
Adaptive Multi-Stage Distance Join Processing �

Hyoseop Shiny Bongki Moony Sukho Leez

yDept. of Computer Science zDept. of Computer Engineering

University of Arizona Seoul National University

Tucson, AZ 85721 Seoul, Korea

fhsshin,bkmoong@cs.arizona.edu shlee@comp.snu.ac.kr

Technical Report 99-14

Abstract

A spatial distance join is a relatively new type of operation introduced for spatial and multimedia

database applications. Additional requirements for ranking and stopping cardinality are often combined

with the spatial distance join in on-line query processing or internet search environments. These require-

ments pose new challenges as well as opportunities for more eÆcient processing of spatial distance join

queries. In this paper, we �rst present an eÆcient k-distance join algorithm that uses spatial indexes

such as R-trees. Bi-directional node expansion and plane-sweeping techniques are used for fast pruning

of distant pairs, and the plane-sweeping is further optimized by novel strategies for selecting a sweeping

axis and direction. Furthermore, we propose adaptive multi-stage algorithms for k-distance join and

incremental distance join operations. Our performance study shows that the proposed adaptive multi-

stage algorithms outperform previous work by up to an order of magnitude for both k-distance join and

incremental distance join queries, under various operational conditions.

October 1999

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

�This work was sponsored in part by National Science Foundation CAREER Award (IIS-9876037) and Research Infras-

tructure program EIA-9500991. It was also supported by Korea Science and Engineering Foundation under Exchange Student

Program. The authors assume all responsibility for the contents of the paper.

1 Introduction

A spatial distance join operation was recently introduced to spatial databases to associate one or more sets of
spatial data by distances between them [13]. A distance is usually de�ned in terms of spatial attributes, but
it can be de�ned in many di�erent ways according to various application speci�c requirements. In multimedia
and image database applications, for example, other metrics such as a similarity distance function can be
used to measure a distance between two objects in a feature space.

In on-line decision support and internet search environments, it is quite common to pose a query that
�nds the best k matches or reports the results incrementally in the decreasing order of well-matchedness.
This type of operations allow users to interact with database systems more e�ectively and focus on the
\best" answers. Since users can say \It is enough already" at any time after obtaining the best answers [8],
the waste of system resources can be reduced and thereby delivering the results to users more quickly.

This ranking requirement is often combined with a spatial distance join query, and the ranking require-
ment provides a new opportunity of optimization for spatial distance join processing [9, 10]. For example,
consider a query that retrieves the top k pairs (i.e., the nearest pairs) of hotels and restaurants:

SELECT h.name, r.name

FROM Hotel h, Restaurant r

ORDER BY distance(h.location, r.location)

STOP AFTER k;

For a relatively small stopping cardinality k, the processing time can be reduced signi�cantly by sorting only
a fraction of intermediate results enough to produce the k nearest pairs, instead of sorting an entire set of
intermediate results (i.e., a Cartesian product of hotels and restaurants).

A spatial distance join query with a stopping cardinality can be formulated as follows:

�dist(r;s)<Dmax(R 1 S)

where dist(r; s) is a distance between two spatial objects r 2 R and s 2 S, andDmax is a cuto� distance that is
determined by a stopping cardinality k and the spatial attribute values of two data sets R and S. It may then
be argued that a spatial distance join query can be processed by a spatial join operation [1, 6, 7, 15, 16, 19]
followed by a sort operation. Speci�cally, if a Dmax value can be predicted precisely for a given stopping
cardinality k, we can use a spatial join algorithm with a within predicate instead of an intersect predicate
to �nd the k nearest pairs of objects. Then, a sort operation will be performed only on the k pairs of objects.

In practice, however, it is almost impossible to estimate an accurate Dmax value for a given stopping
cardinality k, and, to the best of our knowledge, no method for estimating such a cuto� value has been
reported in the literature. If the Dmax value is overestimated, then the results from a spatial join operation
may contain too many candidate pairs, which may cause a long delay in a subsequent stage to sort all the
candidate pairs. On the other hand, if the Dmax value is underestimated, a spatial join operation may not
return a suÆcient number of object pairs. Then, the spatial join operation should be repeated with a new
estimate of Dmax, until k or more pairs are returned. This may cause a signi�cant amount of waste in
processing time and resources.

There is another reason that makes it impractical to apply a spatial join algorithm to spatial distance join
queries. A spatial join query is typically processed in two steps, �lter and re�nement, as proposed in [18].
In a �lter step, MBR approximations are used to �nd pairs of potentially intersected spatial objects. Then,
in a re�nement step, it is guaranteed that all the quali�ed (i.e., actually intersected) pairs can be produced
from the results returned from the �lter step.

In contrast, it is completely unreasonable to process a spatial distance join query in two separate �lter
and re�nement steps, because of the fact that a �ltering process is based on MBR approximations. A set
of object pairs sorted by distances measured by MBR approximations does not re
ect a true order based
on actual representations. This is because, for any two pairs of spatial objects hr1; s1i and hr2; s2i, the fact
that dist(MBR(r1);MBR(s1)) < dist(MBR(r2);MBR(s2)) does not necessarily imply that dist(r1; s1) <
dist(r2; s2). Consequently, any processing done in the �lter step will be of no use for �nding the k nearest
object pairs.

In this paper, we propose new strategies for eÆciently processing spatial distance join queries combined
with ranking requirements. The main contributions of the proposed solutions are:

1

� New eÆcient methods are proposed to process distance join queries using spatial index structures
such as R-trees. Bi-directional node expansion and optimized plane-sweep techniques are used for fast
pruning of distant pairs, and the plane-sweep is further optimized by novel strategies for selecting a
sweeping axis and direction.

� Adaptive multi-stage algorithms are proposed to process distance join queries in a way that the k
nearest pairs are returned incrementally. When a stopping cardinality is not known a priori (e.g., in
on-line query processing environments or a complex query containing a distance join as a sub-query
whose results need to be pipelined to the next stage of the complex query), the adaptive multi-stage
algorithms can produce pairs of objects in a stepwise manner.

� We provide a systematic approach for estimating the maximum distance for a distance join query with
a stopping cardinality. This estimated distance allows the adaptive multi-stage algorithms to avoid a
slow start problem, which may cause a substantial delay in the query processing. This approach for
estimating the maximum distance also allows the size of memory to be parameterized into a queue
management scheme, so that data movement between memory and disk can be minimized.

The proposed algorithms achieve up to an order of magnitude performance improvement over previous work
for both k-distance join and incremental distance join queries, under various operational conditions.

The rest of this paper is organized as follows. Section 2 surveys the background and related work on
processing spatial distance join queries. Major limitations of previous work are also discussed in the section.
In Section 3, we present a new improved algorithm based on bi-directional expansion and optimized plane-
sweep techniques for k-distance join queries. In Section 4, adaptive multi-stage algorithms are presented
for k-distance join and incremental distance join queries. A queue management scheme parameterized by
memory capacity is also presented. Section 5 presents the results of experimental evaluation of the proposed
solutions. Finally, Section 6 summarizes the contributions of this paper and gives an outlook to future work.

2 Background and Previous Work

A spatial index structure R-tree and its variants [3, 5, 11] have been widely used to eÆciently access mul-
tidimensional data { either spatial or point. Like other tree-structured index structures, an R-tree index
partitions a multidimensional space by grouping objects in a hierarchical manner. A subspace occupied by
a tree node is always contained in the subspace of its parent node. This hierarchy of spatial containment
between R-tree nodes is readily used by spatial distance join algorithms as well as spatial join algorithms.

rr s

(a) Tree−Structured Spatial Index

r1 r2 r3 s1 s2 s3

r1

r3 r2

dist(r2, s2)

dist(<r,s>)

s

s1

s3

s2

(b) Spatial Containment

Figure 1: Hierarchy of Spatial Containment of R-Tree Nodes

Suppose r and s are non-leaf nodes of two R-tree indexes R and S, respectively, as in Figure 1. Then,
the minimum distance between r and s is always less than or equal to the minimum distance between one
of the child nodes of r and one of the child nodes of s. Likewise, the maximum distance between r and s is
always greater than or equal to the maximum distance between one of the child nodes of r and one of the
child nodes of s. This observation leads to the following lemma.

2

Lemma 1 For two R-tree indexes R and S, if neither r 2 R nor s 2 S is a root node, then

dist(r; s) � dist(parent(r); parent(s));

dist(r; s) � dist(r; parent(s)); (1)

dist(r; s) � dist(parent(r); s):

where dist(r; s) is the minimum distance between the MBR representations of r and s.

Proof. From the observation above.

Lemma 1 allows us to limit the search space, while R-tree indexes are traversed in a top-down manner
to process a spatial distance join query. For example, if a pair of non-leaf nodes hr; si turn out to be too far
from each other (or their distance is over a certain threshold), then it is not necessary to traverse further
down the tree indexes below the nodes r and s. Thus, this lemma provides the key leverage to processing
distance join queries eÆciently using R-tree indexes.

2.1 Incremental Distance Join and k-Distance Joins

During top-down traversals of R-tree indexes, it is desirable to store examined node pairs in a priority queue,
where the node pairs are kept in an increasing order of distances. We call it a main queue as opposed to
a distance queue we will describe later. The main queue initially contains a pair of the root nodes of two
R-tree indexes. Each time a pair of non-object nodes are retrieved from the main queue, the child nodes of
one node are paired up with the child nodes of the other to generate a new set of node pairs, which are then
inserted into the main queue. This process that we call node expansion is repeated until the main queue
becomes empty or until stopped by an interactive user. If an element retrieved from the main queue is a pair
of two objects, the pair is returned immediately to the user as a query result. This is how a spatial distance
join query is processed incrementally. Figure 2 depicts a typical framework of processing an incremental
distance join (IDJ) query using R-tree indexes.

return as an answer

<root of R, root of S>
insert

at beginning

Main Queue

newly generated pairs

a pair with
minimum distance

NodeExpansion
 Module

if <object, object>

if non−<object, object>

Figure 2: Framework of Incremental Distance Join (IDJ) Processing

A distance join query is often given with a stopping cardinality k as in the \stop after" clause of the
sample query in Section 1. Since it is known a priori how many object pairs need to be produced for a
distance join query, this knowledge can be exploited to improve the performance of the query processing.
Suppose a maximum of k nearest pairs of objects are to be retrieved by a query. One plausible approach
is to maintain k candidate pairs of objects during the entire course of query processing. As they are the k
nearest object pairs known at each stage of query processing, any pair of nodes (and any pair of their child
nodes) whose distance is longer than all of the k candidate pairs cannot be quali�ed as a query result. Thus,
we can use another priority queue to store the k minimum distances, and use the queue to avoid having
to insert unquali�ed pairs into the main queue during the node expansions. We call the priority queue a

3

distance queue. Figure 3 depicts a typical framework of processing a k-distance join (KDJ) query using
R-tree indexes and both main and distance queues.

Both main and distance queues can be implemented by heap structures. A main queue is normally
implemented as a min-heap, because the query results are produced in an increasing order of distances. In
contrast, a distance queue should be implemented as a max-heap, as the cuto� distance is determined by
the maximum value among the k distances stored in the distance queue at each stage of query processing.
Pruning node pairs by the distance queue was shown to be very eÆcient from our experiments, especially
when k was rather small.

return as an answer

<root of R, root of S>
insert

at beginning

Main Queue

newly generated pairs

a pair with
minimum distance

if <object, object>

if non−<object, object>

NodeExpansion
 Module

remained pairs
Pruning
by Distance Queue

Figure 3: Framework of k-Distance Join (KDJ) Processing

2.2 Previous Work

The distance join algorithms proposed in [13] are based on uni-directional node expansions. When a pair of
nodes hr; si are retrieved from a main queue, either node r is paired up with the child nodes of s, or node s
is paired up with the child nodes of r. None of the pairs are generated from a child node of r and a child
node of s. The advantage of the uni-directional expansion is that the number of pairs generated at each
expansion step is limited to the fanout of an R-tree index being traversed, and an explosion of the main
queue can be avoided. As is acknowledged by the authors of the algorithms, however, the main disadvantage
of this approach is that the uni-directional expansion may lead to each node being accessed from disk more
than necessary. And also, the uni-directional expansion requires pairing up node r exhaustively with all the
child nodes of node s or vice versa.

For a spatial distance join query with a relatively small stopping cardinality k, the use of a distance queue
is an e�ective means to prevent distant pairs from entering a main queue. For a large k value, however, the
distance queue may not work well as an e�ective pruning tool, because the cuto� value stored in the distance
queue may remain too high for a long duration. This may in turn lead to a long delay particularly in the
early stage of query processing. For these reasons, the previous algorithms su�er from poor performance for
a k-distance join query with a large k and an incremental distance join query, for which k is unknown in
advance.

Moreover, there is an important issue that was not fully addressed in [13]. A hybrid memory/disk
technique was proposed as a queue management scheme, which partitions a queue based on the distance
range. This technique keeps a partition in the shortest distance range in memory, while the rest of partitions
are stored on disk. However, no mechanism was provided to determine a boundary distance value between the
partition in memory and the rest, which may have a crucial impact on the performance of queue management.

Several closely related studies for nearest neighbor queries have been reported in the literature. Among
those are nearest neighbor search algorithms based on Voronoi cells [2, 4] and branch and bound tech-

4

niques [21, 22], a nearest neighbor search algorithm for ranking requirement [12], and multi-step k-nearest
neighbor search algorithms [14, 23].

3 Optimized Plane-Sweep for Fast Pruning

In this section, we propose a new distance join algorithm B-KDJ (Bidirectional expanding K-Distance Join)
using a bi-directional node expansion, in an attempt to avoid redundant accesses to R-tree nodes. As is
pointed out in Section 2, distance join algorithms based on an uni-directional expansion require accessing an
R-tree node more than those based on bi-directional expansions. Under the bidirectional node expansion,
for a pair hr; si, each of the child nodes of r is paired up with each of the child nodes of s. This is essentially
a Cartesian product, which may generate more redundant pairs than the uni-directional expansion does.
Nonetheless, we will show B-KDJ algorithm can e�ectively avoid generating redundant pairs by a plane
sweeping technique [20] and novel strategies for choosing an axis and a direction for sweeping. The B-KDJ
algorithm is described in Algorithm 1.

3.1 Bidirectional Pair Expansion

Algorithm 1: B-KDJ: K-Distance Join Algorithm with Bi-directional Expansion and Plane Sweep

1: set AnswerSet an empty set;
2: set QM , QD empty main and distance queues;
3: insert a pair hR:root; S:rooti into the main queue QM ;
4: while jAnswerSetj < k and QM 6= ; do
5: set c dequeue(QM);
6: if c is an hobject; objecti then AnswerSet fcg [AnswerSet;
7: else P laneSweep(c);
end

procedure PlaneSweep(hl; ri)
8: set L sort axis(fchild nodes of lg); // Sort the child nodes of l by axis values.
9: set R sort axis(fchild nodes of rg); // Sort the child nodes of r by axis values.

10: while L 6= ; and R 6= ; do
11: n a node with the min axis value 2 L [R; // n becomes an anchor.
12: if n 2 L then

13: L L� fng; SweepPruning(n;R);
else

14: R R � fng; SweepPruning(n;L);
end

end

procedure SweepPruning(n;List)
15: for each node m 2 List in an increasing order of axis value do

16: if axis distance(n;m) > qDmax then return; // No more candidates.
17: if real distance(n;m) � qDmax then

18: insert hn;mi into QM ;
19: if hn;mi is an hobject; objecti then insert real distance(n;m) into QD; // qDmax modi�ed.

end
end

Like the distance join algorithms proposed in [13], B-KDJ algorithm uses qDmax from the distance queue
QD as a cuto� value to examine node pairs. If a pair of nodes hr; si removed from the main queue are a
pair of objects, then the object pair is returned as a query result. Otherwise, the pair is expanded by the
PlaneSweep procedure for further processing.

Assume that a sweeping axis (i.e., x or y dimensional axis) and a sweeping direction (i.e., forward or
backward) are determined, as we will describe in Sections 3.2 and 3.3. Then, the child nodes of r and s

5

are sorted by x or y coordinates of one of the corners of their MBRs in an increasing or decreasing order,
depending on the choice of sweeping axis and sweeping direction. Each node encountered during a plane
sweep is selected as an anchor, and it is paired up with child nodes in the other group. For example, in
Figure 4, a child node r1 of r is selected as an anchor, and the child nodes s1; s2; s3 and s4 of s are examined
for pairing, as they are within qDmax distance from r1 along the sweeping axis (lines 11-14 and line 16).

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

qDmax

Figure 4: Bidirectional Node Expansion with Plane Sweeping

Since an axis distance between any pair hr; si is always smaller than or equal to their real distance (i.e.,
axis distance(r; s) � real distance(r; s)), real distances are computed only for nodes whose axis distances
from the anchor are within the current qDmax value (line 17). Given that a real distance is more expensive
to compute than an axis distance, it may yield non-trivial performance gain. Then, each pair whose real
distance is within qDmax is inserted into the main queue QM (line 18). If it is a pair of objects, then update
the current qDmax value by inserting the real distance of the object pair into the distance queue QD (line 19).
1

For a relatively small qDmax value and two sets of evenly distributed spatial objects, the number of pairs
for which B-KDJ algorithm computes real distances and performs queue management operations is expected
to be O(jrj+jsj) roughly. This justi�es the additional cost of sorting child nodes for plane-sweeping, because
the overall cost of B-KDJ algorithm would otherwise be O(jrj � jsj) by Cartesian products.

3.2 Sweeping Axis

We can improve B-KDJ algorithm one step further by deciding the sweeping axis and direction on an
individual pair basis. Intuitively, if child nodes (or data objects) are spread more widely along one dimension
(say, x) than the other dimensions, then the bi-directional node expansion is likely to generate a smaller
number of node pairs to compute the real distances for by plane-sweeping along the dimension x. This is
because, when the nodes are more widely spread along a sweeping axis, the chance that a pair of nodes are
within a qDmax distance along the sweeping axis is lower. For a pair of parent nodes shown in Figure 5,
as an example, it would be better to choose y-axis as a sweeping axis, as the child nodes are more widely
spread along the y-dimension. On the other hand, if x-axis is chosen as a sweeping axis, no pair of the child
nodes will be pruned by x-axis distance comparison with qDmax, because the x-axis distance between any
pair of the child nodes is shorter than the qDmax value.

1 There are alternatives as to what pairs are to be inserted into a distance queue: (1) any pairs encountered
during node expansions, or (2) pairs of objects only. If a pair of non-object R-tree nodes is inserted into a
distance queue, its maximum distance should be inserted as well [13]. Since the maximum distance tends to
be larger than those of pairs of objects, most of non-object pairs are inserted into a distance queue only to
be removed from the distance queue without reducing qDmax value. Thus, we decide to follow the second

6

y−axis

x−axis

qDmax

qDmax

r

s

Figure 5: E�ect of Right Selection of the Sweeping Axis

|s|x

|r|x

t

|r|x qDmax+ −

t

|s|x

|r|x
0

qDmax
window

qDmax−
2

qDmax−()
2

Overlap

Overlap

Figure 6: Sweeping Index

Formally, we de�ne a new metric sweeping index as follows, and we use the metric to determine which
axis a plane-sweep will be performed on. For a given pair hr; si of R-tree nodes and a given qDmaxvalue, we
can compute a sweeping index for each dimension. Conceptually, a sweeping index is an estimated number
of node pairs that we need to compute the real distances for.2

Sweeping Indexx =

Z jrj
x

0

Overlap(qDmax; r; t)dt+

Z jsj
x

0

Overlap(qDmax; s; t)dt (2)

In the �rst integral term of the equation above, jrjx is the side length of node r along the dimension x.
The function Overlap(qDmax; r; t) is a portion of the side length of s along the dimension x, overlapped with
a window of length qDmax whose left end point is located at a point t within jrjx (i.e., 0 � t � jrjx). (See
the left diagram in Figure 6.) Thus, Overlap(qDmax; r; t) represents an estimated number of s's child nodes
intersected with a window [t; t + qDmax]. The value of the function varies as the window moves along the
dimension x from [0,qDmax] to [jrjx; jrjx+qDmax]. Therefore, the �rst integral term represents an estimated
number of s's child nodes encountered during the plane-sweeps performed for all the child nodes of r. The
second integral term is symmetric with the �rst integral, and an identical description can be o�ered by
exchanging r and s.

A smaller sweeping index indicates that the bi-directional expansion needs to compute real distances for
a smaller number of nodes pairs. For the reason, B-KDJ algorithm chooses a dimension with the minimum
sweeping index as a sweeping axis.

One thing we may be concerned about is the cost of computing a sweeping index for each dimension.
The sweeping index may appear expensive to compute, as it includes two integral terms. For given qDmax,
jrjx and jsjx values, however, the sweeping index is reduced to a formula that involves only a few simple
arithmetic operations. Suppose nodes r and s are not intersected along a dimension x, the minimum x-axis

option.
2 An actual number of node pairs for which we need to compute the real distances would be computed

by counting the number of s's child nodes within qDmax axis distance from each child node of r, counting
the number of r's child nodes within qDmax axis distance from each child node of s, and then adding all the
counts and dividing the count sum by two. However, this process will be very expensive.

7

distance between them is �, and node r appears before node s in the plane-sweep direction along x-axis.
(Again, see the left diagram in Figure 6.) Then, the second integral term of Equation (2) become zero,
because all the child nodes of r have already been swept when the �rst child node of s is encountered. The
�rst integral term varies depending on the conditions among qDmax, jrjx and jsjx values and the proximity
(i.e., �) of nodes r and s along a chosen dimension. Table 1 summaries the formulae of the sweeping index
for non-overlapping nodes r and s. The right diagram in Figure 6 illustrates how we can compute the �rst
integral term and obtain a simple expression when jsjx + � � qDmax � jrjx + � is satis�ed.

If nodes r and s are intersected, both the integral terms of Equation 2 become non-zero. By a similar
reasoning, each integral term is also transformed into a formula with only a few simple arithmetic operations.
Considering that each R-tree node may contain hundreds of child nodes, it will be a trivial cost to compute
a sweeping index for each dimension, while the performance gain by the sweeping axis selection is expected
to be signi�cant. This is empirically corroborated by our experiments in Section 5.

Condition The �rst integral term of Equation 2

qDmax � � 0

� < qDmax � jrjx + �

8<
:

(qDmax��)
2

2 if qDmax � jsjx + �;

(qDmax��)
2

2 �
(jsj

x

)2

2 otherwise.

qDmax � jrjx + �

8>><
>>:

(jrj
x

)2

2 �
(qDmax�jrj

x

��)2

2 if jrjx � jsjx;
(jrj

x

)2

2 �
(qDmax�jrj

x

��)2

2 �
(jrj

x

�jsj
x

)2

2 if (qDmax � jrjx � �) � jsjx < jrjx;

jrjx � jsjx if jsjx < (qDmax � jrjx � �):

Table 1: Sweeping index for non-overlapping r and s (� is the minimum distance between hr; si)

3.3 Sweeping Direction

Once a sweeping axis is determined, a sweeping direction can be chosen to be either a forward sweep or a
backward sweep. For a pair of nodes r and s, we can de�ne the forward and backward sweeps as follows.

� A forward plane-sweep scans the child nodes of r and s in an increasing order of coordinates along the
chosen sweeping axis.

� A backward plane-sweep scans the child nodes of r and s in a decreasing order of coordinates along
the chosen sweeping axis.

Consider nodes r and s projected on a sweeping axis. The projected images generate three consecutive closed
intervals on the sweeping axis, unless the projected images are completely overlapped. For example, if nodes
r and s are intersected as in Figure 7(a), an interval in the left is projected from r, one in the middle from
both r and s, and one in the right from s. The interval in the middle may be projected from none of r and
s, if r and s are separate as in Figure 7(b). Both the intervals in the left and right may be projected from
the same node, if one node is contained in the other as in Figure 7(c).

(a) intersected

r

s

r

s

(b) separated

r

s

(c) contained

Figure 7: Three intervals projected from two nodes r and s

However, it does not matter which node an interval is projected from, because the a sweeping direction
is determined solely on the relative length of the intervals in the left and right. A sweeping direction is

8

determined by comparing the length of the left and right intervals: if the left projected interval is shorter

than the right one, then a forward direction is chosen. Otherwise, a backward direction is chosen. By this
strategy of choosing a sweeping direction, a pair of nodes closer to each other are likely to be examined
earlier than those farther to each other. This in turn allows a pair of closer nodes are inserted into the main
queue (and the distance queue as well if they are an object pair), and helps reduce the qDmax value more
rapidly.

In summary, the sweeping axis selection improves the bi-directional node expansion step by pruning more
child node pairs whose axis distances are larger than the qDmax, while, the sweeping direction selection does
by reducing the qDmax value more rapidly.

4 Adaptive Multi-Stage k-Distance Join

In B-KDJ algorithm, qDmax value is initially set to an in�nity and becomes smaller as the algorithm
proceeds. The adaptation of the qDmax value has a crucial impact on the performance of B-KDJ algorithm,
as qDmax is used as a cuto� to prevent pairs of distant nodes from entering the main queue. If the qDmax value
approaches to the real Dmax value slowly, the early stage of B-KDJ algorithm will be delayed considerably
for handling too many pairs of distant nodes. Consequently, at the end of the algorithm processing, the main
queue may end up with a large number of distant pairs whose insertions to the main queue were not necessary.
The performance e�ect of slow start is more pronounced for a larger k, as the main queue and distance queue
tend to grow large for a large k, and thereby increasing the qDmax value. From our experiments with k as
high as 100,000, we observed that more than 90 percent of execution time of k-distance join algorithms was
spent to produce the �rst one percent (i.e., 1,000 pairs) of �nal query results.

In this section, we propose new adaptive multi-stage distance join algorithms AM-KDJ and AM-IDJ

that mitigate the slow start problem by aggressive pruning and compensation.

4.1 Adaptive Multi-Stage k-Distance Join

The slow start problem is essentially caused by a pruning strategy using qDmax, whose value is dynamically
updated as tree indexes are traversed and therefore not under direct control of the distance join algorithms.
To circumvent this problem, we introduce a new pruning measure eDmax, which is an estimated Dmax value
for a given k. The eDmax value is set to an initial estimation at the beginning and adaptively corrected
during the algorithm processing. We will discuss techniques for initial estimation and adaptive correction in
Section 4.3.
AM-KDJ algorithm is similar to B-KDJ algorithm in that both the algorithms use a bi-directional node

expansion. However, unlike the single-stage B-KDJ algorithm, where only qDmax is used for pruning, both
qDmax and eDmax are used as cuto� values for pruning distant pairs in AM-KDJ algorithm. Speci�cally,
in the aggressive pruning stage (described in Algorithm 2),

� eDmax is used for pruning based on axis distances for aggressive pruning and thereby limiting the size
of main and distance queues (line 22),

� qDmax is used for further pruning on real distances for nodes whose axis distances are within eDmax,
in the same way as B-KDJ.

With a properly estimated eDmax value, AM-KDJ algorithm can prune a large number of distant pairs
in the �rst stage and avoid a signi�cant portion of delay due to the slow start. However, if AM-KDJ

algorithm becomes too aggressive by choosing an underestimated eDmax value, even close enough pairs may
be discarded incorrectly. To avoid any false dismissals, we introduce another queue called compensation

queue (QC). The compensation queue stores every node pair retrieved from the main queue (line 11), if it
is not a pair of objects or all the child nodes of the pair are examined by plane sweeping. It should also be
noted that qDmax but not eDmax is used for nodes whose axis distances are within eDmax. If eDmax values
are used instead, the compensation stage will become very costly in order to keep track of an exhaustive set
of pruned pairs and recover quali�ed pairs from them. Using qDmax values also makes the performance of
AM-KDJ fairly insensitive to estimated eDmax values.

9

Algorithm 2: AM-KDJ: Adaptive Multi-Stage K-Distance Join Algorithm (Aggressive Pruning)

1: set AnswerSet an empty set;
2: set QM , QD, QC empty main, distance and restart queues ;
3: set eDmax an initial estimated Dmax;
4: insert a pair hR:root; S:rooti to the main queue QM ;
5: while jAnswerSetj < k and QM 6= ; do
6: set c dequeue(QM);
7: if c is an hobject; objecti then AnswerSet fcg [AnswerSet;

else

8: if qDmax � eDmax then eDmax qDmax; // overestimated eDmax

9: if c:distance < eDmax then

reinsert c back into QM ;
break; // Terminate the Aggressive Pruning stage.

end

10: AggressivePlaneSweep(c);
11: enqueue(QC , c);

end
end

12: if jAnswerSetj < k then execute Algorithm 3;

procedure AggressivePlaneSweep(hl; ri)
13: set L sort axis(fchild nodes of lg); // Sort the child nodes of l by axis values.
14: set R sort axis(fchild nodes of rg); // Sort the child nodes of r by axis values.
15: while L 6= ; and R 6= ; do
16: n a node with the min axis value 2 L [R; // n becomes an anchor.
17: if n 2 L then

18: L L� fng; AggressiveSweepPruning(n;R);
19: n:compensate a node in R with the min axis value and not yet paired with n;

else

20: R R � fng; AggressiveSweepPruning(n;L);
21: n:compensate a node in L with the min axis value and not yet paired with n;

end
end

procedure AggressiveSweepPruning(n;List)
Same as the SweepPruning procedure in Algorithm 1 except line 16 replaced with the following:

22: if axis distance(n;m) > eDmax then return;

For example, in Figure 8 (drawn from Figure 4), an anchor node r1 is paired up with nodes s1 and s2 but
not with s3 and s4 in the aggressive pruning stage, because only s1 and s2 are within eDmax from the anchor
node r1. Thus, AM-KDJ algorithm inserts only two pairs (hr1; s1i, hr1; s2i) into a main queue, instead of
all four pairs (hr1; s1i, hr1; s2i, hr1; s3i, hr1; s4i) that would be enqueued by B-KDJ algorithm. Then, the
pair hr; si currently being expanded is inserted into a compensation queue.

The aggressive pruning stage ends when one of the following conditions is satis�ed: (1) the main queue
becomes empty (line 5), (2) k or more query results have been returned (line 5), or (3) the distance of a
node pair retrieved from the main queue becomes smaller than eDmax (line 9). When the condition (2) is
satis�ed, obviously it is not necessary to execute the compensation stage of the AM-KDJ algorithm. (An
overestimated eDmax can also be detected by comparing with qDmax value (line 8). In this case, instead
of terminating the �rst stage, AM-KDJ behaves exactly the same as B-KDJ algorithm by using qDmax

alone as a cuto� value.) When the condition (3) is satis�ed, eDmax must have been underestimated and the
compensation stage (described in Algorithm 3) begins its processing by inserting all the pairs stored in the
compensation queue to the main queue.

In the compensation stage, the pairs in the main queue are processed in a similar way as B-KDJ
algorithm, but there are two notable di�erences from B-KDJ algorithm. First, the child nodes are not
sorted again because they have already been sorted in the �rst stage. Second, for the pairs already expanded
once in the �rst stage, only child pairs not examined in the �rst stage are processed by plane sweeping.

10

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

eDmax

remembered as r1.compensate

qDmax

Figure 8: Aggressive pruning with qDmax and eDmax

Algorithm 3: AM-KDJ: Adaptive Multi-Stage K-Distance Join Algorithm (Compensation Stage)

23: insert all elements in QC into QM ;
24: while jAnswerSetj < k and QM 6= ; do
25: set c dequeue(QM);
26: if c is an hobject; objecti then AnswerSet fcg [AnswerSet;
27: else CompensatePlaneSweep(c);

end

procedure CompensatePlaneSweep(hl; ri)
28: L f child nodes of l sorted in Stage Oneg; // fL[1]; L[2]; : : : ; L[jLj]g
29: R f child nodes of r sorted in Stage Oneg; // fR[1]; R[2]; : : : ; R[jRj]g
30: while L 6= ; and R 6= ; do
31: n a node with the min axis value 2 L [R; // n becomes an anchor.
32: if n 2 L then

33: L L� fng; R0 fnode list in R not paired with n in the Stage One g;
// f R[n:compensate]; R[n:compensate+ 1]; : : : ; R[jRj]g

34: SweepPruning(n;R0);
else

35: R R � fng; L0 fnode list in L not paired with n in the Stage One g;
// f L[n:compensate]; L[n:compensate+ 1]; : : : ; L[jLj]g

36: SweepPruning(n;L0);
end

end

This is feasible by bookkeeping done in the �rst stage (lines 19 and 21). For these reasons, the cost of the
compensating stage is not considerable compared with the cost of restarting the algorithm. In summary,
AM-KDJ algorithm uses eDmax to avoid the slow start problem in the aggressive pruning stage and speeds
up the query processing.

4.2 Adaptive Multi-stage Incremental Distance Join

Consider on-line query processing and internet database search environments, where users interact with
database systems in a way the number of required matches can be determined interactively or changed
at any point of query processing. Consider also a complex query that pipelines the results from a spatial

11

distance join to a �lter stage. Under these circumstances, the number of pairs (k) that should be returned
from a distance join is not known a priori, and hence a k-distance join algorithm proposed in [13] and B-KDJ
algorithm presented in Section 3 cannot be used directly.

An important advantage of AM-KDJ algorithm proposed in the previous section is that AM-KDJ

algorithm can be extended to an incremental algorithm (we call AM-IDJ) to support the interactive appli-
cations described above. The main di�erence between AM-KDJ and AM-IDJ algorithms is that AM-IDJ

does not maintain a distance queue. This is because it is not feasible to keep an unknown number of distances
in a distance queue, due to the lack of a priori knowledge about k, Thus, AM-IDJ algorithm uses eDmax

alone as a cuto� value for pruning distant pairs, because qDmax would be drawn only from a distance queue.
Without qDmax, AM-IDJ works as a stepwise incremental algorithm. First, AM-IDJ starts by deter-

mining an initial value k1 and estimating an initial eDmax1 for k1. Then, it performs the same way as the
�rst stage of AM-KDJ algorithm without qDmax. However, the �rst stage may terminates before producing
enough object pairs (i.e., less than k1), because AM-IDJ does not use qDmax as a cuto� value. If that
happens, AM-IDJ algorithm estimates eDmax2 value for k2 (k2 > k1) and initiates a compensation stage.

Even when a suÆcient number of object pairs have been returned from the �rst stage, users may request
more answers. Then, AM-IDJ initiates a compensation stage by determining k2 and estimating a new
eDmax2 accordingly. As shown in Figure 9 (drawn from Figure 4), the compensation stage can initiate
another compensation stage at the end of its processing, by choosing k3 and eDmax3. This process continues
until users stop requesting more answers. In this way, AM-IDJ algorithm can be used to produce query
results incrementally without limiting the maximum number of pairs in advance.

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

eDmax1

eDmax2

eDmax3

r4

r3

(1) (2) (3)

(1) : covered in FirstStage(k1, eDmax1)
(2) : covered in CompensatingStage(k2, eDmax2)
(3) : covered in CompensatingStage(k3, eDmax3)

Figure 9: Adaptive Multi-Stage Incremental Distance Join

4.3 Estimating the Maximum Distance (eDmax)

Both AM-KDJ and AM-IDJ algorithms process a distance join query based on an estimated cuto� value
eDmax. Thus, there should be a way to obtain an initial estimate and correct the estimate adaptively as
the algorithms proceed. Assuming data sets are uniformly distributed, we provide mechanisms to choose an
initial estimate of eDmax, and to adaptively correct it.

If the distribution of a data set is skewed, then a larger number of close pairs can be found in a smaller
dense region of the data space. We expect that the formulae given in this section tend to overestimate eDmax

value for non-uniformly distributed data sets, especially when a stopping cardinality k is far smaller than the

12

number of all pairs of objects (i.e., k � jRj � jSj). This was corroborated by our experiments as described
in Section 5.4.

4.3.1 Initial estimation

Let jRj and jSj be the number of data objects in sets R and S, respectively. Then, the number of data

objects in S within a distance d from a data object in R is approximated by jSj � ��d2

area(R\S) . Therefore, the

total number of object pairs (k) within a distance d is given by

k = jRj � jSj �
� � d2

area(R \ S)
:

For a given k value as the number of requested query results, an initial estimation of eDmax can be obtained
from the above equation as follows.

eDmax =
p
k � � (where � =

area(R \ S)

� � jRj � jSj
): (3)

4.3.2 Adaptive Correction of Estimated Distance eDmax

The performance of AM-KDJ and AM-IDJ algorithms can be further improved by adaptively adjusting
the value of eDmax at runtime. Adaptive correction of eDmax can be done at any point of query processing
by estimating a new eDmax from the number of object pairs k0 (k0 < k) obtained up to the point and the
real distance of the k0-th object pair, Dmax(k0). Speci�cally, the new estimate eDmax

0 can be computed from
Equation (3) as

eDmax
0 =
q
Dmax

2
(k0) + (k � k0)� (4)

by arithmetic correction, or as

eDmax
0 = Dmax(k0) �

p
k=k0 (5)

by geometric correction if Dmax(k0) 6= 0. In practice, we propose computing eDmax
0 in both ways, and then

choose the minimum if the query processing needs to be err on the aggressive side. Otherwise, the maximum
is chosen as eDmax

0.
Note that the new estimate eDmax

0 can sometimes grow beyond the previous estimate. If this happens,
some pairs whose distances are larger than the previous estimate but smaller than the new estimate could
have already been pruned and will never be examined in the current processing stage under the new estimate.
Thus, to guarantee the correctness of the distance join, the algorithm should initiate a compensation stage,
as soon as a pair whose distance is smaller than the smallest eDmax is dequeued from the main queue.

4.4 Queue Management

EÆcient queue management is one of the key components of the distance join algorithms proposed in this
paper. Each of the B-KDJ, AM-KDJ, and AM-IDJ algorithms relies on the use of one or more priority
queues for query processing. In particular, the main queue (QM) is heavily used by all of the proposed
algorithms, and its performance impact is signi�cant. In the worst case, the main queue can grow as large
as the product of all objects of two R-tree indexes. That is, the size of QM is in O(jRobj j � jSobj j), where
jRobj j and jSobj j are the number of all objects in R and S, respectively. Thus, it is not always feasible to
store the main queue in memory.

It was reported in [13] that a simple memory-based implementation might slow down query processing
severely, due to excessive virtual memory thrashing. A hybrid memory/disk scheme [13] and a technique
based on range partitioning [9] have been proposed to improve queue management and to avoid wasted
sorting I/O operations. We adopt a similar scheme for queue management, which partitions a queue by
range based on distances of pairs. A partition in the shortest distance range is kept in memory as a heap
structure, while the rest of partitions are stored on disk as merely unsorted piles.

13

When the in-memory heap becomes full, it is split into two parts, and then one in the longer distance
range is moved to disk as a new segment. When the in-memory heap becomes empty, a disk-resident segment
in the shortest distance range or a part of the segment is swapped in to memory to �ll up the in-memory heap.
Each of the split and swap-in operations requires O(n logn) computational cost for a heap of n elements as
well as I/O cost for reading and writing a segment. Thus, it is important to minimize the required number
of those operations, which largely depends on the partition boundary values between the in-memory heap
and the �rst disk-resident segment, and between those consecutive segments. However, as it is impossible to
predict an exact Dmax value for a given k, so is it diÆcult to determine optimal distance values as segment
boundaries.

To address this issue, we use Equation (3) to determine the boundary distance values. Suppose n is
the number of elements that can be stored in an in-memory heap. Then, the boundary value between the
in-memory heap and the �rst disk-resident segment is given by

p
n� �, and the boundary value between the

�rst and second segments is given by
p
(2� n)� �, and so on.

In addition to a main queue, multi-stage algorithms AM-KDJ and AM-IDJ use a compensation queue
(QC) in the compensation stage. Unlike the main queue, a compensation queue does not store any pair
of objects. In other words, a compensation queue can store pairs of non-object R-tree nodes only. Thus,
the size of QC is in O(jRnodej � jSnodej), where jRnodej and jSnodej are the number of nodes (both internal
and leaf nodes) in R and S, respectively. This is a signi�cantly lower upper-bound than a main queue has.
We also observed from our experiments that compensation queues were several orders of magnitude smaller
than main queues. As for a distance queue used by B-KDJ and AM-KDJ algorithms, its size is always
bounded by a given k value. For these reasons, under most circumstances, we assume either a compensation
queue and a distance queue �ts in memory. If any of these queues outgrows memory, the same partitioning
technique used for a main queue will be applied.

5 Performance Evaluation

In this section, we evaluate the proposed algorithms empirically and compare with previous work. In par-
ticular, the proposed B-KDJ, AM-KDJ and AM-IDJ algorithms were compared with Hjaltason and
Samet's k-distance and incremental distance join algorithms (hereinafter denoted as HS-KDJ and HS-IDJ,
respectively) for k-distance join (KDJ) and incremental distance join (IDJ) queries. We also include the per-
formance of an R-tree based spatial join algorithm [7] combined with a sort operation (denoted as SJ -SORT)
in most of the experiments. For each distance join query, a spatial join operation was performed with a real
Dmaxvalue to generate the k nearest pairs. Then, a sort operation was performed to return the query results
in an increasing order of distances. Note that we made a favorable assumption for SJ -SORT that a real
Dmax value was known a priori.

5.1 Experimental Settings

Experiments were performed on an Intel Pentium II workstation with 200 MHz clock rate. This workstation
has 128 MBytes of memory and 4 GBytes of disk storage with Ultra-wide SCSI interface, and runs on Linux
kernel version 2.0.34.

Data sets To evaluate distance join algorithms, we used real-world data sets in TIGER/Line97 from the
U.S. Bureau of Census [17]. The particular data sets we used were 64,952 streets and 191,289 hydrographic
objects from the Arizona state. Throughout all the experiments, the same page size of 4 KBytes was used
for disk I/O and R*-tree [3] nodes.

Metrics We measured the performance of various algorithms based on the following metrics to compare
the algorithms in di�erent aspects such as computational cost and I/O cost.

1. number of distance computations: The cost of computing distances between pairs of nodes (or objects)
constitutes a signi�cant portion of the computational cost of a distance join operation. Thus, the total
number of distance computations required by a distance join algorithm provides a direct indication of
its computational performance.

14

3

6

9

12

15

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-KDJ
B-KDJ

AM-KDJ
SJ-Sort

2

4

6

8

10 100 1000 10000 100000

N
um

be
r

in
 1

00
K

K : Number of Pairs

No. of Queue Insertions

HS-KDJ
B-KDJ

AM-KDJ
SJ-Sort

0

10

20

30

40

50

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

HS-KDJ
B-KDJ

AM-KDJ
SJ-Sort

(a) Distance Computations (b) Queue Insertions (c) Response Time

Figure 10: Performance k-Distance Joins

2. number of queue insertions: The task of managing a main queue is largely I/O intensive as well as CPU
intensive. Thus, the total number of insertions to a main queue required by a distance join algorithm
provides a reasonable indication of its I/O performance, because insertions are much more frequent
than deletions.

3. response time: Actual query response times were measured for overall performance of distance join
algorithms.

5.2 Evaluation of k-Distance Joins

In this set of experiments, we varied a stopping cardinality k from 10 to 100,000 to compare the performance
of HS-KDJ, B-KDJ and AM-KDJ algorithms. The size of in-memory portion of a main queue was �xed
to 100,000 elements. For AM-KDJ algorithm, we used Equation (3) to estimate eDmax values, and we
observed a tendency for eDmax values to be overestimated with respect to real Dmax values. For example,
for k = 100; 000, eDmax was about 1.9 times larger than a real Dmax.

Figure 10(a) shows that both B-KDJ and AM-KDJ reduced the number of distance computations
signi�cantly. The numbers of distance computations required by the algorithms were smaller than those
required by HS -KDJ algorithm by up to two orders of magnitude. AM-KDJ was almost identical to
SJ -SORT by this metric. This demonstrates that the optimized plane-sweep method was very e�ective
in pruning distant pairs generated by bi-directional expansions. On the other hand, HS -KDJ algorithm
examines all possible pairs exhaustively in uni-directional expansions.

In Figure 10(b), HS-KDJ and B-KDJ were comparable in queue insertions. B-KDJ was slightly better
than HS-KDJ for small k values, and vice versa for large k values. AM-KDJ was always better than
both HS -KDJ and B-KDJ. This result con�rms our conjecture that the optimized plane-sweep method
can prevent an explosion of a main queue that would be caused by bi-directional node expansions without
the optimized plane-sweep.

As Figure 10(c) shows, B-KDJ and AM-KDJ outperformed HS-KDJ in response time by a factor of
1.7 (k = 100,000) up to 3 (k = 1,000 or 10,000). For large k values (k > 10; 000), the response time of
AM-KDJ was within about 70 percent of that of SJ -SORT. Note that SJ -SORT was worse than all
three k-distance join algorithms in response time for small k values (k � 1000). This was because there were
about 1,000 pairs of intersected objects in the Arizona data sets, and all the intersected object pairs were
returned as a distance join query results, no matter what distance cuto� was provided for the SJ -SORT

processing.
Table 2 shows that the proposed B-KDJ and AM-KDJ algorithms based on bi-directional node ex-

pansions require a far smaller number of R-tree node accesses than HS -KDJ algorithm, which is based on
uni-directional node expansions.

5.3 Impact of Optimized Plane-Sweep

To further analyze the performance impacts of the optimized plane-sweep method proposed in Section 3,
we measured the performance of B-KDJ with the optimization turned o�. Speci�cally, a sweeping axis

15

KDJ Stopping cardinality k
Algorithms 10 100 1,000 10,000 100,000

HS -KDJ 456 4,345 37,450 56,016 62,432
B-KDJ 42 456 3,444 4,120 4,244
AM-KDJ 36 442 3,308 4,120 4,244
SJ -SORT 4,106 4,106 4,106 4,120 4,244

Table 2: No. of R-Tree Node Accesses for k-Distance Joins

No. of Axis Distance Computations

0

1

2

3

4

5

6

7

8

10 100 1000 10000 100000

K : No. of Pairs

N
u

m
b

er
 in

 M
ill

io
n

s

no opt. BKDJ
BKDJ

No. of Real Distance Computations

0

1

2

3

4

5

6

7

10 100 1000 10000 100000

K : No. of Pairs

N
u

m
b

er
 in

 M
ill

io
n

s

no opt. BKDJ
BKDJ

(a) Axis Distance Computations (b) Real Distance Computations

Figure 11: Improvements by Optimized Plane Sweep

and direction were �xed to x-axis and forward direction, for B-KDJ with the optimization turned o�. As
Figure 11 shows, the optimized plane-sweep alone reduced the number of required axis and real distance
computations by about 30 to 42 percent.

5.4 Evaluation of Incremental Distance Joins

As in the previous section, we varied a stopping cardinality k from 10 to 100,000 to compare the performance
of incremental distance join algorithms HS -IDJ and AM-IDJ. Unlike the previous experiments, the size of
in-memory portion of a main queue was set to k+100; 000 elements instead of 100,000 elements, so that the
incremental distance join algorithms were evaluated under the same memory constraints as the k-distance
join algorithms, which used k additional elements for a distance queue.

As Figures 12(a) and 12(b) show, 75 to 98 percent of distance computations and queue insertions per-
formed by HS -IDJ algorithm were eliminated by AM-IDJ algorithm. The signi�cant improvement in these
two metrics in turn led to improvement in response time by a factor of four to six in Figure 12(c). Like
AM-KDJ algorithm, Equation (3) was used to estimate eDmax values for AM-IDJ algorithm.

0

3

6

9

12

15

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

n

K : Number of Pairs

No. of Distance Computations

HS-IDJ
AM-IDJ
SJ-Sort

0

3

6

9

12

15

10 100 1000 10000 100000

N
um

be
r

in
 M

ill
io

n

K : Number of Pairs

No. of Queue Insertions

HS-IDJ
AM-IDJ
SJ-Sort

0

20

40

60

80

100

120

140

10 100 1000 10000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

HS-IDJ
AM-IDJ
SJ-Sort

(a) Distance Computations (b) Queue Insertions (c) Response Time

Figure 12: Performance of Incremental Distance Joins

16

5.5 Impact of Memory Size

In this set of experiments, we examined the performance impact of memory constraint on queue manage-
ment. We measured the response time of HS-KDJ, B-KDJ and AM-KDJ algorithms for a �xed stopping
cardinality k = 100; 000. The size of in-memory portion of a main queue was varied from 5,000 to 500,000.
As Figure 13 shows, the response time of all three algorithms improved as the size of available memory in-
creased. Moreover, the proposed B-KDJ and AM-KDJ algorithms showed consistently better performance
than HS-KDJ all over the examined range of memory size.

0

10

20

30

40

50

5000 10000 50000100000 500000

T
im

e
in

 S
ec

on
ds

Main Memory Units

Response Time

HS-KDJ
B-KDJ
AM-IDJ

Figure 13: Performance Impact of Memory Size

5.6 Impact of eDmax Estimation on AM-KDJ Performance

We designed a set of experiments to characterize the performance of AM-KDJ algorithm with respect to
the accuracy of estimated eDmax values. Instead of using Equation (3) to estimate eDmax, we varied the
eDmax value from 0:1�Dmax to 10�Dmax. Recall that Dmax is a real distance between the k-th nearest
pair of objects. Again, we �xed a stopping cardinality k to 100,000, and the size of in-memory portion of a
main queue was �xed to 100,000 elements.

When eDmax is overestimated (eDmax > Dmax), the compensation stage of AM-KDJ algorithm is not
necessary, because all the k nearest pairs will be produced in the �rst (aggressive pruning) stage. Even
when eDmax is overestimated, AM-KDJ guarantees that eDmax is always smaller than or equal to qDmax

(obtained from a distance queue) throughout the �rst stage. Thus, AM-KDJ always requires no more
distance computation and queue insertion operations than B-KDJ algorithm does.

On the other hand, if eDmax is underestimated (eDmax < Dmax), the node pairs in the compensation
queue will be revisited in the compensation stage. Thus, the cost of tree traversals and queue management
will increase, but it will be bounded by twice the cost of B-KDJ algorithm. As discussed in Section 4.1, for
a pair already expanded once in the �rst stage, only child pairs not examined in the �rst stage are paired up
in the compensation stage and thereby wasting no time for redundant work. The value of qDmax is likely to
become quite close to a real Dmax value in the compensation stage. So, AM-KDJ algorithm usually prunes
distant pairs much more eÆciently in the compensation stage than B-KDJ algorithm would do in a single
stage. Therefore, AM-KDJ outperforms the k-distance join algorithms HS-KDJ and B-KDJ, despite the
additional cost of compensation stage.

Figure 14 shows that as eDmax approaches to a real Dmax value, the performance of AM-KDJ improves
consistently in all three metrics. When eDmax increases far beyond the real Dmax value, the performance of
AM-KDJ converges to that of B-KDJ algorithm. Importantly, however, AM-KDJ always outperformed
B-KDJ, not to mention HS-KDJ, with eDmax in a wide spectrum of estimated value range.

We have not measured the cost of compensation queue management. A compensation queue contains
pairs of non-object R-tree nodes. During the �rst (aggressive pruning) stage of AM-KDJ algorithm, The
number of pruned pairs is far larger than the number of non-object pairs inserted into a compensation queue.
In most of our experiments, the size of a compensation queue was less than 0.5 percent of the size of a main
queue. Thus, the additional cost required for the compensation queue was almost negligible. This is one of
the reasons why AM-KDJ algorithm always outperformed B-KDJ, which does not need a compensation
queue.

17

0

3

6

9

12

15

0.2 0.4 0.6 0.8 1 3 5 7 9

N
um

be
r

in
 M

ill
io

ns

ratio of eDmax / Dmax

No. of Distance Computations

HS-KDJ

B-KDJ

AM-KDJ
SJ-Sort

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1 3 5 7 9

N
um

be
r

in
 1

00
K

ratio of eDmax / Dmax

No. of Queue Insertions

B-KDJ

HS-KDJ

AM-KDJ

SJ-Sort

0

10

20

30

40

50

0.2 0.4 0.6 0.8 1 3 5 7 9

T
im

e
in

 S
ec

on
ds

ratio of eDmax / Dmax

Response Time

HS-KDJ

B-KDJ

AM-KDJ

SJ-Sort

(a) Distance Computations (b) Queue Insertions (c) Response Time

Figure 14: Performance Impact of eDmax

5.7 Stepwise Incremental Execution of AM-IDJ

Incremental distance join algorithms do not require a preset stopping cardinality k. Thus, in this set of
experiments, we simulated a situation where users repeatedly requested a set of 10,000 nearest pairs at a
time until a total of 100,000 nearest pairs were generated. Incremental algorithms HS-IDJ and AM-IDJ

each were executed once in a single experiment run, until a total of 100,000 nearest pairs were generated.
The size of in-memory portion of a main queue was �xed to 10,000 elements both for HS-IDJ and AM-IDJ.

On the other hand, since SJ -SORT is not an incremental algorithm, we restarted its processing each time
i�10; 000 nearest pairs were generated for i (1 � i � 9). Thus, the performance measurements of SJ -SORT
presented in Figure 15 are cumulative. For example, the response time of SJ -SORT for k = 20; 000 includes
the times spent on executing SJ -SORT twice, once for k = 10; 000 and another for k = 20; 000. For each
run of SJ -SORT, we used a real Dmax value for each of di�erent stopping cardinalities.

In Figure 15, we measured the response time of AM-IDJ algorithm in two di�erent ways: (1) with eDmax

values estimated by Equation (3), and (2) with real Dmax values. When real eDmax values were provided,
AM-IDJ initiated a compensation stage each time another set of 10,000 pairs of object were requested by
users. When estimated eDmax values were provided, AM-IDJ needed compensation processing only after
generating 40,000 pairs and 70,000 pairs, due to overestimated eDmax values. AM-IDJ showed a fairly
consistent performance over varying eDmax estimates, as AM-KDJ did in Section 5.6. For all the k values,
AM-IDJ with estimated eDmax improved the response time by a factor of two to four, when compared with
HS-IDJ.

0

20

40

60

80

100

120

140

20000 40000 60000 80000 100000

T
im

e
in

 S
ec

on
ds

K : Number of Pairs

Response Time

SJ-Sort

HS-IDJ
AM-IDJ

AM-IDJ(ideal)
SJ-Sort

Figure 15: Step-Wise Incremental Execution

6 Conclusions

We have developed new distance join algorithms for spatial databases. The proposed algorithms provide
signi�cant performance improvement over previous work. The plane-sweep technique optimized by novel

18

strategies for selecting a sweeping axis and direction minimizes the computational overhead incurred by
bi-directional node expansions. We have shown that this optimized plane-sweep technique alone improves
processing of a k-distance join query considerably.

The adaptive multi-stage algorithms employ aggressive pruning and compensation methods to further
optimize the distance join processing. These algorithms address a slow start problem by using estimated
maximum distances as cuto� values for pruning distant pairs. Assuming data objects are uniformly distribut-
ed, we have developed strategies to choose an initial estimate and to correct the estimate adaptively during
the query processing. Our experimental study shows that the proposed algorithms outperformed previous
work signi�cantly and consistently over a wide spectrum of estimated maximum distances. In particular,
for a relatively small stopping cardinality, the proposed algorithms achieved up to an order of magnitude
improvement over previous work.

When the stopping cardinality of a distance join query is unknown (as in on-line query processing environ-
ments or a complex query that contains a distance join as a sub-query), the adaptive multi-stage algorithms
process the query in a stepwise manner so that the query results can be returned incrementally.

We plan to develop new strategies for estimating the maximum distances and managing queues for
non-uniform data sets.

References

[1] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Scalable sweeping-based spatial join. In

Proceedings of the 24th VLDB Conference, pages 259{270, New York, USA, June 1998.

[2] S. Arya, D. M. Mount, and O. Narayan. Accounting for boundary e�ects in nearest neighbor searching. In Proc.

11th Annual Symp. on Computational Geometry, pages 336{344, Vancouver, Canada, 1995.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R�-tree: An eÆcient and

robust access method for points and rectangles. In Proceedings of the 1990 ACM-SIGMOD Conference, pages

322{331, Atlantic City, NJ, May 1990.

[4] S. Berchtold, B. Ertl, D. Keim, H.-P. Kriegel, and T. Seidl. Fast nearest neighbor search in high-dimensional

spaces. In Proceedings of the 14th Intl. Conf. on Data Engineering, Orlando, Florida, September 1998.

[5] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for high-dimensional data. In

Proceedings of the 22nd VLDB Conference, Bombay, India, September 1996.

[6] Thomas Brinkho�, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-step processing of spatial

joins. In Proceedings of the 1994 ACM-SIGMOD Conference, pages 197{208, Minneapolis, Minnesota, May 1994.

[7] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. EÆcient processing of spatial joins using R-Trees.

In Proceedings of the 1993 ACM-SIGMOD Conference, pages 237{246, Washington, DC, May 1993.

[8] Michael J. Carey and Donald Kossmann. On saying \enough already!" in SQL. In Proceedings of the 1997

ACM-SIGMOD Conference, pages 219{230, Tucson, AZ, May 1997.

[9] Michael J. Carey and Donald Kossmann. Reducing the braking distance of an SQL query engine. In Proceedings

of the 24th VLDB Conference, pages 158{169, New York, NY, August 1998.

[10] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic optimization of top N queries. In Proceedings of the

25th VLDB Conference, Edinburgh, Scotland, September 1999.

[11] Antonin Guttman. R-Trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM-

SIGMOD Conference, pages 47{57, Boston, MA, June 1984.

[12] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Proc. of 4th Intl. Symposium on Large Spatial

Databases(SSD'95), pages 83{95, September 1995.

[13] Gisli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for spatial databases. In Proceedings

of the 1998 ACM-SIGMOD Conference, pages 237{248, Seattle, WA, June 1998.

[14] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest neighbor search in medical

image databases. In Proceedings of the 22nd VLDB Conference, pages 215{226, 1996.

[15] Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded trees. In Proceedings of the 1994 ACM-

SIGMOD Conference, pages 209{220, Minneapolis, Minnesota, May 1994.

[16] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-join. In Proceedings of the 1996 ACM-SIGMOD Con-

ference, pages 247{258, Montreal, Canada, June 1996.

19

[17] Bureau of the Census. Tiger/Line Precensus Files: 1997 technical documentation. Washington, DC, 1997.

[18] Jack A. Orenstein. A comparison of spatial query processing techniques for native and parameter spaces. In

Proceedings of the 1990 ACM-SIGMOD Conference, pages 343{352, Atlantic City, New Jersey, May 1990.

[19] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In Proceedings of the 1996 ACM-

SIGMOD Conference, pages 259{270, Montreal, Canada, June 1996.

[20] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introdution. Springer-Verlag, New

York, NY, 1985.

[21] V. Ramasubramanian and K. K. Paliwal. Fast k-dimensional tree algorithms for nearest neighbor search with

application to vector quantization encoding. IEEE Trans. on Signal Processing, 40(3):518{531, March 1992.

[22] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent. Nearest neighbor queries. In Proceedings of the 1995

ACM-SIGMOD Conference, pages 71{79, San Jose, CA, May 1995.

[23] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor search. In Proceedings of the 1998

ACM-SIGMOD Conference, pages 154{165, Seattle, Washington, 1998.

20

