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Abstract

Current protocols such as IPSec and TLS that provide communication security for network

applications allow customization of certain security attributes and techniques, but in limited

ways and without the benefit of a single unifying framework. Here, the design of a highly-

customizable extensible service called SecComm is described in which attributes such as au-

thenticity, privacy, integrity, and non-repudiation can be customized in arbitrary ways. With

SecComm, applications can open secure communication connections in which only those at-

tributes selected from among a wide range of possibilities are enforced, and are enforced using

the strength or technique desired. SecComm is being implemented using the Mach MK 7.3

operating system and Cactus a system for building configurable communication services. In

Cactus different properties and techniques are implemented as software modules called micro-

protocols that interact using an event-driven execution paradigm. This design approach has

a high degree of flexibility, yet provides enough structure and control that it is easy to build

collections of micro-protocols realizing a large number of diverse properties.
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1 Introduction

A significant trend in network security design is the use of communication protocols that allow customiza-

tion of security attributes for explicitly managing the cost/benefit tradeoff. For example, IPSec [KA98], a

set of protocols being developed by the IETF to support secure packet exchange at the IP layer, provides two

security options. The authentication header (AH) option does not encrypt the data contents of the packet,

but provides optional authenticity, integrity, and replay prevention by adding an AH that contains a crypto-

graphic message digest. The encapsulating security payload (ESP) option provides privacy by encrypting

the data contents of the packet and optional authenticity, integrity, and replay prevention using a message

digest. Other protocols such as SSL [FKK96], S-HTTP [RS98], and TLS [DA99] offer similar features.

While this trend is positive, we argue that current efforts do not go far enough, and that it should be

possible to customize essentially all security attributes related to communication and to customize them

in essentially arbitrary ways. To support this argument, we present the design of a highly-customizable

extensible secure communication service called SecComm. With SecComm, applications can open secure

communication connections in which the security attributes and the strength of guarantees associated with

each attribute can be customized at a fine-grain level. For example, SecComm allows an attribute to be

guaranteed using arbitrary combinations of security algorithms, and it supports extensibility by allowing the

addition of new algorithms as separate modules. At another level, our approach can also be viewed as a

technique for implementing protocols such as IPSec, SSL, S-HTTP, and TLS in a modular and extensible

fashion.

The customization and extensibility attributes of SecComm derive from the use of Cactus as the un-

derlying implementation platform [HSH+98]. Cactus is a framework for constructing highly-configurable

network services, where each service attribute or variant is implemented as an independent module called

a micro-protocol. Micro-protocols are executed using an event-driven execution paradigm and can share

variables and data structures, both of which enhance independence between micro-protocols. A customized

version of the service is then constructed by choosing micro-protocols based on the desired properties. Sev-

eral prototype implementations of Cactus have been constructed, including one written in C that runs on

Mach version MK 7.3 from OpenGroup [Rey95], another written in C++ that runs on Solaris and Linux,

and a third written in Java that runs on multiple platforms. SecComm is being implemented using the MK

version of Cactus on a cluster of Pentiums. Other prototype services that have been successfully imple-

mented using Cactus or the predecessor Coyote system [BHSC98] include group RPC [HS95], membership

[HS98], and a real-time channel abstraction [HSH+98].

This paper has several goals. The first is to argue that fine-grain configurability and extensibility are

valuable characteristics for realizing security attributes in future communication services. The second is to

describe a realization of this philosophy in the form of the SecComm service. The last is to demonstrate

specifically how Cactus can be used to build services such as SecComm.

2 Configurable Security

2.1 Overview

Our system model consists of a set of machines connected by a local- or wide-area communication network.

Application level processes communicate by using a protocol graph that typically consists of IP and some

transport level protocol such as TCP or UDP. The SecComm protocol may be inserted into the protocol

1



stack on top of the transport protocol or on top of IP, as illustrated in Figure 1. (The internal structure of

SecComm is explained further in section 3.) The SecComm service is generally independent of the choice

of the lower-level communication protocol. The method used to structure the protocols hierarchically is

an independent issue. For example, in our prototype implementation, the x-kernel [HP91] is used for this

purpose, but other approaches could be used as well. It is also easy to structure SecComm as a middleware

service built on top of TCP sockets.

For each separate application level communication connection, a session is created through the Sec-

Comm service to allow each connection to have customized security attributes. The SecComm service

described in this paper focuses on client/server style communication, where the communicating principals

have distinct roles in the communication and each communication direction may require different security

guarantees. However, the approach and API support other paradigms such as group communication.

API: Open, Close, Push

API: Pop

OR

OR

TCP

TCP IP

. . . 

Micro-protocols Events

. . . 

. . . 

. . . 

. . . 

SecComm

Application / Middleware

Shared data structures
DESPrivacy

KeyedMD5Integrity

RSAAuthenticity

ClientKeyDistribution
Participants

Keys

PublicKeys

msgFromAbove

msgFromBelow

openSession

keyMsgSend_i

Figure 1: System protocol stack.

The system may also contain centralized security principals that provide authentication and other se-

curity services. These principals could include Certification Authorities (CA) that provide certified public

keys of other principals in the system and Key Distribution Centers (KDC) that provide authentication using

secret key methods as well as session keys.

2.2 Security attributes

As a first step towards exploiting fine-grain configurability, orthogonal security attributes and variants are

identified. While not an exhaustive list, these include:

� Authenticity. Ensures that a receiver can be certain of the identity of the message sender. Can be

implemented using public key cryptography [Hel78], any shared secret, or a trusted intermediary such

as Kerberos [SNS88, NT94].
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� Privacy. Ensures that only the intended receiver of a message is able to interpret the contents. Can be

implemented using any shared secret, public key cryptography, or combinations of methods.

� Integrity. Ensures that the receiver of a message can be certain that the message contents have not

been modified during transit. Some authenticity and privacy methods also provide integrity as a side

effect if the message format has enough redundancy to detect violations. Additional redundancy can

be provided using message digest algorithms such as MD5 [Riv92]. Integrity can be provided without

privacy, but at a minimum, the message digest itself must be protected.

� Non-repudiation. Ensures that a receiver can be assured that the sender cannot later deny having

sent the message. Relies on authenticity provided by public key cryptography and requires that the

receiver store the encrypted message as proof.

� Replay Prevention. Ensures that an intruder cannot retransmit an old message unnoticed. Can be

implemented using timestamps, sequence numbers, or other such nonces in messages. Typically used

in conjunction with authenticity, privacy, or integrity since otherwise it would be trivial for an intruder

to generate a new message that appears to be valid.

In addition to these attributes, other aspects of the secure communication service can be customized. In

particular, there are numerous techniques for creating and distributing the secret keys required by many of

the cryptographic methods that can be varied. These options include use of pre-established keys, use of keys

generated by one or all of the communicating parties (e.g. [DH76]), and use of external key distribution

centers [SNS88, NT94].

2.3 Cactus implementation platform

A service in Cactus is implemented as a composite protocol, with each semantic variant of a security attribute

or other functional component within the composite protocol implemented as a micro-protocol (Figure 1).

A micro-protocol is, in turn, structured as a collection of event handlers, which are procedure-like segments

of code that are executed when a specified event occurs. Events are used to signify state changes of interest,

such as “message arrival from the network”. When such an event occurs, all event handlers bound to that

event are executed. Events can be raised explicitly by micro-protocols or implicitly by the Cactus runtime

system. Execution of handlers is atomic with respect to concurrency.

Event handler binding, event detection, and invocation are implemented by the Cactus runtime system

that is linked with the micro-protocols to form a composite protocol. Once created, a composite protocol

can be composed in a traditional hierarchical manner with other protocols to form the application’s protocol

graph. For example, as noted above, in the MK prototype, the x-kernel is used.

The primary event-handling operations are:

� bid = bind(event, handler, order, static args): Specifies that handler is to be executed when event

occurs. order is a numeric value specifying the relative order in which handler should be executed

relative to other handlers bound to the same event. When the handler is executed, the arguments

static args are passed as part of the handler arguments.

� raise(event, dynamic args, mode, delay): Causes event to be raised after delay time units. If delay is

0, the event is raised immediately. The occurrence of an event causes handlers bound to the event to be

executed with dynamic args (and static args passed in the bind operation) as arguments. Execution

can either block the invoker until the handlers have completed execution (mode = SYNC) or allow the

caller to continue (mode = ASYNC).
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Other operations are available for unbinding handlers from events, creating and deleting events, halting

event execution, and canceling a delayed event.

In addition to the flexible event mechanism, Cactus supports shared data that can be accessed by the

micro-protocols in a composite protocol. Shared data structures are easy to use since the atomic execution

of event handlers eliminates most concurrency problems.

Finally, Cactus provides a message abstraction that supports configurable services. The main features

provided by this message abstraction are named attributes that have scopes corresponding to the composite

protocol (local), the protocols on a single machine (stack), and the peer protocols at the sender and receiver

(peer). A customizable pack routine concatenates peer attributes to the message body for network transmis-

sion, or for operations such as encryption and compression. A corresponding unpack routine extracts the

peer attributes from a message at the receiver.

3 SecComm Design

3.1 Application programming interface

The SecComm composite protocol exports the following operations:

� Open(participants,keys). Opens a session for a new communication connection, where participants

is an array identifying the communicating principals. keys is an array containing any predefined keys

required for the communication connection, such the principal’s private key or master key for the

KDC.

� Push(msg). Passes a message from a higher level protocol or application to the SecComm composite

protocol to be transmitted with the appropriate security attributes to the participants.

� Pop(msg). Passes a message from a lower level protocol to the SecComm composite protocol to

be decrypted, checked, and potentially delivered to a higher level protocol. When the SecComm

protocol passes a message to the higher level and authentication is required, it adds a stack attribute

AUTH SENDER that is the ID of the authenticated sender.

� Close(): Closes a communication connection.

3.2 Shared data structures and events

The design has a clear separation between the cryptographic micro-protocols that use encryption keys and

the micro-protocols responsible for creating and distributing these keys. To communicate this information

between these two types of micro-protocols, the SecComm design uses the Cactus provisions for shared data

structures. In particular, there is a shared table Keys accessed by micro-protocols based on indices passed

as parameters at startup time. Any predefined keys passed in the Open() operation are also stored in Keys.

Another shared data structure called PublicKeys caches known public keys. Finally, array Participants stores

the identities of the principals involved in the communication connection.

Our prototype implementation of SecComm uses the cryptographic package Cryptlib [Gut98] to provide

basic cryptographic functionality. Any cryptolibrary with the necessary functions could be used, however.

The design of SecComm uses a number of events for communication between micro-protocols and to

initiate execution when messages arrive. These include:
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� msgFromAbove(msg). Indicates that msg has arrived from a higher level protocol or application.

� msgFromBelow(msg). Indicates that msg has arrived from a lower level protocol or OS.

� openSession(). Indicates that a new secure communication session has been created, thereby initiating

creation and distribution of session keys if needed.

� keyCreate i(key,length). Indicates that a key of size length is to be created by the ith key creation

micro-protocol.

� keyMsgSend i(msg). Indicates that a message msg involved in the distribution of the ith key is about

to be sent.

� keyMsgReceive i(msg). Indicates the arrival of a message msg involved in the distribution of the ith

key.

� keyMiss(principal). Indicates that the public key of principal is required.

� securityAlert(msg). Indicates that a potential security violation related to msg has been detected.

3.3 Micro-protocols

3.3.1 Overview

The abstract security attributes described in Section 2.2, as well as key creation and distribution, are imple-

mented by one or more micro-protocols. When a number of micro-protocols implement variations of the

same abstract property, we collectively refer to them as a class of micro-protocols. For example, the class

of privacy micro-protocols includes DESPrivacy and RSAPrivacy micro-protocols that use DES and RSA

algorithms, respectively. In many cases, all the micro-protocols in such a class have the same interaction

with other micro-protocols, which simplifies the presentation of the service. Figure 2 illustrates the main

micro-protocol classes and typical event interactions between them.

openSession

keyCreate_i

securityAlert

keyMiss

msgFromBelow

keyMsgReceive_j

keyMsgSend_j

SecComm msgFromAbove

KeyDistribution

KeyCreation

PublicKeyAcquisition

SecurityAudit

Privacy

Authenticity

Integrity

ReplayPrevention

Non-Repudiation

Figure 2: Micro-protocol classes and their interactions.
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The privacy, authenticity, integrity, replay prevention, and non-repudiation micro-protocols all react to

the same set of events, namely msgFromAbove, msgFromBelow, keyMsgSend i, and keyMsgReceive i.

This design allows the same security micro-protocols to be used to secure both the normal data messages

and the key exchange messages. Note, however, that the security requirements for key exchange are typically

different than those for data exchange.

When designing the micro-protocols, it is important to take relative execution order into account for

handlers bound to events msgFromAbove, msgFromBelow, keyMsgSend i, and keyMsgReceive i so that

logical constraints between the attributes are satisfied. For example, replay prevention must be executed

before data integrity so that any nonces added will be included in the message digest. Furthermore, it is

important that the execution order at the receiver is the reverse of that at the sender, since cryptographic

methods are typically not commutative. These constraints are implemented using the order argument on the

bind() operation.

We now give an overview of the major micro-protocol classes.

3.3.2 Privacy

SecComm includes numerous privacy micro-protocols, ranging from those based on standardized crypto-

graphic methods such DESPrivacy and RSAPrivacy, to others based on non-standard methods. The latter

include OneTimePadPrivacy that encrypts a stream of messages by xoring it with a secret file that is shared

by the sender and receiver. This method can provide very good privacy, but requires a shared file at least as

long as the stream of messages to be exchanged. Other trivial privacy micro-protocols use simple substitu-

tions and shifts. For example, the CaesarPrivacy micro-protocol adds a fixed constant passed as initialization

parameter to each byte of the message, modulo 256. Such trivial methods do not provide a high level of pri-

vacy, but they may be enough the deter a casual observer. Moreover, combinations of the fast trivial methods

used in conjunction with a standard method such as DESPrivacy may enhance privacy considerably. Other

privacy techniques, such as steganography [JJ98], could easily be added to SecComm if desired.

The privacy micro-protocols are very simple, as illustrated in the case of the DESPrivacy micro-protocol

in Figure 3. In the parameter list, key is an index in the Keys data structure, order is the relative order in which

this security micro-protocol is to be applied to messages, dir indicates in which communication direction

this micro-protocol is to be applied (client to server (CS), server to client (SC), or both (BOTH)), mode

indicates if this micro-protocol is to be used for securing data messages, key exchange messages, or both,

and dist index indicates for which key distribution (if any) this micro-protocol is to be used. Note that the

privacy micro-protocol packs the message before encryption so that all message attributes to be transmitted

over the network will be encrypted. The pack routine combines all the peer attributes into the message body

denoted by the DATA attribute tag. The initialization section of the micro-protocol is executed when a new

SecComm connection is created (i.e., when a session is opened). The global variable Role indicates if this

is the client or server end of the secure communication connection. This particular configuration of the

micro-protocol uses the CBC mode of DES, but other modes such as ECB, CFB, and OFB [DES81] could

easily be implemented.

DESPrivacy, like any other secret key based micro-protocol, requires that a shared secret key be estab-

lished between the communicating partners in the Keys table. This can be accomplished using a predefined

key passed to SecComm at session opening time or by using the KeyDistribution micro-protocols (see sec-

tion 3.3.6). The basic RSAPrivacy is very similar except that it uses the receiver’s public key to encrypt the

message.
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micro-protocol DESPrivacy(key,order,dir,mode,dist index) f

handler Encrypt(msg)f
pack(msg); setAttr(msg,DATA)= DES(getAttr(msg,DATA),Keys[myKey],ENCRYPT,CBC);

g

handler Decrypt(msg)f
setAttr(msg,DATA)= DES(getAttr(msg,DATA),Keys[myKey],DECRYPT,CBC); unpack(msg);

g

initial f
myKey = key;
if mode == DATA or mode == BOTH f

if (dir == CS and Role == CLIENT) or (dir == SC and Role == SERVER) or (dir == BOTH)
bind(msgFromAbove,Encrypt,order);

if (dir == CS and Role == SERVER) or (dir == SC and Role == CLIENT) or (dir == BOTH)
bind(msgFromBelow,Decrypt,1000-order);

g

if mode == KEYS or mode == BOTH f

myKeyMsgSendEvent = get event corresponding to string ”keyMsgSend ”&dist index;
myKeyMsgReceiveEvent = get event corresponding to string ”keyMsgReceive ”&dist index;
if (dir == CS and Role == CLIENT) or (dir == SC and Role == SERVER) or (dir == BOTH)

bind(myKeyMsgSendEvent,Encrypt,order);
if (dir == CS and Role == SERVER) or (dir == SC and Role == CLIENT) or (dir == BOTH)

bind(myKeyMsgReceiveEvent,Decrypt,1000-order);
g

g

g

Figure 3: DESPrivacy micro-protocol.

The design of the SecComm service also allows any combinations of privacy micro-protocols to be used

together. While it is often difficult to determine the exact improvement in security achieved by combining

more than one encryption method, it has been argued that proper use of multiple encryption can increase

privacy [MH81]. Multiple encryptions schemes considered secure, including triple DES, are discussed in

[Sch94].

3.3.3 Authenticity and integrity

Authenticity and integrity are discussed together since integrity can be considered a subset of authenticity.

That is, a message can truly be considered to be authentic only if there is confidence that it was sent by its

claimed sender and that it has not been modified since being transmitted. Authenticity and integrity can be

achieved either by encrypting the whole message or by using a message digest generated by a cryptographic

message digest or hash function such as MD5 [Riv92] or SHA [SHA95]. If a standard message digest

function is used, the digest itself must be protected by either encrypting it or by calculating the digest over

the data and a secret key (e.g., keyed MD5 [MS95a] and SHA [MS95b]).

SecComm currently includes two basic message digest micro-protocols, MD5Integrity and SHAIn-

tegrity, and their keyed counterparts, KeyedMD5Integrity and KeyedSHAIntegrity. Each of these micro-

protocols creates a message digest as a peer attribute with tag DIGEST at the sender, and checks it at the

receiver. If the non-keyed integrity micro-protocols are used, they are executed before the corresponding

cryptographic protocol so that the message digest is protected.

Two authenticity micro-protocols based on public keys are also included. RSAAuthenticity encrypts
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the entire message with the sender’s private key, while RSADigestAuthenticity encrypts only the message

digest. Figure 4 gives pseudo code for RSAAuthenticity. The RSADigestAuthenticity micro-protocol is very

similar except it only encrypts and decrypts the DIGEST attribute. Note that the integrity micro-protocols

may be used with RSAAuthenticity. In this case, the whole message including the message digest will be

encrypted and decrypted. Note also that in practice, it would make sense to combine the RSAAuthenticity

and RSADigestAuthenticity into one micro-protocol with an extra argument indicating if the whole message

or just the digest is to be encrypted. In this paper, we consider them to be separate micro-protocols to clarify

the presentation and to keep the micro-protocols as simple as possible.

micro-protocol RSAAuthenticity(key,order,dir,mode,dist index) f

handler Encrypt(msg)f
pack(msg); setAttr(msg,DATA) = RSA(getAttr(msg,DATA),Keys[myKey]);

g

handler Decrypt(msg)f
sender = getAttr(msg,SENDER);
if (publickey = PublicKeys.get(sender) == NULL) f

raise(keyMiss,sender,SYNC);
publickey = PublicKeys.get(sender);

g

setAttr(msg,DATA)= RSA(getAttr(msg,DATA),publickey); unpack(msg);
setAttr(msg,AUTH SENDER,STACK) = sender;

g

initial f
. . . similar to DESPrivacy . . .

g

g

Figure 4: RSAAuthentication micro-protocol.

Unlike methods based on public keys, with shared secrets, one micro-protocol can be used to provide

both privacy and authenticity by encrypting the whole message. Similar to RSADigestAuthenticity, how-

ever, we can develop variants of the privacy protocols that only encrypt the message digest. Since these

micro-protocols do not provide privacy, we consider them exclusively authenticity micro-protocols. Thus,

the DES based micro-protocol is called DESDigestAuthenticity.

If message digests are not used, simply decrypting a message at the receiver does not actually prove

the authenticity of the message. However, it does guarantee with a high probability that the result will

be syntactically and/or semantically incorrect if the message is not authentic. The detection of such an

incorrect message can either be left to the higher level protocols or implemented in the SecComm service.

One approach to the latter is to introduce redundancy into the message by adding one or more peer message

attributes at the sender before the message is encrypted, and then checking the attributes at the receiver

after the message is decrypted. Such an additional check is implemented by the ConsistencyCheck micro-

protocol.

Although all the micro-protocols presented here are very simple, the overall design of SecComm allows

powerful combinations of authenticity and integrity checks. For example, a message digest may be keyed, be

protected using multiple encryptions, or both. Also, multiple message digests can be included in a message,

where each digest is protected using different combinations of encryption methods.
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3.3.4 Replay prevention and non-repudiation

There are numerous methods for preventing accidental or malicious message replay. For example, the

sender can add a timestamp to the message that the receiver checks to determine if it is too old. This method

is implemented by the TimeReplayPrevention micro-protocol shown in Figure 5. Since this method may

miss messages replayed quickly, it could be augmented to maintain a small cache of old messages that is

checked when new messages arrive. Note that this micro-protocol sets message attribute STATUS to STOP

to indicate that the message should not be delivered to the higher level. All other micro-protocols that check

the correctness of a message at the receiver use a similar technique.

Other methods for replay prevention are based on message sequence numbers. Specifically, if the under-

lying communication provides a FIFO ordering guarantee, it is sufficient to verify that a message’s sequence

number is larger than the largest sequence number seen so far. This method is implemented by the SeqRe-

playPrevention micro-protocol. Both of these methods are good for streams of messages flowing in one

direction. For handshake style protocols such as key distribution, replay prevention is often implemented by

the sender creating a random number that it requires the receiver to return in its reply. Such replay prevention

methods are discussed with the key distribution micro-protocols in section 3.3.6.

micro-protocol TimeReplayPrevention(order,dir,mode,dist index) f

handler AddTimeStamp(msg)f
setAttr(msg,TIMESTAMP,PEER) = time();

g

handler CheckTimeStamp(msg)f
if getAttr(msg,TIMESTAMP)< time() - MaxDelay f

raise(securityAlert,msg,SYNC); stopEvent(); setAttr(msg,STATUS,LOCAL) = STOP;
g

g

initial f
MaxDelay = maximum network delay + maximum clock drift;
. . . similar to DESPrivacy . . .

g

g

Figure 5: TimeReplayPrevention micro-protocol.

Note that if a message is not protected from tampering either using integrity or privacy methods, it is

easy for an intruder to circumvent replay prevention micro-protocols by simply modifying the time stamp

or the sequence number. However, replay prevention can still be useful without these methods to detect

accidental message replays.

Non-repudiation is based on public key authentication, with the receiver storing the message encrypted

using the sender’s private key as a proof of having received the message. In SecComm, the Non-Repudiation

micro-protocol simply stores the encrypted message in a file with a timestamp indicating when it was re-

ceived. To make it easier to decrypt the stored message at a later time, the public key authentication should

be the first encryption done at the sender and thus, the last decryption done at the receiver. Non-Repudiation

implements this by storing the message just before this last decryption, which means it can be re-decrypted

at some later time knowing only the sender’s public key at the time the message was received. Otherwise,

decryption might require using session keys created just for the particular communication connection.
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3.3.5 Key creation micro-protocols

Key creation micro-protocols are used to generate new secret keys for use as session keys for communication

connections. The design decouples key creation from key distribution and thus, allows different key cre-

ation methods to be easily configured into the system. Such configurability can considerably strengthen the

security of the service, since knowing how session keys are created makes it easier to break a cryptosystem.

The structure of a key creation micro-protocol is simple, as illustrated in Figure 6.

micro-protocol RandomKeyCreate(creation index,seed) f

handler CreateKey(key,length)f
key = generate next random key of size length using previous; previous = key;

g

initial f
myKeyCreateEvent = get event corresponding to string ”keyCreate ”&creation index;
bind(myKeyCreateEvent,CreateKey); previous = seed;

g

g

Figure 6: RandomKeyCreate micro-protocol.

3.3.6 Key distribution micro-protocols

If the keys used by the secret key based cryptographic methods are not agreed upon a priori, they must be

distributed and agreed upon at the time a communication session is opened. Among the potential options

for basic key creation and distribution are:

� The client creates the key and distributes it to the server(s).

� The server creates the key and distributes it to the client.

� Both the client and server create a key and the session key is calculated from these two keys using some method

(e.g., Diffie-Hellman).

� Some external security principal creates the session key and distributes it to the client and server(s) (e.g.,

Kerberos).

Key distribution has security risks analogous to data communication, but with greater potential impact

since the compromised key will likely be used for a period of time. Some key distribution methods such as

Kerberos have fixed built-in methods for providing privacy, authenticity, integrity, and replay prevention for

the key distribution process. A Kerberos style key distribution scheme can be implemented in our framework

as a micro-protocol, but a key objective of our design is to allow the security guarantees required for key

distribution to be as customizable as those for normal data communication. This flexibility is provided

by implementing the above key distribution strategies as simple micro-protocols that do not by themselves

provide any security guarantees except replay prevention. Instead, they raise events keyMsgSend i and

keyMsgReceive i, which allows any combination of the security property micro-protocols to be configured

to secure the key distribution.

Key distribution micro-protocols are executed at session creation time. When a session is opened, all

the micro-protocols in the session are first initialized by invoking their initialization section. Then, the
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SecComm composite protocol raises event openSession, for which all key distribution micro-protocols are

registered. For simplicity, we assume that each key distribution micro-protocol creates and distributes one

key in the Keys data structure. Furthermore, the key distribution micro-protocols are designed so that they

execute in sequence—i.e., one key is created and distributed before the next one is created—with the key

index used as the order of key distribution. This sequential execution is achieved through event manipulation

as illustrated in Figure 7. In particular, the first key distribution micro-protocol to be executed stops the

openSession event, that is, prevents the other key distribution micro-protocols from being notified of its

occurrence. When the distribution of the first key is completed, the key distribution micro-protocol removes

its handler binding for the openSession event and raises the openSession event again. The ReplaceKey

event handler and replaceKey i events are for dynamically replacing a session key during a communication

connection.

Note that SecComm must not accept new messages from the higher level protocols while key distribu-

tion is in progress or keys are being changed. Thus, the composite protocol provides micro-protocols with

operations disablePush() and enablePush() to tell the composite protocol to disable or enable push opera-

tions. If multiple micro-protocols disable the push operation, they all must enable it before communication

can resume.

Other key distribution micro-protocols such as ServerKeyDistribution and DiffHellKeyDistribution have

the same general structure. Key distribution based on an external security principal naturally has a somewhat

different structure, but the same general principles apply.

3.3.7 Public key acquisition

The system may contain one or more central certification authorities (CAs) that store public keys of users and

other security principals. The public key acquisition micro-protocols communicate with these authorities to

retrieve the desired keys. Since there are multiple protocols for acquiring certificates (e.g., X.509, PGP)

and multiple, potentially incompatible, implementations of these protocols (e.g., X.509 implementations

by Netscape, Microsoft, and RSA), a number of different PublicKeyAcquisition micro-protocols may be

required.

A CA would typically not understand the Cactus message format or use the same protocol stack, so these

micro-protocols have to use TCP sockets directly, and construct and manipulate messages that conform to

the particular protocol and implementation of the CA. If an implementation of the protocol is available in a

cryptographic library (e.g., SSL), the micro-protocol implementation can utilize these routines to facilitate

the process.

3.3.8 Configuration constraints

As indicated in the descriptions above, constraints sometimes exist between micro-protocols that restrict

which combinations are feasible. Figure 8 summarizes these restrictions in a graphical form. Each node

represents a micro-protocol and each edge represents a dependency between micro-protocols. A micro-

protocol depending on a choice of at least one other micro-protocol is represented by a dotted line box around

the set of micro-protocols. For example, the digest based authenticity micro-protocols require that some

integrity micro-protocol create the digest. A potential dependency between micro-protocols is represented

by a dashed line edge. In particular, all micro-protocols that use keys may require a key distribution micro-

protocol if the keys are not predefined.
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micro-protocol ClientKeyDistribution(key index, creation index, length)f

handler DistributeKey() f
stopEvent(); raise(myKeyCreateEvent,key,myKeyLength,SYNC); Keys[myKey] = key;
msg = new Message; addAttr(msg,KEY,PEER) = key;
raise(myKeyMsgSendEvent,msg,SYNC); bind(msgFromBelow,ReceiveAckMsg,0);
send msg to server;

g

handler ReceiveKeyMsg(msg) f
stopEvent(); unbind(msgFromBelow,ReceiveKeyMsg);
setAttr(msg,STATUS,LOCAL) = FORWARD; raise(myKeyMsgReceiveEvent,msg,status,SYNC);
if getAttr(msg,STATUS) == FORWARD f Keys[myKey] = getAttr(msg,KEY);

raise(myKeyMsgSendEvent,msg,SYNC); send msg to client; enablePush(); g
g

handler ReceiveAckMsg(msg) f
stopEvent(); unbind(msgFromBelow,ReceiveAckMsg);
setAttr(msg,STATUS,LOCAL) = FORWARD; raise(myKeyMsgReceiveEvent,msg,status,SYNC);
if getAttr(msg,STATUS) == FORWARD and getAttr(msg,KEY) == Keys[myKey]f

unbind(openSession,DistributeKey); raise(openSession,ASYNC); enablePush(); g
g

handler ReplaceKey(mode) f
if mode == CLIENT DistributeKey();
else bind(msgFromBelow,ReceiveKeyMsg,myKey);

g

initial f
myKey = key index; myKeyLength = length; disablePush();
if Role == CLIENT bind(openSession,DistributeKey,myKey);
else bind(msgFromBelow,ReceiveKeyMsg,myKey);
myKeyCreateEvent = get event corresponding to string ”keyCreate ”&creation index;
myKeyMsgSendEvent = get event corresponding to string ”keyMsgSend ”&myKey;
myKeyMsgReceiveEvent = get event corresponding to string ”keyMsgReceive ”&myKey;
myReplaceKeyEvent = get event corresponding to string ”replaceKey ”&myKey;
bind(myReplaceKeyEvent,ReplaceKey);

g

g

Figure 7: ClientKeyDistribution micro-protocol.

This configuration graph illustrates which combinations of micro-protocols result in valid services. At

the time the protocol graph is constructed, a two step process is followed. First, those micro-protocols that

enforce the desired security attributes using the desired techniques are selected. Then, the transitive closure

of those micro-protocols is taken within the graph to satisfy dependencies. A graphical configuration tool

called the CactusBuilder has been constructed that automates this process and generates the appropriate

configuration files [Hil98].

4 Related Work

The need for customizing security guarantees for data communication has been noted in the development of

the IPSec protocol [KA98], as well as SSL [FKK96] and TLS [DA99]. As noted in the Introduction, IPSec

support two security options, the AH (authentication header) option and the ESP (encapsulating security

payload) option. The security option and the specific cryptographic algorithms and keys used for a connec-

tion are specified in a security association (SA). A SA may be created manually or negotiated automatically
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Figure 8: Configuration constraints.

using key management protocols such as IKE [HC98]. Multiple security methods may be specified for a

connection by giving multiple SAs, called a SA bundle [KA98].

TLS also provides customizable security guarantees for communication between processes. The TLS

protocol consists of two layers. The lower level protocol, the TLS Record Protocol, provides privacy using

encryption (e.g., DES or RC4) and integrity using keyed message digests (e.g., SHA or MD5). Messages

can also be compressed using a chosen compression algorithm. A higher level TLS Handshake Protocol is

used to authenticate the communicating partners and negotiate cryptographic algorithms and keys for the

TLS Record Protocol. The handshake protocol typically uses X.509 certificates to authenticate the server

and potentially the client. A number of key exchange options are supported, including RSA and Diffie-

Hellman. A similar type of customization is provided in other Internet protocol proposals, including the

Secure HyperText Transfer Protocol (S-HTTP) [RS98] and Privacy-Enhanced Mail (PEM) [Lin93].

IPSec, TLS, and the SecComm approach presented here have a similar goal of customizable secure

communication, but with different constraints on the solution and different approaches for achieving this

goal. For example, TLS is designed for communication between a client and server that do not have any

prior agreement on security configuration. It also does not directly support multiple encryptions or multiple

message digests, nor does it provide non-repudiation. In addition, both IPSec and TLS are optimized for

the case where a connection is used to send a large number of messages rather than single messages, which

means that good performance is “hard-wired” to be a high priority rather than something that can be cus-

tomized in the context of the performance/security tradeoff. Moreover, although IPSec is relatively flexible,

the approach presented in this paper offers a simpler design—for example, no need for separate AH and ESP

options and SA bundles—with unlimited flexibility in combining security techniques. Similarly, it appears

that our design easily surpasses the flexibility of TLS.

Finally, note that IPSec and TLS are protocol specifications and therefore do not specify how an IPSec

or TLS compliant service must be implemented internally. Our approach could be used to configure, in

essence, an instance of SecComm that is IPSec or TLS compliant. Of course, the message packing routines

would have to be customized to generate IPSec and TLS compliant message formats, but this is easily done
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using the customization facilities provided by the Cactus runtime system. Although IPSec and TLS can

naturally be implemented in a modular manner without the Cactus approach, the benefits of the approach

become more prominent when arbitrary combinations of methods are desired, when key distribution must

be customizable, and, in particular, if the security mechanisms must change adaptively at runtime.

Communication security has been addressed in a number of other prototype systems as well. For ex-

ample, the Rampart [RBR94] and SecureRing [KMMS98] systems use public key authentication to tolerate

Byzantine failures. The Ensemble system [RBH+98] provides a degree of customization for secure group

communication. In particular, Ensemble uses a model where the communication subsystem is constructed as

a hierarchy of modules, with security provided by a number of optional modules. The Signing Router mod-

ule adds a keyed MD5 signature to messages, and the Encrypt module provides privacy using RC4. Both

modules use the same agreed group key, which is established by the Exchange and Rekey modules using

PGP for authentication. Other cryptographic methods could easily be substituted for RC4, MD5, and PGP.

The potential level of security customization using Ensemble is comparable to IPSec, but not comparable to

that provided by SecComm.

5 Conclusions

The ability to customize security attributes at a fine-grain level allows users to pick the most appropriate

point along the security spectrum based on the characteristics of their particular application and security

environment. SecComm is a security service designed to support this type of customization for the com-

munication needs of networked applications. While similar in spirit to existing protocols such as IPSec

and TLS, SecComm goes beyond these to support more attributes and more variants, all within a general

flexible and extensible implementation framework based on micro-protocols and events. The design also

decouples to a large extent the security aspects and the communication aspects of the problem. This allows,

for example, SecComm to be used with multiple transport protocols and at multiple locations in the protocol

hierarchy with little or no change.

SecComm is currently being implemented using the Cactus system on a cluster of Pentiums running

Mach MK 7.3. Once completed, we will experiment with the service in the context of various applications,

including a configurable distributed file system that is also being built using Cactusİn addition, we will

explore altering security attributes and techniques within the service dynamically using the adaptive facilities

provided by CactusȮur ultimate goal is to use this fine-grain configurability and fast adaptation ability as the

basis for an inherently survivable system architecture that can automatically react to threats in the execution

environment [HSU98].
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