
The Swarm Scalable Storage System

John H. Hartman, Ian Murdock, and Tammo Spalink
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721

Abstract

Swarm is a storage system that provides scalable, reli-
able, and cost-effective data storage. Swarm is based on
storage servers, rather than file servers; the storage servers
are optimized for cost-performance and aggregated to pro-
vide high-performance data access. Swarm uses astriped
log abstraction to store data on the storage servers. This
abstraction simplifies storage allocation, improves file ac-
cess performance, balances server loads, provides fault-
tolerance through computed redundancy, and simplifies
crash recovery. We have developed a Swarm prototype us-
ing a cluster of Linux-based personal computers as the stor-
age servers and clients; the clients access the servers via
the Swarm-based Sting file system. Our performance mea-
surements show that a single Swarm client can write to two
storage servers at 3.0 MB/s., while four clients can write to
eight servers at 16.0 MB/s.

1. Introduction

Decentralized storage systems have several advantages
over centralized file servers. Individual storage devices
communicate with each other and their clients via a net-
work, and are aggregated to provide high-performance,
scalable, flexible, and fault-tolerant storage service. Con-
trol is distributed across the servers and clients, molding
the components into a single, seamless system. In contrast,
a centralized file server is often a performance bottleneck,
doesn’t scale well, and is a single point of failure.

Decentralization often breeds complexity, however, as
distributed algorithms are typically more complex than their
centralized counterparts. Nonetheless, the advantages of
such a decentralized storage service make it worth the effort
to tackle the inherent complexities of distribution. Swarm
is a network storage system designed to run on a cluster
of simple network-attached storage devices. Swarm uses
log-based striping [7] to simplify the distributed control of
the system; data are formed into logs that are striped across

the servers in a redundant fashion. This allows the system
to scale with the number of servers—as more servers are
added, performance and capacity are both increased, avoid-
ing the file server bottleneck. RAID-style redundancy pro-
vides high availability despite server failures. Parity is com-
puted and stored for groups of data blocks that span multiple
servers. Should one server fail, any block it stores can be re-
constructed by computing the parity of the remaining blocks
in the same parity group. Computing parity for the logs, in-
stead of individual data blocks, allows clients to manage
their logs and parity individually, avoiding synchronization
overhead.

Swarm does not enforce a particular storage abstraction
or access protocol; rather, it provides a configurable, exten-
sible infrastructure for building storage services that stripe
across a cluster of servers, allowing the services to imple-
ment their own abstractions and access protocols. Swarm
pushes much of the services’ functionality to the clients,
as this allows the system’s performance to scale with the
number of clients. High-level abstractions and functional-
ity, such as that provided by a distributed file system, are
implemented on the clients, making Swarm flexible, while
avoiding the bottlenecks imposed by running such software
on the storage servers or a centralized file server.

To demonstrate Swarm’s usefulness, we built a proto-
type on a collection of personal computers, connected by a
switched network. The Swarm storage servers are imple-
mented as user-level processes on the Linux operating sys-
tem. We developed a Swarm-based local file system called
Sting that allows individual clients to access files as they
would on a local disk, except that the file data are instead
stored on Swarm, providing Swarm’s benefits of scalable
performance and reliable operation. Our performance mea-
surements show that a single client can write to two stor-
age servers at 3.0 MB/s, increasing to 5.5 MB/s with four
servers. The bottleneck in this configuration is the client,
and performance improves as servers are added because
the parity overhead is amortized over more data fragments.
Four clients can write to eight servers at 16 MB/s, demon-
strating Swarm’s scalability. Sting running the Modified



Andrew Benchmark [11] on a single server is nearly twice
as fast as the Linux ext2fs local file system on a local disk,
using the same hardware.

2. Swarm overview

Synchronization and coordination are the bane of dis-
tributed systems. A system that is more than simply a
collection of independent computers requires cooperation
between its components. Cooperation is a double-edged
sword, however; increased cooperation may increase the
usefulness of the system, but it will also increase the amount
of synchronization between the computers and limit the sys-
tem’s overall scalability. After all, a collection of indepen-
dent computers can scale to infinite size. One of Swarm’s
design goals is to minimize the synchronization between
components, so that a Swarm client only incurs synchro-
nization overhead for the services it uses. Swarm servers
do not synchronize with each other, and a client can access
the servers without synchronizing with the other clients. If
a single client chooses to access a single server, it is not
forced to coordinate with other clients and servers in the
system.

The design goal of minimal coordination makes Swarm
notable for what it is not—it is not a distributed file system,
nor is it a distributed virtual disk. Both of these storage ab-
stractions require extensive cooperation and synchroniza-
tion between the clients and the servers, to map files and
blocks to servers, allocate and deallocate space, and main-
tain consistency. These high-level abstractions are useful to
those applications and users that need them, but impose an
undue tax on those that don’t, and limit the overall scalabil-
ity of the system.

The basic storage abstraction in Swarm is that of a
striped log. Each client creates its own log, formed from
the data it writes, in much the same fashion that a log-
structured file system stores its data in a log. The log not
only batches small writes together, improving their perfor-
mance, but also simplifies the parity mechanism used to re-
cover the log upon a server failure. Each client computes
the parity for its own log, and writes the parity as the log
is written. This parity can then be used to reconstruct lost
portions of the log.

The use of a separate log for each client allows the clients
to act independently; each can store data in its log, compute
parity, and stripe the log across the servers without coordi-
nation with other clients. Clients can also independently re-
construct log data lost in a server failure. In addition, since
the clients control the log creation and storage, no coordi-
nation is required among the servers.

High-level abstractions, such as a distributed file system
or a distributed virtual disk, can be constructed on top of the
striped logs. Swarm clients cooperate to implement these

D
E

LE
T

E

C
R

E
A

T
E

C
R

E
A

T
E

C
R

E
A

T
E

�
�
�

�
�
�

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Figure 1. Log Format. The light objects are
blocks, and the dark objects are records.
Each CREATE record indicates the creation of
a block, and each DELETE record indicates a
deletion; the arrows show which block is af-
fected by each record and represent refer-
ences visible to the log layer. Note that the
contents of the blocks themselves are unin-
terpreted by the log layer, as are the contents
of those records not created by the log layer
itself.

abstractions. This necessarily requires synchronization be-
tween the clients, but only between those that wish to access
the shared abstraction. It is our belief that such distributed
storage services are best implemented at a high level, as
high-level synchronization is needed to access storage any-
way. Two applications running on different clients must
synchronize their accesses to shared data to ensure con-
sistency, even if the storage system enforces consistency.
For example, the reader of a file must synchronize with the
writer, even if the underlying file system provides strong
consistency on file contents. This reduces the importance
of low-level synchronization primitives and shared storage
abstractions.

2.1. Log layer

2.1.1. Log format

The log is a conceptually infinite, ordered stream of
blocksandrecords. It is append-only: blocks and records
are written to the end of the log and cannot be modified
subsequently. The log layer does not interpret block con-
tents, allowing services to store anything they wish inside a
block. For example, a file system might use blocks not only
to store file data, but also inodes, directories, and other file
system metadata. Once written, blocks persist until explic-
itly deleted, though their physical locations in the log may
change as a result of cleaning or other reorganization.

Records are used by storage services to recover from
client crashes. A crash causes the log to end abruptly, poten-
tially leaving the service’s data structures in the log incon-
sistent. A service repairs these inconsistencies by storing
state information in records during normal operation, and
re-applying the effect of the records after a crash. This is a



standard database recovery technique, and its use in Swarm
allows services to reconstruct the operations they were per-
forming at the time of the crash and update their data struc-
tures accordingly. To enable replay, the log layer guarantees
the atomicity of writing individual records; it also preserves
the order of records in the log, so the order in which they
are replayed reflects the sequence of operations and states
they represent.

To assist in crash recovery, the log layer automatically
creates records that track log operations such as block cre-
ation and deletion. Services may also log service-specific
operations in their own records; as with blocks, the log layer
does not interpret the contents of records it does not create,
so a service may create many types of records, and store
whatever it wishes inside them. For example, a file system
might append records to the log as it performs high-level op-
erations that involve changing several data structures (e.g.,
as happens during file creation and deletion). During replay,
these records allow the file system to easily redo (or undo)
the high-level operations.

New data are always appended to the end of the log, al-
lowing the log layer to batch together small writes and store
the log efficiently in fixed-sized pieces calledfragments.
Each fragment is stored on a single storage server, and is
identified by a 64-bit integer called afragment identifier
(FID). Blocks within a fragment are addressed by an FID
and an offset within the fragment. Given the address of a
block and its length, the log layer contacts the appropriate
storage server, retrieves the data requested, and returns the
data to the calling service. When a service stores a block
in the log, the log layer responds with the FID and offset of
the block so that the service may update its metadata appro-
priately.

2.1.2. Striping

As fragments are filled, the log layer stripes them across
the storage servers. Astripe is a set of two or more frag-
ments, one of which containsparity of the other fragments
in the set. Each fragment in a stripe is stored on a different
server, and the collection of servers that stores a stripe is
called itsstripe group. The parity fragment allows a client
to reconstruct the contents of any fragment in the stripe
given the contents of the rest of the fragments; thus, all frag-
ments of a stripe are accessible even if one of the servers in
the stripe group is unavailable. The parity fragment of suc-
cessive stripes is rotated across the servers, balancing server
loads during reconstruction.

There are several advantages to using stripe groups con-
taining a subset of the storage servers, rather than all storage
servers. First, clients can stripe across disjoint stripe groups,
minimizing contention for servers and increasing scalabil-
ity. Second, in the event of a server failure, fragment re-
construction involves fewer servers, lessening its impact on

performance. Third, and perhaps most important, Swarm
can tolerate multiple server failures, as long as two failures
do not occur in the same stripe group. If all stripes were
striped across all servers, multiple server failures would re-
sult in lost data.

The log layer software in the client is multi-threaded, and
performs several operations concurrently to improve per-
formance. First, fragments are written to the servers asyn-
chronously, so that several may be written simultaneously.
Second, a stripe’s parity is computed as its fragments are
written. Third, the log layer transfers a fragment to a server
while the previous fragment is being written to disk; this
keeps both the disk and the network busy, so that as soon as
one fragment has been written to disk, the server can imme-
diately begin writing another fragment. This is a rudimen-
tary form of flow control, and we are planning to investigate
more sophisticated solutions.

2.1.3. Recovery

A service recovers from a crash by replaying its records
from the log in a process known aslog rollforward. In
the simplest implementation, the service replays all records
from the beginning of the log. This can be slow, so to speed
up recovery, each service is expected to write periodically a
consistent copy of its data structures followed by a special
record called acheckpoint. A checkpoint denotes a point
in the log at which the service’s data structures are consis-
tent; thus, no records older than the most recent checkpoint
need to be replayed after a crash. These older records are
made obsolete by the checkpoint, and implicitly deleted by
the service when the checkpoint is written. The log layer
tracks the most recently written checkpoint for each service
and makes it available to the service on restart, enabling the
service to get back to its last known consistent state quickly.

In the event of a crash, the log layer provides each ser-
vice with the records the service wrote after its most re-
cent checkpoint; these records represent changes made by
the service that are not included in the checkpoint’s con-
sistent state, but that may be recoverable. By replaying
these records and applying the changes they represent to the
checkpoint’s state, the service can reconstruct its state at the
time of the crash.

It is important to note that checkpoints are merely an op-
timization. In the absence of checkpoints, each service sim-
ply rolls forward from the beginning of the log each time
it restarts. Checkpoints enable a service to restart without
having to search for the end of the log after a clean shut-
down, and their frequency establishes an upper bound on
recovery time after a crash. Checkpoints also simplify the
cleaning process considerably, by implicitly deleting obso-
lete records.



2.1.4. Cleaning

The log is infinite, but physical storage is not. Fortu-
nately, portions of the log become unused as blocks are
deleted and overwritten, and records become obsolete. This
free space can be reclaimed to prevent the system from run-
ning out of space in which to store new log fragments. As in
other log-structured storage systems, Swarm reclaims this
free space using acleanerprocess that periodically traverses
the log and moves live data out of stripes by appending them
to the log, so that the space occupied by the stripe can be
used to store a new stripe [3].

A block is cleaned by appending it to the log, changing
its address and requiring the services that wrote it to up-
date their metadata accordingly. When a block is cleaned,
the cleaner notifies the service that created it that the block
has moved. The notification contains the old and new ad-
dresses of the block, as well as the block’s creation record.
The creation record contains service-specific information
that makes it easier for the service to find the block in its
metadata and update its location. For example, the creation
record for a file block might contain the inode number of
the block’s file, and its position within the file.

Records that are newer than the most recent checkpoint
will be replayed after a crash and must not be cleaned;
the cleaner therefore only cleans stripes whose records
have been implicitly deleted by a more recent check-
point. The dependence of the cleaner on the service check-
points has the unfortunate consequence that a malicious or
poorly-written service can prevent the cleaner from making
progress simply by never writing checkpoints, or by writing
them very infrequently. This in turn will cause the system
to come to a halt when it runs out of free stripes to hold new
portions of the log. We mitigate this problem by forcing
services to write out checkpoints on demand; if a service
ignores a request by the log layer to write out a checkpoint,
it does so at its own peril, as its records will be reclaimed
and not be replayed after a crash.

2.2. Services

The log provides rather limited functionality, and is
probably not useful to application programs directly.
Blocks and records can only be appended to the log, caus-
ing the log to eventually exhaust physical storage. Swarm
provides additional functionality for application programs
by layeringserviceson top of the log. Each service can ex-
tend and/or hide the functionality of the services on which
it is stacked. An example is the log cleaner. The cleaner is a
service that is layered on top of the log, reclaiming unused
portions of the log by moving blocks. Implementing the
cleaner as a service, rather than integrating it into the log,
allows the cleaner to run as a user-level process and store its

C
R

E
A

T
E

C
R

E
A

T
E

D
E

LE
T

E

C
R

E
A

T
E

S
V

C

Updating
Directory Entry

Writing Block
for Inode X

Inode X DirectoryData Block Data Block

Writing Inode X Writing Directory

Figure 2. The log in Figure 1 as seen by a file
system.

data structures in the log. This is similar to running the LFS
cleaner at user-level, and enjoys the same advantages [15].

Other examples of possible services are an atomic recov-
ery unit (ARU) [6] service that provides atomicity across
multiple log writes; a logical disk [4] service that provides
a disk abstraction that hides the append-only log, allow-
ing higher-level services and applications to overwrite the
blocks they store; a caching service that caches log data in
main memory; an encryption service; a compression ser-
vice; etc. Distributed services, such as distributed file sys-
tems and distributed cooperative caching [14], can also be
layered on the base Swarm functionality.

A service modifies the functionality of the services be-
low it by intercepting communication between those ser-
vices and the services above. For example, the ARU service
operates by intercepting records written by higher-level ser-
vices. The records are tagged with the ARU to which they
belong, and passed to the service below. During recovery,
the replayed records are passed up from the lower service;
the ARU service only relays upwards those records that be-
long to ARUs that completed before the crash. The ARU
also extends the lower services’ functionality by provid-
ing routines to manipulate ARUs (e.g., starting and ending
ARUs).

2.3. Storage server

A Swarm storage server is specialized software that runs
on commodity hardware. Swarm servers are designed to op-
timize cost-performance, rather than absolute performance:
the desired absolute performance of the system is obtained
by aggregating Swarm servers.

A Swarm storage server is merely a repository for log
fragments; clients store fragments on a server, read from
them, and delete them when they are no longer needed. As
a result, a storage server is little more than a virtual disk
that provides a sparse address space, with additional sup-
port for client crash recovery, security, and fragment recon-



struction. The fragment operations supported by the server
consist of storing data in a fragment, retrieving data from
a fragment, deleting a fragment, preallocating space for a
fragment, and querying the FID of the last marked fragment.
Marked fragments are denoted as such when they are stored.
The storage server’s simple functionality makes it suitable
for implementation on a networked-attached storage device
(NASD) [5].

2.3.1. Client crash recovery

The storage server has two features that support client
crash recovery. First, the client can mark a fragment
when it is stored, and subsequently query the server to
find the newest marked fragment. This allows a client to
find its checkpoint by storing checkpoints in marked frag-
ments. Second, all storage server operations are atomic. All
records written in the same store operation will either exist
or not after a crash, so that during recovery a client does not
have to deal with partially-written records or checkpoints. If
the write of a checkpoint fails because of a crash, the client
simply recovers from the previous checkpoint and rolls for-
ward from there.

2.3.2. Security

The storage server provides a simple security mecha-
nisms that allows clients to protect the data they store from
one another. The storage server supports access control lists
(ACLs) that provide read and write protection on data in
fragments. The server maintains a database of ACLs, in-
dexed by an ACL ID (AID). The server provides routines
for creating, modifying, and deleting ACLs.

When a fragment is stored each non-overlapping byte
range can be be assigned an AID. Subsequent accesses to
a byte range will only be permitted if the requesting client
is a member of the ACL. ACLs are associated with byte
ranges, instead of blocks or records, because the storage
servers are not aware of these high-level abstractions. To
a storage server, a log fragment is simply an opaque set of
bytes.

Once written, the data’s AID cannot be changed; instead,
access permissions can be changed by changing the mem-
bers of the ACL indicated by the AID. This makes it easy to
add a client to the system with the same privileges as exist-
ing clients; once the client has been added to the appropriate
ACLs, all data protected by those ACLs will be accessible.

2.3.3. Fragment reconstruction

One of Swarm’s most important features is its ability to
tolerate server failures by reconstructing unavailable data.
Swarm uses the same error-correcting code mechanism as
RAIDs, but adapted to a distributed storage system instead

of a locally-attached device. Although reconstructing a
fragment is relatively simple, consisting of fetching all re-
maining fragments in the same stripe and XOR’ing them
together to produce the missing fragment, merely finding
the remaining fragments is difficult in a distributed system.
Reconstruction of a fragment requires knowing which other
fragments are in the same stripe, and on which servers they
are stored.

In Swarm, the clients reconstruct the fragments they
need. Servers do not participate in reconstruction directly;
reconstruction is transparent to the servers, not the clients.
Reconstruction on the client is made possible by storing
stripe group information in each fragment of a stripe, and
numbering the fragments in the same stripe consecutively.
If fragment N needs to be reconstructed, then either frag-
ment N-1 or fragment N+1 is in the same stripe. A client
finds fragment N-1 and N+1 by broadcasting to all stor-
age servers. Once the client locates a fragment in the same
stripe as the fragment to be reconstructed, it uses the stripe
group information in that fragment to access the other frag-
ments in the stripe and perform the reconstruction. Broad-
cast is used because it is simple and makes Swarm self-
hosting—no additional mechanism is needed to distribute
stripe group and storage server information reliably to all
clients.

3. Prototype

We have built a prototype of the Swarm system complete
with log layer, cleaner, storage server, and a local file system
called Sting. The prototype uses personal computers run-
ning the Linux operating system, connected via a switched
Ethernet.

3.1. Sting

To demonstrate that file systems can be built efficiently
using Swarm, we implemented a local file system called
Sting. Sting is local in that each instance is confined to a
single client; Sting does not support file sharing between
clients. Instead, it provides the standard UNIX file system
interface as if the file system were stored on a local disk.
The file system data are actually stored in Swarm, provid-
ing the client with Swarm’s scalable performance and reli-
able operation.

Sting borrows heavily from Sprite LFS [13], although it
is smaller and simpler than Sprite LFS because it doesn’t
have to deal with log management and storage, cleaning,
or reconstruction, all of which are handled by lower-level
Swarm services.



0

5

10

15

20

25

30

0 2 4 6 8 10

B
an

dw
id

th
 (

M
B

/s
)

Servers

1 client 
2 clients
4 clients

Figure 3. Raw write bandwidth. This graph
shows the aggregate bandwidth of writing
10,000 4KB blocks to the log, including the
overhead of writing the log metadata and the
parity fragments. Each data point is the aver-
age of three experiments.

3.2. Storage server

The prototype Swarm storage server is implemented as
a multi-threaded, user-level process on the Linux operating
system. The server divides its disk(s) into fragment-sized
slots, one for each fragment. A mapping from FID to slot is
maintained in an on-disk fragment map. This architecture
is based on the Zebra storage server’s [7] and implements
many of the same optimizations. ACLs are not currently
supported.

A client accesses a server through TCL [10] scripts.
Thus, reading and writing fragments are effected by send-
ing the server an ASCII TCL script that reads or writes the
appropriate data. The use of TCL made it easy to debug and
extend the server interface, and because every fragment op-
eration involves a disk access, the overhead of using TCL
is inconsequential. In addition, using TCL effectively turns
the storage server into an Active Disk [1][12], although we
have made little use of this functionality other than for de-
bugging purposes.

3.3. Experimental setup

The prototype’s clients and storage servers are 200 MHz
Pentium Pro-based machines with 128 MB of memory, con-
nected via 100 Mb/s switched Ethernet. The operating sys-
tem is Linux 2.2.2, modified to support a write-back page
cache. Each storage server contains a Quantum Viking II
SCSI disk dedicated to holding log fragments. The size
of a log fragment is 1 MB. The storage server can write

0

5

10

15

20

25

30

0 2 4 6 8 10

B
an

dw
id

th
 (

M
B

/s
)

Servers

1 client 
2 clients
4 clients

Figure 4. Useful write throughput. This graph
shows the aggregate bandwidth of writing
10,000 4KB blocks to the log, as seen by the
application. Each data point is the average of
three experiments.

fragment-sized blocks to the disk at 10.3 MB/s, providing
an upper bound on the server performance.

3.4. Experimental results

We measured the write performance of both the raw log
layer and Sting. Read performance was not measured exten-
sively, as we expect most reads to be handled by the client
cache; the prototype servers do not cache log fragments in
memory, and the clients do not prefetch blocks from the
servers. Both of these optimizations would greatly improve
the performance of reads that miss in the client cache. As a
result, a Swarm client can read 4KB blocks from the servers
at only 1.7 MB/s.

Log layer write performance was measured using a sim-
ple microbenchmark that wrote 10,000 4KB blocks into the
log, then flushed the log to the storage servers. We mea-
sured both the raw aggregate throughput of the system (Fig-
ure 3) as well as the useful aggregate throughput (Figure 4).
The former measures the rate at which the clients write to
the servers, including not only the actual data written by the
benchmark, but also all log metadata and the log parity frag-
ments. The latter measures the bandwidth of writing only
the data written by the application, and hence represents the
bandwidth that is useful to an application.

The raw write bandwidth of a single client is 6.1 MB/s.
This nearly saturates the client, so that performance im-
proves only slightly as servers are added, reaching 6.4 MB/s
with eight servers. A single server is capable of sustain-
ing 7.7 MB/s, a rate that is achieved when more than one
client writes to the same server. Configurations with more



S
w

arm

E
xt2fs

0

10

20

E
la

ps
ed

 T
im

e 
(S

ec
on

ds
)

Figure 5. Modified Andrew Benchmark. This
shows the elapsed time to complete the Mod-
ified Andrew Benchmark. Sting accesses a
single storage server via the network; ext2fs
accesses a local disk. Each data point is the
average of three experiments.

than one client can benefit from additional servers: two
clients achieve 12.9 MB/s with eight servers and four clients
achieve 19.3 MB/s.

The useful aggregate write bandwidth reflects the band-
width seen by services using the log. When measuring use-
ful bandwidth, the minimum system configuration consisted
of a single client and two servers, one to store data and the
other parity. The parity and log metadata overhead results
in a useful bandwidth of 3.0 MB/s for a single client and
server. Performance improves as servers are added because
as the width of the stripe increases, the cost of computing
and writing the parity fragment is amortized over more data
fragments. Performance approaches, but will not achieve,
raw bandwidth; with an infinite number of servers, the par-
ity overhead drops to zero, leaving only the log metadata
overhead as the difference between the raw and useful band-
widths.

Configurations with two and four clients exhibit this
same trend—performance increases as servers are added
and parity is amortized over more fragments. With four
clients and eight servers, the aggregate bandwidth is 16
MB/s, only 17% less than the raw bandwidth.

The Modified Andrew Benchmark [11] measures the
performance of typical file operations, such as copying files,
traversing a directory hierarchy, compilation, etc. We un-
mount the file systems as part of the benchmark to ensure
that the data written are eventually stored to disk. Ext2fs is
the local file system for Linux, providing a baseline com-
parison for Sting. Sting was configured with a single client
and a single server, so that the data written by Sting were
stored in the client’s log and written across the network to

the server.
Sting outperforms ext2fs by nearly a factor of two,

completing the benchmark in 9.4 seconds as compared to
ext2fs’s 17.9 seconds (Figure 5). Sting makes much better
use of the disk by writing data sequentially to the log and
writing the log to the disk in 1 MB fragments. Swarm’s poor
read performance is masked by the client-side cache. As a
result, Sting achieves 93% CPU utilization, while ext2fs is
more disk-bound and achieves only 57% utilization. Sting’s
better use of the disk more than offsets any network over-
head, and allows Sting’s performance to scale better with
improvements in processor speed.

4. Related work

There are many projects whose work is similar to
Swarm’s. Zebra [7] and xFS [2] are both distributed file sys-
tems that use striped logging to store file data on a collection
of file servers. xFS supports many features that Zebra does
not, including stripe groups, distributed file management,
and server-less systems in which clients cooperate to pro-
vide file service. Both of these systems differ from Swarm
in that they are complete file systems, rather than low-level
storage systems. Swarm also retains a division of respon-
sibility between the clients and servers unlike xFS, but like
xFS pushes most file system functionality to the clients.

Petal [9] is a distributed storage system that provides vir-
tual disk abstractions. The Petal servers cooperate to pro-
vide a consistent view of a virtual disk to the clients, so that
clients accessing the same disk block see the same contents.
Petal also provides a distributed locking service for concur-
rency control.

Frangipani [16] is a distributed file system built on Petal.
Frangipani clients run local file systems modified to ac-
cess Petal for disk storage and for locking the file system
metadata. A file system such as Frangipani could be im-
plemented as a Swarm service, although we have yet to do
so.

The NASD [5] project is developing network-attached
disks. These disks will coordinate to provide file service
to the clients. The disks provide an object-oriented inter-
face, so that files consist of collections of objects stored on
different disks. This is in contrast to Swarm, in which the
storage servers provide a very low-level fragment-oriented
interface.

Stackable file systems [8] provide extensible file system
functionality by allowing file systems to be stacked. Each
file system in the stack provides a vnode interface to the
file system above, and expects a vnode interface from the
file system below. Swarm places no restrictions on the in-
terfaces between the services layered on the log, enabling
interfaces that are not based on vnodes.



5. Conclusion

Swarm is a scalable network storage system that pro-
vides scalable, reliable, and extensible storage service.
Swarm servers are commodity machines, aggregated to pro-
vide high-performance storage service. The Swarm infras-
tructure on the clients consists of layered services, allowing
applications to pick and chose the exact services needed.
Our measurements show that performance does scale with
the number of servers until the point where the clients are
the bottleneck. The useful write bandwidth of a single
client is 3.0 MB/s with two servers and 5.5 MB/s with four;
for four clients, the corresponding numbers are 6.7 MB/s
and 16.0 MB/s. Sting also outperforms ext2fs on standard
file system operations, completing the Modified Andrew
Benchmark almost twice as quickly.

6. Acknowledgements

This work was supported in part by DARPA contracts
DABT63-95-C-0075 and N66001-96-8518.

References

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: Program-
ming model, algorithms, and evaluation. InProceedings
of the 8th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS-98), pages 81–91. ACM Press, Nov. 1998.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, and R. W.
D. Roselli. Serverless network file systems. InProceed-
ings of the 15th Symposium on Operating Systems Principles
(SOSP-95), pages 41–79. ACM Press, Dec. 1995.

[3] T. Blackwell, J. Harris, and M. Seltzer. Heuristic cleaning
algorithms in log-structured file systems. InProceedings
of the 1995 USENIX Technical Conference, pages 277–288.
USENIX, Jan. 1995.

[4] W. De Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical
Disk: a new approach to improving file systems.Operating
Systems Review, 27(5):15–28, Dec. 1993.

[5] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,
D. Rochberg, and J. Zelenka. File server scaling with
network-attached secure disks. InProceedings of the
International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS-97), pages 272–284.
ACM Press, June 1997.

[6] R. Grimm, W. C. Hsieh, M. F. Kaashoek, and W. de Jonge.
Atomic recovery units: Failure atomicity for logical disks.
In Proceedings of the 16th International Conference on
Distributed Computing Systems (ICDCS-96), pages 26–37.
IEEE, May 1996.

[7] J. H. Hartman and J. K. Ousterhout. The Zebra striped net-
work file system.ACM Transactions on Computer Systems,
13(3):274–310, Aug. 1995.

[8] J. S. Heidemann and G. J. Popek. File-system development
with stackable layers.ACM Transactions on Computer Sys-
tems, 12(1):58–89, Feb. 1994.

[9] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. InProceedings of the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-96), pages 84–92. ACM Press,
Oct. 1996.

[10] J. K. Ousterhout. Tcl: An embeddable command language.
In Proceedings of the Winter 1990 USENIX Conference,
pages 133–146. USENIX, Jan. 1990.

[11] J. K. Ousterhout. Why aren’t operating systems getting
faster as fast as hardware? InProceedings of the Summer
1990 USENIX Conference, pages 247–256. USENIX, June
1990.

[12] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for
large-scale data mining and multimedia. InProc. of the 24th
International Conference on Very Large Databases (VLDB-
98), pages 62–73, Aug. 1998.

[13] M. Rosenblum and J. K. Ousterhout. The design and im-
plementation of a log-structured file system. InProceed-
ings of the 13th Symposium on Operating Systems Principles
(SOSP-91), pages 1–15. ACM Press, Oct. 1991.

[14] P. Sarkar and J. Hartman. Efficient cooperative caching us-
ing hints. InProceedings of the 2nd Symposium on Operat-
ing Systems Design and Implementation (OSDI-96), pages
35–46. USENIX, Oct. 1996.

[15] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An
implementation of a log-structured file system for UNIX. In
Proceedings of the Winter 1993 USENIX Conference, pages
307–326. USENIX, Jan. 1993.

[16] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scal-
able distributed file system. InProceedings of the 16th Sym-
posium on Operating Systems Principles (SOSP-97), pages
224–237. ACM Press, Oct. 1997.


