/BOOK5/NODE208.

HTM#SECTION03178000000000000000 to a desription

of the longest ommon subsequene problem.

Finally, A�goVista is also able to lassify some sim-

ple ombinatorial strutures. Given the following query

[a--,a--d,a--f,b--,b--d,b--e℄

or, visually:

c d e f

a b

A�goVista might respond with:

\This looks like a omplete bipartite graph.

You an read more about this stru-

ture at http://www.treasure-troves.om/

math/CompleteBipartiteGraph.html."

2.2 Program Checking

A�goVista an be seen as a novel appliation of pro-

gram heking, an idea popularized by Manuel Blum [1℄

and his students. The idea is that rather than testing a

proedure or attempting to prove it orret, we hek,

at runtime, that the proedure indeed produes the

right output for eah given input. The A�goVista prob-

lem desription database ontains suh program hek-

ers, and the eÆieny and auray of these hekers

is what makes A�goVista so suessful.

[4℄ ontains an indepth desription of the design of

the A�goVista searh engine and the searh algorithms

it employs.

A�goVista urrently ontains some ninety problem

desriptions, some of whih are listed in Table 1.

3 The Query Language

The A�goVista query language was designed to be as

simple as possible, while still allowing users to desribe

omplex algorithmi problems.

The language primitives inlude integers, oats,

booleans, lists, tuples, atoms, and links. Links are (di-

reted and undireted) edges between atoms that are

used to build up linked strutures suh as graphs and

trees. Speial syntax was provided for these strutures

sine we antiipate that many A�goVista users will be

wanting to lassify graph strutures and problems on

graphs.

The following grammar shows the onrete syntax

of the query language:

4

Table 1. Partial list of problem and graph descriptions found in A�goVista.
Eulerian graph Maximal independent set Transitive losure

Longest ommon subsequene Mathing Clique problem

Independent set Proper edge oloring Permutation

Perfet mathing Euler yle Spanning Tree

AVL Tree Bionneted Graph Undireted Graph

Complete graph Conneted graph Single destination shortest path

All pairs shortest path Single pair shortest path Strongly onneted Graph

Single soure shortest path Bipartite Graph Combination

Maximum bipartite mathing Clique Least ommon multiple

Direted Ayli Graph Maximum onseutive subsequene Hamiltonian yle

Artiulation points

S ! int j float j bool j

S �==>� S j

atom [�/�S ℄ j

atom �->� [�/�S ℄ atom j

atom �--� [�/�S ℄ atom j

�[�[S f �,�S g ℄ �℄� j

�(� S �,� S �)�

bool ! �true� j �false�

atom ! �a� : : : �z�

int ! �0� : : : �9� f �0� : : : �9� g

float ! int �.�int

pS ==> Sq maps inputs to outputs, p(S , S)q rep-

resents a pair of elements, and p[S f ,S g ℄q rep-

resents a list of elements. Atoms, patom [/S ℄q, are

one-letter identi�ers that are used to represent nodes

of linked strutures suh as graphs and trees. They

an arry optional node data. Links between nodes

an be direted patom -> [/S ℄ atomq, or undireted

patom -- [/S ℄ atomq, and an also arry edge data.

These simple primitives an be ombined to produe

omplex queries. For example, the query

[a->b,b->℄==>[a->a,a->b,a->,b->b,b->,->℄

asks whih funtion maps

a

b c
to

a

b c

(Transitive losure). The query

([3,7℄,[5,1,6℄) ==> [5,1,6,3,7℄

asks what funtion maps the lists [3,7℄ and

[5,1,6℄ to the list [5,1,6,3,7℄ (List append).

The reursive struture of the grammar allows

queries to be deeply nested, although this is fairly un-

ommon. For example, the query

[a->/[1℄b,a->/[3,4℄℄ ==> [1,3,4℄

looks for an algorithm that maps a tree to a list of

integers, where eah tree edge is labeled with a set of

integers.

4 The Visual Query Language

A�goVista's visual query language is losely modeled

on its textual ounterpart. A user onstruts a query

by dragging primitive elements from a template region

on the user interfae (Figure 1) onto the drawing an-

vas. Atoms are modeled by named irles, links by the

obvious lines and arrows, booleans and the ==>-arrow

by themselves, and numbers are entered by liking and

typing. There are, however, no obvious visual ounter-

parts to the pairs and element-lists of the textual lan-

guage. These are instead inferred from the positioning

of the visual elements.

For example, instead of entering a topologial sort-

ing query textually:

[a->,a->d,b->,d->,d->b℄ ==> [a,d,b,℄

it ould instead be drawn like this:

The textual query is inferred from the drawing, and the

English prose query is derived from the textual query.

5

Reursive queries ould be handled in a variety of

ways. Many graph editors parse node and edge labels

by proximity; that is, a graphial element is inferred to

be the label of a node a if it is \lose enough" to a.

This puts a heavy burden on the parser as well as on

the asual user who needs to have some understanding

of the priniples under whih the parser operates.

We have instead opted for a muh more lightweight

solution: if the user double-liks on an atom or link

a new, simpler, drawing window (bottom right in Fig-

ure 1) opens up, allowing the user to enter the sub-

drawing. This strategy has the advantage of both

being simple to implement and trivial to explain to

the user. It is now easy to reate arbitrarily omplex

queries, where, for example, the nodes of a graph ould

be labeled with lists of trees, whose edges are labeled

with. . . , et:

4.1 Parsing Visual Queries

Beause of the limited set of graphial elements that

A�goVista supports, parsing visual queries is relatively

straight-forward. The ==>-arrow separates inputs from

outputs, whih means that anything to the left of the

arrow is an element of the input, anything to the right

belongs to the output.

As we have seen, reursive queries are reated by the

user expliitly opening up atoms and links (by double-

liking on them) and drawing the label in a sub-editor

pane. This limited amount of struture editing greatly

simpli�es parsing, sine it is always lear if an element

is the label of an atom or link, rather than a free-

standing element.

The main hallenge in parsing visual queries is that

grouping of elements is not always evident from the

drawing. Consider the following query:

There are four onneted omponents to the left of the

==>-arrow, and it is not lear whih of those, if any,

form sub-groups. For example, the nodes a, b, and

ould form a (dis-onneted) graph, or a and b ould

form one graph and another.

Many visual parsers use proximity to infer element

grouping. In a web-situation where many asual users

will visit a site for only a minute or two, there simply is

no time to explain what heuristis the parser employs.

So, again, we prefer a lightweight and user-entri so-

lution. We will simply guess the user's intentions, and

then report bak what that guess was. In this ase,

the parser's �rst guess was that eah onneted om-

ponent is a unique argument in the query. It indiates

this by drawing a onvex hull (dashed lines) around

eah omponent.

If, however, the user's intentions were di�erent, she

an simply ask the parser to produe a di�erent parse,

by liking the parse-button one or more times. This

will yle through all the di�erent possible parses of the

query, eah desribed visually (using a onvex hull),

formally (using an A�goVista query), and informally

(using English prose). For example, it ould be that

the user had planned for the node to belong to a

three-node graph:

or for the two integer elements to be part of a pair:

6

or for the input part of the query to onsist of two

elements, a graph and a pair of integers:

In most ases there are few possible parses and it

is immediately lear to the user whih is the one she

is looking for. To ut down the number of possible

parses we an exploit the fat that A�goVista queries

are typed. The type system orresponds almost one-

to-one to the onrete syntax given in Setion 3. The

following type assignments map onrete syntax into

types:

T [int℄ = Int

T [float℄ = Float

T [true℄ = Bool

T [false℄ = Bool

T [S

1

�==>� S

2

℄ = Map(T [S

1

℄; T [S

2

℄)

T [�(� S

1

�,� S

2

�)�℄ = Pair(T [S

1

℄; T [S

2

℄)

T [�[�[S

1

f �,�S

2

g ℄ �℄�℄ = if T [S

1

℄ = T [S

2

℄

then Vetor(T [S

1

℄)

else ?

T [atom=S℄ = Node(T [S℄)

T [atom �->�=S atom℄ = DEdge(T [S℄)

T [atom �--�=S atom℄ = UEdge(T [S℄)

For example, the query p([1,2℄,[3,4℄)==>[4,6℄q has

the type

Map(Pair(Vetor(Int),Vetor(Int)),Vetor(Int)).

During parsing we may �nd that ertain groupings

of elements do not typehek, in whih ase we never

present them to the user.

The above disussion is summarized by the following

algorithm:

proedure parse(elements)

sort elements by hx; yi oordinates

left elements left of '==>'

right elements right of '==>'

input onneted omponents(left)

output onneted omponents(right)

for all i merge(input) & o merge(output) do

query onstrut query(i, o)

if type hek(query) then

prose query2english(query)

yield (query,prose)

parse generates a sequene of possible interpretations

of the graphial elements on the anvas. We �rst sepa-

rate the input from the output elements, and then on-

strut a set of onneted omponents for eah. We then

generate all possible type-orret queries by merging

adjaent onneted omponents. Finally, eah query is

translated to English and presented to the user, along

with the textual query and a onvex hull around eah

omponent.

5 Related Work

Rekers [7℄ provides a nie overview of graphial

parsing algorithms They note that most graph pars-

ing algorithms are worst-ase exponential. The paper

also presents a new multi-stage graph parsing method

with separate phases for determining objet loations

and spatial relationships, and a �nal grammar-based

rewrite phase.

In a web-based visual interfae suh omplex, and

potentially slow, parsing methods are unaeptable.

In [6℄, Liu presents a visual interfae to a CASE

tool, where boolean queries are onstruted in a syntax-

direted fashion. Users proeed top-down from a

\root" query, iteratively expanding non-terminal nodes

until the query is omplete.

Novie (as well as expert!) users typially �nd

syntax-direted iterative re�nement umbersome to

use. There is a reason why programmers prefer free-

form editors like emas over syntax-direted ones, even

though the latter ensures that only orret programs

an be onstruted. For this reason, A�goVista is

a mostly free-form graph editor, and syntax-direted

editing is reserved for reursive edits.

7

The web ought to present many opportunities for

introduing more people to diret-manipulation in-

terfaes. However, we have found few suh exam-

ples. Marmotta [2℄, a graphial front-end to online

databases, is an exeption.

6 Summary

A�goVista provides a unique resoure to omputer

sientists to enable them to disover desriptions and

implementations of algorithms without knowing the-

oretial nomenlature. However, by monitoring the

queries submitted to the web-site we have determined

that the textual query language that A�goVista em-

ploys is an impediment to many asual users. It is our

belief that the visual language presented here will prove

easier to use and faster to learn.

To motivate why this will be the ase, onsider the

following two episodes that provided the original inspi-

ration for A�goVista's prinipal designers:

Working on the design of graph-oloring register

alloation algorithms, Todd Proebsting showed his

theoretiian olleague Sampath Kannan the following

graphs:

t

s

t

s

t

s

t

s

t

s

t

ss

t

\Do these graphs mean anything to you?" Todd

asked.

\Sure," Prof. Kannan replied, \they're series-

parallel graphs."

This was the beginning of a ollaboration whih re-

sulted in a paper in the Journal of Algorithms [5℄.

In a similar episode, the present author showed his

theoretiian olleague Clark Thomborson the following

graph-transformation:

)

\Do you know what I am doing here?" Christian

asked.

\Sure," Prof. Thomborson soon replied, \you're

shrinking the bionneted omponents of the under-

lying graph."

This result beame an important part of a joint pa-

per on software watermarking [3℄.

It's important to note that in both these episodes

the queries were visual in nature, and, in fat, took

plae while drawing on a white-board. It is our hope

that A�goVista will prove to be a useful \virtual theo-

retiian" that working programmers an turn to with a

problem, quikly sketh it out | visually or textually

depending on the nature of the problem | and quikly

reeive a useful answer.

We have stressed throughout this paper that web

users are a �kle lot and that speed and simpliity is the

key to suess for any web-based interfae: any ode

must be small enough to download instantaneously

(or the user will go elsewhere), and no user training

must be required (or the user will go elsewhere). The

A�goVista visual interfae was designed with this in

mind: it employs no fany graph parsing algorithms

and any ambiguities are resolved by the user simply

yling through all possible parses.

A fully funtioning prototype of the A�goVista

visual interfae has been implemented and an

be downloaded from http://www.s.arizona.edu/

~ollberg/Researh/AlgoVista. It urrently fun-

tions as a stand-alone appliation but we expet to

launh it as an applet on the A�goVista web-page (at

http://AlgoVista.om) shortly.

Referenes

[1℄ M. Blum. Program heking. In S. Biswas and K. V.

Nori, editors, Proeedings of Foundations of Software

Tehnology and Theoretial Computer Siene, volume

560 of LNCS, pages 1{9, Berlin, Germany, De. 1991.

Springer.

[2℄ F. Capobiano, M. Mosoni, and L. Pagnin. Progres-

sive http-based querying of remote databases within the

Marmotta ioni VQS. In VL'95, 1995.

[3℄ C. Collberg and C. Thomborson. Software wa-

termarking: Models and dynami embeddings.

In POPL'99, San Antonio, TX, Jan. 1999.

http://www.s.arizona.edu/~ollberg/Researh/

Publiations/CollbergThomb%orson99a.

[4℄ C. S. Collberg and T. A. Proebsting. A�goVista

| A searh engine for omputer sien-

tists. Tehnial Report 2000-01, 2000.

http://www.s.arizona.edu/~ollberg/Researh/

Publiations/CollbergProeb%sting2000a.

[5℄ S. Kannan and T. A. Proebsting. Register alloation in

strutured programs. Journal of Algorithms, 29(2):223{

237, Nov. 1998.

[6℄ H. Liu. A visual interfae for querying a CASE reposi-

tory. In VL'95, 1995.

[7℄ J. Rekers and A. Sh�ur. A graph grammar approah to

graphial parsing. In VL'95, 1995.

8

