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Abstrat

A spatial distane join is a relatively new type of operation introdued for spatial and multimedia

database appliations. Additional requirements for ranking and stopping ardinality are often ombined

with the spatial distane join in on-line query proessing or internet searh environments. These require-

ments pose new hallenges as well as opportunities for more eÆient proessing of spatial distane join

queries. In this paper, we �rst present an eÆient k-distane join algorithm that uses spatial indexes

suh as R-trees. Bi-diretional node expansion and plane-sweeping tehniques are used for fast pruning

of distant pairs, and the plane-sweeping is further optimized by novel strategies for seleting a sweeping

axis and diretion. Furthermore, we propose adaptive multi-stage algorithms for k-distane join and

inremental distane join operations. Our performane study shows that the proposed adaptive multi-

stage algorithms outperform previous work by up to an order of magnitude for both k-distane join and

inremental distane join queries, under various operational onditions.
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1 Introdution

A spatial distane join operation was reently introdued to spatial databases to assoiate one or more sets of

spatial data by distanes between them [13℄. A distane is usually de�ned in terms of spatial attributes, but

it an be de�ned in many di�erent ways aording to various appliation spei� requirements. In multimedia

and image database appliations, for example, other metris suh as a similarity distane funtion an be

used to measure a distane between two objets in a feature spae.

In on-line deision support and internet searh environments, it is quite ommon to pose a query that

�nds the best k mathes or reports the results inrementally in the dereasing order of well-mathedness.

This type of operations allow users to interat with database systems more e�etively and fous on the

\best" answers. Sine users an say \It is enough already" at any time after obtaining the best answers [8℄,

the waste of system resoures an be redued and thereby delivering the results to users more quikly.

This ranking requirement is often ombined with a spatial distane join query, and the ranking require-

ment provides a new opportunity of optimization for spatial distane join proessing [9, 10℄. For example,

onsider a query that retrieves the top k pairs (i.e., the nearest pairs) of hotels and restaurants:

SELECT h.name, r.name

FROM Hotel h, Restaurant r

ORDER BY distane(h.loation, r.loation)

STOP AFTER k;

For a relatively small stopping ardinality k, the proessing time an be redued signi�antly by sorting only

a fration of intermediate results enough to produe the k nearest pairs, instead of sorting an entire set of

intermediate results (i.e., a Cartesian produt of hotels and restaurants).

A spatial distane join query with a stopping ardinality an be formulated as follows:

�

dist(r;s)<D

max

(R 1 S)

where dist(r; s) is a distane between two spatial objets r 2 R and s 2 S, andD

max

is a uto� distane that is

determined by a stopping ardinality k and the spatial attribute values of two data sets R and S. It may then

be argued that a spatial distane join query an be proessed by a spatial join operation [1, 6, 7, 15, 16, 19℄

followed by a sort operation. Spei�ally, if a D

max

value an be predited preisely for a given stopping

ardinality k, we an use a spatial join algorithm with a within prediate instead of an interset prediate

to �nd the k nearest pairs of objets. Then, a sort operation will be performed only on the k pairs of objets.

In pratie, however, it is almost impossible to estimate an aurate D

max

value for a given stopping

ardinality k, and, to the best of our knowledge, no method for estimating suh a uto� value has been

reported in the literature. If the D

max

value is overestimated, then the results from a spatial join operation

may ontain too many andidate pairs, whih may ause a long delay in a subsequent stage to sort all the

andidate pairs. On the other hand, if the D

max

value is underestimated, a spatial join operation may not

return a suÆient number of objet pairs. Then, the spatial join operation should be repeated with a new

estimate of D

max

, until k or more pairs are returned. This may ause a signi�ant amount of waste in

proessing time and resoures.

There is another reason that makes it impratial to apply a spatial join algorithm to spatial distane join

queries. A spatial join query is typially proessed in two steps, �lter and re�nement, as proposed in [18℄.

In a �lter step, MBR approximations are used to �nd pairs of potentially interseted spatial objets. Then,

in a re�nement step, it is guaranteed that all the quali�ed (i.e., atually interseted) pairs an be produed

from the results returned from the �lter step.

In ontrast, it is ompletely unreasonable to proess a spatial distane join query in two separate �lter

and re�nement steps, beause of the fat that a �ltering proess is based on MBR approximations. A set

of objet pairs sorted by distanes measured by MBR approximations does not reet a true order based

on atual representations. This is beause, for any two pairs of spatial objets hr

1

; s

1

i and hr

2

; s

2

i, the fat

that dist(MBR(r

1

);MBR(s

1

)) < dist(MBR(r

2

);MBR(s

2

)) does not neessarily imply that dist(r

1

; s

1

) <

dist(r

2

; s

2

). Consequently, any proessing done in the �lter step will be of no use for �nding the k nearest

objet pairs.

In this paper, we propose new strategies for eÆiently proessing spatial distane join queries ombined

with ranking requirements. The main ontributions of the proposed solutions are:
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� New eÆient methods are proposed to proess distane join queries using spatial index strutures

suh as R-trees. Bi-diretional node expansion and optimized plane-sweep tehniques are used for fast

pruning of distant pairs, and the plane-sweep is further optimized by novel strategies for seleting a

sweeping axis and diretion.

� Adaptive multi-stage algorithms are proposed to proess distane join queries in a way that the k

nearest pairs are returned inrementally. When a stopping ardinality is not known a priori (e.g., in

on-line query proessing environments or a omplex query ontaining a distane join as a sub-query

whose results need to be pipelined to the next stage of the omplex query), the adaptive multi-stage

algorithms an produe pairs of objets in a stepwise manner.

� We provide a systemati approah for estimating the maximum distane for a distane join query with

a stopping ardinality. This estimated distane allows the adaptive multi-stage algorithms to avoid a

slow start problem, whih may ause a substantial delay in the query proessing. This approah for

estimating the maximum distane also allows the size of memory to be parameterized into a queue

management sheme, so that data movement between memory and disk an be minimized.

The proposed algorithms ahieve up to an order of magnitude performane improvement over previous work

for both k-distane join and inremental distane join queries, under various operational onditions.

The rest of this paper is organized as follows. Setion 2 surveys the bakground and related work on

proessing spatial distane join queries. Major limitations of previous work are also disussed in the setion.

In Setion 3, we present a new improved algorithm based on bi-diretional expansion and optimized plane-

sweep tehniques for k-distane join queries. In Setion 4, adaptive multi-stage algorithms are presented

for k-distane join and inremental distane join queries. A queue management sheme parameterized by

memory apaity is also presented. Setion 5 presents the results of experimental evaluation of the proposed

solutions. Finally, Setion 6 summarizes the ontributions of this paper and gives an outlook to future work.

2 Bakground and Previous Work

A spatial index struture R-tree and its variants [3, 5, 11℄ have been widely used to eÆiently aess mul-

tidimensional data { either spatial or point. Like other tree-strutured index strutures, an R-tree index

partitions a multidimensional spae by grouping objets in a hierarhial manner. A subspae oupied by

a tree node is always ontained in the subspae of its parent node. This hierarhy of spatial ontainment

between R-tree nodes is readily used by spatial distane join algorithms as well as spatial join algorithms.

rr s

(a) Tree−Structured Spatial Index

r1 r2 r3 s1 s2 s3

r1

r3 r2

dist(r2, s2)

dist(<r,s>)

s

s1

s3

s2

(b) Spatial Containment

Figure 1: Hierarhy of Spatial Containment of R-Tree Nodes

Suppose r and s are non-leaf nodes of two R-tree indexes R and S, respetively, as in Figure 1. Then,

the minimum distane between r and s is always less than or equal to the minimum distane between one

of the hild nodes of r and one of the hild nodes of s. Likewise, the maximum distane between r and s is

always greater than or equal to the maximum distane between one of the hild nodes of r and one of the

hild nodes of s. This observation leads to the following lemma.
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Lemma 1 For two R-tree indexes R and S, if neither r 2 R nor s 2 S is a root node, then

dist(r; s) � dist(parent(r); parent(s));

dist(r; s) � dist(r; parent(s)); (1)

dist(r; s) � dist(parent(r); s):

where dist(r; s) is the minimum distane between the MBR representations of r and s.

Proof. From the observation above.

Lemma 1 allows us to limit the searh spae, while R-tree indexes are traversed in a top-down manner

to proess a spatial distane join query. For example, if a pair of non-leaf nodes hr; si turn out to be too far

from eah other (or their distane is over a ertain threshold), then it is not neessary to traverse further

down the tree indexes below the nodes r and s. Thus, this lemma provides the key leverage to proessing

distane join queries eÆiently using R-tree indexes.

2.1 Inremental Distane Join and k-Distane Joins

During top-down traversals of R-tree indexes, it is desirable to store examined node pairs in a priority queue,

where the node pairs are kept in an inreasing order of distanes. We all it a main queue as opposed to

a distane queue we will desribe later. The main queue initially ontains a pair of the root nodes of two

R-tree indexes. Eah time a pair of non-objet nodes are retrieved from the main queue, the hild nodes of

one node are paired up with the hild nodes of the other to generate a new set of node pairs, whih are then

inserted into the main queue. This proess that we all node expansion is repeated until the main queue

beomes empty or until stopped by an interative user. If an element retrieved from the main queue is a pair

of two objets, the pair is returned immediately to the user as a query result. This is how a spatial distane

join query is proessed inrementally. Figure 2 depits a typial framework of proessing an inremental

distane join (IDJ) query using R-tree indexes.

return as an answer

<root of R, root of S>
insert 

at beginning

Main Queue

newly generated pairs

a pair with 
minimum distance

NodeExpansion
      Module

if <object, object>

if non−<object, object>

Figure 2: Framework of Inremental Distane Join (IDJ) Proessing

A distane join query is often given with a stopping ardinality k as in the \stop after" lause of the

sample query in Setion 1. Sine it is known a priori how many objet pairs need to be produed for a

distane join query, this knowledge an be exploited to improve the performane of the query proessing.

Suppose a maximum of k nearest pairs of objets are to be retrieved by a query. One plausible approah

is to maintain k andidate pairs of objets during the entire ourse of query proessing. As they are the k

nearest objet pairs known at eah stage of query proessing, any pair of nodes (and any pair of their hild

nodes) whose distane is longer than all of the k andidate pairs annot be quali�ed as a query result. Thus,

we an use another priority queue to store the k minimum distanes, and use the queue to avoid having

to insert unquali�ed pairs into the main queue during the node expansions. We all the priority queue a

3



distane queue. Figure 3 depits a typial framework of proessing a k-distane join (KDJ) query using

R-tree indexes and both main and distane queues.

Both main and distane queues an be implemented by heap strutures. A main queue is normally

implemented as a min-heap, beause the query results are produed in an inreasing order of distanes. In

ontrast, a distane queue should be implemented as a max-heap, as the uto� distane is determined by

the maximum value among the k distanes stored in the distane queue at eah stage of query proessing.

Pruning node pairs by the distane queue was shown to be very eÆient from our experiments, espeially

when k was rather small.

return as an answer

<root of R, root of S>
insert 

at beginning

Main Queue

newly generated pairs

a pair with 
minimum distance

if <object, object>

if non−<object, object>

NodeExpansion
      Module

remained pairs

Pruning
by Distance Queue

Figure 3: Framework of k-Distane Join (KDJ) Proessing

2.2 Previous Work

The distane join algorithms proposed in [13℄ are based on uni-diretional node expansions. When a pair of

nodes hr; si are retrieved from a main queue, either node r is paired up with the hild nodes of s, or node s

is paired up with the hild nodes of r. None of the pairs are generated from a hild node of r and a hild

node of s. The advantage of the uni-diretional expansion is that the number of pairs generated at eah

expansion step is limited to the fanout of an R-tree index being traversed, and an explosion of the main

queue an be avoided. As is aknowledged by the authors of the algorithms, however, the main disadvantage

of this approah is that the uni-diretional expansion may lead to eah node being aessed from disk more

than neessary. And also, the uni-diretional expansion requires pairing up node r exhaustively with all the

hild nodes of node s or vie versa.

For a spatial distane join query with a relatively small stopping ardinality k, the use of a distane queue

is an e�etive means to prevent distant pairs from entering a main queue. For a large k value, however, the

distane queue may not work well as an e�etive pruning tool, beause the uto� value stored in the distane

queue may remain too high for a long duration. This may in turn lead to a long delay partiularly in the

early stage of query proessing. For these reasons, the previous algorithms su�er from poor performane for

a k-distane join query with a large k and an inremental distane join query, for whih k is unknown in

advane.

Moreover, there is an important issue that was not fully addressed in [13℄. A hybrid memory/disk

tehnique was proposed as a queue management sheme, whih partitions a queue based on the distane

range. This tehnique keeps a partition in the shortest distane range in memory, while the rest of partitions

are stored on disk. However, no mehanism was provided to determine a boundary distane value between the

partition in memory and the rest, whih may have a ruial impat on the performane of queue management.

Several losely related studies for nearest neighbor queries have been reported in the literature. Among

those are nearest neighbor searh algorithms based on Voronoi ells [2, 4℄ and branh and bound teh-
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niques [21, 22℄, a nearest neighbor searh algorithm for ranking requirement [12℄, and multi-step k-nearest

neighbor searh algorithms [14, 23℄.

3 Optimized Plane-Sweep for Fast Pruning

In this setion, we propose a new distane join algorithm B-KDJ (Bidiretional expanding K-Distane Join)

using a bi-diretional node expansion, in an attempt to avoid redundant aesses to R-tree nodes. As is

pointed out in Setion 2, distane join algorithms based on an uni-diretional expansion require aessing an

R-tree node more than those based on bi-diretional expansions. Under the bidiretional node expansion,

for a pair hr; si, eah of the hild nodes of r is paired up with eah of the hild nodes of s. This is essentially

a Cartesian produt, whih may generate more redundant pairs than the uni-diretional expansion does.

Nonetheless, we will show B-KDJ algorithm an e�etively avoid generating redundant pairs by a plane

sweeping tehnique [20℄ and novel strategies for hoosing an axis and a diretion for sweeping. The B-KDJ

algorithm is desribed in Algorithm 1.

3.1 Bidiretional Pair Expansion

Algorithm 1: B-KDJ: K-Distane Join Algorithm with Bi-diretional Expansion and Plane Sweep

1: set AnswerSet  an empty set;

2: set Q

M

, Q

D

 empty main and distane queues;

3: insert a pair hR:root; S:rooti into the main queue Q

M

;

4: while jAnswerSetj < k and Q

M

6= ; do

5: set   dequeue(Q

M

);

6: if  is an hobjet; objeti then AnswerSet  fg [ AnswerSet;

7: else P laneSweep();

end

proedure PlaneSweep(hl; ri)

8: set L  sort axis(fhild nodes of lg); // Sort the hild nodes of l by axis values.

9: set R  sort axis(fhild nodes of rg); // Sort the hild nodes of r by axis values.

10: while L 6= ; and R 6= ; do

11: n  a node with the min axis value 2 L [ R; // n beomes an anhor.

12: if n 2 L then

13: L L� fng; SweepPruning(n;R);

else

14: R R � fng; SweepPruning(n;L);

end

end

proedure SweepPruning(n;List)

15: for eah node m 2 List in an inreasing order of axis value do

16: if axis distane(n;m) > qD

max

then return; // No more andidates.

17: if real distane(n;m) � qD

max

then

18: insert hn;mi into Q

M

;

19: if hn;mi is an hobjet; objeti then insert real distane(n;m) into Q

D

; // qD

max

modi�ed.

end

end

Like the distane join algorithms proposed in [13℄, B-KDJ algorithm uses qD

max

from the distane queue

Q

D

as a uto� value to examine node pairs. If a pair of nodes hr; si removed from the main queue are a

pair of objets, then the objet pair is returned as a query result. Otherwise, the pair is expanded by the

PlaneSweep proedure for further proessing.

Assume that a sweeping axis (i.e., x or y dimensional axis) and a sweeping diretion (i.e., forward or

bakward) are determined, as we will desribe in Setions 3.2 and 3.3. Then, the hild nodes of r and s
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are sorted by x or y oordinates of one of the orners of their MBRs in an inreasing or dereasing order,

depending on the hoie of sweeping axis and sweeping diretion. Eah node enountered during a plane

sweep is seleted as an anhor, and it is paired up with hild nodes in the other group. For example, in

Figure 4, a hild node r

1

of r is seleted as an anhor, and the hild nodes s

1

; s

2

; s

3

and s

4

of s are examined

for pairing, as they are within qD

max

distane from r

1

along the sweeping axis (lines 11-14 and line 16).

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

qDmax

Figure 4: Bidiretional Node Expansion with Plane Sweeping

Sine an axis distane between any pair hr; si is always smaller than or equal to their real distane (i.e.,

axis distane(r; s) � real distane(r; s)), real distanes are omputed only for nodes whose axis distanes

from the anhor are within the urrent qD

max

value (line 17). Given that a real distane is more expensive

to ompute than an axis distane, it may yield non-trivial performane gain. Then, eah pair whose real

distane is within qD

max

is inserted into the main queue Q

M

(line 18). If it is a pair of objets, then update

the urrent qD

max

value by inserting the real distane of the objet pair into the distane queue Q

D

(line 19).

1

For a relatively small qD

max

value and two sets of evenly distributed spatial objets, the number of pairs

for whih B-KDJ algorithm omputes real distanes and performs queue management operations is expeted

to be O(jrj+jsj) roughly. This justi�es the additional ost of sorting hild nodes for plane-sweeping, beause

the overall ost of B-KDJ algorithm would otherwise be O(jrj � jsj) by Cartesian produts.

3.2 Sweeping Axis

We an improve B-KDJ algorithm one step further by deiding the sweeping axis and diretion on an

individual pair basis. Intuitively, if hild nodes (or data objets) are spread more widely along one dimension

(say, x) than the other dimensions, then the bi-diretional node expansion is likely to generate a smaller

number of node pairs to ompute the real distanes for by plane-sweeping along the dimension x. This is

beause, when the nodes are more widely spread along a sweeping axis, the hane that a pair of nodes are

within a qD

max

distane along the sweeping axis is lower. For a pair of parent nodes shown in Figure 5,

as an example, it would be better to hoose y-axis as a sweeping axis, as the hild nodes are more widely

spread along the y-dimension. On the other hand, if x-axis is hosen as a sweeping axis, no pair of the hild

nodes will be pruned by x-axis distane omparison with qD

max

, beause the x-axis distane between any

pair of the hild nodes is shorter than the qD

max

value.

1

There are alternatives as to what pairs are to be inserted into a distane queue: (1) any pairs enountered

during node expansions, or (2) pairs of objets only. If a pair of non-objet R-tree nodes is inserted into a

distane queue, its maximum distane should be inserted as well [13℄. Sine the maximum distane tends to

be larger than those of pairs of objets, most of non-objet pairs are inserted into a distane queue only to

be removed from the distane queue without reduing qD

max

value. Thus, we deide to follow the seond
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y−axis

x−axis

qDmax

qDmax

r

s

Figure 5: E�et of Right Seletion of the Sweeping Axis

|s|x

|r|x

t

|r|x qDmax+ −

t

|s|x

|r|x
0

qDmax
window

qDmax−
2

qDmax−( )
2

Overlap

Overlap

Figure 6: Sweeping Index

Formally, we de�ne a new metri sweeping index as follows, and we use the metri to determine whih

axis a plane-sweep will be performed on. For a given pair hr; si of R-tree nodes and a given qD

max

value, we

an ompute a sweeping index for eah dimension. Coneptually, a sweeping index is an estimated number

of node pairs that we need to ompute the real distanes for.

2

Sweeping Index

x

=

Z

jrj

x

0

Overlap(qD

max

; r; t)dt+

Z

jsj

x

0

Overlap(qD

max

; s; t)dt (2)

In the �rst integral term of the equation above, jrj

x

is the side length of node r along the dimension x.

The funtion Overlap(qD

max

; r; t) is a portion of the side length of s along the dimension x, overlapped with

a window of length qD

max

whose left end point is loated at a point t within jrj

x

(i.e., 0 � t � jrj

x

). (See

the left diagram in Figure 6.) Thus, Overlap(qD

max

; r; t) represents an estimated number of s's hild nodes

interseted with a window [t; t + qD

max

℄. The value of the funtion varies as the window moves along the

dimension x from [0,qD

max

℄ to [jrj

x

; jrj

x

+qD

max

℄. Therefore, the �rst integral term represents an estimated

number of s's hild nodes enountered during the plane-sweeps performed for all the hild nodes of r. The

seond integral term is symmetri with the �rst integral, and an idential desription an be o�ered by

exhanging r and s.

A smaller sweeping index indiates that the bi-diretional expansion needs to ompute real distanes for

a smaller number of nodes pairs. For the reason, B-KDJ algorithm hooses a dimension with the minimum

sweeping index as a sweeping axis.

One thing we may be onerned about is the ost of omputing a sweeping index for eah dimension.

The sweeping index may appear expensive to ompute, as it inludes two integral terms. For given qD

max

,

jrj

x

and jsj

x

values, however, the sweeping index is redued to a formula that involves only a few simple

arithmeti operations. Suppose nodes r and s are not interseted along a dimension x, the minimum x-axis

option.

2

An atual number of node pairs for whih we need to ompute the real distanes would be omputed

by ounting the number of s's hild nodes within qD

max

axis distane from eah hild node of r, ounting

the number of r's hild nodes within qD

max

axis distane from eah hild node of s, and then adding all the

ounts and dividing the ount sum by two. However, this proess will be very expensive.
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distane between them is �, and node r appears before node s in the plane-sweep diretion along x-axis.

(Again, see the left diagram in Figure 6.) Then, the seond integral term of Equation (2) beome zero,

beause all the hild nodes of r have already been swept when the �rst hild node of s is enountered. The

�rst integral term varies depending on the onditions among qD

max

, jrj

x

and jsj

x

values and the proximity

(i.e., �) of nodes r and s along a hosen dimension. Table 1 summaries the formulae of the sweeping index

for non-overlapping nodes r and s. The right diagram in Figure 6 illustrates how we an ompute the �rst

integral term and obtain a simple expression when jsj

x

+ � � qD

max

� jrj

x

+ � is satis�ed.

If nodes r and s are interseted, both the integral terms of Equation 2 beome non-zero. By a similar

reasoning, eah integral term is also transformed into a formula with only a few simple arithmeti operations.

Considering that eah R-tree node may ontain hundreds of hild nodes, it will be a trivial ost to ompute

a sweeping index for eah dimension, while the performane gain by the sweeping axis seletion is expeted

to be signi�ant. This is empirially orroborated by our experiments in Setion 5.

Condition The �rst integral term of Equation 2

qD

max

� � 0

� < qD

max

� jrj

x

+ �

8

<

:

(qD

max

��)

2

2

if qD

max

� jsj

x

+ �;

(qD

max

��)

2

2

�

(jsj

x

)

2

2

otherwise.

qD

max

� jrj

x

+ �

8

>

>

<

>

>

:

(jrj

x

)

2

2

�

(qD

max

�jrj

x

��)

2

2

if jrj

x

� jsj

x

;

(jrj

x

)

2

2

�

(qD

max

�jrj

x

��)

2

2

�

(jrj

x

�jsj

x

)

2

2

if (qD

max

� jrj

x

� �) � jsj

x

< jrj

x

;

jrj

x

� jsj

x

if jsj

x

< (qD

max

� jrj

x

� �):

Table 1: Sweeping index for non-overlapping r and s (� is the minimum distane between hr; si)

3.3 Sweeping Diretion

One a sweeping axis is determined, a sweeping diretion an be hosen to be either a forward sweep or a

bakward sweep. For a pair of nodes r and s, we an de�ne the forward and bakward sweeps as follows.

� A forward plane-sweep sans the hild nodes of r and s in an inreasing order of oordinates along the

hosen sweeping axis.

� A bakward plane-sweep sans the hild nodes of r and s in a dereasing order of oordinates along

the hosen sweeping axis.

Consider nodes r and s projeted on a sweeping axis. The projeted images generate three onseutive losed

intervals on the sweeping axis, unless the projeted images are ompletely overlapped. For example, if nodes

r and s are interseted as in Figure 7(a), an interval in the left is projeted from r, one in the middle from

both r and s, and one in the right from s. The interval in the middle may be projeted from none of r and

s, if r and s are separate as in Figure 7(b). Both the intervals in the left and right may be projeted from

the same node, if one node is ontained in the other as in Figure 7().

(a) intersected

r

s

r

s

(b) separated

r

s

(c) contained

Figure 7: Three intervals projeted from two nodes r and s

However, it does not matter whih node an interval is projeted from, beause the a sweeping diretion

is determined solely on the relative length of the intervals in the left and right. A sweeping diretion is
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determined by omparing the length of the left and right intervals: if the left projeted interval is shorter

than the right one, then a forward diretion is hosen. Otherwise, a bakward diretion is hosen. By this

strategy of hoosing a sweeping diretion, a pair of nodes loser to eah other are likely to be examined

earlier than those farther to eah other. This in turn allows a pair of loser nodes are inserted into the main

queue (and the distane queue as well if they are an objet pair), and helps redue the qD

max

value more

rapidly.

In summary, the sweeping axis seletion improves the bi-diretional node expansion step by pruning more

hild node pairs whose axis distanes are larger than the qD

max

, while, the sweeping diretion seletion does

by reduing the qD

max

value more rapidly.

4 Adaptive Multi-Stage k-Distane Join

In B-KDJ algorithm, qD

max

value is initially set to an in�nity and beomes smaller as the algorithm

proeeds. The adaptation of the qD

max

value has a ruial impat on the performane of B-KDJ algorithm,

as qD

max

is used as a uto� to prevent pairs of distant nodes from entering the main queue. If the qD

max

value

approahes to the real D

max

value slowly, the early stage of B-KDJ algorithm will be delayed onsiderably

for handling too many pairs of distant nodes. Consequently, at the end of the algorithm proessing, the main

queue may end up with a large number of distant pairs whose insertions to the main queue were not neessary.

The performane e�et of slow start is more pronouned for a larger k, as the main queue and distane queue

tend to grow large for a large k, and thereby inreasing the qD

max

value. From our experiments with k as

high as 100,000, we observed that more than 90 perent of exeution time of k-distane join algorithms was

spent to produe the �rst one perent (i.e., 1,000 pairs) of �nal query results.

In this setion, we propose new adaptive multi-stage distane join algorithms AM-KDJ and AM-IDJ

that mitigate the slow start problem by aggressive pruning and ompensation.

4.1 Adaptive Multi-Stage k-Distane Join

The slow start problem is essentially aused by a pruning strategy using qD

max

, whose value is dynamially

updated as tree indexes are traversed and therefore not under diret ontrol of the distane join algorithms.

To irumvent this problem, we introdue a new pruning measure eD

max

, whih is an estimated D

max

value

for a given k. The eD

max

value is set to an initial estimation at the beginning and adaptively orreted

during the algorithm proessing. We will disuss tehniques for initial estimation and adaptive orretion in

Setion 4.3.

AM-KDJ algorithm is similar to B-KDJ algorithm in that both the algorithms use a bi-diretional node

expansion. However, unlike the single-stage B-KDJ algorithm, where only qD

max

is used for pruning, both

qD

max

and eD

max

are used as uto� values for pruning distant pairs in AM-KDJ algorithm. Spei�ally,

in the aggressive pruning stage (desribed in Algorithm 2),

� eD

max

is used for pruning based on axis distanes for aggressive pruning and thereby limiting the size

of main and distane queues (line 22),

� qD

max

is used for further pruning on real distanes for nodes whose axis distanes are within eD

max

,

in the same way as B-KDJ.

With a properly estimated eD

max

value, AM-KDJ algorithm an prune a large number of distant pairs

in the �rst stage and avoid a signi�ant portion of delay due to the slow start. However, if AM-KDJ

algorithm beomes too aggressive by hoosing an underestimated eD

max

value, even lose enough pairs may

be disarded inorretly. To avoid any false dismissals, we introdue another queue alled ompensation

queue (Q

C

). The ompensation queue stores every node pair retrieved from the main queue (line 11), if it

is not a pair of objets or all the hild nodes of the pair are examined by plane sweeping. It should also be

noted that qD

max

but not eD

max

is used for nodes whose axis distanes are within eD

max

. If eD

max

values

are used instead, the ompensation stage will beome very ostly in order to keep trak of an exhaustive set

of pruned pairs and reover quali�ed pairs from them. Using qD

max

values also makes the performane of

AM-KDJ fairly insensitive to estimated eD

max

values.
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Algorithm 2: AM-KDJ: Adaptive Multi-Stage K-Distane Join Algorithm (Aggressive Pruning)

1: set AnswerSet  an empty set;

2: set Q

M

, Q

D

, Q

C

 empty main, distane and restart queues ;

3: set eD

max

 an initial estimated D

max

;

4: insert a pair hR:root; S:rooti to the main queue Q

M

;

5: while jAnswerSetj < k and Q

M

6= ; do

6: set   dequeue(Q

M

);

7: if  is an hobjet; objeti then AnswerSet  fg [ AnswerSet;

else

8: if qD

max

� eD

max

then eD

max

 qD

max

; // overestimated eD

max

9: if :distane < eD

max

then

reinsert  bak into Q

M

;

break; // Terminate the Aggressive Pruning stage.

end

10: AggressivePlaneSweep();

11: enqueue(Q

C

, );

end

end

12: if jAnswerSetj < k then exeute Algorithm 3;

proedure AggressivePlaneSweep(hl; ri)

13: set L  sort axis(fhild nodes of lg); // Sort the hild nodes of l by axis values.

14: set R  sort axis(fhild nodes of rg); // Sort the hild nodes of r by axis values.

15: while L 6= ; and R 6= ; do

16: n  a node with the min axis value 2 L [ R; // n beomes an anhor.

17: if n 2 L then

18: L L� fng; AggressiveSweepPruning(n;R);

19: n:ompensate  a node in R with the min axis value and not yet paired with n;

else

20: R R � fng; AggressiveSweepPruning(n;L);

21: n:ompensate  a node in L with the min axis value and not yet paired with n;

end

end

proedure AggressiveSweepPruning(n;List)

Same as the SweepPruning proedure in Algorithm 1 exept line 16 replaed with the following:

22: if axis distane(n;m) > eD

max

then return;

For example, in Figure 8 (drawn from Figure 4), an anhor node r

1

is paired up with nodes s

1

and s

2

but

not with s

3

and s

4

in the aggressive pruning stage, beause only s

1

and s

2

are within eD

max

from the anhor

node r

1

. Thus, AM-KDJ algorithm inserts only two pairs (hr

1

; s

1

i, hr

1

; s

2

i) into a main queue, instead of

all four pairs (hr

1

; s

1

i, hr

1

; s

2

i, hr

1

; s

3

i, hr

1

; s

4

i) that would be enqueued by B-KDJ algorithm. Then, the

pair hr; si urrently being expanded is inserted into a ompensation queue.

The aggressive pruning stage ends when one of the following onditions is satis�ed: (1) the main queue

beomes empty (line 5), (2) k or more query results have been returned (line 5), or (3) the distane of a

node pair retrieved from the main queue beomes smaller than eD

max

(line 9). When the ondition (2) is

satis�ed, obviously it is not neessary to exeute the ompensation stage of the AM-KDJ algorithm. (An

overestimated eD

max

an also be deteted by omparing with qD

max

value (line 8). In this ase, instead

of terminating the �rst stage, AM-KDJ behaves exatly the same as B-KDJ algorithm by using qD

max

alone as a uto� value.) When the ondition (3) is satis�ed, eD

max

must have been underestimated and the

ompensation stage (desribed in Algorithm 3) begins its proessing by inserting all the pairs stored in the

ompensation queue to the main queue.

In the ompensation stage, the pairs in the main queue are proessed in a similar way as B-KDJ

algorithm, but there are two notable di�erenes from B-KDJ algorithm. First, the hild nodes are not

sorted again beause they have already been sorted in the �rst stage. Seond, for the pairs already expanded

one in the �rst stage, only hild pairs not examined in the �rst stage are proessed by plane sweeping.
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r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

eDmax

remembered as r1.compensate

qDmax

Figure 8: Aggressive pruning with qD

max

and eD

max

Algorithm 3: AM-KDJ: Adaptive Multi-Stage K-Distane Join Algorithm (Compensation Stage)

23: insert all elements in Q

C

into Q

M

;

24: while jAnswerSetj < k and Q

M

6= ; do

25: set   dequeue(Q

M

);

26: if  is an hobjet; objeti then AnswerSet  fg [ AnswerSet;

27: else CompensatePlaneSweep();

end

proedure CompensatePlaneSweep(hl; ri)

28: L  f hild nodes of l sorted in Stage Oneg; // fL[1℄; L[2℄; : : : ; L[jLj℄g

29: R  f hild nodes of r sorted in Stage Oneg; // fR[1℄; R[2℄; : : : ; R[jRj℄g

30: while L 6= ; and R 6= ; do

31: n  a node with the min axis value 2 L [ R; // n beomes an anhor.

32: if n 2 L then

33: L L� fng; R

0

 fnode list in R not paired with n in the Stage One g;

// f R[n:ompensate℄; R[n:ompensate+ 1℄; : : : ; R[jRj℄g

34: SweepPruning(n;R

0

);

else

35: R R � fng; L

0

 fnode list in L not paired with n in the Stage One g;

// f L[n:ompensate℄; L[n:ompensate+ 1℄; : : : ; L[jLj℄g

36: SweepPruning(n;L

0

);

end

end

This is feasible by bookkeeping done in the �rst stage (lines 19 and 21). For these reasons, the ost of the

ompensating stage is not onsiderable ompared with the ost of restarting the algorithm. In summary,

AM-KDJ algorithm uses eD

max

to avoid the slow start problem in the aggressive pruning stage and speeds

up the query proessing.

4.2 Adaptive Multi-stage Inremental Distane Join

Consider on-line query proessing and internet database searh environments, where users interat with

database systems in a way the number of required mathes an be determined interatively or hanged

at any point of query proessing. Consider also a omplex query that pipelines the results from a spatial
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distane join to a �lter stage. Under these irumstanes, the number of pairs (k) that should be returned

from a distane join is not known a priori, and hene a k-distane join algorithm proposed in [13℄ and B-KDJ

algorithm presented in Setion 3 annot be used diretly.

An important advantage of AM-KDJ algorithm proposed in the previous setion is that AM-KDJ

algorithm an be extended to an inremental algorithm (we all AM-IDJ) to support the interative appli-

ations desribed above. The main di�erene between AM-KDJ and AM-IDJ algorithms is that AM-IDJ

does not maintain a distane queue. This is beause it is not feasible to keep an unknown number of distanes

in a distane queue, due to the lak of a priori knowledge about k, Thus, AM-IDJ algorithm uses eD

max

alone as a uto� value for pruning distant pairs, beause qD

max

would be drawn only from a distane queue.

Without qD

max

, AM-IDJ works as a stepwise inremental algorithm. First, AM-IDJ starts by deter-

mining an initial value k

1

and estimating an initial eD

max

1

for k

1

. Then, it performs the same way as the

�rst stage of AM-KDJ algorithm without qD

max

. However, the �rst stage may terminates before produing

enough objet pairs (i.e., less than k

1

), beause AM-IDJ does not use qD

max

as a uto� value. If that

happens, AM-IDJ algorithm estimates eD

max

2

value for k

2

(k

2

> k

1

) and initiates a ompensation stage.

Even when a suÆient number of objet pairs have been returned from the �rst stage, users may request

more answers. Then, AM-IDJ initiates a ompensation stage by determining k

2

and estimating a new

eD

max

2

aordingly. As shown in Figure 9 (drawn from Figure 4), the ompensation stage an initiate

another ompensation stage at the end of its proessing, by hoosing k

3

and eD

max

3

. This proess ontinues

until users stop requesting more answers. In this way, AM-IDJ algorithm an be used to produe query

results inrementally without limiting the maximum number of pairs in advane.

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

eDmax1

eDmax2

eDmax3

r4

r3

(1) (2) (3)

(1) : covered in FirstStage(k1, eDmax1)
(2) : covered in CompensatingStage(k2, eDmax2)
(3) : covered in CompensatingStage(k3, eDmax3)

Figure 9: Adaptive Multi-Stage Inremental Distane Join

4.3 Estimating the Maximum Distane (eD

max

)

Both AM-KDJ and AM-IDJ algorithms proess a distane join query based on an estimated uto� value

eD

max

. Thus, there should be a way to obtain an initial estimate and orret the estimate adaptively as

the algorithms proeed. Assuming data sets are uniformly distributed, we provide mehanisms to hoose an

initial estimate of eD

max

, and to adaptively orret it.

If the distribution of a data set is skewed, then a larger number of lose pairs an be found in a smaller

dense region of the data spae. We expet that the formulae given in this setion tend to overestimate eD

max

value for non-uniformly distributed data sets, espeially when a stopping ardinality k is far smaller than the
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number of all pairs of objets (i.e., k � jRj � jSj). This was orroborated by our experiments as desribed

in Setion 5.4.

4.3.1 Initial estimation

Let jRj and jSj be the number of data objets in sets R and S, respetively. Then, the number of data

objets in S within a distane d from a data objet in R is approximated by jSj �

��d

2

area(R\S)

. Therefore, the

total number of objet pairs (k) within a distane d is given by

k = jRj � jSj �

� � d

2

area(R \ S)

:

For a given k value as the number of requested query results, an initial estimation of eD

max

an be obtained

from the above equation as follows.

eD

max

=

p

k � � (where � =

area(R \ S)

� � jRj � jSj

): (3)

4.3.2 Adaptive Corretion of Estimated Distane eD

max

The performane of AM-KDJ and AM-IDJ algorithms an be further improved by adaptively adjusting

the value of eD

max

at runtime. Adaptive orretion of eD

max

an be done at any point of query proessing

by estimating a new eD

max

from the number of objet pairs k

0

(k

0

< k) obtained up to the point and the

real distane of the k

0

-th objet pair, D

max

(k

0

)

. Spei�ally, the new estimate eD

max

0

an be omputed from

Equation (3) as

eD

max

0

=

q

D

max

2

(k

0

)

+ (k � k

0

)� (4)

by arithmeti orretion, or as

eD

max

0

= D

max

(k

0

)

�

p

k=k

0

(5)

by geometri orretion if D

max

(k

0

) 6= 0. In pratie, we propose omputing eD

max

0

in both ways, and then

hoose the minimum if the query proessing needs to be err on the aggressive side. Otherwise, the maximum

is hosen as eD

max

0

.

Note that the new estimate eD

max

0

an sometimes grow beyond the previous estimate. If this happens,

some pairs whose distanes are larger than the previous estimate but smaller than the new estimate ould

have already been pruned and will never be examined in the urrent proessing stage under the new estimate.

Thus, to guarantee the orretness of the distane join, the algorithm should initiate a ompensation stage,

as soon as a pair whose distane is smaller than the smallest eD

max

is dequeued from the main queue.

4.4 Queue Management

EÆient queue management is one of the key omponents of the distane join algorithms proposed in this

paper. Eah of the B-KDJ, AM-KDJ, and AM-IDJ algorithms relies on the use of one or more priority

queues for query proessing. In partiular, the main queue (Q

M

) is heavily used by all of the proposed

algorithms, and its performane impat is signi�ant. In the worst ase, the main queue an grow as large

as the produt of all objets of two R-tree indexes. That is, the size of Q

M

is in O(jR

obj

j � jS

obj

j), where

jR

obj

j and jS

obj

j are the number of all objets in R and S, respetively. Thus, it is not always feasible to

store the main queue in memory.

It was reported in [13℄ that a simple memory-based implementation might slow down query proessing

severely, due to exessive virtual memory thrashing. A hybrid memory/disk sheme [13℄ and a tehnique

based on range partitioning [9℄ have been proposed to improve queue management and to avoid wasted

sorting I/O operations. We adopt a similar sheme for queue management, whih partitions a queue by

range based on distanes of pairs. A partition in the shortest distane range is kept in memory as a heap

struture, while the rest of partitions are stored on disk as merely unsorted piles.
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When the in-memory heap beomes full, it is split into two parts, and then one in the longer distane

range is moved to disk as a new segment. When the in-memory heap beomes empty, a disk-resident segment

in the shortest distane range or a part of the segment is swapped in to memory to �ll up the in-memory heap.

Eah of the split and swap-in operations requires O(n logn) omputational ost for a heap of n elements as

well as I/O ost for reading and writing a segment. Thus, it is important to minimize the required number

of those operations, whih largely depends on the partition boundary values between the in-memory heap

and the �rst disk-resident segment, and between those onseutive segments. However, as it is impossible to

predit an exat D

max

value for a given k, so is it diÆult to determine optimal distane values as segment

boundaries.

To address this issue, we use Equation (3) to determine the boundary distane values. Suppose n is

the number of elements that an be stored in an in-memory heap. Then, the boundary value between the

in-memory heap and the �rst disk-resident segment is given by

p

n� �, and the boundary value between the

�rst and seond segments is given by

p

(2� n)� �, and so on.

In addition to a main queue, multi-stage algorithms AM-KDJ and AM-IDJ use a ompensation queue

(Q

C

) in the ompensation stage. Unlike the main queue, a ompensation queue does not store any pair

of objets. In other words, a ompensation queue an store pairs of non-objet R-tree nodes only. Thus,

the size of Q

C

is in O(jR

node

j � jS

node

j), where jR

node

j and jS

node

j are the number of nodes (both internal

and leaf nodes) in R and S, respetively. This is a signi�antly lower upper-bound than a main queue has.

We also observed from our experiments that ompensation queues were several orders of magnitude smaller

than main queues. As for a distane queue used by B-KDJ and AM-KDJ algorithms, its size is always

bounded by a given k value. For these reasons, under most irumstanes, we assume either a ompensation

queue and a distane queue �ts in memory. If any of these queues outgrows memory, the same partitioning

tehnique used for a main queue will be applied.

5 Performane Evaluation

In this setion, we evaluate the proposed algorithms empirially and ompare with previous work. In par-

tiular, the proposed B-KDJ, AM-KDJ and AM-IDJ algorithms were ompared with Hjaltason and

Samet's k-distane and inremental distane join algorithms (hereinafter denoted as HS-KDJ and HS-IDJ,

respetively) for k-distane join (KDJ) and inremental distane join (IDJ) queries. We also inlude the per-

formane of an R-tree based spatial join algorithm [7℄ ombined with a sort operation (denoted as SJ -SORT)

in most of the experiments. For eah distane join query, a spatial join operation was performed with a real

D

max

value to generate the k nearest pairs. Then, a sort operation was performed to return the query results

in an inreasing order of distanes. Note that we made a favorable assumption for SJ -SORT that a real

D

max

value was known a priori.

5.1 Experimental Settings

Experiments were performed on an Intel Pentium II workstation with 200 MHz lok rate. This workstation

has 128 MBytes of memory and 4 GBytes of disk storage with Ultra-wide SCSI interfae, and runs on Linux

kernel version 2.0.34.

Data sets To evaluate distane join algorithms, we used real-world data sets in TIGER/Line97 from the

U.S. Bureau of Census [17℄. The partiular data sets we used were 64,952 streets and 191,289 hydrographi

objets from the Arizona state. Throughout all the experiments, the same page size of 4 KBytes was used

for disk I/O and R*-tree [3℄ nodes.

Metris We measured the performane of various algorithms based on the following metris to ompare

the algorithms in di�erent aspets suh as omputational ost and I/O ost.

1. number of distane omputations: The ost of omputing distanes between pairs of nodes (or objets)

onstitutes a signi�ant portion of the omputational ost of a distane join operation. Thus, the total

number of distane omputations required by a distane join algorithm provides a diret indiation of

its omputational performane.
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Figure 10: Performane k-Distane Joins

2. number of queue insertions: The task of managing a main queue is largely I/O intensive as well as CPU

intensive. Thus, the total number of insertions to a main queue required by a distane join algorithm

provides a reasonable indiation of its I/O performane, beause insertions are muh more frequent

than deletions.

3. response time: Atual query response times were measured for overall performane of distane join

algorithms.

5.2 Evaluation of k-Distane Joins

In this set of experiments, we varied a stopping ardinality k from 10 to 100,000 to ompare the performane

of HS-KDJ, B-KDJ and AM-KDJ algorithms. The size of in-memory portion of a main queue was �xed

to 100,000 elements. For AM-KDJ algorithm, we used Equation (3) to estimate eD

max

values, and we

observed a tendeny for eD

max

values to be overestimated with respet to real D

max

values. For example,

for k = 100; 000, eD

max

was about 1.9 times larger than a real D

max

.

Figure 10(a) shows that both B-KDJ and AM-KDJ redued the number of distane omputations

signi�antly. The numbers of distane omputations required by the algorithms were smaller than those

required by HS -KDJ algorithm by up to two orders of magnitude. AM-KDJ was almost idential to

SJ -SORT by this metri. This demonstrates that the optimized plane-sweep method was very e�etive

in pruning distant pairs generated by bi-diretional expansions. On the other hand, HS -KDJ algorithm

examines all possible pairs exhaustively in uni-diretional expansions.

In Figure 10(b), HS-KDJ and B-KDJ were omparable in queue insertions. B-KDJ was slightly better

than HS-KDJ for small k values, and vie versa for large k values. AM-KDJ was always better than

both HS -KDJ and B-KDJ. This result on�rms our onjeture that the optimized plane-sweep method

an prevent an explosion of a main queue that would be aused by bi-diretional node expansions without

the optimized plane-sweep.

As Figure 10() shows, B-KDJ and AM-KDJ outperformed HS-KDJ in response time by a fator of

1.7 (k = 100,000) up to 3 (k = 1,000 or 10,000). For large k values (k > 10; 000), the response time of

AM-KDJ was within about 70 perent of that of SJ -SORT. Note that SJ -SORT was worse than all

three k-distane join algorithms in response time for small k values (k � 1000). This was beause there were

about 1,000 pairs of interseted objets in the Arizona data sets, and all the interseted objet pairs were

returned as a distane join query results, no matter what distane uto� was provided for the SJ -SORT

proessing.

Table 2 shows that the proposed B-KDJ and AM-KDJ algorithms based on bi-diretional node ex-

pansions require a far smaller number of R-tree node aesses than HS -KDJ algorithm, whih is based on

uni-diretional node expansions.

5.3 Impat of Optimized Plane-Sweep

To further analyze the performane impats of the optimized plane-sweep method proposed in Setion 3,

we measured the performane of B-KDJ with the optimization turned o�. Spei�ally, a sweeping axis
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KDJ Stopping ardinality k

Algorithms 10 100 1,000 10,000 100,000

HS -KDJ 456 4,345 37,450 56,016 62,432

B-KDJ 42 456 3,444 4,120 4,244

AM-KDJ 36 442 3,308 4,120 4,244

SJ -SORT 4,106 4,106 4,106 4,120 4,244

Table 2: No. of R-Tree Node Aesses for k-Distane Joins
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Figure 11: Improvements by Optimized Plane Sweep

and diretion were �xed to x-axis and forward diretion, for B-KDJ with the optimization turned o�. As

Figure 11 shows, the optimized plane-sweep alone redued the number of required axis and real distane

omputations by about 30 to 42 perent.

5.4 Evaluation of Inremental Distane Joins

As in the previous setion, we varied a stopping ardinality k from 10 to 100,000 to ompare the performane

of inremental distane join algorithms HS -IDJ and AM-IDJ. Unlike the previous experiments, the size of

in-memory portion of a main queue was set to k+100; 000 elements instead of 100,000 elements, so that the

inremental distane join algorithms were evaluated under the same memory onstraints as the k-distane

join algorithms, whih used k additional elements for a distane queue.

As Figures 12(a) and 12(b) show, 75 to 98 perent of distane omputations and queue insertions per-

formed by HS -IDJ algorithm were eliminated by AM-IDJ algorithm. The signi�ant improvement in these

two metris in turn led to improvement in response time by a fator of four to six in Figure 12(). Like

AM-KDJ algorithm, Equation (3) was used to estimate eD

max

values for AM-IDJ algorithm.
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Figure 12: Performane of Inremental Distane Joins
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5.5 Impat of Memory Size

In this set of experiments, we examined the performane impat of memory onstraint on queue manage-

ment. We measured the response time of HS-KDJ, B-KDJ and AM-KDJ algorithms for a �xed stopping

ardinality k = 100; 000. The size of in-memory portion of a main queue was varied from 5,000 to 500,000.

As Figure 13 shows, the response time of all three algorithms improved as the size of available memory in-

reased. Moreover, the proposed B-KDJ and AM-KDJ algorithms showed onsistently better performane

than HS-KDJ all over the examined range of memory size.
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Figure 13: Performane Impat of Memory Size

5.6 Impat of eD

max

Estimation on AM-KDJ Performane

We designed a set of experiments to haraterize the performane of AM-KDJ algorithm with respet to

the auray of estimated eD

max

values. Instead of using Equation (3) to estimate eD

max

, we varied the

eD

max

value from 0:1�D

max

to 10�D

max

. Reall that D

max

is a real distane between the k-th nearest

pair of objets. Again, we �xed a stopping ardinality k to 100,000, and the size of in-memory portion of a

main queue was �xed to 100,000 elements.

When eD

max

is overestimated (eD

max

> D

max

), the ompensation stage of AM-KDJ algorithm is not

neessary, beause all the k nearest pairs will be produed in the �rst (aggressive pruning) stage. Even

when eD

max

is overestimated, AM-KDJ guarantees that eD

max

is always smaller than or equal to qD

max

(obtained from a distane queue) throughout the �rst stage. Thus, AM-KDJ always requires no more

distane omputation and queue insertion operations than B-KDJ algorithm does.

On the other hand, if eD

max

is underestimated (eD

max

< D

max

), the node pairs in the ompensation

queue will be revisited in the ompensation stage. Thus, the ost of tree traversals and queue management

will inrease, but it will be bounded by twie the ost of B-KDJ algorithm. As disussed in Setion 4.1, for

a pair already expanded one in the �rst stage, only hild pairs not examined in the �rst stage are paired up

in the ompensation stage and thereby wasting no time for redundant work. The value of qD

max

is likely to

beome quite lose to a real D

max

value in the ompensation stage. So, AM-KDJ algorithm usually prunes

distant pairs muh more eÆiently in the ompensation stage than B-KDJ algorithm would do in a single

stage. Therefore, AM-KDJ outperforms the k-distane join algorithms HS-KDJ and B-KDJ, despite the

additional ost of ompensation stage.

Figure 14 shows that as eD

max

approahes to a real D

max

value, the performane of AM-KDJ improves

onsistently in all three metris. When eD

max

inreases far beyond the real D

max

value, the performane of

AM-KDJ onverges to that of B-KDJ algorithm. Importantly, however, AM-KDJ always outperformed

B-KDJ, not to mention HS-KDJ, with eD

max

in a wide spetrum of estimated value range.

We have not measured the ost of ompensation queue management. A ompensation queue ontains

pairs of non-objet R-tree nodes. During the �rst (aggressive pruning) stage of AM-KDJ algorithm, The

number of pruned pairs is far larger than the number of non-objet pairs inserted into a ompensation queue.

In most of our experiments, the size of a ompensation queue was less than 0.5 perent of the size of a main

queue. Thus, the additional ost required for the ompensation queue was almost negligible. This is one of

the reasons why AM-KDJ algorithm always outperformed B-KDJ, whih does not need a ompensation

queue.
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Figure 14: Performane Impat of eD

max

5.7 Stepwise Inremental Exeution of AM-IDJ

Inremental distane join algorithms do not require a preset stopping ardinality k. Thus, in this set of

experiments, we simulated a situation where users repeatedly requested a set of 10,000 nearest pairs at a

time until a total of 100,000 nearest pairs were generated. Inremental algorithms HS-IDJ and AM-IDJ

eah were exeuted one in a single experiment run, until a total of 100,000 nearest pairs were generated.

The size of in-memory portion of a main queue was �xed to 10,000 elements both for HS-IDJ and AM-IDJ.

On the other hand, sine SJ -SORT is not an inremental algorithm, we restarted its proessing eah time

i�10; 000 nearest pairs were generated for i (1 � i � 9). Thus, the performane measurements of SJ -SORT

presented in Figure 15 are umulative. For example, the response time of SJ -SORT for k = 20; 000 inludes

the times spent on exeuting SJ -SORT twie, one for k = 10; 000 and another for k = 20; 000. For eah

run of SJ -SORT, we used a real D

max

value for eah of di�erent stopping ardinalities.

In Figure 15, we measured the response time of AM-IDJ algorithm in two di�erent ways: (1) with eD

max

values estimated by Equation (3), and (2) with real D

max

values. When real eD

max

values were provided,

AM-IDJ initiated a ompensation stage eah time another set of 10,000 pairs of objet were requested by

users. When estimated eD

max

values were provided, AM-IDJ needed ompensation proessing only after

generating 40,000 pairs and 70,000 pairs, due to overestimated eD

max

values. AM-IDJ showed a fairly

onsistent performane over varying eD

max

estimates, as AM-KDJ did in Setion 5.6. For all the k values,

AM-IDJ with estimated eD

max

improved the response time by a fator of two to four, when ompared with

HS-IDJ.
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Figure 15: Step-Wise Inremental Exeution

6 Conlusions

We have developed new distane join algorithms for spatial databases. The proposed algorithms provide

signi�ant performane improvement over previous work. The plane-sweep tehnique optimized by novel
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strategies for seleting a sweeping axis and diretion minimizes the omputational overhead inurred by

bi-diretional node expansions. We have shown that this optimized plane-sweep tehnique alone improves

proessing of a k-distane join query onsiderably.

The adaptive multi-stage algorithms employ aggressive pruning and ompensation methods to further

optimize the distane join proessing. These algorithms address a slow start problem by using estimated

maximum distanes as uto� values for pruning distant pairs. Assuming data objets are uniformly distribut-

ed, we have developed strategies to hoose an initial estimate and to orret the estimate adaptively during

the query proessing. Our experimental study shows that the proposed algorithms outperformed previous

work signi�antly and onsistently over a wide spetrum of estimated maximum distanes. In partiular,

for a relatively small stopping ardinality, the proposed algorithms ahieved up to an order of magnitude

improvement over previous work.

When the stopping ardinality of a distane join query is unknown (as in on-line query proessing environ-

ments or a omplex query that ontains a distane join as a sub-query), the adaptive multi-stage algorithms

proess the query in a stepwise manner so that the query results an be returned inrementally.

We plan to develop new strategies for estimating the maximum distanes and managing queues for

non-uniform data sets.
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