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Abstra
t

Several s
hemes for linear mapping of a multidimensional spa
e have been proposed for various appli
a-

tions su
h as a

ess methods for spatio-temporal databases and image 
ompression. In these appli
ations,

one of the most desired properties from su
h linear mappings is 
lustering, whi
h means the lo
ality be-

tween obje
ts in the multidimensional spa
e being preserved in the linear spa
e. It is widely believed that

the Hilbert spa
e-�lling 
urve a
hieves the best 
lustering [1, 14℄. In this paper, we analyze the 
lustering

property of the Hilbert spa
e-�lling 
urve by deriving 
losed-form formulas for the number of 
lusters in a

given query region of an arbitrary shape (e.g., polygons and polyhedra). Both the asymptoti
 solution for

the general 
ase and the exa
t solution for a spe
ial 
ase generalize previous work [14℄. They agree with

the empiri
al results that the number of 
lusters depends on the hyper-surfa
e area of the query region

and not on its hyper-volume. We also show that the Hilbert 
urve a
hieves better 
lustering than the z


urve. From a pra
ti
al point of view, the formulas given in this paper provide a simple measure that 
an

be used to predi
t the required disk a

ess behaviors and hen
e the total a

ess time.

Index Terms: lo
ality-preserving linear mapping, range queries, multi-attribute a

ess methods, data


lustering, Hilbert 
urve, spa
e-�lling 
urves, fra
tals.
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1 Introdu
tion

The design of multidimensional a

ess methods is diÆ
ult 
ompared to one-dimensional 
ases be
ause there

is no total ordering that preserves spatial lo
ality. On
e a total ordering is found for a given spatial or

multidimensional database, one 
an use any one-dimensional a

ess method (e.g., B

+

-tree), whi
h may

yield good performan
e for multidimensional queries. An interesting appli
ation of the ordering arises in a

multidimensional indexing te
hnique proposed by Orenstein [19℄. The idea is to develop a single numeri


index on a one-dimensional spa
e for ea
h point in a multidimensional spa
e, su
h that for any given obje
t,

the range of indi
es, from the smallest index to the largest, in
ludes few points not in the obje
t itself.

Consider a linear traversal or a typi
al range query for a database where re
ord signatures are mapped

with multi-attribute hashing [24℄ to bu
kets stored on disk. The linear traversal spe
i�es the order in

whi
h the obje
ts are fet
hed from disk as well as the number of blo
ks fet
hed. The number of non-


onse
utive disk a

esses will be determined by the order of blo
ks fet
hed. Although the order of blo
ks

fet
hed is not expli
itly spe
i�ed in the range query, it is reasonable to assume that the set of blo
ks

fet
hed 
an be rearranged into a number of groups of 
onse
utive blo
ks by a database server or disk


ontroller me
hanism [25℄. Sin
e it is more eÆ
ient to fet
h a set of 
onse
utive disk blo
ks rather than a

randomly s
attered set in order to redu
e additional seek time, it is desirable that obje
ts 
lose together in a

multidimensional attribute spa
e also be 
lose together in the one-dimensional disk spa
e. A good 
lustering

of multidimensional data points on the one-dimensional sequen
e of disk blo
ks may also redu
e the number

of disk a

esses that are required for a range query.

In addition to the appli
ations des
ribed above, several other appli
ations also bene�t from a linear

mapping that preserves lo
ality:

1. In traditional databases, a multi-attribute data spa
e must be mapped into a one-dimensional disk spa
e

to allow eÆ
ient handling of partial-mat
h queries [22℄; in numeri
al analysis, large multidimensional

arrays [6℄ have to be stored on disk, whi
h is a linear stru
ture.

2. In image 
ompression, a family of methods use a linear mapping to transform an image into a bit string;

subsequently, any standard 
ompression method 
an be applied [18℄. A good 
lustering of pixels will

result in a fewer number of long runs of similar pixel values, thereby improving the 
ompression ratio.

3. In geographi
 information systems (GIS), run-en
oded forms of image representations are ordering-

sensitive, as they are based on representations of the image as sets of runs [1℄.

4. Heuristi
s in 
omputational geometry problems use a linear mapping. For example, for the traveling

salesman problem, the 
ities are linearly ordered and visited a

ordingly [2℄.

5. Lo
ality-preserving mappings are used for bandwidth redu
tion of digitally sampled signals [4℄ and for

graphi
s display generation [20℄.

6. In s
ienti�
 parallel pro
essing, lo
ality-preserving linearization te
hniques are widely used for dynami


unstru
tured mesh partitioning [17℄.

Sophisti
ated mapping fun
tions have been proposed in the literature. One based on interleaving bits

from the 
oordinates, whi
h is 
alled z-ordering, was proposed [19℄. Its improvement was suggested by

Faloutsos [8℄, using Gray 
oding on the interleaved bits. A third method, based on the Hilbert 
urve [13℄,

was proposed for se
ondary key retrieval [11℄. In the mathemati
al 
ontext, these three mapping fun
tions are

based on di�erent spa
e-�lling 
urves: the z 
urve, the Gray-
oded 
urve and the Hilbert 
urve, respe
tively.

Figure 1 illustrates the linear orderings yielded by the spa
e-�lling 
urves for a 4�4 grid.

It was shown that under most 
ir
umstan
es, the linear mapping based on the Hilbert spa
e-�lling 
urve

outperforms the others in preserving lo
ality [14℄. In this paper, we provide analyti
 results of the 
lustering

e�e
ts of the Hilbert spa
e-�lling 
urve, fo
using on arbitrarily shaped range queries, whi
h require the

retrieval of all obje
ts inside a given hyper-re
tangle or polyhedron in multidimensional spa
e.

For purposes of analysis, we assume a multidimensional spa
e with �nite granularity, where ea
h point


orresponds to a grid 
ell. The Hilbert spa
e-�lling 
urve imposes a linear ordering on the grid 
ells,

assigning a single integer value to ea
h 
ell. Ideally, it is desirable to have mappings that result in fewer

disk a

esses. The number of disk a

esses, however, depends on several fa
tors su
h as the 
apa
ity of
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z 
urve Gray-
oded 
urve Hilbert 
urve

Figure 1: Illustration of spa
e-�lling 
urves

the disk pages, the splitting algorithm, the insertion order and so on. Here we use the average number of


lusters, or 
ontinuous runs, of grid points within a subspa
e representing a query region, as the measure of

the 
lustering performan
e of the Hilbert 
urve. If ea
h grid point is mapped to one disk blo
k, this measure

exa
tly 
orresponds to the number of non-
onse
utive disk a

esses, whi
h involve additional seek time. This

measure is also highly 
orrelated to the number of disk blo
ks a

essed, sin
e (with many grid points in a

disk blo
k) 
onse
utive points are likely to be in the same blo
k, while points a
ross a dis
ontinuity are likely

to be in di�erent blo
ks. This measure is used only to render the analysis tra
table, and some weaknesses

of this measure were dis
ussed in [14℄.
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Figure 2: Illustration of: (a) two 
lusters for the z 
urve, (b) one 
luster for the Hilbert 
urve

De�nition 1.1 Given a d-dimensional query, a 
luster is de�ned to be a group of grid points inside the query

that are 
onse
utively 
onne
ted by a mapping (or a 
urve).

For example, there are two 
lusters in the z 
urve (Figure 2(a)) but only one in the Hilbert 
urve (Figure 2(b))

for the same 2-dimensional re
tangular query S

x

� S

y

. Now, the problem we will investigate is formulated

as follows:

Given a d-dimensional re
tilinear polyhedron representing a query, �nd the average number of


lusters inside the polyhedron for the Hilbert 
urve.

The de�nition of the d-dimensional re
tilinear polyhedron is given in Se
tion 3. Note that in the d-dimensional

spa
e with �nite granularity, for any d-dimensional obje
t su
h as spheres, ellipsoids, quadri
 
ones and so

2



on, there exists a 
orresponding (re
tilinear) polyhedron that 
ontains exa
tly the same set of grid points

inside the given obje
t. Thus, the solution to the problem above will 
over more general 
ases 
on
erning any

simple 
onne
ted obje
t of arbitrary shape. The rest of the paper is organized as follows. Se
tion 2 surveys

histori
al work on spa
e-�lling 
urves and other related analyti
 studies. Se
tion 3 presents an asymptoti


formula of the average number of 
lusters for d-dimensional range queries of arbitrary shape. Se
tion 4

derives a 
losed-form exa
t formula of the average number of 
lusters in a 2-dimensional spa
e. In Se
tion 5,

we provide empiri
al eviden
e to demonstrate the 
orre
tness of the analyti
 results for various query shapes.

Finally, in Se
tion 6, we dis
uss the 
ontributions of this paper and suggest future work.

2 Histori
al Survey and Related Work

G. Peano, in 1890, dis
overed the existen
e of a 
ontinuous 
urve whi
h passes through every point of a


losed square [21℄. A

ording to Jordan's pre
ise notion (in 1887) of 
ontinuous 
urves, Peano's 
urve is a


ontinuous mapping of the 
losed unit interval I = [0; 1℄ into the 
losed unit square S = [0; 1℄

2

. Curves of

this type have 
ome to be 
alled Peano 
urves or spa
e-�lling 
urves [28℄. Formally,

De�nition 2.1 If a mapping f : I ! E

n

(n � 2) is 
ontinuous, and f(I) the image of I under f has positive

Jordan 
ontent (area for n = 2 and volume for n = 3), then f(I) is 
alled a spa
e-�lling 
urve. E

n

denotes

an n-dimensional Eu
lidean spa
e.

Although G. Peano dis
overed the �rst spa
e-�lling 
urve, it was D. Hilbert in 1891 who was the �rst

to re
ognize a general geometri
 pro
edure that allows the 
onstru
tion of an entire 
lass of spa
e-�lling


urves [13℄. If the interval I 
an be mapped 
ontinuously onto the square S, then after partitioning I

into four 
ongruent subintervals and S into four 
ongruent subsquares, ea
h subinterval 
an be mapped


ontinuously onto one of the subsquares. If this is 
arried on ad in�nitum, I and S are partitioned into 2

2n


ongruent repli
as for n = 1; 2; 3; � � � ;1. Hilbert demonstrated that the subsquares 
an be arranged so that

the in
lusion relationships are preserved, that is, if a square 
orresponds to an interval, then its subsquares


orrespond to the subintervals of that interval. Figure 3 des
ribes how this pro
ess is to be 
arried out

for the �rst three steps. It has been shown that the Hilbert 
urve is a 
ontinuous, surje
tive and nowhere

di�erentiable mapping [26℄. However, Hilbert gave the spa
e-�lling 
urve, in a geometri
 form only, for

mapping I into S (i.e., 2-dimensional Eu
lidean spa
e). The generation of a 3-dimensional Hilbert 
urve

was des
ribed in [14, 26℄. A generalization of the Hilbert 
urve, in an analyti
 form, for higher dimensional

spa
es was given in [5℄.

(a) First step (b) Se
ond step (
) Third step

Figure 3: The �rst three steps of Hilbert spa
e-�lling 
urve

In this paper, a d-dimensional Eu
lidean spa
e with �nite granularity is assumed. Thus, we use the k-th

order approximation of a d-dimensional Hilbert spa
e-�lling 
urve (k � 1 and d � 2), whi
h maps an integer

set [0; 2

kd

� 1℄ into a d-dimensional integer spa
e [0; 2

k

� 1℄

d

.

Notation 2.1 For k � 1 and d � 2, let H

d

k

denote the k-th order approximation of a d-dimensional Hilbert

spa
e-�lling 
urve, whi
h maps [0; 2

kd

� 1℄ into [0; 2

k

� 1℄

d

.
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The drawings of the �rst, se
ond and third steps of the Hilbert 
urve in Figure 3 
orrespond to H

2

1

, H

2

2

and

H

2

3

, respe
tively.

Jagadish [14℄ 
ompared the 
lustering properties of several spa
e-�lling 
urves by 
onsidering only 2�2

range queries. Among the z 
urve (2.625), the Gray-
oded 
urve (2.5) and the Hilbert 
urve (2), the Hilbert


urve was the best in minimizing the number of 
lusters. The numbers within the parentheses are the average

number of 
lusters for 2�2 range queries. Rong and Faloutsos [23℄ derived a 
losed-form expression of the

average number of 
lusters for the z 
urve, whi
h gives 2.625 for 2�2 range queries (exa
tly the same as the

result given in [14℄) and in general approa
hes one third of the perimeter of the query re
tangle plus two

thirds of the side length of the re
tangle in the unfavored dire
tion. Jagadish [16℄ derived 
losed-form, exa
t

expressions of the average number of 
lusters for the Hilbert 
urve in a 2-dimensional grid, but only for 2�2

and 3�3 square regions. This is a spe
ial 
ase of the more general formulae derived in this paper.

Abel and Mark [1℄ reported empiri
al studies to explore the relative properties of su
h mapping fun
tions

using various metri
s. They rea
hed the 
on
lusion that the Hilbert ordering deserves 
loser attention as

an alternative to the z 
urve ordering. Bugnion et al. estimated the average number of 
lusters and the

distribution of inter-
luster intervals for 2-dimensional re
tangular queries. They derived the estimations

based on the fra
tion of verti
al and horizontal edges of any parti
ular spa
e-�lling 
urve. However, those

fra
tions were provided only for a 2-dimensional spa
e and without any 
al
ulation or formal veri�
ation.

In this paper, we formally prove that, in a d-dimensional spa
e, the d di�erent edge dire
tions approa
h the

uniform distribution, as the order of the Hilbert 
urve approximation grows into in�nity.

Several 
losely related analyses for the average number of 2-dimensional quadtree nodes have been pre-

sented in the literature. Dyer [7℄ presented an analysis for the best, worst and average 
ase of a square of

size 2

n

�2

n

, giving an approximate formula for the average 
ase. Sha�er [27℄ gave a 
losed formula for the

exa
t number of blo
ks that su
h a square requires when an
hored at a given position (x; y); he also gave

a formula for the average number of blo
ks for su
h squares (averaged over all possible positions). Some of

these formulae were generalized for arbitrary 2-dimensional and d-dimensional re
tangles [9, 10℄.

3 Asymptoti
 Analysis

In this se
tion, we give an asymptoti
 formula for the 
lustering property of the Hilbert spa
e-�lling 
urve

for general polyhedra in a d-dimensional spa
e. The symbols used in this se
tion are summarized in Table 1.

The polyhedra we 
onsider here are not ne
essarily 
onvex, but are re
tilinear in the sense that any (d-1)-

dimensional polygonal surfa
e is perpendi
ular to one of the d 
oordinate axes.

De�nition 3.1 A re
tilinear polyhedron is bounded by a set V of polygonal surfa
es ea
h of whi
h is perpen-

di
ular to one of the d 
oordinate axes, where V is a subset of R

d

and homeomorphi


1

to a (d-1)-dimensional

sphere S

d�1

.

For d = 2 the set V is, by de�nition, a Jordan 
urve [3℄, whi
h is essentially a simple 
losed 
urve in R

2

. The

set of surfa
es of a polyhedron divides the d-dimensional spa
e R

d

into two 
onne
ted 
omponents, whi
h

may be 
alled the interior and the exterior.

The basi
 intuition is that ea
h 
luster within a given polyhedron 
orresponds to a segment of the Hilbert


urve, 
onne
ting a group of grid points in the 
luster, whi
h has two endpoints adja
ent to the surfa
e of the

polyhedron. The number of 
lusters is then equal to half the number of endpoints of the segments bounded

by the surfa
e of the polyhedron. In other words,

Remark 3.1 The number of 
lusters within a given d-dimensional polyhedron is equal to the number of entries

(or exits) of the Hilbert 
urve into (or from) the polyhedron.

Thus, we expe
t that the number of 
lusters is approximately proportional to the perimeter or hyper-surfa
e

area of the d-dimensional polyhedron (d � 2). With this observation, the task is redu
ed to �nding a 
onstant

fa
tor of a linear fun
tion.

Our approa
h to derive the asymptoti
 solution largely depends on the self-similar nature of the Hilbert


urve, whi
h stems from the re
ursive pro
ess of the 
urve expansion. Spe
i�
ally, we shall show in the

1

Two subsets X and Y of Eu
lidean spa
e are 
alled homeomorphi
 if there exists a 
ontinuous bije
tive mapping, f : X ! Y ,

with a 
ontinuous inverse f

�1

[12℄.
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Figure 4: the 3-dimensional Hilbert 
urve (H

3

k

with verti
es representing H

3

k�1

approximations annotated

by their orientations.)
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Figure 5: the 4-dimensional Hilbert 
urve (H

4

k

with verti
es representing H

4

k�1

approximations annotated

by their orientations.)

following lemmas that the edges of d di�erent orientations are uniformly distributed in a d-dimensional

Eu
lidean spa
e. That is, approximately one d-th of the edges are aligned to the i-th dimensional axis for

ea
h i (1 � i � d). Here we mean by edges the line segments of the Hilbert 
urve 
onne
ting two neighboring

points. The uniform distribution of the edges provides key leverage for deriving the asymptoti
 solution. To

show the uniform distribution, it is important to understand

� how the k-th order approximation of the Hilbert 
urve is derived from lower order approximations, and

� how the d-dimensional Hilbert 
urve is extended from the 2-dimensional Hilbert 
urve, whi
h was

des
ribed only in a geometri
 form in [13℄. (Analyti
 forms for the d-dimensional Hilbert 
urves were

presented in [5℄.)

In a d-dimensional spa
e, the k-th order approximation of the d-dimensional Hilbert 
urve H

d

k

is derived

from the 1-st order approximation of the d-dimensional Hilbert 
urve H

d

1

by repla
ing ea
h vertex in the H

d

1

by H

d

k�1

, whi
h may be rotated about a 
oordinate axis and/or re
e
ted about a hyperplane perpendi
ular

to a 
oordinate axis. Sin
e there are 2

d

verti
es in the H

d

1

, the H

d

k

is 
onsidered to be 
omposed of 2

d

H

d

k�1

verti
es and (2

d

�1) edges, ea
h 
onne
ting two of them.

Before des
ribing the extension for the d-dimensional Hilbert 
urve, we de�ne the orientations of H

d

k

.

Consider H

d

1

, whi
h 
onsists of 2

d

verti
es and (2

d

�1) edges. No matter where the Hilbert 
urve starts its

traversal, the 
oordinates of the start and end verti
es of the H

d

1

di�er only in one dimension, meaning that

both verti
es lie on a line parallel to one of the d 
oordinate axes. We say that H

d

1

is i-oriented if its start

and end verti
es lie on a line parallel to the i-th 
oordinate axis. For any k (k > 1), the orientation of H

d

k

is

equal to that of H

d

1

from whi
h it is derived.

Figure 4 and Figure 5 illustrate the pro
esses that generate H

3

k

from H

2

k

, and H

4

k

from H

3

k

, respe
tively.

In general, when the d-th dimension is added to the (d-1)-dimensional Hilbert 
urve, ea
h vertex of H

d�1

1

(i.e., H

d�1

k�1

) is repla
ed by H

d

k�1

of the same orientation ex
ept in the 2

d�1

-th one (i.e., the end vertex of

5



H

d�1

1

), whose orientation is 
hanged from 1-oriented to d-oriented parallel to the d-th dimensional axis. For

example, in Figure 5, the orientations of the two verti
es 
onne
ted by a dotted line have been 
hanged

from 1 to 4. Sin
e the orientations of all the other (2

d�1

�1) H

d

k�1

verti
es remain un
hanged, they are all

j-oriented for some j (1 � j < d). The whole 2

d�1

H

d

k�1

verti
es are then repli
ated by re
e
tion, and �nally

the two repli
as are 
onne
ted by an edge parallel to the d-th 
oordinate axis (
alled d-oriented edge) to

form a d-oriented H

d

k

. In short, whenever a dimension (say, the d-th dimension) is added, two d-oriented

H

d

k�1

verti
es are introdu
ed, the number of 1-oriented H

d

k�1

verti
es remains un
hanged as two, and the

number of H

d

k�1

verti
es of the other orientations are doubled.

Symbol De�nition

d Number of dimensions

(x

1

; :::; x

d

) Coordinates of a grid point in a d-dimensional grid spa
e

H

d

k

k-th order approximation of the d-dimensional Hilbert 
urve

'

i

Number of i-oriented H

d

k�1

verti
es in a H

d

k

"

i;k

Number of i-oriented edges in a d-oriented H

d

k

S

+

i

Number of interior grid points whi
h fa
e i

+

-surfa
e

S

�

i

Number of interior grid points whi
h fa
e i

�

-surfa
e

p

+

i

Probability that the prede
essor of a grid point is its i

+

-neighbor

p

�

i

Probability that the prede
essor of a grid point is its i

�

-neighbor

S

q

Total surfa
e area of a given d-dimensional re
tilinear polyhedral query q

N

d

Average number of 
lusters within a given d-dimensional re
tilinear polyhedron

Table 1: De�nition of Symbols

Notation 3.1 Let '

i

be the number of i-oriented H

d

k�1

verti
es in a given d-oriented H

d

k

.

Lemma 1 For a d-oriented H

d

k

(d � 2),

'

i

=

(

2 if i = 1,

2

d+1�i

if 1 < i � d.

(1)

Proof. By indu
tion on d.

The following lemma shows that the edges of d di�erent orientations approa
h the uniform distribution

as the order of the Hilbert 
urve approximation grows into in�nity.

Notation 3.2 Let "

i;k

denote the number of i-oriented edges in a (d-oriented) H

d

k

.

Lemma 2 In a d-dimensional spa
e, for any i and j (1 � i; j � d), "

i;k

="

j;k

approa
hes unity as k grows to

in�nity.

Proof. We begin by deriving re
urren
e relations among the terms "

i;k

and '

i

. As we mentioned previously,

the fundamental operations involved in expanding the Hilbert 
urve (i.e., from H

d

k�1

to H

d

k

) are rotation and

re
e
tion. During the expansion of H

d

k

, the orientation of a H

d

k�1

vertex in a quantized subregion is 
hanged

only by rotation; a set of subregions of an orientation are repli
ated from one of the same orientation, whi
h

leaves the dire
tions of their edges un
hanged. Consequently, any two distin
t H

d

k�1

verti
es of the same

orientation 
ontain the same number of edges "

i;k�1

for ea
h dire
tion i (1 � i � d). Therefore, the set of

the 1-oriented edges in the H

d

k


onsists of 2

d�1


onne
tion edges (in H

d

1

), d-oriented edges of the 1-oriented

H

d

k�1

verti
es, (d-1)-oriented edges of the 2-oriented H

d

k�1

verti
es, (d-2)-oriented edges of the 3-oriented

H

d

k�1

verti
es and so on.

6



By applying the same pro
edure to the other dire
tions, we obtain

"

1;k

= '

1

"

d;k�1

+ '

2

"

d�1;k�1

+ � � �+ '

d

"

1;k�1

+ 2

d�1

"

2;k

= '

2

"

d;k�1

+ '

3

"

d�1;k�1

+ � � �+ '

1

"

1;k�1

+ 2

d�2

"

3;k

= '

3

"

d;k�1

+ '

4

"

d�1;k�1

+ � � �+ '

2

"

1;k�1

+ 2

d�3

(2)

.

.

.

"

d;k

= '

d

"

d;k�1

+ '

1

"

d�1;k�1

+ � � �+ '

d�1

"

1;k�1

+ 1

The initial values are given by "

i;1

= 2

d�i

, and the values of '

i

are in Lemma 1. The 
onstants in the

last terms being ignored, the re
urren
e relations are 
ompletely symmetri
. From the symmetry, it 
an be

shown that for any i and j (1 � i; j � d),

lim

k!1

"

i;k

"

j;k

= 1:

The proof is 
omplete.

Now we 
onsider a d-dimensional grid spa
e, whi
h is equivalent to a d-dimensional Eu
lidean integer

spa
e. In the d-dimensional grid spa
e, ea
h grid point y = (x

1

; : : : ; x

d

) has 2d neighbors. The 
oordinates

of the neighbors di�er from those of y by unity only in one dimension. In other words, the 
oordinates of

the neighbors that lie in a line parallel to the i-th axis must be either (x

1

; : : : ; x

i

+1; : : : ; x

d

) or (x

1

; : : : ; x

i

�

1; : : : ; x

d

). We 
all them the i

+

-neighbor and the i

�

-neighbor of y, respe
tively.

Butz showed that any unit in
rement in the Hilbert order produ
es a unit in
rement in one of the d


oordinates and leaves the other d�1 
oordinates un
hanged [5℄. The impli
ation is that, for any grid point

y, both the neighbors of y in the linear order imposed by the Hilbert 
urve are 
hosen from the 2d neighbors

of y in the d-dimensional grid spa
e. Of the two neighbors of y in the Hilbert order, the one 
loser to the

start of the Hilbert traversal is 
alled the prede
essor of y.

Notation 3.3 For a grid point y in a d-dimensional grid spa
e, let p

+

i

be the probability that the prede
essor

of y is the i

+

-neighbor of y, and let p

�

i

be the probability that the prede
essor of y is the i

�

-neighbor of y.

Lemma 3 In a suÆ
iently large d-dimensional grid spa
e, for any i (1 � i � d),

p

+

i

+ p

�

i

=

1

d

:

Proof. Assume y is a grid point in d-dimensional spa
e and z is its prede
essor. Then the edge yz adja
ent

to y and z is parallel to one of the d dimensional axes. From Lemma 2 and the re
ursive de�nition of the

Hilbert 
urve, the probability that yz is parallel to the i-th dimensional axis is d

�1

for any i (1 � i � d).

This implies that the probability that z is either i

+

-neighbor or i

�

-neighbor of y is d

�1

.

For a d-dimensional re
tilinear polyhedron representing a query region, the number, sizes and shapes of

the surfa
es 
an be arbitrary. Due to the 
onstraint of surfa
e alignment, however, it is feasible to 
lassify

the surfa
es of a d-dimensional re
tilinear polyhedron into 2d di�erent kinds: for any i (1 � i � d),

� If a point y is inside the polyhedron and its i

+

-neighbor is outside, then the point y fa
es an i

+

-surfa
e.

� If a point y is inside the polyhedron and its i

�

-neighbor is outside, then the point y fa
es an i

�

-surfa
e.

For example, Figure 6 illustrates grid points whi
h fa
e surfa
es in a 2-dimensional grid spa
e. The shaded

region represents the inside of the polyhedron. Assuming that the �rst dimension is verti
al and the se
ond

dimension is horizontal, grid points A and D fa
e a 1

+

-surfa
e, and grid point B (on the 
onvex) fa
es both

a 1

+

-surfa
e and a 2

+

-surfa
e. Although grid point C (on the 
on
ave) is 
lose to the boundary, it does not

fa
e any surfa
e be
ause all of its neighbors are inside the polyhedron. Consequently, the 
han
e that the

Hilbert 
urve enters the polyhedron through grid point B is approximately twi
e that of entering through

grid point A (or D). The Hilbert 
urve 
annot enter through grid point C.

For any d-dimensional re
tilinear polyhedron, it is interesting to see that the aggregate area of i

+

-surfa
e

is exa
tly as large as that of i

�

-surfa
e. In a d-dimensional grid spa
e, we mean by surfa
e area the number

of interior grid points that fa
e a given surfa
e of any kind.
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A B

C D

Figure 6: Illustration of grid points fa
ing surfa
es

Notation 3.4 For a d-dimensional re
tilinear polyhedron, let S

+

i

and S

�

i

denote the aggregate number of

interior grid points that fa
e i

+

-surfa
e and i

�

-surfa
e, respe
tively.

Before proving the following theorem, we state without proof an elementary remark.

Remark 3.2 Given a d-dimensional re
tilinear polyhedron, S

+

i

= S

�

i

for any i (1 � i � d).

Notation 3.5 Let N

d

be the average number of 
lusters within a given d-dimensional re
tilinear polyhedron.

Theorem 1 In a suÆ
iently large d-dimensional grid spa
e mapped by H

d

k

, let S

q

be the total surfa
e area

of a given re
tilinear polyhedral query q. Then,

lim

k!1

N

d

=

S

q

2d

(3)

Proof. Assume a grid point y fa
es an i

+

-surfa
e (or an i

�

-surfa
e). Then, the probability that the Hilbert


urve enters the polyhedron through y is equivalent to the probability that the prede
essor of y is an

i

+

-neighbor (or an i

�

-neighbor) of y. Thus, the expe
ted number of entries through an i

+

-surfa
e (or an

i

�

-surfa
e) is S

+

i

p

+

i

(or S

�

i

p

�

i

). Sin
e the number of 
lusters is equal to the total number of entries into the

polyhedron through any of the 2d kinds of surfa
es (Remark 3.1), it follows that

lim

k!1

N

d

=

d

X

i=1

(S

+

i

p

+

i

+ S

�

i

p

�

i

)

=

d

X

i=1

S

+

i

(p

+

i

+ p

�

i

) (by Remark 3.2)

=

d

X

i=1

S

+

i

1

d

(by Lemma 3)

=

S

q

2d

:

The proof is 
omplete.

Theorem 1 
on�rms our early 
onje
ture that the number of 
lusters is approximately proportional to the

hyper-surfa
e area of a d-dimensional polyhedron, and provides (2d)

�1

as the 
onstant fa
tor of the linear

fun
tion. In a 2-dimensional spa
e, the average number of 
lusters for the z 
urve approa
hes one third

of the perimeter of a query re
tangle plus two thirds of the side length of the re
tangle in the unfavored

dire
tion [23℄. It follows that the Hilbert 
urve a
hieves better 
lustering than the z 
urve, be
ause the

average number of 
lusters for the Hilbert 
urve is approximately equal to one fourth of the perimeter of a

2-dimensional query re
tangle.
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Corollary 1 In a suÆ
iently large d-dimensional grid spa
e mapped by H

d

k

, the following properties are

satis�ed:

(i) Given an s

1

�s

2

�� � ��s

d

hyper-re
tangle, lim

k!1

N

d

=

1

d

P

d

i=1

(

1

s

i

Q

d

j=1

s

j

).

(ii) Given a hyper
ube of side length s, lim

k!1

N

d

= s

d�1

.

For a square of side length 2, Corollary 1(ii) provides 2 as an average number of 
lusters, whi
h is exa
tly

the same as the result given in [14℄.

4 Exa
t Analysis : A Spe
ial Case

Theorem 1 states that as the size of a grid spa
e grows in�nitely, the average number of 
lusters approa
hes

half the surfa
e area of a given query region divided by the dimensionality. It does not provide an intuition

as to how rapidly the number of 
lusters 
onverges to the asymptoti
 solution. To address this issue, in this

se
tion, we derive a 
losed-form, exa
t formula for a 2-dimensional �nite spa
e. We 
an then measure how


losely the asymptoti
 solution re
e
ts the reality in a �nite spa
e, by 
omparing it with the exa
t formula.

Spe
i�
ally, we assume that a �nite 2

k+n

�2

k+n

grid spa
e is mapped by H

2

k+n

and a query region is a

square of size 2

k

�2

k

. We �rst des
ribe our approa
h and then present the formal derivation of the solution

in several lemmas and a theorem. Table 2 summarizes the symbols used in this se
tion.

4.1 Basi
 
on
epts

Remark 3.1 states that the number of 
lusters within a given query region is equal to the number of entries

into the region made by the Hilbert 
urve traversal. Sin
e ea
h entry is eventually followed by an exit from

the region, an entry is equivalent to two 
uts of the Hilbert 
urve by the boundary of the query region. We

restate Remark 3.1 as follows:

Remark 4.1 The number of 
lusters within a given query region is equal to half the number of edges 
ut by

the boundary of the region.

Here we mean by edges the line segments of the Hilbert 
urve 
onne
ting two neighboring grid points. Now

we know from Remark 4.1 that deriving the exa
t formula is redu
ed to 
ounting the number of edge 
uts

by the boundary of a 2

k

�2

k

query window at all possible positions within a 2

k+n

�2

k+n

grid region. Then

the average number of 
lusters is simply obtained by dividing this number by twi
e the number of possible

positions of the query window.

Notation 4.1 Let N

2

(k; k + n) be the average number of 
lusters inside a 2

k

�2

k

square window in a 2

k+n

�2

k+n

grid region.

The diÆ
ulty of 
ounting the edge 
uts lies in the fa
t that, for ea
h edge within the grid region, the

number of 
uts varies depending on the lo
ation of the edge. Intuitively, the edges near the boundary of the

grid region are 
ut less often than those near the 
enter. This is be
ause a smaller number of square windows


an 
ut the edges near the boundary. Thus, to make it easier to 
ount the edge 
uts, the grid region H

2

k+n

is divided into nine subregions, as shown in Figure 7. The width of the subregions on the boundary is 2

k

.

Then the 2

k+n

�2

k+n

grid region (H

2

k+n

) 
an be 
onsidered as a 
olle
tion of 2

2n

H

2

k

approximations ea
h

of whi
h is 
onne
ted to one or two neighbors by 
onne
tion edges. From now on, we mean by an internal

edge one of the 2

2k

� 1 edges in a H

2

k

, and by a 
onne
tion edge one that 
onne
ts two H

2

k

subregions. For

example, subregion F in
ludes only one H

2

k

and is 
onne
ted to subregions B and D by a horizontal and a

verti
al 
onne
tion edge, respe
tively. Subregion B in
ludes (2

n

� 2) H

2

k

approximations ea
h of whi
h is


onne
ted to its two neighbors by 
onne
tion edges.

Consider an edge (internal or 
onne
tion) near the 
enter of subregion A, and a horizontal edge in subregion

B. An edge in subregion A 
an be 
ut by 2

k+1

square windows whose positions within the region are mutually

distin
t. On the other hand, a horizontal edge in subregion B 
an be 
ut by a di�erent number of distin
t

windows, depending on the position of the edge. Spe
i�
ally, if the edge in subregion B is on the i-th row

from the topmost, then it is 
ut 2� i times. The observations we have made are summarized as follows:

9



A

C

BF

D

G I

E

H

k
2

k
2

k
2

k
2

2 − 2
k+n k+1

2
k+n

− 2
k+1

Figure 7: H

2

k+n

divided into nine subregions

A1. Every edge (either horizontal or verti
al) at least one of whose end points resides in subregion A is 
ut

2

k+1

times.

A2. Every verti
al edge in subregions B and C is 
ut 2

k

times by the top or bottom side of a window.

A3. Every horizontal edge in subregions D and E is 
ut 2

k

times by the left or right side of a window.

A4. Every 
onne
tion edge in subregions fB,F,Hg is horizontal and resides in the 2

k

-th row from the

topmost, and is 
ut 2

k+1

times by the left and right sides of a window. Similarly, every 
onne
tion

edge in subregions fC,G,Ig is horizontal and resides in the 2

k

-th row from the topmost, and is 
ut

twi
e by the left and right sides of a window.

A5. Every 
onne
tion edge in subregions fD,F,Gg is verti
al and resides in the �rst 
olumn from the

leftmost, and is 
ut twi
e by the top and bottom sides of a window. Every 
onne
tion edge in subregions

fE,H,Ig is verti
al and resides in the �rst 
olumn from the rightmost, and is 
ut twi
e by the top and

bottom sides of a window.

A6. Every horizontal edge in the i-th row from the topmost of subregion B is 
ut 2� i times by both the left

and right sides of a window, and every horizontal edge in the i-th row from the topmost of subregion

C is 
ut 2

k+1

� 2� i+ 2 times by both the left and right sides of a window.

A7. Every verti
al edge in the i-th 
olumn from the leftmost of subregion D is 
ut 2� i times by both the

top and bottom sides of a window, and every verti
al edge in the i-th 
olumn from the leftmost of

subregion E is 
ut 2

k+1

� 2� i+ 2 times by both the top and bottom sides of a window.

A8. Every horizontal edge in the i-th row from the topmost of subregions fF,Hg is 
ut i times by either

the left or right side of a window.

A9. Every horizontal edge in the i-th row from the topmost of subregions fG,Ig is 
ut 2

k

� i+ 1 times by

either the left or right side of a window.

A10. Every verti
al edge in the i-th 
olumn from the leftmost of subregions fF,Gg is 
ut i times by either

the top or bottom side of a window.

A11. Every verti
al edge in the i-th 
olumn from the leftmost of subregions fH,Ig is 
ut 2

k

� i+1 times by

either the top or bottom side of a window.

A12. Two 
onne
tion edges through whi
h the Hilbert 
urve enters into and leaves from the grid region are


ut on
e ea
h.

From these observations, we 
an 
ategorize the edges in the H

2

k+n

grid region into the following �ve

groups:
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(i) E

1

: a group of edges as des
ribed in observation A1. Ea
h edge is 
ut 2

k+1

times.

(ii) E

2

: a group of edges as des
ribed in observations A2 and A3. Ea
h edge is 
ut 2

k

times.

(iii) E

3

: a group of edges as des
ribed in observations A4 and A5. Ea
h 
onne
tion edge on the top

boundary (i.e., subregions fB,F,Hg) is 
ut 2

k+1

times, and any other 
onne
tion edge is 
ut twi
e.

(iv) E

4

: a group of edges as des
ribed in observations A6 and A7. Ea
h edge is 
ut 2i or 2(2

k

� i+1) times

if it is in the i-th row (or 
olumn) from the topmost (or leftmost).

(v) E

5

: a group of edges as des
ribed in observations A8 to A11. Ea
h edge is 
ut i or 2

k

� i+ 1 times if

it is in the i-th row (or 
olumn) from the topmost (or leftmost).

Notation 4.2 N

i

denotes the number of edge 
uts from an edge group E

i

.

In a H

2

k+n

grid region, the number of all possible positions of a 2

k

�2

k

window is (2

k+n

� 2

k

+ 1)

2

. Sin
e

there are two more 
uts from observation A12, in addition to N

1

; : : : ; N

5

, the average number of 
lusters

N

2

(k; k + n) is given by

N

2

(k; k + n) =

N

1

+N

2

+N

3

+N

4

+N

5

+ 2

2(2

k+n

� 2

k

+ 1)

2

: (4)

In the next se
tion, we derive a 
losed-form expression for ea
h of the edge groups N

1

; : : : ; N

5

.

Symbol De�nition

t

n

Number of 
onne
tion edges in the top boundary of a 2

+

-oriented H

2

k+n

b

n

Number of 
onne
tion edges in the bottom boundary of a 2

+

-oriented H

2

k+n

s

n

Number of 
onne
tion edges in the side boundary of a 2

+

-oriented H

2

k+n

E

i

A group of edges between grid points

N

i

Number of edge 
uts from an edge group E

i

 

fRg

i

+

;n

Number of i

+

-oriented H

2

k

approximations in the subregion R of a 2

+

-oriented H

2

k+n

 

fRg

i

�

;n

Number of i

�

-oriented H

2

k

approximations in the subregion R of a 2

+

-oriented H

2

k+n

H

k

Number of horizontal edges in a 2-oriented H

2

k

V

k

Number of verti
al edges in a 2-oriented H

2

k

h

k

(i) Number of horizontal edges in the i-th row from the topmost of a 2

+

-oriented H

2

k

v

k

(i) Number of verti
al edges in the i-th 
olumn from the leftmost of a 2

+

-oriented H

2

k

N

2

(k; k + n) Exa
t number of 
lusters 
overing a 2

k

�2

k

square in a 2

k+n

�2

k+n

grid region

Table 2: De�nition of Symbols

4.2 Formal derivation

We adopt the notion of orientations of H

d

k

given in Se
tion 3 and extend so that it 
an be used to derive

indu
tions.

Notation 4.3 An i-oriented H

d

k

is 
alled i

+

-oriented (or i

�

-oriented) if the i-th 
oordinate of its start point is

not greater (or less) than that of any grid point in the H

d

k

.

Figure 8 illustrates 1

+

-oriented, 1

�

-oriented, 2

+

-oriented and 2

�

-oriented H

2

2

approximations. Note that

either of the two end points 
an be a start point for ea
h 
urve.

We begin by deriving N

1

and N

3

. It appears at the �rst glan
e that the derivation of N

1

is simple

be
ause ea
h edge in E

1

is 
ut 2

k+1

times. However, the derivation of N

1

involves 
ounting the number of


onne
tion edges 
rossing the boundary between subregion A and the other subregions, as well as the number

of edges in
lusive to subregion A. We a

omplish this by 
ounting the number of edges in the 
omplementary
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A
x

is
 2

Axis 1

(a) 1

+

-oriented (b) 1

�

-oriented (
) 2

+

-oriented (d) 2

�

-oriented

Figure 8: Four di�erent orientations of H

2

2

set E

1

(that is, fedges in H

2

k+n

g � E

1

). Sin
e E

1


onsists of edges in 4(2

n

� 1) H

2

k

approximations in

boundary subregions B through I and 
onne
tion edges in E

3

, jE

1

j is equal to 4(2

n

� 1)� (2

2k

� 1) + jE

3

j .

To �nd the number of 
onne
tion edges in E

3

, we de�ne the number of 
onne
tion edges in di�erent parts

of the boundary subregions. In the following, without loss of generality, we assume that the grid region is

2

+

-oriented H

2

k+n

.

Notation 4.4 Let t

n

, b

n

and s

n

denote the number of 
onne
tion edges in the top boundary (i.e., subregions

fB,F,Hg), in the bottom boundary (i.e., subregions fC,G,Ig), and in the left or right boundary (i.e., subregions

fD,F,Gg or fE,H,Ig) of a 2

+

-oriented H

2

k+n

, respe
tively.

Note that the number of 
onne
tion edges in subregions fD,F,Gg and the number of 
onne
tion edges in

subregions fE,H,Ig are identi
al, be
ause the 2

+

-oriented H

2

k+n

is verti
ally self-symmetri
.

Lemma 4 For any positive integer n,

t

n

= 2

n�1

and b

n

+ 2s

n

= 2(2

n

� 1): (5)

Proof. Given in Appendix A.

From Lemma 4, the number of 
onne
tion edges in
lusive to the boundary subregions (i.e., E

3

) is given

by t

n

+ b

n

+ 2s

n

= 5 � 2

n�1

� 2. From this, we 
an obtain the number of edges in E

1

as well as E

3

and

hen
e the number of 
uts from E

1

and E

3

. The results are presented in the following lemma.

Lemma 5 The numbers of edge 
uts from E

1

and E

3

are

N

1

= 2(2

n

� 2)

2

2

3k

+ 3(2

n

� 2)2

k

(6)

N

3

= 2

n+k

+ 4(2

n

� 1) (7)

Proof. Given in Appendix A.

All that we need to derive N

2

is then to 
ount the number of verti
al edges in subregions fB,Cg and the

number of horizontal edges in subregions fD,Eg. No 
onne
tion edges in these subregions are involved. Sin
e

the number of horizontal (or verti
al) edges in a H

2

k

is determined by its orientation, it is ne
essary to �nd

the number of H

2

k

approximations of di�erent orientations in subregions fB,C,D,Eg. In the following, we give

notations for the number of horizontal and verti
al edges in a H

2

k

, and the number of H

2

k

approximations of

di�erent orientations in the boundary subregions in Figure 7.

Notation 4.5 Let H

k

and V

k

denote the number of horizontal and verti
al edges in a 2-oriented H

2

k

, respe
-

tively.

By de�nition, the numbers of horizontal and verti
al edges in a 1-oriented H

2

k

are V

k

and H

k

, respe
tively.

Notation 4.6 For a set of subregions fR

1

; R

2

; : : : ; R

j

g in Figure 7, let  

fR

1

;R

2

;:::;R

j

g

i

+

;n

and  

fR

1

;R

2

;:::;R

j

g

i

�

;n

denote

the number of i

+

-oriented and i

�

-oriented H

2

k

approximations in those subregions, respe
tively.
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Lemma 6 Given a 2

+

-oriented H

2

k+n

as depi
ted in Figure 7,

 

fBg

2

+

;n

= 2

n

� 2 (8)

 

fDg

1

+

;n

+  

fEg

1

�

;n

+  

fCg

2

+

;n

= 2

n

� 2 (9)

 

fCg

1

+

;n

+  

fCg

1

�

;n

+  

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

= 2(2

n

� 2): (10)

Proof. Given in Appendix A.

From Lemma 6, a 
losed-form expression of N

2

is derived in the following lemma.

Lemma 7 The number of edge 
uts from E

2

is

N

2

= 2(2

n

� 2)2

3k

� 2(2

n

� 2)2

k

: (11)

Proof. Given in Appendix A.

Now we 
onsider the number of 
uts from E

4

and E

5

. The edges in these groups are 
ut di�erent

numbers of times depending on their relative lo
ations within the H

2

k

whi
h they belong to. Consequently,

the expressions for N

4

and N

5

in
lude su
h terms as i � v

k

(i) and i � h

k

(i). The de�nitions of v

k

(i) and

h

k

(i) are given below. We 
all H

2

k

approximations having su
h terms gradients.

Notation 4.7 Let h

k

(i) be the number of horizontal edges in the i-th row from the topmost, and v

k

(i) be the

number of verti
al edges in the i-th 
olumn from the leftmost of a 2

+

-oriented H

2

k

.

(a) u-gradient

2

(b) d-gradient

2

(
) s-gradient

2

Figure 9: Three di�erent gradients and 
utting windows

To derive the 
losed-form expressions for N

4

and N

5

, we �rst de�ne di�erent types of gradients. Consider

the 2

+

-oriented H

2

k

approximations in subregions fB,C,D,Eg. From observations A6 and A7, the number

of 
uts from the horizontal edges in a 2

+

-oriented H

2

k

in subregion B is

P

2

k

i=1

2ih

k

(i). Likewise, the number

of 
uts from the horizontal edges in a 2

+

-oriented H

2

k

in subregion C is

P

2

k

i=1

2(2

k

� i + 1)h

k

(i), and the

number of 
uts from the verti
al edges in a 2

+

-oriented H

2

k

in subregion D or E is

P

2

k

i=1

2iv

k

(i). The number

of 
uts from verti
al edges is the same in both subregions D and E, be
ause a 2

+

-oriented H

2

k

is verti
ally

self-symmetri
. Based on this, we de�ne three types of gradients for a 2

+

-oriented H

2

k

:

De�nition 4.1 (i) A 2

+

-oriented H

2

k

is 
alled u-gradient

k

if ea
h of its horizontal edges in the i-th row

from the topmost is 
ut i or 2i times.

(ii) A 2

+

-oriented H

2

k

is 
alled d-gradient

k

if ea
h of its horizontal edges in the i-th row from the topmost

is 
ut 2

k

� i+ 1 or 2(2

k

� i+ 1) times.
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(iii) A 2

+

-oriented H

2

k

is 
alled s-gradient

k

if ea
h of its verti
al edges in the i-th 
olumn from either the

leftmost or rightmost is 
ut i or 2i times.

Figure 9 illustrates the three di�erent gradients (u-gradient

2

, d-gradient

2

and s-gradient

2

) and the 
utting

boundaries of a sliding window. These de�nitions 
an be applied to the H

2

k

approximations of di�erent

orientations as well, by simply rotating the dire
tions. For example, a 1

+

-oriented H

2

k

in subregion D is

d-gradient

k

, and a 2

�

-oriented H

2

k

in subregion D is s-gradient

k

.

Lemma 8 Let �

k

=

P

2

k

i=1

ih

k

(i), �

k

=

P

2

k

i=1

(2

k

� i+ 1)h

k

(i) and 


k

=

P

2

k

i=1

iv

k

(i). Then,

�

k

+ �

k

= (2

k

+ 1)H

k

and 


k

=

1

2

(2

k

+ 1)V

k

(12)

Proof. Given in Appendix A.

Next, we need to know the number of gradients of ea
h type in the boundary subregions B through I so

that we 
an derive N

4

and N

5

. For H

2

k

approximations in subregions fB,C,D,Eg,

� Every 2

+

-oriented H

2

k

in B is u-gradient

k

.

� Every 2

+

-oriented H

2

k

in C, 1

+

-oriented H

2

k

in D, and 1

�

-oriented H

2

k

in E is d-gradient

k

.

� Every 1

+

-oriented or 1

�

-oriented H

2

k

in C, and 2

+

-oriented or 2

�

-oriented in fD,Eg is s-gradient

k

.

The H

2

k

approximations in subregions fF,G,H,Ig are dual-type gradients. In other words,

� Ea
h of the 2

+

-oriented H

2

k

approximations in fF,Hg is both u-gradient

k

and s-gradient

k

.

� TheH

2

k

in G is both d-gradient

k

and s-gradient

k

be
ause the subgrid is either 2

+

-oriented or 1

+

-oriented.

� TheH

2

k

in I is both d-gradient

k

and s-gradient

k

be
ause the subgrid is either 2

+

-oriented or 1

�

-oriented.

Thus, in subregions fB,C,D,Eg, the number of u-gradient

k

approximations is  

fBg

2

+

;n

, the number of d-gradient

k

approximations is  

fCg

2

+

;n

+ 

fDg

1

+

;n

+ 

fEg

1

�

;n

, and the number of s-gradient

k

approximations is  

fD;Eg

2

+

;n

+ 

fD;Eg

2

�

;n

+

 

fCg

1

�

;n

+  

fCg

1

+

;n

. In subregions fF,G,H,Ig, the number of u-gradient

k

approximations is two, the number of

d-gradient

k

approximations is two, and the number of s-gradient

k

approximations is four. From this obser-

vation, and Lemma 6 and Lemma 8, it follows that

Lemma 9 The numbers of edge 
uts from E

4

and E

5

are

N

4

= 2(2

n

� 2)(2

k

+ 1)(2

2k

� 1) (13)

N

5

= 2(2

k

+ 1)(2

2k

� 1) (14)

Proof. Given in Appendix A.

Finally, in the following theorem, we present a 
losed-form expression of the average number of 
lusters.

Theorem 2 Given a 2

k+n

�2

k+n

grid region, the average number of 
lusters within a 2

k

�2

k

query window

is

N

2

(k; k + n) =

(2

n

� 1)

2

2

3k

+ (2

n

� 1)2

2k

+ 2

n

(2

k+n

� 2

k

+ 1)

2

(15)

Proof. From Equation (4),

N

2

(k; k + n) = (N

1

+N

2

+N

3

+N

4

+N

5

+ 2)=2(2

k+n

� 2

k

+ 1)

2

= ((2

n

� 1)

2

2

3k

+ (2

n

� 1)2

2k

+ 2

n

)=(2

k+n

� 2

k

+ 1)

2

:

For in
reasing n, N

2

(k; k + n) asymptoti
ally approa
hes a limit of 2

k

, whi
h is the side length of the

square query region. This mat
hes the asymptoti
 solution given in Corollary 1(ii) for d = 2.
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5 Experimental Results

To demonstrate the 
orre
tness of the asymptoti
 and exa
t analyses presented in the previous se
tions,

we 
arried out simulation experiments for range queries of various sizes and shapes. The obje
tive of our

experiments was to evaluate the a

ura
y of the formulas given in Theorem 1 and Theorem 2. Spe
i�
ally,

we intended to show that the asymptoti
 solution is an ex
ellent approximation for general d-dimensional

range queries of arbitrary sizes and shapes. We also intended to validate the 
orre
tness of the exa
t solution

for a 2-dimensional 2

k

�2

k

square query.

5.1 Arrangements of experiments

To obtain exa
t measurements of the average number of 
lusters, it was required that we average the number

of 
lusters within a query region at all possible positions in a given grid spa
e. Su
h exhaustive simulation

runs allowed us to validate empiri
ally the 
orre
tness of the exa
t formula given in Theorem 2 for a 2

k

�2

k

square query.

S

S S

S/2

S/2

S/2 S

S

S

S

S

S

S/2

S/2

S

(a) square (b) polygon (
) 
ir
le (d) 
ube (e) polyhedron

Figure 10: Illustration of sample query shapes

However, the number of all possible queries is exponential on the dimensionality. In a d-dimensional

N�N�: : :�N grid spa
e, the total number of distin
t positions of a d-dimensional k�k�: : :�k hyper
ubi


query is (N � k + 1)

d

. Consequently, for a large grid spa
e and a high dimensionality, ea
h simulation run

may require pro
essing an ex
essively large number of queries, whi
h in turn makes the simulation take too

long. Thus, we 
arried out exhaustive simulations only for relatively small 2-dimensional and 3-dimensional

grid spa
es. Instead, for relatively large or high dimensional grid spa
es, we did statisti
al simulation by

random sampling of queries.

For query shapes, we 
hose squares, 
ir
les and 
on
ave polygons for 2-dimensional 
ases, and 
ubes,


on
ave polyhedra and spheres for 3-dimensional 
ases. Figure 10 illustrates some of the query shapes used

in our experiments. In higher dimensional spa
es, we used hyper
ubi
 and hyperspheri
al query shapes

be
ause it was relatively easy to identify the query regions by simple mathemati
al formulas.

5.2 Empiri
al validation

The �rst set of experiments was 
arried out in 2-dimensional grid spa
es with two di�erent sizes. The table

in Figure 11(a) 
ompares the empiri
al measurements with the exa
t and asymptoti
 formulas for a 2

k

�2

k

square query. The se
ond 
olumn of the table 
ontains the average numbers of 
lusters obtained by an

exhaustive simulation performed on a 1024�1024 grid spa
e. The numbers in the third and fourth 
olumns

were 
omputed by the formulas in Theorem 1 and Theorem 2, respe
tively. The numbers from the simulation

are identi
al to those from the exa
t formula ignoring round-o� errors. Moreover, by 
omparing the se
ond

and third 
olumns, we 
an measure how 
losely the asymptoti
 formula re
e
ts the reality in a �nite grid

spa
e.

Figure 11(b) 
ompares three di�erent 2-dimensional query shapes: squares, 
ir
les and 
on
ave polygons.

The average number of 
lusters were obtained by a statisti
al simulation performed on a 32K�32K grid spa
e.

For the statisti
al simulation, a total of 200 queries were generated and pla
ed randomly within the grid

spa
e for ea
h 
ombination of query shape and size. With a few ex
eptional 
ases, the numbers of 
lusters

form a linear 
urve for ea
h query shape; the linear 
orrelation 
oeÆ
ients are 0.999253 for squares, 0.999936
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query empiri
al asymptoti
 exa
t

2

1

�2

1

1.998534 2 2091524/1046529

2

2

�2

2

3.996328 4 4165936/1042441

2

3

�2

3

7.992257 8 8266304/1034289

2

4

�2

4

15.984206 16 16273216/1018081

2

5

�2

5

31.967807 32 31521824/986049

(a) Exhaustive simulation (grid: 1024�1024)
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(b) Statisti
 simulation (grid: 32K�32K)

Figure 11: Average number of 
lusters for 2-dimensional queries

for 
ir
les, and 0.999267 for 
on
ave polygons. The numbers are almost identi
al for the three di�erent query

shapes despite their 
overing di�erent areas. A square 
overs s

2

grid points, a 
on
ave polygon 3s

2

=4 grid

points and a 
ir
le approximately �s

2

=4 grid points.

However, this should not be surprising, as the three query shapes have the same length of perimeter for a

given side length s. For a 
ir
ular query of diameter s, we 
an always �nd a re
tilinear polygon that 
ontains

the same set of grid points as the 
ir
ular query region. And it is always the 
ase that the perimeter of

the re
tilinear polygon (as shown in Figure 10(
)) is equal to that of a square of side length s. In general,

in a 2-dimensional grid spa
e, the perimeter of a re
tilinear polygon is greater than or equal to that of the

minimum bounding re
tangle (MBR) of the polygon. This justi�es the general approa
h of using a minimum

bounding re
tangle to represent a 2-dimensional range query, be
ause the use of an MBR does not in
rease

the a
tual number of 
lusters (i.e., the number of non-
onse
utive disk a

esses).
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(a) 3-dimensional queries (b) d-dimensional hyper
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Figure 12: Average number of 
lusters for higher dimensional queries

A similar set of experiments was 
arried out in higher dimensional grid spa
es. The results in Figure 12(a)

were obtained by a statisti
al simulation performed on a 32K�32K�32K grid spa
e. For the statisti
al

simulation, a total of 200 queries were generated and pla
ed randomly within the grid spa
e for ea
h 
om-

bination of query shape and size. Those in Figure 12(b) were obtained by a statisti
al simulation with 200

random d-dimensional 3�3�: : :�3 hyper
ubi
 queries in a d-dimensional 32K�32K�: : :�32K grid spa
e

(2 � d � 10).

In Figure 12(a), the numbers of 
lusters form quadrati
 
urves for all the three query shapes, but with

16



slightly di�erent 
oeÆ
ients for the quadrati
 term. To determine the quadrati
 fun
tions, we applied the

least-square 
urve �tting method for ea
h query shape. The approximate quadrati
 fun
tions were obtained

as follows.

f


ube

(s) = 1:02307s

2

+ 1:60267s+ 1:93663

f

poly

(s) = 0:947168s

2

+ 1:26931s+ 1:95395

f

sphere

(s) = 0:816674s

2

+ 1:27339s+ 2:6408:

The approximate fun
tion f


ube

(s) for a 
ubi
 query 
on�rms the asymptoti
 solution given in Corollary 1(ii),

as it is quite 
lose to s

2

. Furthermore, Figure 12(b) illustrates that the empiri
al results from the hyper-


ubi
 queries 
oin
ide with the formula (s

d�1

) even in higher dimensional spa
es.

2

The numbers from the

experiments were less than 2 per
ent o� from the formula.

In 
ontrast, the fun
tions f

poly

(s) and f

sphere

(s) for 
on
ave polyhedral and spheri
al queries are lower

than s

2

. The reason is that, unlike in the 2-dimensional 
ase, the surfa
e area of a 
on
ave polyhedron or a

sphere is smaller than that of its minimum bounding 
ube. For example, the surfa
e area of the polyhedron

illustrated in Figure 10(e) is

11

2

s

2

, while that of the 
orresponding 
ube is 6s

2

. For a sphere of diameter

s = 16, the surfa
e area (i.e., the number of grid points on the surfa
e of the sphere) is 1248. This is far

smaller than the surfa
e area of the 
orresponding 
ube, whi
h is 6�16

2

. Note that the 
oeÆ
ients of the

quadrati
 terms in f

poly

(s) and f

sphere

(s) are fairly 
lose to

11

12

= 0:9166 � � � and

1248

6�32

2

= 0:8125, respe
tively.

This indi
ates that, in a d-dimensional spa
e (d � 3), a

essing the minimum bounding hyper-re
tangle of

a given query region may in
ur additional non-
onse
utive disk a

esses, and hen
e supports the argument

made in [15℄ that the minimum bounding re
tangle may not be a good approximation of a non-re
tangular

obje
t.

5.3 Comparison with the Gray-
oded and z 
urves

It may be argued that it is not 
onvin
ing to make a de�nitive 
on
lusion that the Hilbert 
urve is better or

worse than others solely on the basis of the average behaviors, be
ause the 
lustering a
hieved by the Hilbert


urve might have a wider deviation from the average than other 
urves. Therefore, it is desirable to perform

a worst-
ase analysis to determine the bounds on the deviation. A full-
edged worst-
ase analysis, however,

is beyond the s
ope of this paper. Instead, we measured the worse-
ase numbers of 
lusters for the Hilbert


urve, and 
ompared with those for the Gray-
oded and z 
urves in the same simulation experiments.

Figure 13 and Figure 14 show the worst-
ase and average numbers of 
lusters, respe
tively. Ea
h �gure

presents the results from an exhaustive simulation performed on a 1K�1K 2-dimensional spa
e and a

statisti
al simulation performed on a 32K�32K�32K 3-dimensional spa
e. The Hilbert 
urve a
hieves

mu
h better 
lustering than the other 
urves in both the worst and average 
ases. For example, for a

2-dimensional square query, the Hilbert 
urve signi�
antly redu
ed the numbers of 
lusters, yielding an

improvement of up to 43 per
ent for the worst-
ase behaviors, and 48 per
ent for the average 
ases. For a

3-dimensional spheri
al query, the Hilbert 
urve a
hieved an improvement of up to 28 per
ent from the z


urve and 18 per
ent from the Gray-
oded 
urve for the worst 
ases, and up to 31 per
ent from the z 
urve

and 22 per
ent from the Gray-
oded 
urve for the average 
ases.

Although it is not the fo
us of this paper, it is worth noting that the Gray-
oded 
urve was not always

better than the z 
urve, whi
h is in 
ontrast to a previous study [14℄ that the Gray-
oded 
urve a
hieves

better 
lustering than the z 
urve for a 2-dimensional 2�2 square query. In parti
ular, for 2-dimensional


ir
ular queries (Figure 13(b) and Figure 14(b)), the Gray-
oded 
urve was worse than the z 
urve in both

the worst and average 
ases. On the other hand, for 2-dimensional square queries, the Gray-
oded 
urve was

better than the z 
urve for the average 
lustering only by negligible amounts (the two measurements were

almost identi
al, as shown in Figure 14(a)). Furthermore, it was surprising that both the Gray-
oded and

z 
urves performed exa
tly the same for the worst-
ase 
lustering (the two measurements were 
ompletely

identi
al, as shown in Figure 13(a)). In a 3-dimensional spa
e, however, the Gray-
oded 
urve was 
learly

better than the z 
urve for both types of queries in both the worst and average 
ases.

2

The exponential growth gives rise to the question of whether using the Hilbert 
urve is a pra
ti
al te
hnique for 
lustering

high dimensional data obje
ts. For instan
e, in a 10-dimensional spa
e, the expe
ted number of 
lusters was 19,683.
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5.4 Summary

The main 
on
lusions from our experiments are:

� The exa
t solution given in Theorem 2 mat
hes exa
tly the experimental results from exhaustive

simulations for the square queries of size 2

k

�2

k

. (See Figure 11(a).)

� The asymptoti
 solutions given in Theorem 1 and Corollary 1 provide ex
ellent approximations for

d-dimensional queries of arbitrary shapes and sizes. (See Figure 11(b) and Figure 12.) For example,

the relative errors did not ex
eed 2 per
ent for d-dimensional (2 � d � 10) hyper
ubi
 queries.

� Assuming that blo
ks are arranged on disk by the Hilbert ordering, a

essing the minimum bounding

re
tangles of a d-dimensional (d � 3) query region may in
rease the number of non-
onse
utive a

esses,

whereas this is not the 
ase for a 2-dimensional query.

� The Hilbert 
urve outperforms the z and Gray-
oded 
urves by a wide margin for both the worst and

average 
ase 
lustering. (See Figure 13 and Figure 14.)

� For 3-dimensional 
ubi
 and spheri
al queries, the Gray-
oded 
urve outperformed the z 
urve for both

the worst-
ase and average 
lustering. However, the 
lustering by the Gray-
oded 
urve was almost

identi
al to that by the z 
urve for 2-dimensional square queries (in Figure 13(a) and Figure 14(a)),

and 
learly worse for 2-dimensional 
ir
ular queries (in Figure 13(b) and Figure 14(b)).
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Figure 14: Average number of 
lusters for three di�erent spa
e-�lling 
urves

6 Con
lusions

We have studied the 
lustering property of the Hilbert spa
e-�lling 
urve as a linear mapping of a multidimen-

sional spa
e. Through algebrai
 analysis, we have provided simple formulas that state the expe
ted number

of 
lusters for a given query region, and also validated their 
orre
tness through simulation experiments.

The main 
ontributions of this paper are:

� Theorem 2 generalizes the previous work done only for a 2�2 query region [14℄, by providing an exa
t


losed-form formula for 2

k

�2

k

square queries for any k (k � 1). The asymptoti
 solution given in

Theorem 1 further generalizes it for d-dimensional polyhedral query regions (d � 2).

� We have proved that the Hilbert 
urve a
hieves better 
lustering than the z 
urve in a 2-dimensional

spa
e; the average number of 
lusters for the Hilbert 
urve is one fourth of the perimeter of a query

re
tangle, while that of the z 
urve is one third of the perimeter plus two thirds of the side length of the

re
tangle in the unfavored dire
tion [23℄. Furthermore, by simulation experiments, we have shown that

the Hilbert 
urve outperforms both the z and Gray-
oded 
urves in 2-dimensional and 3-dimensional

spa
es. We 
onje
ture that this trend will hold even in higher dimensional spa
es.

� We have shown that it may in
ur extra overhead to a

ess the minimum bounding hyper-re
tangle for

a d-dimensional non-re
tangular query (d � 3), be
ause it may in
rease the number of 
lusters (i.e.,

non-
onse
utive disk a

esses).

The approa
hes used in this paper 
an be applied to other spa
e-�lling 
urves. In parti
ular, the basi


intuitions summarized in Remark 3.1 and Remark 4.1 are true for any spa
e-�lling 
urves.
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From a pra
ti
al point of view, it is important to predi
t and minimize the number of 
lusters be
ause it

determines the number of non-
onse
utive disk a

esses, whi
h in turn in
ur additional seek time. Assuming

that blo
ks are arranged on disk by the Hilbert ordering, we 
an provide a simple measure that depends

only on the perimeter or surfa
e area of a given query region and its dimensionality. The measure 
an then

be used to predi
t the required disk a

ess behaviors and thereby the total a

ess time.

The full-
edged analysis of the worst-
ase behaviors for the Hilbert 
urve is left for future resear
h.

Future work also in
ludes the extension of the exa
t analysis for d-dimensional spa
es (d � 3), and the

investigation of the distribution of distan
es between 
lusters.

A Appendix: Proofs

Proof of Lemma 4: A 2

+

-oriented H

2

k+n

approximation is 
omposed of four H

2

k+n�1

approximations (two

on the top and two on the bottom) and three 
onne
tion edges. The two H

2

k+n�1

approximations on the top

half are 2

+

-oriented and the two H

2

k+n�1

approximations on the bottom half are 1

+

-oriented on the left and

1

�

-oriented on the right. Among the three edges 
onne
ting the four H

2

k+n�1

approximations, the horizontal

edge is not in
luded in the boundary subregion of the H

2

k+n

, be
ause the edge resides on the 2

k+n�1

-th row

from the topmost of the H

2

k+n

. The other two verti
al 
onne
tion edges are on the leftmost and rightmost


olumns and in
luded in the boundary subregion of the H

2

k+n

. Thus, the main observations are:

(i) The number of 
onne
tion edges in the top boundary subregion of the 2

+

-oriented H

2

k+n

is the sum of

those in the top boundary subregions of the two 2

+

-oriented H

2

k+n�1

approximations.

(ii) The number of 
onne
tion edges in the bottom boundary subregion of the 2

+

-oriented H

2

k+n

is the

sum of those in the bottom boundary subregions of the 1

+

-oriented H

2

k+n�1

and 1

�

-oriented H

2

k+n�1

approximations.

(iii) The number of 
onne
tion edges in the left (or right) boundary subregion of the 2

+

-oriented H

2

k+n

is

the sum of those in the left (or right) boundary subregions of the 2

+

-oriented H

2

k+n�1

and 1

+

-oriented

(or 1

�

-oriented) H

2

k+n�1

approximations, plus one for a 
onne
tion edge.

Sin
e the bottom boundary subregion of a 1

+

-oriented H

2

k+n�1

is equivalent to the right boundary subregion

of a 2

+

-oriented H

2

k+n�1

and so on, it follows that

t

n

= 2� t

n�1

b

n

= 2� s

n�1

s

n

= s

n�1

+ b

n�1

+ 1:

Sin
e t

1

= 1; b

1

= 0 and s

1

= 1, we obtain t

n

= 2

n�1

and b

n

+ 2s

n

= 2(b

n�1

+ 2s

n�1

) + 2, whi
h yields

b

n

+ 2s

n

= 2(2

n

� 1).

Proof of Lemma 5: The H

2

k+n

and H

2

k

approximations 
ontain 2

2(k+n)

� 1 and 2

2k

� 1 edges, respe
tively.

Sin
e there are a total of 4(2

n

�1) H

2

k

approximations in the boundary subregions, the total number of edges

in E

1

is given by

(2

2(k+n)

� 1)� 4(2

n

� 1)(2

2k

� 1)� (5� 2

n�1

� 2) = 2

2k

(2

n

� 2)

2

+ 3(2

n�1

� 1):

Be
ause ea
h edge in E

1

is 
ut 2

k+1

times, it follows that

N

1

= 2

k+1

(2

2k

(2

n

� 2)

2

+ 3(2

n�1

� 1)) = 2(2

n

� 2)

2

2

3k

+ 3(2

n

� 2)2

k

:

Among the 5�2

n�1

� 2 edges in E

3

, t

n

edges are 
ut 2

k+1

times, and the other b

n

+2s

n

edges are 
ut twi
e.

Therefore,

N

3

= 2

k+1

t

n

+ 2(b

n

+ 2s

n

) = 2

n+k

+ 4(2

n

� 1):
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Proof of Lemma 6: Consider a 2

+

-oriented H

2

k+n

, whi
h is 
omposed of four H

2

k+n�1

approximations and

three 
onne
tion edges. The number of 2

+

-oriented H

2

k

approximations in the top subregions (i.e., fB,F,Hg)

of the 2

+

-oriented H

2

k+n

is twi
e the number of 2

+

-oriented H

2

k

approximations in the top subregions of

the 2

+

-oriented H

2

k+n�1

. This is be
ause the top half of the 2

+

-oriented H

2

k+n


onsists of two 2

+

-oriented

H

2

k+n�1

approximations. Thus the re
urren
e relation is  

fB;F;Hg

2

+

;n

= 2�  

fB;F;Hg

2

+

;n�1

. Sin
e  

fB;F;Hg

2

+

;1

= 2, we

obtain

 

fB;F;Hg

2

+

;n

= 2

n

:

The bottom half of the 2

+

-oriented H

2

k+n


onsists of a 1

+

-oriented H

2

k+n�1

and a 1

�

-oriented H

2

k+n�1

.

In the bottom boundary subregions fC,G,Ig, ea
h 1

�

-oriented H

2

k

in the 1

+

-oriented H

2

k+n�1

approximation

be
omes a 2

+

-oriented H

2

k

in the 2

+

-oriented H

2

k+n

approximation; ea
h 1

+

-oriented H

2

k

in the 1

�

-oriented

H

2

k+n�1

approximation be
omes a 2

+

-oriented H

2

k

in the 2

+

-oriented H

2

k+n

approximation. No other than

the 1

�

-oriented and 1

+

-oriented H

2

k

approximations in the H

2

k+n�1

approximations be
omes a 2

+

-oriented

H

2

k

in the H

2

k+n

. Thus, it follows that

 

fC;G;Ig

2

+

;n

=  

fC;G;Ig

1

�

;n�1

+  

fC;G;Ig

1

+

;n�1

:

Sin
e there exist no 2

�

-orientedH

2

k

approximations in the bottom boundary subregions,  

fC;G;Ig

2

�

;n

= 0. Thus,

 

fC;G;Ig

2

+

;n

+  

fC;G;Ig

1

�

;n

+  

fC;G;Ig

1

+

;n

= 2

n

:

Similarly, on the left boundary subregion, we obtain the following re
urren
e relations.

 

fD;F;Gg

1

+

;n

=  

fD;F;Gg

2

+

;n�1

+  

fD;F;Gg

2

�

;n�1

 

fD;F;Gg

1

+

;n

+  

fD;F;Gg

2

+

;n

+  

fD;F;Gg

2

�

;n

= 2

n

:

Then, from the above four re
urren
e relations,

 

fC;G;Ig

2

+

;n

+ 2 

fD;F;Gg

1

+

;n

= (2

n�1

�  

fC;G;Ig

2

+

;n�1

) + 2(2

n�1

�  

fD;F;Gg

1

+

;n�1

)

= (2

n�2

+  

fC;G;Ig

2

+

;n�2

) + 2(2

n�2

+  

fD;F;Gg

1

+

;n�2

)

= 3� 2

n�2

+ ( 

fC;G;Ig

2

+

;n�2

+ 2 

fD;F;Gg

1

+

;n�2

):

Sin
e  

fC;G;Ig

2

+

;1

+ 2 

fD;F;Gg

1

+

;1

= 2 and  

fC;G;Ig

2

+

;2

+ 2 

fD;F;Gg

1

+

;2

= 4, we obtain

 

fC;G;Ig

2

+

;n

+ 2 

fD;F;Gg

1

+

;n

= 2

n

:

From  

fE;H;Ig

1

�

;n

=  

fD;F;Gg

1

+

;n

due to the self-symmetry of the 2

+

-oriented H

2

k+n

, it follows that

 

fC;G;Ig

2

+

;n

+  

fD;F;Gg

1

+

;n

+  

fE;H;Ig

1

�

;n

=  

fC;G;Ig

2

+

;n

+ 2 

fD;F;Gg

1

+

;n

= 2

n

:

Now 
onsider subregions fF,G,H,Ig. The H

2

k

approximations in F,H are always 2

+

-oriented, the H

2

k

in G

is either 2

+

-oriented or 1

+

-oriented, and the H

2

k

in I is either 2

+

-oriented or 1

�

-oriented. Thus,  

fF;Hg

2

+

;n

= 2

and  

fG;Ig

2

+

;n

+  

fG;Ig

1

+

;n

+  

fG;Ig

1

�

;n

= 2. Therefore,

 

fBg

2

+

;n

=  

fB;F;Hg

2

+

;n

�  

fF;Hg

2

+

;n

= 2

n

� 2

 

fCg

2

+

;n

+  

fDg

1

+

;n

+  

fEg

1

�

;n

= ( 

fC;G;Ig

2

+

;n

+  

fD;F;Gg

1

+

;n

+  

fE;H;Ig

1

�

;n

)� ( 

fG;Ig

2

+

;n

+  

fG;Ig

1

+

;n

+  

fG;Ig

1

�

;n

)

= 2

n

� 2:

So far we have derived the �rst two equations given in this lemma.

Finally, to derive the third equation, 
onsider subregions fB,C,D,Eg. Sin
e the total number of H

2

k

approximations in those subregions is 4(2

n

� 2),

 

fB;C;D;Eg

2

+

;n

+  

fB;C;D;Eg

2

�

;n

+  

fB;C;D;Eg

1

�

;n

+  

fB;C;D;Eg

1

+

;n

= 4(2

n

� 2):
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There exist no 2

�

-oriented H

2

k

in fB,Cg, no 1

�

-oriented H

2

k

in fB,Dg, and no 1

+

-oriented H

2

k

in fB,Eg. That

is,  

fB;Cg

2

�

;n

=  

fB;Dg

1

�

;n

=  

fB;Eg

1

+

;n

= 0. Therefore,

 

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

+  

fCg

1

�

;n

+  

fCg

1

+

;n

= 4(2

n

� 2)� ( 

fB;Cg

2

+

;n

+  

fB;Cg

2

�

;n

+  

fB;D;Eg

1

�

;n

+  

fB;D;Eg

1

+

;n

)

= 4(2

n

� 2)� ( 

fB;Cg

2

+

;n

+  

fEg

1

�

;n

+  

fDg

1

+

;n

)

= 2(2

n

� 2):

Proof of Lemma 7: Every H

2

k

approximation in subregion B is 2

+

-oriented, and there exists no 2

�

-oriented

H

2

k

approximation in subregion C. Thus, the number of verti
al edges in subregions fB,Cg is the sum of

 

fB;Cg

2

+

;n

V

k

and ( 

fCg

1

+

;n

+  

fCg

1

�

;n

)H

k

. Likewise, the number of horizontal edges in subregions fD,Eg is the sum

of ( 

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

)H

k

and ( 

fDg

1

+

;n

+  

fEg

1

�

;n

)V

k

, be
ause there exist no 1

�

-oriented H

2

k

in subregion D and

no 1

+

-oriented H

2

k

in subregion E. Thus, the total number of edges in E

2

is given by

( 

fB;Cg

2

+

;n

+  

fDg

1

+

;n

+  

fEg

1

�

;n

)V

k

+ ( 

fCg

1

+

;n

+  

fCg

1

�

;n

+  

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

)H

k

= 2(2

n

� 2)(H

k

+ V

k

) (by Lemma 6).

Ea
h edge in E

2

is 
ut 2

k

times and H

k

+ V

k

= 2

2k

� 1. Therefore,

N

2

= 2(2

n

� 2)(2

2k

� 1)2

k

= 2(2

n

� 2)2

3k

� 2(2

n

� 2)2

k

:

Proof of Lemma 8: First, �

k

+ �

k

=

P

2

k

i=1

ih

k

(i) +

P

2

k

i=1

(2

k

� i+ 1)h

k

(i) =

P

2

k

i=1

(2

k

+ 1)h

k

(i). From the

de�nition of H

k

, H

k

=

P

2

k

i=1

h

k

(i). Therefore,

�

k

+ �

k

= (2

k

+ 1)H

k

:

Se
ond, 


k

=

P

2

k�1

i=1

iv

k

(i) +

P

2

k

i=2

k�1

+1

iv

k

(i) =

P

2

k�1

i=1

iv

k

(i) +

P

2

k�1

i=1

(2

k�1

+ i)v

k

(2

k�1

+ i). Sin
e 2-

oriented H

2

k

approximations are verti
ally self-symmetri
, v

k

(2

k

� i+ 1) = v

k

(i) holds for any i (1 � i �

2

k�1

): Thus, 


k

=

P

2

k�1

i=1

iv

k

(i) +

P

2

k�1

i=1

(2

k�1

+ i)v

k

(2

k�1

� i+ 1) =

P

2

k�1

i=1

iv

k

(i) +

P

2

k�1

i=1

(2

k

� i+1)v

k

(i).

From the de�nition of V

k

and self-symmetry, V

k

= 2

P

2

k�1

i=1

v

k

(i). Therefore,




k

=

2

k�1

X

i=1

(2

k

+ 1)v

k

(i) =

1

2

(2

k

+ 1)V

k

:

Proof of Lemma 9: In E

4

, the number of horizontal 
uts from a single u-gradient

k

is 2��

k

, the number of

horizontal 
uts from a single d-gradient

k

is 2� �

k

, and the number of verti
al 
uts from a single s-gradient

k

is 2� 


k

. Thus,

N

4

= 2�

k

 

fBg

2

+

;n

+ 2�

k

( 

fCg

2

+

;n

+  

fDg

1

+

;n

+  

fEg

1

�

;n

) + 2


k

( 

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

+  

fCg

1

�

;n

+  

fCg

1

+

;n

)

= 2�

k

(2

n

� 2) + 2�

k

(2

n

� 2) + 4


k

(2

n

� 2) (by Lemma 6)

= 2(2

n

� 2)(�

k

+ �

k

+ 2


k

)

= 2(2

n

� 2)(2

k

+ 1)(H

k

+ V

k

) (by Lemma 8)

= 2(2

n

� 2)(2

k

+ 1)(2

2k

� 1)

In E

5

, the number of horizontal 
uts from a single u-gradient

k

is �

k

, the number of horizontal 
uts

from a single d-gradient

k

is �

k

, and the number of verti
al 
uts from a single s-gradient

k

is 


k

. Thus,

N

5

= 2�

k

+ 2�

k

+ 4


k

= 2(2

k

+ 1)(2

2k

� 1):
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