
Compiler Tehniques for Code Compression

�

Saumya Debray William Evans Robert Muth

Department of Computer Siene

University of Arizona

Tuson, AZ 85721, U.S.A.

fdebray, will, muthg�s.arizona.edu

Tehnial Report 99-7

April 1999

Abstrat

In reent years there has been an inreasing trend towards the inorporation of omputers into

a variety of devies where the amount of memory available is limited. This makes it desirable to

try and redue the size of appliations where possible. This paper explores the use of ompiler

tehniques to aomplish ode ompression to yield smaller exeutables. The main ontribution

of this paper is that, by showing how \equivalent" ode fragments an be deteted and fatored

out without having to resort to purely linear treatments of ode sequenes as in suÆx-tree-based

approahes, it sets up a framework for ode ompression that an be more exible in its treatment

of what ode fragments are onsidered equivalent. Our ideas have been implemented in the form

of a binary-rewriting tool that is able to ahieve signi�antly better ompression than previous

approahes.

�

This work was supported in part by the National Siene Foundation under grant CCR-9711166.

1

1 Introdution

In reent years there has been an inreasing trend towards the inorporation of omputers into a

wide variety of devies, suh as palm-tops, telephones, embedded ontrollers, et. In many of these

devies, the amount of memory available is limited, e.g., due to onsiderations suh as spae, weight,

power onsumption, or prie. At the same time, there is an inreasing desire to use more and more

sophistiated software in suh devies, suh as enryption software in telephones, or speeh or image

proessing software in laptops and palm-tops. Unfortunately, an appliation that requires more memory

than is available on a partiular devie will not be able to run on that devie. This makes it desirable

to try and redue the size of appliations where possible. This paper explores the use of ompiler

tehniques to aomplish this ode ompression.

Previous work in program ompression has explored the ompressiblity of a wide range of program

representations: soure languages, intermediate representations, mahine odes, et. [16℄. The resulting

ompressed form either must be deompressed (and perhaps ompiled) before exeution [5, 6, 7℄ or it

an be exeuted (or interpreted [10, 15℄) without deompression [4, 9℄. The �rst method results in a

smaller ompressed representation than the seond, but requires the overhead of deompression before

exeution. This overhead may be negligible and, in fat, may be ompensated for by the savings

in transmission or retrieval ost [7℄. A more severe problem is that it requires spae to plae the

deompressed ode. This also has been somewhat mitigated by tehniques of partial deompression

or deompression-on-the-y [3, 5℄ but these tehniques require altering the run-time operation or the

hardware of the omputer. In this paper, we explore ompression to an exeutable form. The resulting

form is larger than the smallest ompressed representation of the program, but we do not pay any

deompression overhead or require more spae in order to exeute.

Muh of the earlier work on ode ompression to yield smaller exeutables has treated an exeutable

program as a simple linear sequene of instrutions. Early work by Fraser et al. used a suÆx tree

onstrution to identify repeated instrution sequenes within suh a linear sequene [9℄. Suh repeated

sequenes were then abstrated out into funtions. Applied to a range of Unix utilities on a Vax

proessor, this tehnique managed to redue ode size by a fator of about 7% on the average. A

shortoming of this approah is that sine it relies on a purely textual interpretation of a program, it is

sensitive to super�ial di�erenes between ode fragments, e.g., due to the use of di�erent registers, that

may not atually have any e�et on the behavior of the ode. This shortoming has been addressed by

Baker, who proposed parameterized suÆx trees [1℄; by Cooper and MIntosh, who use register renaming

to get around this problem [4℄ (a similar approah is disussed by Baker and Manber [2℄); and by Zastre,

who uses parameterized proedural abstrations [17℄. The main idea here is to rewrite instrutions so

that instead of using hard-oded register names, the (register) operands of an instrution are expressed,

if possible, in terms of a previous referene (within the same basi blok) to that register. Further,

branh instrutions are rewritten, where possible, to PC-relative form. These transformations allow

the suÆx tree onstrution to detet the repetition of similar but not lexially idential instrution

sequenes. Cooper and MIntosh have obtained a ode size redution of about 5% on the average using

these tehniques on lassially optimized ode (in their implementation, the lassial optimizations

ahieve a ode size redution of about 18% ompared to unoptimized ode).

However, any approah that treats a program as a simple linear sequene of instrutions, e.g., in

using suÆx trees to identify repeating instrution sequenes, will su�er from the disadvantage of having

to work with a partiular ordering of instrutions. There may be many reasons why two \equivalent"

omputations may map to di�erent instrution sequenes in two di�erent parts of a program. The �rst,

and most obvious, is that there may be di�erenes in register usage and branh labels. Di�erenes in

the atual sequene of instrutions produed may also arise due to instrution sheduling, or beause

of pro�le-direted ode layout to improve instrution ahe utilization [14℄.

This paper desribes a somewhat di�erent approah to ode ompression. Instead of treating a

program as a simple linear sequene of instrutions, we work with its (interproedural) ontrol ow

graph. Instead of using a suÆx tree onstrution to identify repeated instrution sequenes, we use

1

B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)

E

stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

Figure 1: Loal Code Fatoring

a �ngerprinting sheme to identify \similar" basi bloks. If two bloks that are similar are found to

not be idential, we try to rename registers|using a tehnique somewhat di�erent from that of Cooper

and MIntosh|in an attempt to make them idential. We use the notions of dominators and post-

dominators to detet idential subgraphs of the ontrol ow graph, larger than a single basi blok, and

that an be abstrated out into a proedure. Finally, we identify and take advantage of arhiteture-

spei� ode idioms, e.g., for saving and restoring spei� sets of registers at the entry to and return

from funtions.

The main ontribution of this paper is that, by showing how \equivalent" ode fragments an

be deteted and fatored out without having to resort to purely linear treatments of ode sequenes

as in suÆx-tree-based approahes, it sets up a framework for ode ompression that an be more

exible in its treatment of what ode fragments are onsidered \equivalent." For example, while our

urrent implementation searhes for sets of basi bloks that ontain idential instrution sequenes,

it is straightforward to generalize this omponent of the system to onsider use-de�nition hains, and

thereby handle di�erenes in the sequene of instrutions arising out of instrution sheduling deisions.

Similarly, the treatment of single-entry single-exit regions in Setion 2.4 fouses on strutural properties

of ontrol ow graphs rather than any partiular linearization: this allows it to handle di�erenes in

ode sequenes arising out of pro�le-direted ode layout. We believe that the added exibility gained

from our approah an be useful in improving the results of ode ompression. A seondary ontribution

is to show that signi�ant redutions in ode size an be obtained without having to resort to extraneous

strutures suh as suÆx trees, by using information already available in most ompilers, e.g. the ontrol

ow graph and dominator/postdominator trees.

Our ideas have been implemented in the form of a binary-rewriting tool based on alto, a post-

link-time ode optimizer [13℄. The resulting system, alled squeeze, is able to ahieve signi�antly

better ompression than previous approahes. However, our ideas do not rely on anything partiular

to exeutable �les, and an be inorporated into ompilers apable of inter-proedural optimization.

Our ode size redutions ome from two soures: aggressive (inter-proedural) appliation of what are

essentially lassial ompiler analyses and optimizations; and ode fatoring, whih we use to refer to

a variety of tehniques to identify and \fator out" repeated instrution sequenes. Classial ompiler

optimizations have been disussed in detail by many authors (e.g., see [12℄), and so are not onsidered

further here. The next setion desribes the ode fatoring tehniques used within squeeze.

A prototype of our system an be obtained from http://www.s.arizona.edu/alto/squeeze.

2

2 Code Fatoring

Code fatoring involves (1) �nding a multiply-ourring sequene of instrutions, (2) making one repre-

sentative sequene that an be used in plae of all ourrenes, and (3) arranging, for eah ourrene,

that the program exeutes the representative instead of the ourrene. The third step an be ahieved

by expliit ontrol transfer (via a all or jump), or by moving the representative of several ourrenes

to a point that dominates every ourrene. We �rst exploit the latter form of ode fatoring sine it

involves no added ontrol transfer instrutions.

2.1 Loal Fatoring Transformations

Inspired by an idea of Knoop et al. [11℄, we try to merge idential ode fragments by moving them

to a point that pre- or post-dominates all the ourrenes of the fragments. We have implemented

a loal variant of this sheme whih we desribe using the example depited in Figure 1. The left

hand side of the �gure shows an assembly ode owhart with a onditional branh (beq r0) in blok

A. Bloks B and C ontain the same instrution add r5,r6,r8: sine these instrutions do not have

bakward dependenies with any other instrution in B or C, we an safely move them into blok A

just before the beq instrution, as shown in the right hand side of Figure 1. Similarly, bloks B, C,

and D share the same store instrution (stq r9,r16(r23)), and sine these instrutions do not have

forward dependenies with any other instrution in B, C,and D, it an be safely moved into blok E.

In this ase it is not possible to move the store instrution from B and C into A beause, due to the

lak of aliasing information, there are bakward dependenies to the load instrutions (ldq) in B and

C. In general, however, it might be possible to move an instrution either up or down. In this ase we

prefer to move it down sine moving it up will eliminate exatly one opy while moving it down might

eliminate several opies.

Our sheme uses register realloation to make this transformation more e�etive. For example, the

sub instrutions in B and C write to di�erent registers (r9 and r19). We an, however, rename the

r9 to r19 in B, thereby making the instrutions idential. Another opportunity rests with the xor

instrutions in B and C. Even though they are idential we an not move them into A beause they

write register r0 whih is used by the onditional branh. Realloating r0 in A to another register

whih is dead at the end of A will make the transformation possible.

2.2 Proedural Abstration

Given a single-entry single-exit ode fragment C, proedural abstration of C involves (i) reating a

proedure f

C

whose body is a opy of C; and (ii) replaing the appropriate ourrenes of C in the

program text by a funtion all to f

C

. While the �rst step is not very diÆult, at the level of assembly

or mahine ode the seond step involves a little work.

In order to reate a funtion all using some form of \jump-and-link" instrution that transfers

ontrol to the allee and at the same time puts the return address into a register, it is neessary to

�nd a free register for that purpose. A simple method is to alulate, for eah register r, the number

of ourrenes of ode fragment C that ould use r as a return register. A register with the highest

suh �gure of merit is hosen as the return register for f

C

. If a single instane of f

C

, using a partiular

return register, is not enough to abstrat out all of the ourrenes of C in the program, we may reate

multiple instanes of f

C

that use di�erent return registers. We use a more ompliated sheme when

abstrating funtion prologs (see Setion 2.5.1) and regions of multiple basi bloks (see Setion 2.4).

2.3 Proedural Abstration for Individual Basi Bloks

Central to our approah is the ability to apply proedural abstration to individual basi bloks. In

this setion, we disuss how andidate basi bloks for proedural abstration are identi�ed.

3

2.3.1 Fingerprinting

To redue the ost of omparing basi bloks to determine whether they are idential (or similar),

we ompute a \�ngerprint" for eah basi blok, suh that two bloks with di�erent �ngerprints are

guaranteed to be di�erent. In our urrent implementation, a �ngerprint is a 64-bit value formed by

onatenating 4-bit enodings of the op-odes of the �rst 16 instrutions in the blok. Sine most systems

appliations tend to have short basi bloks, haraterizing the �rst 16 instrutions seems enough for

most basi bloks. With 4 bits per instrution, we enode 15 di�erent op-odes: we deide whih 15

will be expliitly represented by onsidering a stati instrution ount of the program, suh that the

15 most frequently ourring op-odes are given distint 4-bit patterns. The remaining pattern, 0000,

represents other op-odes, i.e., op-odes that are not in the top 15 in frequeny.

To redue the number of pairwise omparisons of �ngerprints that must be arried out, we use

a hashing sheme suh that basi bloks in di�erent hash bukets are guaranteed to have di�erent

�ngerprints, and so need not be ompared.

2.3.2 Register Renaming within Basi Bloks

When we �nd two basi bloks that are \similar," i.e., have the same �ngerprint and the same number

of instrutions, but whih are not idential, we attempt to rename the registers in one of them so as

to make the two idential. The basi idea is very simple: registers are renamed \loally," i.e., within

the basi blok; and if neessary, register-to-register moves are inserted, in new basi bloks inserted

immediately before and after the blok being renamed, so as to preserve program behavior.

For soundness, it is neessary to ensure that the renaming does not alter any use-de�nition relation-

ships: we do this by keeping trak of the set of registers that are live at eah point in the basi blok,

as well as the set of registers that have already been subjeted to renaming. These sets are then used

to detet and disallow renamings that ould alter the program's behavior. We omit details due to spae

onstraints.

The renaming algorithm keeps trak of the number of expliit register-to-register moves that have to

be inserted before and after a basi blok that is being renamed. If, at the end of the renaming proess,

the savings from the renaming, i.e., the number of instrutions in the blok, does not exeed the ost

of renaming, i.e., the number of register moves required together with a funtion all instrution, the

renaming is undone.

2.3.3 Control Flow Separation

The approah desribed above will typially not be able to abstrat two basi bloks that are idential

exept for an expliit ontrol transfer instrution at the end. The reason for this is that if the ontrol

transfers are to di�erent targets, the bloks will be onsidered to be di�erent and so will not be ab-

strated. Moreover, if the ontrol transfer instrution is a onditional branh, proedural abstration

beomes ompliated by the fat that two possible return addresses have to be ommuniated.

To avoid suh problems, basi bloks that end in an expliit ontrol transfer instrution are split

into two bloks: one blok ontaining all the instrutions in the blok exept for the ontrol transfer,

and another blok that ontains only the ontrol transfer instrution. The �rst of this pair of bloks

an then be subjeted to renaming and/or proedural abstration in the usual way.

The next setion desribes how ode fragments larger than a single basi blok an be subjeted to

proedural abstration.

4

2.4 Single-Entry/Single-Exit Regions

The disussion thus far has foused on the proedural abstration of individual basi bloks. In general,

however, we may be able to �nd multiple ourrenes of a ode fragment onsisting of more than one

basi blok. In order to apply proedural abstration to suh a region R, at every ourrene of R in

the program, we must be able to identify a single program point from whih ontrol enters R, and a

single program point to whih ontrol returns after leaving R. It isn't hard to see that any set of basi

bloks R with a single entry point and a single exit point orresponds to a pair of points (d; p) suh

that d dominates every blok in R and p post-dominates every blok in R; onversely, a pair of program

points (d; p), where d dominates p and p post-dominates d, uniquely identi�es a set of basi bloks

with a single entry point and single exit point. Two suh single-entry single-exit regions R and R

0

are

onsidered to be idential if it is possible to set up a 1-1 orrespondene ' between their members suh

that if B

1

' B

0

1

, then (i) B

1

is idential to B

0

1

; and (ii) if B

2

is a (immediate) suessor of B

1

under

some ondition C, and B

0

2

is a (immediate) suessor of B

0

1

under the same ondition C, then B

2

' B

0

2

.

The algorithm to determine whether two regions are idential works by reursively traversing the two

regions, starting at the entry node, and verifying that orresponding bloks are idential.

In squeeze, after proedural abstration has been applied to individual basi bloks, we identify

pairs of basi bloks (d; p) suh that d dominates p and p post-dominates d. Eah suh pair de�nes a

single-entry single-exit set of basi bloks. These sets of basi bloks are then partitioned into groups

of idential regions, whih then beome andidates for further proedural abstration.

As in the ase of basi bloks, we ompute a �ngerprint for eah region so that regions with di�erent

�ngerprints will neessarily be di�erent. These �ngerprints are, again, 64-bit values: there are 8 bits

for the number of basi bloks in the region and 8 bits for the total number of instrutions, with the bit

pattern 11...1 being used to represent values larger than 256; and the remaining 48 bits are used to

enode the �rst (aording to a partiular preorder traversal of the region) 8 basi bloks in the region,

with eah blok enoded using 6 bits: two bits give the type of the blok, and four bits for the number

of instrutions in the blok. Again, as in the ase of basi bloks, the number of pairwise omparisons

of �ngerprints is redued by distributing the regions over a hash table.

It turns out that applying proedural abstration to a set of basi bloks is not as straightforward

as for a single basi blok, espeially in a binary rewriting implementation suh as ours. The reason is

that, in general, when the proedure orresponding to suh a single-entry single-exit region is alled,

the return address will be put into a register whose value annot be guaranteed to be preserved through

that entire proedure, e.g., beause the region may ontain funtion alls. This means that the return

address register has to be saved somewhere, e.g., on the stak. However, alloating an extra word on

the stak, to hold the return address, an ause problems unless we are areful: alloating this spae at

the top of the stak frame an ause hanges in the displaements of other variables in the stak frame,

relative to the top-of-stak pointer; while alloating it at the bottom of the stak frame an hange the

displaements of any arguments that have been passed on the stak. If there is any address arithmeti

involving the stak pointer, e.g., for address omputations for loal arrays, suh omputations may be

a�eted by hanges in displaements within the stak frame. These problems are somewhat easier to

handle if the proedural abstration is being arried out before ode generation, e.g., at the level of

abstrat syntax trees [6℄. At the level of assembly ode [4, 9℄ or mahine ode (as in our work), it

beomes onsiderably more ompliated. There are, however, some simple ases where it is possible to

avoid the ompliations assoiated with having to save and restore the return address when introduing

proedural abstrations. Here, we identify two suh situations.

In the �rst ase, if we are given two idential regions (d

0

; p

0

) and (d

1

; p

1

), where p

0

and p

1

are return

bloks (bloks from whih ontrol returns to the aller), there is no need to use proedural abstration

to reate a separate funtion for these two regions. Instead, we an use a transformation known as

ross-jumping [12℄, where the ode in the region (d

1

; p

1

) is simply replaed by a branh to d

0

. The

transformation is illustrated in Figure 2.

5

return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Figure 2: Merging Regions ending in returns via Cross-jumping

In the seond ase, given two idential regions (d

0

; p

0

) and (d

1

; p

1

) that we would like to abstrat

into a proedure, suppose that it is possible to �nd a register r that is (i) not live at entry to either

of these regions; and (ii) whose value an be guaranteed to be preserved upto the end of the regions

under onsideration (r an be either a general-purpose register that is not de�ned within either region,

or a allee-saved register that is already saved and restored by the funtions in whih the regions under

onsideration our). In this ase, when abstrating these regions into a proedure p, it is not neessary

to add any ode to expliitly save and restore the return address for p: the instrution to all p an

simply put the return address in r, and the return instrution(s) within p an simply jump indiretly

through r to return to the aller.

If neither of these onditions is satis�ed, squeeze tries to determine whether the return address

register an be safely saved in memory at entry to p, and restored at the end. For this, it uses a

onservative analysis to determine whether a funtion may have arguments passed on the stak, and

whih, if any, registers may be pointers into the stak frame. Given a set of andidate regions to be

abstrated into a representative proedure, it heks the following:

1. for eah funtion that ontains a andidate region, it must be safe, with respet to the problems

mentioned above, to alloate a word on the stak frame of the funtion;

2. there must be a register r

0

free at entry to eah of the regions under onsideration;

3. there must be a register r

1

free at the end of eah of the regions under onsideration; and

4. there should not be any alls to setjmp()-like funtions that an be a�eted by a hange in the

struture of the stak frame.

If these onditions are satis�ed, p alloates an additional word on the stak on entry and saves the

return address (passed via r

0

) into this loation; and loads the return address from this loation (using

r

1

) and restores the stak frame on exit. The urrent implementation of the safety hek desribed

above is quite onservative in its treatment of funtion alls within a region, but we expet to relax

the restritions on suh alls soon. In priniple, if we �nd that spae an be alloated on the stak

but have no free registers for the the return address at entry or exit from the abstrated funtion, it

should be possible to alloate an extra word on the stak in order to free up a register, but we have not

implemented this yet.

6

0
15

Save0
14

Save0
9

Save0
ra

Save0
14

$sp := $sp - 32
bsr $0, Save0

9

Save

ret ($0)

. . .

f0:

bsr $0,
$sp := $sp - 40

f1:

stq $15, 0x38($sp)

stq $14, 0x30($sp)

stq $9, 0x8($sp)

stq $ra, 0x0($sp)

Figure 3: Example ode from abstration of register save ations from funtion prologs

2.5 Arhiteture-Spei� Idioms

Apart from the general-purpose tehniques desribed earlier for deteting and abstrating out repeated

ode fragments, there are mahine-spei� idioms that an be pro�tably exploited. In partiular, the

instrutions to save and restore registers (the return address and allee-saved registers) in the prolog

and epilog of eah funtion generally have a preditable struture and are saved at preditable loations

within the stak frame. For example, the standard alling onvention for the DEC Alpha proessor

under Digital Unix treats register $26 as the return address register ($ra) and registers $9 through

$15 as allee-saved registers; these are saved at loations 0x0($sp), 0x8($sp), 0x10($sp), and so on.

Abstrating out suh instrutions an yield onsiderable savings in ode size. Suh arhiteture-spei�

save/restore sequenes are reognized and handled speially by squeeze, for two reasons: �rst, these

instrutions often do not form a ontiguous sequene in the ode stream; and seond, handling them

speially allows us to abstrat them out of basi bloks that may not be idential to eah other.

2.5.1 Abstrating Register Saves

In order to abstrat out the register save instrutions in the prolog of a funtion f into a separate

funtion g, it is neessary to identify a register that an be used to hold the return address for the all

from f to g. For eah register r, we �rst ompute the savings that would be obtained if r were to be

used for the return address for suh alls. This is done by totaling up, for eah funtion f where r is free

at entry to f , the number of registers saved in f 's prolog. We then hoose a register r with maximum

savings (whih must exeed 0), and generate a family of funtions Save

r

15

; : : : ;Save

r

9

;Save

r

ra

that save

the allee-saved registers and the return address register, and then return via register r. The idea is

that funtion Save

r

i

saves register i and then falls through to funtion Save

r

i�1

.

As an example, suppose we have two funtions f0() and f1(), suh that f0() saves registers $9, . . . ,

$14, and f1() saves only register $9. Assume that register $0 is free at entry to both these funtions

and is hosen as the return address register. The ode resulting from the transformation desribed

above is shown in Figure 3.

It may turn out that the set of funtions subjeted to this transformation do not use all of the

allee-saved registers. For example, in Figure 3, suppose that none of the funtions using return address

register $0 save register $15. In this ase, the ode for the funtion Save

0

15

beomes unreahable and is

subsequently eliminated.

A partiular hoie of return address register, as desribed above, may not aount for all of the

funtions in a program. The proess is therefore repeated, using other hoies of return address registers,

until either no further bene�t an be obtained, or all funtions are aounted for.

7

2.5.2 Abstrating Register Restores

The ode for abstrating out register restore sequenes in funtion epilogs is oneptually analogous to

that desribed above, but with a few di�erenes. If we were to simply do the opposite of what was

done for register saves in funtion prologs, the ode resulting from proedural abstration at eah return

blok for a funtion might have the following struture, with three instrutions to manage the ontrol

transfers and stak pointer update:

...

bsr $1, Restore /* all funtion that restores registers */

$sp := $sp + k /* dealloate stak frame */

ret ($ra) /* return */

If we ould somehow move the instrution for dealloating the stak frame into the funtion that restores

saved registers, there would be no need to return to the funtion f whose epilog we are abstrating:

ontrol ould return diretly to f 's aller (in e�et realizing tail all optimization). The problem is

that the ode to restore saved registers is used by many di�erent funtions, whih in general have stak

frames of di�erent sizes, and hene need to adjust the stak pointer by di�erent amounts. The solution

to this problem is to pass, as an argument to the funtion that restores registers, the amount by whih

the stak pointer must be adjusted. Sine the return address register $ra is guaranteed to be free at this

point|it is about to be overwritten with f 's return address prior to returning ontrol to f 's aller|it

an be used to pass this argument.

1

Sine there is now no need for ontrol to return to f after the

registers have been restored|it an return diretly to f 's aller|we an simply jump from funtion f

to the funtion that restores registers, instead of using a funtion all. The resulting ode requires two

instrutions instead of three in eah funtion return blok:

...

$ra := k /* $sp needs to be adjusted by k */

br Restore /* jump to funtion that restores registers */

The ode in the funtion that restores registers is pretty muh what one would expet. Unlike the

situation for register save sequenes disussed in Setion 2.5.1, we need only one funtion for restoring

registers. The reason for this is that there is no need to all this funtion: ontrol an jump into it

diretly, as disussed above. This means that we don't have to generate di�erent versions of the funtion

with di�erent return address registers. The overall struture of the ode is analogous to that for saving

registers: there is a hain of basi bloks, eah of whih restores a allee-saved register, with ontrol

falling through into the next blok, whih saves the next (lower-numbered) allee-saved register, and

so on. The last member of this hain adjusts the stak pointer appropriately, loads the return address

into a register, and returns. There is, however, one minor twist at the end. The amount by whih the

stak pointer must be adjusted is passed in register $ra, so this register annot be overwritten until

after it has been used to adjust the stak pointer. On the other hand, sine the memory loation from

whih f 's memory address is to be restored is in f 's stak frame, we an't adjust the stak pointer until

after the return address has been loaded into $ra. We get around this problem using the following

instrution sequene:

...

add $sp, $ra, $sp /* $sp := $sp + $ra � new $sp */

sub $sp, $ra, $ra /* $ra := $sp - $ra � old $sp */

ldq $ra, 0x0($ra) /* $ra := return address */

ret ($ra)

8

to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq $15, 0x38($sp)

ldq $14, 0x30($sp)

ldq $9, 0x8($sp)

Restore

Restore

Restore

Restore

$ra := 32 $ra := 40
f0: f1:

ldq $ra, 0($ra)
ret ($ra)

$sp := $sp + $ra
$ra := $sp - $ra

Figure 4: Example ode from abstration of register restore ations from funtion epilogs

The resulting ode for restoring saved registers, for the funtions onsidered in the example illustrated

in Figure 3, is shown in Figure 4.

We go through these ontortions in order to minimize the number of registers used. If we ould �nd

another register that is free at the end of every funtion, we ould load the return address into this

register, resulting in somewhat simpler ode. However, in general it is not easy to �nd a register that

is free at the end of every funtion. The reason we go to suh lengths to eliminate a single instrution

from eah return blok is that there are a lot of return bloks, amounting to about 4%{8% of the basi

bloks in a program (there is usually at least one|and, very often, more than one|suh blok for eah

funtion). The elimination of one instrution from eah suh blok translates to a ode size redution

of about 1%{2% overall (this may seem small, but to put it in perspetive, onsider that Cooper and

MIntosh report an overall ode size redution of about 5% using suÆx-tree based tehniques).

3 Experimental Results

3.1 Code Size

To evaluate our ideas, we used the eight SPEC-95 integer benhmarks, as well as �ve embedded appli-

ations, adpm, gsm, mpeg2de, mpeg2en and rasta, obtained from the MediaBenh benhmark suite

from UCLA (http://www.s.ula.edu/~lee/mediabenh). The programs were ompiled using g

version 2.7.2.2, at optimization level -O2, with additional ags instruting the linker to retain relo-

ation information and produe statially linked exeutables.

2

At the -O2 level of optimization used,

the ompiler arries out most supported optimizations that do not involve a spae-speed tradeo�; in

partiular, loop unrolling and funtion inlining are not arried out. We expet the resulting ode to be

omparable in size and quality to the optimized ode of Cooper and MIntosh [4℄. To obtain instrution

ounts, we �rst disassemble the exeutable �les and disard unreahable ode and no-op instrutions.

This eliminates library routines that are linked in but are not atually alled, as well as any no-op

instrutions that may have been inserted by the ompiler for instrution sheduling or alignment pur-

poses. To identify unreahable ode, our implementation onstruts a ontrol ow graph for the entire

program and then arries out a reahability analysis. In the ourse of onstruting the ontrol ow

graph, unonditional branhes are disarded: these are subsequently reinserted as neessary, after all

the ode transformations have been arried out, during ode layout just before the transformed ode is

1

In pratie not all funtions an be guaranteed to follow the standard alling onvention, so it is neessary to verify

that register $ra is, in fat, being used as the return address register by f .

2

The requirement for statially linked exeutables is a result of the fat that squeeze relies on the presene of reloation

information for its ontrol ow analysis. The Digital Unix linker ld refuses to retain reloation information for non-

statially-linked exeutables.

9

Program Size (No. of instrutions)

Program unoptimized optimized squeezed N

opt

=N

unopt

N

sqz

=N

opt

(N

unopt

) (N

opt

) (N

sqz

)

ompress 21956 20997 16611 0.956 0.791

g 528353 338064 251655 0.640 0.744

go 134353 79563 64764 0.592 0.814

ijpeg 80760 56179 44669 0.696 0.795

li 44346 38792 28582 0.875 0.737

m88ksim 72563 52829 40493 0.728 0.766

perl 138394 102271 76008 0.739 0.743

vortex 205670 150403 109540 0.731 0.728

adpm 18664 18344 14303 0.983 0.780

gsm 36245 30312 24167 0.836 0.797

mpeg2de 35371 28033 21609 0.792 0.771

mpeg2en 52551 41438 32809 0.788 0.792

rasta 97326 90191 65330 0.927 0.724

Geometri Mean 0.782 0.767

Table 1: Code size redution

written out. To get aurate ounts, therefore, we generate the �nal ode layout in eah ase (i.e., with

and without ompression) and ount the total number of instrutions.

The overall ode size redutions ahieved using our tehniques are shown in Table 1. The seond

olumn, labelled \unoptimized," gives the ode size obtained using g -O0, i.e., with no optimization;

the third olumn, labelled \optimized," gives the size of the programs using g -O2; and the fourth

olumn, labelled \squeezed," gives the ode size obtained using squeeze on the optimized input programs.

The �fth olumn shows the ode size redution obtained using lassial optimizations within g; the

last olumn shows the additional redution in ode size obtained using squeeze. It an be seen from

this table that g, using lassial ompiler optimizations, is able to ahieve signi�ant improvements

in ode size ompared to the unoptimized ode, with an average redution of about 22%, whih is more

or less omparable to the orresponding numbers for Cooper and MIntosh. More importantly, the

last olumn of this table illustrates that, even when given the already optimized exeutables as input,

squeeze is able to ahieve signi�ant further redutions in size: for almost all of the benhmarks, it is

able to ahieve ompression ratios of 20% or more, with an average size redution of a little over 23%.

Our results indiate that, even though we start with programs that have been subjeted to extensive

optimization, we are still able to obtain signi�ant redutions in ode size. Roughly 35% of our ode

size redutions ome from the ode fatoring tehniques desribed, while about 65% ome from the

appliation of ompiler optimizations (see Figure 5). It should be noted that within squeeze, the

improvements due to lassial ompiler optimizations are fundamentally inter-proedural in their origins,

and are made possible by aggressive inter-proedural analysis and optimization that is possible at link

time beause the entire program is available for inspetion (for the same reasons, our link-time optimizer

alto is able to obtain signi�ant improvements in exeution speed, even for programs that have already

been subjeted to extensive ompile-time optimization [13℄).

As mentioned earlier, our experiments used statially linked exeutables, where the ode for the

library routines is linked into the exeutable by the linker prior to exeution. It is desirable to identify,

therefore, the extent to whih the presene of library ode inuenes our results: for example, if it turns

out that library ode is highly ompressible while user ode is not|this ould happen, for example,

due to the use of di�erent ompilers or ompiler optimization levels|then our results would not be

readily appliable to non-statially-linked exeutables. To this end, we instrumented squeeze to reord,

for eah addition or deletion of ode during its run, the funtion(s) with whih the size hange should

10

com
press

gcc

go ijpeg

li m
88ksim

perl

vortex

adpcm

gsm

m
peg2dec

m
peg2enc

rasta

0.0

20.0

40.0

60.0

80.0

100.0

Im
pr

ov
em

en
t

(%
)

0.0

20.0

40.0

60.0

80.0

100.0

Im
pr

ov
em

en
t

(%
)

Classical Optimizations

Code Factoring

Figure 5: Origins of ode size improvements

com
press

gcc

go ijpeg

li m
88ksim

perl

vortex

adpcm

gsm

m
peg2dec

m
peg2enc

rasta

0.0

10.0

20.0

30.0

40.0

50.0

C
om

pr
es

si
bi

lit
y

(%
)

0.0

10.0

20.0

30.0

40.0

50.0

C
om

pr
es

si
bi

lit
y

(%
)

User code

Libraries

Figure 6: Compressibility: user ode vs. libraries

be assoiated. For the lassial optimizations implemented within squeeze, this is straightforward;

for proedural abstration, we used the following approah: suppose that n di�erent instanes of a

partiular ode fragment were abstrated into a proedure, resulting in a net savings in ode size of m,

then the funtion ontaining eah of these instanes was redited with a savings of m=n instrutions

(this is not neessarily an integral quantity, but this is not a problem for our purposes). We then used

a list of funtions in the user ode, obtained using a modi�ed version of the l ompiler [8℄, to estimate

the total size of user ode and the ode savings attributable to it. These measurements do not aount

for indiret e�ets of having the library ode available for inspetion, e.g., by improving the preision

of dataow analyses, whih may give rise to additional opportunities for optimization. Nevertheless, we

feel that this information is useful for obtaining qualitative estimates of the inuene of library ode on

our overall numbers. Our results are shown in Figure 6. The bars labelled \User ode" represent the

fration of instrutions in user ode, relative to the total number of user ode instrutions, that were

deleted in the proess of ode ompression, while those labelled \Libraries" gives the orresponding

�gures for library ode. For both the user ode and libraries, ompressibility typially ranges from

around 25% to around 30%, with an average ompressibility of about 27% for user ode and about 26%

for library ode.

3

There are a few programs (li, perl, vortex, adpm) where the user ode is notieably

more ompressible than the libraries, and a few others (go, gsm, rasta) where the libraries are more

ompressible. In general, however, the user and library ode are more or less omparable in terms of

their ompressibility.

3

These numbers refer to the ontrol ow graph prior to ode layout, i.e., before unonditional branhes are added while

linearizing the graph. For this reason they are slightly higher than those in Table 1.

11

Program Exeution Time (ses) T

sqz

=T

base

base (T

base

) squeezed (T

sqz

)

ompress 373.40 311.47 0.834

g 284.26 306.92 1.080

go 390.21 356.61 0.914

ijpeg 395.17 362.24 0.917

li 363.46 338.49 0.931

m88ksim 398.61 332.44 0.834

perl 268.20 254.16 0.948

vortex 532.86 606.12 1.137

adpm 15.52 15.40 0.992

gsm 8.21 7.50 0.914

mpeg2de 9.60 8.66 0.902

mpeg2en 15.37 14.39 0.936

rasta 6.51 6.14 0.943

Geometri Mean: 0.941

Table 2: Impat of Compression on Exeution Speed

3.2 Code Speed

One intuitively expets the programs resulting from the ode ompression tehniques desribed here to

be slower than the original ode, primarily beause of the additional funtion alls resulting from the

proedural abstration that ours. A more areful onsideration indiates that the situation may be

murkier than this simple analysis suggests, for a number of reasons. First, on the average about 65% of

the ode size redution is due to aggressive inter-proedural optimizations that also improve exeution

speed. Seond, transformations suh as pro�le-direted ode layout, whih need not have a large e�et

on ode size, an nevertheless have a signi�ant positive e�et on speed. On the other hand, on a

supersalar proessor suh as the Alpha 21164, slowdowns an our in the ompressed ode for reasons

other than proedural abstration, e.g., due to the elimination of no-ops inserted by the instrution

sheduler in order to align the instrutions so as to inrease the number of instrutions issued per yle.

To determine the atual e�et of our transformations on our benhmarks, we ompared the exeution

times of the original optimized exeutables with those resulting from the appliation of squeeze to

these exeutables. Exeution pro�les, in the form of basi blok exeution ounts, were obtained for

eah program using pixie, and these were fed bak to squeeze during ode ompression: the SPEC

benhmarks were pro�led using the SPEC training inputs and subsequently timed on the SPEC referene

inputs; for eah of the remaining benhmarks, we used the same input for both pro�ling and subsequent

timing. The timings were obtained on a lightly loaded DEC Alpha workstation with a 300 MHz Alpha

21164 proessor with a split primary diret mapped ahe (8 Kbytes eah of instrution and data ahe),

96 Kbytes of on-hip seondary ahe, 2 Mbytes of o�-hip seondary ahe, and 512 Mbytes of main

memory, running Digital Unix 4.0. Our results are shown in Table 2. In eah ase, the exeution time

reported is the smallest time of 6 runs. The exeution times for the original exeutables is given under

the olumn labelled \Base" (T

base

). The exeution times of the exeutables produed by squeeze are

reported in the olumn labelled \squeezed" (T

sqz

). The olumn labelled T

sqz

=T

base

gives the speed of

the ompressed ode relative to that of the original ode.

The results of our timing experiments indiate that it is by no means a foregone onlusion that the

ode resulting from ode ompression will be slower than the original unompressed ode. For many

of our benhmarks, the ompressed ode runs signi�antly faster than the original ode: for example,

for the ompress and m88ksim benhmarks, the ompressed ode is over 16% faster, mpeg2de is just

under 10% faster, and for gsm, go, and ijpeg this �gure is a little over 8%. On the other hand, for some

12

benhmarks the ompressed ode is signi�antly slower than the original ode: the g benhmark is

about 8% slower, and vortex is lose to 14% slower. Overall, for the set of benhmarks onsidered, the

average speedup is just under 6%.

We are urrently looking into the reasons for the slowdowns in exeution speed resulting from

ompression, so as to determine whether they an be alleviated without signi�antly a�eting the

amount of ompression obtained. Preliminary numbers, obtained using hardware ounters on the Alpha

proessor, suggest that for the programs that su�er slowdowns, muh of the performane degradation

an be attributed to an inrease in instrution ahe misses. For the g benhmark, for example, the

ompressed ode exeutes 4% more instrutions than the original ode|presumably beause of the

ontrol transfers resulting from proedural abstration|but inurs 13% more i-ahe misses; for vortex,

the ompressed ode exeutes 6% more instrutions than the original ode but inurs 38% more i-ahe

misses. This suggests that it may be possible to improve the performane of the ompressed ode in

this ase by more areful pro�le-direted ode layout.

4 Conlusions

This paper fouses on the problem of ode ompression to yield smaller exeutables. It desribes an

approah to this problem that departs from lassial suÆx-tree-based approahes. Beause it does not

treat the program as a simple linear sequene of instrutions, it an be more exible in its treatment of

what ode fragments may be onsidered \equivalent." This exibility, ombined with aggressive inter-

proedural program analysis and optimization, allow us to obtain onsiderably greater ompression,

even on optimized ode, than previous approahes.

Aknowledgements

We are grateful to Nathaniel MIntosh for helpful disussions, and for pointing us to the UCLA Medi-

abenh benhmark programs.

Referenes

[1℄ B. S. Baker, \A Theory of Parameterized Pattern Mathing: Algorithms and Appliations (Ex-

tended Abstrat)", Pro. ACM Symposium on Theory of Computing, 1993, pp. 71{80.

[2℄ B. S. Baker and U. Manber, \Deduing Similarities in Java Soures from Byteodes", Pro.

USENIX Annual Tehnial Conferene, June 1998, pp. 179{190.

[3℄ Martin Bene�s, Steven M. Nowik, and Andrew Wolfe. A fast asynhronous hu�man deoder for

ompressed-ode embedded proessors. In Pro. International Symposium on Advaned Researh

in Asynhronous Ciruits and Systems, September 1998.

[4℄ K. D. Cooper and N. MIntosh, \Enhaned Code Compression for Embedded RISC Proessors".

Pro. SIGPLAN '99 Conferene on Programming Language Design and Implementation, May 1999

(to appear).

[5℄ J. Ernst, W. Evans, C. Fraser, S. Luo, and T. Proebsting. Code ompression. In SIGPLAN '97

Conferene on Programming Language Design and Implementation, 1997.

[6℄ M. Franz. Adaptive ompression of syntax trees and iterative dynami ode optimization: Two

basi tehnologies for mobile-objet systems. Tehnial Report 97-04, Department of Information

and Computer Siene, University of California, Irvine, February 1997.

[7℄ M. Franz and T. Kistler. Slim binaries. Tehnial Report 96-24, Department of Information and

Computer Siene, University of California, Irvine, June 1996.

13

[8℄ C. W. Fraser and D. R. Hanson, A Retargetable C Compiler: Design and Implementation, Addison-

Wesley, 1995.

[9℄ C. W. Fraser, E. W. Myers, and A. L. Wendt, \Analyzing and Compressing Assembly Code", Pro.

SIGPLAN '84 Symposium on Compiler Constrution, June 1984, pp. 117{121.

[10℄ C.W. Fraser and T.A. Proebsting. Custom instrution sets for ode ompression. Unpublished

manusript. http://researh.mirosoft.om/ toddpro/papers/pldi2.ps, Otober 1995.

[11℄ J. Knoop, O. R�uthing, and B. Ste�en, \Optimal Code Motion: Theory and Pratie", ACM

Transations on Programming Languages and Systems vol. 16 no. 4, July 1994, pp. 1117{1155.

[12℄ S. S. Muhnik, Advaned Compiler Design and Implementation, Morgan Kaufman, 1997.

[13℄ R. Muth, S. K. Debray, S. Watterson, and K. De Bosshere, \alto : A Link-Time Optimizer for

the DEC Alpha", Tehnial Report 98-14, Dept. of Computer Siene, The University of Arizona,

Deember 1998.

[14℄ K. Pettis and R. C. Hansen, \Pro�le-Guided Code Positioning", Pro. SIGPLAN '90 Conferene

on Programming Language Design and Implementation, June 1990, pp. 16{27.

[15℄ T.A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Pro. Symp. on

Priniples of Programming Languages, pages 322{332, January 1995.

[16℄ R. van de Wiel. The `Code Compation' Bibliography. URL:

http://www.win.tue.nl/s/pa/rikvdw/bibl.html.

[17℄ M. J. Zastre, Compating Objet Code via Parameterized Proedural Abstration, Masters Thesis,

Dept. of Computing Siene, University of Vitoria, Canada, 1993.

14

