
Designing Software to Redu
e Cost of Testing

Neelam Gupta Len Bass

Department of Computer S
ien
e Software Engineering Institute

University of Arizona Carnegie Mellon University

Tu
son, AZ 85721 Pittsburgh, PA 15213

ngupta�
s.arizona.edu ljb�sei.
mu.edu

Abstra
t

Software testing is an important and expensive 
omponent of the software develoment life 
y
le.

The testing 
ommunity has always treated the design of the software to be tested as an input

over whi
h they have no 
ontrol. In this paper, we propose a new approa
h to redu
e the 
ost of

integration testing by in
uen
ing the design of the system to be tested. We 
onsider the simple

pipe and �lter ar
hite
ture style and analyse its testability for integration testing. Our analysis

shows that the size of test suite required for integration testing is a linear fun
tion of the number

of modules in pipe and �lter ar
hite
ture style. In 
ontrast, the size of test suite required for a

general design, with arbitrary 
ommuni
ation among its modules, is an exponential fun
tion of

the number the modules in the design. This illustrates that the 
ost of the testing stage 
an be

signi�
antly redu
ed by appropriate sele
tion of the ar
hite
ture style during the design stage.

Keywords Software Ar
hite
ture Style, Software Testing, Pipe and Filter



1 Introdu
tion

Software testing is a 
riti
al element of software quality assuran
e. It is an expensive and time


onsuming 
omponent. It is not unusual for a software development organization to expend 40%

of the total proje
t e�ort on testing. In the extreme, the testing of safety-
riti
al software su
h

as 
ight 
ontrol, nu
lear rea
tor monitoring et
. 
an 
ost three to �ve times as mu
h as all other

software engineering steps 
ombined [?℄. Redu
ing the 
ost of testing 
learly has large bene�ts. We

propose to redu
e the 
ost of testing by in
uen
ing the design of the system being tested.

The testing 
ommunity has traditionally a

epted a system design as a given over whi
h they

have no 
ontrol. This has led to a number of test 
ase generation te
hniques [?, ?, ?, ?, ?, ?℄ to deal

with the potential 
omplexity of systems. Dete
tion of infeasible test 
ases and exponential growth

in the number of test 
ases have been problems that have been left for the testing 
ommunity to

handle during test data generation stage without giving any 
onsideration during design stage of

software development. Other 
ommunities, however, have been 
on
erned with a�e
ting the design

of systems in order to improve the system with respe
t to some attribute of interest. The growth

of obje
t oriented design and the use of en
apsulation have been attempts to de
rease the life


y
le 
ost of systems by 
hanging the design of systems. The reliability, se
urity and performan
e


ommunities have a number of te
hniques [?, ?, ?, ?, ?, ?, ?℄ for 
hanging the design of a system

in order to improve the respe
tive quality attributes.

In this paper, we address the problem of designing software with the goal of redu
ing the number

of 
overage requirements for integration testing of the software. Our approa
h is to relate the

testability of a system to its design. That is, we advo
ate 
hoosing a design that simpli�es the

integration testing of a system by requiring a smaller test suite. In reality, of 
ourse, design is a

more 
ompli
ated problem than just optimizing for a parti
ular attribute. Design is the pro
ess of

making trade-o�s among attributes and the designer needs to know the 
ost of making parti
ular


hoi
es. So our approa
h is to develop te
hniques for determining the testing 
ost when parti
ular

design styles are 
onsidered. We measure the 
ost of testing in terms of the number of test 
ases

that have to be 
overed for integration testing of a given design. This will enable the designer to

determine the testing 
ost of making parti
ular design 
hoi
es and 
onsider this 
ost as well as the


ost of a
hieving 
ertain levels of modi�ability, performan
e, reliability, and se
urity when making

design de
isions. The work we present here is the merger of ongoing work in both testing and

software ar
hite
ture analysis. We begin by reviewing the relevant work in ea
h of these areas.

2 Software Ar
hite
ture

A software ar
hite
ture of a program is a stru
ture 
omprising of software 
omponents, their exter-

nally visible properties, and the relationships among them [?℄. The pro
ess of designing a parti
ular

system is the pro
ess of de�ning the software ar
hite
ture that gets elaborated into an a
tual system.

A key element to the study of software ar
hite
ture is the dis
overy and analysis of ar
hite
tural

styles [?℄. A software ar
hite
ture style is a system level 
onstru
t that has been observed many

times in su

essful systems. It 
an also be thought of as a system level design pattern.

Ar
hite
tural styles are important sin
e they di�erentiate 
lasses of designs by o�ering experi-

mental eviden
e of how ea
h 
lass has been used along with qualitative reasoning to explain why

ea
h 
lass has 
ertain properties. A software ar
hite
t 
an 
hoose a style based on an understanding

of the desired quality goals of the system under 
onstru
tion. Adoption of a software style for the

design of a system a
ts as a set of 
onstraints on the a
tions of the designer. This, in turn, enables

1



the 
reation of te
hniques that are style spe
i�
, to analyze how suitable the style is for the a
hieve-

ment of parti
ular attributes. A 
olle
tion of Attribute Spe
i�
 Ar
hite
tural Styles (ABASs) for

a variety of attributes is do
umented in [?, ?℄. We now dis
uss some attributes important for the

testing phase of software development.

3 Software Testing

The testing pro
ess 
onsists of sele
ting a test adequa
y 
riteria, generating test requirements

for the sele
ted 
riteria, generating test data that exer
ise the test requirements, monitoring the

exe
ution of the program on the test data and verifying the output produ
ed by the program.

The most 
ommonly used strategy for software testing 
onsists of unit testing that 
on
entrates on

ea
h unit of software as implemented in the sour
e 
ode, integration testing that fo
usses on the

design and the 
onstru
tion of software ar
hite
ture, validation testing that validates the software

requirements against the developed software and �nally system testing that tests the developed

software and other system elements as a whole [?℄. In this paper, we fo
us on the testability of the

system for integration testing.

We de�ne the testability of a system in terms of 
ost of testing the system. The 
ost of

testing a system is dire
tly proportional to the size of the test suite whi
h, in turn, is governed

by the number of 
overage requirements that must be exer
ised by the test data. The number

of 
overage requirements in
rease with the in
rease in number of intera
ting modules as well as

the number of intera
tions among them. Besides, if the set of test requirements is large, there

is higher likelyhood of having some requirements for whi
h it is infeasible to generate test data.

Sin
e dete
ting infeasible test requirements is an unde
idable problem in general, it would save

signi�
ant e�ort if the software is designed in su
h a way that the allowed intera
tion between

various 
omponents is kept to minimum. To redu
e the 
ost of testing a system, we propose

sele
ting a suitable design for the system that requires a smaller number of test 
ases to be 
overed.

Our goal is to develop a 
olle
tion of testability analyses related to spe
i�
 ar
hite
tural styles. We

begin by analysing the testability of the pipe and �lter style.

4 Pipe and Filter Style

filter 1 filter 2 filter npipe n-1pipe 2pipe 1

Figure 1: Pipe and Filter ar
hite
ture style.

As shown in Figure ??, in a pipe and �lter style, data enters a �lter from a single sour
e, is

transformed, and sent out through a single exit into a pipe. The pipe 
arries the data to the next

�lter in the design. The pipe and �lter style supports system organization based on asyn
hronous


omputations 
onne
ted by data
ow. Pipes and �lters o

ur in a variety of systems. Systems

based on signal pro
essing su
h as image pro
essing systems are pipe and �lter systems. The 
ase

studies in [?℄ are all pipe and �lter systems. Old fashioned 
ompilers (lexi
al analysis, followed

by synta
ti
 analysis, followed by semanti
 analysis) were pipe and �lters although more modern


ompilers utilize di�erent styles. The 
omputational elements s
heduled by a 
y
li
 exe
utive 
an

be thought of as a pipe and �lter system where the output of the �nal �lter is fed into the input of

the initial �lter. Pipes and �lters are not a basis for all systems, but they are used in a substantial

2



number of systems. Our goal in this paper is to provide a basis for analysis of testing 
ost for the

systems des
ribable by pipe and �lter style. In our our future work, we will 
onsider other styles

for analysis of their testability. Thus, we exploit the restri
tions imposed by the pipe and �lter

style (in parti
ular, the limited intera
tions between �lters) to 
arry out our analysis.

4.1 Modelling and Analysis

We use the number of 
overage requirements for a given testing 
riteria (su
h exer
ising all intera
-

tions between every pair of modules) as a measure of the testability of an appli
ation for integration

testing. A smaller number of the 
overage requirements will result in a smaller test suite and hen
e

will redu
es the 
ost of the testing pro
ess.

In pipe and �lter ar
hite
ture style, ea
h module in the design of the software is represented

by a �lter and the 
ommuni
ation me
hanism between a pair of modules is represented by a pipe.

The pipe and �lter ar
hite
ture style enfor
es a simple 
ommuni
ation proto
ol in whi
h filter

i


an re
eive data only from filter

i�1

and send data to only filter

i+1

. The 
ommuni
ation between

adja
ent �lters 
an be either using shared memory, message passing or pro
edure invo
ation. We

assume that the pipe

i

simply provides a me
hanism to transport data from filter

i

to filter

i+1

.

We assume that the pipes and �lters are 
orre
t i.e., ea
h of the modules and their 
ommuni-


ation me
hanisms have been unit tested with 100% reliability. We fo
us on the kinds of problems

that 
an arise as a result of integration of all the modules and their 
ommuni
ation me
hanisms.

We 
onsider the total number of intera
tions (shared memory, messages or pro
edure invo
ations)

to be tested between the �lters as a measure of the testing 
ost of the style. In order to 
ompare

the testing 
ost of a design based on pipe and �lter style and a design that allows arbitrary 
ommu-

ni
ation among the modules, we 
onsider the example of four 
ommuni
ating pro
esses in general

shown in Figure 2. Let us assume there are at the most k intera
tions allowed in ea
h dire
tion

between a pair of adja
ent nodes.

P3P4

P1 P2

Figure 2: Communi
ation paths among four 
ommuni
ating pro
ess in general.

P1 P2 P3 P4

Figure 3: Communi
ation paths among four �lters in pipe and �lter style.

There are four paths for 
ommuni
ation between any pair of nodes in Figure 2. For example,

there is one path (P1, P4) of length one, two paths (P1, P2, P4) and (P1, P3, P4) of length two

and one path (P1, P2, P3, P4) of length three between the nodes P1 and P4. Therefore, to test

3



the 
ommuni
ation between P1 and P4, we need to generate test 
ases that exer
ise ea
h possible

intera
tion along all the four paths between P1 and P4. For the path (P1, P4), 2 � k intera
tions

between the two nodes P1 and P4 need to be tested be
ause there 
an be at the most k intera
tions

in ea
h dire
tion. For the path (P1, P2, P4), 2 � 2 � k intera
tions need to be tested be
ause at the

most 2�k intera
tions need to be tested between the nodes P1 and P2 and another 2�k intera
tions

need to be tested between the nodes P2 and P4. Similarly, 2 � 2 � k intera
tions need to be tested

along the path (P1, P3, P4) and 3 � 2 � k intera
tions need to be tested along the path (P1, P2,

P3, P4). Therefore, the total number of test 
ases needed to test the 
ommuni
ation between P1

and P4 is at the most 2 � (k+2k+2k+3k) = 16k. In order to test 
ommuni
ation between every

pair of pro
esses in Figure 2, we would need 6 � 16 � k = 96k test 
ases sin
e there are 6 pairs of

nodes possible.

Now let us 
onsider the four nodes 
ommuni
ating using pipe and �lter style as shown in

Figure 3. In this design style, only adja
ent nodes 
an 
ommuni
ate with ea
h other and the


ommuni
ation is allowed only in one dire
tion. If there are at the most k intera
tions between a

pair of adja
ent �lters, only 3k intera
tions need to be exer
ised to test the 
ommuni
ation between

the nodes in pipe and �lter style when all the four modules are integrated together.

In general, if there are n nodes 
ommuni
ating with ea
h other in any arbitrary fashion and there

are at the most k intera
tions allowed in ea
h dire
tion between two adja
ent nodes, then the

number of test 
ases needed to exer
ise ea
h intera
tion between adja
ent nodes on all the paths

between a pair of nodes in the worst 
ase is given by

2 � (

n

2

) � [(

n�2

0

) � k + (

n�2

1

) � 2 � k + (

n�2

2

) � 3 � k + � � �+ (

n�2

n�2

)(n� 1) � k℄ eq. 1

where,

1. the multiplier 2 a

ounts for the intera
tion in both the dire
tions,

2. the multiplier (

n

2

) is the number of ways to 
hoose a pair of nodes from n nodes, and

3. (

n�2

k

) is the number of ways k nodes 
an be sele
ted from the remaining n� 2 nodes, whi
h

is equal to the number of paths of length k + 1.

Writing the Binomial expansion of (x+1)

n�2

, multiplying thoughout by x, di�erentiating through-

out with respe
t to x, substituting x by 1 in the result obtained after di�erentiation, and using it

to simply the equation 1, we obtain

Number of Test Cases (general design) = (k)(n

2

)(n� 1)(2

n�3

)

Therefore, in a general design with n modules, the number of test 
ases required for integration

testing of 
ommuni
ation between the modules is an exponential fun
tion of the number of modules.

However, the number of test 
ases required to exer
ise every intera
tion between adja
ent �lters, in

an appli
ation designed with n �lters with at the most k intera
tions between the adja
ent �lters,

is given by:

Number of Test Cases (pipe and �lter) = k � (n� 1)

Therefore, the number of test 
ases required to test the intera
tions among the �lters, during

integration testing of a software designed using pipe and �lter style, is a linear fun
tion of the

number of �lters.

4



Thus, if we de�ne the testability of a design by the measure of the 
overage required for integra-

tion testing, it is 
lear from the above dis
ussion that a pipe and �lter style is mu
h more suitable

for testability than a general design of 
ommuni
ating pro
esses. Therefore, if a given appli
ation


an be designed using pipe and �lter style, then it will redu
e the 
overage requirements for integra-

tion testing of the appli
ation by a signi�
ant amount. Our analysis shows that it is worthwhile to


onsider the 
ost of testing while making tradeo�s with the design requirements of other attributes

su
h as modi�ability, reusability and se
urity of software while 
hoosing a parti
ular ar
hite
tural

style in the design stage of the software.

5 Con
lusions and Future Work

In this paper, we have proposed that the 
ost of testing a software appli
ation 
an be redu
ed by

inluen
ing the sele
tion of a suitable ar
hite
tural style during the design stage of the sofware. We

analysed the 
ost of testing an appli
ation with pipe and �lter style and 
ompared it with the 
ost

of testing an appli
ation with arbitrary 
ommuni
ation among its 
omponents. We showed that

the 
ost of testing in
reases exponentially with the number of intera
ting 
omponents in a general

design, whereas it in
reases only linearly with the number of 
omponents in the pipe and �lter style.

This makes pipe and �lter style parti
ularly suited for testability. In our future work, we plan to

extend this work to additional ar
hite
tural styles. Ea
h ar
hite
tural style 
an be 
onsidered as a

set of 
onstraints imposed on the patterns of 
ommuni
ation among the 
omponents of the style.

Exploiting these 
onstraints in the analysis of 
overage requirements means that we should be able

to 
al
ulate redu
ed 
osts of testing for systems not explainable by the pipe and �lter style.

Referen
es

[1℄ Bass Len, Clements Paul, Kazman Ri
k \Software Ar
hite
ture in Pra
ti
e" SEI Series in Software

Engineering, Addison Wesley, 1998

[2℄ L.A. Clarke, \A System to Generate Test Data and Symboli
ally Exe
ute Programs," IEEE Transa
tions

on Software Engineering, Vol. SE-2, No. 3, pages 215-222, September 1976.

[3℄ M.J. Gallagher and V.L. Narsimhan, \ADTEST: A Test Data Generation Suite for Ada Software Sys-

tems," IEEE Transa
tions on Software Engineering, Vol. 23, No. 8, pages 473-484, August 1997.

[4℄ Eri
h Gamma, Ri
hard Helm, Ralph Johnson, John Vlissides, Grady Boo
h "Design Patterns: Elements

of Reusable Obje
t-Oriented Software Addison Wesley, 1995.

[5℄ A. Gotlieb, B. Botella, and M. Rueher, \Automati
 Test Data Generation using Constraint Solving

Te
hniques," International Symposium on Software Testing and Analysis, 1998.

[6℄ C. Hofmeister, R.Nord, P.Soni \Applied Software Ar
hite
ture" Reading MA, Addison Wesley, 1999.

[7℄ Mark Klein, Ri
k Kazman, "Attribute Based Ar
hite
tural Styles", CMU/SEI-99-TR-022, Te
hni
al

Report, Software Engineering Institute, Pittsburgh, Pa

[8℄ M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barba

i, H. Lipson , "Attribute Based Ar
hite
tural

Styles", Pro
eedings of the First Working IFIP Conferen
e on Software Ar
hite
ture, San Antonio, Tx,

Feb 1999, pp 225-243 Kluwer Publishing

[9℄ B. Korel, \Automated Software Test Data Generation," IEEE Transa
tions on Software Engineering,

Vol. 16, No. 8, pages 870-879, August 1990.

[10℄ Neelam Gupta, Aditya P. Mathur, and Mary Lou So�a, \Automated Test Data Generation using An

Iterative Relaxation Method" ACM SIGSOFT Sixth International Symposium on Foundations of Software

Engine ering(FSE-6), pages 231-244, Orlando, Florida, November 1998.

5



[11℄ R.A. DeMillo and A.J. O�utt, \Constraint-based Automati
 Test Data Generation," IEEE Transa
tions

on Software Engineering, Vol. 17, No. 9, pages 900-910, September 1991.

[12℄ R.S. Pressman, \Software Engineering: A Pra
titioner's Approa
h." Fifth Edition, 1998, page 595.

[13℄ M.Shaw, P.Clements, \A Field Guide to Boxology: Preliminary Classi�
ation of Ar
hite
tural Styles

for Software Systems" Pro
eedings of COMPSAC, Washington, D.C, August 1997.

[14℄ L. Sha, R. Rajkumar, M. Gagliardi, \A Software Ar
hite
ture for Dependable and Evolvable Industrial

Computing Systems" CMU/SEI-95-TR-005, Pittsburgh, PA, Software Engineering Institute, 1996.

[15℄ C.U. Smith, \Performan
e Engineering of Software Systems," The SEI Series in Software Engineering,

Reading, MA, Addison-Wesley, 1990.

[16℄ C.U. Smith and L.G. Williams, \Software Performan
e Engineering: A Case Study In
luding Perfor-

man
e Comparison with Design Alternatives," IEEE Transa
tions on Software Engineering, 19(7), pages

720-741, 1993.

[17℄ U.S.Deparment of Defense, \Te
hni
al Ar
hite
ture Framework for Information Management

(TAFIM)," Vols. 1-8, Version 2.0. DISA Center for Ar
hite
ture (10701 Parkridge Blvd., Reston, VA

22091-4398), June 30, 1994.

6


