
Compiler Te
hniques for Code Compression

�

Saumya Debray William Evans Robert Muth

Department of Computer S
ien
e

University of Arizona

Tu
son, AZ 85721, U.S.A.

fdebray, will, muthg�
s.arizona.edu

Te
hni
al Report 99-7

April 1999

Abstra
t

In re
ent years there has been an in
reasing trend towards the in
orporation of
omputers into

a variety of devi
es where the amount of memory available is limited. This makes it desirable to

try and redu
e the size of appli
ations where possible. This paper explores the use of
ompiler

te
hniques to a

omplish
ode
ompression to yield smaller exe
utables. The main
ontribution

of this paper is that, by showing how \equivalent"
ode fragments
an be dete
ted and fa
tored

out without having to resort to purely linear treatments of
ode sequen
es as in suÆx-tree-based

approa
hes, it sets up a framework for
ode
ompression that
an be more
exible in its treatment

of what
ode fragments are
onsidered equivalent. Our ideas have been implemented in the form

of a binary-rewriting tool that is able to a
hieve signi�
antly better
ompression than previous

approa
hes.

�

This work was supported in part by the National S
ien
e Foundation under grant CCR-9711166.

1

1 Introdu
tion

In re
ent years there has been an in
reasing trend towards the in
orporation of
omputers into a

wide variety of devi
es, su
h as palm-tops, telephones, embedded
ontrollers, et
. In many of these

devi
es, the amount of memory available is limited, e.g., due to
onsiderations su
h as spa
e, weight,

power
onsumption, or pri
e. At the same time, there is an in
reasing desire to use more and more

sophisti
ated software in su
h devi
es, su
h as en
ryption software in telephones, or spee
h or image

pro
essing software in laptops and palm-tops. Unfortunately, an appli
ation that requires more memory

than is available on a parti
ular devi
e will not be able to run on that devi
e. This makes it desirable

to try and redu
e the size of appli
ations where possible. This paper explores the use of
ompiler

te
hniques to a

omplish this
ode
ompression.

Previous work in program
ompression has explored the
ompressiblity of a wide range of program

representations: sour
e languages, intermediate representations, ma
hine
odes, et
. [16℄. The resulting

ompressed form either must be de
ompressed (and perhaps
ompiled) before exe
ution [5, 6, 7℄ or it

an be exe
uted (or interpreted [10, 15℄) without de
ompression [4, 9℄. The �rst method results in a

smaller
ompressed representation than the se
ond, but requires the overhead of de
ompression before

exe
ution. This overhead may be negligible and, in fa
t, may be
ompensated for by the savings

in transmission or retrieval
ost [7℄. A more severe problem is that it requires spa
e to pla
e the

de
ompressed
ode. This also has been somewhat mitigated by te
hniques of partial de
ompression

or de
ompression-on-the-
y [3, 5℄ but these te
hniques require altering the run-time operation or the

hardware of the
omputer. In this paper, we explore
ompression to an exe
utable form. The resulting

form is larger than the smallest
ompressed representation of the program, but we do not pay any

de
ompression overhead or require more spa
e in order to exe
ute.

Mu
h of the earlier work on
ode
ompression to yield smaller exe
utables has treated an exe
utable

program as a simple linear sequen
e of instru
tions. Early work by Fraser et al. used a suÆx tree

onstru
tion to identify repeated instru
tion sequen
es within su
h a linear sequen
e [9℄. Su
h repeated

sequen
es were then abstra
ted out into fun
tions. Applied to a range of Unix utilities on a Vax

pro
essor, this te
hnique managed to redu
e
ode size by a fa
tor of about 7% on the average. A

short
oming of this approa
h is that sin
e it relies on a purely textual interpretation of a program, it is

sensitive to super�
ial di�eren
es between
ode fragments, e.g., due to the use of di�erent registers, that

may not a
tually have any e�e
t on the behavior of the
ode. This short
oming has been addressed by

Baker, who proposed parameterized suÆx trees [1℄; by Cooper and M
Intosh, who use register renaming

to get around this problem [4℄ (a similar approa
h is dis
ussed by Baker and Manber [2℄); and by Zastre,

who uses parameterized pro
edural abstra
tions [17℄. The main idea here is to rewrite instru
tions so

that instead of using hard-
oded register names, the (register) operands of an instru
tion are expressed,

if possible, in terms of a previous referen
e (within the same basi
 blo
k) to that register. Further,

bran
h instru
tions are rewritten, where possible, to PC-relative form. These transformations allow

the suÆx tree
onstru
tion to dete
t the repetition of similar but not lexi
ally identi
al instru
tion

sequen
es. Cooper and M
Intosh have obtained a
ode size redu
tion of about 5% on the average using

these te
hniques on
lassi
ally optimized
ode (in their implementation, the
lassi
al optimizations

a
hieve a
ode size redu
tion of about 18%
ompared to unoptimized
ode).

However, any approa
h that treats a program as a simple linear sequen
e of instru
tions, e.g., in

using suÆx trees to identify repeating instru
tion sequen
es, will su�er from the disadvantage of having

to work with a parti
ular ordering of instru
tions. There may be many reasons why two \equivalent"

omputations may map to di�erent instru
tion sequen
es in two di�erent parts of a program. The �rst,

and most obvious, is that there may be di�eren
es in register usage and bran
h labels. Di�eren
es in

the a
tual sequen
e of instru
tions produ
ed may also arise due to instru
tion s
heduling, or be
ause

of pro�le-dire
ted
ode layout to improve instru
tion
a
he utilization [14℄.

This paper des
ribes a somewhat di�erent approa
h to
ode
ompression. Instead of treating a

program as a simple linear sequen
e of instru
tions, we work with its (interpro
edural)
ontrol
ow

graph. Instead of using a suÆx tree
onstru
tion to identify repeated instru
tion sequen
es, we use

1

B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)

E

stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

Figure 1: Lo
al Code Fa
toring

a �ngerprinting s
heme to identify \similar" basi
 blo
ks. If two blo
ks that are similar are found to

not be identi
al, we try to rename registers|using a te
hnique somewhat di�erent from that of Cooper

and M
Intosh|in an attempt to make them identi
al. We use the notions of dominators and post-

dominators to dete
t identi
al subgraphs of the
ontrol
ow graph, larger than a single basi
 blo
k, and

that
an be abstra
ted out into a pro
edure. Finally, we identify and take advantage of ar
hite
ture-

spe
i�

ode idioms, e.g., for saving and restoring spe
i�
 sets of registers at the entry to and return

from fun
tions.

The main
ontribution of this paper is that, by showing how \equivalent"
ode fragments
an

be dete
ted and fa
tored out without having to resort to purely linear treatments of
ode sequen
es

as in suÆx-tree-based approa
hes, it sets up a framework for
ode
ompression that
an be more

exible in its treatment of what
ode fragments are
onsidered \equivalent." For example, while our

urrent implementation sear
hes for sets of basi
 blo
ks that
ontain identi
al instru
tion sequen
es,

it is straightforward to generalize this
omponent of the system to
onsider use-de�nition
hains, and

thereby handle di�eren
es in the sequen
e of instru
tions arising out of instru
tion s
heduling de
isions.

Similarly, the treatment of single-entry single-exit regions in Se
tion 2.4 fo
uses on stru
tural properties

of
ontrol
ow graphs rather than any parti
ular linearization: this allows it to handle di�eren
es in

ode sequen
es arising out of pro�le-dire
ted
ode layout. We believe that the added
exibility gained

from our approa
h
an be useful in improving the results of
ode
ompression. A se
ondary
ontribution

is to show that signi�
ant redu
tions in
ode size
an be obtained without having to resort to extraneous

stru
tures su
h as suÆx trees, by using information already available in most
ompilers, e.g. the
ontrol

ow graph and dominator/postdominator trees.

Our ideas have been implemented in the form of a binary-rewriting tool based on alto, a post-

link-time
ode optimizer [13℄. The resulting system,
alled squeeze, is able to a
hieve signi�
antly

better
ompression than previous approa
hes. However, our ideas do not rely on anything parti
ular

to exe
utable �les, and
an be in
orporated into
ompilers
apable of inter-pro
edural optimization.

Our
ode size redu
tions
ome from two sour
es: aggressive (inter-pro
edural) appli
ation of what are

essentially
lassi
al
ompiler analyses and optimizations; and
ode fa
toring, whi
h we use to refer to

a variety of te
hniques to identify and \fa
tor out" repeated instru
tion sequen
es. Classi
al
ompiler

optimizations have been dis
ussed in detail by many authors (e.g., see [12℄), and so are not
onsidered

further here. The next se
tion des
ribes the
ode fa
toring te
hniques used within squeeze.

A prototype of our system
an be obtained from http://www.
s.arizona.edu/alto/squeeze.

2

2 Code Fa
toring

Code fa
toring involves (1) �nding a multiply-o

urring sequen
e of instru
tions, (2) making one repre-

sentative sequen
e that
an be used in pla
e of all o

urren
es, and (3) arranging, for ea
h o

urren
e,

that the program exe
utes the representative instead of the o

urren
e. The third step
an be a
hieved

by expli
it
ontrol transfer (via a
all or jump), or by moving the representative of several o

urren
es

to a point that dominates every o

urren
e. We �rst exploit the latter form of
ode fa
toring sin
e it

involves no added
ontrol transfer instru
tions.

2.1 Lo
al Fa
toring Transformations

Inspired by an idea of Knoop et al. [11℄, we try to merge identi
al
ode fragments by moving them

to a point that pre- or post-dominates all the o

urren
es of the fragments. We have implemented

a lo
al variant of this s
heme whi
h we des
ribe using the example depi
ted in Figure 1. The left

hand side of the �gure shows an assembly
ode
ow
hart with a
onditional bran
h (beq r0) in blo
k

A. Blo
ks B and C
ontain the same instru
tion add r5,r6,r8: sin
e these instru
tions do not have

ba
kward dependen
ies with any other instru
tion in B or C, we
an safely move them into blo
k A

just before the beq instru
tion, as shown in the right hand side of Figure 1. Similarly, blo
ks B, C,

and D share the same store instru
tion (stq r9,r16(r23)), and sin
e these instru
tions do not have

forward dependen
ies with any other instru
tion in B, C,and D, it
an be safely moved into blo
k E.

In this
ase it is not possible to move the store instru
tion from B and C into A be
ause, due to the

la
k of aliasing information, there are ba
kward dependen
ies to the load instru
tions (ldq) in B and

C. In general, however, it might be possible to move an instru
tion either up or down. In this
ase we

prefer to move it down sin
e moving it up will eliminate exa
tly one
opy while moving it down might

eliminate several
opies.

Our s
heme uses register reallo
ation to make this transformation more e�e
tive. For example, the

sub instru
tions in B and C write to di�erent registers (r9 and r19). We
an, however, rename the

r9 to r19 in B, thereby making the instru
tions identi
al. Another opportunity rests with the xor

instru
tions in B and C. Even though they are identi
al we
an not move them into A be
ause they

write register r0 whi
h is used by the
onditional bran
h. Reallo
ating r0 in A to another register

whi
h is dead at the end of A will make the transformation possible.

2.2 Pro
edural Abstra
tion

Given a single-entry single-exit
ode fragment C, pro
edural abstra
tion of C involves (i)
reating a

pro
edure f

C

whose body is a
opy of C; and (ii) repla
ing the appropriate o

urren
es of C in the

program text by a fun
tion
all to f

C

. While the �rst step is not very diÆ
ult, at the level of assembly

or ma
hine
ode the se
ond step involves a little work.

In order to
reate a fun
tion
all using some form of \jump-and-link" instru
tion that transfers

ontrol to the
allee and at the same time puts the return address into a register, it is ne
essary to

�nd a free register for that purpose. A simple method is to
al
ulate, for ea
h register r, the number

of o

urren
es of
ode fragment C that
ould use r as a return register. A register with the highest

su
h �gure of merit is
hosen as the return register for f

C

. If a single instan
e of f

C

, using a parti
ular

return register, is not enough to abstra
t out all of the o

urren
es of C in the program, we may
reate

multiple instan
es of f

C

that use di�erent return registers. We use a more
ompli
ated s
heme when

abstra
ting fun
tion prologs (see Se
tion 2.5.1) and regions of multiple basi
 blo
ks (see Se
tion 2.4).

2.3 Pro
edural Abstra
tion for Individual Basi
 Blo
ks

Central to our approa
h is the ability to apply pro
edural abstra
tion to individual basi
 blo
ks. In

this se
tion, we dis
uss how
andidate basi
 blo
ks for pro
edural abstra
tion are identi�ed.

3

2.3.1 Fingerprinting

To redu
e the
ost of
omparing basi
 blo
ks to determine whether they are identi
al (or similar),

we
ompute a \�ngerprint" for ea
h basi
 blo
k, su
h that two blo
ks with di�erent �ngerprints are

guaranteed to be di�erent. In our
urrent implementation, a �ngerprint is a 64-bit value formed by

on
atenating 4-bit en
odings of the op-
odes of the �rst 16 instru
tions in the blo
k. Sin
e most systems

appli
ations tend to have short basi
 blo
ks,
hara
terizing the �rst 16 instru
tions seems enough for

most basi
 blo
ks. With 4 bits per instru
tion, we en
ode 15 di�erent op-
odes: we de
ide whi
h 15

will be expli
itly represented by
onsidering a stati
 instru
tion
ount of the program, su
h that the

15 most frequently o

urring op-
odes are given distin
t 4-bit patterns. The remaining pattern, 0000,

represents other op-
odes, i.e., op-
odes that are not in the top 15 in frequen
y.

To redu
e the number of pairwise
omparisons of �ngerprints that must be
arried out, we use

a hashing s
heme su
h that basi
 blo
ks in di�erent hash bu
kets are guaranteed to have di�erent

�ngerprints, and so need not be
ompared.

2.3.2 Register Renaming within Basi
 Blo
ks

When we �nd two basi
 blo
ks that are \similar," i.e., have the same �ngerprint and the same number

of instru
tions, but whi
h are not identi
al, we attempt to rename the registers in one of them so as

to make the two identi
al. The basi
 idea is very simple: registers are renamed \lo
ally," i.e., within

the basi
 blo
k; and if ne
essary, register-to-register moves are inserted, in new basi
 blo
ks inserted

immediately before and after the blo
k being renamed, so as to preserve program behavior.

For soundness, it is ne
essary to ensure that the renaming does not alter any use-de�nition relation-

ships: we do this by keeping tra
k of the set of registers that are live at ea
h point in the basi
 blo
k,

as well as the set of registers that have already been subje
ted to renaming. These sets are then used

to dete
t and disallow renamings that
ould alter the program's behavior. We omit details due to spa
e

onstraints.

The renaming algorithm keeps tra
k of the number of expli
it register-to-register moves that have to

be inserted before and after a basi
 blo
k that is being renamed. If, at the end of the renaming pro
ess,

the savings from the renaming, i.e., the number of instru
tions in the blo
k, does not ex
eed the
ost

of renaming, i.e., the number of register moves required together with a fun
tion
all instru
tion, the

renaming is undone.

2.3.3 Control Flow Separation

The approa
h des
ribed above will typi
ally not be able to abstra
t two basi
 blo
ks that are identi
al

ex
ept for an expli
it
ontrol transfer instru
tion at the end. The reason for this is that if the
ontrol

transfers are to di�erent targets, the blo
ks will be
onsidered to be di�erent and so will not be ab-

stra
ted. Moreover, if the
ontrol transfer instru
tion is a
onditional bran
h, pro
edural abstra
tion

be
omes
ompli
ated by the fa
t that two possible return addresses have to be
ommuni
ated.

To avoid su
h problems, basi
 blo
ks that end in an expli
it
ontrol transfer instru
tion are split

into two blo
ks: one blo
k
ontaining all the instru
tions in the blo
k ex
ept for the
ontrol transfer,

and another blo
k that
ontains only the
ontrol transfer instru
tion. The �rst of this pair of blo
ks

an then be subje
ted to renaming and/or pro
edural abstra
tion in the usual way.

The next se
tion des
ribes how
ode fragments larger than a single basi
 blo
k
an be subje
ted to

pro
edural abstra
tion.

4

2.4 Single-Entry/Single-Exit Regions

The dis
ussion thus far has fo
used on the pro
edural abstra
tion of individual basi
 blo
ks. In general,

however, we may be able to �nd multiple o

urren
es of a
ode fragment
onsisting of more than one

basi
 blo
k. In order to apply pro
edural abstra
tion to su
h a region R, at every o

urren
e of R in

the program, we must be able to identify a single program point from whi
h
ontrol enters R, and a

single program point to whi
h
ontrol returns after leaving R. It isn't hard to see that any set of basi

blo
ks R with a single entry point and a single exit point
orresponds to a pair of points (d; p) su
h

that d dominates every blo
k in R and p post-dominates every blo
k in R;
onversely, a pair of program

points (d; p), where d dominates p and p post-dominates d, uniquely identi�es a set of basi
 blo
ks

with a single entry point and single exit point. Two su
h single-entry single-exit regions R and R

0

are

onsidered to be identi
al if it is possible to set up a 1-1
orresponden
e ' between their members su
h

that if B

1

' B

0

1

, then (i) B

1

is identi
al to B

0

1

; and (ii) if B

2

is a (immediate) su

essor of B

1

under

some
ondition C, and B

0

2

is a (immediate) su

essor of B

0

1

under the same
ondition C, then B

2

' B

0

2

.

The algorithm to determine whether two regions are identi
al works by re
ursively traversing the two

regions, starting at the entry node, and verifying that
orresponding blo
ks are identi
al.

In squeeze, after pro
edural abstra
tion has been applied to individual basi
 blo
ks, we identify

pairs of basi
 blo
ks (d; p) su
h that d dominates p and p post-dominates d. Ea
h su
h pair de�nes a

single-entry single-exit set of basi
 blo
ks. These sets of basi
 blo
ks are then partitioned into groups

of identi
al regions, whi
h then be
ome
andidates for further pro
edural abstra
tion.

As in the
ase of basi
 blo
ks, we
ompute a �ngerprint for ea
h region so that regions with di�erent

�ngerprints will ne
essarily be di�erent. These �ngerprints are, again, 64-bit values: there are 8 bits

for the number of basi
 blo
ks in the region and 8 bits for the total number of instru
tions, with the bit

pattern 11...1 being used to represent values larger than 256; and the remaining 48 bits are used to

en
ode the �rst (a

ording to a parti
ular preorder traversal of the region) 8 basi
 blo
ks in the region,

with ea
h blo
k en
oded using 6 bits: two bits give the type of the blo
k, and four bits for the number

of instru
tions in the blo
k. Again, as in the
ase of basi
 blo
ks, the number of pairwise
omparisons

of �ngerprints is redu
ed by distributing the regions over a hash table.

It turns out that applying pro
edural abstra
tion to a set of basi
 blo
ks is not as straightforward

as for a single basi
 blo
k, espe
ially in a binary rewriting implementation su
h as ours. The reason is

that, in general, when the pro
edure
orresponding to su
h a single-entry single-exit region is
alled,

the return address will be put into a register whose value
annot be guaranteed to be preserved through

that entire pro
edure, e.g., be
ause the region may
ontain fun
tion
alls. This means that the return

address register has to be saved somewhere, e.g., on the sta
k. However, allo
ating an extra word on

the sta
k, to hold the return address,
an
ause problems unless we are
areful: allo
ating this spa
e at

the top of the sta
k frame
an
ause
hanges in the displa
ements of other variables in the sta
k frame,

relative to the top-of-sta
k pointer; while allo
ating it at the bottom of the sta
k frame
an
hange the

displa
ements of any arguments that have been passed on the sta
k. If there is any address arithmeti

involving the sta
k pointer, e.g., for address
omputations for lo
al arrays, su
h
omputations may be

a�e
ted by
hanges in displa
ements within the sta
k frame. These problems are somewhat easier to

handle if the pro
edural abstra
tion is being
arried out before
ode generation, e.g., at the level of

abstra
t syntax trees [6℄. At the level of assembly
ode [4, 9℄ or ma
hine
ode (as in our work), it

be
omes
onsiderably more
ompli
ated. There are, however, some simple
ases where it is possible to

avoid the
ompli
ations asso
iated with having to save and restore the return address when introdu
ing

pro
edural abstra
tions. Here, we identify two su
h situations.

In the �rst
ase, if we are given two identi
al regions (d

0

; p

0

) and (d

1

; p

1

), where p

0

and p

1

are return

blo
ks (blo
ks from whi
h
ontrol returns to the
aller), there is no need to use pro
edural abstra
tion

to
reate a separate fun
tion for these two regions. Instead, we
an use a transformation known as

ross-jumping [12℄, where the
ode in the region (d

1

; p

1

) is simply repla
ed by a bran
h to d

0

. The

transformation is illustrated in Figure 2.

5

return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Figure 2: Merging Regions ending in returns via Cross-jumping

In the se
ond
ase, given two identi
al regions (d

0

; p

0

) and (d

1

; p

1

) that we would like to abstra
t

into a pro
edure, suppose that it is possible to �nd a register r that is (i) not live at entry to either

of these regions; and (ii) whose value
an be guaranteed to be preserved upto the end of the regions

under
onsideration (r
an be either a general-purpose register that is not de�ned within either region,

or a
allee-saved register that is already saved and restored by the fun
tions in whi
h the regions under

onsideration o

ur). In this
ase, when abstra
ting these regions into a pro
edure p, it is not ne
essary

to add any
ode to expli
itly save and restore the return address for p: the instru
tion to
all p
an

simply put the return address in r, and the return instru
tion(s) within p
an simply jump indire
tly

through r to return to the
aller.

If neither of these
onditions is satis�ed, squeeze tries to determine whether the return address

register
an be safely saved in memory at entry to p, and restored at the end. For this, it uses a

onservative analysis to determine whether a fun
tion may have arguments passed on the sta
k, and

whi
h, if any, registers may be pointers into the sta
k frame. Given a set of
andidate regions to be

abstra
ted into a representative pro
edure, it
he
ks the following:

1. for ea
h fun
tion that
ontains a
andidate region, it must be safe, with respe
t to the problems

mentioned above, to allo
ate a word on the sta
k frame of the fun
tion;

2. there must be a register r

0

free at entry to ea
h of the regions under
onsideration;

3. there must be a register r

1

free at the end of ea
h of the regions under
onsideration; and

4. there should not be any
alls to setjmp()-like fun
tions that
an be a�e
ted by a
hange in the

stru
ture of the sta
k frame.

If these
onditions are satis�ed, p allo
ates an additional word on the sta
k on entry and saves the

return address (passed via r

0

) into this lo
ation; and loads the return address from this lo
ation (using

r

1

) and restores the sta
k frame on exit. The
urrent implementation of the safety
he
k des
ribed

above is quite
onservative in its treatment of fun
tion
alls within a region, but we expe
t to relax

the restri
tions on su
h
alls soon. In prin
iple, if we �nd that spa
e
an be allo
ated on the sta
k

but have no free registers for the the return address at entry or exit from the abstra
ted fun
tion, it

should be possible to allo
ate an extra word on the sta
k in order to free up a register, but we have not

implemented this yet.

6

0
15

Save0
14

Save0
9

Save0
ra

Save0
14

$sp := $sp - 32
bsr $0, Save0

9

Save

ret ($0)

. . .

f0:

bsr $0,
$sp := $sp - 40

f1:

stq $15, 0x38($sp)

stq $14, 0x30($sp)

stq $9, 0x8($sp)

stq $ra, 0x0($sp)

Figure 3: Example
ode from abstra
tion of register save a
tions from fun
tion prologs

2.5 Ar
hite
ture-Spe
i�
 Idioms

Apart from the general-purpose te
hniques des
ribed earlier for dete
ting and abstra
ting out repeated

ode fragments, there are ma
hine-spe
i�
 idioms that
an be pro�tably exploited. In parti
ular, the

instru
tions to save and restore registers (the return address and
allee-saved registers) in the prolog

and epilog of ea
h fun
tion generally have a predi
table stru
ture and are saved at predi
table lo
ations

within the sta
k frame. For example, the standard
alling
onvention for the DEC Alpha pro
essor

under Digital Unix treats register $26 as the return address register ($ra) and registers $9 through

$15 as
allee-saved registers; these are saved at lo
ations 0x0($sp), 0x8($sp), 0x10($sp), and so on.

Abstra
ting out su
h instru
tions
an yield
onsiderable savings in
ode size. Su
h ar
hite
ture-spe
i�

save/restore sequen
es are re
ognized and handled spe
ially by squeeze, for two reasons: �rst, these

instru
tions often do not form a
ontiguous sequen
e in the
ode stream; and se
ond, handling them

spe
ially allows us to abstra
t them out of basi
 blo
ks that may not be identi
al to ea
h other.

2.5.1 Abstra
ting Register Saves

In order to abstra
t out the register save instru
tions in the prolog of a fun
tion f into a separate

fun
tion g, it is ne
essary to identify a register that
an be used to hold the return address for the
all

from f to g. For ea
h register r, we �rst
ompute the savings that would be obtained if r were to be

used for the return address for su
h
alls. This is done by totaling up, for ea
h fun
tion f where r is free

at entry to f , the number of registers saved in f 's prolog. We then
hoose a register r with maximum

savings (whi
h must ex
eed 0), and generate a family of fun
tions Save

r

15

; : : : ;Save

r

9

;Save

r

ra

that save

the
allee-saved registers and the return address register, and then return via register r. The idea is

that fun
tion Save

r

i

saves register i and then falls through to fun
tion Save

r

i�1

.

As an example, suppose we have two fun
tions f0() and f1(), su
h that f0() saves registers $9, . . . ,

$14, and f1() saves only register $9. Assume that register $0 is free at entry to both these fun
tions

and is
hosen as the return address register. The
ode resulting from the transformation des
ribed

above is shown in Figure 3.

It may turn out that the set of fun
tions subje
ted to this transformation do not use all of the

allee-saved registers. For example, in Figure 3, suppose that none of the fun
tions using return address

register $0 save register $15. In this
ase, the
ode for the fun
tion Save

0

15

be
omes unrea
hable and is

subsequently eliminated.

A parti
ular
hoi
e of return address register, as des
ribed above, may not a

ount for all of the

fun
tions in a program. The pro
ess is therefore repeated, using other
hoi
es of return address registers,

until either no further bene�t
an be obtained, or all fun
tions are a

ounted for.

7

2.5.2 Abstra
ting Register Restores

The
ode for abstra
ting out register restore sequen
es in fun
tion epilogs is
on
eptually analogous to

that des
ribed above, but with a few di�eren
es. If we were to simply do the opposite of what was

done for register saves in fun
tion prologs, the
ode resulting from pro
edural abstra
tion at ea
h return

blo
k for a fun
tion might have the following stru
ture, with three instru
tions to manage the
ontrol

transfers and sta
k pointer update:

...

bsr $1, Restore /*
all fun
tion that restores registers */

$sp := $sp + k /* deallo
ate sta
k frame */

ret ($ra) /* return */

If we
ould somehow move the instru
tion for deallo
ating the sta
k frame into the fun
tion that restores

saved registers, there would be no need to return to the fun
tion f whose epilog we are abstra
ting:

ontrol
ould return dire
tly to f 's
aller (in e�e
t realizing tail
all optimization). The problem is

that the
ode to restore saved registers is used by many di�erent fun
tions, whi
h in general have sta
k

frames of di�erent sizes, and hen
e need to adjust the sta
k pointer by di�erent amounts. The solution

to this problem is to pass, as an argument to the fun
tion that restores registers, the amount by whi
h

the sta
k pointer must be adjusted. Sin
e the return address register $ra is guaranteed to be free at this

point|it is about to be overwritten with f 's return address prior to returning
ontrol to f 's
aller|it

an be used to pass this argument.

1

Sin
e there is now no need for
ontrol to return to f after the

registers have been restored|it
an return dire
tly to f 's
aller|we
an simply jump from fun
tion f

to the fun
tion that restores registers, instead of using a fun
tion
all. The resulting
ode requires two

instru
tions instead of three in ea
h fun
tion return blo
k:

...

$ra := k /* $sp needs to be adjusted by k */

br Restore /* jump to fun
tion that restores registers */

The
ode in the fun
tion that restores registers is pretty mu
h what one would expe
t. Unlike the

situation for register save sequen
es dis
ussed in Se
tion 2.5.1, we need only one fun
tion for restoring

registers. The reason for this is that there is no need to
all this fun
tion:
ontrol
an jump into it

dire
tly, as dis
ussed above. This means that we don't have to generate di�erent versions of the fun
tion

with di�erent return address registers. The overall stru
ture of the
ode is analogous to that for saving

registers: there is a
hain of basi
 blo
ks, ea
h of whi
h restores a
allee-saved register, with
ontrol

falling through into the next blo
k, whi
h saves the next (lower-numbered)
allee-saved register, and

so on. The last member of this
hain adjusts the sta
k pointer appropriately, loads the return address

into a register, and returns. There is, however, one minor twist at the end. The amount by whi
h the

sta
k pointer must be adjusted is passed in register $ra, so this register
annot be overwritten until

after it has been used to adjust the sta
k pointer. On the other hand, sin
e the memory lo
ation from

whi
h f 's memory address is to be restored is in f 's sta
k frame, we
an't adjust the sta
k pointer until

after the return address has been loaded into $ra. We get around this problem using the following

instru
tion sequen
e:

...

add $sp, $ra, $sp /* $sp := $sp + $ra � new $sp */

sub $sp, $ra, $ra /* $ra := $sp - $ra � old $sp */

ldq $ra, 0x0($ra) /* $ra := return address */

ret ($ra)

8

to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq $15, 0x38($sp)

ldq $14, 0x30($sp)

ldq $9, 0x8($sp)

Restore

Restore

Restore

Restore

$ra := 32 $ra := 40
f0: f1:

ldq $ra, 0($ra)
ret ($ra)

$sp := $sp + $ra
$ra := $sp - $ra

Figure 4: Example
ode from abstra
tion of register restore a
tions from fun
tion epilogs

The resulting
ode for restoring saved registers, for the fun
tions
onsidered in the example illustrated

in Figure 3, is shown in Figure 4.

We go through these
ontortions in order to minimize the number of registers used. If we
ould �nd

another register that is free at the end of every fun
tion, we
ould load the return address into this

register, resulting in somewhat simpler
ode. However, in general it is not easy to �nd a register that

is free at the end of every fun
tion. The reason we go to su
h lengths to eliminate a single instru
tion

from ea
h return blo
k is that there are a lot of return blo
ks, amounting to about 4%{8% of the basi

blo
ks in a program (there is usually at least one|and, very often, more than one|su
h blo
k for ea
h

fun
tion). The elimination of one instru
tion from ea
h su
h blo
k translates to a
ode size redu
tion

of about 1%{2% overall (this may seem small, but to put it in perspe
tive,
onsider that Cooper and

M
Intosh report an overall
ode size redu
tion of about 5% using suÆx-tree based te
hniques).

3 Experimental Results

3.1 Code Size

To evaluate our ideas, we used the eight SPEC-95 integer ben
hmarks, as well as �ve embedded appli-

ations, adp
m, gsm, mpeg2de
, mpeg2en
 and rasta, obtained from the MediaBen
h ben
hmark suite

from UCLA (http://www.
s.u
la.edu/~lee
/mediaben
h). The programs were
ompiled using g

version 2.7.2.2, at optimization level -O2, with additional
ags instru
ting the linker to retain relo-

ation information and produ
e stati
ally linked exe
utables.

2

At the -O2 level of optimization used,

the
ompiler
arries out most supported optimizations that do not involve a spa
e-speed tradeo�; in

parti
ular, loop unrolling and fun
tion inlining are not
arried out. We expe
t the resulting
ode to be

omparable in size and quality to the optimized
ode of Cooper and M
Intosh [4℄. To obtain instru
tion

ounts, we �rst disassemble the exe
utable �les and dis
ard unrea
hable
ode and no-op instru
tions.

This eliminates library routines that are linked in but are not a
tually
alled, as well as any no-op

instru
tions that may have been inserted by the
ompiler for instru
tion s
heduling or alignment pur-

poses. To identify unrea
hable
ode, our implementation
onstru
ts a
ontrol
ow graph for the entire

program and then
arries out a rea
hability analysis. In the
ourse of
onstru
ting the
ontrol
ow

graph, un
onditional bran
hes are dis
arded: these are subsequently reinserted as ne
essary, after all

the
ode transformations have been
arried out, during
ode layout just before the transformed
ode is

1

In pra
ti
e not all fun
tions
an be guaranteed to follow the standard
alling
onvention, so it is ne
essary to verify

that register $ra is, in fa
t, being used as the return address register by f .

2

The requirement for stati
ally linked exe
utables is a result of the fa
t that squeeze relies on the presen
e of relo
ation

information for its
ontrol
ow analysis. The Digital Unix linker ld refuses to retain relo
ation information for non-

stati
ally-linked exe
utables.

9

Program Size (No. of instru
tions)

Program unoptimized optimized squeezed N

opt

=N

unopt

N

sqz

=N

opt

(N

unopt

) (N

opt

) (N

sqz

)

ompress 21956 20997 16611 0.956 0.791

g

 528353 338064 251655 0.640 0.744

go 134353 79563 64764 0.592 0.814

ijpeg 80760 56179 44669 0.696 0.795

li 44346 38792 28582 0.875 0.737

m88ksim 72563 52829 40493 0.728 0.766

perl 138394 102271 76008 0.739 0.743

vortex 205670 150403 109540 0.731 0.728

adp
m 18664 18344 14303 0.983 0.780

gsm 36245 30312 24167 0.836 0.797

mpeg2de
 35371 28033 21609 0.792 0.771

mpeg2en
 52551 41438 32809 0.788 0.792

rasta 97326 90191 65330 0.927 0.724

Geometri
 Mean 0.782 0.767

Table 1: Code size redu
tion

written out. To get a

urate
ounts, therefore, we generate the �nal
ode layout in ea
h
ase (i.e., with

and without
ompression) and
ount the total number of instru
tions.

The overall
ode size redu
tions a
hieved using our te
hniques are shown in Table 1. The se
ond

olumn, labelled \unoptimized," gives the
ode size obtained using g

 -O0, i.e., with no optimization;

the third
olumn, labelled \optimized," gives the size of the programs using g

 -O2; and the fourth

olumn, labelled \squeezed," gives the
ode size obtained using squeeze on the optimized input programs.

The �fth
olumn shows the
ode size redu
tion obtained using
lassi
al optimizations within g

; the

last
olumn shows the additional redu
tion in
ode size obtained using squeeze. It
an be seen from

this table that g

, using
lassi
al
ompiler optimizations, is able to a
hieve signi�
ant improvements

in
ode size
ompared to the unoptimized
ode, with an average redu
tion of about 22%, whi
h is more

or less
omparable to the
orresponding numbers for Cooper and M
Intosh. More importantly, the

last
olumn of this table illustrates that, even when given the already optimized exe
utables as input,

squeeze is able to a
hieve signi�
ant further redu
tions in size: for almost all of the ben
hmarks, it is

able to a
hieve
ompression ratios of 20% or more, with an average size redu
tion of a little over 23%.

Our results indi
ate that, even though we start with programs that have been subje
ted to extensive

optimization, we are still able to obtain signi�
ant redu
tions in
ode size. Roughly 35% of our
ode

size redu
tions
ome from the
ode fa
toring te
hniques des
ribed, while about 65%
ome from the

appli
ation of
ompiler optimizations (see Figure 5). It should be noted that within squeeze, the

improvements due to
lassi
al
ompiler optimizations are fundamentally inter-pro
edural in their origins,

and are made possible by aggressive inter-pro
edural analysis and optimization that is possible at link

time be
ause the entire program is available for inspe
tion (for the same reasons, our link-time optimizer

alto is able to obtain signi�
ant improvements in exe
ution speed, even for programs that have already

been subje
ted to extensive
ompile-time optimization [13℄).

As mentioned earlier, our experiments used stati
ally linked exe
utables, where the
ode for the

library routines is linked into the exe
utable by the linker prior to exe
ution. It is desirable to identify,

therefore, the extent to whi
h the presen
e of library
ode in
uen
es our results: for example, if it turns

out that library
ode is highly
ompressible while user
ode is not|this
ould happen, for example,

due to the use of di�erent
ompilers or
ompiler optimization levels|then our results would not be

readily appli
able to non-stati
ally-linked exe
utables. To this end, we instrumented squeeze to re
ord,

for ea
h addition or deletion of
ode during its run, the fun
tion(s) with whi
h the size
hange should

10

com
press

gcc

go ijpeg

li m
88ksim

perl

vortex

adpcm

gsm

m
peg2dec

m
peg2enc

rasta

0.0

20.0

40.0

60.0

80.0

100.0

Im
pr

ov
em

en
t

(%
)

0.0

20.0

40.0

60.0

80.0

100.0

Im
pr

ov
em

en
t

(%
)

Classical Optimizations

Code Factoring

Figure 5: Origins of
ode size improvements

com
press

gcc

go ijpeg

li m
88ksim

perl

vortex

adpcm

gsm

m
peg2dec

m
peg2enc

rasta

0.0

10.0

20.0

30.0

40.0

50.0

C
om

pr
es

si
bi

lit
y

(%
)

0.0

10.0

20.0

30.0

40.0

50.0

C
om

pr
es

si
bi

lit
y

(%
)

User code

Libraries

Figure 6: Compressibility: user
ode vs. libraries

be asso
iated. For the
lassi
al optimizations implemented within squeeze, this is straightforward;

for pro
edural abstra
tion, we used the following approa
h: suppose that n di�erent instan
es of a

parti
ular
ode fragment were abstra
ted into a pro
edure, resulting in a net savings in
ode size of m,

then the fun
tion
ontaining ea
h of these instan
es was
redited with a savings of m=n instru
tions

(this is not ne
essarily an integral quantity, but this is not a problem for our purposes). We then used

a list of fun
tions in the user
ode, obtained using a modi�ed version of the l

ompiler [8℄, to estimate

the total size of user
ode and the
ode savings attributable to it. These measurements do not a

ount

for indire
t e�e
ts of having the library
ode available for inspe
tion, e.g., by improving the pre
ision

of data
ow analyses, whi
h may give rise to additional opportunities for optimization. Nevertheless, we

feel that this information is useful for obtaining qualitative estimates of the in
uen
e of library
ode on

our overall numbers. Our results are shown in Figure 6. The bars labelled \User
ode" represent the

fra
tion of instru
tions in user
ode, relative to the total number of user
ode instru
tions, that were

deleted in the pro
ess of
ode
ompression, while those labelled \Libraries" gives the
orresponding

�gures for library
ode. For both the user
ode and libraries,
ompressibility typi
ally ranges from

around 25% to around 30%, with an average
ompressibility of about 27% for user
ode and about 26%

for library
ode.

3

There are a few programs (li, perl, vortex, adp
m) where the user
ode is noti
eably

more
ompressible than the libraries, and a few others (go, gsm, rasta) where the libraries are more

ompressible. In general, however, the user and library
ode are more or less
omparable in terms of

their
ompressibility.

3

These numbers refer to the
ontrol
ow graph prior to
ode layout, i.e., before un
onditional bran
hes are added while

linearizing the graph. For this reason they are slightly higher than those in Table 1.

11

Program Exe
ution Time (se
s) T

sqz

=T

base

base (T

base

) squeezed (T

sqz

)

ompress 373.40 311.47 0.834

g

 284.26 306.92 1.080

go 390.21 356.61 0.914

ijpeg 395.17 362.24 0.917

li 363.46 338.49 0.931

m88ksim 398.61 332.44 0.834

perl 268.20 254.16 0.948

vortex 532.86 606.12 1.137

adp
m 15.52 15.40 0.992

gsm 8.21 7.50 0.914

mpeg2de
 9.60 8.66 0.902

mpeg2en
 15.37 14.39 0.936

rasta 6.51 6.14 0.943

Geometri
 Mean: 0.941

Table 2: Impa
t of Compression on Exe
ution Speed

3.2 Code Speed

One intuitively expe
ts the programs resulting from the
ode
ompression te
hniques des
ribed here to

be slower than the original
ode, primarily be
ause of the additional fun
tion
alls resulting from the

pro
edural abstra
tion that o

urs. A more
areful
onsideration indi
ates that the situation may be

murkier than this simple analysis suggests, for a number of reasons. First, on the average about 65% of

the
ode size redu
tion is due to aggressive inter-pro
edural optimizations that also improve exe
ution

speed. Se
ond, transformations su
h as pro�le-dire
ted
ode layout, whi
h need not have a large e�e
t

on
ode size,
an nevertheless have a signi�
ant positive e�e
t on speed. On the other hand, on a

supers
alar pro
essor su
h as the Alpha 21164, slowdowns
an o

ur in the
ompressed
ode for reasons

other than pro
edural abstra
tion, e.g., due to the elimination of no-ops inserted by the instru
tion

s
heduler in order to align the instru
tions so as to in
rease the number of instru
tions issued per
y
le.

To determine the a
tual e�e
t of our transformations on our ben
hmarks, we
ompared the exe
ution

times of the original optimized exe
utables with those resulting from the appli
ation of squeeze to

these exe
utables. Exe
ution pro�les, in the form of basi
 blo
k exe
ution
ounts, were obtained for

ea
h program using pixie, and these were fed ba
k to squeeze during
ode
ompression: the SPEC

ben
hmarks were pro�led using the SPEC training inputs and subsequently timed on the SPEC referen
e

inputs; for ea
h of the remaining ben
hmarks, we used the same input for both pro�ling and subsequent

timing. The timings were obtained on a lightly loaded DEC Alpha workstation with a 300 MHz Alpha

21164 pro
essor with a split primary dire
t mapped
a
he (8 Kbytes ea
h of instru
tion and data
a
he),

96 Kbytes of on-
hip se
ondary
a
he, 2 Mbytes of o�-
hip se
ondary
a
he, and 512 Mbytes of main

memory, running Digital Unix 4.0. Our results are shown in Table 2. In ea
h
ase, the exe
ution time

reported is the smallest time of 6 runs. The exe
ution times for the original exe
utables is given under

the
olumn labelled \Base" (T

base

). The exe
ution times of the exe
utables produ
ed by squeeze are

reported in the
olumn labelled \squeezed" (T

sqz

). The
olumn labelled T

sqz

=T

base

gives the speed of

the
ompressed
ode relative to that of the original
ode.

The results of our timing experiments indi
ate that it is by no means a foregone
on
lusion that the

ode resulting from
ode
ompression will be slower than the original un
ompressed
ode. For many

of our ben
hmarks, the
ompressed
ode runs signi�
antly faster than the original
ode: for example,

for the
ompress and m88ksim ben
hmarks, the
ompressed
ode is over 16% faster, mpeg2de
 is just

under 10% faster, and for gsm, go, and ijpeg this �gure is a little over 8%. On the other hand, for some

12

ben
hmarks the
ompressed
ode is signi�
antly slower than the original
ode: the g

 ben
hmark is

about 8% slower, and vortex is
lose to 14% slower. Overall, for the set of ben
hmarks
onsidered, the

average speedup is just under 6%.

We are
urrently looking into the reasons for the slowdowns in exe
ution speed resulting from

ompression, so as to determine whether they
an be alleviated without signi�
antly a�e
ting the

amount of
ompression obtained. Preliminary numbers, obtained using hardware
ounters on the Alpha

pro
essor, suggest that for the programs that su�er slowdowns, mu
h of the performan
e degradation

an be attributed to an in
rease in instru
tion
a
he misses. For the g

 ben
hmark, for example, the

ompressed
ode exe
utes 4% more instru
tions than the original
ode|presumably be
ause of the

ontrol transfers resulting from pro
edural abstra
tion|but in
urs 13% more i-
a
he misses; for vortex,

the
ompressed
ode exe
utes 6% more instru
tions than the original
ode but in
urs 38% more i-
a
he

misses. This suggests that it may be possible to improve the performan
e of the
ompressed
ode in

this
ase by more
areful pro�le-dire
ted
ode layout.

4 Con
lusions

This paper fo
uses on the problem of
ode
ompression to yield smaller exe
utables. It des
ribes an

approa
h to this problem that departs from
lassi
al suÆx-tree-based approa
hes. Be
ause it does not

treat the program as a simple linear sequen
e of instru
tions, it
an be more
exible in its treatment of

what
ode fragments may be
onsidered \equivalent." This
exibility,
ombined with aggressive inter-

pro
edural program analysis and optimization, allow us to obtain
onsiderably greater
ompression,

even on optimized
ode, than previous approa
hes.

A
knowledgements

We are grateful to Nathaniel M
Intosh for helpful dis
ussions, and for pointing us to the UCLA Medi-

aben
h ben
hmark programs.

Referen
es

[1℄ B. S. Baker, \A Theory of Parameterized Pattern Mat
hing: Algorithms and Appli
ations (Ex-

tended Abstra
t)", Pro
. ACM Symposium on Theory of Computing, 1993, pp. 71{80.

[2℄ B. S. Baker and U. Manber, \Dedu
ing Similarities in Java Sour
es from Byte
odes", Pro
.

USENIX Annual Te
hni
al Conferen
e, June 1998, pp. 179{190.

[3℄ Martin Bene�s, Steven M. Nowi
k, and Andrew Wolfe. A fast asyn
hronous hu�man de
oder for

ompressed-
ode embedded pro
essors. In Pro
. International Symposium on Advan
ed Resear
h

in Asyn
hronous Cir
uits and Systems, September 1998.

[4℄ K. D. Cooper and N. M
Intosh, \Enhan
ed Code Compression for Embedded RISC Pro
essors".

Pro
. SIGPLAN '99 Conferen
e on Programming Language Design and Implementation, May 1999

(to appear).

[5℄ J. Ernst, W. Evans, C. Fraser, S. Lu

o, and T. Proebsting. Code
ompression. In SIGPLAN '97

Conferen
e on Programming Language Design and Implementation, 1997.

[6℄ M. Franz. Adaptive
ompression of syntax trees and iterative dynami

ode optimization: Two

basi
 te
hnologies for mobile-obje
t systems. Te
hni
al Report 97-04, Department of Information

and Computer S
ien
e, University of California, Irvine, February 1997.

[7℄ M. Franz and T. Kistler. Slim binaries. Te
hni
al Report 96-24, Department of Information and

Computer S
ien
e, University of California, Irvine, June 1996.

13

[8℄ C. W. Fraser and D. R. Hanson, A Retargetable C Compiler: Design and Implementation, Addison-

Wesley, 1995.

[9℄ C. W. Fraser, E. W. Myers, and A. L. Wendt, \Analyzing and Compressing Assembly Code", Pro
.

SIGPLAN '84 Symposium on Compiler Constru
tion, June 1984, pp. 117{121.

[10℄ C.W. Fraser and T.A. Proebsting. Custom instru
tion sets for
ode
ompression. Unpublished

manus
ript. http://resear
h.mi
rosoft.
om/ toddpro/papers/pldi2.ps, O
tober 1995.

[11℄ J. Knoop, O. R�uthing, and B. Ste�en, \Optimal Code Motion: Theory and Pra
ti
e", ACM

Transa
tions on Programming Languages and Systems vol. 16 no. 4, July 1994, pp. 1117{1155.

[12℄ S. S. Mu
hni
k, Advan
ed Compiler Design and Implementation, Morgan Kaufman, 1997.

[13℄ R. Muth, S. K. Debray, S. Watterson, and K. De Boss
here, \alto : A Link-Time Optimizer for

the DEC Alpha", Te
hni
al Report 98-14, Dept. of Computer S
ien
e, The University of Arizona,

De
ember 1998.

[14℄ K. Pettis and R. C. Hansen, \Pro�le-Guided Code Positioning", Pro
. SIGPLAN '90 Conferen
e

on Programming Language Design and Implementation, June 1990, pp. 16{27.

[15℄ T.A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Pro
. Symp. on

Prin
iples of Programming Languages, pages 322{332, January 1995.

[16℄ R. van de Wiel. The `Code Compa
tion' Bibliography. URL:

http://www.win.tue.nl/
s/pa/rikvdw/bibl.html.

[17℄ M. J. Zastre, Compa
ting Obje
t Code via Parameterized Pro
edural Abstra
tion, Masters Thesis,

Dept. of Computing S
ien
e, University of Vi
toria, Canada, 1993.

14

