
The Swarm Scalable Storage System

John H. Hartman, Ian Murdock, and Tammo Spalink

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

Abstract

Swarm is a storage system that provides scalable, reli-

able, and cost-effective data storage. Swarm is based on

storage servers, rather than file servers; the storage servers

are optimized for cost-performance and aggregated to pro-

vide high-performance data access. Swarm uses a striped

log abstraction to store data on the storage servers. This

abstraction simplifies storage allocation, improves file ac-

cess performance, balances server loads, provides fault-

tolerance through computed redundancy, and simplifies

crash recovery. We have developed a Swarm prototype us-

ing a cluster of Linux-based personal computers as the stor-

age servers and clients; the clients access the servers via

the Swarm-based Sting file system. Our performance mea-

surements show that a single Swarm client can write to two

storage servers at 3.0 MB/s., while four clients can write to

eight servers at 16.0 MB/s.

1. Introduction

Decentralized storage systems have several advantages

over centralized file servers. Individual storage devices

communicate with each other and their clients via a net-

work, and are aggregated to provide high-performance,

scalable, flexible, and fault-tolerant storage service. Con-

trol is distributed across the servers and clients, molding

the components into a single, seamless system. In contrast,

a centralized file server is often a performance bottleneck,

doesn’t scale well, and is a single point of failure.

Decentralization often breeds complexity, however, as

distributed algorithms are typically more complex than their

centralized counterparts. Nonetheless, the advantages of

such a decentralized storage service make it worth the effort

to tackle the inherent complexities of distribution. Swarm

is a network storage system designed to run on a cluster

of simple network-attached storage devices. Swarm uses

log-based striping [7] to simplify the distributed control of

the system; data are formed into logs that are striped across

the servers in a redundant fashion. This allows the system

to scale with the number of servers—as more servers are

added, performance and capacity are both increased, avoid-

ing the file server bottleneck. RAID-style redundancy pro-

vides high availability despite server failures. Parity is com-

puted and stored for groups of data blocks that span multiple

servers. Should one server fail, any block it stores can be re-

constructed by computing the parity of the remaining blocks

in the same parity group. Computing parity for the logs, in-

stead of individual data blocks, allows clients to manage

their logs and parity individually, avoiding synchronization

overhead.

Swarm does not enforce a particular storage abstraction

or access protocol; rather, it provides a configurable, exten-

sible infrastructure for building storage services that stripe

across a cluster of servers, allowing the services to imple-

ment their own abstractions and access protocols. Swarm

pushes much of the services’ functionality to the clients,

as this allows the system’s performance to scale with the

number of clients. High-level abstractions and functional-

ity, such as that provided by a distributed file system, are

implemented on the clients, making Swarm flexible, while

avoiding the bottlenecks imposed by running such software

on the storage servers or a centralized file server.

To demonstrate Swarm’s usefulness, we built a proto-

type on a collection of personal computers, connected by a

switched network. The Swarm storage servers are imple-

mented as user-level processes on the Linux operating sys-

tem. We developed a Swarm-based local file system called

Sting that allows individual clients to access files as they

would on a local disk, except that the file data are instead

stored on Swarm, providing Swarm’s benefits of scalable

performance and reliable operation. Our performance mea-

surements show that a single client can write to two stor-

age servers at 3.0 MB/s, increasing to 5.5 MB/s with four

servers. The bottleneck in this configuration is the client,

and performance improves as servers are added because

the parity overhead is amortized over more data fragments.

Four clients can write to eight servers at 16 MB/s, demon-

strating Swarm’s scalability. Sting running the Modified



Andrew Benchmark [11] on a single server is nearly twice

as fast as the Linux ext2fs local file system on a local disk,

using the same hardware.

2. Swarm overview

Synchronization and coordination are the bane of dis-

tributed systems. A system that is more than simply a

collection of independent computers requires cooperation

between its components. Cooperation is a double-edged

sword, however; increased cooperation may increase the

usefulness of the system, but it will also increase the amount

of synchronization between the computers and limit the sys-

tem’s overall scalability. After all, a collection of indepen-

dent computers can scale to infinite size. One of Swarm’s

design goals is to minimize the synchronization between

components, so that a Swarm client only incurs synchro-

nization overhead for the services it uses. Swarm servers

do not synchronize with each other, and a client can access

the servers without synchronizing with the other clients. If

a single client chooses to access a single server, it is not

forced to coordinate with other clients and servers in the

system.

The design goal of minimal coordination makes Swarm

notable for what it is not—it is not a distributed file system,

nor is it a distributed virtual disk. Both of these storage ab-

stractions require extensive cooperation and synchroniza-

tion between the clients and the servers, to map files and

blocks to servers, allocate and deallocate space, and main-

tain consistency. These high-level abstractions are useful to

those applications and users that need them, but impose an

undue tax on those that don’t, and limit the overall scalabil-

ity of the system.

The basic storage abstraction in Swarm is that of a

striped log. Each client creates its own log, formed from

the data it writes, in much the same fashion that a log-

structured file system stores its data in a log. The log not

only batches small writes together, improving their perfor-

mance, but also simplifies the parity mechanism used to re-

cover the log upon a server failure. Each client computes

the parity for its own log, and writes the parity as the log

is written. This parity can then be used to reconstruct lost

portions of the log.

The use of a separate log for each client allows the clients

to act independently; each can store data in its log, compute

parity, and stripe the log across the servers without coordi-

nation with other clients. Clients can also independently re-

construct log data lost in a server failure. In addition, since

the clients control the log creation and storage, no coordi-

nation is required among the servers.

High-level abstractions, such as a distributed file system

or a distributed virtual disk, can be constructed on top of the

striped logs. Swarm clients cooperate to implement these

D
E

LE
T

E

C
R

E
A

T
E

C
R

E
A

T
E

C
R

E
A

T
E

�
�
�

�
�
�

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

Figure 1. Log Format. The light objects are
blocks, and the dark objects are records.
Each CREATE record indicates the creation of
a block, and each DELETE record indicates a
deletion; the arrows show which block is af-
fected by each record and represent refer-
ences visible to the log layer. Note that the
contents of the blocks themselves are unin-
terpreted by the log layer, as are the contents
of those records not created by the log layer
itself.

abstractions. This necessarily requires synchronization be-

tween the clients, but only between those that wish to access

the shared abstraction. It is our belief that such distributed

storage services are best implemented at a high level, as

high-level synchronization is needed to access storage any-

way. Two applications running on different clients must

synchronize their accesses to shared data to ensure con-

sistency, even if the storage system enforces consistency.

For example, the reader of a file must synchronize with the

writer, even if the underlying file system provides strong

consistency on file contents. This reduces the importance

of low-level synchronization primitives and shared storage

abstractions.

2.1. Log layer

2.1.1. Log format

The log is a conceptually infinite, ordered stream of

blocks and records. It is append-only: blocks and records

are written to the end of the log and cannot be modified

subsequently. The log layer does not interpret block con-

tents, allowing services to store anything they wish inside a

block. For example, a file system might use blocks not only

to store file data, but also inodes, directories, and other file

system metadata. Once written, blocks persist until explic-

itly deleted, though their physical locations in the log may

change as a result of cleaning or other reorganization.

Records are used by storage services to recover from

client crashes. A crash causes the log to end abruptly, poten-

tially leaving the service’s data structures in the log incon-

sistent. A service repairs these inconsistencies by storing

state information in records during normal operation, and

re-applying the effect of the records after a crash. This is a



standard database recovery technique, and its use in Swarm

allows services to reconstruct the operations they were per-

forming at the time of the crash and update their data struc-

tures accordingly. To enable replay, the log layer guarantees

the atomicity of writing individual records; it also preserves

the order of records in the log, so the order in which they

are replayed reflects the sequence of operations and states

they represent.

To assist in crash recovery, the log layer automatically

creates records that track log operations such as block cre-

ation and deletion. Services may also log service-specific

operations in their own records; as with blocks, the log layer

does not interpret the contents of records it does not create,

so a service may create many types of records, and store

whatever it wishes inside them. For example, a file system

might append records to the log as it performs high-level op-

erations that involve changing several data structures (e.g.,

as happens during file creation and deletion). During replay,

these records allow the file system to easily redo (or undo)

the high-level operations.

New data are always appended to the end of the log, al-

lowing the log layer to batch together small writes and store

the log efficiently in fixed-sized pieces called fragments.

Each fragment is stored on a single storage server, and is

identified by a 64-bit integer called a fragment identifier

(FID). Blocks within a fragment are addressed by an FID

and an offset within the fragment. Given the address of a

block and its length, the log layer contacts the appropriate

storage server, retrieves the data requested, and returns the

data to the calling service. When a service stores a block

in the log, the log layer responds with the FID and offset of

the block so that the service may update its metadata appro-

priately.

2.1.2. Striping

As fragments are filled, the log layer stripes them across

the storage servers. A stripe is a set of two or more frag-

ments, one of which contains parity of the other fragments

in the set. Each fragment in a stripe is stored on a different

server, and the collection of servers that stores a stripe is

called its stripe group. The parity fragment allows a client

to reconstruct the contents of any fragment in the stripe

given the contents of the rest of the fragments; thus, all frag-

ments of a stripe are accessible even if one of the servers in

the stripe group is unavailable. The parity fragment of suc-

cessive stripes is rotated across the servers, balancing server

loads during reconstruction.

There are several advantages to using stripe groups con-

taining a subset of the storage servers, rather than all storage

servers. First, clients can stripe across disjoint stripe groups,

minimizing contention for servers and increasing scalabil-

ity. Second, in the event of a server failure, fragment re-

construction involves fewer servers, lessening its impact on

performance. Third, and perhaps most important, Swarm

can tolerate multiple server failures, as long as two failures

do not occur in the same stripe group. If all stripes were

striped across all servers, multiple server failures would re-

sult in lost data.

The log layer software in the client is multi-threaded, and

performs several operations concurrently to improve per-

formance. First, fragments are written to the servers asyn-

chronously, so that several may be written simultaneously.

Second, a stripe’s parity is computed as its fragments are

written. Third, the log layer transfers a fragment to a server

while the previous fragment is being written to disk; this

keeps both the disk and the network busy, so that as soon as

one fragment has been written to disk, the server can imme-

diately begin writing another fragment. This is a rudimen-

tary form of flow control, and we are planning to investigate

more sophisticated solutions.

2.1.3. Recovery

A service recovers from a crash by replaying its records

from the log in a process known as log rollforward. In

the simplest implementation, the service replays all records

from the beginning of the log. This can be slow, so to speed

up recovery, each service is expected to write periodically a

consistent copy of its data structures followed by a special

record called a checkpoint. A checkpoint denotes a point

in the log at which the service’s data structures are consis-

tent; thus, no records older than the most recent checkpoint

need to be replayed after a crash. These older records are

made obsolete by the checkpoint, and implicitly deleted by

the service when the checkpoint is written. The log layer

tracks the most recently written checkpoint for each service

and makes it available to the service on restart, enabling the

service to get back to its last known consistent state quickly.

In the event of a crash, the log layer provides each ser-

vice with the records the service wrote after its most re-

cent checkpoint; these records represent changes made by

the service that are not included in the checkpoint’s con-

sistent state, but that may be recoverable. By replaying

these records and applying the changes they represent to the

checkpoint’s state, the service can reconstruct its state at the

time of the crash.

It is important to note that checkpoints are merely an op-

timization. In the absence of checkpoints, each service sim-

ply rolls forward from the beginning of the log each time

it restarts. Checkpoints enable a service to restart without

having to search for the end of the log after a clean shut-

down, and their frequency establishes an upper bound on

recovery time after a crash. Checkpoints also simplify the

cleaning process considerably, by implicitly deleting obso-

lete records.



2.1.4. Cleaning

The log is infinite, but physical storage is not. Fortu-

nately, portions of the log become unused as blocks are

deleted and overwritten, and records become obsolete. This

free space can be reclaimed to prevent the system from run-

ning out of space in which to store new log fragments. As in

other log-structured storage systems, Swarm reclaims this

free space using a cleaner process that periodically traverses

the log and moves live data out of stripes by appending them

to the log, so that the space occupied by the stripe can be

used to store a new stripe [3].

A block is cleaned by appending it to the log, changing

its address and requiring the services that wrote it to up-

date their metadata accordingly. When a block is cleaned,

the cleaner notifies the service that created it that the block

has moved. The notification contains the old and new ad-

dresses of the block, as well as the block’s creation record.

The creation record contains service-specific information

that makes it easier for the service to find the block in its

metadata and update its location. For example, the creation

record for a file block might contain the inode number of

the block’s file, and its position within the file.

Records that are newer than the most recent checkpoint

will be replayed after a crash and must not be cleaned;

the cleaner therefore only cleans stripes whose records

have been implicitly deleted by a more recent check-

point. The dependence of the cleaner on the service check-

points has the unfortunate consequence that a malicious or

poorly-written service can prevent the cleaner from making

progress simply by never writing checkpoints, or by writing

them very infrequently. This in turn will cause the system

to come to a halt when it runs out of free stripes to hold new

portions of the log. We mitigate this problem by forcing

services to write out checkpoints on demand; if a service

ignores a request by the log layer to write out a checkpoint,

it does so at its own peril, as its records will be reclaimed

and not be replayed after a crash.

2.2. Services

The log provides rather limited functionality, and is

probably not useful to application programs directly.

Blocks and records can only be appended to the log, caus-

ing the log to eventually exhaust physical storage. Swarm

provides additional functionality for application programs

by layering services on top of the log. Each service can ex-

tend and/or hide the functionality of the services on which

it is stacked. An example is the log cleaner. The cleaner is a

service that is layered on top of the log, reclaiming unused

portions of the log by moving blocks. Implementing the

cleaner as a service, rather than integrating it into the log,

allows the cleaner to run as a user-level process and store its

C
R

E
A

T
E

C
R

E
A

T
E

D
E

LE
T

E

C
R

E
A

T
E

S
V

C

Updating
Directory Entry

Writing Block
for Inode X

Inode X DirectoryData Block Data Block

Writing Inode X Writing Directory

Figure 2. The log in Figure 1 as seen by a file
system.

data structures in the log. This is similar to running the LFS

cleaner at user-level, and enjoys the same advantages [15].

Other examples of possible services are an atomic recov-

ery unit (ARU) [6] service that provides atomicity across

multiple log writes; a logical disk [4] service that provides

a disk abstraction that hides the append-only log, allow-

ing higher-level services and applications to overwrite the

blocks they store; a caching service that caches log data in

main memory; an encryption service; a compression ser-

vice; etc. Distributed services, such as distributed file sys-

tems and distributed cooperative caching [14], can also be

layered on the base Swarm functionality.

A service modifies the functionality of the services be-

low it by intercepting communication between those ser-

vices and the services above. For example, the ARU service

operates by intercepting records written by higher-level ser-

vices. The records are tagged with the ARU to which they

belong, and passed to the service below. During recovery,

the replayed records are passed up from the lower service;

the ARU service only relays upwards those records that be-

long to ARUs that completed before the crash. The ARU

also extends the lower services’ functionality by provid-

ing routines to manipulate ARUs (e.g., starting and ending

ARUs).

2.3. Storage server

A Swarm storage server is specialized software that runs

on commodity hardware. Swarm servers are designed to op-

timize cost-performance, rather than absolute performance:

the desired absolute performance of the system is obtained

by aggregating Swarm servers.

A Swarm storage server is merely a repository for log

fragments; clients store fragments on a server, read from

them, and delete them when they are no longer needed. As

a result, a storage server is little more than a virtual disk

that provides a sparse address space, with additional sup-

port for client crash recovery, security, and fragment recon-



struction. The fragment operations supported by the server

consist of storing data in a fragment, retrieving data from

a fragment, deleting a fragment, preallocating space for a

fragment, and querying the FID of the last marked fragment.

Marked fragments are denoted as such when they are stored.

The storage server’s simple functionality makes it suitable

for implementation on a networked-attached storage device

(NASD) [5].

2.3.1. Client crash recovery

The storage server has two features that support client

crash recovery. First, the client can mark a fragment

when it is stored, and subsequently query the server to

find the newest marked fragment. This allows a client to

find its checkpoint by storing checkpoints in marked frag-

ments. Second, all storage server operations are atomic. All

records written in the same store operation will either exist

or not after a crash, so that during recovery a client does not

have to deal with partially-written records or checkpoints. If

the write of a checkpoint fails because of a crash, the client

simply recovers from the previous checkpoint and rolls for-

ward from there.

2.3.2. Security

The storage server provides a simple security mecha-

nisms that allows clients to protect the data they store from

one another. The storage server supports access control lists

(ACLs) that provide read and write protection on data in

fragments. The server maintains a database of ACLs, in-

dexed by an ACL ID (AID). The server provides routines

for creating, modifying, and deleting ACLs.

When a fragment is stored each non-overlapping byte

range can be be assigned an AID. Subsequent accesses to

a byte range will only be permitted if the requesting client

is a member of the ACL. ACLs are associated with byte

ranges, instead of blocks or records, because the storage

servers are not aware of these high-level abstractions. To

a storage server, a log fragment is simply an opaque set of

bytes.

Once written, the data’s AID cannot be changed; instead,

access permissions can be changed by changing the mem-

bers of the ACL indicated by the AID. This makes it easy to

add a client to the system with the same privileges as exist-

ing clients; once the client has been added to the appropriate

ACLs, all data protected by those ACLs will be accessible.

2.3.3. Fragment reconstruction

One of Swarm’s most important features is its ability to

tolerate server failures by reconstructing unavailable data.

Swarm uses the same error-correcting code mechanism as

RAIDs, but adapted to a distributed storage system instead

of a locally-attached device. Although reconstructing a

fragment is relatively simple, consisting of fetching all re-

maining fragments in the same stripe and XOR’ing them

together to produce the missing fragment, merely finding

the remaining fragments is difficult in a distributed system.

Reconstruction of a fragment requires knowing which other

fragments are in the same stripe, and on which servers they

are stored.

In Swarm, the clients reconstruct the fragments they

need. Servers do not participate in reconstruction directly;

reconstruction is transparent to the servers, not the clients.

Reconstruction on the client is made possible by storing

stripe group information in each fragment of a stripe, and

numbering the fragments in the same stripe consecutively.

If fragment N needs to be reconstructed, then either frag-

ment N-1 or fragment N+1 is in the same stripe. A client

finds fragment N-1 and N+1 by broadcasting to all stor-

age servers. Once the client locates a fragment in the same

stripe as the fragment to be reconstructed, it uses the stripe

group information in that fragment to access the other frag-

ments in the stripe and perform the reconstruction. Broad-

cast is used because it is simple and makes Swarm self-

hosting—no additional mechanism is needed to distribute

stripe group and storage server information reliably to all

clients.

3. Prototype

We have built a prototype of the Swarm system complete

with log layer, cleaner, storage server, and a local file system

called Sting. The prototype uses personal computers run-

ning the Linux operating system, connected via a switched

Ethernet.

3.1. Sting

To demonstrate that file systems can be built efficiently

using Swarm, we implemented a local file system called

Sting. Sting is local in that each instance is confined to a

single client; Sting does not support file sharing between

clients. Instead, it provides the standard UNIX file system

interface as if the file system were stored on a local disk.

The file system data are actually stored in Swarm, provid-

ing the client with Swarm’s scalable performance and reli-

able operation.

Sting borrows heavily from Sprite LFS [13], although it

is smaller and simpler than Sprite LFS because it doesn’t

have to deal with log management and storage, cleaning,

or reconstruction, all of which are handled by lower-level

Swarm services.



0

5

10

15

20

25

30

0 2 4 6 8 10

B
an

dw
id

th
 (

M
B

/s
)

Servers

1 client 
2 clients
4 clients

Figure 3. Raw write bandwidth. This graph
shows the aggregate bandwidth of writing
10,000 4KB blocks to the log, including the
overhead of writing the log metadata and the
parity fragments. Each data point is the aver-
age of three experiments.

3.2. Storage server

The prototype Swarm storage server is implemented as

a multi-threaded, user-level process on the Linux operating

system. The server divides its disk(s) into fragment-sized

slots, one for each fragment. A mapping from FID to slot is

maintained in an on-disk fragment map. This architecture

is based on the Zebra storage server’s [7] and implements

many of the same optimizations. ACLs are not currently

supported.

A client accesses a server through TCL [10] scripts.

Thus, reading and writing fragments are effected by send-

ing the server an ASCII TCL script that reads or writes the

appropriate data. The use of TCL made it easy to debug and

extend the server interface, and because every fragment op-

eration involves a disk access, the overhead of using TCL

is inconsequential. In addition, using TCL effectively turns

the storage server into an Active Disk [1][12], although we

have made little use of this functionality other than for de-

bugging purposes.

3.3. Experimental setup

The prototype’s clients and storage servers are 200 MHz

Pentium Pro-based machines with 128 MB of memory, con-

nected via 100 Mb/s switched Ethernet. The operating sys-

tem is Linux 2.2.2, modified to support a write-back page

cache. Each storage server contains a Quantum Viking II

SCSI disk dedicated to holding log fragments. The size

of a log fragment is 1 MB. The storage server can write

0

5

10

15

20

25

30

0 2 4 6 8 10

B
an

dw
id

th
 (

M
B

/s
)

Servers

1 client 
2 clients
4 clients

Figure 4. Useful write throughput. This graph
shows the aggregate bandwidth of writing
10,000 4KB blocks to the log, as seen by the
application. Each data point is the average of
three experiments.

fragment-sized blocks to the disk at 10.3 MB/s, providing

an upper bound on the server performance.

3.4. Experimental results

We measured the write performance of both the raw log

layer and Sting. Read performance was not measured exten-

sively, as we expect most reads to be handled by the client

cache; the prototype servers do not cache log fragments in

memory, and the clients do not prefetch blocks from the

servers. Both of these optimizations would greatly improve

the performance of reads that miss in the client cache. As a

result, a Swarm client can read 4KB blocks from the servers

at only 1.7 MB/s.

Log layer write performance was measured using a sim-

ple microbenchmark that wrote 10,000 4KB blocks into the

log, then flushed the log to the storage servers. We mea-

sured both the raw aggregate throughput of the system (Fig-

ure 3) as well as the useful aggregate throughput (Figure 4).

The former measures the rate at which the clients write to

the servers, including not only the actual data written by the

benchmark, but also all log metadata and the log parity frag-

ments. The latter measures the bandwidth of writing only

the data written by the application, and hence represents the

bandwidth that is useful to an application.

The raw write bandwidth of a single client is 6.1 MB/s.

This nearly saturates the client, so that performance im-

proves only slightly as servers are added, reaching 6.4 MB/s

with eight servers. A single server is capable of sustain-

ing 7.7 MB/s, a rate that is achieved when more than one

client writes to the same server. Configurations with more



S
w

arm

E
xt2fs

0

10

20

E
la

ps
ed

 T
im

e 
(S

ec
on

ds
)

Figure 5. Modified Andrew Benchmark. This
shows the elapsed time to complete the Mod-
ified Andrew Benchmark. Sting accesses a
single storage server via the network; ext2fs
accesses a local disk. Each data point is the
average of three experiments.

than one client can benefit from additional servers: two

clients achieve 12.9 MB/s with eight servers and four clients

achieve 19.3 MB/s.

The useful aggregate write bandwidth reflects the band-

width seen by services using the log. When measuring use-

ful bandwidth, the minimum system configuration consisted

of a single client and two servers, one to store data and the

other parity. The parity and log metadata overhead results

in a useful bandwidth of 3.0 MB/s for a single client and

server. Performance improves as servers are added because

as the width of the stripe increases, the cost of computing

and writing the parity fragment is amortized over more data

fragments. Performance approaches, but will not achieve,

raw bandwidth; with an infinite number of servers, the par-

ity overhead drops to zero, leaving only the log metadata

overhead as the difference between the raw and useful band-

widths.

Configurations with two and four clients exhibit this

same trend—performance increases as servers are added

and parity is amortized over more fragments. With four

clients and eight servers, the aggregate bandwidth is 16

MB/s, only 17% less than the raw bandwidth.

The Modified Andrew Benchmark [11] measures the

performance of typical file operations, such as copying files,

traversing a directory hierarchy, compilation, etc. We un-

mount the file systems as part of the benchmark to ensure

that the data written are eventually stored to disk. Ext2fs is

the local file system for Linux, providing a baseline com-

parison for Sting. Sting was configured with a single client

and a single server, so that the data written by Sting were

stored in the client’s log and written across the network to

the server.

Sting outperforms ext2fs by nearly a factor of two,

completing the benchmark in 9.4 seconds as compared to

ext2fs’s 17.9 seconds (Figure 5). Sting makes much better

use of the disk by writing data sequentially to the log and

writing the log to the disk in 1 MB fragments. Swarm’s poor

read performance is masked by the client-side cache. As a

result, Sting achieves 93% CPU utilization, while ext2fs is

more disk-bound and achieves only 57% utilization. Sting’s

better use of the disk more than offsets any network over-

head, and allows Sting’s performance to scale better with

improvements in processor speed.

4. Related work

There are many projects whose work is similar to

Swarm’s. Zebra [7] and xFS [2] are both distributed file sys-

tems that use striped logging to store file data on a collection

of file servers. xFS supports many features that Zebra does

not, including stripe groups, distributed file management,

and server-less systems in which clients cooperate to pro-

vide file service. Both of these systems differ from Swarm

in that they are complete file systems, rather than low-level

storage systems. Swarm also retains a division of respon-

sibility between the clients and servers unlike xFS, but like

xFS pushes most file system functionality to the clients.

Petal [9] is a distributed storage system that provides vir-

tual disk abstractions. The Petal servers cooperate to pro-

vide a consistent view of a virtual disk to the clients, so that

clients accessing the same disk block see the same contents.

Petal also provides a distributed locking service for concur-

rency control.

Frangipani [16] is a distributed file system built on Petal.

Frangipani clients run local file systems modified to ac-

cess Petal for disk storage and for locking the file system

metadata. A file system such as Frangipani could be im-

plemented as a Swarm service, although we have yet to do

so.

The NASD [5] project is developing network-attached

disks. These disks will coordinate to provide file service

to the clients. The disks provide an object-oriented inter-

face, so that files consist of collections of objects stored on

different disks. This is in contrast to Swarm, in which the

storage servers provide a very low-level fragment-oriented

interface.

Stackable file systems [8] provide extensible file system

functionality by allowing file systems to be stacked. Each

file system in the stack provides a vnode interface to the

file system above, and expects a vnode interface from the

file system below. Swarm places no restrictions on the in-

terfaces between the services layered on the log, enabling

interfaces that are not based on vnodes.



5. Conclusion

Swarm is a scalable network storage system that pro-

vides scalable, reliable, and extensible storage service.

Swarm servers are commodity machines, aggregated to pro-

vide high-performance storage service. The Swarm infras-

tructure on the clients consists of layered services, allowing

applications to pick and chose the exact services needed.

Our measurements show that performance does scale with

the number of servers until the point where the clients are

the bottleneck. The useful write bandwidth of a single

client is 3.0 MB/s with two servers and 5.5 MB/s with four;

for four clients, the corresponding numbers are 6.7 MB/s

and 16.0 MB/s. Sting also outperforms ext2fs on standard

file system operations, completing the Modified Andrew

Benchmark almost twice as quickly.

6. Acknowledgements

This work was supported in part by DARPA contracts

DABT63-95-C-0075 and N66001-96-8518.

References

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: Program-

ming model, algorithms, and evaluation. In Proceedings

of the 8th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems

(ASPLOS-98), pages 81–91. ACM Press, Nov. 1998.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, and R. W.

D. Roselli. Serverless network file systems. In Proceed-

ings of the 15th Symposium on Operating Systems Principles

(SOSP-95), pages 41–79. ACM Press, Dec. 1995.

[3] T. Blackwell, J. Harris, and M. Seltzer. Heuristic cleaning

algorithms in log-structured file systems. In Proceedings

of the 1995 USENIX Technical Conference, pages 277–288.

USENIX, Jan. 1995.

[4] W. De Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical

Disk: a new approach to improving file systems. Operating

Systems Review, 27(5):15–28, Dec. 1993.

[5] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,

E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,

D. Rochberg, and J. Zelenka. File server scaling with

network-attached secure disks. In Proceedings of the

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS-97), pages 272–284.

ACM Press, June 1997.

[6] R. Grimm, W. C. Hsieh, M. F. Kaashoek, and W. de Jonge.

Atomic recovery units: Failure atomicity for logical disks.

In Proceedings of the 16th International Conference on

Distributed Computing Systems (ICDCS-96), pages 26–37.

IEEE, May 1996.

[7] J. H. Hartman and J. K. Ousterhout. The Zebra striped net-

work file system. ACM Transactions on Computer Systems,

13(3):274–310, Aug. 1995.

[8] J. S. Heidemann and G. J. Popek. File-system development

with stackable layers. ACM Transactions on Computer Sys-

tems, 12(1):58–89, Feb. 1994.

[9] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual

disks. In Proceedings of the 7th International Conference

on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-96), pages 84–92. ACM Press,

Oct. 1996.

[10] J. K. Ousterhout. Tcl: An embeddable command language.

In Proceedings of the Winter 1990 USENIX Conference,

pages 133–146. USENIX, Jan. 1990.

[11] J. K. Ousterhout. Why aren’t operating systems getting

faster as fast as hardware? In Proceedings of the Summer

1990 USENIX Conference, pages 247–256. USENIX, June

1990.

[12] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for

large-scale data mining and multimedia. In Proc. of the 24th

International Conference on Very Large Databases (VLDB-

98), pages 62–73, Aug. 1998.

[13] M. Rosenblum and J. K. Ousterhout. The design and im-

plementation of a log-structured file system. In Proceed-

ings of the 13th Symposium on Operating Systems Principles

(SOSP-91), pages 1–15. ACM Press, Oct. 1991.

[14] P. Sarkar and J. Hartman. Efficient cooperative caching us-

ing hints. In Proceedings of the 2nd Symposium on Operat-

ing Systems Design and Implementation (OSDI-96), pages

35–46. USENIX, Oct. 1996.

[15] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An

implementation of a log-structured file system for UNIX. In

Proceedings of the Winter 1993 USENIX Conference, pages

307–326. USENIX, Jan. 1993.

[16] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scal-

able distributed file system. In Proceedings of the 16th Sym-

posium on Operating Systems Principles (SOSP-97), pages

224–237. ACM Press, Oct. 1997.


