
Adaptive Multi-Stage Distan
e Join Pro
essing

�

Hyoseop Shin

y

Bongki Moon

y

Sukho Lee

z

y

Dept. of Computer S
ien
e

z

Dept. of Computer Engineering

University of Arizona Seoul National University

Tu
son, AZ 85721 Seoul, Korea

fhsshin,bkmoong�
s.arizona.edu shlee�
omp.snu.a
.kr

Te
hni
al Report 99-14

Abstra
t

A spatial distan
e join is a relatively new type of operation introdu
ed for spatial and multimedia

database appli
ations. Additional requirements for ranking and stopping
ardinality are often
ombined

with the spatial distan
e join in on-line query pro
essing or internet sear
h environments. These require-

ments pose new
hallenges as well as opportunities for more eÆ
ient pro
essing of spatial distan
e join

queries. In this paper, we �rst present an eÆ
ient k-distan
e join algorithm that uses spatial indexes

su
h as R-trees. Bi-dire
tional node expansion and plane-sweeping te
hniques are used for fast pruning

of distant pairs, and the plane-sweeping is further optimized by novel strategies for sele
ting a sweeping

axis and dire
tion. Furthermore, we propose adaptive multi-stage algorithms for k-distan
e join and

in
remental distan
e join operations. Our performan
e study shows that the proposed adaptive multi-

stage algorithms outperform previous work by up to an order of magnitude for both k-distan
e join and

in
remental distan
e join queries, under various operational
onditions.

O
tober 1999

Department of Computer S
ien
e

The University of Arizona

Tu
son, AZ 85721

�

This work was sponsored in part by National S
ien
e Foundation CAREER Award (IIS-9876037) and Resear
h Infras-

tru
ture program EIA-9500991. It was also supported by Korea S
ien
e and Engineering Foundation under Ex
hange Student

Program. The authors assume all responsibility for the
ontents of the paper.

1 Introdu
tion

A spatial distan
e join operation was re
ently introdu
ed to spatial databases to asso
iate one or more sets of

spatial data by distan
es between them [13℄. A distan
e is usually de�ned in terms of spatial attributes, but

it
an be de�ned in many di�erent ways a

ording to various appli
ation spe
i�
 requirements. In multimedia

and image database appli
ations, for example, other metri
s su
h as a similarity distan
e fun
tion
an be

used to measure a distan
e between two obje
ts in a feature spa
e.

In on-line de
ision support and internet sear
h environments, it is quite
ommon to pose a query that

�nds the best k mat
hes or reports the results in
rementally in the de
reasing order of well-mat
hedness.

This type of operations allow users to intera
t with database systems more e�e
tively and fo
us on the

\best" answers. Sin
e users
an say \It is enough already" at any time after obtaining the best answers [8℄,

the waste of system resour
es
an be redu
ed and thereby delivering the results to users more qui
kly.

This ranking requirement is often
ombined with a spatial distan
e join query, and the ranking require-

ment provides a new opportunity of optimization for spatial distan
e join pro
essing [9, 10℄. For example,

onsider a query that retrieves the top k pairs (i.e., the nearest pairs) of hotels and restaurants:

SELECT h.name, r.name

FROM Hotel h, Restaurant r

ORDER BY distan
e(h.lo
ation, r.lo
ation)

STOP AFTER k;

For a relatively small stopping
ardinality k, the pro
essing time
an be redu
ed signi�
antly by sorting only

a fra
tion of intermediate results enough to produ
e the k nearest pairs, instead of sorting an entire set of

intermediate results (i.e., a Cartesian produ
t of hotels and restaurants).

A spatial distan
e join query with a stopping
ardinality
an be formulated as follows:

�

dist(r;s)<D

max

(R 1 S)

where dist(r; s) is a distan
e between two spatial obje
ts r 2 R and s 2 S, andD

max

is a
uto� distan
e that is

determined by a stopping
ardinality k and the spatial attribute values of two data sets R and S. It may then

be argued that a spatial distan
e join query
an be pro
essed by a spatial join operation [1, 6, 7, 15, 16, 19℄

followed by a sort operation. Spe
i�
ally, if a D

max

value
an be predi
ted pre
isely for a given stopping

ardinality k, we
an use a spatial join algorithm with a within predi
ate instead of an interse
t predi
ate

to �nd the k nearest pairs of obje
ts. Then, a sort operation will be performed only on the k pairs of obje
ts.

In pra
ti
e, however, it is almost impossible to estimate an a

urate D

max

value for a given stopping

ardinality k, and, to the best of our knowledge, no method for estimating su
h a
uto� value has been

reported in the literature. If the D

max

value is overestimated, then the results from a spatial join operation

may
ontain too many
andidate pairs, whi
h may
ause a long delay in a subsequent stage to sort all the

andidate pairs. On the other hand, if the D

max

value is underestimated, a spatial join operation may not

return a suÆ
ient number of obje
t pairs. Then, the spatial join operation should be repeated with a new

estimate of D

max

, until k or more pairs are returned. This may
ause a signi�
ant amount of waste in

pro
essing time and resour
es.

There is another reason that makes it impra
ti
al to apply a spatial join algorithm to spatial distan
e join

queries. A spatial join query is typi
ally pro
essed in two steps, �lter and re�nement, as proposed in [18℄.

In a �lter step, MBR approximations are used to �nd pairs of potentially interse
ted spatial obje
ts. Then,

in a re�nement step, it is guaranteed that all the quali�ed (i.e., a
tually interse
ted) pairs
an be produ
ed

from the results returned from the �lter step.

In
ontrast, it is
ompletely unreasonable to pro
ess a spatial distan
e join query in two separate �lter

and re�nement steps, be
ause of the fa
t that a �ltering pro
ess is based on MBR approximations. A set

of obje
t pairs sorted by distan
es measured by MBR approximations does not re
e
t a true order based

on a
tual representations. This is be
ause, for any two pairs of spatial obje
ts hr

1

; s

1

i and hr

2

; s

2

i, the fa
t

that dist(MBR(r

1

);MBR(s

1

)) < dist(MBR(r

2

);MBR(s

2

)) does not ne
essarily imply that dist(r

1

; s

1

) <

dist(r

2

; s

2

). Consequently, any pro
essing done in the �lter step will be of no use for �nding the k nearest

obje
t pairs.

In this paper, we propose new strategies for eÆ
iently pro
essing spatial distan
e join queries
ombined

with ranking requirements. The main
ontributions of the proposed solutions are:

1

� New eÆ
ient methods are proposed to pro
ess distan
e join queries using spatial index stru
tures

su
h as R-trees. Bi-dire
tional node expansion and optimized plane-sweep te
hniques are used for fast

pruning of distant pairs, and the plane-sweep is further optimized by novel strategies for sele
ting a

sweeping axis and dire
tion.

� Adaptive multi-stage algorithms are proposed to pro
ess distan
e join queries in a way that the k

nearest pairs are returned in
rementally. When a stopping
ardinality is not known a priori (e.g., in

on-line query pro
essing environments or a
omplex query
ontaining a distan
e join as a sub-query

whose results need to be pipelined to the next stage of the
omplex query), the adaptive multi-stage

algorithms
an produ
e pairs of obje
ts in a stepwise manner.

� We provide a systemati
 approa
h for estimating the maximum distan
e for a distan
e join query with

a stopping
ardinality. This estimated distan
e allows the adaptive multi-stage algorithms to avoid a

slow start problem, whi
h may
ause a substantial delay in the query pro
essing. This approa
h for

estimating the maximum distan
e also allows the size of memory to be parameterized into a queue

management s
heme, so that data movement between memory and disk
an be minimized.

The proposed algorithms a
hieve up to an order of magnitude performan
e improvement over previous work

for both k-distan
e join and in
remental distan
e join queries, under various operational
onditions.

The rest of this paper is organized as follows. Se
tion 2 surveys the ba
kground and related work on

pro
essing spatial distan
e join queries. Major limitations of previous work are also dis
ussed in the se
tion.

In Se
tion 3, we present a new improved algorithm based on bi-dire
tional expansion and optimized plane-

sweep te
hniques for k-distan
e join queries. In Se
tion 4, adaptive multi-stage algorithms are presented

for k-distan
e join and in
remental distan
e join queries. A queue management s
heme parameterized by

memory
apa
ity is also presented. Se
tion 5 presents the results of experimental evaluation of the proposed

solutions. Finally, Se
tion 6 summarizes the
ontributions of this paper and gives an outlook to future work.

2 Ba
kground and Previous Work

A spatial index stru
ture R-tree and its variants [3, 5, 11℄ have been widely used to eÆ
iently a

ess mul-

tidimensional data { either spatial or point. Like other tree-stru
tured index stru
tures, an R-tree index

partitions a multidimensional spa
e by grouping obje
ts in a hierar
hi
al manner. A subspa
e o

upied by

a tree node is always
ontained in the subspa
e of its parent node. This hierar
hy of spatial
ontainment

between R-tree nodes is readily used by spatial distan
e join algorithms as well as spatial join algorithms.

rr s

(a) Tree−Structured Spatial Index

r1 r2 r3 s1 s2 s3

r1

r3 r2

dist(r2, s2)

dist(<r,s>)

s

s1

s3

s2

(b) Spatial Containment

Figure 1: Hierar
hy of Spatial Containment of R-Tree Nodes

Suppose r and s are non-leaf nodes of two R-tree indexes R and S, respe
tively, as in Figure 1. Then,

the minimum distan
e between r and s is always less than or equal to the minimum distan
e between one

of the
hild nodes of r and one of the
hild nodes of s. Likewise, the maximum distan
e between r and s is

always greater than or equal to the maximum distan
e between one of the
hild nodes of r and one of the

hild nodes of s. This observation leads to the following lemma.

2

Lemma 1 For two R-tree indexes R and S, if neither r 2 R nor s 2 S is a root node, then

dist(r; s) � dist(parent(r); parent(s));

dist(r; s) � dist(r; parent(s)); (1)

dist(r; s) � dist(parent(r); s):

where dist(r; s) is the minimum distan
e between the MBR representations of r and s.

Proof. From the observation above.

Lemma 1 allows us to limit the sear
h spa
e, while R-tree indexes are traversed in a top-down manner

to pro
ess a spatial distan
e join query. For example, if a pair of non-leaf nodes hr; si turn out to be too far

from ea
h other (or their distan
e is over a
ertain threshold), then it is not ne
essary to traverse further

down the tree indexes below the nodes r and s. Thus, this lemma provides the key leverage to pro
essing

distan
e join queries eÆ
iently using R-tree indexes.

2.1 In
remental Distan
e Join and k-Distan
e Joins

During top-down traversals of R-tree indexes, it is desirable to store examined node pairs in a priority queue,

where the node pairs are kept in an in
reasing order of distan
es. We
all it a main queue as opposed to

a distan
e queue we will des
ribe later. The main queue initially
ontains a pair of the root nodes of two

R-tree indexes. Ea
h time a pair of non-obje
t nodes are retrieved from the main queue, the
hild nodes of

one node are paired up with the
hild nodes of the other to generate a new set of node pairs, whi
h are then

inserted into the main queue. This pro
ess that we
all node expansion is repeated until the main queue

be
omes empty or until stopped by an intera
tive user. If an element retrieved from the main queue is a pair

of two obje
ts, the pair is returned immediately to the user as a query result. This is how a spatial distan
e

join query is pro
essed in
rementally. Figure 2 depi
ts a typi
al framework of pro
essing an in
remental

distan
e join (IDJ) query using R-tree indexes.

return as an answer

<root of R, root of S>
insert

at beginning

Main Queue

newly generated pairs

a pair with
minimum distance

NodeExpansion
 Module

if <object, object>

if non−<object, object>

Figure 2: Framework of In
remental Distan
e Join (IDJ) Pro
essing

A distan
e join query is often given with a stopping
ardinality k as in the \stop after"
lause of the

sample query in Se
tion 1. Sin
e it is known a priori how many obje
t pairs need to be produ
ed for a

distan
e join query, this knowledge
an be exploited to improve the performan
e of the query pro
essing.

Suppose a maximum of k nearest pairs of obje
ts are to be retrieved by a query. One plausible approa
h

is to maintain k
andidate pairs of obje
ts during the entire
ourse of query pro
essing. As they are the k

nearest obje
t pairs known at ea
h stage of query pro
essing, any pair of nodes (and any pair of their
hild

nodes) whose distan
e is longer than all of the k
andidate pairs
annot be quali�ed as a query result. Thus,

we
an use another priority queue to store the k minimum distan
es, and use the queue to avoid having

to insert unquali�ed pairs into the main queue during the node expansions. We
all the priority queue a

3

distan
e queue. Figure 3 depi
ts a typi
al framework of pro
essing a k-distan
e join (KDJ) query using

R-tree indexes and both main and distan
e queues.

Both main and distan
e queues
an be implemented by heap stru
tures. A main queue is normally

implemented as a min-heap, be
ause the query results are produ
ed in an in
reasing order of distan
es. In

ontrast, a distan
e queue should be implemented as a max-heap, as the
uto� distan
e is determined by

the maximum value among the k distan
es stored in the distan
e queue at ea
h stage of query pro
essing.

Pruning node pairs by the distan
e queue was shown to be very eÆ
ient from our experiments, espe
ially

when k was rather small.

return as an answer

<root of R, root of S>
insert

at beginning

Main Queue

newly generated pairs

a pair with
minimum distance

if <object, object>

if non−<object, object>

NodeExpansion
 Module

remained pairs

Pruning
by Distance Queue

Figure 3: Framework of k-Distan
e Join (KDJ) Pro
essing

2.2 Previous Work

The distan
e join algorithms proposed in [13℄ are based on uni-dire
tional node expansions. When a pair of

nodes hr; si are retrieved from a main queue, either node r is paired up with the
hild nodes of s, or node s

is paired up with the
hild nodes of r. None of the pairs are generated from a
hild node of r and a
hild

node of s. The advantage of the uni-dire
tional expansion is that the number of pairs generated at ea
h

expansion step is limited to the fanout of an R-tree index being traversed, and an explosion of the main

queue
an be avoided. As is a
knowledged by the authors of the algorithms, however, the main disadvantage

of this approa
h is that the uni-dire
tional expansion may lead to ea
h node being a

essed from disk more

than ne
essary. And also, the uni-dire
tional expansion requires pairing up node r exhaustively with all the

hild nodes of node s or vi
e versa.

For a spatial distan
e join query with a relatively small stopping
ardinality k, the use of a distan
e queue

is an e�e
tive means to prevent distant pairs from entering a main queue. For a large k value, however, the

distan
e queue may not work well as an e�e
tive pruning tool, be
ause the
uto� value stored in the distan
e

queue may remain too high for a long duration. This may in turn lead to a long delay parti
ularly in the

early stage of query pro
essing. For these reasons, the previous algorithms su�er from poor performan
e for

a k-distan
e join query with a large k and an in
remental distan
e join query, for whi
h k is unknown in

advan
e.

Moreover, there is an important issue that was not fully addressed in [13℄. A hybrid memory/disk

te
hnique was proposed as a queue management s
heme, whi
h partitions a queue based on the distan
e

range. This te
hnique keeps a partition in the shortest distan
e range in memory, while the rest of partitions

are stored on disk. However, no me
hanism was provided to determine a boundary distan
e value between the

partition in memory and the rest, whi
h may have a
ru
ial impa
t on the performan
e of queue management.

Several
losely related studies for nearest neighbor queries have been reported in the literature. Among

those are nearest neighbor sear
h algorithms based on Voronoi
ells [2, 4℄ and bran
h and bound te
h-

4

niques [21, 22℄, a nearest neighbor sear
h algorithm for ranking requirement [12℄, and multi-step k-nearest

neighbor sear
h algorithms [14, 23℄.

3 Optimized Plane-Sweep for Fast Pruning

In this se
tion, we propose a new distan
e join algorithm B-KDJ (Bidire
tional expanding K-Distan
e Join)

using a bi-dire
tional node expansion, in an attempt to avoid redundant a

esses to R-tree nodes. As is

pointed out in Se
tion 2, distan
e join algorithms based on an uni-dire
tional expansion require a

essing an

R-tree node more than those based on bi-dire
tional expansions. Under the bidire
tional node expansion,

for a pair hr; si, ea
h of the
hild nodes of r is paired up with ea
h of the
hild nodes of s. This is essentially

a Cartesian produ
t, whi
h may generate more redundant pairs than the uni-dire
tional expansion does.

Nonetheless, we will show B-KDJ algorithm
an e�e
tively avoid generating redundant pairs by a plane

sweeping te
hnique [20℄ and novel strategies for
hoosing an axis and a dire
tion for sweeping. The B-KDJ

algorithm is des
ribed in Algorithm 1.

3.1 Bidire
tional Pair Expansion

Algorithm 1: B-KDJ: K-Distan
e Join Algorithm with Bi-dire
tional Expansion and Plane Sweep

1: set AnswerSet an empty set;

2: set Q

M

, Q

D

 empty main and distan
e queues;

3: insert a pair hR:root; S:rooti into the main queue Q

M

;

4: while jAnswerSetj < k and Q

M

6= ; do

5: set
 dequeue(Q

M

);

6: if
 is an hobje
t; obje
ti then AnswerSet f
g [AnswerSet;

7: else P laneSweep(
);

end

pro
edure PlaneSweep(hl; ri)

8: set L sort axis(f
hild nodes of lg); // Sort the
hild nodes of l by axis values.

9: set R sort axis(f
hild nodes of rg); // Sort the
hild nodes of r by axis values.

10: while L 6= ; and R 6= ; do

11: n a node with the min axis value 2 L [R; // n be
omes an an
hor.

12: if n 2 L then

13: L L� fng; SweepPruning(n;R);

else

14: R R � fng; SweepPruning(n;L);

end

end

pro
edure SweepPruning(n;List)

15: for ea
h node m 2 List in an in
reasing order of axis value do

16: if axis distan
e(n;m) > qD

max

then return; // No more
andidates.

17: if real distan
e(n;m) � qD

max

then

18: insert hn;mi into Q

M

;

19: if hn;mi is an hobje
t; obje
ti then insert real distan
e(n;m) into Q

D

; // qD

max

modi�ed.

end

end

Like the distan
e join algorithms proposed in [13℄, B-KDJ algorithm uses qD

max

from the distan
e queue

Q

D

as a
uto� value to examine node pairs. If a pair of nodes hr; si removed from the main queue are a

pair of obje
ts, then the obje
t pair is returned as a query result. Otherwise, the pair is expanded by the

PlaneSweep pro
edure for further pro
essing.

Assume that a sweeping axis (i.e., x or y dimensional axis) and a sweeping dire
tion (i.e., forward or

ba
kward) are determined, as we will des
ribe in Se
tions 3.2 and 3.3. Then, the
hild nodes of r and s

5

are sorted by x or y
oordinates of one of the
orners of their MBRs in an in
reasing or de
reasing order,

depending on the
hoi
e of sweeping axis and sweeping dire
tion. Ea
h node en
ountered during a plane

sweep is sele
ted as an an
hor, and it is paired up with
hild nodes in the other group. For example, in

Figure 4, a
hild node r

1

of r is sele
ted as an an
hor, and the
hild nodes s

1

; s

2

; s

3

and s

4

of s are examined

for pairing, as they are within qD

max

distan
e from r

1

along the sweeping axis (lines 11-14 and line 16).

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

qDmax

Figure 4: Bidire
tional Node Expansion with Plane Sweeping

Sin
e an axis distan
e between any pair hr; si is always smaller than or equal to their real distan
e (i.e.,

axis distan
e(r; s) � real distan
e(r; s)), real distan
es are
omputed only for nodes whose axis distan
es

from the an
hor are within the
urrent qD

max

value (line 17). Given that a real distan
e is more expensive

to
ompute than an axis distan
e, it may yield non-trivial performan
e gain. Then, ea
h pair whose real

distan
e is within qD

max

is inserted into the main queue Q

M

(line 18). If it is a pair of obje
ts, then update

the
urrent qD

max

value by inserting the real distan
e of the obje
t pair into the distan
e queue Q

D

(line 19).

1

For a relatively small qD

max

value and two sets of evenly distributed spatial obje
ts, the number of pairs

for whi
h B-KDJ algorithm
omputes real distan
es and performs queue management operations is expe
ted

to be O(jrj+jsj) roughly. This justi�es the additional
ost of sorting
hild nodes for plane-sweeping, be
ause

the overall
ost of B-KDJ algorithm would otherwise be O(jrj � jsj) by Cartesian produ
ts.

3.2 Sweeping Axis

We
an improve B-KDJ algorithm one step further by de
iding the sweeping axis and dire
tion on an

individual pair basis. Intuitively, if
hild nodes (or data obje
ts) are spread more widely along one dimension

(say, x) than the other dimensions, then the bi-dire
tional node expansion is likely to generate a smaller

number of node pairs to
ompute the real distan
es for by plane-sweeping along the dimension x. This is

be
ause, when the nodes are more widely spread along a sweeping axis, the
han
e that a pair of nodes are

within a qD

max

distan
e along the sweeping axis is lower. For a pair of parent nodes shown in Figure 5,

as an example, it would be better to
hoose y-axis as a sweeping axis, as the
hild nodes are more widely

spread along the y-dimension. On the other hand, if x-axis is
hosen as a sweeping axis, no pair of the
hild

nodes will be pruned by x-axis distan
e
omparison with qD

max

, be
ause the x-axis distan
e between any

pair of the
hild nodes is shorter than the qD

max

value.

1

There are alternatives as to what pairs are to be inserted into a distan
e queue: (1) any pairs en
ountered

during node expansions, or (2) pairs of obje
ts only. If a pair of non-obje
t R-tree nodes is inserted into a

distan
e queue, its maximum distan
e should be inserted as well [13℄. Sin
e the maximum distan
e tends to

be larger than those of pairs of obje
ts, most of non-obje
t pairs are inserted into a distan
e queue only to

be removed from the distan
e queue without redu
ing qD

max

value. Thus, we de
ide to follow the se
ond

6

y−axis

x−axis

qDmax

qDmax

r

s

Figure 5: E�e
t of Right Sele
tion of the Sweeping Axis

|s|x

|r|x

t

|r|x qDmax+ −

t

|s|x

|r|x
0

qDmax
window

qDmax−
2

qDmax−()
2

Overlap

Overlap

Figure 6: Sweeping Index

Formally, we de�ne a new metri
 sweeping index as follows, and we use the metri
 to determine whi
h

axis a plane-sweep will be performed on. For a given pair hr; si of R-tree nodes and a given qD

max

value, we

an
ompute a sweeping index for ea
h dimension. Con
eptually, a sweeping index is an estimated number

of node pairs that we need to
ompute the real distan
es for.

2

Sweeping Index

x

=

Z

jrj

x

0

Overlap(qD

max

; r; t)dt+

Z

jsj

x

0

Overlap(qD

max

; s; t)dt (2)

In the �rst integral term of the equation above, jrj

x

is the side length of node r along the dimension x.

The fun
tion Overlap(qD

max

; r; t) is a portion of the side length of s along the dimension x, overlapped with

a window of length qD

max

whose left end point is lo
ated at a point t within jrj

x

(i.e., 0 � t � jrj

x

). (See

the left diagram in Figure 6.) Thus, Overlap(qD

max

; r; t) represents an estimated number of s's
hild nodes

interse
ted with a window [t; t + qD

max

℄. The value of the fun
tion varies as the window moves along the

dimension x from [0,qD

max

℄ to [jrj

x

; jrj

x

+qD

max

℄. Therefore, the �rst integral term represents an estimated

number of s's
hild nodes en
ountered during the plane-sweeps performed for all the
hild nodes of r. The

se
ond integral term is symmetri
 with the �rst integral, and an identi
al des
ription
an be o�ered by

ex
hanging r and s.

A smaller sweeping index indi
ates that the bi-dire
tional expansion needs to
ompute real distan
es for

a smaller number of nodes pairs. For the reason, B-KDJ algorithm
hooses a dimension with the minimum

sweeping index as a sweeping axis.

One thing we may be
on
erned about is the
ost of
omputing a sweeping index for ea
h dimension.

The sweeping index may appear expensive to
ompute, as it in
ludes two integral terms. For given qD

max

,

jrj

x

and jsj

x

values, however, the sweeping index is redu
ed to a formula that involves only a few simple

arithmeti
 operations. Suppose nodes r and s are not interse
ted along a dimension x, the minimum x-axis

option.

2

An a
tual number of node pairs for whi
h we need to
ompute the real distan
es would be
omputed

by
ounting the number of s's
hild nodes within qD

max

axis distan
e from ea
h
hild node of r,
ounting

the number of r's
hild nodes within qD

max

axis distan
e from ea
h
hild node of s, and then adding all the

ounts and dividing the
ount sum by two. However, this pro
ess will be very expensive.

7

distan
e between them is �, and node r appears before node s in the plane-sweep dire
tion along x-axis.

(Again, see the left diagram in Figure 6.) Then, the se
ond integral term of Equation (2) be
ome zero,

be
ause all the
hild nodes of r have already been swept when the �rst
hild node of s is en
ountered. The

�rst integral term varies depending on the
onditions among qD

max

, jrj

x

and jsj

x

values and the proximity

(i.e., �) of nodes r and s along a
hosen dimension. Table 1 summaries the formulae of the sweeping index

for non-overlapping nodes r and s. The right diagram in Figure 6 illustrates how we
an
ompute the �rst

integral term and obtain a simple expression when jsj

x

+ � � qD

max

� jrj

x

+ � is satis�ed.

If nodes r and s are interse
ted, both the integral terms of Equation 2 be
ome non-zero. By a similar

reasoning, ea
h integral term is also transformed into a formula with only a few simple arithmeti
 operations.

Considering that ea
h R-tree node may
ontain hundreds of
hild nodes, it will be a trivial
ost to
ompute

a sweeping index for ea
h dimension, while the performan
e gain by the sweeping axis sele
tion is expe
ted

to be signi�
ant. This is empiri
ally
orroborated by our experiments in Se
tion 5.

Condition The �rst integral term of Equation 2

qD

max

� � 0

� < qD

max

� jrj

x

+ �

8

<

:

(qD

max

��)

2

2

if qD

max

� jsj

x

+ �;

(qD

max

��)

2

2

�

(jsj

x

)

2

2

otherwise.

qD

max

� jrj

x

+ �

8

>

>

<

>

>

:

(jrj

x

)

2

2

�

(qD

max

�jrj

x

��)

2

2

if jrj

x

� jsj

x

;

(jrj

x

)

2

2

�

(qD

max

�jrj

x

��)

2

2

�

(jrj

x

�jsj

x

)

2

2

if (qD

max

� jrj

x

� �) � jsj

x

< jrj

x

;

jrj

x

� jsj

x

if jsj

x

< (qD

max

� jrj

x

� �):

Table 1: Sweeping index for non-overlapping r and s (� is the minimum distan
e between hr; si)

3.3 Sweeping Dire
tion

On
e a sweeping axis is determined, a sweeping dire
tion
an be
hosen to be either a forward sweep or a

ba
kward sweep. For a pair of nodes r and s, we
an de�ne the forward and ba
kward sweeps as follows.

� A forward plane-sweep s
ans the
hild nodes of r and s in an in
reasing order of
oordinates along the

hosen sweeping axis.

� A ba
kward plane-sweep s
ans the
hild nodes of r and s in a de
reasing order of
oordinates along

the
hosen sweeping axis.

Consider nodes r and s proje
ted on a sweeping axis. The proje
ted images generate three
onse
utive
losed

intervals on the sweeping axis, unless the proje
ted images are
ompletely overlapped. For example, if nodes

r and s are interse
ted as in Figure 7(a), an interval in the left is proje
ted from r, one in the middle from

both r and s, and one in the right from s. The interval in the middle may be proje
ted from none of r and

s, if r and s are separate as in Figure 7(b). Both the intervals in the left and right may be proje
ted from

the same node, if one node is
ontained in the other as in Figure 7(
).

(a) intersected

r

s

r

s

(b) separated

r

s

(c) contained

Figure 7: Three intervals proje
ted from two nodes r and s

However, it does not matter whi
h node an interval is proje
ted from, be
ause the a sweeping dire
tion

is determined solely on the relative length of the intervals in the left and right. A sweeping dire
tion is

8

determined by
omparing the length of the left and right intervals: if the left proje
ted interval is shorter

than the right one, then a forward dire
tion is
hosen. Otherwise, a ba
kward dire
tion is
hosen. By this

strategy of
hoosing a sweeping dire
tion, a pair of nodes
loser to ea
h other are likely to be examined

earlier than those farther to ea
h other. This in turn allows a pair of
loser nodes are inserted into the main

queue (and the distan
e queue as well if they are an obje
t pair), and helps redu
e the qD

max

value more

rapidly.

In summary, the sweeping axis sele
tion improves the bi-dire
tional node expansion step by pruning more

hild node pairs whose axis distan
es are larger than the qD

max

, while, the sweeping dire
tion sele
tion does

by redu
ing the qD

max

value more rapidly.

4 Adaptive Multi-Stage k-Distan
e Join

In B-KDJ algorithm, qD

max

value is initially set to an in�nity and be
omes smaller as the algorithm

pro
eeds. The adaptation of the qD

max

value has a
ru
ial impa
t on the performan
e of B-KDJ algorithm,

as qD

max

is used as a
uto� to prevent pairs of distant nodes from entering the main queue. If the qD

max

value

approa
hes to the real D

max

value slowly, the early stage of B-KDJ algorithm will be delayed
onsiderably

for handling too many pairs of distant nodes. Consequently, at the end of the algorithm pro
essing, the main

queue may end up with a large number of distant pairs whose insertions to the main queue were not ne
essary.

The performan
e e�e
t of slow start is more pronoun
ed for a larger k, as the main queue and distan
e queue

tend to grow large for a large k, and thereby in
reasing the qD

max

value. From our experiments with k as

high as 100,000, we observed that more than 90 per
ent of exe
ution time of k-distan
e join algorithms was

spent to produ
e the �rst one per
ent (i.e., 1,000 pairs) of �nal query results.

In this se
tion, we propose new adaptive multi-stage distan
e join algorithms AM-KDJ and AM-IDJ

that mitigate the slow start problem by aggressive pruning and
ompensation.

4.1 Adaptive Multi-Stage k-Distan
e Join

The slow start problem is essentially
aused by a pruning strategy using qD

max

, whose value is dynami
ally

updated as tree indexes are traversed and therefore not under dire
t
ontrol of the distan
e join algorithms.

To
ir
umvent this problem, we introdu
e a new pruning measure eD

max

, whi
h is an estimated D

max

value

for a given k. The eD

max

value is set to an initial estimation at the beginning and adaptively
orre
ted

during the algorithm pro
essing. We will dis
uss te
hniques for initial estimation and adaptive
orre
tion in

Se
tion 4.3.

AM-KDJ algorithm is similar to B-KDJ algorithm in that both the algorithms use a bi-dire
tional node

expansion. However, unlike the single-stage B-KDJ algorithm, where only qD

max

is used for pruning, both

qD

max

and eD

max

are used as
uto� values for pruning distant pairs in AM-KDJ algorithm. Spe
i�
ally,

in the aggressive pruning stage (des
ribed in Algorithm 2),

� eD

max

is used for pruning based on axis distan
es for aggressive pruning and thereby limiting the size

of main and distan
e queues (line 22),

� qD

max

is used for further pruning on real distan
es for nodes whose axis distan
es are within eD

max

,

in the same way as B-KDJ.

With a properly estimated eD

max

value, AM-KDJ algorithm
an prune a large number of distant pairs

in the �rst stage and avoid a signi�
ant portion of delay due to the slow start. However, if AM-KDJ

algorithm be
omes too aggressive by
hoosing an underestimated eD

max

value, even
lose enough pairs may

be dis
arded in
orre
tly. To avoid any false dismissals, we introdu
e another queue
alled
ompensation

queue (Q

C

). The
ompensation queue stores every node pair retrieved from the main queue (line 11), if it

is not a pair of obje
ts or all the
hild nodes of the pair are examined by plane sweeping. It should also be

noted that qD

max

but not eD

max

is used for nodes whose axis distan
es are within eD

max

. If eD

max

values

are used instead, the
ompensation stage will be
ome very
ostly in order to keep tra
k of an exhaustive set

of pruned pairs and re
over quali�ed pairs from them. Using qD

max

values also makes the performan
e of

AM-KDJ fairly insensitive to estimated eD

max

values.

9

Algorithm 2: AM-KDJ: Adaptive Multi-Stage K-Distan
e Join Algorithm (Aggressive Pruning)

1: set AnswerSet an empty set;

2: set Q

M

, Q

D

, Q

C

 empty main, distan
e and restart queues ;

3: set eD

max

 an initial estimated D

max

;

4: insert a pair hR:root; S:rooti to the main queue Q

M

;

5: while jAnswerSetj < k and Q

M

6= ; do

6: set
 dequeue(Q

M

);

7: if
 is an hobje
t; obje
ti then AnswerSet f
g [AnswerSet;

else

8: if qD

max

� eD

max

then eD

max

 qD

max

; // overestimated eD

max

9: if
:distan
e < eD

max

then

reinsert
 ba
k into Q

M

;

break; // Terminate the Aggressive Pruning stage.

end

10: AggressivePlaneSweep(
);

11: enqueue(Q

C

,
);

end

end

12: if jAnswerSetj < k then exe
ute Algorithm 3;

pro
edure AggressivePlaneSweep(hl; ri)

13: set L sort axis(f
hild nodes of lg); // Sort the
hild nodes of l by axis values.

14: set R sort axis(f
hild nodes of rg); // Sort the
hild nodes of r by axis values.

15: while L 6= ; and R 6= ; do

16: n a node with the min axis value 2 L [R; // n be
omes an an
hor.

17: if n 2 L then

18: L L� fng; AggressiveSweepPruning(n;R);

19: n:
ompensate a node in R with the min axis value and not yet paired with n;

else

20: R R � fng; AggressiveSweepPruning(n;L);

21: n:
ompensate a node in L with the min axis value and not yet paired with n;

end

end

pro
edure AggressiveSweepPruning(n;List)

Same as the SweepPruning pro
edure in Algorithm 1 ex
ept line 16 repla
ed with the following:

22: if axis distan
e(n;m) > eD

max

then return;

For example, in Figure 8 (drawn from Figure 4), an an
hor node r

1

is paired up with nodes s

1

and s

2

but

not with s

3

and s

4

in the aggressive pruning stage, be
ause only s

1

and s

2

are within eD

max

from the an
hor

node r

1

. Thus, AM-KDJ algorithm inserts only two pairs (hr

1

; s

1

i, hr

1

; s

2

i) into a main queue, instead of

all four pairs (hr

1

; s

1

i, hr

1

; s

2

i, hr

1

; s

3

i, hr

1

; s

4

i) that would be enqueued by B-KDJ algorithm. Then, the

pair hr; si
urrently being expanded is inserted into a
ompensation queue.

The aggressive pruning stage ends when one of the following
onditions is satis�ed: (1) the main queue

be
omes empty (line 5), (2) k or more query results have been returned (line 5), or (3) the distan
e of a

node pair retrieved from the main queue be
omes smaller than eD

max

(line 9). When the
ondition (2) is

satis�ed, obviously it is not ne
essary to exe
ute the
ompensation stage of the AM-KDJ algorithm. (An

overestimated eD

max

an also be dete
ted by
omparing with qD

max

value (line 8). In this
ase, instead

of terminating the �rst stage, AM-KDJ behaves exa
tly the same as B-KDJ algorithm by using qD

max

alone as a
uto� value.) When the
ondition (3) is satis�ed, eD

max

must have been underestimated and the

ompensation stage (des
ribed in Algorithm 3) begins its pro
essing by inserting all the pairs stored in the

ompensation queue to the main queue.

In the
ompensation stage, the pairs in the main queue are pro
essed in a similar way as B-KDJ

algorithm, but there are two notable di�eren
es from B-KDJ algorithm. First, the
hild nodes are not

sorted again be
ause they have already been sorted in the �rst stage. Se
ond, for the pairs already expanded

on
e in the �rst stage, only
hild pairs not examined in the �rst stage are pro
essed by plane sweeping.

10

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

eDmax

remembered as r1.compensate

qDmax

Figure 8: Aggressive pruning with qD

max

and eD

max

Algorithm 3: AM-KDJ: Adaptive Multi-Stage K-Distan
e Join Algorithm (Compensation Stage)

23: insert all elements in Q

C

into Q

M

;

24: while jAnswerSetj < k and Q

M

6= ; do

25: set
 dequeue(Q

M

);

26: if
 is an hobje
t; obje
ti then AnswerSet f
g [AnswerSet;

27: else CompensatePlaneSweep(
);

end

pro
edure CompensatePlaneSweep(hl; ri)

28: L f
hild nodes of l sorted in Stage Oneg; // fL[1℄; L[2℄; : : : ; L[jLj℄g

29: R f
hild nodes of r sorted in Stage Oneg; // fR[1℄; R[2℄; : : : ; R[jRj℄g

30: while L 6= ; and R 6= ; do

31: n a node with the min axis value 2 L [R; // n be
omes an an
hor.

32: if n 2 L then

33: L L� fng; R

0

 fnode list in R not paired with n in the Stage One g;

// f R[n:
ompensate℄; R[n:
ompensate+ 1℄; : : : ; R[jRj℄g

34: SweepPruning(n;R

0

);

else

35: R R � fng; L

0

 fnode list in L not paired with n in the Stage One g;

// f L[n:
ompensate℄; L[n:
ompensate+ 1℄; : : : ; L[jLj℄g

36: SweepPruning(n;L

0

);

end

end

This is feasible by bookkeeping done in the �rst stage (lines 19 and 21). For these reasons, the
ost of the

ompensating stage is not
onsiderable
ompared with the
ost of restarting the algorithm. In summary,

AM-KDJ algorithm uses eD

max

to avoid the slow start problem in the aggressive pruning stage and speeds

up the query pro
essing.

4.2 Adaptive Multi-stage In
remental Distan
e Join

Consider on-line query pro
essing and internet database sear
h environments, where users intera
t with

database systems in a way the number of required mat
hes
an be determined intera
tively or
hanged

at any point of query pro
essing. Consider also a
omplex query that pipelines the results from a spatial

11

distan
e join to a �lter stage. Under these
ir
umstan
es, the number of pairs (k) that should be returned

from a distan
e join is not known a priori, and hen
e a k-distan
e join algorithm proposed in [13℄ and B-KDJ

algorithm presented in Se
tion 3
annot be used dire
tly.

An important advantage of AM-KDJ algorithm proposed in the previous se
tion is that AM-KDJ

algorithm
an be extended to an in
remental algorithm (we
all AM-IDJ) to support the intera
tive appli-

ations des
ribed above. The main di�eren
e between AM-KDJ and AM-IDJ algorithms is that AM-IDJ

does not maintain a distan
e queue. This is be
ause it is not feasible to keep an unknown number of distan
es

in a distan
e queue, due to the la
k of a priori knowledge about k, Thus, AM-IDJ algorithm uses eD

max

alone as a
uto� value for pruning distant pairs, be
ause qD

max

would be drawn only from a distan
e queue.

Without qD

max

, AM-IDJ works as a stepwise in
remental algorithm. First, AM-IDJ starts by deter-

mining an initial value k

1

and estimating an initial eD

max

1

for k

1

. Then, it performs the same way as the

�rst stage of AM-KDJ algorithm without qD

max

. However, the �rst stage may terminates before produ
ing

enough obje
t pairs (i.e., less than k

1

), be
ause AM-IDJ does not use qD

max

as a
uto� value. If that

happens, AM-IDJ algorithm estimates eD

max

2

value for k

2

(k

2

> k

1

) and initiates a
ompensation stage.

Even when a suÆ
ient number of obje
t pairs have been returned from the �rst stage, users may request

more answers. Then, AM-IDJ initiates a
ompensation stage by determining k

2

and estimating a new

eD

max

2

a

ordingly. As shown in Figure 9 (drawn from Figure 4), the
ompensation stage
an initiate

another
ompensation stage at the end of its pro
essing, by
hoosing k

3

and eD

max

3

. This pro
ess
ontinues

until users stop requesting more answers. In this way, AM-IDJ algorithm
an be used to produ
e query

results in
rementally without limiting the maximum number of pairs in advan
e.

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

eDmax1

eDmax2

eDmax3

r4

r3

(1) (2) (3)

(1) : covered in FirstStage(k1, eDmax1)
(2) : covered in CompensatingStage(k2, eDmax2)
(3) : covered in CompensatingStage(k3, eDmax3)

Figure 9: Adaptive Multi-Stage In
remental Distan
e Join

4.3 Estimating the Maximum Distan
e (eD

max

)

Both AM-KDJ and AM-IDJ algorithms pro
ess a distan
e join query based on an estimated
uto� value

eD

max

. Thus, there should be a way to obtain an initial estimate and
orre
t the estimate adaptively as

the algorithms pro
eed. Assuming data sets are uniformly distributed, we provide me
hanisms to
hoose an

initial estimate of eD

max

, and to adaptively
orre
t it.

If the distribution of a data set is skewed, then a larger number of
lose pairs
an be found in a smaller

dense region of the data spa
e. We expe
t that the formulae given in this se
tion tend to overestimate eD

max

value for non-uniformly distributed data sets, espe
ially when a stopping
ardinality k is far smaller than the

12

number of all pairs of obje
ts (i.e., k � jRj � jSj). This was
orroborated by our experiments as des
ribed

in Se
tion 5.4.

4.3.1 Initial estimation

Let jRj and jSj be the number of data obje
ts in sets R and S, respe
tively. Then, the number of data

obje
ts in S within a distan
e d from a data obje
t in R is approximated by jSj �

��d

2

area(R\S)

. Therefore, the

total number of obje
t pairs (k) within a distan
e d is given by

k = jRj � jSj �

� � d

2

area(R \ S)

:

For a given k value as the number of requested query results, an initial estimation of eD

max

an be obtained

from the above equation as follows.

eD

max

=

p

k � � (where � =

area(R \ S)

� � jRj � jSj

): (3)

4.3.2 Adaptive Corre
tion of Estimated Distan
e eD

max

The performan
e of AM-KDJ and AM-IDJ algorithms
an be further improved by adaptively adjusting

the value of eD

max

at runtime. Adaptive
orre
tion of eD

max

an be done at any point of query pro
essing

by estimating a new eD

max

from the number of obje
t pairs k

0

(k

0

< k) obtained up to the point and the

real distan
e of the k

0

-th obje
t pair, D

max

(k

0

)

. Spe
i�
ally, the new estimate eD

max

0

an be
omputed from

Equation (3) as

eD

max

0

=

q

D

max

2

(k

0

)

+ (k � k

0

)� (4)

by arithmeti

orre
tion, or as

eD

max

0

= D

max

(k

0

)

�

p

k=k

0

(5)

by geometri

orre
tion if D

max

(k

0

) 6= 0. In pra
ti
e, we propose
omputing eD

max

0

in both ways, and then

hoose the minimum if the query pro
essing needs to be err on the aggressive side. Otherwise, the maximum

is
hosen as eD

max

0

.

Note that the new estimate eD

max

0

an sometimes grow beyond the previous estimate. If this happens,

some pairs whose distan
es are larger than the previous estimate but smaller than the new estimate
ould

have already been pruned and will never be examined in the
urrent pro
essing stage under the new estimate.

Thus, to guarantee the
orre
tness of the distan
e join, the algorithm should initiate a
ompensation stage,

as soon as a pair whose distan
e is smaller than the smallest eD

max

is dequeued from the main queue.

4.4 Queue Management

EÆ
ient queue management is one of the key
omponents of the distan
e join algorithms proposed in this

paper. Ea
h of the B-KDJ, AM-KDJ, and AM-IDJ algorithms relies on the use of one or more priority

queues for query pro
essing. In parti
ular, the main queue (Q

M

) is heavily used by all of the proposed

algorithms, and its performan
e impa
t is signi�
ant. In the worst
ase, the main queue
an grow as large

as the produ
t of all obje
ts of two R-tree indexes. That is, the size of Q

M

is in O(jR

obj

j � jS

obj

j), where

jR

obj

j and jS

obj

j are the number of all obje
ts in R and S, respe
tively. Thus, it is not always feasible to

store the main queue in memory.

It was reported in [13℄ that a simple memory-based implementation might slow down query pro
essing

severely, due to ex
essive virtual memory thrashing. A hybrid memory/disk s
heme [13℄ and a te
hnique

based on range partitioning [9℄ have been proposed to improve queue management and to avoid wasted

sorting I/O operations. We adopt a similar s
heme for queue management, whi
h partitions a queue by

range based on distan
es of pairs. A partition in the shortest distan
e range is kept in memory as a heap

stru
ture, while the rest of partitions are stored on disk as merely unsorted piles.

13

When the in-memory heap be
omes full, it is split into two parts, and then one in the longer distan
e

range is moved to disk as a new segment. When the in-memory heap be
omes empty, a disk-resident segment

in the shortest distan
e range or a part of the segment is swapped in to memory to �ll up the in-memory heap.

Ea
h of the split and swap-in operations requires O(n logn)
omputational
ost for a heap of n elements as

well as I/O
ost for reading and writing a segment. Thus, it is important to minimize the required number

of those operations, whi
h largely depends on the partition boundary values between the in-memory heap

and the �rst disk-resident segment, and between those
onse
utive segments. However, as it is impossible to

predi
t an exa
t D

max

value for a given k, so is it diÆ
ult to determine optimal distan
e values as segment

boundaries.

To address this issue, we use Equation (3) to determine the boundary distan
e values. Suppose n is

the number of elements that
an be stored in an in-memory heap. Then, the boundary value between the

in-memory heap and the �rst disk-resident segment is given by

p

n� �, and the boundary value between the

�rst and se
ond segments is given by

p

(2� n)� �, and so on.

In addition to a main queue, multi-stage algorithms AM-KDJ and AM-IDJ use a
ompensation queue

(Q

C

) in the
ompensation stage. Unlike the main queue, a
ompensation queue does not store any pair

of obje
ts. In other words, a
ompensation queue
an store pairs of non-obje
t R-tree nodes only. Thus,

the size of Q

C

is in O(jR

node

j � jS

node

j), where jR

node

j and jS

node

j are the number of nodes (both internal

and leaf nodes) in R and S, respe
tively. This is a signi�
antly lower upper-bound than a main queue has.

We also observed from our experiments that
ompensation queues were several orders of magnitude smaller

than main queues. As for a distan
e queue used by B-KDJ and AM-KDJ algorithms, its size is always

bounded by a given k value. For these reasons, under most
ir
umstan
es, we assume either a
ompensation

queue and a distan
e queue �ts in memory. If any of these queues outgrows memory, the same partitioning

te
hnique used for a main queue will be applied.

5 Performan
e Evaluation

In this se
tion, we evaluate the proposed algorithms empiri
ally and
ompare with previous work. In par-

ti
ular, the proposed B-KDJ, AM-KDJ and AM-IDJ algorithms were
ompared with Hjaltason and

Samet's k-distan
e and in
remental distan
e join algorithms (hereinafter denoted as HS-KDJ and HS-IDJ,

respe
tively) for k-distan
e join (KDJ) and in
remental distan
e join (IDJ) queries. We also in
lude the per-

forman
e of an R-tree based spatial join algorithm [7℄
ombined with a sort operation (denoted as SJ -SORT)

in most of the experiments. For ea
h distan
e join query, a spatial join operation was performed with a real

D

max

value to generate the k nearest pairs. Then, a sort operation was performed to return the query results

in an in
reasing order of distan
es. Note that we made a favorable assumption for SJ -SORT that a real

D

max

value was known a priori.

5.1 Experimental Settings

Experiments were performed on an Intel Pentium II workstation with 200 MHz
lo
k rate. This workstation

has 128 MBytes of memory and 4 GBytes of disk storage with Ultra-wide SCSI interfa
e, and runs on Linux

kernel version 2.0.34.

Data sets To evaluate distan
e join algorithms, we used real-world data sets in TIGER/Line97 from the

U.S. Bureau of Census [17℄. The parti
ular data sets we used were 64,952 streets and 191,289 hydrographi

obje
ts from the Arizona state. Throughout all the experiments, the same page size of 4 KBytes was used

for disk I/O and R*-tree [3℄ nodes.

Metri
s We measured the performan
e of various algorithms based on the following metri
s to
ompare

the algorithms in di�erent aspe
ts su
h as
omputational
ost and I/O
ost.

1. number of distan
e
omputations: The
ost of
omputing distan
es between pairs of nodes (or obje
ts)

onstitutes a signi�
ant portion of the
omputational
ost of a distan
e join operation. Thus, the total

number of distan
e
omputations required by a distan
e join algorithm provides a dire
t indi
ation of

its
omputational performan
e.

14

3

6

9

12

15

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-KDJ
B-KDJ

AM-KDJ
SJ-Sort

2

4

6

8

10 100 1000 10000 100000

N
u
m

b
e
r

in
 1

0
0
K

K : Number of Pairs

No. of Queue Insertions

HS-KDJ
B-KDJ

AM-KDJ
SJ-Sort

0

10

20

30

40

50

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-Sort

(a) Distan
e Computations (b) Queue Insertions (
) Response Time

Figure 10: Performan
e k-Distan
e Joins

2. number of queue insertions: The task of managing a main queue is largely I/O intensive as well as CPU

intensive. Thus, the total number of insertions to a main queue required by a distan
e join algorithm

provides a reasonable indi
ation of its I/O performan
e, be
ause insertions are mu
h more frequent

than deletions.

3. response time: A
tual query response times were measured for overall performan
e of distan
e join

algorithms.

5.2 Evaluation of k-Distan
e Joins

In this set of experiments, we varied a stopping
ardinality k from 10 to 100,000 to
ompare the performan
e

of HS-KDJ, B-KDJ and AM-KDJ algorithms. The size of in-memory portion of a main queue was �xed

to 100,000 elements. For AM-KDJ algorithm, we used Equation (3) to estimate eD

max

values, and we

observed a tenden
y for eD

max

values to be overestimated with respe
t to real D

max

values. For example,

for k = 100; 000, eD

max

was about 1.9 times larger than a real D

max

.

Figure 10(a) shows that both B-KDJ and AM-KDJ redu
ed the number of distan
e
omputations

signi�
antly. The numbers of distan
e
omputations required by the algorithms were smaller than those

required by HS -KDJ algorithm by up to two orders of magnitude. AM-KDJ was almost identi
al to

SJ -SORT by this metri
. This demonstrates that the optimized plane-sweep method was very e�e
tive

in pruning distant pairs generated by bi-dire
tional expansions. On the other hand, HS -KDJ algorithm

examines all possible pairs exhaustively in uni-dire
tional expansions.

In Figure 10(b), HS-KDJ and B-KDJ were
omparable in queue insertions. B-KDJ was slightly better

than HS-KDJ for small k values, and vi
e versa for large k values. AM-KDJ was always better than

both HS -KDJ and B-KDJ. This result
on�rms our
onje
ture that the optimized plane-sweep method

an prevent an explosion of a main queue that would be
aused by bi-dire
tional node expansions without

the optimized plane-sweep.

As Figure 10(
) shows, B-KDJ and AM-KDJ outperformed HS-KDJ in response time by a fa
tor of

1.7 (k = 100,000) up to 3 (k = 1,000 or 10,000). For large k values (k > 10; 000), the response time of

AM-KDJ was within about 70 per
ent of that of SJ -SORT. Note that SJ -SORT was worse than all

three k-distan
e join algorithms in response time for small k values (k � 1000). This was be
ause there were

about 1,000 pairs of interse
ted obje
ts in the Arizona data sets, and all the interse
ted obje
t pairs were

returned as a distan
e join query results, no matter what distan
e
uto� was provided for the SJ -SORT

pro
essing.

Table 2 shows that the proposed B-KDJ and AM-KDJ algorithms based on bi-dire
tional node ex-

pansions require a far smaller number of R-tree node a

esses than HS -KDJ algorithm, whi
h is based on

uni-dire
tional node expansions.

5.3 Impa
t of Optimized Plane-Sweep

To further analyze the performan
e impa
ts of the optimized plane-sweep method proposed in Se
tion 3,

we measured the performan
e of B-KDJ with the optimization turned o�. Spe
i�
ally, a sweeping axis

15

KDJ Stopping
ardinality k

Algorithms 10 100 1,000 10,000 100,000

HS -KDJ 456 4,345 37,450 56,016 62,432

B-KDJ 42 456 3,444 4,120 4,244

AM-KDJ 36 442 3,308 4,120 4,244

SJ -SORT 4,106 4,106 4,106 4,120 4,244

Table 2: No. of R-Tree Node A

esses for k-Distan
e Joins

No. of Axis Distance Computations

0

1

2

3

4

5

6

7

8

10 100 1000 10000 100000

K : No. of Pairs

N
u

m
b

e
r

in
 M

il
li
o

n
s

no opt. BKDJ

BKDJ

No. of Real Distance Computations

0

1

2

3

4

5

6

7

10 100 1000 10000 100000

K : No. of Pairs

N
u

m
b

e
r

in
 M

il
li

o
n

s

no opt. BKDJ

BKDJ

(a) Axis Distan
e Computations (b) Real Distan
e Computations

Figure 11: Improvements by Optimized Plane Sweep

and dire
tion were �xed to x-axis and forward dire
tion, for B-KDJ with the optimization turned o�. As

Figure 11 shows, the optimized plane-sweep alone redu
ed the number of required axis and real distan
e

omputations by about 30 to 42 per
ent.

5.4 Evaluation of In
remental Distan
e Joins

As in the previous se
tion, we varied a stopping
ardinality k from 10 to 100,000 to
ompare the performan
e

of in
remental distan
e join algorithms HS -IDJ and AM-IDJ. Unlike the previous experiments, the size of

in-memory portion of a main queue was set to k+100; 000 elements instead of 100,000 elements, so that the

in
remental distan
e join algorithms were evaluated under the same memory
onstraints as the k-distan
e

join algorithms, whi
h used k additional elements for a distan
e queue.

As Figures 12(a) and 12(b) show, 75 to 98 per
ent of distan
e
omputations and queue insertions per-

formed by HS -IDJ algorithm were eliminated by AM-IDJ algorithm. The signi�
ant improvement in these

two metri
s in turn led to improvement in response time by a fa
tor of four to six in Figure 12(
). Like

AM-KDJ algorithm, Equation (3) was used to estimate eD

max

values for AM-IDJ algorithm.

0

3

6

9

12

15

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-IDJ
AM-IDJ
SJ-Sort

0

3

6

9

12

15

10 100 1000 10000 100000

N
u
m

b
e
r

in
 M

ill
io

n

K : Number of Pairs

No. of Queue Insertions

HS-IDJ
AM-IDJ
SJ-Sort

0

20

40

60

80

100

120

140

10 100 1000 10000 100000

T
im

e
 i
n
 S

e
c
o
n
d
s

K : Number of Pairs

Response Time

HS-IDJ
AM-IDJ
SJ-Sort

(a) Distan
e Computations (b) Queue Insertions (
) Response Time

Figure 12: Performan
e of In
remental Distan
e Joins

16

5.5 Impa
t of Memory Size

In this set of experiments, we examined the performan
e impa
t of memory
onstraint on queue manage-

ment. We measured the response time of HS-KDJ, B-KDJ and AM-KDJ algorithms for a �xed stopping

ardinality k = 100; 000. The size of in-memory portion of a main queue was varied from 5,000 to 500,000.

As Figure 13 shows, the response time of all three algorithms improved as the size of available memory in-

reased. Moreover, the proposed B-KDJ and AM-KDJ algorithms showed
onsistently better performan
e

than HS-KDJ all over the examined range of memory size.

0

10

20

30

40

50

5000 10000 50000100000 500000

T
im

e
 i
n
 S

e
c
o
n
d
s

Main Memory Units

Response Time

HS-KDJ

B-KDJ

AM-IDJ

Figure 13: Performan
e Impa
t of Memory Size

5.6 Impa
t of eD

max

Estimation on AM-KDJ Performan
e

We designed a set of experiments to
hara
terize the performan
e of AM-KDJ algorithm with respe
t to

the a

ura
y of estimated eD

max

values. Instead of using Equation (3) to estimate eD

max

, we varied the

eD

max

value from 0:1�D

max

to 10�D

max

. Re
all that D

max

is a real distan
e between the k-th nearest

pair of obje
ts. Again, we �xed a stopping
ardinality k to 100,000, and the size of in-memory portion of a

main queue was �xed to 100,000 elements.

When eD

max

is overestimated (eD

max

> D

max

), the
ompensation stage of AM-KDJ algorithm is not

ne
essary, be
ause all the k nearest pairs will be produ
ed in the �rst (aggressive pruning) stage. Even

when eD

max

is overestimated, AM-KDJ guarantees that eD

max

is always smaller than or equal to qD

max

(obtained from a distan
e queue) throughout the �rst stage. Thus, AM-KDJ always requires no more

distan
e
omputation and queue insertion operations than B-KDJ algorithm does.

On the other hand, if eD

max

is underestimated (eD

max

< D

max

), the node pairs in the
ompensation

queue will be revisited in the
ompensation stage. Thus, the
ost of tree traversals and queue management

will in
rease, but it will be bounded by twi
e the
ost of B-KDJ algorithm. As dis
ussed in Se
tion 4.1, for

a pair already expanded on
e in the �rst stage, only
hild pairs not examined in the �rst stage are paired up

in the
ompensation stage and thereby wasting no time for redundant work. The value of qD

max

is likely to

be
ome quite
lose to a real D

max

value in the
ompensation stage. So, AM-KDJ algorithm usually prunes

distant pairs mu
h more eÆ
iently in the
ompensation stage than B-KDJ algorithm would do in a single

stage. Therefore, AM-KDJ outperforms the k-distan
e join algorithms HS-KDJ and B-KDJ, despite the

additional
ost of
ompensation stage.

Figure 14 shows that as eD

max

approa
hes to a real D

max

value, the performan
e of AM-KDJ improves

onsistently in all three metri
s. When eD

max

in
reases far beyond the real D

max

value, the performan
e of

AM-KDJ
onverges to that of B-KDJ algorithm. Importantly, however, AM-KDJ always outperformed

B-KDJ, not to mention HS-KDJ, with eD

max

in a wide spe
trum of estimated value range.

We have not measured the
ost of
ompensation queue management. A
ompensation queue
ontains

pairs of non-obje
t R-tree nodes. During the �rst (aggressive pruning) stage of AM-KDJ algorithm, The

number of pruned pairs is far larger than the number of non-obje
t pairs inserted into a
ompensation queue.

In most of our experiments, the size of a
ompensation queue was less than 0.5 per
ent of the size of a main

queue. Thus, the additional
ost required for the
ompensation queue was almost negligible. This is one of

the reasons why AM-KDJ algorithm always outperformed B-KDJ, whi
h does not need a
ompensation

queue.

17

0

3

6

9

12

15

0.2 0.4 0.6 0.8 1 3 5 7 9

N
u
m

b
e
r

in
 M

ill
io

n
s

ratio of eDmax / Dmax

No. of Distance Computations

HS-KDJ

B-KDJ

AM-KDJ
SJ-Sort

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1 3 5 7 9

N
u
m

b
e
r

in
 1

0
0
K

ratio of eDmax / Dmax

No. of Queue Insertions

B-KDJ

HS-KDJ

AM-KDJ

SJ-Sort

0

10

20

30

40

50

0.2 0.4 0.6 0.8 1 3 5 7 9

T
im

e
 i
n
 S

e
c
o
n
d
s

ratio of eDmax / Dmax

Response Time

HS-KDJ

B-KDJ

AM-KDJ

SJ-Sort

(a) Distan
e Computations (b) Queue Insertions (
) Response Time

Figure 14: Performan
e Impa
t of eD

max

5.7 Stepwise In
remental Exe
ution of AM-IDJ

In
remental distan
e join algorithms do not require a preset stopping
ardinality k. Thus, in this set of

experiments, we simulated a situation where users repeatedly requested a set of 10,000 nearest pairs at a

time until a total of 100,000 nearest pairs were generated. In
remental algorithms HS-IDJ and AM-IDJ

ea
h were exe
uted on
e in a single experiment run, until a total of 100,000 nearest pairs were generated.

The size of in-memory portion of a main queue was �xed to 10,000 elements both for HS-IDJ and AM-IDJ.

On the other hand, sin
e SJ -SORT is not an in
remental algorithm, we restarted its pro
essing ea
h time

i�10; 000 nearest pairs were generated for i (1 � i � 9). Thus, the performan
e measurements of SJ -SORT

presented in Figure 15 are
umulative. For example, the response time of SJ -SORT for k = 20; 000 in
ludes

the times spent on exe
uting SJ -SORT twi
e, on
e for k = 10; 000 and another for k = 20; 000. For ea
h

run of SJ -SORT, we used a real D

max

value for ea
h of di�erent stopping
ardinalities.

In Figure 15, we measured the response time of AM-IDJ algorithm in two di�erent ways: (1) with eD

max

values estimated by Equation (3), and (2) with real D

max

values. When real eD

max

values were provided,

AM-IDJ initiated a
ompensation stage ea
h time another set of 10,000 pairs of obje
t were requested by

users. When estimated eD

max

values were provided, AM-IDJ needed
ompensation pro
essing only after

generating 40,000 pairs and 70,000 pairs, due to overestimated eD

max

values. AM-IDJ showed a fairly

onsistent performan
e over varying eD

max

estimates, as AM-KDJ did in Se
tion 5.6. For all the k values,

AM-IDJ with estimated eD

max

improved the response time by a fa
tor of two to four, when
ompared with

HS-IDJ.

0

20

40

60

80

100

120

140

20000 40000 60000 80000 100000

T
im

e
 i
n
 S

e
c
o

n
d

s

K : Number of Pairs

Response Time

SJ-Sort

HS-IDJ
AM-IDJ

AM-IDJ(ideal)
SJ-Sort

Figure 15: Step-Wise In
remental Exe
ution

6 Con
lusions

We have developed new distan
e join algorithms for spatial databases. The proposed algorithms provide

signi�
ant performan
e improvement over previous work. The plane-sweep te
hnique optimized by novel

18

strategies for sele
ting a sweeping axis and dire
tion minimizes the
omputational overhead in
urred by

bi-dire
tional node expansions. We have shown that this optimized plane-sweep te
hnique alone improves

pro
essing of a k-distan
e join query
onsiderably.

The adaptive multi-stage algorithms employ aggressive pruning and
ompensation methods to further

optimize the distan
e join pro
essing. These algorithms address a slow start problem by using estimated

maximum distan
es as
uto� values for pruning distant pairs. Assuming data obje
ts are uniformly distribut-

ed, we have developed strategies to
hoose an initial estimate and to
orre
t the estimate adaptively during

the query pro
essing. Our experimental study shows that the proposed algorithms outperformed previous

work signi�
antly and
onsistently over a wide spe
trum of estimated maximum distan
es. In parti
ular,

for a relatively small stopping
ardinality, the proposed algorithms a
hieved up to an order of magnitude

improvement over previous work.

When the stopping
ardinality of a distan
e join query is unknown (as in on-line query pro
essing environ-

ments or a
omplex query that
ontains a distan
e join as a sub-query), the adaptive multi-stage algorithms

pro
ess the query in a stepwise manner so that the query results
an be returned in
rementally.

We plan to develop new strategies for estimating the maximum distan
es and managing queues for

non-uniform data sets.

Referen
es

[1℄ L. Arge, O. Pro
opiu
, S. Ramaswamy, T. Suel, and J. S. Vitter. S
alable sweeping-based spatial join. In

Pro
eedings of the 24th VLDB Conferen
e, pages 259{270, New York, USA, June 1998.

[2℄ S. Arya, D. M. Mount, and O. Narayan. A

ounting for boundary e�e
ts in nearest neighbor sear
hing. In Pro
.

11th Annual Symp. on Computational Geometry, pages 336{344, Van
ouver, Canada, 1995.

[3℄ Norbert Be
kmann, Hans-Peter Kriegel, Ralf S
hneider, and Bernhard Seeger. The R

�

-tree: An eÆ
ient and

robust a

ess method for points and re
tangles. In Pro
eedings of the 1990 ACM-SIGMOD Conferen
e, pages

322{331, Atlanti
 City, NJ, May 1990.

[4℄ S. Ber
htold, B. Ertl, D. Keim, H.-P. Kriegel, and T. Seidl. Fast nearest neighbor sear
h in high-dimensional

spa
es. In Pro
eedings of the 14th Intl. Conf. on Data Engineering, Orlando, Florida, September 1998.

[5℄ S. Ber
htold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index stru
ture for high-dimensional data. In

Pro
eedings of the 22nd VLDB Conferen
e, Bombay, India, September 1996.

[6℄ Thomas Brinkho�, Hans-Peter Kriegel, Ralf S
hneider, and Bernhard Seeger. Multi-step pro
essing of spatial

joins. In Pro
eedings of the 1994 ACM-SIGMOD Conferen
e, pages 197{208, Minneapolis, Minnesota, May 1994.

[7℄ Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. EÆ
ient pro
essing of spatial joins using R-Trees.

In Pro
eedings of the 1993 ACM-SIGMOD Conferen
e, pages 237{246, Washington, DC, May 1993.

[8℄ Mi
hael J. Carey and Donald Kossmann. On saying \enough already!" in SQL. In Pro
eedings of the 1997

ACM-SIGMOD Conferen
e, pages 219{230, Tu
son, AZ, May 1997.

[9℄ Mi
hael J. Carey and Donald Kossmann. Redu
ing the braking distan
e of an SQL query engine. In Pro
eedings

of the 24th VLDB Conferen
e, pages 158{169, New York, NY, August 1998.

[10℄ Donko Donjerkovi
 and Raghu Ramakrishnan. Probabilisti
 optimization of top N queries. In Pro
eedings of the

25th VLDB Conferen
e, Edinburgh, S
otland, September 1999.

[11℄ Antonin Guttman. R-Trees: A dynami
 index stru
ture for spatial sear
hing. In Pro
eedings of the 1984 ACM-

SIGMOD Conferen
e, pages 47{57, Boston, MA, June 1984.

[12℄ G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Pro
. of 4th Intl. Symposium on Large Spatial

Databases(SSD'95), pages 83{95, September 1995.

[13℄ Gisli R. Hjaltason and Hanan Samet. In
remental distan
e join algorithms for spatial databases. In Pro
eedings

of the 1998 ACM-SIGMOD Conferen
e, pages 237{248, Seattle, WA, June 1998.

[14℄ F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest neighbor sear
h in medi
al

image databases. In Pro
eedings of the 22nd VLDB Conferen
e, pages 215{226, 1996.

[15℄ Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded trees. In Pro
eedings of the 1994 ACM-

SIGMOD Conferen
e, pages 209{220, Minneapolis, Minnesota, May 1994.

[16℄ Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-join. In Pro
eedings of the 1996 ACM-SIGMOD Con-

feren
e, pages 247{258, Montreal, Canada, June 1996.

19

[17℄ Bureau of the Census. Tiger/Line Pre
ensus Files: 1997 te
hni
al do
umentation. Washington, DC, 1997.

[18℄ Ja
k A. Orenstein. A
omparison of spatial query pro
essing te
hniques for native and parameter spa
es. In

Pro
eedings of the 1990 ACM-SIGMOD Conferen
e, pages 343{352, Atlanti
 City, New Jersey, May 1990.

[19℄ Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In Pro
eedings of the 1996 ACM-

SIGMOD Conferen
e, pages 259{270, Montreal, Canada, June 1996.

[20℄ Fran
o P. Preparata and Mi
hael Ian Shamos. Computational Geometry: An Introdution. Springer-Verlag, New

York, NY, 1985.

[21℄ V. Ramasubramanian and K. K. Paliwal. Fast k-dimensional tree algorithms for nearest neighbor sear
h with

appli
ation to ve
tor quantization en
oding. IEEE Trans. on Signal Pro
essing, 40(3):518{531, Mar
h 1992.

[22℄ Ni
k Roussopoulos, Stephen Kelley, and Frederi
 Vin
ent. Nearest neighbor queries. In Pro
eedings of the 1995

ACM-SIGMOD Conferen
e, pages 71{79, San Jose, CA, May 1995.

[23℄ Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor sear
h. In Pro
eedings of the 1998

ACM-SIGMOD Conferen
e, pages 154{165, Seattle, Washington, 1998.

20

