A Fuzzy Visual Query Language for a
Domain-Specific Web Search Engine

Christian S. Collberg
Department of Computer Science
University of Arizona
Tucson, AZ
collberg@cs.arizona.edu

Abstract

AlgoVista is a web-based search engine that assists
programmers to find algorithms and implementations
that solve specific problems.

AlgoVista is not keyword based but rather requires
users to provide — in a very simple textual language
— input=routput samples that describe the behavior of
their needed algorithm. Unfortunately, even this simple
language has proven too challenging for casual users.

To overcome this problem and make AAgoVista more
accessible to novice programmers, we are designing and
prototyping a visual language for creating AAgoVista
queries. Since web users do not have the patience to
learn fancy query languages (be they textual or visual),
our goal is to make this language and its implementa-
tion natural enough to require virtually no explanation
or user training.

AlgoVista operates at http://algovista.com.

1 Background

Frequently, working software developers encounter a
problem with which they are unfamiliar, but which—
they suspect— has probably been previously studied.
Just as frequently, algorithm developers work on prob-
lems that they suspect have practical applications.

A)lgoVista! is a web-based, interactive, searchable,
and extensible database of problems and algorithms
designed to bring together applied and theoretical com-
puter scientists. Programmers can query AAgoVista
to look for relevant theoretical results, and theoretical
computer scientists can extend AAgoVista with prob-
lem solutions.

Pronounced /algovista/.

Unlike most other search engines, AAgoVista is not
keyword-based. Keyword-based searching fails exactly
in those situations when we are in the most need for
accurate search results, namely when we are search-
ing in a new and unfamiliar domain. For example, a
programmer looking for an algorithm that solves a par-
ticular problem on graphs will not get any help from
a keyword-based search engine if she does not know
what the problem is called. A Google keyword search
for 'fgraph algorithms’, for example, returns 300,000
hits that the user has to browse manually.

Instead, AAgoVista requires users to provide one or
more input=output examples that give a (usually fuzzy
and incomplete) description of the problem they are
looking for. This technique turns out to be remarkably
successful: when looking for links to particular graph
algorithms, for example, AlgoVista often returns the
requested results in a few seconds.

In the current version of AMgoVista such
input=>output examples are given in a simple text-
based query language. Although this language should
only take a few minutes to master, most users are too
impatient to read the ample on-line documentation or
even learn by trying out the canned example queries
available at the site.

Rather, immediately after the AlgoVista web-page
has been loaded, typical users will enter a few keywords
and then hit the suBMIT button. This will not yield
any interesting results since, as we have already noted,
A)goVista’s query language is not keyword-based. As
a result, the user will get discouraged and leave to look
for a different search engine.

The web, fueled by the MTV generation, has per-
manently ushered in the era of instant gratification and
the sub-second attention-span.

Figure 1. The A\goVista user interface.

Tenpl at e canvas Drawi ng canvas

"N

Cycl e through

Draw an AlgoVista query by dragging elements from
the template window on the left to the main query
window. To enter a number, click and type.

Input arguments are given to the left of ==>, output
arguments to the right.

Circles represent any kind of "object”. Objects
can be Tinked together with directed or undirected
Tines to show object relationships. You can enter
optional data ("labels™) by double clicking on

an ohject or a line.

Middle/right-click to delete an element.

Click on the <examples> button to view and edit
typical AlgoVHista queries.

Click on the <parse> button repeatedly until the
queries in the Query and English windows seem right.
Then click on the <submit> button to submit the query
to the AlgoVista search engine.

okay

1.1 A)goVista’s Visual Interface

In this paper we will describe the design and im-
plementation of a visual query language for AAgoVista.
Our hopes are that this visual language will prove more
intuitive and faster to learn than its textual counter-
part.

The visual language and its accompanying user in-
terface have been designed to be as self-explanatory as

@3= ® Convex hulls /glelrraﬁ?isil bl'e
'sgg:aﬁ?f gs parse interpretations
® @ v of the draw ng
@ @ groupt ng suhrnitl
® @ o N\
(® (v ® D | _clear | Cycl e through
1 7
® H Y 6 B vi sual query
& ® Lo help | exanpl es
W W exanples Textual query
ORO / generated from
D ® _ dr awi ng
® (| |W/11.0/23,x12], -apxash == o, G 1) Algovista
Query Prose query
@ ® generated from
@ @ I'm looking for a function that maps the Tlinked textual query
structure comprising objects p (labeled with *11°) , q English
O——O|| (labeled with '23) , and x (labeled with '12) Query
O_"_O connected through edges p——q., p—x, and g—=x to the .
true false pair consisting of p and (x, r) . Recursi ve
edit canvas

G

@OEROLEEREEEE
VEOHHOEWEEReE

[

H done

true false

clear help

possible. A web user who is unwilling to learn a textual
query language will be unwilling to learn a visual one as
well, if it means reading more than a short paragraph
of documentation. Our main language design strategy
is summarized by these three points:

1. Give the user complete freedom in drawing his
query, because no web user will take the time to
learn complex visual grammars or semantic con-

straints.

2. Let the user choose herself between different pos-
sible semantic interpretations of the visual query,
because no web user will take the time to under-
stand why certain parses are valid and others are
not.

3. Make each visual query a learning experience.

More specifically: we let the user draw something, we
show her the possible interpretations of this drawing,
and we allow her to select the most appropriate inter-
pretation. At the same time, we show her the textual
query corresponding to the visual one, in the hope that,
in time, she will subliminally acquire this language.
This may come in handy if, at some later date, she
needs to submit a more complex query best described
textually.

The textual and visual languages will be described
in detail later on in the paper. For now, consider
A)goVista’s visual user interface in Figure 1. We note
that the interface has a main drawing window in which
the user can enter her query by dragging elements from
the template window on the left. When a query has
been entered the user clicks the PARSE button, the
drawing is analyzed, and a textual query is produced
in the query window.

At the same time, two things happen to help the
user understand the query she just entered:

1. the query is translated into English prose which is
shown at the bottom of the screen;

2. convex hulls are drawn around those elements of
the drawing that the parser has decided belong
together.

If the user is happy about the interpretation of her
drawing she clicks the SUBMIT button, and the textual
query is sent to the AAgoVista server for processing and
search results are returned to the user. If she does not
believe the interpretation to be the correct one, she can
continue to hit the PARSE button to cycle through all
possible interpretations until the desired one is found.

2 A)goVista — A Search Engine for
Programmers

Before we continue our description of AlgoVista’s
textual and visual query languages, we will briefly mo-
tivate the need for specialized search engines for com-
puter scientists. We will also give some examples of
how AMgoVista can help a working programmer clas-
sify problems and search for algorithms that solve these

problems. As we will see, AAgoVista is particularly
helpful when you are attempting to classify a problem
outside your area of expertise and you have no knowl-
edge of the terminology in this area.

2.1 Interacting with A\goVista

A programmer will typically interact with A\goVista
by providing input=output samples that describe the
problem they are looking to classify. AAgoVista will
then search its database of problem descriptions look-
ing for problems that map input to output.

We will next consider four concrete examples.

Example 1: Consider a programmer, Bob, who is
working on the design of a spreadsheet program. He’s
got most everything working, except for a few minor
problems: re-evaluation of the expressions seems to
take a long time, and sometimes the program seems
to enter an infinite loop. Bob realizes that, if he could
find an optimal evaluation order each expression would
only have to be evaluated once. This might also help
with the infinite loop problem which seems to happen
when expressions are defined in terms of themselves.

Searching for an algorithm for his problem is very
difficult if, as is increasingly the case, Bob is a program-
mer without any formal training in Computer Science.
But, even if he has no knowledge of Computer Science
nomenclature, he could still go to AAgoVista and enter
a query describing the desired behavior of the algo-
rithm he is looking for:

[a->c,a->d,b->c,d->c,d->b] ==> [a,d,b,c]

Here, a, b, c and d represent elements of expres-
sions in the spreadsheet, and a->c represents the fact
that ¢ depends on the value of a. This query asks:

“Suppose that from the linked structure on
the left of the = I compute the list of nodes
to the right. What function f am I then com-
puting?”

Visually, the query could be expressed as:

@ ®
f /X@g — (@, @ ® ©].

The AAgoVista search engine might respond with:

“This looks like a topological sort of
a directed acyclic graph. You can
read more about topological sorting at
http://hissa.ncsl.nist.gov/ black/

CRCDict/HTML/topologcsort.html. A Java

implementation can be found at http://
www.math.grin.edu/ rebelsky/Courses/
152/97F/0Outlines/outline.49.html”.

Example 2: Suppose Bob is trying to write a pro-
gram that identifies the locations for a new franchise
service. Given a set of potential locations, he wants
the program to compute the largest subset of those lo-
cations such that no two locations are close enough to
compete with each other. It is trivial for him to com-
pute which pairs of locations would compete, but he
does not know how to compute the feasible subset. He
starts by trying to come up with an example of how
his program should work:

e If there are three locations a, b, ¢ and a competes
with b and ¢, then the best franchise locations are
b and c.

If Bob is unable to come up with his own algorithm
for this problem he might turn to one of the search-
engines on the web. But, which keywords should he
use? Or, Bob could consult one of the algorithm repos-
itories on the web, such as http://www.cs.sunysb.
edu/~algorith/, which is organized hierarchically by
category. But, in which category does this problem
fall? Or, he could enter the example he has come up
with into AlgoVista at algovista.com:

[a--b,a--c]==>[c,b]
This query expresses:

“If the input to my program is two relation-
ships, one between a and b and one between
a and c, then the output is the collection
[b,c].”

Another way of thinking about this query is that the
input is a graph of three nodes a, b, and ¢, and
edges a-b and a-c, but it is not necessary for Bob to
know about graphs. AAgoVista returns to Bob a link
directly to http://www.cs.sunysb.edu/"algorith/
files/independent-set.shtml which contains a de-
scription of the Maximal Independent Set problem.
From this site there are links to implementations of
this problem.

Example 3: Suppose instead that Bob is writing a
simple DNA sequence pattern matcher. He knows that
given two sequences (a, a,t,9,9,9,c,t) and {c,a,t,g,9),
the matcher should return the match (a,t,g,g), so he
enters the query

([a,a,t,g,8,8,c,t], [c,a,t,g,gl)==>[a,t,g,g]

which (within seconds) re-
http://evo.apm.tuwien.ac.

into A)goVista
turns the link

at/AlgDesignManual/B00K/BOOK5/NODE208.
HTM#SECTION03178000000000000000 to a description
of the longest common subsequence problem.

Finally, AAgoVista is also able to classify some sim-
ple combinatorial structures. Given the following query

[a--c,a--d,a--f,b--c,b--d,b-——e]

or, visually:

KON

i,

ORONOND

AlgoVista might respond with:

“This looks like a complete bipartite graph.
You can read more about this struc-
ture at http://www.treasure-troves.com/
math/CompleteBipartiteGraph.html.”

2.2 Program Checking

A)goVista can be seen as a novel application of pro-
gram checking, an idea popularized by Manuel Blum [1]
and his students. The idea is that rather than testing a
procedure or attempting to prove it correct, we check,
at runtime, that the procedure indeed produces the
right output for each given input. The AAgoVista prob-
lem description database contains such program check-
ers, and the efficiency and accuracy of these checkers
is what makes AAgoVista so successful.

[4] contains an indepth description of the design of
the AlgoVista search engine and the search algorithms
it employs.

AlgoVista currently contains some ninety problem
descriptions, some of which are listed in Table 1.

3 The Query Language

The A)lgoVista query language was designed to be as
simple as possible, while still allowing users to describe
complex algorithmic problems.

The language primitives include integers, floats,
booleans, lists, tuples, atoms, and links. Links are (di-
rected and undirected) edges between atoms that are
used to build up linked structures such as graphs and
trees. Special syntax was provided for these structures
since we anticipate that many AAgoVista users will be
wanting to classify graph structures and problems on
graphs.

The following grammar shows the concrete syntax
of the query language:

Table 1. Partial list of problem and graph descriptions found in A\goVista.

Eulerian graph

Longest common subsequence
Independent set,

Perfect matching

AVL Tree

Complete graph

All pairs shortest path

Single source shortest path
Maximum bipartite matching
Directed Acyclic Graph
Articulation points

Matching
Euler cycle
Connected graph

Bipartite Graph
Clique

Maximal independent set
Proper edge coloring
Biconnected Graph

Single pair shortest path

Maximum consecutive subsequence

Transitive closure

Clique problem

Permutation

Spanning Tree

Undirected Graph

Single destination shortest path
Strongly connected Graph
Combination

Least common multiple
Hamiltonian cycle

int | float | bool |

S t==>" 9|

atom|[/S|

atom "=>" [/"S5] atom |
atom '-="['/’S] atom |
\[I[S{\’IS}]\]I
(St Sy
bool — ‘true’ | ‘false’
atom — ‘a’...'z’

int — "07...°9°{'0"...°9"}
float — int . int

S ==> S" maps inputs to outputs, "(S , S) rep-
resents a pair of elements, and "[S { ,S } 17 rep-
resents a list of elements. Atoms, "atom [/S T, are
one-letter identifiers that are used to represent nodes
of linked structures such as graphs and trees. They
can carry optional node data. Links between nodes
can be directed fatom -> [/S] atom', or undirected
fatom -- [/S]| atom!, and can also carry edge data.

These simple primitives can be combined to produce
complex queries. For example, the query

[a->b,b->c]==>[a->a,a->b,a->c,b->b,b->c,c->c]

asks which function maps

)
(a)
@é@»@ to (8@

(Transitive closure). The query
([3’7]’[5’1’6]) ==> [5’1’6’3’7]

asks what function maps the lists [3,7] and
[5,1,6] to the list [5,1,6,3,7] (List append).

The recursive structure of the grammar allows
queries to be deeply nested, although this is fairly un-
common. For example, the query

la->/[1]1b,a->/[3,4]1c] ==> [1,3,4]

looks for an algorithm that maps a tree to a list of
integers, where each tree edge is labeled with a set of
integers.

4 The Visual Query Language

A)goVista’s visual query language is closely modeled
on its textual counterpart. A user constructs a query
by dragging primitive elements from a template region
on the user interface (Figure 1) onto the drawing can-
vas. Atoms are modeled by named circles, links by the
obvious lines and arrows, booleans and the ==>-arrow
by themselves, and numbers are entered by clicking and
typing. There are, however, no obvious visual counter-
parts to the pairs and element-lists of the textual lan-
guage. These are instead inferred from the positioning
of the visual elements.

For example, instead of entering a topological sort-
ing query textually:

[a->c,a->d,b->c,d->c,d->b] ==> [a,d,b,c]

it could instead be drawn like this:

-~ 0 6 0 @

([a,c,d.bl, [a—>c,a->d,d->c,d->b,b->c]) ==> [a,b,c,d]

i
I

I'm looking for a function that maps the Tlinked
structure comprising objects a, ¢, d, and b connected
through edges a->c, a—>d, d->c, d-=b, and b—>c to the
Tlist consisting of a, b, ¢, and d.

The textual query is inferred from the drawing, and the
English prose query is derived from the textual query.

Recursive queries could be handled in a variety of
ways. Many graph editors parse node and edge labels
by proximity; that is, a graphical element is inferred to
be the label of a node a if it is “close enough” to a.
This puts a heavy burden on the parser as well as on
the casual user who needs to have some understanding
of the principles under which the parser operates.

We have instead opted for a much more lightweight
solution: if the user double-clicks on an atom or link
a new, simpler, drawing window (bottom right in Fig-
ure 1) opens up, allowing the user to enter the sub-
drawing. This strategy has the advantage of both
being simple to implement and trivial to explain to
the user. It is now easy to create arbitrarily complex
queries, where, for example, the nodes of a graph could
be labeled with lists of trees, whose edges are labeled
with. .., etc:

4.1 Parsing Visual Queries

Because of the limited set of graphical elements that
A)AgoVista supports, parsing visual queries is relatively
straight-forward. The ==>-arrow separates inputs from
outputs, which means that anything to the left of the
arrow is an element of the input, anything to the right
belongs to the output.

As we have seen, recursive queries are created by the
user explicitly opening up atoms and links (by double-
clicking on them) and drawing the label in a sub-editor
pane. This limited amount of structure editing greatly
simplifies parsing, since it is always clear if an element
is the label of an atom or link, rather than a free-
standing element.

The main challenge in parsing visual queries is that
grouping of elements is not always evident from the
drawing. Counsider the following query:

There are four connected components to the left of the
==>-arrow, and it is not clear which of those, if any,
form sub-groups. For example, the nodes a, b, and c
could form a (dis-connected) graph, or a and b could
form one graph and c another.

Many visual parsers use proximity to infer element
grouping. In a web-situation where many casual users
will visit a site for only a minute or two, there simply is
no time to explain what heuristics the parser employs.
So, again, we prefer a lightweight and user-centric so-
lution. We will simply guess the user’s intentions, and
then report back what that guess was. In this case,
the parser’s first guess was that each connected com-
ponent is a unique argument in the query. It indicates
this by drawing a convex hull (dashed lines) around
each component.

If, however, the user’s intentions were different, she
can simply ask the parser to produce a different parse,
by clicking the PARSE-button one or more times. This
will cycle through all the different possible parses of the
query, each described visually (using a convex hull),
formally (using an AAgoVista query), and informally
(using English prose). For example, it could be that
the user had planned for the node c to belong to a
three-node graph:

or for the two integer elements to be part of a pair:

or for the input part of the query to consist of two
elements, a graph and a pair of integers:

In most cases there are few possible parses and it
is immediately clear to the user which is the one she
is looking for. To cut down the number of possible
parses we can exploit the fact that AlgoVista queries
are typed. The type system corresponds almost one-
to-one to the concrete syntax given in Section 3. The
following type assignments map concrete syntax into

types:

Tint] = Int

T[float] = Float

T[true] = Bool

T[false] = Bool

TS "==>" S,] = Map(7[51], T[5:])

TECS "8)7 = Pair(T[S:], T[S2])

TEULS A 7S 317 1] = 1 T[S =TIS:]
then Vector(7[S1])
else |

Tatom/S] = Node(7[S])

Tlatom *=>"/S atom]| = DEdge(T[S])

Tlatom *--"/S atom]| = UEdge(T[S])

For example, the query "([1,2], [3,4]1)==>[4,6]" has
the type

Map (Pair (Vector (Int) ,Vector (Int)),Vector(Int)).

During parsing we may find that certain groupings
of elements do not typecheck, in which case we never
present them to the user.

The above discussion is summarized by the following
algorithm:

procedure parse(elements)
sort elements by (z,y) coordinates
left < elements left of ’==>’
right < elements right of ’==>’
input ¢ connected_components(left)
output ¢ connected_components(right)
for all i¢—merge(input) & o¢merge(output) do
query < construct_query(i, o)
if type_check(query) then
prose < query2english(query)
yield (query,prose)

parse generates a sequence of possible interpretations
of the graphical elements on the canvas. We first sepa-
rate the input from the output elements, and then con-
struct a set of connected components for each. We then
generate all possible type-correct queries by merging
adjacent connected components. Finally, each query is
translated to English and presented to the user, along
with the textual query and a convex hull around each
component.

5 Related Work

Rekers [7] provides a nice overview of graphical
parsing algorithms They note that most graph pars-
ing algorithms are worst-case exponential. The paper
also presents a new multi-stage graph parsing method
with separate phases for determining object locations
and spatial relationships, and a final grammar-based
rewrite phase.

In a web-based visual interface such complex, and
potentially slow, parsing methods are unacceptable.

In [6], Liu presents a visual interface to a CASE
tool, where boolean queries are constructed in a syntax-
directed fashion. Users proceed top-down from a
“root” query, iteratively expanding non-terminal nodes
until the query is complete.

Novice (as well as expert!) users typically find
syntax-directed iterative refinement cumbersome to
use. There is a reason why programmers prefer free-
form editors like emacs over syntax-directed ones, even
though the latter ensures that only correct programs
can be constructed. For this reason, AMgoVista is
a mostly free-form graph editor, and syntax-directed
editing is reserved for recursive edits.

The web ought to present many opportunities for
introducing more people to direct-manipulation in-
terfaces. However, we have found few such exam-
ples. Marmotta [2], a graphical front-end to online
databases, is an exception.

6 Summary

AlgoVista provides a unique resource to computer
scientists to enable them to discover descriptions and
implementations of algorithms without knowing the-
oretical nomenclature. However, by monitoring the
queries submitted to the web-site we have determined
that the textual query language that AAgoVista em-
ploys is an impediment to many casual users. It is our
belief that the visual language presented here will prove
easier to use and faster to learn.

To motivate why this will be the case, consider the
following two episodes that provided the original inspi-
ration for AAgoVista’s principal designers:

Working on the design of graph-coloring register
allocation algorithms, Todd Proebsting showed his
theoretician colleague Sampath Kannan the following

graphs:
i@@@&@
\@/ ‘ \/
®

“Do these graphs mean anything to you?” Todd
asked.

“Sure,” Prof.
parallel graphs.”

This was the beginning of a collaboration which re-
sulted in a paper in the Journal of Algorithms [5].

In a similar episode, the present author showed his
theoretician colleague Clark Thomborson the following
graph-transformation:

£

“Do you know what I am doing here?” Christian
asked.

“Sure,” Prof. Thomborson soon replied, “you’re
shrinking the biconnected components of the under-
lying graph.”

Kannan replied, “they’re series-

This result became an important part of a joint pa-
per on software watermarking [3].

It’s important to note that in both these episodes
the queries were visual in nature, and, in fact, took
place while drawing on a white-board. It is our hope
that AlgoVista will prove to be a useful “virtual theo-
retician” that working programmers can turn to with a
problem, quickly sketch it out — visually or textually
depending on the nature of the problem — and quickly
receive a useful answer.

We have stressed throughout this paper that web
users are a fickle lot and that speed and simplicity is the
key to success for any web-based interface: any code
must be small enough to download instantaneously
(or the user will go elsewhere), and no user training
must be required (or the user will go elsewhere). The
A)goVista visual interface was designed with this in
mind: it employs no fancy graph parsing algorithms
and any ambiguities are resolved by the user simply
cycling through all possible parses.

A fully functioning prototype of the AlgoVista
visual interface has been implemented and can
be downloaded from http://www.cs.arizona.edu/
“collberg/Research/AlgoVista. It currently func-
tions as a stand-alone application but we expect to
launch it as an applet on the AlgoVista web-page (at
http://AlgoVista.com) shortly.

References

(1] M. Blum. Program checking. In S. Biswas and K. V.
Nori, editors, Proceedings of Foundations of Software
Technology and Theoretical Computer Science, volume
560 of LNCS, pages 1-9, Berlin, Germany, Dec. 1991.
Springer.

[2] F. Capobianco, M. Mosconi, and L. Pagnin. Progres-
sive http-based querying of remote databases within the
Marmotta iconic VQS. In VL’95, 1995.

[3] C. Collberg and C. Thomborson. Software wa-
termarking: Models and dynamic embeddings.
In POPL’99, San Antonio, TX, Jan. 1999.
http://wuw.cs.arizona.edu/"collberg/Research/
Publications/CollbergThombjorson99a.

[4] C. S. Collberg and T. A. Proebsting. AMgoVista
— A search engine for computer scien-
tists. Technical Report 2000-01, 2000.
http://wuw.cs.arizona.edu/"collberg/Research/
Publications/CollbergProebisting2000a.

[5] S. Kannan and T. A. Proebsting. Register allocation in
structured programs. Journal of Algorithms, 29(2):223—
237, Nov. 1998.

[6] H. Liu. A visual interface for querying a CASE reposi-
tory. In VL’95, 1995.

[7] J. Rekers and A. Schiir. A graph grammar approach to
graphical parsing. In VL’95, 1995.

