
Designing Software to Redue Cost of Testing

Neelam Gupta Len Bass

Department of Computer Siene Software Engineering Institute

University of Arizona Carnegie Mellon University

Tuson, AZ 85721 Pittsburgh, PA 15213

ngupta�s.arizona.edu ljb�sei.mu.edu

Abstrat

Software testing is an important and expensive omponent of the software develoment life yle.

The testing ommunity has always treated the design of the software to be tested as an input

over whih they have no ontrol. In this paper, we propose a new approah to redue the ost of

integration testing by inuening the design of the system to be tested. We onsider the simple

pipe and �lter arhiteture style and analyse its testability for integration testing. Our analysis

shows that the size of test suite required for integration testing is a linear funtion of the number

of modules in pipe and �lter arhiteture style. In ontrast, the size of test suite required for a

general design, with arbitrary ommuniation among its modules, is an exponential funtion of

the number the modules in the design. This illustrates that the ost of the testing stage an be

signi�antly redued by appropriate seletion of the arhiteture style during the design stage.

Keywords Software Arhiteture Style, Software Testing, Pipe and Filter



1 Introdution

Software testing is a ritial element of software quality assurane. It is an expensive and time

onsuming omponent. It is not unusual for a software development organization to expend 40%

of the total projet e�ort on testing. In the extreme, the testing of safety-ritial software suh

as ight ontrol, nulear reator monitoring et. an ost three to �ve times as muh as all other

software engineering steps ombined [?℄. Reduing the ost of testing learly has large bene�ts. We

propose to redue the ost of testing by inuening the design of the system being tested.

The testing ommunity has traditionally aepted a system design as a given over whih they

have no ontrol. This has led to a number of test ase generation tehniques [?, ?, ?, ?, ?, ?℄ to deal

with the potential omplexity of systems. Detetion of infeasible test ases and exponential growth

in the number of test ases have been problems that have been left for the testing ommunity to

handle during test data generation stage without giving any onsideration during design stage of

software development. Other ommunities, however, have been onerned with a�eting the design

of systems in order to improve the system with respet to some attribute of interest. The growth

of objet oriented design and the use of enapsulation have been attempts to derease the life

yle ost of systems by hanging the design of systems. The reliability, seurity and performane

ommunities have a number of tehniques [?, ?, ?, ?, ?, ?, ?℄ for hanging the design of a system

in order to improve the respetive quality attributes.

In this paper, we address the problem of designing software with the goal of reduing the number

of overage requirements for integration testing of the software. Our approah is to relate the

testability of a system to its design. That is, we advoate hoosing a design that simpli�es the

integration testing of a system by requiring a smaller test suite. In reality, of ourse, design is a

more ompliated problem than just optimizing for a partiular attribute. Design is the proess of

making trade-o�s among attributes and the designer needs to know the ost of making partiular

hoies. So our approah is to develop tehniques for determining the testing ost when partiular

design styles are onsidered. We measure the ost of testing in terms of the number of test ases

that have to be overed for integration testing of a given design. This will enable the designer to

determine the testing ost of making partiular design hoies and onsider this ost as well as the

ost of ahieving ertain levels of modi�ability, performane, reliability, and seurity when making

design deisions. The work we present here is the merger of ongoing work in both testing and

software arhiteture analysis. We begin by reviewing the relevant work in eah of these areas.

2 Software Arhiteture

A software arhiteture of a program is a struture omprising of software omponents, their exter-

nally visible properties, and the relationships among them [?℄. The proess of designing a partiular

system is the proess of de�ning the software arhiteture that gets elaborated into an atual system.

A key element to the study of software arhiteture is the disovery and analysis of arhitetural

styles [?℄. A software arhiteture style is a system level onstrut that has been observed many

times in suessful systems. It an also be thought of as a system level design pattern.

Arhitetural styles are important sine they di�erentiate lasses of designs by o�ering experi-

mental evidene of how eah lass has been used along with qualitative reasoning to explain why

eah lass has ertain properties. A software arhitet an hoose a style based on an understanding

of the desired quality goals of the system under onstrution. Adoption of a software style for the

design of a system ats as a set of onstraints on the ations of the designer. This, in turn, enables

1



the reation of tehniques that are style spei�, to analyze how suitable the style is for the ahieve-

ment of partiular attributes. A olletion of Attribute Spei� Arhitetural Styles (ABASs) for

a variety of attributes is doumented in [?, ?℄. We now disuss some attributes important for the

testing phase of software development.

3 Software Testing

The testing proess onsists of seleting a test adequay riteria, generating test requirements

for the seleted riteria, generating test data that exerise the test requirements, monitoring the

exeution of the program on the test data and verifying the output produed by the program.

The most ommonly used strategy for software testing onsists of unit testing that onentrates on

eah unit of software as implemented in the soure ode, integration testing that fousses on the

design and the onstrution of software arhiteture, validation testing that validates the software

requirements against the developed software and �nally system testing that tests the developed

software and other system elements as a whole [?℄. In this paper, we fous on the testability of the

system for integration testing.

We de�ne the testability of a system in terms of ost of testing the system. The ost of

testing a system is diretly proportional to the size of the test suite whih, in turn, is governed

by the number of overage requirements that must be exerised by the test data. The number

of overage requirements inrease with the inrease in number of interating modules as well as

the number of interations among them. Besides, if the set of test requirements is large, there

is higher likelyhood of having some requirements for whih it is infeasible to generate test data.

Sine deteting infeasible test requirements is an undeidable problem in general, it would save

signi�ant e�ort if the software is designed in suh a way that the allowed interation between

various omponents is kept to minimum. To redue the ost of testing a system, we propose

seleting a suitable design for the system that requires a smaller number of test ases to be overed.

Our goal is to develop a olletion of testability analyses related to spei� arhitetural styles. We

begin by analysing the testability of the pipe and �lter style.

4 Pipe and Filter Style

filter 1 filter 2 filter npipe n-1pipe 2pipe 1

Figure 1: Pipe and Filter arhiteture style.

As shown in Figure ??, in a pipe and �lter style, data enters a �lter from a single soure, is

transformed, and sent out through a single exit into a pipe. The pipe arries the data to the next

�lter in the design. The pipe and �lter style supports system organization based on asynhronous

omputations onneted by dataow. Pipes and �lters our in a variety of systems. Systems

based on signal proessing suh as image proessing systems are pipe and �lter systems. The ase

studies in [?℄ are all pipe and �lter systems. Old fashioned ompilers (lexial analysis, followed

by syntati analysis, followed by semanti analysis) were pipe and �lters although more modern

ompilers utilize di�erent styles. The omputational elements sheduled by a yli exeutive an

be thought of as a pipe and �lter system where the output of the �nal �lter is fed into the input of

the initial �lter. Pipes and �lters are not a basis for all systems, but they are used in a substantial

2



number of systems. Our goal in this paper is to provide a basis for analysis of testing ost for the

systems desribable by pipe and �lter style. In our our future work, we will onsider other styles

for analysis of their testability. Thus, we exploit the restritions imposed by the pipe and �lter

style (in partiular, the limited interations between �lters) to arry out our analysis.

4.1 Modelling and Analysis

We use the number of overage requirements for a given testing riteria (suh exerising all intera-

tions between every pair of modules) as a measure of the testability of an appliation for integration

testing. A smaller number of the overage requirements will result in a smaller test suite and hene

will redues the ost of the testing proess.

In pipe and �lter arhiteture style, eah module in the design of the software is represented

by a �lter and the ommuniation mehanism between a pair of modules is represented by a pipe.

The pipe and �lter arhiteture style enfores a simple ommuniation protool in whih filter

i

an reeive data only from filter

i�1

and send data to only filter

i+1

. The ommuniation between

adjaent �lters an be either using shared memory, message passing or proedure invoation. We

assume that the pipe

i

simply provides a mehanism to transport data from filter

i

to filter

i+1

.

We assume that the pipes and �lters are orret i.e., eah of the modules and their ommuni-

ation mehanisms have been unit tested with 100% reliability. We fous on the kinds of problems

that an arise as a result of integration of all the modules and their ommuniation mehanisms.

We onsider the total number of interations (shared memory, messages or proedure invoations)

to be tested between the �lters as a measure of the testing ost of the style. In order to ompare

the testing ost of a design based on pipe and �lter style and a design that allows arbitrary ommu-

niation among the modules, we onsider the example of four ommuniating proesses in general

shown in Figure 2. Let us assume there are at the most k interations allowed in eah diretion

between a pair of adjaent nodes.

P3P4

P1 P2

Figure 2: Communiation paths among four ommuniating proess in general.

P1 P2 P3 P4

Figure 3: Communiation paths among four �lters in pipe and �lter style.

There are four paths for ommuniation between any pair of nodes in Figure 2. For example,

there is one path (P1, P4) of length one, two paths (P1, P2, P4) and (P1, P3, P4) of length two

and one path (P1, P2, P3, P4) of length three between the nodes P1 and P4. Therefore, to test

3



the ommuniation between P1 and P4, we need to generate test ases that exerise eah possible

interation along all the four paths between P1 and P4. For the path (P1, P4), 2 � k interations

between the two nodes P1 and P4 need to be tested beause there an be at the most k interations

in eah diretion. For the path (P1, P2, P4), 2 � 2 � k interations need to be tested beause at the

most 2�k interations need to be tested between the nodes P1 and P2 and another 2�k interations

need to be tested between the nodes P2 and P4. Similarly, 2 � 2 � k interations need to be tested

along the path (P1, P3, P4) and 3 � 2 � k interations need to be tested along the path (P1, P2,

P3, P4). Therefore, the total number of test ases needed to test the ommuniation between P1

and P4 is at the most 2 � (k+2k+2k+3k) = 16k. In order to test ommuniation between every

pair of proesses in Figure 2, we would need 6 � 16 � k = 96k test ases sine there are 6 pairs of

nodes possible.

Now let us onsider the four nodes ommuniating using pipe and �lter style as shown in

Figure 3. In this design style, only adjaent nodes an ommuniate with eah other and the

ommuniation is allowed only in one diretion. If there are at the most k interations between a

pair of adjaent �lters, only 3k interations need to be exerised to test the ommuniation between

the nodes in pipe and �lter style when all the four modules are integrated together.

In general, if there are n nodes ommuniating with eah other in any arbitrary fashion and there

are at the most k interations allowed in eah diretion between two adjaent nodes, then the

number of test ases needed to exerise eah interation between adjaent nodes on all the paths

between a pair of nodes in the worst ase is given by

2 � (

n

2

) � [(

n�2

0

) � k + (

n�2

1

) � 2 � k + (

n�2

2

) � 3 � k + � � �+ (

n�2

n�2

)(n� 1) � k℄ eq. 1

where,

1. the multiplier 2 aounts for the interation in both the diretions,

2. the multiplier (

n

2

) is the number of ways to hoose a pair of nodes from n nodes, and

3. (

n�2

k

) is the number of ways k nodes an be seleted from the remaining n� 2 nodes, whih

is equal to the number of paths of length k + 1.

Writing the Binomial expansion of (x+1)

n�2

, multiplying thoughout by x, di�erentiating through-

out with respet to x, substituting x by 1 in the result obtained after di�erentiation, and using it

to simply the equation 1, we obtain

Number of Test Cases (general design) = (k)(n

2

)(n� 1)(2

n�3

)

Therefore, in a general design with n modules, the number of test ases required for integration

testing of ommuniation between the modules is an exponential funtion of the number of modules.

However, the number of test ases required to exerise every interation between adjaent �lters, in

an appliation designed with n �lters with at the most k interations between the adjaent �lters,

is given by:

Number of Test Cases (pipe and �lter) = k � (n� 1)

Therefore, the number of test ases required to test the interations among the �lters, during

integration testing of a software designed using pipe and �lter style, is a linear funtion of the

number of �lters.

4



Thus, if we de�ne the testability of a design by the measure of the overage required for integra-

tion testing, it is lear from the above disussion that a pipe and �lter style is muh more suitable

for testability than a general design of ommuniating proesses. Therefore, if a given appliation

an be designed using pipe and �lter style, then it will redue the overage requirements for integra-

tion testing of the appliation by a signi�ant amount. Our analysis shows that it is worthwhile to

onsider the ost of testing while making tradeo�s with the design requirements of other attributes

suh as modi�ability, reusability and seurity of software while hoosing a partiular arhitetural

style in the design stage of the software.

5 Conlusions and Future Work

In this paper, we have proposed that the ost of testing a software appliation an be redued by

inluening the seletion of a suitable arhitetural style during the design stage of the sofware. We

analysed the ost of testing an appliation with pipe and �lter style and ompared it with the ost

of testing an appliation with arbitrary ommuniation among its omponents. We showed that

the ost of testing inreases exponentially with the number of interating omponents in a general

design, whereas it inreases only linearly with the number of omponents in the pipe and �lter style.

This makes pipe and �lter style partiularly suited for testability. In our future work, we plan to

extend this work to additional arhitetural styles. Eah arhitetural style an be onsidered as a

set of onstraints imposed on the patterns of ommuniation among the omponents of the style.

Exploiting these onstraints in the analysis of overage requirements means that we should be able

to alulate redued osts of testing for systems not explainable by the pipe and �lter style.

Referenes

[1℄ Bass Len, Clements Paul, Kazman Rik \Software Arhiteture in Pratie" SEI Series in Software

Engineering, Addison Wesley, 1998

[2℄ L.A. Clarke, \A System to Generate Test Data and Symbolially Exeute Programs," IEEE Transations

on Software Engineering, Vol. SE-2, No. 3, pages 215-222, September 1976.

[3℄ M.J. Gallagher and V.L. Narsimhan, \ADTEST: A Test Data Generation Suite for Ada Software Sys-

tems," IEEE Transations on Software Engineering, Vol. 23, No. 8, pages 473-484, August 1997.

[4℄ Erih Gamma, Rihard Helm, Ralph Johnson, John Vlissides, Grady Booh "Design Patterns: Elements

of Reusable Objet-Oriented Software Addison Wesley, 1995.

[5℄ A. Gotlieb, B. Botella, and M. Rueher, \Automati Test Data Generation using Constraint Solving

Tehniques," International Symposium on Software Testing and Analysis, 1998.

[6℄ C. Hofmeister, R.Nord, P.Soni \Applied Software Arhiteture" Reading MA, Addison Wesley, 1999.

[7℄ Mark Klein, Rik Kazman, "Attribute Based Arhitetural Styles", CMU/SEI-99-TR-022, Tehnial

Report, Software Engineering Institute, Pittsburgh, Pa

[8℄ M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbai, H. Lipson , "Attribute Based Arhitetural

Styles", Proeedings of the First Working IFIP Conferene on Software Arhiteture, San Antonio, Tx,

Feb 1999, pp 225-243 Kluwer Publishing

[9℄ B. Korel, \Automated Software Test Data Generation," IEEE Transations on Software Engineering,

Vol. 16, No. 8, pages 870-879, August 1990.

[10℄ Neelam Gupta, Aditya P. Mathur, and Mary Lou So�a, \Automated Test Data Generation using An

Iterative Relaxation Method" ACM SIGSOFT Sixth International Symposium on Foundations of Software

Engine ering(FSE-6), pages 231-244, Orlando, Florida, November 1998.

5



[11℄ R.A. DeMillo and A.J. O�utt, \Constraint-based Automati Test Data Generation," IEEE Transations

on Software Engineering, Vol. 17, No. 9, pages 900-910, September 1991.

[12℄ R.S. Pressman, \Software Engineering: A Pratitioner's Approah." Fifth Edition, 1998, page 595.

[13℄ M.Shaw, P.Clements, \A Field Guide to Boxology: Preliminary Classi�ation of Arhitetural Styles

for Software Systems" Proeedings of COMPSAC, Washington, D.C, August 1997.

[14℄ L. Sha, R. Rajkumar, M. Gagliardi, \A Software Arhiteture for Dependable and Evolvable Industrial

Computing Systems" CMU/SEI-95-TR-005, Pittsburgh, PA, Software Engineering Institute, 1996.

[15℄ C.U. Smith, \Performane Engineering of Software Systems," The SEI Series in Software Engineering,

Reading, MA, Addison-Wesley, 1990.

[16℄ C.U. Smith and L.G. Williams, \Software Performane Engineering: A Case Study Inluding Perfor-

mane Comparison with Design Alternatives," IEEE Transations on Software Engineering, 19(7), pages

720-741, 1993.

[17℄ U.S.Deparment of Defense, \Tehnial Arhiteture Framework for Information Management

(TAFIM)," Vols. 1-8, Version 2.0. DISA Center for Arhiteture (10701 Parkridge Blvd., Reston, VA

22091-4398), June 30, 1994.

6


