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Abstrat

Several shemes for linear mapping of a multidimensional spae have been proposed for various applia-

tions suh as aess methods for spatio-temporal databases and image ompression. In these appliations,

one of the most desired properties from suh linear mappings is lustering, whih means the loality be-

tween objets in the multidimensional spae being preserved in the linear spae. It is widely believed that

the Hilbert spae-�lling urve ahieves the best lustering [1, 14℄. In this paper, we analyze the lustering

property of the Hilbert spae-�lling urve by deriving losed-form formulas for the number of lusters in a

given query region of an arbitrary shape (e.g., polygons and polyhedra). Both the asymptoti solution for

the general ase and the exat solution for a speial ase generalize previous work [14℄. They agree with

the empirial results that the number of lusters depends on the hyper-surfae area of the query region

and not on its hyper-volume. We also show that the Hilbert urve ahieves better lustering than the z

urve. From a pratial point of view, the formulas given in this paper provide a simple measure that an

be used to predit the required disk aess behaviors and hene the total aess time.

Index Terms: loality-preserving linear mapping, range queries, multi-attribute aess methods, data

lustering, Hilbert urve, spae-�lling urves, fratals.
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1 Introdution

The design of multidimensional aess methods is diÆult ompared to one-dimensional ases beause there

is no total ordering that preserves spatial loality. One a total ordering is found for a given spatial or

multidimensional database, one an use any one-dimensional aess method (e.g., B

+

-tree), whih may

yield good performane for multidimensional queries. An interesting appliation of the ordering arises in a

multidimensional indexing tehnique proposed by Orenstein [19℄. The idea is to develop a single numeri

index on a one-dimensional spae for eah point in a multidimensional spae, suh that for any given objet,

the range of indies, from the smallest index to the largest, inludes few points not in the objet itself.

Consider a linear traversal or a typial range query for a database where reord signatures are mapped

with multi-attribute hashing [24℄ to bukets stored on disk. The linear traversal spei�es the order in

whih the objets are fethed from disk as well as the number of bloks fethed. The number of non-

onseutive disk aesses will be determined by the order of bloks fethed. Although the order of bloks

fethed is not expliitly spei�ed in the range query, it is reasonable to assume that the set of bloks

fethed an be rearranged into a number of groups of onseutive bloks by a database server or disk

ontroller mehanism [25℄. Sine it is more eÆient to feth a set of onseutive disk bloks rather than a

randomly sattered set in order to redue additional seek time, it is desirable that objets lose together in a

multidimensional attribute spae also be lose together in the one-dimensional disk spae. A good lustering

of multidimensional data points on the one-dimensional sequene of disk bloks may also redue the number

of disk aesses that are required for a range query.

In addition to the appliations desribed above, several other appliations also bene�t from a linear

mapping that preserves loality:

1. In traditional databases, a multi-attribute data spae must be mapped into a one-dimensional disk spae

to allow eÆient handling of partial-math queries [22℄; in numerial analysis, large multidimensional

arrays [6℄ have to be stored on disk, whih is a linear struture.

2. In image ompression, a family of methods use a linear mapping to transform an image into a bit string;

subsequently, any standard ompression method an be applied [18℄. A good lustering of pixels will

result in a fewer number of long runs of similar pixel values, thereby improving the ompression ratio.

3. In geographi information systems (GIS), run-enoded forms of image representations are ordering-

sensitive, as they are based on representations of the image as sets of runs [1℄.

4. Heuristis in omputational geometry problems use a linear mapping. For example, for the traveling

salesman problem, the ities are linearly ordered and visited aordingly [2℄.

5. Loality-preserving mappings are used for bandwidth redution of digitally sampled signals [4℄ and for

graphis display generation [20℄.

6. In sienti� parallel proessing, loality-preserving linearization tehniques are widely used for dynami

unstrutured mesh partitioning [17℄.

Sophistiated mapping funtions have been proposed in the literature. One based on interleaving bits

from the oordinates, whih is alled z-ordering, was proposed [19℄. Its improvement was suggested by

Faloutsos [8℄, using Gray oding on the interleaved bits. A third method, based on the Hilbert urve [13℄,

was proposed for seondary key retrieval [11℄. In the mathematial ontext, these three mapping funtions are

based on di�erent spae-�lling urves: the z urve, the Gray-oded urve and the Hilbert urve, respetively.

Figure 1 illustrates the linear orderings yielded by the spae-�lling urves for a 4�4 grid.

It was shown that under most irumstanes, the linear mapping based on the Hilbert spae-�lling urve

outperforms the others in preserving loality [14℄. In this paper, we provide analyti results of the lustering

e�ets of the Hilbert spae-�lling urve, fousing on arbitrarily shaped range queries, whih require the

retrieval of all objets inside a given hyper-retangle or polyhedron in multidimensional spae.

For purposes of analysis, we assume a multidimensional spae with �nite granularity, where eah point

orresponds to a grid ell. The Hilbert spae-�lling urve imposes a linear ordering on the grid ells,

assigning a single integer value to eah ell. Ideally, it is desirable to have mappings that result in fewer

disk aesses. The number of disk aesses, however, depends on several fators suh as the apaity of
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z urve Gray-oded urve Hilbert urve

Figure 1: Illustration of spae-�lling urves

the disk pages, the splitting algorithm, the insertion order and so on. Here we use the average number of

lusters, or ontinuous runs, of grid points within a subspae representing a query region, as the measure of

the lustering performane of the Hilbert urve. If eah grid point is mapped to one disk blok, this measure

exatly orresponds to the number of non-onseutive disk aesses, whih involve additional seek time. This

measure is also highly orrelated to the number of disk bloks aessed, sine (with many grid points in a

disk blok) onseutive points are likely to be in the same blok, while points aross a disontinuity are likely

to be in di�erent bloks. This measure is used only to render the analysis tratable, and some weaknesses

of this measure were disussed in [14℄.
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Figure 2: Illustration of: (a) two lusters for the z urve, (b) one luster for the Hilbert urve

De�nition 1.1 Given a d-dimensional query, a luster is de�ned to be a group of grid points inside the query

that are onseutively onneted by a mapping (or a urve).

For example, there are two lusters in the z urve (Figure 2(a)) but only one in the Hilbert urve (Figure 2(b))

for the same 2-dimensional retangular query S

x

� S

y

. Now, the problem we will investigate is formulated

as follows:

Given a d-dimensional retilinear polyhedron representing a query, �nd the average number of

lusters inside the polyhedron for the Hilbert urve.

The de�nition of the d-dimensional retilinear polyhedron is given in Setion 3. Note that in the d-dimensional

spae with �nite granularity, for any d-dimensional objet suh as spheres, ellipsoids, quadri ones and so
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on, there exists a orresponding (retilinear) polyhedron that ontains exatly the same set of grid points

inside the given objet. Thus, the solution to the problem above will over more general ases onerning any

simple onneted objet of arbitrary shape. The rest of the paper is organized as follows. Setion 2 surveys

historial work on spae-�lling urves and other related analyti studies. Setion 3 presents an asymptoti

formula of the average number of lusters for d-dimensional range queries of arbitrary shape. Setion 4

derives a losed-form exat formula of the average number of lusters in a 2-dimensional spae. In Setion 5,

we provide empirial evidene to demonstrate the orretness of the analyti results for various query shapes.

Finally, in Setion 6, we disuss the ontributions of this paper and suggest future work.

2 Historial Survey and Related Work

G. Peano, in 1890, disovered the existene of a ontinuous urve whih passes through every point of a

losed square [21℄. Aording to Jordan's preise notion (in 1887) of ontinuous urves, Peano's urve is a

ontinuous mapping of the losed unit interval I = [0; 1℄ into the losed unit square S = [0; 1℄

2

. Curves of

this type have ome to be alled Peano urves or spae-�lling urves [28℄. Formally,

De�nition 2.1 If a mapping f : I ! E

n

(n � 2) is ontinuous, and f(I) the image of I under f has positive

Jordan ontent (area for n = 2 and volume for n = 3), then f(I) is alled a spae-�lling urve. E

n

denotes

an n-dimensional Eulidean spae.

Although G. Peano disovered the �rst spae-�lling urve, it was D. Hilbert in 1891 who was the �rst

to reognize a general geometri proedure that allows the onstrution of an entire lass of spae-�lling

urves [13℄. If the interval I an be mapped ontinuously onto the square S, then after partitioning I

into four ongruent subintervals and S into four ongruent subsquares, eah subinterval an be mapped

ontinuously onto one of the subsquares. If this is arried on ad in�nitum, I and S are partitioned into 2

2n

ongruent replias for n = 1; 2; 3; � � � ;1. Hilbert demonstrated that the subsquares an be arranged so that

the inlusion relationships are preserved, that is, if a square orresponds to an interval, then its subsquares

orrespond to the subintervals of that interval. Figure 3 desribes how this proess is to be arried out

for the �rst three steps. It has been shown that the Hilbert urve is a ontinuous, surjetive and nowhere

di�erentiable mapping [26℄. However, Hilbert gave the spae-�lling urve, in a geometri form only, for

mapping I into S (i.e., 2-dimensional Eulidean spae). The generation of a 3-dimensional Hilbert urve

was desribed in [14, 26℄. A generalization of the Hilbert urve, in an analyti form, for higher dimensional

spaes was given in [5℄.

(a) First step (b) Seond step () Third step

Figure 3: The �rst three steps of Hilbert spae-�lling urve

In this paper, a d-dimensional Eulidean spae with �nite granularity is assumed. Thus, we use the k-th

order approximation of a d-dimensional Hilbert spae-�lling urve (k � 1 and d � 2), whih maps an integer

set [0; 2

kd

� 1℄ into a d-dimensional integer spae [0; 2

k

� 1℄

d

.

Notation 2.1 For k � 1 and d � 2, let H

d

k

denote the k-th order approximation of a d-dimensional Hilbert

spae-�lling urve, whih maps [0; 2

kd

� 1℄ into [0; 2

k

� 1℄

d

.
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The drawings of the �rst, seond and third steps of the Hilbert urve in Figure 3 orrespond to H

2

1

, H

2

2

and

H

2

3

, respetively.

Jagadish [14℄ ompared the lustering properties of several spae-�lling urves by onsidering only 2�2

range queries. Among the z urve (2.625), the Gray-oded urve (2.5) and the Hilbert urve (2), the Hilbert

urve was the best in minimizing the number of lusters. The numbers within the parentheses are the average

number of lusters for 2�2 range queries. Rong and Faloutsos [23℄ derived a losed-form expression of the

average number of lusters for the z urve, whih gives 2.625 for 2�2 range queries (exatly the same as the

result given in [14℄) and in general approahes one third of the perimeter of the query retangle plus two

thirds of the side length of the retangle in the unfavored diretion. Jagadish [16℄ derived losed-form, exat

expressions of the average number of lusters for the Hilbert urve in a 2-dimensional grid, but only for 2�2

and 3�3 square regions. This is a speial ase of the more general formulae derived in this paper.

Abel and Mark [1℄ reported empirial studies to explore the relative properties of suh mapping funtions

using various metris. They reahed the onlusion that the Hilbert ordering deserves loser attention as

an alternative to the z urve ordering. Bugnion et al. estimated the average number of lusters and the

distribution of inter-luster intervals for 2-dimensional retangular queries. They derived the estimations

based on the fration of vertial and horizontal edges of any partiular spae-�lling urve. However, those

frations were provided only for a 2-dimensional spae and without any alulation or formal veri�ation.

In this paper, we formally prove that, in a d-dimensional spae, the d di�erent edge diretions approah the

uniform distribution, as the order of the Hilbert urve approximation grows into in�nity.

Several losely related analyses for the average number of 2-dimensional quadtree nodes have been pre-

sented in the literature. Dyer [7℄ presented an analysis for the best, worst and average ase of a square of

size 2

n

�2

n

, giving an approximate formula for the average ase. Sha�er [27℄ gave a losed formula for the

exat number of bloks that suh a square requires when anhored at a given position (x; y); he also gave

a formula for the average number of bloks for suh squares (averaged over all possible positions). Some of

these formulae were generalized for arbitrary 2-dimensional and d-dimensional retangles [9, 10℄.

3 Asymptoti Analysis

In this setion, we give an asymptoti formula for the lustering property of the Hilbert spae-�lling urve

for general polyhedra in a d-dimensional spae. The symbols used in this setion are summarized in Table 1.

The polyhedra we onsider here are not neessarily onvex, but are retilinear in the sense that any (d-1)-

dimensional polygonal surfae is perpendiular to one of the d oordinate axes.

De�nition 3.1 A retilinear polyhedron is bounded by a set V of polygonal surfaes eah of whih is perpen-

diular to one of the d oordinate axes, where V is a subset of R

d

and homeomorphi

1

to a (d-1)-dimensional

sphere S

d�1

.

For d = 2 the set V is, by de�nition, a Jordan urve [3℄, whih is essentially a simple losed urve in R

2

. The

set of surfaes of a polyhedron divides the d-dimensional spae R

d

into two onneted omponents, whih

may be alled the interior and the exterior.

The basi intuition is that eah luster within a given polyhedron orresponds to a segment of the Hilbert

urve, onneting a group of grid points in the luster, whih has two endpoints adjaent to the surfae of the

polyhedron. The number of lusters is then equal to half the number of endpoints of the segments bounded

by the surfae of the polyhedron. In other words,

Remark 3.1 The number of lusters within a given d-dimensional polyhedron is equal to the number of entries

(or exits) of the Hilbert urve into (or from) the polyhedron.

Thus, we expet that the number of lusters is approximately proportional to the perimeter or hyper-surfae

area of the d-dimensional polyhedron (d � 2). With this observation, the task is redued to �nding a onstant

fator of a linear funtion.

Our approah to derive the asymptoti solution largely depends on the self-similar nature of the Hilbert

urve, whih stems from the reursive proess of the urve expansion. Spei�ally, we shall show in the

1

Two subsets X and Y of Eulidean spae are alled homeomorphi if there exists a ontinuous bijetive mapping, f : X ! Y ,

with a ontinuous inverse f

�1

[12℄.
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Figure 4: the 3-dimensional Hilbert urve (H

3

k

with verties representing H

3

k�1

approximations annotated

by their orientations.)
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Figure 5: the 4-dimensional Hilbert urve (H

4

k

with verties representing H

4

k�1

approximations annotated

by their orientations.)

following lemmas that the edges of d di�erent orientations are uniformly distributed in a d-dimensional

Eulidean spae. That is, approximately one d-th of the edges are aligned to the i-th dimensional axis for

eah i (1 � i � d). Here we mean by edges the line segments of the Hilbert urve onneting two neighboring

points. The uniform distribution of the edges provides key leverage for deriving the asymptoti solution. To

show the uniform distribution, it is important to understand

� how the k-th order approximation of the Hilbert urve is derived from lower order approximations, and

� how the d-dimensional Hilbert urve is extended from the 2-dimensional Hilbert urve, whih was

desribed only in a geometri form in [13℄. (Analyti forms for the d-dimensional Hilbert urves were

presented in [5℄.)

In a d-dimensional spae, the k-th order approximation of the d-dimensional Hilbert urve H

d

k

is derived

from the 1-st order approximation of the d-dimensional Hilbert urve H

d

1

by replaing eah vertex in the H

d

1

by H

d

k�1

, whih may be rotated about a oordinate axis and/or reeted about a hyperplane perpendiular

to a oordinate axis. Sine there are 2

d

verties in the H

d

1

, the H

d

k

is onsidered to be omposed of 2

d

H

d

k�1

verties and (2

d

�1) edges, eah onneting two of them.

Before desribing the extension for the d-dimensional Hilbert urve, we de�ne the orientations of H

d

k

.

Consider H

d

1

, whih onsists of 2

d

verties and (2

d

�1) edges. No matter where the Hilbert urve starts its

traversal, the oordinates of the start and end verties of the H

d

1

di�er only in one dimension, meaning that

both verties lie on a line parallel to one of the d oordinate axes. We say that H

d

1

is i-oriented if its start

and end verties lie on a line parallel to the i-th oordinate axis. For any k (k > 1), the orientation of H

d

k

is

equal to that of H

d

1

from whih it is derived.

Figure 4 and Figure 5 illustrate the proesses that generate H

3

k

from H

2

k

, and H

4

k

from H

3

k

, respetively.

In general, when the d-th dimension is added to the (d-1)-dimensional Hilbert urve, eah vertex of H

d�1

1

(i.e., H

d�1

k�1

) is replaed by H

d

k�1

of the same orientation exept in the 2

d�1

-th one (i.e., the end vertex of
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H

d�1

1

), whose orientation is hanged from 1-oriented to d-oriented parallel to the d-th dimensional axis. For

example, in Figure 5, the orientations of the two verties onneted by a dotted line have been hanged

from 1 to 4. Sine the orientations of all the other (2

d�1

�1) H

d

k�1

verties remain unhanged, they are all

j-oriented for some j (1 � j < d). The whole 2

d�1

H

d

k�1

verties are then repliated by reetion, and �nally

the two replias are onneted by an edge parallel to the d-th oordinate axis (alled d-oriented edge) to

form a d-oriented H

d

k

. In short, whenever a dimension (say, the d-th dimension) is added, two d-oriented

H

d

k�1

verties are introdued, the number of 1-oriented H

d

k�1

verties remains unhanged as two, and the

number of H

d

k�1

verties of the other orientations are doubled.

Symbol De�nition

d Number of dimensions

(x

1

; :::; x

d

) Coordinates of a grid point in a d-dimensional grid spae

H

d

k

k-th order approximation of the d-dimensional Hilbert urve

'

i

Number of i-oriented H

d

k�1

verties in a H

d

k

"

i;k

Number of i-oriented edges in a d-oriented H

d

k

S

+

i

Number of interior grid points whih fae i

+

-surfae

S

�

i

Number of interior grid points whih fae i

�

-surfae

p

+

i

Probability that the predeessor of a grid point is its i

+

-neighbor

p

�

i

Probability that the predeessor of a grid point is its i

�

-neighbor

S

q

Total surfae area of a given d-dimensional retilinear polyhedral query q

N

d

Average number of lusters within a given d-dimensional retilinear polyhedron

Table 1: De�nition of Symbols

Notation 3.1 Let '

i

be the number of i-oriented H

d

k�1

verties in a given d-oriented H

d

k

.

Lemma 1 For a d-oriented H

d

k

(d � 2),

'

i

=

(

2 if i = 1,

2

d+1�i

if 1 < i � d.

(1)

Proof. By indution on d.

The following lemma shows that the edges of d di�erent orientations approah the uniform distribution

as the order of the Hilbert urve approximation grows into in�nity.

Notation 3.2 Let "

i;k

denote the number of i-oriented edges in a (d-oriented) H

d

k

.

Lemma 2 In a d-dimensional spae, for any i and j (1 � i; j � d), "

i;k

="

j;k

approahes unity as k grows to

in�nity.

Proof. We begin by deriving reurrene relations among the terms "

i;k

and '

i

. As we mentioned previously,

the fundamental operations involved in expanding the Hilbert urve (i.e., from H

d

k�1

to H

d

k

) are rotation and

reetion. During the expansion of H

d

k

, the orientation of a H

d

k�1

vertex in a quantized subregion is hanged

only by rotation; a set of subregions of an orientation are repliated from one of the same orientation, whih

leaves the diretions of their edges unhanged. Consequently, any two distint H

d

k�1

verties of the same

orientation ontain the same number of edges "

i;k�1

for eah diretion i (1 � i � d). Therefore, the set of

the 1-oriented edges in the H

d

k

onsists of 2

d�1

onnetion edges (in H

d

1

), d-oriented edges of the 1-oriented

H

d

k�1

verties, (d-1)-oriented edges of the 2-oriented H

d

k�1

verties, (d-2)-oriented edges of the 3-oriented

H

d

k�1

verties and so on.
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By applying the same proedure to the other diretions, we obtain

"

1;k

= '

1

"

d;k�1

+ '

2

"

d�1;k�1

+ � � �+ '

d

"

1;k�1

+ 2

d�1

"

2;k

= '

2

"

d;k�1

+ '

3

"

d�1;k�1

+ � � �+ '

1

"

1;k�1

+ 2

d�2

"

3;k

= '

3

"

d;k�1

+ '

4

"

d�1;k�1

+ � � �+ '

2

"

1;k�1

+ 2

d�3

(2)

.

.

.

"

d;k

= '

d

"

d;k�1

+ '

1

"

d�1;k�1

+ � � �+ '

d�1

"

1;k�1

+ 1

The initial values are given by "

i;1

= 2

d�i

, and the values of '

i

are in Lemma 1. The onstants in the

last terms being ignored, the reurrene relations are ompletely symmetri. From the symmetry, it an be

shown that for any i and j (1 � i; j � d),

lim

k!1

"

i;k

"

j;k

= 1:

The proof is omplete.

Now we onsider a d-dimensional grid spae, whih is equivalent to a d-dimensional Eulidean integer

spae. In the d-dimensional grid spae, eah grid point y = (x

1

; : : : ; x

d

) has 2d neighbors. The oordinates

of the neighbors di�er from those of y by unity only in one dimension. In other words, the oordinates of

the neighbors that lie in a line parallel to the i-th axis must be either (x

1

; : : : ; x

i

+1; : : : ; x

d

) or (x

1

; : : : ; x

i

�

1; : : : ; x

d

). We all them the i

+

-neighbor and the i

�

-neighbor of y, respetively.

Butz showed that any unit inrement in the Hilbert order produes a unit inrement in one of the d

oordinates and leaves the other d�1 oordinates unhanged [5℄. The impliation is that, for any grid point

y, both the neighbors of y in the linear order imposed by the Hilbert urve are hosen from the 2d neighbors

of y in the d-dimensional grid spae. Of the two neighbors of y in the Hilbert order, the one loser to the

start of the Hilbert traversal is alled the predeessor of y.

Notation 3.3 For a grid point y in a d-dimensional grid spae, let p

+

i

be the probability that the predeessor

of y is the i

+

-neighbor of y, and let p

�

i

be the probability that the predeessor of y is the i

�

-neighbor of y.

Lemma 3 In a suÆiently large d-dimensional grid spae, for any i (1 � i � d),

p

+

i

+ p

�

i

=

1

d

:

Proof. Assume y is a grid point in d-dimensional spae and z is its predeessor. Then the edge yz adjaent

to y and z is parallel to one of the d dimensional axes. From Lemma 2 and the reursive de�nition of the

Hilbert urve, the probability that yz is parallel to the i-th dimensional axis is d

�1

for any i (1 � i � d).

This implies that the probability that z is either i

+

-neighbor or i

�

-neighbor of y is d

�1

.

For a d-dimensional retilinear polyhedron representing a query region, the number, sizes and shapes of

the surfaes an be arbitrary. Due to the onstraint of surfae alignment, however, it is feasible to lassify

the surfaes of a d-dimensional retilinear polyhedron into 2d di�erent kinds: for any i (1 � i � d),

� If a point y is inside the polyhedron and its i

+

-neighbor is outside, then the point y faes an i

+

-surfae.

� If a point y is inside the polyhedron and its i

�

-neighbor is outside, then the point y faes an i

�

-surfae.

For example, Figure 6 illustrates grid points whih fae surfaes in a 2-dimensional grid spae. The shaded

region represents the inside of the polyhedron. Assuming that the �rst dimension is vertial and the seond

dimension is horizontal, grid points A and D fae a 1

+

-surfae, and grid point B (on the onvex) faes both

a 1

+

-surfae and a 2

+

-surfae. Although grid point C (on the onave) is lose to the boundary, it does not

fae any surfae beause all of its neighbors are inside the polyhedron. Consequently, the hane that the

Hilbert urve enters the polyhedron through grid point B is approximately twie that of entering through

grid point A (or D). The Hilbert urve annot enter through grid point C.

For any d-dimensional retilinear polyhedron, it is interesting to see that the aggregate area of i

+

-surfae

is exatly as large as that of i

�

-surfae. In a d-dimensional grid spae, we mean by surfae area the number

of interior grid points that fae a given surfae of any kind.
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A B

C D

Figure 6: Illustration of grid points faing surfaes

Notation 3.4 For a d-dimensional retilinear polyhedron, let S

+

i

and S

�

i

denote the aggregate number of

interior grid points that fae i

+

-surfae and i

�

-surfae, respetively.

Before proving the following theorem, we state without proof an elementary remark.

Remark 3.2 Given a d-dimensional retilinear polyhedron, S

+

i

= S

�

i

for any i (1 � i � d).

Notation 3.5 Let N

d

be the average number of lusters within a given d-dimensional retilinear polyhedron.

Theorem 1 In a suÆiently large d-dimensional grid spae mapped by H

d

k

, let S

q

be the total surfae area

of a given retilinear polyhedral query q. Then,

lim

k!1

N

d

=

S

q

2d

(3)

Proof. Assume a grid point y faes an i

+

-surfae (or an i

�

-surfae). Then, the probability that the Hilbert

urve enters the polyhedron through y is equivalent to the probability that the predeessor of y is an

i

+

-neighbor (or an i

�

-neighbor) of y. Thus, the expeted number of entries through an i

+

-surfae (or an

i

�

-surfae) is S

+

i

p

+

i

(or S

�

i

p

�

i

). Sine the number of lusters is equal to the total number of entries into the

polyhedron through any of the 2d kinds of surfaes (Remark 3.1), it follows that

lim

k!1

N

d

=

d

X

i=1

(S

+

i

p

+

i

+ S

�

i

p

�

i

)

=

d

X

i=1

S

+

i

(p

+

i

+ p

�

i

) (by Remark 3.2)

=

d

X

i=1

S

+

i

1

d

(by Lemma 3)

=

S

q

2d

:

The proof is omplete.

Theorem 1 on�rms our early onjeture that the number of lusters is approximately proportional to the

hyper-surfae area of a d-dimensional polyhedron, and provides (2d)

�1

as the onstant fator of the linear

funtion. In a 2-dimensional spae, the average number of lusters for the z urve approahes one third

of the perimeter of a query retangle plus two thirds of the side length of the retangle in the unfavored

diretion [23℄. It follows that the Hilbert urve ahieves better lustering than the z urve, beause the

average number of lusters for the Hilbert urve is approximately equal to one fourth of the perimeter of a

2-dimensional query retangle.
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Corollary 1 In a suÆiently large d-dimensional grid spae mapped by H

d

k

, the following properties are

satis�ed:

(i) Given an s

1

�s

2

�� � ��s

d

hyper-retangle, lim

k!1

N

d

=

1

d

P

d

i=1

(

1

s

i

Q

d

j=1

s

j

).

(ii) Given a hyperube of side length s, lim

k!1

N

d

= s

d�1

.

For a square of side length 2, Corollary 1(ii) provides 2 as an average number of lusters, whih is exatly

the same as the result given in [14℄.

4 Exat Analysis : A Speial Case

Theorem 1 states that as the size of a grid spae grows in�nitely, the average number of lusters approahes

half the surfae area of a given query region divided by the dimensionality. It does not provide an intuition

as to how rapidly the number of lusters onverges to the asymptoti solution. To address this issue, in this

setion, we derive a losed-form, exat formula for a 2-dimensional �nite spae. We an then measure how

losely the asymptoti solution reets the reality in a �nite spae, by omparing it with the exat formula.

Spei�ally, we assume that a �nite 2

k+n

�2

k+n

grid spae is mapped by H

2

k+n

and a query region is a

square of size 2

k

�2

k

. We �rst desribe our approah and then present the formal derivation of the solution

in several lemmas and a theorem. Table 2 summarizes the symbols used in this setion.

4.1 Basi onepts

Remark 3.1 states that the number of lusters within a given query region is equal to the number of entries

into the region made by the Hilbert urve traversal. Sine eah entry is eventually followed by an exit from

the region, an entry is equivalent to two uts of the Hilbert urve by the boundary of the query region. We

restate Remark 3.1 as follows:

Remark 4.1 The number of lusters within a given query region is equal to half the number of edges ut by

the boundary of the region.

Here we mean by edges the line segments of the Hilbert urve onneting two neighboring grid points. Now

we know from Remark 4.1 that deriving the exat formula is redued to ounting the number of edge uts

by the boundary of a 2

k

�2

k

query window at all possible positions within a 2

k+n

�2

k+n

grid region. Then

the average number of lusters is simply obtained by dividing this number by twie the number of possible

positions of the query window.

Notation 4.1 Let N

2

(k; k + n) be the average number of lusters inside a 2

k

�2

k

square window in a 2

k+n

�2

k+n

grid region.

The diÆulty of ounting the edge uts lies in the fat that, for eah edge within the grid region, the

number of uts varies depending on the loation of the edge. Intuitively, the edges near the boundary of the

grid region are ut less often than those near the enter. This is beause a smaller number of square windows

an ut the edges near the boundary. Thus, to make it easier to ount the edge uts, the grid region H

2

k+n

is divided into nine subregions, as shown in Figure 7. The width of the subregions on the boundary is 2

k

.

Then the 2

k+n

�2

k+n

grid region (H

2

k+n

) an be onsidered as a olletion of 2

2n

H

2

k

approximations eah

of whih is onneted to one or two neighbors by onnetion edges. From now on, we mean by an internal

edge one of the 2

2k

� 1 edges in a H

2

k

, and by a onnetion edge one that onnets two H

2

k

subregions. For

example, subregion F inludes only one H

2

k

and is onneted to subregions B and D by a horizontal and a

vertial onnetion edge, respetively. Subregion B inludes (2

n

� 2) H

2

k

approximations eah of whih is

onneted to its two neighbors by onnetion edges.

Consider an edge (internal or onnetion) near the enter of subregion A, and a horizontal edge in subregion

B. An edge in subregion A an be ut by 2

k+1

square windows whose positions within the region are mutually

distint. On the other hand, a horizontal edge in subregion B an be ut by a di�erent number of distint

windows, depending on the position of the edge. Spei�ally, if the edge in subregion B is on the i-th row

from the topmost, then it is ut 2� i times. The observations we have made are summarized as follows:
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A

C

BF

D

G I

E

H

k
2

k
2

k
2

k
2

2 − 2
k+n k+1

2
k+n

− 2
k+1

Figure 7: H

2

k+n

divided into nine subregions

A1. Every edge (either horizontal or vertial) at least one of whose end points resides in subregion A is ut

2

k+1

times.

A2. Every vertial edge in subregions B and C is ut 2

k

times by the top or bottom side of a window.

A3. Every horizontal edge in subregions D and E is ut 2

k

times by the left or right side of a window.

A4. Every onnetion edge in subregions fB,F,Hg is horizontal and resides in the 2

k

-th row from the

topmost, and is ut 2

k+1

times by the left and right sides of a window. Similarly, every onnetion

edge in subregions fC,G,Ig is horizontal and resides in the 2

k

-th row from the topmost, and is ut

twie by the left and right sides of a window.

A5. Every onnetion edge in subregions fD,F,Gg is vertial and resides in the �rst olumn from the

leftmost, and is ut twie by the top and bottom sides of a window. Every onnetion edge in subregions

fE,H,Ig is vertial and resides in the �rst olumn from the rightmost, and is ut twie by the top and

bottom sides of a window.

A6. Every horizontal edge in the i-th row from the topmost of subregion B is ut 2� i times by both the left

and right sides of a window, and every horizontal edge in the i-th row from the topmost of subregion

C is ut 2

k+1

� 2� i+ 2 times by both the left and right sides of a window.

A7. Every vertial edge in the i-th olumn from the leftmost of subregion D is ut 2� i times by both the

top and bottom sides of a window, and every vertial edge in the i-th olumn from the leftmost of

subregion E is ut 2

k+1

� 2� i+ 2 times by both the top and bottom sides of a window.

A8. Every horizontal edge in the i-th row from the topmost of subregions fF,Hg is ut i times by either

the left or right side of a window.

A9. Every horizontal edge in the i-th row from the topmost of subregions fG,Ig is ut 2

k

� i+ 1 times by

either the left or right side of a window.

A10. Every vertial edge in the i-th olumn from the leftmost of subregions fF,Gg is ut i times by either

the top or bottom side of a window.

A11. Every vertial edge in the i-th olumn from the leftmost of subregions fH,Ig is ut 2

k

� i+1 times by

either the top or bottom side of a window.

A12. Two onnetion edges through whih the Hilbert urve enters into and leaves from the grid region are

ut one eah.

From these observations, we an ategorize the edges in the H

2

k+n

grid region into the following �ve

groups:
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(i) E

1

: a group of edges as desribed in observation A1. Eah edge is ut 2

k+1

times.

(ii) E

2

: a group of edges as desribed in observations A2 and A3. Eah edge is ut 2

k

times.

(iii) E

3

: a group of edges as desribed in observations A4 and A5. Eah onnetion edge on the top

boundary (i.e., subregions fB,F,Hg) is ut 2

k+1

times, and any other onnetion edge is ut twie.

(iv) E

4

: a group of edges as desribed in observations A6 and A7. Eah edge is ut 2i or 2(2

k

� i+1) times

if it is in the i-th row (or olumn) from the topmost (or leftmost).

(v) E

5

: a group of edges as desribed in observations A8 to A11. Eah edge is ut i or 2

k

� i+ 1 times if

it is in the i-th row (or olumn) from the topmost (or leftmost).

Notation 4.2 N

i

denotes the number of edge uts from an edge group E

i

.

In a H

2

k+n

grid region, the number of all possible positions of a 2

k

�2

k

window is (2

k+n

� 2

k

+ 1)

2

. Sine

there are two more uts from observation A12, in addition to N

1

; : : : ; N

5

, the average number of lusters

N

2

(k; k + n) is given by

N

2

(k; k + n) =

N

1

+N

2

+N

3

+N

4

+N

5

+ 2

2(2

k+n

� 2

k

+ 1)

2

: (4)

In the next setion, we derive a losed-form expression for eah of the edge groups N

1

; : : : ; N

5

.

Symbol De�nition

t

n

Number of onnetion edges in the top boundary of a 2

+

-oriented H

2

k+n

b

n

Number of onnetion edges in the bottom boundary of a 2

+

-oriented H

2

k+n

s

n

Number of onnetion edges in the side boundary of a 2

+

-oriented H

2

k+n

E

i

A group of edges between grid points

N

i

Number of edge uts from an edge group E

i

 

fRg

i

+

;n

Number of i

+

-oriented H

2

k

approximations in the subregion R of a 2

+

-oriented H

2

k+n

 

fRg

i

�

;n

Number of i

�

-oriented H

2

k

approximations in the subregion R of a 2

+

-oriented H

2

k+n

H

k

Number of horizontal edges in a 2-oriented H

2

k

V

k

Number of vertial edges in a 2-oriented H

2

k

h

k

(i) Number of horizontal edges in the i-th row from the topmost of a 2

+

-oriented H

2

k

v

k

(i) Number of vertial edges in the i-th olumn from the leftmost of a 2

+

-oriented H

2

k

N

2

(k; k + n) Exat number of lusters overing a 2

k

�2

k

square in a 2

k+n

�2

k+n

grid region

Table 2: De�nition of Symbols

4.2 Formal derivation

We adopt the notion of orientations of H

d

k

given in Setion 3 and extend so that it an be used to derive

indutions.

Notation 4.3 An i-oriented H

d

k

is alled i

+

-oriented (or i

�

-oriented) if the i-th oordinate of its start point is

not greater (or less) than that of any grid point in the H

d

k

.

Figure 8 illustrates 1

+

-oriented, 1

�

-oriented, 2

+

-oriented and 2

�

-oriented H

2

2

approximations. Note that

either of the two end points an be a start point for eah urve.

We begin by deriving N

1

and N

3

. It appears at the �rst glane that the derivation of N

1

is simple

beause eah edge in E

1

is ut 2

k+1

times. However, the derivation of N

1

involves ounting the number of

onnetion edges rossing the boundary between subregion A and the other subregions, as well as the number

of edges inlusive to subregion A. We aomplish this by ounting the number of edges in the omplementary
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A
x

is
 2

Axis 1

(a) 1

+

-oriented (b) 1

�

-oriented () 2

+

-oriented (d) 2

�

-oriented

Figure 8: Four di�erent orientations of H

2

2

set E

1

(that is, fedges in H

2

k+n

g � E

1

). Sine E

1

onsists of edges in 4(2

n

� 1) H

2

k

approximations in

boundary subregions B through I and onnetion edges in E

3

, jE

1

j is equal to 4(2

n

� 1)� (2

2k

� 1) + jE

3

j .

To �nd the number of onnetion edges in E

3

, we de�ne the number of onnetion edges in di�erent parts

of the boundary subregions. In the following, without loss of generality, we assume that the grid region is

2

+

-oriented H

2

k+n

.

Notation 4.4 Let t

n

, b

n

and s

n

denote the number of onnetion edges in the top boundary (i.e., subregions

fB,F,Hg), in the bottom boundary (i.e., subregions fC,G,Ig), and in the left or right boundary (i.e., subregions

fD,F,Gg or fE,H,Ig) of a 2

+

-oriented H

2

k+n

, respetively.

Note that the number of onnetion edges in subregions fD,F,Gg and the number of onnetion edges in

subregions fE,H,Ig are idential, beause the 2

+

-oriented H

2

k+n

is vertially self-symmetri.

Lemma 4 For any positive integer n,

t

n

= 2

n�1

and b

n

+ 2s

n

= 2(2

n

� 1): (5)

Proof. Given in Appendix A.

From Lemma 4, the number of onnetion edges inlusive to the boundary subregions (i.e., E

3

) is given

by t

n

+ b

n

+ 2s

n

= 5 � 2

n�1

� 2. From this, we an obtain the number of edges in E

1

as well as E

3

and

hene the number of uts from E

1

and E

3

. The results are presented in the following lemma.

Lemma 5 The numbers of edge uts from E

1

and E

3

are

N

1

= 2(2

n

� 2)

2

2

3k

+ 3(2

n

� 2)2

k

(6)

N

3

= 2

n+k

+ 4(2

n

� 1) (7)

Proof. Given in Appendix A.

All that we need to derive N

2

is then to ount the number of vertial edges in subregions fB,Cg and the

number of horizontal edges in subregions fD,Eg. No onnetion edges in these subregions are involved. Sine

the number of horizontal (or vertial) edges in a H

2

k

is determined by its orientation, it is neessary to �nd

the number of H

2

k

approximations of di�erent orientations in subregions fB,C,D,Eg. In the following, we give

notations for the number of horizontal and vertial edges in a H

2

k

, and the number of H

2

k

approximations of

di�erent orientations in the boundary subregions in Figure 7.

Notation 4.5 Let H

k

and V

k

denote the number of horizontal and vertial edges in a 2-oriented H

2

k

, respe-

tively.

By de�nition, the numbers of horizontal and vertial edges in a 1-oriented H

2

k

are V

k

and H

k

, respetively.

Notation 4.6 For a set of subregions fR

1

; R

2

; : : : ; R

j

g in Figure 7, let  

fR

1

;R

2

;:::;R

j

g

i

+

;n

and  

fR

1

;R

2

;:::;R

j

g

i

�

;n

denote

the number of i

+

-oriented and i

�

-oriented H

2

k

approximations in those subregions, respetively.
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Lemma 6 Given a 2

+

-oriented H

2

k+n

as depited in Figure 7,

 

fBg

2

+

;n

= 2

n

� 2 (8)

 

fDg

1

+

;n

+  

fEg

1

�

;n

+  

fCg

2

+

;n

= 2

n

� 2 (9)

 

fCg

1

+

;n

+  

fCg

1

�

;n

+  

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

= 2(2

n

� 2): (10)

Proof. Given in Appendix A.

From Lemma 6, a losed-form expression of N

2

is derived in the following lemma.

Lemma 7 The number of edge uts from E

2

is

N

2

= 2(2

n

� 2)2

3k

� 2(2

n

� 2)2

k

: (11)

Proof. Given in Appendix A.

Now we onsider the number of uts from E

4

and E

5

. The edges in these groups are ut di�erent

numbers of times depending on their relative loations within the H

2

k

whih they belong to. Consequently,

the expressions for N

4

and N

5

inlude suh terms as i � v

k

(i) and i � h

k

(i). The de�nitions of v

k

(i) and

h

k

(i) are given below. We all H

2

k

approximations having suh terms gradients.

Notation 4.7 Let h

k

(i) be the number of horizontal edges in the i-th row from the topmost, and v

k

(i) be the

number of vertial edges in the i-th olumn from the leftmost of a 2

+

-oriented H

2

k

.

(a) u-gradient

2

(b) d-gradient

2

() s-gradient

2

Figure 9: Three di�erent gradients and utting windows

To derive the losed-form expressions for N

4

and N

5

, we �rst de�ne di�erent types of gradients. Consider

the 2

+

-oriented H

2

k

approximations in subregions fB,C,D,Eg. From observations A6 and A7, the number

of uts from the horizontal edges in a 2

+

-oriented H

2

k

in subregion B is

P

2

k

i=1

2ih

k

(i). Likewise, the number

of uts from the horizontal edges in a 2

+

-oriented H

2

k

in subregion C is

P

2

k

i=1

2(2

k

� i + 1)h

k

(i), and the

number of uts from the vertial edges in a 2

+

-oriented H

2

k

in subregion D or E is

P

2

k

i=1

2iv

k

(i). The number

of uts from vertial edges is the same in both subregions D and E, beause a 2

+

-oriented H

2

k

is vertially

self-symmetri. Based on this, we de�ne three types of gradients for a 2

+

-oriented H

2

k

:

De�nition 4.1 (i) A 2

+

-oriented H

2

k

is alled u-gradient

k

if eah of its horizontal edges in the i-th row

from the topmost is ut i or 2i times.

(ii) A 2

+

-oriented H

2

k

is alled d-gradient

k

if eah of its horizontal edges in the i-th row from the topmost

is ut 2

k

� i+ 1 or 2(2

k

� i+ 1) times.
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(iii) A 2

+

-oriented H

2

k

is alled s-gradient

k

if eah of its vertial edges in the i-th olumn from either the

leftmost or rightmost is ut i or 2i times.

Figure 9 illustrates the three di�erent gradients (u-gradient

2

, d-gradient

2

and s-gradient

2

) and the utting

boundaries of a sliding window. These de�nitions an be applied to the H

2

k

approximations of di�erent

orientations as well, by simply rotating the diretions. For example, a 1

+

-oriented H

2

k

in subregion D is

d-gradient

k

, and a 2

�

-oriented H

2

k

in subregion D is s-gradient

k

.

Lemma 8 Let �

k

=

P

2

k

i=1

ih

k

(i), �

k

=

P

2

k

i=1

(2

k

� i+ 1)h

k

(i) and 

k

=

P

2

k

i=1

iv

k

(i). Then,

�

k

+ �

k

= (2

k

+ 1)H

k

and 

k

=

1

2

(2

k

+ 1)V

k

(12)

Proof. Given in Appendix A.

Next, we need to know the number of gradients of eah type in the boundary subregions B through I so

that we an derive N

4

and N

5

. For H

2

k

approximations in subregions fB,C,D,Eg,

� Every 2

+

-oriented H

2

k

in B is u-gradient

k

.

� Every 2

+

-oriented H

2

k

in C, 1

+

-oriented H

2

k

in D, and 1

�

-oriented H

2

k

in E is d-gradient

k

.

� Every 1

+

-oriented or 1

�

-oriented H

2

k

in C, and 2

+

-oriented or 2

�

-oriented in fD,Eg is s-gradient

k

.

The H

2

k

approximations in subregions fF,G,H,Ig are dual-type gradients. In other words,

� Eah of the 2

+

-oriented H

2

k

approximations in fF,Hg is both u-gradient

k

and s-gradient

k

.

� TheH

2

k

in G is both d-gradient

k

and s-gradient

k

beause the subgrid is either 2

+

-oriented or 1

+

-oriented.

� TheH

2

k

in I is both d-gradient

k

and s-gradient

k

beause the subgrid is either 2

+

-oriented or 1

�

-oriented.

Thus, in subregions fB,C,D,Eg, the number of u-gradient

k

approximations is  

fBg

2

+

;n

, the number of d-gradient

k

approximations is  

fCg

2

+

;n

+ 

fDg

1

+

;n

+ 

fEg

1

�

;n

, and the number of s-gradient

k

approximations is  

fD;Eg

2

+

;n

+ 

fD;Eg

2

�

;n

+

 

fCg

1

�

;n

+  

fCg

1

+

;n

. In subregions fF,G,H,Ig, the number of u-gradient

k

approximations is two, the number of

d-gradient

k

approximations is two, and the number of s-gradient

k

approximations is four. From this obser-

vation, and Lemma 6 and Lemma 8, it follows that

Lemma 9 The numbers of edge uts from E

4

and E

5

are

N

4

= 2(2

n

� 2)(2

k

+ 1)(2

2k

� 1) (13)

N

5

= 2(2

k

+ 1)(2

2k

� 1) (14)

Proof. Given in Appendix A.

Finally, in the following theorem, we present a losed-form expression of the average number of lusters.

Theorem 2 Given a 2

k+n

�2

k+n

grid region, the average number of lusters within a 2

k

�2

k

query window

is

N

2

(k; k + n) =

(2

n

� 1)

2

2

3k

+ (2

n

� 1)2

2k

+ 2

n

(2

k+n

� 2

k

+ 1)

2

(15)

Proof. From Equation (4),

N

2

(k; k + n) = (N

1

+N

2

+N

3

+N

4

+N

5

+ 2)=2(2

k+n

� 2

k

+ 1)

2

= ((2

n

� 1)

2

2

3k

+ (2

n

� 1)2

2k

+ 2

n

)=(2

k+n

� 2

k

+ 1)

2

:

For inreasing n, N

2

(k; k + n) asymptotially approahes a limit of 2

k

, whih is the side length of the

square query region. This mathes the asymptoti solution given in Corollary 1(ii) for d = 2.
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5 Experimental Results

To demonstrate the orretness of the asymptoti and exat analyses presented in the previous setions,

we arried out simulation experiments for range queries of various sizes and shapes. The objetive of our

experiments was to evaluate the auray of the formulas given in Theorem 1 and Theorem 2. Spei�ally,

we intended to show that the asymptoti solution is an exellent approximation for general d-dimensional

range queries of arbitrary sizes and shapes. We also intended to validate the orretness of the exat solution

for a 2-dimensional 2

k

�2

k

square query.

5.1 Arrangements of experiments

To obtain exat measurements of the average number of lusters, it was required that we average the number

of lusters within a query region at all possible positions in a given grid spae. Suh exhaustive simulation

runs allowed us to validate empirially the orretness of the exat formula given in Theorem 2 for a 2

k

�2

k

square query.

S

S S

S/2

S/2

S/2 S

S

S

S

S

S

S/2

S/2

S

(a) square (b) polygon () irle (d) ube (e) polyhedron

Figure 10: Illustration of sample query shapes

However, the number of all possible queries is exponential on the dimensionality. In a d-dimensional

N�N�: : :�N grid spae, the total number of distint positions of a d-dimensional k�k�: : :�k hyperubi

query is (N � k + 1)

d

. Consequently, for a large grid spae and a high dimensionality, eah simulation run

may require proessing an exessively large number of queries, whih in turn makes the simulation take too

long. Thus, we arried out exhaustive simulations only for relatively small 2-dimensional and 3-dimensional

grid spaes. Instead, for relatively large or high dimensional grid spaes, we did statistial simulation by

random sampling of queries.

For query shapes, we hose squares, irles and onave polygons for 2-dimensional ases, and ubes,

onave polyhedra and spheres for 3-dimensional ases. Figure 10 illustrates some of the query shapes used

in our experiments. In higher dimensional spaes, we used hyperubi and hyperspherial query shapes

beause it was relatively easy to identify the query regions by simple mathematial formulas.

5.2 Empirial validation

The �rst set of experiments was arried out in 2-dimensional grid spaes with two di�erent sizes. The table

in Figure 11(a) ompares the empirial measurements with the exat and asymptoti formulas for a 2

k

�2

k

square query. The seond olumn of the table ontains the average numbers of lusters obtained by an

exhaustive simulation performed on a 1024�1024 grid spae. The numbers in the third and fourth olumns

were omputed by the formulas in Theorem 1 and Theorem 2, respetively. The numbers from the simulation

are idential to those from the exat formula ignoring round-o� errors. Moreover, by omparing the seond

and third olumns, we an measure how losely the asymptoti formula reets the reality in a �nite grid

spae.

Figure 11(b) ompares three di�erent 2-dimensional query shapes: squares, irles and onave polygons.

The average number of lusters were obtained by a statistial simulation performed on a 32K�32K grid spae.

For the statistial simulation, a total of 200 queries were generated and plaed randomly within the grid

spae for eah ombination of query shape and size. With a few exeptional ases, the numbers of lusters

form a linear urve for eah query shape; the linear orrelation oeÆients are 0.999253 for squares, 0.999936

15



query empirial asymptoti exat

2

1

�2

1

1.998534 2 2091524/1046529

2

2

�2

2

3.996328 4 4165936/1042441

2

3

�2

3

7.992257 8 8266304/1034289

2

4

�2

4

15.984206 16 16273216/1018081

2

5

�2

5

31.967807 32 31521824/986049

(a) Exhaustive simulation (grid: 1024�1024)
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Figure 11: Average number of lusters for 2-dimensional queries

for irles, and 0.999267 for onave polygons. The numbers are almost idential for the three di�erent query

shapes despite their overing di�erent areas. A square overs s

2

grid points, a onave polygon 3s

2

=4 grid

points and a irle approximately �s

2

=4 grid points.

However, this should not be surprising, as the three query shapes have the same length of perimeter for a

given side length s. For a irular query of diameter s, we an always �nd a retilinear polygon that ontains

the same set of grid points as the irular query region. And it is always the ase that the perimeter of

the retilinear polygon (as shown in Figure 10()) is equal to that of a square of side length s. In general,

in a 2-dimensional grid spae, the perimeter of a retilinear polygon is greater than or equal to that of the

minimum bounding retangle (MBR) of the polygon. This justi�es the general approah of using a minimum

bounding retangle to represent a 2-dimensional range query, beause the use of an MBR does not inrease

the atual number of lusters (i.e., the number of non-onseutive disk aesses).
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Figure 12: Average number of lusters for higher dimensional queries

A similar set of experiments was arried out in higher dimensional grid spaes. The results in Figure 12(a)

were obtained by a statistial simulation performed on a 32K�32K�32K grid spae. For the statistial

simulation, a total of 200 queries were generated and plaed randomly within the grid spae for eah om-

bination of query shape and size. Those in Figure 12(b) were obtained by a statistial simulation with 200

random d-dimensional 3�3�: : :�3 hyperubi queries in a d-dimensional 32K�32K�: : :�32K grid spae

(2 � d � 10).

In Figure 12(a), the numbers of lusters form quadrati urves for all the three query shapes, but with
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slightly di�erent oeÆients for the quadrati term. To determine the quadrati funtions, we applied the

least-square urve �tting method for eah query shape. The approximate quadrati funtions were obtained

as follows.

f

ube

(s) = 1:02307s

2

+ 1:60267s+ 1:93663

f

poly

(s) = 0:947168s

2

+ 1:26931s+ 1:95395

f

sphere

(s) = 0:816674s

2

+ 1:27339s+ 2:6408:

The approximate funtion f

ube

(s) for a ubi query on�rms the asymptoti solution given in Corollary 1(ii),

as it is quite lose to s

2

. Furthermore, Figure 12(b) illustrates that the empirial results from the hyper-

ubi queries oinide with the formula (s

d�1

) even in higher dimensional spaes.

2

The numbers from the

experiments were less than 2 perent o� from the formula.

In ontrast, the funtions f

poly

(s) and f

sphere

(s) for onave polyhedral and spherial queries are lower

than s

2

. The reason is that, unlike in the 2-dimensional ase, the surfae area of a onave polyhedron or a

sphere is smaller than that of its minimum bounding ube. For example, the surfae area of the polyhedron

illustrated in Figure 10(e) is

11

2

s

2

, while that of the orresponding ube is 6s

2

. For a sphere of diameter

s = 16, the surfae area (i.e., the number of grid points on the surfae of the sphere) is 1248. This is far

smaller than the surfae area of the orresponding ube, whih is 6�16

2

. Note that the oeÆients of the

quadrati terms in f

poly

(s) and f

sphere

(s) are fairly lose to

11

12

= 0:9166 � � � and

1248

6�32

2

= 0:8125, respetively.

This indiates that, in a d-dimensional spae (d � 3), aessing the minimum bounding hyper-retangle of

a given query region may inur additional non-onseutive disk aesses, and hene supports the argument

made in [15℄ that the minimum bounding retangle may not be a good approximation of a non-retangular

objet.

5.3 Comparison with the Gray-oded and z urves

It may be argued that it is not onvining to make a de�nitive onlusion that the Hilbert urve is better or

worse than others solely on the basis of the average behaviors, beause the lustering ahieved by the Hilbert

urve might have a wider deviation from the average than other urves. Therefore, it is desirable to perform

a worst-ase analysis to determine the bounds on the deviation. A full-edged worst-ase analysis, however,

is beyond the sope of this paper. Instead, we measured the worse-ase numbers of lusters for the Hilbert

urve, and ompared with those for the Gray-oded and z urves in the same simulation experiments.

Figure 13 and Figure 14 show the worst-ase and average numbers of lusters, respetively. Eah �gure

presents the results from an exhaustive simulation performed on a 1K�1K 2-dimensional spae and a

statistial simulation performed on a 32K�32K�32K 3-dimensional spae. The Hilbert urve ahieves

muh better lustering than the other urves in both the worst and average ases. For example, for a

2-dimensional square query, the Hilbert urve signi�antly redued the numbers of lusters, yielding an

improvement of up to 43 perent for the worst-ase behaviors, and 48 perent for the average ases. For a

3-dimensional spherial query, the Hilbert urve ahieved an improvement of up to 28 perent from the z

urve and 18 perent from the Gray-oded urve for the worst ases, and up to 31 perent from the z urve

and 22 perent from the Gray-oded urve for the average ases.

Although it is not the fous of this paper, it is worth noting that the Gray-oded urve was not always

better than the z urve, whih is in ontrast to a previous study [14℄ that the Gray-oded urve ahieves

better lustering than the z urve for a 2-dimensional 2�2 square query. In partiular, for 2-dimensional

irular queries (Figure 13(b) and Figure 14(b)), the Gray-oded urve was worse than the z urve in both

the worst and average ases. On the other hand, for 2-dimensional square queries, the Gray-oded urve was

better than the z urve for the average lustering only by negligible amounts (the two measurements were

almost idential, as shown in Figure 14(a)). Furthermore, it was surprising that both the Gray-oded and

z urves performed exatly the same for the worst-ase lustering (the two measurements were ompletely

idential, as shown in Figure 13(a)). In a 3-dimensional spae, however, the Gray-oded urve was learly

better than the z urve for both types of queries in both the worst and average ases.

2

The exponential growth gives rise to the question of whether using the Hilbert urve is a pratial tehnique for lustering

high dimensional data objets. For instane, in a 10-dimensional spae, the expeted number of lusters was 19,683.
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Figure 13: Worst-ase number of lusters for three di�erent spae-�lling urves

5.4 Summary

The main onlusions from our experiments are:

� The exat solution given in Theorem 2 mathes exatly the experimental results from exhaustive

simulations for the square queries of size 2

k

�2

k

. (See Figure 11(a).)

� The asymptoti solutions given in Theorem 1 and Corollary 1 provide exellent approximations for

d-dimensional queries of arbitrary shapes and sizes. (See Figure 11(b) and Figure 12.) For example,

the relative errors did not exeed 2 perent for d-dimensional (2 � d � 10) hyperubi queries.

� Assuming that bloks are arranged on disk by the Hilbert ordering, aessing the minimum bounding

retangles of a d-dimensional (d � 3) query region may inrease the number of non-onseutive aesses,

whereas this is not the ase for a 2-dimensional query.

� The Hilbert urve outperforms the z and Gray-oded urves by a wide margin for both the worst and

average ase lustering. (See Figure 13 and Figure 14.)

� For 3-dimensional ubi and spherial queries, the Gray-oded urve outperformed the z urve for both

the worst-ase and average lustering. However, the lustering by the Gray-oded urve was almost

idential to that by the z urve for 2-dimensional square queries (in Figure 13(a) and Figure 14(a)),

and learly worse for 2-dimensional irular queries (in Figure 13(b) and Figure 14(b)).
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Figure 14: Average number of lusters for three di�erent spae-�lling urves

6 Conlusions

We have studied the lustering property of the Hilbert spae-�lling urve as a linear mapping of a multidimen-

sional spae. Through algebrai analysis, we have provided simple formulas that state the expeted number

of lusters for a given query region, and also validated their orretness through simulation experiments.

The main ontributions of this paper are:

� Theorem 2 generalizes the previous work done only for a 2�2 query region [14℄, by providing an exat

losed-form formula for 2

k

�2

k

square queries for any k (k � 1). The asymptoti solution given in

Theorem 1 further generalizes it for d-dimensional polyhedral query regions (d � 2).

� We have proved that the Hilbert urve ahieves better lustering than the z urve in a 2-dimensional

spae; the average number of lusters for the Hilbert urve is one fourth of the perimeter of a query

retangle, while that of the z urve is one third of the perimeter plus two thirds of the side length of the

retangle in the unfavored diretion [23℄. Furthermore, by simulation experiments, we have shown that

the Hilbert urve outperforms both the z and Gray-oded urves in 2-dimensional and 3-dimensional

spaes. We onjeture that this trend will hold even in higher dimensional spaes.

� We have shown that it may inur extra overhead to aess the minimum bounding hyper-retangle for

a d-dimensional non-retangular query (d � 3), beause it may inrease the number of lusters (i.e.,

non-onseutive disk aesses).

The approahes used in this paper an be applied to other spae-�lling urves. In partiular, the basi

intuitions summarized in Remark 3.1 and Remark 4.1 are true for any spae-�lling urves.
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From a pratial point of view, it is important to predit and minimize the number of lusters beause it

determines the number of non-onseutive disk aesses, whih in turn inur additional seek time. Assuming

that bloks are arranged on disk by the Hilbert ordering, we an provide a simple measure that depends

only on the perimeter or surfae area of a given query region and its dimensionality. The measure an then

be used to predit the required disk aess behaviors and thereby the total aess time.

The full-edged analysis of the worst-ase behaviors for the Hilbert urve is left for future researh.

Future work also inludes the extension of the exat analysis for d-dimensional spaes (d � 3), and the

investigation of the distribution of distanes between lusters.

A Appendix: Proofs

Proof of Lemma 4: A 2

+

-oriented H

2

k+n

approximation is omposed of four H

2

k+n�1

approximations (two

on the top and two on the bottom) and three onnetion edges. The two H

2

k+n�1

approximations on the top

half are 2

+

-oriented and the two H

2

k+n�1

approximations on the bottom half are 1

+

-oriented on the left and

1

�

-oriented on the right. Among the three edges onneting the four H

2

k+n�1

approximations, the horizontal

edge is not inluded in the boundary subregion of the H

2

k+n

, beause the edge resides on the 2

k+n�1

-th row

from the topmost of the H

2

k+n

. The other two vertial onnetion edges are on the leftmost and rightmost

olumns and inluded in the boundary subregion of the H

2

k+n

. Thus, the main observations are:

(i) The number of onnetion edges in the top boundary subregion of the 2

+

-oriented H

2

k+n

is the sum of

those in the top boundary subregions of the two 2

+

-oriented H

2

k+n�1

approximations.

(ii) The number of onnetion edges in the bottom boundary subregion of the 2

+

-oriented H

2

k+n

is the

sum of those in the bottom boundary subregions of the 1

+

-oriented H

2

k+n�1

and 1

�

-oriented H

2

k+n�1

approximations.

(iii) The number of onnetion edges in the left (or right) boundary subregion of the 2

+

-oriented H

2

k+n

is

the sum of those in the left (or right) boundary subregions of the 2

+

-oriented H

2

k+n�1

and 1

+

-oriented

(or 1

�

-oriented) H

2

k+n�1

approximations, plus one for a onnetion edge.

Sine the bottom boundary subregion of a 1

+

-oriented H

2

k+n�1

is equivalent to the right boundary subregion

of a 2

+

-oriented H

2

k+n�1

and so on, it follows that

t

n

= 2� t

n�1

b

n

= 2� s

n�1

s

n

= s

n�1

+ b

n�1

+ 1:

Sine t

1

= 1; b

1

= 0 and s

1

= 1, we obtain t

n

= 2

n�1

and b

n

+ 2s

n

= 2(b

n�1

+ 2s

n�1

) + 2, whih yields

b

n

+ 2s

n

= 2(2

n

� 1).

Proof of Lemma 5: The H

2

k+n

and H

2

k

approximations ontain 2

2(k+n)

� 1 and 2

2k

� 1 edges, respetively.

Sine there are a total of 4(2

n

�1) H

2

k

approximations in the boundary subregions, the total number of edges

in E

1

is given by

(2

2(k+n)

� 1)� 4(2

n

� 1)(2

2k

� 1)� (5� 2

n�1

� 2) = 2

2k

(2

n

� 2)

2

+ 3(2

n�1

� 1):

Beause eah edge in E

1

is ut 2

k+1

times, it follows that

N

1

= 2

k+1

(2

2k

(2

n

� 2)

2

+ 3(2

n�1

� 1)) = 2(2

n

� 2)

2

2

3k

+ 3(2

n

� 2)2

k

:

Among the 5�2

n�1

� 2 edges in E

3

, t

n

edges are ut 2

k+1

times, and the other b

n

+2s

n

edges are ut twie.

Therefore,

N

3

= 2

k+1

t

n

+ 2(b

n

+ 2s

n

) = 2

n+k

+ 4(2

n

� 1):
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Proof of Lemma 6: Consider a 2

+

-oriented H

2

k+n

, whih is omposed of four H

2

k+n�1

approximations and

three onnetion edges. The number of 2

+

-oriented H

2

k

approximations in the top subregions (i.e., fB,F,Hg)

of the 2

+

-oriented H

2

k+n

is twie the number of 2

+

-oriented H

2

k

approximations in the top subregions of

the 2

+

-oriented H

2

k+n�1

. This is beause the top half of the 2

+

-oriented H

2

k+n

onsists of two 2

+

-oriented

H

2

k+n�1

approximations. Thus the reurrene relation is  

fB;F;Hg

2

+

;n

= 2�  

fB;F;Hg

2

+

;n�1

. Sine  

fB;F;Hg

2

+

;1

= 2, we

obtain

 

fB;F;Hg

2

+

;n

= 2

n

:

The bottom half of the 2

+

-oriented H

2

k+n

onsists of a 1

+

-oriented H

2

k+n�1

and a 1

�

-oriented H

2

k+n�1

.

In the bottom boundary subregions fC,G,Ig, eah 1

�

-oriented H

2

k

in the 1

+

-oriented H

2

k+n�1

approximation

beomes a 2

+

-oriented H

2

k

in the 2

+

-oriented H

2

k+n

approximation; eah 1

+

-oriented H

2

k

in the 1

�

-oriented

H

2

k+n�1

approximation beomes a 2

+

-oriented H

2

k

in the 2

+

-oriented H

2

k+n

approximation. No other than

the 1

�

-oriented and 1

+

-oriented H

2

k

approximations in the H

2

k+n�1

approximations beomes a 2

+

-oriented

H

2

k

in the H

2

k+n

. Thus, it follows that

 

fC;G;Ig

2

+

;n

=  

fC;G;Ig

1

�

;n�1

+  

fC;G;Ig

1

+

;n�1

:

Sine there exist no 2

�

-orientedH

2

k

approximations in the bottom boundary subregions,  

fC;G;Ig

2

�

;n

= 0. Thus,

 

fC;G;Ig

2

+

;n

+  

fC;G;Ig

1

�

;n

+  

fC;G;Ig

1

+

;n

= 2

n

:

Similarly, on the left boundary subregion, we obtain the following reurrene relations.

 

fD;F;Gg

1

+

;n

=  

fD;F;Gg

2

+

;n�1

+  

fD;F;Gg

2

�

;n�1

 

fD;F;Gg

1

+

;n

+  

fD;F;Gg

2

+

;n

+  

fD;F;Gg

2

�

;n

= 2

n

:

Then, from the above four reurrene relations,

 

fC;G;Ig

2

+

;n

+ 2 

fD;F;Gg

1

+

;n

= (2

n�1

�  

fC;G;Ig

2

+

;n�1

) + 2(2

n�1

�  

fD;F;Gg

1

+

;n�1

)

= (2

n�2

+  

fC;G;Ig

2

+

;n�2

) + 2(2

n�2

+  

fD;F;Gg

1

+

;n�2

)

= 3� 2

n�2

+ ( 

fC;G;Ig

2

+

;n�2

+ 2 

fD;F;Gg

1

+

;n�2

):

Sine  

fC;G;Ig

2

+

;1

+ 2 

fD;F;Gg

1

+

;1

= 2 and  

fC;G;Ig

2

+

;2

+ 2 

fD;F;Gg

1

+

;2

= 4, we obtain

 

fC;G;Ig

2

+

;n

+ 2 

fD;F;Gg

1

+

;n

= 2

n

:

From  

fE;H;Ig

1

�

;n

=  

fD;F;Gg

1

+

;n

due to the self-symmetry of the 2

+

-oriented H

2

k+n

, it follows that

 

fC;G;Ig

2

+

;n

+  

fD;F;Gg

1

+

;n

+  

fE;H;Ig

1

�

;n

=  

fC;G;Ig

2

+

;n

+ 2 

fD;F;Gg

1

+

;n

= 2

n

:

Now onsider subregions fF,G,H,Ig. The H

2

k

approximations in F,H are always 2

+

-oriented, the H

2

k

in G

is either 2

+

-oriented or 1

+

-oriented, and the H

2

k

in I is either 2

+

-oriented or 1

�

-oriented. Thus,  

fF;Hg

2

+

;n

= 2

and  

fG;Ig

2

+

;n

+  

fG;Ig

1

+

;n

+  

fG;Ig

1

�

;n

= 2. Therefore,

 

fBg

2

+

;n

=  

fB;F;Hg

2

+

;n

�  

fF;Hg

2

+

;n

= 2

n

� 2

 

fCg

2

+

;n

+  

fDg

1

+

;n

+  

fEg

1

�

;n

= ( 

fC;G;Ig

2

+

;n

+  

fD;F;Gg

1

+

;n

+  

fE;H;Ig

1

�

;n

)� ( 

fG;Ig

2

+

;n

+  

fG;Ig

1

+

;n

+  

fG;Ig

1

�

;n

)

= 2

n

� 2:

So far we have derived the �rst two equations given in this lemma.

Finally, to derive the third equation, onsider subregions fB,C,D,Eg. Sine the total number of H

2

k

approximations in those subregions is 4(2

n

� 2),

 

fB;C;D;Eg

2

+

;n

+  

fB;C;D;Eg

2

�

;n

+  

fB;C;D;Eg

1

�

;n

+  

fB;C;D;Eg

1

+

;n

= 4(2

n

� 2):
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There exist no 2

�

-oriented H

2

k

in fB,Cg, no 1

�

-oriented H

2

k

in fB,Dg, and no 1

+

-oriented H

2

k

in fB,Eg. That

is,  

fB;Cg

2

�

;n

=  

fB;Dg

1

�

;n

=  

fB;Eg

1

+

;n

= 0. Therefore,

 

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

+  

fCg

1

�

;n

+  

fCg

1

+

;n

= 4(2

n

� 2)� ( 

fB;Cg

2

+

;n

+  

fB;Cg

2

�

;n

+  

fB;D;Eg

1

�

;n

+  

fB;D;Eg

1

+

;n

)

= 4(2

n

� 2)� ( 

fB;Cg

2

+

;n

+  

fEg

1

�

;n

+  

fDg

1

+

;n

)

= 2(2

n

� 2):

Proof of Lemma 7: Every H

2

k

approximation in subregion B is 2

+

-oriented, and there exists no 2

�

-oriented

H

2

k

approximation in subregion C. Thus, the number of vertial edges in subregions fB,Cg is the sum of

 

fB;Cg

2

+

;n

V

k

and ( 

fCg

1

+

;n

+  

fCg

1

�

;n

)H

k

. Likewise, the number of horizontal edges in subregions fD,Eg is the sum

of ( 

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

)H

k

and ( 

fDg

1

+

;n

+  

fEg

1

�

;n

)V

k

, beause there exist no 1

�

-oriented H

2

k

in subregion D and

no 1

+

-oriented H

2

k

in subregion E. Thus, the total number of edges in E

2

is given by

( 

fB;Cg

2

+

;n

+  

fDg

1

+

;n

+  

fEg

1

�

;n

)V

k

+ ( 

fCg

1

+

;n

+  

fCg

1

�

;n

+  

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

)H

k

= 2(2

n

� 2)(H

k

+ V

k

) (by Lemma 6).

Eah edge in E

2

is ut 2

k

times and H

k

+ V

k

= 2

2k

� 1. Therefore,

N

2

= 2(2

n

� 2)(2

2k

� 1)2

k

= 2(2

n

� 2)2

3k

� 2(2

n

� 2)2

k

:

Proof of Lemma 8: First, �

k

+ �

k

=

P

2

k

i=1

ih

k

(i) +

P

2

k

i=1

(2

k

� i+ 1)h

k

(i) =

P

2

k

i=1

(2

k

+ 1)h

k

(i). From the

de�nition of H

k

, H

k

=

P

2

k

i=1

h

k

(i). Therefore,

�

k

+ �

k

= (2

k

+ 1)H

k

:

Seond, 

k

=

P

2

k�1

i=1

iv

k

(i) +

P

2

k

i=2

k�1

+1

iv

k

(i) =

P

2

k�1

i=1

iv

k

(i) +

P

2

k�1

i=1

(2

k�1

+ i)v

k

(2

k�1

+ i). Sine 2-

oriented H

2

k

approximations are vertially self-symmetri, v

k

(2

k

� i+ 1) = v

k

(i) holds for any i (1 � i �

2

k�1

): Thus, 

k

=

P

2

k�1

i=1

iv

k

(i) +

P

2

k�1

i=1

(2

k�1

+ i)v

k

(2

k�1

� i+ 1) =

P

2

k�1

i=1

iv

k

(i) +

P

2

k�1

i=1

(2

k

� i+1)v

k

(i).

From the de�nition of V

k

and self-symmetry, V

k

= 2

P

2

k�1

i=1

v

k

(i). Therefore,



k

=

2

k�1

X

i=1

(2

k

+ 1)v

k

(i) =

1

2

(2

k

+ 1)V

k

:

Proof of Lemma 9: In E

4

, the number of horizontal uts from a single u-gradient

k

is 2��

k

, the number of

horizontal uts from a single d-gradient

k

is 2� �

k

, and the number of vertial uts from a single s-gradient

k

is 2� 

k

. Thus,

N

4

= 2�

k

 

fBg

2

+

;n

+ 2�

k

( 

fCg

2

+

;n

+  

fDg

1

+

;n

+  

fEg

1

�

;n

) + 2

k

( 

fD;Eg

2

+

;n

+  

fD;Eg

2

�

;n

+  

fCg

1

�

;n

+  

fCg

1

+

;n

)

= 2�

k

(2

n

� 2) + 2�

k

(2

n

� 2) + 4

k

(2

n

� 2) (by Lemma 6)

= 2(2

n

� 2)(�

k

+ �

k

+ 2

k

)

= 2(2

n

� 2)(2

k

+ 1)(H

k

+ V

k

) (by Lemma 8)

= 2(2

n

� 2)(2

k

+ 1)(2

2k

� 1)

In E

5

, the number of horizontal uts from a single u-gradient

k

is �

k

, the number of horizontal uts

from a single d-gradient

k

is �

k

, and the number of vertial uts from a single s-gradient

k

is 

k

. Thus,

N

5

= 2�

k

+ 2�

k

+ 4

k

= 2(2

k

+ 1)(2

2k

� 1):
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