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Abstract

The management of a large collection of machines connected by a network and the soft-

ware running on them is a difficult task. For example, processes may fail causing service

disruptions, or users may exceed their quota of system resources causing shortages. If

the site has a large number of machines, keeping track of all such problems can be very

cumbersome. This thesis presents a system monitoring tool that addresses these problems.

The tool monitors different aspects of the system state, such as processes running on each

machine and their resource usage, and reports the information to the administrator via a

graphical user interface(GUI). The tool can also be used for controlling remote machines

through the GUI by starting or stopping processes, and for automatically restarting failed

processes. Since the monitoring requirements differ for every system, the monitoring tool

is highly customizable and extensible at a fine-grain level. This is achieved by implement-

ing the tool as a collection of modules called micro-protocols that can be configured in

various combinations to provide customized variants of the monitoring service. The imple-

mentation is based on Cactus, a framework for developing middleware offering fine-grain

customizability for Quality of Service(QoS) attributes related to dependability, real-time

and security in distributed systems. This thesis describes the design and implementation of

an architecture for system administration based on a higly customizable system monitoring

tool, and validates the Cactus approach for developing highly customizable software at the

application layer.
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Chapter 1

Introduction

Many sites today contain networks of tens or hundreds of computers. Managing such a large

collection of computers and the software on them is a challenging task generally referred to

as system administration. Typical everyday tasks of a system administrator are to manage

user accounts, ensure that all hardware and software is in working order, keep track of

important background processes, and ensure an adequate supply of resources such as swap

and disk space. Doing all this manually can prove to be very difficult, especially when

dealing with a large collection of computers. On the other hand, system administration

tasks such as these can be automated to a large extent. This thesis describes a tool that can

be used for automating these tasks.

1.1 System Administration and System Monitoring

Many of the problems associated with managing a distributed system consisting of tens or

hundreds of computers connected by a network can be simplified by system monitoring, i.e.

by periodically checking different aspects of the system. When something goes wrong in a

large distributed system, there can be a considerable delay to trace the problem manually

and fix it. Not only that, there can also be a significant time lag before it is even realized

that something is wrong.

A distributed system monitoring tool is capable of periodically checking the status of
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different aspects of the system. With such a tool, the status of all aspects being monitored

can be stored in a central repository, and examined by the system administrator to get an

overall picture of the status of the system. The tool can also analyze the status data and

detect abberent conditions in the system and bring it to the system administrator’s notice

or take corrective action. For example, one common cause of a system failure is a process

hanging or crashing. It is possible to detect such a condition as soon as it occurs with

the help of an automated tool that monitors the status of important processes. The errant

process can then be restarted manually by the system administrator or automatically by the

tool. In the same way, other system parameters can be monitored such as the status of disk

drives, I/O devices, and networks.

A system monitoring tool can also be used to monitor resources on each computer such

as disk and swap space. For example, the tool can check disk usage per user once a day

and send mail to users who exceed their disk quota. Long running processes that consume

excessive swap space can be brought to the system administrator’s notice or can be killed

and restarted by the tool.

Another daunting system administration task is to keep track of software versions on

all machines. It is possible for a system monitoring tool to check versions of software on

each computer and notify the system administrator about out-of-date software. The same

applies to checking and spreading configuration information, such as routing tables and

printer configuration files, to the different machines.

System monitoring can also be used as the basis for increasing the dependability of a

distributed system. Dependability is defined as the trustworthiness of a system such that

reliance can justifiably be placed on the service it delivers [12]. A typical distributed system

consists of many different parts, such as multiple computers, processors, device drivers,

and physical devices, all of which contribute to the overall dependability of the system.

Due to the large number of components, the probability of at least one component failing

is high. System monitoring makes it possible to detect failures of components quickly and

take corrective action.
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1.2 Customizability

It is very difficult in software design to find a universal solution that is applicable in

all situations for any problem, including system monitoring. One way to mitigate this

problem, however, is to use customizability to provide choices. For example, every car

comes with adjustable seats, tilt wheel, and adjustable mirrors. In this case, customizability

is a necessity. Another example of customizability is a graphic equalizer, a device to tailor

music to the taste of the listener. This concept is also applicable to software, and has

found application in operating systems [16, 3, 6, 26], database systems [2, 24, 22] and

communication services [11, 21, 14, 17, 4].

Customization is necessary but not sufficient by itself since it is not practical to build a

new instance of a service every time a variation is required. The primary reason is that the

number of possible variations can be so large that they cannot possibly be accommodated

in one single application. For example, if you divide a group membership service into a set

of properties, there are over a thousand different possible combinations of these properties

[9]. The situation is even more complicated because variations in a service can sometimes

have orthogonal semantics. For example, it is not possible to have an RPC service [15, 5]

with both "at least once" and "at most once" semantics — one property has to be chosen

over the other.

The same argument about customization applies to system monitoring. Every computer

system or application differs in the resources it uses and the components that are considered

critical. For example, monitoring CPU and memory usage of all running processes is

useful for a cluster of computers being used as a development system with a large number

of simultaneous users in order to ensure fair resource usage. On the other hand, these

parameters are not important for a cluster acting solely as a webserver since there are no

users competing for resources. Similarly, the status of disk drives and backup devices are

important in a database system, but less so for a modem-bank server. Since it is not feasible

to monitor all possible aspects of a system or take care of all conditions that may arise,

it should be possible for the user of the system monitoring tool to be able to choose the
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parameters to be monitored. In addition, the tool should be easily extensible. In short, the

monitoring tool needs to be highly customizable to be effective.

This thesis focuses on a type of customization where a customized service variant is

constructed by configuring it out of smaller modules. We call such a service a configurable

service. One common approach to achieving configurability is to use object-oriented tech-

niques, where the application consists of a set of base classes and each class is responsible

for providing certain properties to its derived classes [23]. Another approach — the Cactus

approach [20] — is to implement the application or service as a collection of fine-grained

modules, called micro-protocols, where each micro-protocol is responsible for a specific

property or function of the application and interacts with other modules using an event

mechanism. The micro-protocols are combined together with a standard runtime system or

framework to form a composite protocol. This thesis uses the Cactus approach as the basis

for building a configurable system monitoring tool.

Apart from catering to variations in user needs, configurable systems provide other

advantages. Configurable systems are streamlined, i.e. code for features or properties

not chosen in a configuration is excluded from the executable, thus reducing code size.

Each property in the system also adds to the overall execution cost of the system. Thus,

choosing just the properties that are necessary helps keep execution costs to a minimum.

Configurable systems are by nature easily extensible. Adding new features means just

adding new modules or new classes that fit in easily with the existing modules.

1.3 Thesis Contribution

This thesis addresses two issues. The first involves design and implementation of an

architecture for system administration based on a highly customizable system monitoring

tool. The tool consists of processes local to each node in the system called local monitors

that gather data about different aspects of the node. Typically, local monitors track machine

parameters such as process states, their CPU and memory utilization, and the status of I/O
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devices. A central process called the global monitor performs the function of analyzing

the data collected by the local monitors, displaying data to the system administrator, and

controlling the system by issuing commands to the local monitors.

The second issue is validation of the Cactus approach for achieving configurability in

the application layer. Previously, Cactus has been used for developing middleware for

fault-tolerant and real-time services. This thesis suggests that the same techniques can also

be applied to develop applications.

The remainder of this thesis is organized as follows. Chapter 2 outlines the functionality

of the system monitoring tool by describing the functions performed by the local and global

monitors and their interaction in detail. It also discusses related work in this area and

contrasts this approach with others. Chapter 3 presents the design of the tool. All the micro-

protocols that comprise the global and local monitors are described in detail, together with

the shared data structures and events. Chapter 4 is a guide to using the system monitoring

tool. It describes the use of the CactusBuilder [10] to choose micro-protocols to customize

the tool. The process of configuring the tool and a brief description of the tool’s graphical

user interface are also provided. Chapter 5 presents concluding remarks and possible future

work in this area.
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Chapter 2

Functional Overview

2.1 Introduction

The system monitoring tool consists of two major components: a centralized process called

the global monitor and multiple distributed processes called local monitors. The global

and local monitors collaborate to monitor a collection of networked machines. The global

monitor is the primary entity of the system and the local monitors are agents that act on its

behalf. An overview of the system is given in figure 2.1.

Applications

Local Monitor

Micro-protocols Micro-protocols

Global Monitor

Cactus++ Cactus++

Machines

Figure 2.1: System Architecture
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Each machine in the system to be monitored runs one local monitor. The local monitors

track processes running on their node and gather information about them such as CPU

time usage, memory usage and their current state. Other aspects of the machine such as

overall process load and status of I/O devices can also be monitored. The local monitors

periodically gather data and send it to the global monitor. Since the size of collected data

can be large, there are provisions to apply various data filters to reduce the amount of data

transferred.

The global monitor provides functionality for controlling the behavior of the local

monitors through a graphical user interface (GUI). The GUI can be used for viewing data,

configuring the system, and for controlling operations. The monitors use the facilities

provided by the Cactus framework to send and receive messages, as well as for customizing

the functionality.

2.2 Local Monitor Functions

2.2.1 Agent Functions

Local monitors act as agents on behalf of the global monitor to gather information, as well

as to carry out control functions. Local monitor functions are implemented as Cactus micro-

protocols, where each function is responsible for monitoring a specific aspect or parameter

of the machine on which it is running. The local monitor can be customized to monitor

chosen aspects depending on the micro-protocols selected to build the local monitor. The

various aspects monitored by the local monitor are:

� Process State. The local monitor tracks the state of processes running on the node.

The possible states are running, sleeping, stopped, waiting, idle, runnable, and

zombie. These correspond to states maintained by the underlying OS.

� CPU Utilization. The local monitor tracks the CPU time utilized by each running

process and reports it as a percentage.
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� Memory Utilization. The local monitor tracks the memory utilized by each running

process and reports it as a percentage of total memory.

� Process Load. The local monitor tracks the average process load on each node.

All this data is periodically obtained from the OS. The periodicity used for gathering

data is user defined. The other functions performed by the local monitors in addition to

monitoring are:

� Starting/Stopping Processes. The local monitor can start or kill processes on behalf of

the global monitor. The global monitor provides the local monitor with the complete

command line, i.e. the process name along with the arguments for starting a process.

� Alive Signaling. The local monitor periodically sends alive messages to the global

monitor. The periodicity of these messages is user defined.

2.2.2 Data Filtering

The local monitor provides optional data filters in order to reduce the amount of data sent

to the global monitor and also to give the user more control over data gathering. Each filter

is implemented as a separate micro-protocol. This way, the user has a choice of selecting

different data filters to create a complex filter definition. The global monitor is responsible

for managing filter definitions and can control the filters remotely. If the data filters are

present in the local monitor configuration, all data is passed through the filters before being

dispatched to the global monitor. Currently there are two classes of data filters:

� Numeric Filter. These filters sift data based on numeric fields only. Currently imple-

mented filters of this type are the CPU utilization filter and the memory utilization

filter.

� String Filter. These filters sift data based on string fields only. Currently implemented

filters of this type are the process name filter and the user name filter.

12



Each filter has user defined parameters that govern its behavior as follows:

� Filter Type. Filter type can be either positive or negative. A positive filter only allows

data that matches the filter definition, while a negative filter allows only data that

does not match. Filter type only applies to string filters. If not specified, a filter will

be a positive filter by default.

� Filter Logic. Filter logic can be either AND or OR, which defines how each filter is

combined with other filters. In the current implementation, the order in which the

filters are specified is not significant; rather, all the AND filters are applied to the data

before the OR filters. If not specified, a filter will be of AND logic by default.

� Comparison Operator. This is applicable only to the numeric filters. The operators

can be =, !=, <, >, <= and >=.

The user can create a complex filter definition using these parameters. An example

of combining a process name filter and a CPU utilization filter is given below; here, the

process name filter is a positive filter and the CPU utilization filter is an OR filter:

Process name = "netscape","pine" OR Cpu Utilization >= 0.1

Changing the CPU utilization filter from OR to AND, and the process filter from positive

to negative, the filter expression can be changed into something totally different:

Process name != "netscape","pine" AND Cpu Utilization >= 0.1

In the first case, the filter allows through any process named netscape or pine along

with processes that have a CPU utilization greater than or equal to 0.1. In the second case,

the filter allows through only processes not named netscape or pine that also have CPU

utilization greater than or equal to 0.1.
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2.2.3 Local Monitor Activation

Local monitors are activated in two steps. In the first step, the local monitors are started

by the global monitor on each machine in the system. Local monitors do not start their

operation immediately, but wait for a Start Message from the global monitor, which is the

second step. Between the first and second steps, the global monitor can send configuration

information such as filter definitions to the local monitors.

Once the local monitors receive the start message, actual data gathering operation is

started. Each micro-protocol gathers its own data periodically, filters it, and dispatches it

to the global monitor. The local monitor also responds to control messages from the global

monitor.

2.3 Global Monitor Functions

The global monitor is the central entity in the system and is responsible for managing the

local monitors and for interacting with the user through the GUI. The major functions of

the global monitor are:

� Local Monitor Control. The global monitor is responsible for starting the local

monitor processes on individual machines and provides controls for starting their

data gathering operations.

� Data Gathering. The global monitor receives data messages from the local monitors,

and stores the data for analysis and for display to the user.

� Filter Definition. The user can define the local monitor data filters through the global

monitor. The global monitor sends default filter definitions to the local monitors

when the local monitor processes are first started as described above. The user can

also change the filter definitions dynamically during execution.

� Change Detection. The global monitor keeps track of changes occurring in the system

by examining the data messages received from the local monitors. For example, the
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global monitor maintains information about new processes and about processes that

exit.

� Remote Operation of Applications. The global monitor can send messages to a local

monitor asking it to start or kill a process. There is also a process auto-restart function

in the global monitor, where the user can register certain processes as restartable.

When the global monitor detects the exit of such a process, it automatically asks the

proper local monitor to restart the process.

Most of the functions mentioned above are accessible through the global monitor GUI.

The GUI is described in detail in section 4.3.

2.4 Related Work

The concept of system monitoring is not new and many different tools exist. The one most

closely related to our work is the Pulsar system [7], which consists of Tcl/Tk scripts called

Pulse Monitors, where each pulse monitor executes Unix commands to gather information

about a certain system aspect such as resource availability, program behavior, hardware

behavior, and security. The pulse monitor scripts are executed periodically by a Scheduler

that reads the execution periodicity of various scripts from a configuration file. If the

monitored values exceed a threshold, the pulse monitors send updates called alarms to a

central presenter that is responsible for displaying the results. The system can be easily

extended by adding new pulse monitor scripts.

The System Administrator’s Cockpit (satool), developed at the University of Colorado,

Boulder, is geared towards early detection of problems occurring in groups of machines

[13]. Each monitored machine runs a SNMP (Simple Network Management Protocol)

agent that executes Unix scripts to gather data. A data collecting server polls the SNMP

agents at set intervals and stores the data in a database. A display system written in Tcl/Tk

provides a GUI for viewing data, checking data for alarm conditions, and interacting with

the user. Satool is geared towards scalability and uses a hierarchical scheme for displaying
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host data. Extending satool involves making simple code changes to the SNMP agent, the

data collecting server, and the display system.

The CARD (Cluster Administration using Relational Databases) system developed at the

University of California, Berkeley, uses MiniSQL to store data and a Java applet interface

to make the system accessible through the WWW [1]. Use of a relational database makes

the system both flexible through new SQL queries and extensible by adding new fields or

tables to the database. Data is gathered at each machine by Perl scripts. The system uses

a hierarchy of databases, a hybrid push/pull data transfer protocol, and data aggregation to

make the system scalable. The system also uses time-stamp protocols to detect and recover

from failures.

The Rscan system, developed at Colorado State University, is capable of distributing

and running scripts called scans on remote machines and collating the resulting reports to

produce a formatted system report in HTML or plain text [19]. Each Rscan module contains

multiple scans, and OS-independent and OS-dependent parts. Rscan can be configured to

run particular modules on specific hosts and particular scans from specific modules. Rscan

distributes scripts to remote hosts using rsh and tar, while data from the scans is returned

via named pipes. Rscan has mostly been used for detecting security loopholes, but can be

extended for other system administration purposes.

Commercial system monitoring packages are also available. Most of these packages

are large products that concentrate on specific areas such as network management rather

than system management as a whole. A few examples follow.

The SunNet Manager [25] is a commercial SNMP-based network management system

available from Sun microsystems. Proxy agents at each node collect data and respond to

SNMP requests. A central console displays data and can be used for configuring network

devices. The consoles themselves can be connected in a hierarchical manner to scale

the system to manage a large number of nodes. The system can collect data from other

commercial network management systems and also allows users to customize the system

by writing their own proxy agents.
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HP OpenView is a product along the same lines, but has both hardware and software

data collection agents [8]. The IRIX Operating System for SGI machines comes with a

graphical utility called gr osview that is capable of dynamically displaying host statistics

such as CPU/memory usage, resource usage, and network information.

All the systems mentioned are extensible and configurable, however, unlike our tool,

they use adhoc methods for achieving configurability. In contrast, Cactus++ provides a

framework that is specifically designed for configurability and extensibility. Furthermore,

none of the described systems provides a graphical utility for configuration. Creating

a customized version involves manually changing scores of files, a process that is both

cumbersome and error-prone. In contrast, our system administration tool can be easily

configured using CactusBuilder, which helps the user to choose desired features and gener-

ates/modifies all files necessary to create a customized version of the tool.

Another noteworthy feature of our tool is the use of data filters and a push data transfer

protocol to reduce network traffic. In a push protocol, data is sent from a source to a

sink without the sink asking for it. In contrast, in a pull protocol, the sink has to request

data, and, if the same data is requested periodically, as happens in a monitoring system,

the request packets waste bandwidth. In our tool, the global monitor defines its data

requirement through data filters and thereafter the local monitors push relevant data to the

global monitor either periodically or when change is detected. Furthermore, data filters

eliminate delivery of unnecessary data, while the push protocol enables data to be available

at the global monitor as soon as possible. In contrast, the SNMP-based systems use a pull

protocol, where required data has to be polled from data collecting agents, which implies a

timelag between new data being collected and being requested and received by the sink.

The design trend in most described systems is to run data collecting scripts on remote

machines and have them send the resulting data back to a central process for processing. In

contrast, our tool uses an event-driven execution model, in which the local monitors store

monitored data in shared data structures, and raise events that prompt several modules to

process that data before it is sent to the global monitor. This design allows more processing
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to be done at local monitors, thus increasing system scalability by reducing the load on the

global monitor.

2.5 Summary

This chapter describes the functionality of the system monitoring tool and contrasts it with

other similar tools. The system monitoring tool consists of two major components: a

centralized global monitor process and multiple distributed local monitor processes. Each

machine to be monitored runs a local monitor process that is responsible for periodically

collecting status data, such as the resource usage of running processes. Data collected by

the local monitors is filtered and sent to the global monitor, which displays the data. The

global monitor also provides an interface for configuring and controlling the tool.
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Chapter 3

Design

The focus of the design is to make the system monitoring tool highly customizable. It

should be easy for the user of the tool to include or exclude functionality, and also to extend

the functionality by writing new modules that are easily combined with existing modules.

This is achieved using the Cactus approach.

3.1 The Cactus Approach

In the Cactus approach to customization, an application is built as a set of modules, where

each module is responsible for implementing a specific component or property of the

application. These modules, called micro-protocols, communicate with each other through

an event mechanism. Customized variants of the application can be built by configuring

together different valid combinations of these prefabricated modules at compile time.

Using Cactus to implement the system monitoring tool provides a way to make it highly

customizable. The user can easily create a customized variant of the tool by choosing from

a set of predefined micro-protocols. The functionality of the tool can also be extended

easily by adding new micro-protocols.

Two versions of Cactus are currently available. Cactus++ 1.0 is a C++ version of the

Cactus framework that runs on the Solaris operating system. Cactus++ is object-oriented

and is the more widely used version of Cactus. CactusMK 2.0 is a C version that runs
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on the MK 7.3 operating system [18] from OpenGroup RI. This version uses a system

similar to the x-kernel [11] for constructing the network subsystem and supports real-time

enhancements.

3.1.1 Key Concepts

The following are the key elements of Cactus:

� Micro-protocol. A micro-protocol is the basic building block. It is a collection of

event handlers, where each event handler is a function that is associated with an event

and is executed when the event is raised. Each micro-protocol implements a specific

property of the service or application. The overall functionality of the service or

application is determined by the set of micro-protocols selected.

� Composite protocol. A composite protocol is a runtime framework that binds a set

of micro-protocols together and provides them with the common services such as

an event mechanism and shared data. A composite protocol provides a Uniform

Protocol Interface (UPI) that enables composite-protocols to be stacked.

� Suite. All the micro-protocols associated with a composite protocol are collected into

a suite of micro-protocols. A given configuration will be a subset of this suite.

� Events. In the Cactus model, events are used to signify special conditions and to

communicate between micro-protocols, and between micro-protocols and the runtime

system. Event handlers can be bound to events, and when an event is raised, all

handlers bound to that event are executed. Events can be raised in either synchronous

or asynchronous mode and arguments can be passed to the event handlers. When an

event is raised in synchronous mode, the invoker is blocked and all event handlers

registered for that event are executed immediately. In asynchronous mode, the

invoker is allowed to continue. It is also possible to specify a delay.
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� Site. Each process, either local or remote, that has a Cactus composite protocol stack

is called a site. Sites have unique identifiers that are used by the Cactus network layer

for message passing.

Cactus uses a two-level composition model, where the first level consists of multiple

composite protocols structured hierarchically. Each composite protocol can interact with

the composite protocol above and below it through the composite protocol’s expected

interface. At the second level of composition, each composite protocol in turn contains

multiple micro-protocols, where each micro-protocol is responsible for a certain property

of the system.

3.1.2 Managing Configurations

Not all possible combinations of micro-protocols can be chosen for a composite proto-

col because of semantic constraints that determine the valid combinations. The various

constraints or relations between micro-protocols are [10]:

� Dependency. A micro-protocolm
1

depends on another micro-protocolm
2

to function

correctly, i.e. if m
1

is chosen, m
2

must also be chosen. This relationship is not

associative.

� Conflict. A micro-protocol m
1

conflicts with another micro-protocol m
2

and one

cannot function properly if the other is chosen, i.e. if m
1

is chosen, then m
2

cannot

be chosen along with it and vice-versa.

� Enclosure. A micro-protocolm
1

implements a superset of the functionality of another

micro-protocolm
2

, i.e. m
1

encloses m
2

or m
2

is enclosed in m
1

. Enclosures can be

nested to any depth.

Relations between micro-protocols in a suite are usually depicted as a configuration

graph [10]. An example is shown in figure 3.1. In a configuration graph, nodes repre-

sent micro-protocols and edges represent a dependency relationship, for example, micro-

protocolA depends on micro-protocolB, and one of micro-protocolsC andD. Multiple nodes
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inside an unlabeled node represents a conflict relationship, for example, micro-protocols C

and D conflict with each other. A node enclosed in another node represents an enclousure

relationship, for example, micro-protocol F is enclosed in micro-protocol E. A user can

select a valid combination by referring to the graph or by using a graphical tool called the

CactusBuilder. A short description of the CactusBuilder is in Section 4.1.

C

A

B DE F

Figure 3.1: Micro-protocol Configuration Graph

3.1.3 Cactus on CORBA

A version of Cactus++ 1.0 that uses CORBA (Orbix2.2) has been used for implementing

the system monitoring tool. The use of CORBA as the underlying layer provides additional

useful functionality to the Cactus framework:

� Heterogeneity. Probably the strongest advantage of using CORBA is that heteroge-

neous computers can be controlled by the same system monitoring tool. Each type

of computer will have a native version of Cactus and the local system monitor com-

ponent running on it, where all of these are tied together by the underlying CORBA

layer.

� Remote Server Launch. Another advantage is that it is possible to start remote servers

automatically. The global monitor uses this feature to start local monitor processes

on remote machines.
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� Reliable messages. This version of Cactus uses CORBA object invocations to deliver

messages between Cactus sites. This ensures reliability and message ordering at no

extra cost.

3.2 Design Overview

Each portion of the functionality of the local and global monitor (chapter 2) is implemented

as a separate micro-protocol. Micro-protocols within a composite protocol communicate

with each other by raising Cactus events. Event handlers in the micro-protocols read and

write shared data structures that are stored in the composite protocol. Explicit synchro-

nization mechanisms are not required to arbitrate access to shared data because the Cactus

model guarantees atomic execution of each event-handler function with respect to other

event handlers.

Global Monitor

Composite Protocol

Local Monitor

Composite Protocol

Global Monitor Stack Local Monitor Stack

push(....)push(....)

Network Composite Protocol Network Composite Protocol

CORBA Object Method Invocations

pop(void *) pop(void *)

Figure 3.2: Protocol Stacks and Message Passing

The local and global monitors communicate using messages transmitted via the network

composite protocol. Figure 3.2 shows the composite protocol stack at the local and global

monitors. A message is sent by calling the push() method of network. Moreover, when

a message is received by network, it calls the pop() method of the composite protocol

23



above it. The network composite protocols use CORBA’s remote method invocations to

deliver messages.

3.3 Local Monitor

Each function of the local monitor as described in chapter 2 is implemented as a separate

micro-protocol. The set of micro-protocols and their constraints are depicted in figure 3.3.

The following subsections describe the micro-protocols, events, and shared data structures

in detail.

Host Process Load

Process Data Loader

Process Filter

CPU Util Filter

Mem Util Filter

User FilterCPU Util

Mem Util

Process State

Restart

Local Monitor Main

Figure 3.3: Local monitor configuration graph

3.3.1 Micro-protocols

LocalMonitorMain. This micro-protocol sends periodic Alive messages to the global

monitor. The only parameter to the micro-protocol is an integer specifying the inter-

val of alive signaling in milliseconds. The micro-protocol uses a local periodic event

SEND ALIVE to trigger the sending of the Alive messages. A periodic event is im-

plemented by raising an event in its event handler in asynchronous mode with a fixed

delay.
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ProcessDataLoader. This micro-protocolperiodically queries the operating system using

the top utility to obtain information about processes running on that machine. This data is

stored in the ProcessTable shared datastructure. This micro-protocol takes an integer

parameter that specifies the query interval.

The micro-protocol uses a periodic event LOAD PROCESS DATA to trigger loading

of new data. When data loading is completed, filtering events PROC NORMAL FILTER

and PROC OVERRIDE FILTER are raised synchronously in sequence. After completion

of those synchronous events, the PROCESS DATA LOADED event is raised to inform all

micro-protocols that fresh data is available.

HostProcessLoad. This micro-protocol periodically gathers information about overall

process load on the node, again using the top utility. It takes an integer parameter that

specifies the query interval.

The micro-protocol uses a periodic event GET HOST PROC LOAD to trigger the

query.

ProcessState. This micro-protocol monitors changes in the state of running processes,

reporting new processes and changes in state to the global monitor. It responds to the

PROCESS DATA LOADED event raised by the ProcessDataLoadermicro-protocol

by examining data stored in the ProcessTable shared datastructure.

For every new process detected, it raises a GET RESTART INFO event to obtain

command-line arguments for the new process.

CPUUtil. This micro-protocol monitors the CPU usage of processes and reports changes

to the global monitor. In response to the PROCESS DATA LOADED event raised by the

ProcessDataLoader micro-protocol, it examines CPU usage information about each

process in the ProcessTable shared datastructure.
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MemUtil. This micro-protocol monitors the memory usage of processes and reports

changes to the global monitor. In response to the PROCESS DATA LOADED event raised

by the ProcessDataLoader micro-protocol, it examines memory usage information

about each process in the ProcessTable shared datastructure.

Restart. This micro-protocol processes restart requests from the global monitor. It re-

sponds to the RESTART PROCESS event by starting the process mentioned in arguments

to the event handler. When new processes are detected by the ProcessState micro-

protocol, this micro-protocol queries the command-line parameters of the process and

stores them in the ProcessTable data structure. This micro-protocol also responds to

the KILL PROCESS event, which is raised when a kill process message is received from

the global monitor.

ProcessFilter. This micro-protocol implements the process name filter according to the

definition provided by the global monitor. In response to the PROCESS FILTER DEFN

event, the micro-protocol stores the new filter definition. If the filter logic is AND, it

binds the filter event handler to the PROC NORMAL FILTER event, otherwise it binds the

event handler to the PROC OVERRIDE FILTER event. When these events are raised, the

filter event handler masks or unmasks process data records in the ProcessTable data

structure.

UserFilter. This micro-protocol works similarly to theProcessFiltermicro-protocol,

except that it filters information based on user names.

CPUUtilFilter. This micro-protocol works similarly to the ProcessFilter micro-

protocol, except that it filters based on the CPU usage of processes.

MemUtilFilter. This micro-protocol works similarly to the ProcessFilter micro-

protocol, except that it filters based on the memory usage of processes.
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3.3.2 Events

This subsection describes the events used in the local monitor implementation. All events

are raised asynchronously unless otherwise stated.

SEND ALIVE. A periodic event indicating it is time to send an Alive message to the

global monitor.

LOAD PROCESS DATA. A periodic event that indicates that it is time to load fresh

data about processes running on the node.

PROCESS DATA LOADED. This event is raised when new data has been gathered

and after the data filters have finished processsing the new data. It indicates to other

micro-protocols that they can examine the data in the ProcessTable data structure.

GET HOST PROC LOAD. A periodic event that indicates that it is time to gather host

process load information from the OS.

GET RESTART INFO. This event is raised by the ProcessState micro-protocol

when it detects new processes. The event handler for this event queries the OS for the

information necessary to restart the new processes.

RESTART PROCESS. This event is raised when a Restart Process message is

received from the global monitor.

KILL PROCESS. This event is raised when a Kill Process message is received

from the global monitor.

PROCESS FILTER DEFN. This event is raised when a Process Filter definition is

received from the global monitor. The USER FILTER DEFN, CPU FILTER DEFN, and

MEM FILTER DEFN events are similar.
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PROC NORMAL FILTER. This synchronous event is raised by the ProcessDat-

aLoader micro-protocol after it has completed refreshing data in the ProcessTable

data structure. Data filters set for AND logic register their handlers for this event.

PROC OVERRIDE FILTER. This synchronous event is raised by the ProcessDat-

aLoader micro-protocol after it raises the PROC NORMAL FILTER event. Data filters

set for OR logic register their handlers for this event.

3.3.3 Shared Data Structures

ProcessTable. This is a hash table of a hundred buckets for storing records containing

information about processes running at the node. Each bucket in the hash table is a linked

list of process records. The hash function generates the last two digits of a process identifier

to produce a number between 0-99. The local monitor micro-protocols access this table to

read or write process data. The declaration for this table is as follows:

class ProcessTable f

private:

ProcessRec *P[PID HASH LEN]; // Hash table

int old arr, new arr; // Indices for double-buffering

int process count; // Number of process records in table

int ign count; // Number of masked records

int NumberOfProcesses; // Total number of processes running on node

float LoadAvg1, LoadAvg2, LoadAvg3; // The process load averages

int RealMemorySize; // Physical memory size of node

g;

Each process record stores relevant information about a process. Parameters that

constantly change such as process state and CPU usage are stored in an array of size two.

The old arr and new arr variables from the ProcessTable indicate the indices of

the old and new value respectively. This is done to avoid copying of data on each refresh.

The structure of each process record is as follows:
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typedef struct process rec f

char ign; // flag used by filters to mask/unmask the record

char name[PROCNAMESIZE]; // Process name

char user[USERNAMESIZE]; // User name of process owner

int pid; // Process Identification Number

short state[2]; // State of Process

float cpu util[2]; // CPU usage of process

float mem util[2]; // Memory usage of process

unsigned int total size; // Size of process

char command[COMMANDSIZE]; // Command-line arguments of process

g ProcessRec;

3.4 Global Monitor

Each function of the global monitor as described in chapter 2 is implemented as a separate

micro-protocol. The set of micro-protocols and their constraints are depicted in figure 3.4.

The following subsections describe the micro-protocols, events, and shared datastructures

in detail.

Global Monitor Main

Process State

GMem Util

GCPU Util

GRestart

GMem Filter

GProcess Filter

GUser Filter

GCPU Filter

Garbage Collector

Figure 3.4: Global monitor configuration graph

The GUI code is separate from the micro-protocols and is external to the composite
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protocol. In this code, the GUI event processing loop is started in a separate thread.

When the user performs some action in the GUI, such as pressing a button, event handlers

in the GUI code are executed. These event handlers interact with the global monitor

micro-protocols by raising events in the global monitor composite protocol. Since the

Cactus framework only allows the composite protocol and micro-protocols to raise events,

a function was added to the global monitor composite protocol to allow code outside the

Cactus framework, i.e. the GUI code, to raise events.

3.4.1 Micro-protocols

GlobalMonitorMain. This micro-protocol processes the Alive messages that are sent

periodically by the local monitors. It maintains the status of the local monitors in a shared

data structure AliveTable. When the global monitor composite protocol receives an

Alivemessage, it raises the GOT ALIVE MSG event, the event handler for which records

receipt of the message. On a periodic event, CHECK LIVENESS, an event handler checks

if two consecutive alive messages are missing from a local monitor. If that is the case, that

monitor is declared dead.

GarbageCollect. This micro-protocol frees process records for processes that no longer

exist. This garbage collection is done after a delay, which is a user-defined parameter of

the micro-protocol. The periodic event GARBAGE COLLECT is used to trigger garbage

collection.

GProcessState. This micro-protocol processes information received from the local mon-

itors regarding new processes and state changes of existing processes. It stores or updates

information in the shared datastructure HostTable and also causes updates to the GUI.

The global monitor composite protocol raises the events GOT NEW PROCESSES, PRO-

CESS STATE CHANGE, and GOT PROC LOAD INFO on receipt of corresponding mes-

sages from local monitors. Event handlers for these messages store or update information
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in the HostTable datastructure. When a process ceases to exist, a RESTART PROCESS

event is raised with the process identifier as argument. This causes a check to be made

whether that exited process should be restarted.

GCPUUtil. This micro-protocol processes information received from the local monitors

regarding the CPU usage of processes. It stores or updates information in the shared

datastructure HostTable and also causes updates to the GUI.

GMemUtil. This micro-protocol processes information received from the local monitors

regarding the memory usage of processes. It stores or updates information in the shared

datastructure HostTable and also causes updates to the GUI.

GRestart. This micro-protocol checks whether a process that has died is listed for restart-

ing and sends a restart process message to the appropriate local monitor. An event handler

in this micro-protocol responds to the RESTART PROCESS event raised by the GPro-

cessState micro-protocol.

GProcessFilter. This micro-protocol manages the GUI screen for configuring the Process

name data filters. It also sends filter definition messages to local monitors when necessary.

It responds to the event PROCESS FILTER DEFN raised by the GUI when the filter

definition is changed by sending the definition to the proper local monitor.

GUserFilter. This micro-protocol manages the user name data filter and its GUI screen

similar to theGProcessFiltermicro-protocol. It responds to the USER FILTER DEFN

event raised by the GUI.

GCPUFilter. This micro-protocol manages the CPU usage data filter and its GUI screen

similar to the GProcessFiltermicro-protocol. It responds to the CPU FILTER DEFN

event raised by the GUI.
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GMemFilter. This micro-protocol manages the memory usage data filter and its GUI

screen similar to theGProcessFiltermicro-protocol. It responds to the MEM FILTER DEFN

event raised by the GUI.

3.4.2 Events

This subsection describes the events used in the global monitor implementation. All events

are raised asynchronously unless otherwise stated.

GOT ALIVE MSG. This event is raised when an Alive message is received.

CHECK LIVENESS. Periodic event to indicate that it is time to check if an Alive

message has been received from each local monitor in the last period. If no Alive

message is received for two consecutive periods, the monitor is declared dead.

GARBAGE COLLECT. Periodic event that indicates time to do garbage collection in

the global monitor tables.

INITIALIZE GUI. This event is raised by the composite protocol after it has created all

the micro-protocols. All event handlers for this event initialize their GUI screens.

GOT NEW PROCESSES. This event is raised when a New Process message is

received from the local monitors. The GOT CPUUTIL INFO and GOT MEMUTIL INFO

events are similar.

GOT PROC LOAD INFO. This event is raised when a Host Process Load mes-

sage is received.

PROCESS STATE CHANGE. This event is raised when information about state changes

of processes is received. The event handler updates the shared table and the GUI. Termi-
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nated processes are checked for restarting and entries in the shared table corresponding to

these are marked for garbage collection.

RESTART PROCESS. This event is raised when a process has terminated.

KILL PROCESS. This event is raised when the user selects a process to be stopped.

PROCESS FILTER DEFN. This event is raised when the user modifies a process filter

definition. The USER FILTER DEFN, CPU FILTER DEFN, and MEM FILTER DEFN

events are similar.

3.4.3 Shared Data Structures

HostTable. The global monitor maintains one HostTable structure for each local monitor.

This table contains overall information about the host and an array of hash buckets contain-

ing process information records about each process reported by the local monitor. Records

in a hash bucket are stored as a linked list. The hash function generates the last two digits

of a process identifier to produce a number between 0-99. The declaration for HostTable is

as follows:

class HostTable f

private:

ProcessRecord *p[PID HASH LEN]; // Hash Buckets

// Overall information about the host

char hostname[HOSTNAMESIZE];

int NumberOfProcs; // Number of processes running on the host

int RealMemorySize; // Size of physical memory of the host

float LoadAvg1, LoadAvg2, LoadAvg3; // Process Load Averages

g;

The structure of each process record is as follows:
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class ProcessRecord f

private:

int pid; // Process Identifier

char name[PROCNAMESIZE]; // Process Name

char user[USERNAMESIZE]; // User name of process owner

char command[COMMANDSIZE]; // Command-line arguments of the process

short state; //State of process

float cpu util; // Current CPU usage of the process

float mem util; //Current memory usage of the process

g;

AliveTable. Array of booleans storing the status of each local monitor.

3.4.4 Summary

This chapter describes the Cactus approach in detail and presents the design of the system

monitoring tool. Each micro-protocol, event, and shared data structure of the local and

global monitor is described.
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Chapter 4

Using the System

The system monitoring tool requires some initialization steps prior to execution. Since the

monitoring tool is highly customizable, the primary task involves choosing an appropriate

configuration. Other steps deal with compilation of the source code and registering the

executables with the Orbix daemon.

4.1 Setting up the Monitoring Tool

The following steps are required to setup the monitoring system:

1. Choose the micro-protocols and configure the monitor instances.

2. Set constants to appropriate values in header files.

3. Make the executables and distribute them.

4. Register location with the Orbix(CORBA) daemon.

Each of these steps is now described in turn.

Micro-protocol Selection The global monitor and local monitor exist as two different

micro-protocol suites, so the user needs to choose micro-protocols and configure each

separately. Although this can be done by manually modifying the appropriate files, the

use of the CactusBuilder graphical configuration tool greatly simplifies the process. To
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configure the global monitor, the user changes working directory to the Global Monitor

source directory and runs CactusBuilder. On starting up, CactusBuilder displays a list

of all micro-protocols in the global monitor suite and allows the user to choose micro-

protocols and set their parameters to create a configuration. Configurations can be saved

and retrieved using the CactusBuilder File menu. After creating a configuration, the user

selects the Generate C++ Files option from the CactusBuilder menu to generate

the files necessary for Cactus++ to build the system. An example configuration of the

local monitor using CactusBuilder is shown in figure 4.1. The user selects and creates a

configuration from the global monitor micro-protocol suite in a similar manner.

Set Constant Values. The user then decides the number of local monitors required and

sets the constant NUM LMON in defs.h to this number. The user also sets the constant

NUM SITES in CompositeProtocol.h to NUM LMON+1.

Making the Executables. The user changes the working directory to the local and global

monitor directories in turn and runs make in each directory to create the executables gmon

and lmon, respectively. If necessary, the code is recompiled on different platforms to

incorporate heterogeniety in the machines to be monitored. Each machine should have

access to the local monitor executable lmon. This can be achieved by using ftp or rcp

to copy the executable to remote machines, or by NFS-mounting the directory containing

the executable on each computer.

Registering executables with Orbix. In Cactus++, each composite protocol stack runs

as a CORBA object in separate server processes. These server processes are identified in

the CORBA layer by server names that are unique strings. The monitoring system names

the local monitors as Monitor0 to MonitorN, where N is a number one less than the

total number of local monitor processes. The global monitor is named MonitorM where

M is equal to N+1. The Cactus++ system, however, uses a unique integer called site-

id to identify each Cactus site. This integer is passed as a command-line argument to the
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Figure 4.1: Cactus Builder

monitor executables. By registering the monitor executables with the Orbix daemon, we are

essentially establishing a correspondence between CORBA server names and executables,

along with the command-line arguments to be passed to the executable. The registration

command also specifies the location (host) on which the executable is to be run. This

registration is done using the Orbix putit utility, as follows:

putit Monitor<site> -h <hostname> <full pathname for Monitor

Executable> <site-id>

This command should be executed at the machine that runs the global monitor. This
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registration step is required for the global monitor and each of the local monitors.

4.2 Startup and Configuration

The monitoring system is started by running the global monitor. The local monitors are then

started automatically by the Orbix daemon at the machines registered in the initialization

phase. As an example, the command “gmon 2” will start the global monitor with site

identifier 2 and server name Monitor2. The global monitor will then start two local

monitors with site identifiers 0 and 1 at the machines registered previously with the putit

command, and with server names Monitor0 and Monitor1, respectively.

As the global monitor starts, the main window of the GUI appears on the screen as shown

in figure 4.2. The system is now in the configuration phase, during which the global monitor

uploads data-filter definitions to the local monitors. At this point, the local monitors have

not started their data-gathering operations, but are sending periodic Alive messages to

the global monitor. The local monitors also respond to Filter Definition messages

from the global monitor.

The user can now use the Edit Menu to modify the data filters, after which a start

command is sent to the local monitors to start their data gathering operations.

4.3 Graphical User Interface

The global monitor provides the user with a graphical user interface to view data and control

the system. The main window shows a list of local monitors and the host names of the

machines on which they are executing. The screen also shows other information, such as

the status of each local monitor, and the process load on each host. The main window has

a menu bar on top that has menus Monitor, Edit, and View.
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Figure 4.2: Main window

4.3.1 The Monitor Menu

This menu contains the global and local monitor controls. Currently, there are only three

functions in this menu.

� Start. This is a command to the local monitors to start their data gathering operations.

This command is issued in the configuration phase after all filters have been defined.

� Save Config. This command saves the current configuration of the global monitor in

files. When the global monitor is started subsequently, it reads its configuration from

these files.

� Exit. The global monitor sends an exit message to all local monitors and shuts itself

down when this command is selected.
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4.3.2 The Edit Menu

This menu is mainly used for defining and modifying the various data filters. It has a filter

submenu that has a list of all filter types. Currently, there are four types of filters in the

filter submenu, viz. process name filter, user name filter, CPU utilization filter, and memory

utilization filter.

The screen for the process name filter is shown in figure 4.3. The host selector button is

used to select the process filter for a particular host. The user can then add or delete names

or change the filtertype and logic. To add a name, the name is typed in the textbox at the

bottom, and on pressing the Add button, the name is appended to the list. A name can be

removed from the list by selecting it from the list and then pressing the Delete button. The

Clear button erases all names from the list. The apply button sends the new filter definition

message to the appropriate local monitor.

Figure 4.3: Process Filter

The screen for the CPU utilization filter is shown in figure 4.4. The usage of the

CPU utilization filter is very similar to the process name filter. There is an additional

selector button for the comparison function (<,>,>=,etc). The user name filter and the

memory utilization filter are similar to the process name filter and the CPU utilization filter,
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respectively.

Figure 4.4: CPU Utilization Filter

The Restart List is used for registering processes for automatic restart if they crash. The

screen for this is shown in figure 4.5. The usage of buttons for this screen is similar to other

editing screens described before.

Figure 4.5: Restart List

4.3.3 The View Menu

The View menu is used for viewing data received from the local monitors. Since the system

currently only deals with process information, only the screen for viewing this information
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is available in this menu. This screen is shown in figure 4.6. There is a host selector

button for viewing processes running on a particular host. All available information about

processes consistent with the data-gathering micro-protocols selected at the local monitors

is shown in the screen. A process can be killed by selecting it in the list and pressing the

Kill Process button.

Figure 4.6: Process Information

4.4 Summary

This chapter describes the initialization and operation of the system monitoring tool. Ini-

tialization involves choosing configurations of the local and global monitors, compiling

binaries, and registering the executables with the Orbix daemon. To operate the tool, the

global monitor has a graphical user interface that can be used for viewing data, defining

data filters, and for other control operations.
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Chapter 5

Conclusion

5.1 Summary

This thesis has described a system administration tool based on a highly customizable

system monitoring architecture. Although the current implementation of the tool has only

a few micro-protocols that deal with a small part of system administration, the concepts

developed in the thesis can easily be applied to real-life applications.

The tool has been successfully tested by having multiple local monitors running on a

single machine1. The tool was tested with different configurations of the global and local

monitors using CactusBuilder for doing the configuration.

5.2 Future Work

This thesis presents a number of opportunities for further work in following areas:

Tool Extensions. The current implementation of the tool only monitors processes and

their parameters such as CPU and memory usage. The tool can be extended to other areas

of system administration, including:

1Due to limitations of the software license, we had only one machine running Orbix.
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� Software Management. Micro-protocols can be added that check software for proper

versions and help in rapid installation/uninstallation and configuration of software.

� Network Management. Micro-protocols can be written to discover and graphically

depict the topology of a network, monitor status of network devices, monitor network

load and delays, and help in configuration of network devices. This is one of the most

promising areas for applying this tool.

� Security. Micro-protocols can be written to periodically check machines for known

security loopholes, monitor users, monitor software checksums, and check programs

for improper permissions. This is also an area where the tool can be applied very

effectively.

Configurable GUI. Some micro-protocols have a GUI component; for example, the

GProcessFiltermicro-protocol from the global monitor suite has a graphical interface

for manipulating process filters. In the current implementation, all the GUI code is separate

from the micro-protocols and is not configurable. It would be interesting to implement

parts of the GUI as micro-protocols.

Failure Recovery. Although the current implementation of the tool can detect local

monitor failures, it does not attempt to recover from such failures. The tool already has the

mechanism to restart a failed local monitor, but attention has not been paid to other aspects

of recovery such as data synchronization and consistency.

Configurability Enhancements. The version of Cactus++ used for the development of

this tool allows only compile time configuration. However, work is in progress on a new

version that also allows runtime configuration, i.e. allows micro-protocols to be added or

removed dynamically during execution. The tool can be ported this new version of Cactus

to take advantage of runtime configurability.
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