
On the Complexity of Flow-Sensitive Data
ow Analyses

�

Robert Muth Saumya Debray

Department of Computer S
ien
e

University of Arizona

Tu
son, AZ 85721, U.S.A.

fmuth, debrayg�
s.arizona.edu

Te
hni
al Report 99-12

Abstra
t

This paper attempts to address the question of why
ertain data
ow analysis problems
an be solved

eÆ
iently, but not others. We fo
us on
ow-sensitive analyses, and give a simple and general result that

shows that analyses that require the use of relational attributes for pre
ision must be PSPACE-hard in

general. We then show that if the language
onstru
ts are slightly strengthened to allow a
omputation

to maintain a very limited summary of what happens along an exe
ution path, inter-pro
edural analyses

be
ome EXPTIME-hard. We dis
uss appli
ations of our results to a variety of analyses dis
ussed in the

literature. Our work elu
idates the reasons behind the
omplexity results given by a number of authors,

improves on a number of su
h
omplexity results, and exposes
on
eptual
ommonalities underlying

su
h results that are not readily apparent otherwise.

�

This work was supported in part by the National S
ien
e Foundation under grants CDA-9500991, CCR-9711166, and

ASC-9720738.

1 Introdu
tion

Program analysis involves keeping tra
k of properties of variables at di�erent program points. In general,

the properties of di�erent variables may depend on ea
h other. When tra
king su
h properties, we may

hoose to keep tra
k of dependen
ies between the properties of di�erent variables (leading to analysis

information of the form \[x = a and y = b℄; or [x =
 and y = d℄"), or we may
hoose to ignore su
h

dependen
ies (leading to information of the form \[x = a or x =
℄; and [y = b or y = d℄"). Jones

and Mu
hni
k refer to the former kind of analyses as relational attributes analyses, and the latter kind

as independent attributes analyses [6℄. The tradeo� between these methods is that independent attributes

analyses are usually more eÆ
ient but less pre
ise than relational attributes analyses.

When addressing a program analysis problem, it is useful to
onsider the
omputational
omplexity

of obtaining a pre
ise (upto symboli
 exe
ution) solution to the problem.

1

If a pre
ise solution
an be

obtained \eÆ
iently," i.e., in polynomial time, it makes sense to try and �nd an algorithm that obtains

su
h a solution. If, on the other hand, the existen
e of eÆ
ient algorithms to
ompute pre
ise solutions is

unlikely, it makes sense to sa
ri�
e pre
ision for eÆ
ien
y. Questions about the
omputational
omplexity

of various program analyses have been addressed by a number of authors (see Se
tion 5). The
urrent state

of knowledge resulting from these works is, by and large, a set of isolated fa
ts about the
omplexities of

various analyses. What is missing are insights into the underlying reasons for these results. For example,

Landi's results on the
omplexity of pointer-indu
ed alias analysis [8, 11℄ tell us that single-level pointers

are, in some sense, easy to handle, but multi-level pointers are not: however, they don't explain exa
tly

why multi-level pointers are hard to deal with. The situation is further muddled by the results of Pande

et al., who show that the pre
ise
onstru
tion of inter-pro
edural def-use
hains be
omes diÆ
ult in the

presen
e of single-level pointers [15℄. In other words, single-level pointers
ompli
ate some analyses but

not others, but we don't have any insights into why su
h pointers are benign in some situations but

problemati
 in others. Moreover, these results are typi
ally obtained using redu
tions from problems with

known
omplexity: di�erent problem
hoi
es by di�erent authors, and di�eren
es in the details of the

redu
tions for di�erent analysis problems, often make it diÆ
ult to see whether there are any underlying

on
eptual
ommonalities between di�erent su
h
omplexity arguments.

The main
ontribution of this paper is to elu
idate the fundamental reasons why
ertain program

analyses
an be
arried out eÆ
iently (i.e., in polynomial time), while others are diÆ
ult. We give a simple

and general result that is appli
able to a wide variety of intra- and inter-pro
edural
ow-sensitive analyses.

This is able to explain, for example, why single-level pointers
an be handled eÆ
iently in the
ontext

of pointer-indu
ed alias analysis [8, 11℄ but not for def-use
hains [15℄. With very little
on
eptual and

notational e�ort, a number of
omplexity results given in the literature [8, 11, 12, 13, 15℄ fall out dire
tly

as
orollaries of this result. Moreover, for several of these analyses, we are able to improve signi�
antly

on the known
omplexity results reported in the literature [12, 13, 15℄. For example, we show that the

following analyses are EXPTIME-
omplete: inter-pro
edural pointer alias analysis in the presen
e of two-

level pointers (Corollary 4.5; previous best result: PSPACE-hard [8℄), inter-pro
edural rea
hing de�nitions

in the presen
e of single-level pointers (Corollary 4.6; previous best result: NP-hard [15℄), and inter-

pro
edural liveness analysis and available expressions in the presen
e of referen
e parameters (Corollary

4.8; previous best result: NP-hard [13℄). In the pro
ess, our work exposes
on
eptual
ommonalities

underlying a variety of program analyses.

2 Preliminaries

From the perspe
tive of program analysis, we may be interested in two di�erent kinds of information

about program variables. We may want to know something about a parti
ular variable at a parti
ular

1

The determination of whether some (nontrivial) property will a
tually hold at a parti
ular program point at runtime is, of

ourse, unde
idable. A standard assumption in the data
ow analysis literature is that all \realizable" paths in a program|by

whi
h we mean all paths subje
t to the
onstraint that pro
edure
alls are mat
hed up
orre
tly with returns|are exe
utable,

or, equivalently, that either bran
h of any
onditional
an always be exe
uted. This assumption, whi
h Barth referred to as

pre
ision \upto symboli
 exe
ution" [2℄, usually suÆ
es to sidestep the problem of unde
idability, and \pre
ision" of program

analyses is typi
ally de�ned with respe
t to this assumption.

1

program point, e.g., in the
ontext of
onstant propagation [1℄; or we may want to know something about

the relationships among some set of variables, e.g., whether or not two variables
an be guaranteed to

have di�erent values at a parti
ular program point (useful for reasoning about pointers). We refer to the

problem of determining the former kind of information as the single value problem, and that of determining

the latter kind of information as the simultaneous value problem. For the purposes of this paper, we fo
us

on rather restri
ted
lasses of su
h problems, under the assumption, standard in data
ow analysis, that all

paths in the program being analyzed are exe
utable:

De�nition 2.1 Suppose we are given a program P and an initial assignmentE

init

of values for the variables

of P . Let x; x

1

; : : : ; x

n

be variables in P ,
;

1

; : : : ;

n

be values, and let p be a program point in P .

A single value problem for P is a problem of the form: \is there an exe
ution path from the entry node

of P to p, with initial variable assignment E

init

, su
h that \x =
" holds when
ontrol rea
hes p?"

A simultaneous value problem for P is a problem of the form: \is there an exe
ution path from the entry

node of P to p, with initial variable assignment E

init

, su
h that \x

1

=

1

^ x

2

=

2

^ � � � ^ x

k

=

k

" holds

when
ontrol rea
hes p?"

In parti
ular, simultaneous value problems where all of the
onstants

1

; : : : ;

k

are either 0 or 1 are referred

to as binary simultaneous value problems.

It seems intuitively obvious that solving a simultaneous value problem will require a relational attributes

analysis; we will show, however, that while an independent attributes analysis is often adequate for a single

value problem, there are some situations where it is ne
essary to resort to relational attributes analyses

even for single value problems.

3 Intra-pro
edural and Non-re
ursive Inter-pro
edural Analyses

3.1 Intra-pro
edural Analysis

In this se
tion we
onsider a simple language Base where variables are all integer-valued, and a program

onsists of a single pro
edure
ontaining (labelled) statements that
an be assignments,
onditionals, or

un
onditional jumps.

2

Sin
e our primary interest is in data
ow analyses, we make the standard assumption

that all paths in the program are exe
utable, i.e., that either bran
h of a
onditional may be exe
uted at

runtime, and omit the a
tual expression being tested in a
onditional. To keep the dis
ussion simple and

fo
used, we restri
t our attention to expressions that are variables or
onstants (assuming that an analysis

is able to do arithmeti
 adds an independent sour
e of
omplexity that
an obs
ure the essen
e of our

results):

Prog ::= Stmt

Stmt ::= Var = Expr;

j if (-) Stmt

1

... else if (-) Stmt

i

... else Stmt

n

j Label: Stmt

j goto Label;

j fStmt

1

; ...; Stmt

n

;g

Expr ::= Const j Var

Const ::= 0 j 1

The simplest analyses are those where there is no need to keep tra
k of relationships between variables:

Theorem 3.1 The single value problem for programs in Base
an be solved in polynomial time, provided

that primitive operations of the analysis
an be
arried out in polynomial time.

2

We
hoose this syntax for simpli
ity: with a small amount of
ode dupli
ation, it is straightforward to express our programs

in a subset of C
onsisting of assignments,
onditionals, and while loops together with break and
ontinue statements.

2

Proof: A straightforward independent attribute analysis suÆ
es in this
ase. Jones and Mu
hni
k ([6℄,

Se
tion 12.2) show that this
an be
arried out in time quadrati
 in the size of the program, provided

that primitive operations of the analysis, e.g.,
he
king whether two abstra
t domain elements are equal

(whi
h is ne
essary to determine when a �xpoint has been rea
hed),
an be
arried out in O(1) time. The

requirement of
onstant-time operations
an be relaxed to allow polynomial-time primitive operations and

still preserve an overall polynomial time
omplexity.

We next
onsider the
omplexity of simultaneous value problems for Base. In this
ontext, we mention

the following result: this is not the
entral result of this paper, but is of some histori
al interest be
ause

its proof, given below. is essentially isomorphi
 to similar NP-hardness results for a
y
li
 programs given

by a number of authors [6, 8, 11, 12, 13, 15℄. Appli
ations of this theorem in
lude (intra-pro
edural) type

inferen
e problems where the type of a variable depends on the types of other variables (see, e.g., [6, 16℄).

Theorem 3.5 and Corollary 4.3 give stronger results for more general
lasses of programs.

Theorem 3.2 The (binary) simultaneous value problem for a
y
li
 programs in Base is NP-
omplete.

Proof: The proof of NP-hardness is by redu
tion from the 3-SAT problem, whi
h is the problem of

determining, given a set of
lauses ' ea
h
ontaining three literals, whether ' is satis�able. This problem

is known to be NP-
omplete [5℄. Given a formula ' � (u

11

_ � � � _ u

13

) ^ � � � ^ (u

m1

_ � � � _ u

m3

) over a set

of variables fx

1

; : : : ; x

n

g, where ea
h of the literals u

ij

is either a variable or its negation, we generate a

program P

'

, with variables fx 1t, . . . , x nt, x 1f, . . . , x nf,
1, . . . ,
mg, of the following form:

if (-) f x 1t = 0; x 1f = 1; g else f x 1t = 1; x 1f = 0; g

if (-) f x 2t = 0; x 2f = 1; g else f x 2t = 1; x 2f = 0; g

...

if (-) f x nt = 0; x nf = 1; g else f x nt = 1; x nf = 0; g

if (-)
1 = w

11

;

else if (-)
1 = w

12

;

else
1 = w

13

;

...

if (-)
m = w

m1

;

else if (-)
m = w

m2

;

else
m = w

m3

;

L:

Here, w

ij

are de�ned as follows: if the literal u

ij

is a variable x

k

for some k, then w

ij

= x kt; if the

literal u

ij

is a negated variable x

k

for some k, then w

ij

= x kf. Intuitively, x it = 1 in P

'

represents an

assignment of a truth value true to x

i

in ', while x if = 1 represents a truth value of false. Ea
h path

through the �rst group of
onditionals represents a truth assignment for the variables of '. The se
ond

group of
onditionals represents the evaluation of the
lauses: the i

th

lause evaluates to true if and only

if there is a path through the i

th

onditional in the se
ond group that assigns 1 to the variable
i. The

simultaneous value problem we pose at the program point labelled L is

1 = 1 ^ ...^
m = 1.

This is true if and only if there is a path through all of the statements in P

'

that assigns 1 to ea
h of the

i, i.e., if and only if there is a truth assignment to the variables of ' that
auses ea
h of its
lauses to

evaluate to true.

To see that the simultaneous value problem is in NP, given any a
y
li
 program in Base we simply

guess a path through the program and
he
k whether the assignments along this path make the problem

true.

The main result of this se
tion is for simultaneous value problems for all programs in Base. We show

that this
lass of problems is PSPACE-
omplete: the idea is that given an arbitary polynomial-spa
e-

bounded Turing ma
hine, we
an
onstru
t a simultaneous value problem over a program in Base that
an

3

be used to determine whether or not the Turing ma
hine a

epts its input. Suppose we are given a single

tape deterministi
 polynomial-spa
e-bounded Turing ma
hine M = (Q;�;�; Æ; q

0

; F), where � is the input

alphabet; � = f0; 1; : : : ; nsg is the tape alphabet, with 0 being the blank symbol; Æ 2 Q�� �! Q���fL;Rg

is the transition fun
tion; q

0

2 Q is the initial state; and F = fq

1

g is the set of �nal states, su
h that M

halts on all inputs x after using at most jxj

k

ells of the tape. For simpli
ity we assume that M erases

its tape before halting and that the tape is
y
li
, i.e., after the last
ell the tape \wraps around" to the

�rst
ell: these are not serious restri
tions, and it is not diÆ
ult to see how a Turing ma
hine that does

not satisfy these assumptions
an be transformed into one that does. The use of a
y
li
 tape allows us to

simulate the movement of the tape head to the left (respe
tively, right) by rotating the tape to the right

(respe
tively, left), so that the tape
ell being s
anned by the head is always
ell 0: this simpli�es the

simulation of the Turing ma
hine, sin
e we don't have to keep tra
k of the position of the tape head. We

onstru
t a program P

M;x

that emulates M on an input x. This program
ontains three sets of (boolean)

variables:

1. Q

0

; : : : ; Q

nq

, where nq = jQj � 1: These variables represent the
urrent state of M : intuitively, Q

i

= 1

denotes that M is in state i.

2. T

0;0

; : : : ; T

nt;ns

, where nt = jxj

k

� 1; ns = j�j� 1: These variables represent the
ontents of M 's tape:

intuitively, T

i;j

= 1 denotes that
ell i of M 's tape
ontains symbol j.

3. X

0

; : : : ; X

ns

: these variables are temporaries for
opying the tape
ontents while we \rotate" the tape.

A
on�guration where M is in state q

k

, the tape
ontents are s

0

s

1

: : : s

nt

, and where M 's tape head is

s
anning the m

th

tape square, is des
ribed by the following variable settings:

Q

i

=

�

1 if i = k

0 otherwise

; X

i

= 0; for all i; T

i;j

=

�

1 if s

(i�m) mod (nt+1)

= j

0 otherwise

The
ode
orresponding to M 's move when it is state q

i

and s
anning a
ell
ontaining a symbol s

j

, i.e.,

Æ(q

i

; s

j

), is represented by MOV

i;j

, and is de�ned as follows:

Æ(q

i

; s

j

) = (q

k

; s

m

; L) Æ(q

i

; s

j

) = (q

k

; s

m

;R)

Q

i

= Q

k

; Q

i

= Q

k

;

Q

k

= 1; Q

k

= 1;

T

0;j

= T

0;m

; T

0;j

= T

0;m

;

T

0;m

= 1; T

0;m

= 1;

goto
opy left; goto
opy right;

The �rst two lines of this
ode update the state variable, the next two lines update the
ontents of the tape

ell being s
anned, and the last line
orresponds to the rotation of the tape, simulating the movement of

the tape head.

The program P

M;x

that emulates M on input x is shown in Figure 1. After initializing the T

i;j

variables appropriately for the input x, the program goes into a loop, repeatedly guessing the
urrent state

and the symbol under the tape head, then updating the state and tape
ell, and �nally rotating the tape

appropriately in order to simulate the movement of the tape head. A wrong guess leads to a state where

multiple Q

i

variables, or multiple T

i;j

variables, are set to 1. On
e su
h an \illegal" state is entered, the

stru
ture of the program ensures that the number of variables set to 1 does not de
rease, whi
h means

that subsequent states remain illegal. This allows us to use a simultaneous value problem to identify legal

states in P

M;x

, i.e., those that
orrespond to valid
on�gurations of M , and then
e to determine whether

M a

epts its input. For notational
onvenien
e, we introdu
e the following abbreviations:

4

/* Program P

M;x

to emulate a given polynomial spa
e-bounded Turing Ma
hine M

on input x */

/* int Q

0

, ..., Q

nq

;

int T

0;0

, ..., T

nt;ns

;

int X

0

, ..., X

ns

; */

f

T

0;0

= � � �; ...; T

nt;ns

= � � �; /* initialize T

i;j

based on input string x */

Q

0

= 1; Q

1

= 0; ...Q

nq

= 0; /* initial state */

Start: /* emulation loop */

X

0

= 0; ...; X

ns

= 0; /*
lear temps */

Dispat
h: /* transitions based on
urrent state and tape symbol */

if (-)

f /* Q

0

== 1? */

if (-) f /* T

0;0

== 1? */ MOV

0;0

; g

...

else if (-) f /* T

0;i

== 1? */ MOV

0;i

; g

...

else if (-) f /* T

0;ns

== 1? */ MOV

0;ns

; g

g

else if (-) goto Done; /* Q

1

== 1? : q

1

= final state */

else if (-)

f /* Q

2

== 1? */

...

g

...

else if (-)

f /* Q

nq

== 1? */

if (-) f /* T

0;0

== 1? */ MOV

nq;0

; g

...

else if (-) f /* T

0;i

== 1? */ MOV

nq;i

; g

...

else if (-) f /* T

0;ns

== 1? */ MOV

nq;ns

; g

g

/*
opy tape left or right */

opy right:

X

0

= T

0;0

; ...; X

ns

= T

0;ns

;

T

0;0

= T

1;0

; ...; T

0;ns

= T

1;ns

;

...

T

nt;0

= X

0

; ...; T

nt;ns

= X

ns

;

goto Start;

opy left:

X

0

= T

nt;0

; ...; X

ns

= T

nt;ns

;

T

nt;0

= T

nt�1;0

; ...; T

nt;ns

= T

nt�1;ns

;

...

T

0;0

= X

0

; ...; T

0;ns

= X

ns

;

goto Start;

Done:

X

0

= 0; ...X

ns

= 0;

End:

g

Figure 1: The program P

M;x

to emulate Turing ma
hine M on input x

5

UnambiguousFinalState � (Q

0

= 0 ^ Q

1

= 1 ^ Q

2

= 0 ^ � � � Q

nq

= 0)

TempsClear � (X

0

= 0 ^ � � � X

ns

= 0)

TapeClear � ((T

0;0

= 1 ^ � � � ^ T

nt;0

= 1)^

(T

0;1

= 0 ^ � � � ^ T

nt;1

= 0) ^ � � � ^

(T

0;ns

= 0 ^ � � � ^ T

nt;ns

= 0)).

Intuitively, UnambiguousFinalState is true if and only if the only state variable that is 1 is Q

1

,
orresponding

to the �nal state of M ; TempsClear is true if and only if the variables X

i

are all 0; and TapeClear is true if

and only if the
ontents of the variables T

i;j

orrespond to all the tape
ells of M
ontaining a blank.

Lemma 3.3 A given polynomial-spa
e-bounded Turing ma
hine M a

epts its input x if and only if A
-

eptingCon�g may hold at the end of the program, where

A

eptingCon�g � UnambiguousFinalState ^ TempsClear ^ TapeClear .

Proof: (sket
h) Let a
on�guration � of M
orrespond to a state b� of P

M;x

, written � � b�, if and only

if the following holds: in �, M is in state q

k

, s
anning tape
ell m, with tape
ontents s

0

s

1

: : : s

nt

; and in

b�, P

M;x

has the following values for its variables, with
ontrol at the point labelled Dispat
h:

Q

i

=

�

1 if i = k

0 otherwise

; X

i

= 0; for all i; T

i;j

=

�

1 if s

(i�m) mod (nt+1)

= j

0 otherwise

We use the following notation: if M
an go from
on�guration � to
on�guration � via a sequen
e of

transitions, we write � `

�

M

�; if there is a path in the program P

M;x

that transforms a state u to a state

v, with
ontrol being at the point labelled Dispat
h in ea
h
ase, we write u `

�

P

v.

We �rst show that if, given
on�gurations � and � for M and states b� and

b

� for P

M;x

su
h that � � b�

and � �

b

�, if � `

�

M

� then b� `

�

P

b

�. Pi
torially:

βα

∼
βα

∗

∗
M

P

∼

The proof is by indu
tion on the length n of the transition sequen
e of M . The base
ase, for n = 0,

is trivial. For the indu
tive
ase, suppose that the
laim holds for transition sequen
es of length n, and

onsider
on�gurations �, � and
 of M and states b� and b
 of P

M;x

, with � � b� and
 � b
, su
h that

� `

n

M

 `

M

�. From the indu
tion hypothesis, we have b� `

�

P

b
. Suppose that in the transition
 `

M

�

M goes from state q

a

, s
anning tape symbol
, to state q

b

. In P

M;x

,
onsider state resulting from b
 by

taking the path from the point labelled Dispat
h to that referred to as MOV

a;

. An examination of the

de�nition of the
ode
orresponding to MOV

i;j

shows that the resulting state

b

� of P

M;x

orresponds to

the
on�guration � of M after the n+ 1

st

transition. The
laim follows.

Sin
e, from the de�nition of P

M;x

, the initial
on�guration of M
orresponds to the state of P

M;x

when

ontrol �rst rea
hes Dispat
h, it follows from this that if M a

epts its input and halts|i.e., rea
hes a

on�guration with state q

1

and its tape erased (re
all that q

1

is the �nal state of M , and we assumed

that M would erase its tape prior to halting)|then there is a path in P

M;x

that leads to a
orresponding

state, whi
h is des
ribed by A

eptingCon�g. This means that A

eptingCon�g holds at the point End.

Conversely, if there is a path through P

M;x

su
h that A

eptingCon�g holds at its end at the point labelled

End, then we
an use the sequen
e of MOV

i;j

ode exe
uted along this path to re
onstru
t a sequen
e of

6

moves of M leading to a

eptan
e. This establishes that M a

epts its input if and only if there is a path

in P

M;x

,
onsisting of \good" guesses, at the end of whi
h A

eptingCon�g holds at the point End.

Next,
onsider any path in P

M;x

that does not
orrespond to a valid
omputation of M . This must

ome from a \bad guess" in P

M;x

of either the state (variables Q

i

) or the tape symbol (variables T

j;k

),

resulting in the exe
ution of a
ode fragment MOV

i;k

. It
an be seen, from the de�nition of MOV

i;k

, that

the variable setting that results when
ontrol next returns to the point Dispat
h has more than one the

variables Q

i

set to 1, or more than one of the variables T

i;j

set to 1. Su
h a variable setting is
alled illegal

be
ause it does not represent any valid
on�guration. Furthermore, on
e we obtain an illegal variable

setting we
annot turn this ba
k into a legal one be
ause ea
h of the MOV

i;j

ode segments preserves or

in
reases the number variables set to 1. This means that A

eptingCon�g will not hold at the end of su
h

a path in P

M;x

.

Together, it follows from these that A

eptingCon�g will hold at the point labelled End if and only if

M a

epts x.

Lemma 3.4 Given a polynomial-spa
e-bounded Turing ma
hine M and input x, the program P

M;x

illus-

trated in Figure 1
an be generated in spa
e O(log(jM j+ jxj)).

Proof: Suppose we are given a Turing ma
hine M that, on any input of length n, is p(n)-spa
e-bounded

for some polynomial p(n). The
ode for the
orresponding program P

M;x

an be divided into three distin
t,

and independent,
omponents: the initialization
ode; the
ode for the emulation loop,
onsisting of the

ode to
lear the variables X

i

followed by the
ode for the transitions of M ; and the
ode for \rotating" the

tape, labelled
opy right and
opy left, and the \
leanup"
omputation at the label Done. The spa
e

requirements for ea
h of these
omponents is as follows:

{ The initialization step
onsists of j�j � p(jxj) assignments, where ea
h assignment statement is of

�xed size. To generate this
ode we need a
ounter of size log(j�j � p(jxj)) = log j�j + log p(jxj)

bits. Sin
e j�j = O(jM j) and log p(n) = O(log n) for any polynomial p(n), this
omponent requires

O(log jM j+ log jxj) spa
e.

{ For the emulation loop,
learing the temporary variables requires log j�j = O(1) bits. The outer if

statement in the emulation loop
onsists of jQj
ases, where ea
h
ase (with the ex
eption of that for

Q

1

= 1)
onsists of an inner if statement with O(j�j)
ases, ea
h of whi
h
onsists of a �xed amount of

ode. Thus the spa
e requirement for generating this is log(jQj�j�j) = log jQj+log j�j = O(log jM j).

Thus, the total spa
e required for this
omponent is O(log jM j).

{ Ea
h of the
opy right and
opy left portions of the program
onsists of j�j + j�j � p(jxj) =

O(j�j � p(jxj)) assignments, where ea
h assignment statement is of �xed size. The
leanup
ode

at the label Done
onsists of j�j � p(jxj) assignments, where ea
h assignment statement is of �xed

size. To generate these assignments we need a
ounter of size log(j�j � p(jxj)) = log j�j + log p(jxj)

bits. Sin
e j�j = O(jM j) and log p(n) = O(log n) for any polynomial p(n), this
omponent requires

O(log jM j+ log jxj) spa
e.

The total spa
e required is therefore O(log jxj + log jM j). Sin
e log jxj � log(jM j + jxj) and log jM j �

log(jM j+ jxj), we have O(log jxj+ log jM j) = O(log(jM j+ jxj)). The lemma follows.

Theorem 3.5 The (binary) simultaneous value problem for programs in Base is PSPACE-
omplete.

Proof: (sket
h) PSPACE-hardness follows dire
tly from Lemmas 3.3 and 3.4.

To show that the simultaneous value problem is in PSPACE, we show that a given su
h a problem for

a program P , we
an
onstru
t a nondeterministi
 multi-tape polynomial-spa
e-bounded Turing ma
hine

7

M

P

to solve the problem. Given a program P , the input to M

P

onsists of the
ontrol
ow graph G

P

of P , an initial assignment E

init

of values for the variables of P , a target program point n

t

, and a target

environment E

t

for the variables of P : E

t

= fx

0

7!

0

; x

1

7!

1

; : : : ; x

n

7!

n

g spe
i�es the simultaneous

value problem x

0

=

0

^x

1

=

1

^ : : :^x

n

=

n

. We wantM to halt i� there is a path from the initial node

of G

P

to n

t

that transforms E

init

to the target environment E

t

. M

P

opies G

P

and E

t

to two work tapes

and maintains another work tape T

env

that
ontains a list of (variable, value) pairs, one for ea
h program

variable. T

env

is initialized from the initial assignment E

init

. M

P

then starts simulating the exe
ution of

P by traversing G

P

At ea
h vertex of the
ontrol
ow graph, it simulates the e�e
ts of assignments and

updates T

env

appropriately. At bran
h nodes M

P

nondeterministi
ally
hooses a su

essor to
ontinue

pro
essing. Whenever M

P

rea
hes the target node n

t

it
he
ks whether the variable values on T

env

mat
h

the desired environment E

t

, and halts if this is the
ase. It is
lear that if there is an exe
ution path in

P su
h that, starting from the initial variable assignment E

init

, exe
ution
an rea
h the point n

t

with the

desired values E

t

for the variables, then M
an guess this path and will eventually halt and a

ept its

input. Conversely, if M

P

halts and a

epts, there must have been su
h a path.

The spa
e needs for M

P

are bounded by the spa
e required to store the G

P

and E

init

and the spa
e

required for the tape T

env

. The spa
e required for G

P

and E

init

is O(n), where n is the size of the input

program. Under the assumption that the we have a �xed number of
onstants to deal with (i.e., that the

analysis is being
arried out over a �xed �nite domain), we need O(1) bits for the value of a variable at

any program point; there
an be at most O(n) variables in P , so the spa
e requirements for T

env

are O(n).

It follows that M is polynomial-spa
e-bounded.

In the
ontext of program analysis, this is representative of the simplest kind of simultaneous value

problem, where we have two distin
t properties (here represented by \equal to 0" and \equal to 1") of a

language with a minimally interesting set of
ontrol
onstru
ts. The (hardness) result therefore extends

dire
tly to more
omplex analysis problems. Unlike the PSPACE-hardness result given by Jones and

Mu
hni
k for relational attributes analyses [6℄, our result does not require interpreted
onditionals. In

other words, our result
omplies with the standard assumption of data
ow analysis, namely, that all paths

in a program are exe
utable. As su
h, it is appli
able to a wider variety of data
ow analyses.

3.2 Inter-pro
edural Analysis of Non-re
ursive Programs

Suppose we extend the language Base with pro
edures where parameters are passed by value: let the

resulting language be Base+Pro
. For non-re
ursive programs in this language, the
omplexity of simul-

taneous value problems does not
hange:

Theorem 3.6 Inter-pro
edural simultaneous values problems for non-re
ursive programs in Base+Pro

is PSPACE-
omplete.

Proof: PSPACE-hardness follows from Theorem 3.5. To see that the problem remains in PSPACE,

onsider a non-re
ursive program
ontaining k pro
edures. The runtime
all sta
k of this program
an

have depth at most k. We use a nondeterministi
 Turing ma
hine similar to that used to show membership

in PSPACE in the proof of Theorem 3.5, ex
ept that it uses a tape that is k times longer than before. This

tape is used as a sta
k: at a pro
edure
all, it \pushes" a frame by
opying the values of the arguments

after the \
urrent frame" at the end of the tape; and on a return from a pro
edure, it \pops" the
urrent

frame by erasing the appropriate tape
ells and moves to the next frame. The spa
e requirement of this

ma
hine is still polynomial in the length of the input, when
e it follows that the analysis is in PSPACE.

3.3 Appli
ations to the Complexity of Data
ow Analyses

This se
tion dis
usses appli
ations of the results of the previous se
tion to various program analyses dis-

ussed in the literature.

8

3.3.1 Intra-pro
edural Pointer Alias Analysis

We �rst add single-level pointers to the Base language, yielding the language Base+1ptr. This language

ontains two
lasses of variables: base variables, whi
h range over integers, and pointers to base variables,

whi
h range over addresses (whi
h are assumed to be disjoint from the set of integers). The new operations

in this language,
ompared to Base, are: taking the address of a (base) variable v, denoted by &v, and

dereferen
ing a pointer p, denoted by *p.

It is not hard to see that the simultaneous value problem in this
ase is still in PSPACE, sin
e we
an

onstru
t a polynomial-spa
e-bounded Turing ma
hine to solve this problem in a manner similar to that

in the proof of Theorem 3.5. By
ontrast to the language Base, where the single value problem is in P, the

omplexity of the single value problem for Base+1ptr depends on whether we are
on
erned with base

variables or pointers. For a single-value problem for a base variable, an independent attribute analysis is

not suÆ
ient. This is illustrated by the following program fragment:

a = 0;

if (-) { p = &a; x = 0; } else { p = &b; x = 1; }

*p = x;

Suppose we are interested in the single-value problem of whether a = 1 may hold immediately after the

assignment *p = x. An independent attributes analysis would infer that immediately after the
onditional,

p
an point to either a or b, and therefore that after the assignment `*p = x' the value of a may or may not

be 1. A relational attributes analysis, on the other hand, would be able to infer that the value of a
annot

be 1 after the indire
t assignment. In other words, for a pre
ise analysis we need relational attributes, i.e.,

the ability to solve simultaneous value problems.

Theorem 3.7 The single-value problem for pointer variables in Base+1ptr
an be solved in polynomial

time. The single-value problem for base variables in Base+1ptr is PSPACE-
omplete.

Proof: For a single-value problem for a pointer variable, the analysis need
on
ern itself only with assign-

ments to pointer variables, and a straightforward independent attributes analysis is suÆ
ient. Reasoning

as for Theorem 3.1 shows that this is solvable in polynomial time.

To prove PSPACE-hardness, we show how a binary simultaneous value problem in Base
an be redu
ed

to a single-value problem for base variables in Base+1ptr . Given a program P in Base the idea is to

generate a program P

0

as follows (here, X

1

; X

2

; : : : denote variables in P while X

1

; X

2

; : : : denote variables

in P

0

). The program P

0

ontains two variables, Zero and One, that are initialized to the
onstants 0 and

1 respe
tively. For ea
h variable X in P we have two variables X and X in P

0

. Assignments in P are

translated into P

0

as follows:

{ An assignment `X = 0' in P is translated to a pair of assignments `X = &Zero; X = &One' in P

0

;

an assignment `X = 1' is translated to `X = &One; X = &Zero.'

{ An assignment `X = Y in P is translated to a pair of assignments `X = Y; X = Y.'

The intuition is that X tells us what the value of the original variable X is, while X tells us what it is not.

Other
onstru
ts, su
h as
onditionals and
ontrol transfers, remain un
hanged in the translation.

Suppose we are given a binary simultaneous value problem in of the form X

1

=

1

^ � � � ^X

n

=

n

at a

point p in the original program P , where

i

2 f0; 1g. Consider the
onjun
t X

1

=

1

: if

1

� 0 then, in the

generated program program, we want to test whether X

1

points to Zero. If

1

� 1, we want to test whether

X

1

points to One; or equivalently, whether X

1

does not point to Zero (sin
e the variables One and Zero are

the only base variables in the program, and hen
e the only things that X

1

ould point to); or equivalently,

whether X

1

points to Zero. Let p

0

be the program point in P

0

that
orresponds to the point p in P , and

9

let u; v denote that u points to v. We want to determine whether there is an exe
ution path in P

0

upto

p

0

su
h that x

1

; Zero^ � � � ^x

n

; Zero, where x

i

is X

i

if

i

� 0, and X

i

if

i

� 1. We do this by inserting

the following
ode fragment at the point p

0

(where x

i

is either X

i

or X

i

, depending on whether

i

is 0 or

not, as just des
ribed).

if (-) f

*x

1

= 0; ...; *x

n

= 0;

L: goto End; /* go to end of program and halt */

g

If, for some exe
ution path leading to p

0

in the program P

0

, x

i

; Zero for ea
h x

i

, then all of the

assignments *x

i

= 0 will write to the variable Zero. This means that the initial assignment of 1 to the

variable One will not be overwritten (sin
e there are no other assignments to either Zero or One, or any

indire
t assignments through any of the variables X

i

or X

i

, elsewhere in the program), so One will have

the value 1 at the point labelled L in the
ode fragment above. On the other hand, if for every exe
ution

path leading to p

0

we have x

j

6; Zero for some j, it must be the
ase that x

j

; One, whi
h means that

the assignment *x

j

= 0 will overwrite the initial assignment to One. Thus, by answering the single-value

problem of whether or not One has the value 1 at the point L, we
an solve the original binary simultaneous

value problem for the program P . The result follows from Theorem 3.7.

As an example appli
ation of this, the following result is immediate:

Corollary 3.8 Pre
ise intra-pro
edural
onstant propagation in Base+1ptr is PSPACE-
omplete.

Next, we
onsider multi-level pointers. The simplest
ase involving multi-level pointers is when we have

two-level pointers, i.e., pointers to pointers. In this
ase we have three
lasses of variables: base variables;

pointers to base variables, or 1-pointers; and pointers to 1-pointers (i.e., pointers to pointers to base

variables), or 2-pointers. We
all this language Base+2ptr.

The role of 2-pointers with respe
t to 1-pointers in the language Base+2ptr is exa
tly analogous to

that of pointers to base variables in the language Base+1ptr. In parti
ular, to determine the possible

aliases of 1-pointers, we need to determine the values that
an be assigned to them through 2-pointers. By

dire
t analogy with Theorem 3.7, therefore, we have the following result:

Theorem 3.9 The single-value problem for 2-pointers in Base+2ptr is solvable in polynomial time. The

single-value problem for 1-pointers in Base+2ptr is PSPACE-
omplete.

Landi's dissertation shows that intra-pro
edural pointer alias analysis is PSPACE-
omplete if at least four

levels of indire
tion are permitted [8℄; his proof
an be adapted to require only two levels of indire
tion

[10℄. Landi's
on
lusion is that the diÆ
ulty with pointer alias analysis is
aused by multiple levels of

indire
tion. This is obviously a valid
on
lusion, but does not get to the heart of the matter: what is the

fundamental di�eren
e between single-level and multi-level pointers that
auses the analysis of multi-level

pointers to be
ome so diÆ
ult? The answer, as we have shown above, is that alias analysis in the presen
e

of at most one level of indire
tion
an be
arried out using an independent attributes analysis, while the

presen
e of even two levels of indire
tion requires a relational attributes analysis.

A similar line of reasoning
an be used to derive a re
ent result by Chatterjee et al. [4℄, namely, that

intra-pro
edural
on
rete type inferen
e for Java programs with single-level types and ex
eptions without

subtyping, and without dynami
 dispat
h, is PSPACE-hard.

3.3.2 Intra-pro
edural Rea
hing De�nitions with Single-Level Pointers

Consider the problem of
omputing intra-pro
edural rea
hing de�nitions in the language Base+1ptr, i.e.,

in the presen
e of single-level pointers. The following example illustrates that an independent attributes

10

analysis is not enough for a pre
ise solution to this problem, and that a relational attributes analysis is

ne
essary:

int a, b, *p, *q;

...

D: a = 0;

if (-) { p = &a; q = &b; } else { q = &a; p = &b; }

*p = 1;

*q = 1;

L:

We want to know whether the de�nition labelled D
an rea
h the program point labelled L. An indepen-

dent attributes analysis would infer that p
an point to either a or b after the
onditional, and therefore

that the assignment *p = 1 might not kill the de�nition D. A similar reasoning would apply to q and the

indire
t assignment *q = 1. Su
h an analysis would therefore
on
lude that de�nition D
ould rea
h L. A

relational attributes analysis, by
ontrast, would determine that one of p or q would point to a, so that

one of the assignments *p = 1 or *q = 1 would de�nitely kill the de�nition D|i.e., de�nition D does not

rea
h L. Thus, the independent attributes analysis is not pre
ise, and a relational attributes analysis is

ne
essary. The following theorem dis
usses the
omplexity of pre
ise analyses; its proof uses a redu
tion

very similar to that for Theorem 3.7.

Theorem 3.10 The determination of pre
ise solutions for the following intra-pro
edural analysis problems

for base variables in programs in Base+1ptr is PSPACE-
omplete: (a) rea
hing de�nitions; (b) live

variables; and (
) available expressions.

Proof: The proof of PSPACE-hardness uses a translation from the simultaneous value problem in Base

that is identi
al to that used in the proof of Theorem 3.7. Let p

0

be the program point in P

0

that
orresponds

to the point p in P , and let u; v denote that u points to v. We inser the following
ode fragment at the

point p

0

(where x

i

is either X

i

or X

i

, depending on whether

i

is 0 or not, as in the proof of Theorem 3.7).

if (-) f

*x

1

= 0; ...; *x

n

= 0;

L: goto End; /* go to end of program and halt */

g

If, for some exe
ution path leading to p

0

in the program P

0

, x

i

; Zero for ea
h x

i

, then all of the

assignments *x

i

= 0 will write to the variable Zero, whi
h means that the initial assignment of 1 to the

variable One will rea
h the point labelled L in the
ode fragment above (sin
e there are no other assignments

to either Zero or One, or any indire
t assignments through any of the variables X

i

or X

i

, elsewhere in the

program). On the other hand, if for every exe
ution path leading to p

0

we have x

j

6; Zero for some j, it

must be the
ase that x

j

; One, whi
h means that the assignment *x

j

= 0 will kill the initial assignment

to One. Thus, by answering the question of whether the initial assignment to the variable One
an rea
h

the point labelled L in the program P

0

, we
an solve the original binary simultaneous value problem for

the program P . The result follows from Theorem 3.7.

Similar arguments
an be used to establish PSPACE-
ompleteness for liveness analysis and available

expressions.

Theorem 3.10 improves on a result due to Pande, Landi and Ryder, who show that the problem of

omputing inter-pro
edural def-use
hains in the presen
e of single-level pointers is NP-hard [15℄.

4 Inter-pro
edural Analysis of Re
ursive Programs

To study the
omplexity of inter-pro
edural analyses in the presen
e of re
ursion, we add a very limited

enhan
ement to the
ontrol
ow
onstru
ts of the language Base+Pro
 (i.e., the base language together

11

with pro
edures). Ea
h program now has a distinguished global variable NoErr whose value is initially 1.

We add a statement Error-if-Zero(�) that behaves as follows: when Error-if-Zero(x) is exe
uted, NoErr

is set to 0 if x has the value 0, otherwise it is not modi�ed. In a general programming
ontext, su
h a

onstru
t
ould be used to determine, for example, whether system
alls su
h as mallo
() have exe
uted

without errors during exe
ution; in the
ontext of this paper we use it in a mu
h more limited way, though

with a very similar overall goal, namely, to determine whether anything \goes wrong" in an exe
ution path.

We refer to the language obtained by adding this fa
ility to Base+Pro
 as Base+Pro
+Err.

We show that the single-value problem for arbitrary programs in Base+Pro
+Err is
omplete for

deterministi
 exponential time. Our proof relies on a result of Chandra et al. [3℄, who show that APSPACE

= EXPTIME, where APSPACE is the
lass of languages a

epted by polynomial-spa
e-bounded alternating

Turing ma
hines, and EXPTIME = [

�0

DTIME[2

n

℄.

De�nition 4.1 An (single-tape) alternating Turing ma
hine M is a 6-tuple (Q;�;�; Æ; q

0

; �), where Q is

a �nite set of states; � is the input alphabet; � is the tape alphabet; Æ : Q��! P(Q� ��fL;Rg) is the

transition fun
tion; q

0

2 Q is the initial state; and � : Q ! fa

ept; reje
t;8; 9g is a labelling fun
tion on

states.

3

To simplify the dis
ussion that follows, we additionally assume that a state q that is existential (i.e.,

�(q) = 9) or universal (i.e., �(q) = 8) has exa
tly two su

essor states for any given tape symbol; it is not

hard to see how any ATM
an be transformed to satisfy this restri
tion: if a state q has a single su

essor

for some tape symbol we add a se
ond su

essor that is either an a

epting state if q is universal, or a

reje
ting state if q is existential; if q has more than 2 su

essors for some tape symbol, we use a \binary

tree of transitions" instead. As before, we assume that the tape \wraps around," so that the
ell being

s
anned is always
ell 0. Thus, a
on�guration of an ATM is of the form qx where q is a state and x the

tape
ontents.

The notion of a

eptan
e for alternating Turing ma
hines is a generalization of that for ordinary non-

deterministi
 Turing ma
hines: the main di�eren
e is that ea
h su

essor of a universal state is required to

lead to a

eptan
e. To de�ne this more formally, we use the notion of
omputation trees due to Ladner et

al. [7℄. A
omputation tree for an ATM M is a �nite, nonempty labelled tree with the following properties:

ea
h node of the tree is labelled with a
on�guration of M ; if p is an internal node of a tree with label

qu and q is an existential state, then p has exa
tly one
hild labelled q

0

u

0

su
h that qu ` q

0

u

0

; and if p

is an internal node of a tree with label qu and q is a universal state with su

essors q

0

and q

00

, su
h that

qu ` q

0

u

0

and qu ` q

00

u

00

, then p has two
hildren labelled q

0

u

0

and q

00

u

00

. An a

epting
omputation tree is

one where all the leaf nodes are a

epting
on�gurations, i.e., of the form qu where q is an a

epting state.

An ATM M with start state q

0

a

epts an input x if it has an a

epting
omputation tree whose root is

labelled q

0

x.

Let M be a p(n)-spa
e-bounded ATM with tape alphabet �, where p(n) is some polynomial, and let

x be an input for M . Let nt = p(jxj) � 1 and ns = j�j � 1. The program P

M;x

in Base+Pro
+Err

that simulates the behavior of M on input x behaves as sket
hed below. There is a fun
tion f

q

() for

ea
h state q of M . Ea
h su
h fun
tion has a tuple of parameters T

0;0

, . . . , T

nt;ns

that represents the

ontents of M 's tape in a way that is
on
eptually similar to the
onstru
tion des
ribed in Se
tion 3.1,

the main di�eren
e being that these variable are now lo
als rather than globals. State transitions in M

are simulated by fun
tion
alls in P

M;x

: moves to the su

essors of an existential state are simulated using

an if-then
onstru
t, while moves to the su

essors of a universal state are simulated by a sequen
e of

fun
tion
alls.

Let M = (Q;�;�; Æ; q

0

; �) be a p(n)-spa
e-bounded ATM, where p(n) is some polynomial, and let x be

an input for M . Let nt = p(jxj)� 1 and ns = j�j � 1. We generate a program P

M;x

in Base+Pro
+Err

3

There is a more general formulation of alternating Turing ma
hines where states
an also be labelled as \negating" states,

whi
h are labelled by :. However, this adds nothing to their power (Theorem 2.5 of Chandra et al. [3℄), so for simpli
ity we

restri
t ourselves to alternating Turing ma
hines without negating states.

12

as dis
ussed below. The
ode ne
essary to simulate M 's a
tions when it makes a transition from state q

i

to state q

k

upon s
anning a tape
ell
ontaining symbol s

j

is represented by TRANSITION(q

i

; s

j

; q

k

) and

is de�ned as follows:

Æ(q

i

; s

j

) = (q

k

; s

m

; L) Æ(q

i

; s

j

) = (q

k

; s

m

;R) Explanation

T

0;0

= X

0;0

; T

0;0

= X

0;0

; restore tape

... ...

T

nt;ns

= X

nt;ns

; T

nt;ns

= X

nt;ns

; restore tape

Error-if-Zero(T

0;j

) ; Error-if-Zero(T

0;j

) ; verify s
anned symbol

T

0;j

= 0; T

0;j

= 0; update tape

T

0;m

= 1; T

0;m

= 1; update tape

COPY LEFT; COPY RIGHT; rotate tape

f

q

k

(T

0;0

; : : : ; T

nt;ns

); f

q

k

(T

0;0

; : : : ; T

nt;ns

); move to state q

k

Here, COPY LEFT and COPY RIGHT
orrespond to the
ode fragments labelled
opy left and

opy right respe
tively in Figure 1, their purpose being to rotate the tape appropriately to simulate

the movement of the tape head.

Corresponding to ea
h state q 2 Q there is a fun
tion f

q

in P

M;x

that is de�ned as follows:

1. q

i

is an a

epting state. The fun
tion f

q

i

is de�ned as

f

q

i

(T

0;0

, ..., T

nt;ns

) f /* do nothing */ g

2. q

i

is a reje
ting state. The fun
tion f

q

i

is de�ned as

f

q

i

(T

0;0

, ..., T

nt;ns

) f Error-if-Zero(0) ; g

3. q

i

is a universal state. Let the su

essors of q

i

on tape symbol s

j

be q

j

0

and q

j

00

(re
all our assumption

that q

i

has exa
tly two su

essors on any given tape symbol). The fun
tion f

q

i

is de�ned as

f

q

i

(T

0;0

, ..., T

nt;ns

)

f

lo
al X

0;0

= T

0;0

, ..., X

nt;ns

= T

nt;ns

;

if (-) f TRANSITION(q

i

; s

j

; q

0

j

); TRANSITION(q

i

; s

j

; q

00

j

); g /* moves on s

j

*/

...

else f TRANSITION(q

i

; s

k

; q

0

k

); TRANSITION(q

i

; s

k

; q

00

k

); g /* moves on s

k

*/

g

4. q

i

is an existential state. Let the su

essors of q

i

on tape symbol s

j

be q

j

0

and q

j

00

. The fun
tion f

q

i

is de�ned as

f

q

i

(T

0;0

, ..., T

nt;ns

)

f

lo
al X

0;0

= T

0;0

, ..., X

nt;ns

= T

nt;ns

;

if (-) f /* moves on s

j

*/

if (-) f TRANSITION(q

i

; s

j

; s

0

j

) g; else f TRANSITION(q

i

; s

j

; q

00

j

) g;

g

...

else if (-) f /* moves on s

k

*/

if (-) f TRANSITION(q

i

; s

k

; q

0

k

) g; else f TRANSITION(q

i

; s

k

; q

00

k

) g;

g

g

The entry point of the program P

M;x

is the fun
tion main(), de�ned as

13

main()

f

Start:

lo
al T

0;0

, ..., T

nt;ns

;

INIT TAPE; /* initialize T

i;j

based on M's input x */

f

q

0

(T

0;0

; : : : ; T

nt;ns

);

End:

g

The
ru
ial point in the
onstru
tion is that the Error-if-Zero(�)
onstru
t is used to keep tra
k

of whether anything \goes wrong" along an exe
ution path: it sets the global variable NoErr, whi
h is

initialized to 1 when exe
ution starts, to 0 along an exe
ution path if either (i) the exe
ution path does

not
orrespond to a
omputation of M , be
ause P

M;x

guesses in
orre
tly on the tape
ell being s
anned by

M ; or (ii) be
ause the path en
ounters a reje
ting state of M . On
e NoErr has been set to 0 the stru
ture

of the program ensures that it
annot be reset to 1. Thus, at the end of the exe
ution path, the value of

NoErr
an be used to determine whether that path
orresponds to a valid a

epting
omputation of M .

The dynami
 analog of the
all (multi-)graph of P

M;x

is the valid
all tree, whi
h is a �nite tree where

ea
h vertex is labelled with a pro
edure name and a tuple of arguments. A vertex (f; �u) in su
h a tree

has
hildren (f

1

; �u

1

); : : : ; (f

k

; �u

k

) if there is an exe
ution path in P

M;x

, starting with the
all f(�u) with the

value of NoErr = 1, that exe
utes the pro
edure
alls f

1

(�u

1

); : : : ; f

k

(�u

k

) in f 's body and returns with the

value of NoErr still at 1 (the
onditions on the value of NoErr ensure that nothing has gone wrong along

the
orresponding exe
ution path). The following results establish the
onne
tion between the behaviors

of the alternating Turing ma
hine M and the program P

M;x

. Here, T

i;j

� u denotes that the values of the

tuple of variables (T

0;0

; : : : ; T

nt;ns

) in P

M;x

orre
tly re
e
t the tape
ontents u in M .

Theorem 4.1 P

M;x

has a valid
all tree with root (f

q

; T

i;j

) if and only if M has an a

epting
omputation

tree with root qu, where T

i;j

� u.

Proof: We �rst show that P

M;x

has a valid
all tree T

P

with root (f

q

; T

i;j

) if M has an a

epting

omputation tree T

M

with root qu, where T

i;j

� u. We pro
eed by indu
tion on the height of T

M

.

The base
ase is for n = 0, whi
h means that q is an a

epting state. Suppose that the root of T

M

is

labelled qu. From the
onstru
tion of P

M;x

, it follows that the tree
onsisting of the single node (f

q

; T

i;j

),

where T

i;j

� u, is a valid
all tree.

For the indu
tive
ase, assume that P

M;x

has a valid
all tree with root (f

q

0

; �v

0

) whenever M has

an a

epting
omputation tree with root q

0

u

0

and height � k, where �v

0

� u

0

, and
onsider an a

epting

omputation tree T

M

of M with height k + 1. Let the root of T

M

be qu, and suppose that T

i;j

� u. We

have two possibilities:

1. q is an existential state. From the de�nition of
omputation trees, T

M

's root has a single
hild q

0

u

0

,

and the subtree T

0

M

rooted at this
hild is also an a

epting
omputation tree of M . Sin
e T

0

M

has

height less than k + 1, it follows from the indu
tion hypothesis that P

M;x

has a valid
all tree T

0

P

whose root is labelled (f

q

0

; �v

0

) su
h that �v

0

� u

0

.

Suppose that the transition from q to q

0

o

urs on tape symbol s

i

. From the
onstru
tion of P

M;x

,

the fun
tion f

q

ontains an exe
ution path through the
ode de�ned by TRANSITION(q; s

i

; q

0

) that

veri�es that the tape symbol s
anned is s

i

, adjusts the variables T

i;j

as ne
essary to
orrespond to

the tape
ontents u

0

, and
alls f

q

0

. It follows from this that a tree with root (f

q

; T

i;j

) that has a

single subtree T

0

P

is a valid
all tree for P

M;x

.

2. q is a universal state. This means that T

M

's root has two
hildren q

0

u

0

and q

00

u

00

, and that the

subtrees T

0

M

and T

00

M

rooted at ea
h of these
hildren are a

epting
omputation trees for M . Sin
e

14

ea
h of these subtrees has height less than k + 1, it follows from the indu
tion hypothesis that P

M;x

has valid
all trees T

0

P

, with root labelled (f

q

0

; �v

0

), and T

00

P

, with root labelled (f

q

00

; �v

00

), where �v

0

� u

0

and �v

00

� u

00

.

Suppose that the transitions from q to q

0

and q

00

o

ur on tape symbol s

i

. From the
onstru
tion of

P

M;x

, the fun
tion f

q

ontains an exe
ution path

if (-) f TRANSITION(q; s

i

; q

0

); TRANSITION(q; s

i

; q

00

); g

that simulates ea
h of these transitions by verifying that the tape symbol s
anned is s

i

, adjusting the

variables T

i;j

as ne
essary, and
alling the appropriate fun
tion in P

M;x

. It follows that a tree with

root (f

q

; T

i;j

) that has two subtrees T

0

P

and T

00

P

is a valid
all tree for P

M;x

.

The proof in the other dire
tion is very similar, ex
ept that the indu
tion is on the height of the valid
all

trees of P

M;x

.

Corollary 4.2 M a

epts x if and only if there is an exe
ution path p in P

M;x

from the program point

labelled Start to that labelled End su
h NoErr = 1 at the end of p.

Proof: We observe that by
onstru
tion of P

M;x

, the
ode at the point labelled Start sets NoErr to 1

and initializes the variables T

i;j

a

ording to the input x.

Suppose that M a

epts x, i.e., there is an a

epting
omputation tree T

M

rooted at q

0

x. It follows

from Theorem 4.1 that there is a valid
all tree T

P

for P

M;x

with root (f

q

0

; T

i;j

) where T

i;j

� x. This

means that there is an exe
ution path in P

M;x

from Start to End su
h that NoErr = 1 at End.

Suppose that M does not a

ept x, i.e., there is no a

epting
omputation tree T

M

rooted at q

0

x. From

Theorem 4.1, it follows that there is no valid
all tree in P

M;x

with root (f

q

0

; T

i;j

) su
h that T

i;j

� x. It

follows that there is no exe
ution path from Start to End along whi
h the value of NoErr remains 1.

It is easy to show, moreover, that P

M;x

an be generated using O(log jM j+log jxj) spa
e. The following

result is then immediate:

Corollary 4.3 The inter-pro
edural single-value problem for Base+Pro
+Err is EXPTIME-hard.

It is interesting and instru
tive to
ompare this result with Theorem 3.5. For the intra-pro
edural
ase
on-

sidered in Theorem 3.5, we
an use ordinary assignments to program variables to keep tra
k of whether or

not an exe
ution path in the program
orresponds to a valid a

epting
omputation of the Turing ma
hine

being simulated. We don't know whether the same te
hnique works in the
ase of inter-pro
edural analysis

of re
ursive programs: spe
i�
ally, when simulating an alternating Turing ma
hine, the handling of univer-

sal states seems problemati
. Instead, we use a language me
hanism|the Error-if-Zero(�)
onstru
t|that

allows us to a

umulate a highly
onstrained summary of an exe
ution path into a variable. This allows

us to determine, from the value of this variable, whether or not anything went wrong at any point in an

exe
ution path. Noti
e that even though Corollary 4.3 gives a
omplexity result for single-value problems

in Base+Pro
+Err, the availability of the Error-if-Zero(�)
onstru
t in fa
t allows us to in
rementally

a

umulate (in a limited way) the values of a number of variables along an exe
ution path. In fa
t, while the

(intra-pro
edural) single-value problem for Base is solvable in polynomial time (Theorem 3.1), adding the

Error-if-Zero(�)
onstru
t makes it PSPACE-hard; this
an be used to simplify the proof of the 1-pointer

ase in Theorem 3.9.

4.1 Appli
ations to the Complexity of Inter-pro
edural Data
ow Analysis

4.1.1 Inter-pro
edural Pointer Alias Analyses

The following theorem gives the
omplexity of single-value problems for arbitrary programs in

Base+Pro
+1ptr. The proof relies on using an indire
t assignment through a pointer to set a global

15

variable to 0 if anything \goes wrong" along an exe
ution path, and thereby simulate the Error-if-Zero(�)

onstru
t.

Theorem 4.4 The inter-pro
edural single-value problem for base variables in Base+Pro
+1ptr is

EXPTIME-
omplete.

Proof: The proof is by redu
tion from the inter-pro
edural single-value problem for Base+Pro
+Err .

We show how any program P

M;x

in Base+Pro
+Err , generated for an ATMM and input x as dis
ussed

in Se
tion 4,
an be translated to a program P

0

in Base+1ptr (here, X

1

; X

2

; : : : denote variables in P

while X

1

; X

2

; : : : denote variables in P

0

):

1. P

0

ontains global variables Zero and One, whi
h are initialized to 0 and 1 respe
tively. Additionally,

for ea
h global variable V in P there is a global pointer variable V in P

0

; in parti
ular, the distinguished

(base) variable NoErr in P
orresponds to a global pointer variable NoErr in P

0

, whi
h is initialized

to the value &One.

2. For ea
h n-argument fun
tion f in P there is an n-argument fun
tion f in P

0

. For ea
h su
h pair of

orresponding fun
tions, for ea
h lo
al variable V in f there is a lo
al pointer variable V in f.

3. Assignment statements in P are translated as follows: a statement `X = e' in P translates to the

statement `X = e

0

', where e

0

is given by

e

0

=

8

<

:

&Zero if e � 0

&One if e � 1

Y if e � Y for some variable Y

Fun
tion
alls are translated as follows: a
all `f(e

1

; : : : ; e

n

)' translates to `f(e

0

1

; : : : ; e

0

n

)', where the

e

0

i

are given by:

e

0

i

=

8

<

:

&Zero if e

i

� 0

&One if e

i

� 1

Y if e

i

� Y for some variable Y

Conditionals are translated un
hanged.

4. A statement Error-if-Zero(X) is translated to `*NoErr = *X.'

5. The single-value problem `NoErr = 0' in P
orresponds to the base-variable single-value problem

`One = 1' in P

0

.

Ea
h variable V in P is translated to a pointer variable V in P

0

; a value of 0 for V in P
orresponds to V

being a pointer to the base variable Zero in P

0

, while a value of 1 for V
orresponds V being a pointer to

the variable One.

Consider the program P

M;x

generated for a given ATM M and input x. In the
orresponding program

P

0

M;x

in Base+1ptr , the variable NoErr is initially set to point to One, whi
h has the value 1. Now

onsider any exe
ution path p in P . If p does not
ontain any o

urren
e of a Error-if-Zero(�) statement,

the exe
ution along the
orresponding path in P

0

simply parallels that in P , the only di�eren
e being

that instead of the values 0 and 1 in P we have &Zero and &One in P

0

. If the path p
ontains a state-

ment Error-if-Zero(X) , then the
orresponding statement in P

0

is `*NoErr = *X.' We have the following

possibilities:

1. NoErr points to One, X points to One, and the value of One is 1 (
orresponding to the variables NoErr

and X in P both having the value 1). In this
ase this assignment to *NoErr has no e�e
t on the

value of any variable in P

0

. This parallels the behavior of P .

16

2. NoErr points to One and X points to Zero (
orresponding to X having the value 0 in P). In this
ase

the assignment sets the variable One to have the value 0. This again parallels the behavior of P .

3. NoErr points to One, but the value of One is 0 (due to an assigment
orresponding to the previous

ase earlier in the exe
ution). In this
ase, regardless of whether X points to One or to Zero, the

value of *X is 0, so the assignment `*NoErr = *X' does not
hange the value of any variable in P

0

. In

parti
ular this means that *NoErr remains 0. Again, this parallels the behavior of P .

Thus, at the end of the exe
ution of P

0

, the variable One has the value 1 if and only if, at the end of the

orresponding exe
ution path in P , the value of NoErr is 1. The redu
tion des
ribed above establishes

that the inter-pro
edural single-value problem for base variables in Base+1ptr is EXPTIME-hard.

We next show how a program P in Base+Pro
+1ptr
an be simulated by a p(n)-spa
e-bounded ATM

M

P

, where n is the program size. M

P

has its tape divided into four regions: Globals, Anti
ipatedGlobals,

TempGlobals, and Lo
als. Globals
ontains the
urrent snapshot of the global variables. Anti
ipatedGlobals

shows the Globals as we expe
t them to be upon return from the
urrent subroutine. TempGlobals is an

auxiliary region big enough to hold Globals and Anti
ipatedGlobals. Lo
als
ontains the
ontents of lo
al

variables and subroutine arguments; the s
ope of these variables extends only to the end of the
urrent

subroutine (parameter passing and returning of results
an be a
hieved using global variables). These

regions are obviously polynomially bounded by the size of P.

M

P

works as follows: It interprets the
urrent subroutine f in P , updating Globals and Lo
als appro-

priately. When P is nondeterministi
 be
ause of uninterpreted
onditionals so is M

P

, whi
h \guesses" one

of the bran
hes of the
onditional to
ontinue interpreting (using existential states). When f returns M

P

ompares Globals with Anti
ipatedGlobals and goes into an a

epting state if they are equal and otherwise

into a reje
ting state.

The key me
hanism is how
alls to a subroutine g are simulated. FirstM

P

opies the Anti
ipatedGlobals

into TempGlobals M

P

then guesses the e�e
t of the subroutine
all on Globals and writes this guess into

Anti
ipatedGlobals. Immediately after this M

P

swit
hes into a universal state. One su

essor of this

state starts interpreting subroutine g. This
omputation bran
h will rea
h an a

epting state only if

Anti
ipatedGlobals was guessed
orre
tly. The other su

essor
ontinues interpreting subroutine f assuming

the
all to g behaves as expe
ted, i.e., it
opies Anti
ipatedGlobals to Globals and TempGlobals ba
k to

Anti
ipatedGlobals.

The subroutine main(), where the simulation begins is handled slightly di�erently. At the beginning

of main() Globals is initialized and upon return from main M

P

always enters an a

epting state.

It is not hard to see that this will faithfully simulate P. If we interested in solving a single or simultaneous

value problem|whi
h we assume, without loss of generality, to be posed at the end of main|we
an make

M

P

test the
ondition at the end of main and either go into an a

epting state if the
ondition is satis�ed

or in a reje
ting state otherwise.

Corollary 4.5 The
omplexity of pre
ise inter-pro
edural pointer alias analysis in the presen
e of 2-level

pointers is EXPTIME-
omplete.

Corollary 4.6 The determination of pre
ise solutions for the following inter-pro
edural analysis problems

for base variables in Base+Pro
+1ptr is EXPTIME-
omplete: (a) rea
hing de�nitions; (b) live vari-

ables; and (
) available expressions.

4.1.2 Inter-pro
edural Analysis of Pro
edures with Referen
e Formals

Consider extending the language Base along another dire
tion: instead of allowing expli
it pointers, as in

Se
tion 3.3.1, we allow (non-re
ursive) fun
tions with referen
e formal parameters. It does not
ome as a

surprise that an independent attributes analysis is inadequate for solving the single value problem in this

ase. To see this,
onsider the following program:

17

var a, b, x: integer;

main()

{

a = 0;

if (...) { x = 0; q(a,x); }

else { x = 1; q(b,x); }

}

pro
 q(u: ref integer; v: integer)

{

u = v;

}

We want to know whether or not a = 1
an hold immediately after the
onditional in main(). We need

a relational attributes analysis of q's arguments in order to determine that q's �rst argument, u,
annot

be a referen
e to a if its se
ond argument v has the value 1. Thus, an independent attributes analysis is

inadequate for this single value problem. The following result shows that (non-re
ursive) pro
edures with

referen
e parameters
an be used to solve arbitrary simultaneous-value problems for Base.

Theorem 4.7 The single value problem for Base extended with pro
edures with referen
e parameters is

PSPACE-
omplete for non-re
ursive programs and EXPTIME-
omplete for arbitrary programs.

Proof: (sket
h) The proof is very similar to that for Theorem 4.4, the primary di�eren
e being that

instead of expli
it pointer variables we use referen
e parameters. Ea
h pro
edure in the program takes

two additional arguments that are referen
es to the global variables Zero and One. Instead of expli
it

assignments of &Zero and &One, as in the
onstru
tion in the proof of Theorem 4.4, we use these referen
e

parameters. The remainder of the proof remains essentially un
hanged.

Corollary 4.8 Pre
ise inter-pro
edural liveness analysis and available expressions analysis for Base ex-

tended with pro
edures with referen
e parameters are both PSPACE-
omplete for non-re
ursive programs,

and EXPTIME-
omplete for arbitrary programs.

Proof: The proof follows the lines of that of Theorem 4.7, modi�ed in a manner analogous to that in

Theorem 3.10.

This result
orre
ts a minor
aw in Myers' original proof of the diÆ
ulty of su
h analysis problems

[13℄. Myers
onsidered inter-pro
edural analyses in the presen
e of referen
e parameters, and
laimed to

show NP-
ompleteness for liveness analysis and
o-NP-
ompleteness for available expressions; in fa
t, he

proved only hardness results. Our results establish that membership in NP holds for a
y
li
 non-re
ursive

programs (Theorem 3.2), but stronger results
an be given for general programs.

4.1.3 Inter-pro
edural Control Flow Analysis of Programs with Fun
tion Pointers

In this se
tion we
onsider extending Base in another dire
tion, by adding C-style fun
tion pointers.

These di�er from general-purpose pointers in that (i) the obje
ts pointed at are fun
tions, rather than

data; and (ii) the obje
t obtained by dereferen
ing a fun
tion pointer
annot be modi�ed by the program.

The primary purpose of fun
tion pointers, therefore, is to a�e
t
ontrol
ow. The
orresponding analysis

problem is therefore a
ontrol
ow analysis problem. The following result, whose proof follows the lines of

those for Theorem 3.9 and Corollary 4.5, improves on an NP-hardness result by Zhang and Ryder [17℄:

Theorem 4.9 Pre
ise
ontrol
ow analysis in the presen
e of fun
tion pointers is PSPACE-
omplete for

non-re
ursive programs and EXPTIME-
omplete for arbitrary programs.

5 Summary and Related Work

The
ontributions of this paper
an be summarized as follows:

1. New Results : To the best of our knowledge, the following are are new results: Corollary 3.8, Theorem

3.10(b,
), Corollary 4.5, and Corollary 4.6.

18

2. Improvements to Existing Results : Theorem 3.10 and Corollary 4.6 improve on a result by Pande

et al. [15℄. Corollary 4.5 improves on a result by Landi [8, 11℄. Theorem 4.7 and Corollary 4.8 improve

on a result by Myers [13℄.

3. Explanations of Existing Results : Theorems 3.7 and 3.9 explain the underlying reasons for Landi's

omplexity results for pointer alias analysis [8, 11℄. Theorems 3.9 and 3.10(a) together explain why

single-level pointers are hard to deal with when
onstru
ting intra-pro
edural def-use
hains but not

when
onsidering intra-pro
edural pointer analyses. Theorem 4.9 explains the diÆ
ulty of inter-

pro
edural
ontrol
ow analysis in the presen
e of fun
tion pointers.

The distin
tion between independent attributes analyses and relational attributes analyses was �rst de�ned

by Jones and Mu
hni
k [6℄, who also examined the
omplexity of these approa
hes to program analysis.

They showed that independent attributes analyses over a �xed �nite domain has worst
ase
omplexity

that is polynomial in the size of the program, while relational attributes analysis for programs
onsisting

of assignments, sequen
ing, and \uninterpreted"
onditionals|i.e., where we always assume that either

bran
h of a
onditional may be taken, or, equivalently, that all paths in the program are exe
utable|but

not
ontaining any loops, is NP-hard [6℄. Variations on the basi
 idea of this proof have been used for

NP-hardness results by a number of authors [8, 11, 12, 13, 15℄, as well as in the proof of Theorem 3.2 in

this paper. Jones and Mu
hni
k also show that when loops and \interpreted"
onditionals are added, the

problem be
omes PSPACE-hard. Unfortunately, sin
e most data
ow analyses in pra
ti
e treat
onditionals

as uninterpreted, the latter result is not dire
tly appli
able to them.

Nielson and Nielson
onsider, in a very general denotational setting, the number of iterations ne
essary

to
ompute the least �xpoint of a fun
tional over a �nite latti
e, under various assumptions about the

kinds of fun
tions
onsidered [14℄. By
ontrast, our work fo
uses on the overall
omputational
omplexity

for
ertain kinds of program analyses. While the number of iterations needed to attain a �xpoint is an

important fa
tor in determining the amount of work done by an analysis, it is not the only su
h fa
tor,

and hen
e does not give a
omplete pi
ture of the
omplexity of an analysis. To see this, observe that if

we restri
t our attention to intra-pro
edural analyses of loop-free programs, the resulting data
ow equa-

tions are not re
ursive, so a single iteration suÆ
es to
ompute the least �xpoint; nevertheless, relational

attributes analyses for su
h programs are NP-
omplete (Theorem 3.2).

Many resear
hers have given
omplexity results for spe
i�
 program analysis problems (see, for example,

[8, 11, 12, 13, 15℄). As dis
ussed earlier, these results do not generally provide insights into the underlying

reasons for the eÆ
ien
y, or la
k thereof, of the analyses.

6 Con
lusions

This paper attempts to elu
idate the fundamental reasons why pre
ise solutions to
ertain program analyses

are
omputationally diÆ
ult to obtain. We give simple and general results that relate the
omplexity of

a problem to whether or not it requires a relational attributes analysis. The appli
ability of this result

is illustrated using a number of analyses dis
ussed in the literature: we are able to derive the
omplexity

results originally given by the authors, and in several
ases even stronger
omplexity results, as dire
t

orollaries to the results presented here, with little
on
eptual and notational e�ort.

A
knowledgements

Dis
ussions with William Landi have been very helpful in
larifying
omplexity questions for pointer alias

analysis.

Referen
es

[1℄ A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Prin
iples, Te
hniques and Tools, Addison-Wesley,

1986.

[2℄ J. M. Barth, \A pra
ti
al interpro
edural data
ow analysis algorithm", Communi
ations of the ACM

vol. 21 no. 9, pp. 724{736, 1978.

19

[3℄ A. K. Chandra, D. C. Kozen, and L. J. Sto
kmeyer, \Alternation", J. ACM vol. 28 no. 1, Jan. 1981,

pp. 114{133.

[4℄ R. Chatterjee, B. G. Ryder, and W. A. Landi, \Complexity of Con
rete Type-inferen
e in the Presen
e

of Ex
eptions", Pro
. European Symposium on Programming, 1998.

[5℄ M. R. Garey and D. S. Johnson, Computers and Intra
tability: A Guide to the Theory of NP-

Completeness, Freeman, New York, 1979.

[6℄ N. D. Jones and S. S. Mu
hni
k, \Complexity of
ow analysis, indu
tive assertion synthesis, and a

language due to Dijkstra", In S. S Mu
hni
k and N. D Jones, eds., Program Flow Analysis: Theory

and Appli
ations,
hapter 12, pp. 380{393. Prenti
e-Hall, 1981.

[7℄ R. E. Ladner, R. J. Lipton, and L. J. Sto
kmeyer, \Alternating Pushdown Automata", Pro
. 19th

IEEE Symposium on Foundations of Computer S
ien
e, O
t. 1978, pp. 92{106.

[8℄ W. A. Landi, Interpro
edural Aliasing in the Presen
e of Pointers, Ph.D. Dissertation, Rutgers Uni-

versity, New Brunswi
k, NJ, Jan. 1992.

[9℄ W. A. Landi, \Unde
idability of Stati
 Analysis", ACM Letters on Programming Languages and

Systems vol. 1 no. 2, De
. 1992, pp. 323{337.

[10℄ W. Landi, personal
ommuni
ation, June 1998.

[11℄ W. Landi and B. G. Ryder, \Pointer-indu
ed Aliasing: A Problem Classi�
ation", Pro
. 18th ACM

Symposium on Prin
iples of Programming Languages, Jan. 1991, pp. 93{103.

[12℄ J. R. Larus, Restru
turing Symboli
 Programs for Con
urrent Exe
ution on Multipro
essors, Ph.D.

Dissertation, University of California, Berkeley, 1989. Also available as Te
hni
al Report UCB/CSD

89/502, Computer S
ien
e Division (EECS), University of California, Berkeley, May 1989.

[13℄ E. W. Myers, \A Pre
ise Inter-Pro
edural Data Flow Algorithm", Pro
. 8th ACM Symposium on

Prin
iples of Programming Languages, Jan. 1981, pp. 219{230.

[14℄ H. R. Nielson and F. Nielson, \Bounded Fixed Point Iteration", Pro
. Nineteenth ACM Symposium

on Prin
iples of Programming Languages, Jan. 1992, pp. 71{82.

[15℄ H. D. Pande, W. A. Landi, and B. G. Ryder, \Interpro
edural Def-Use Asso
iations for C Systems

with Single Level Pointers", IEEE Transa
tions on Software Engineering vol. 20 no. 5, May 1994,

pp. 385{403.

[16℄ H. D. Pande and B. G. Ryder, \Stati
 Type Determination for C++", Pro
. Sixth USENIX C++

Te
hni
al Conferen
e, April 1994, pp. 85{97.

[17℄ S. Zhang and B. Ryder, \Complexity of single level fun
tion pointer aliasing analysis", Te
hni
al

Report LCSR-TR-233, Laboratory of Computer S
ien
e Resear
h, Rutgers University, O
tober 1994.

20

