
Supporting Customized Failure Models
for Distributed Software

Matti A. Hiltunen Vijaykumar Immanuel Richard D. Schlichting

TR 99-04



Supporting Customized Failure Models for Distributed Software1

Matti A. Hiltunen Vijaykumar Immanuel Richard D. Schlichting

TR 99-04

Abstract

The cost of employing software fault-tolerance techniques in distributed systems is strongly related to
the type of failures to be tolerated. For example, in terms of the amount of redundancy required and
execution time, tolerating a processor crash is much cheaper than tolerating arbitrary (or Byzantine)
failures. The tradeoff, of course, is that making stronger assumptions about failures lessens the
degree of fault coverage provided by the system. This paper describes an approach to constructing
configurable services for distributed systems that allows easy customization of the type of failures
to tolerate. For example, using our approach, it is possible to configure custom services across a
spectrum of possibilities, from a very efficient but unreliable server group that does not tolerate any
failures, to a less efficient but reliable group that tolerates crash, omission, timing, or arbitrary failures.
The approach is based on building configurable services as collections of software modules called
micro-protocols. Each micro-protocol implements a different semantic property or property variant,
and interacts with other micro-protocols using an event-driven model provided by a runtime system.
The net result is an enhanced ability to explicitly manage the tradeoff between the level of reliability
and cost. In addition to facilitating the choice of failure model, our approach allows service properties
such as message ordering and delivery atomicity to be customized for each application.

Feb. 11, 1999

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1This work supported in part by the Defense Advanced Research Projects Agency under grant N66001-97-C-8518
and the Office of Naval Research under grant N00014-96-0207.



1 Introduction

Distributed architectures are increasingly used to construct systems that must continue to operate despite
failures such as processor crashes. Unfortunately, providing fault-tolerance of this type can be expensive.
For example, one strategy is to replicate the application on multiple independent machines and then operate
them in logical synchrony using the state machine approach [Sch90]. This requires not only redundant
hardware, but also sophisticated underlying software such as group atomic multicast [CM84, CASD85] to
keep the states of the replicas synchronized.

One factor determining the cost of providing fault tolerance in distributed systems is the type and number
of failures to be tolerated. Typically, the type of faults to be tolerated is expressed in terms of failure models
that range from relatively benign crash or omission failures to arbitrary (or Byzantine [LSM82]) failures.
In terms of the amount of redundancy required and execution time, tolerating a processor crash is much
cheaper than tolerating Byzantine failures. Furthermore, the cost is determined not only by the failure
model, but in many cases also by the number or frequency of the failures expected to occur. For example,
a simple replication scheme intended to tolerate n crash failures requires n+ 1 replicas.

Any realistic system can in principle exhibit failures in any of the failure models, but typically,
failures in the more benign classes are more frequent than severe failures. Thus, the choice of failure
model for a particular task should be based on the frequency of different types of failures in the given
execution environment, as well as the criticality of the task. The tradeoff, of course, is that making stronger
assumptions about failures improves the performance of the system, but lessens the degree of fault coverage
provided by the system and thus the reliability of the task [Pow92].

This paper describes an approach to constructing configurable services for distributed systems that
allows easy customization of the type of failures to be tolerated. For example, using our approach, it is
possible to configure custom services such as communication services across a spectrum of possibilities,
from a very efficient but unreliable service that does not tolerate any failures, to a less efficient but reliable
service that tolerates crash, omission, timing, or arbitrary failures. The approach is based on building
configurable services using software modules called micro-protocols. Each micro-protocol implements a
different semantic property or property variant, and interacts with other micro-protocols using an event-
driven model provided by a runtime system. The net result is an enhanced ability to explicitly manage the
tradeoff between the level of reliability and cost. As an example, we apply the approach to a group remote
procedure call (GRPC) service that can be used by a client to transmit a request to a group of replicated
servers. In addition to facilitating the choice of failure model, our approach allows GRPC service properties
such as message ordering and delivery atomicity to be customized for each application.

2 Customizing Fault-Tolerance

2.1 Assumptions

We consider a distributed system model in which multiple hosts with no shared memory are connected by
a network that provides an unreliable unordered communication mechanism with no upper bound on worst
case message transmission time. Hosts can only interact by sending and receiving messages through this
communication network. Hosts may fail in arbitrary ways consistent with the assumed failure model, but
we assume that the communication network does not experience permanent failures. Among other things,
this implies that partitions are not considered.

Given this model, a faulty host can only affect other hosts by not sending a message when it should,
by sending a message when it should not, or by sending an incorrect message. A faulty host may exhibit

1



the incorrect behavior only to a subset of the other hosts.
These kinds of incorrect behaviors can easily be mapped to traditional failure model definitions,

including crash, omission, timing, value, and Byzantine.

� Crash: A host may permanently halt and hence, fail to send messages. If a host is in the process of
sending a message when it crashes, some of the intended receivers may not receive the message.

� Omission: A host may repeatedly and irregularly fail to send a message to all or some of the intended
receivers, or fail to receive messages.

� Timing: A host may send a message earlier or later than expected. The network delaying a message
longer than expected may result in a host appearing to have a late timing failure.

� Value: A host may send a message with incorrect contents. We assume, however, that if a value
faulty host sends a multicast message, all receivers will receive the same message contents, i.e., we
assume value failures are symmetric [TP88].

� Byzantine: A host may do anything. This means that in addition to value and timing type failures, a
faulty host may deliberately attempt to confuse other hosts by sending different versions of a message
to different receivers or by impersonating another host.

2.2 Implementation approach

Our approach to providing configurable fault-tolerance is based on implementing distributed services using
Cactus [BHSC98, HSH+98]. In Cactus, services are implemented as composite protocols constructed from
fine-grain software modules called micro-protocols that interact using an event-driven execution model.
The goal of this paper is to demonstrate that the Cactus model can easily be used to construct micro-protocol
suites from which various composite protocols tolerating different classes of failures can be configured.

A micro-protocol is structured as a collection of event handlers that are bound to events signaling state
changes of interest, e.g. “message arrival from the network”. When an event occurs, all event handlers
bound to that event are executed. Events can be raised either explicitly by micro-protocols or implicitly by
the Cactus runtime system, as would be the case for the message arrival event above. Execution of handlers
is atomic with respect to concurrency, i.e., each handler is executed to completion without interruption.

Event handler binding, event detection, and invocation are implemented by the Cactus runtime system,
which is linked with selected micro-protocols to form a composite protocol implementing the custom
service. The runtime also supports shared data (e.g., messages) that can be accessed by all micro-protocols
configured into the composite protocol. Once created, a composite protocol can be composed in a traditional
hierarchical manner with other protocols to form the application’s networking subsystem.

The two primary event-handling operations are bind(), which specifies a handler to be executed
when a specified event occurs, and raise(), which raises a specified event with either blocking or
non-blocking invocation semantics. Certain events are also raised implicitly by the Cactus runtime system,
such as the message arrival event above. Other operations are available for creating and deleting events,
stopping event execution, canceling a delayed event, and unbinding event handlers from events.

Cactus has been implemented on the OSF/RI MK 7.3 Mach operating system and CORDS [TMR96],
a variant of the x-kernel system for building network software [HP91]. On this platform, each composite
protocol exports the same external interface as CORDS protocols and thus, can be combined transparently
with such protocols. Communication between CORDS protocols is based on a push/pop paradigm, where a

2



higher level protocol pushes a message to a lower level protocol and a lower level protocol pops a message
to a higher level protocol.

2.3 Providing fault-tolerance

The focus of this paper is on constructing configurable distributed services that can exploit existing
algorithms for tolerating different classes of failures. The ideal would be to encapsulate such algorithms
as “fault-tolerance modules” that could be combined with any distributed service S to automatically create
a version of S that could tolerate a selected failure type. While feasible in certain cases [AS94, FP98],
our goal is instead to provide fault-tolerance modules—implemented as Cactus micro-protocols—that are
specific to a given service such as atomic multicast [CM84, CASD85], group RPC [Nel81, Che86], group
membership [Bir85, KGR91], or distributed transactions [BHG87].

The semantic differences between distributed services are the main motivation for constructing service-
specific micro-protocols. For example, in group RPC, a non-faulty server is expected to send a reply
message, but no such requirement exists for asynchronous primitives such as atomic multicast. This means
that the definition of correct behavior—and thus, the definition of faulty behavior—is service specific. As
the result, a micro-protocol whose role is to add fault-tolerance to a given service must be constructed with
the semantics of that service in mind.

Semantic variations between versions of the same service also affect what fault-tolerance modules
must do. For example, if a multicast service provides atomic delivery of messages to all members of a
group, a fault-tolerance module must handle the case when a message only reaches a subset of intended
destinations because the sending host fails while transmitting the message. However, if the multicast
does not provide atomic delivery, a fault-tolerance module does not need to address such an incomplete
transmission. Finally, depending on the specifics of the service, it may be possible to reduce the cost of
fault tolerance by piggybacking fault-tolerance information on application messages.

In our approach, a distributed service is implemented as a composite protocol configured from both
service micro-protocols and fault-tolerance micro-protocols. Service micro-protocols provide the basic
functionality of the service and can be written independently of the failure model. Fault-tolerance micro-
protocols add tolerance to failures and are specific to a given failure model. Fault-tolerance micro-protocols
are implemented as collections of event handlers bound to particular events used by the service micro-
protocols. These events would typically include those indicating the arrival of a message from lower
level protocols, as well as the imminent departure of a message from the composite protocol to the next
lower level. The bind() operation has an ordering argument that is used to ensure that handlers in the
fault-tolerance micro-protocols are executed before or after handlers in the service micro-protocols when
necessary. This allows, for example, messages from hosts declared faulty to be filtered out. Thus, the
event mechanism allows execution of fault-tolerance micro-protocols to be transparently interleaved with
service micro-protocols as required.

2.4 Fault-tolerance micro-protocols

In general, fault-tolerance micro-protocols must prevent a faulty host from interfering with the operation
of non-faulty hosts. The different failure models allow faulty hosts to interfere in different ways. For the
crash failure model, a faulty host fails to send a message when it should, which may cause a non-faulty
host to wait forever for a message. Thus, a fault-tolerance module designed for this type of failure must
ensure that any such wait is eventually terminated. For example, in a group-oriented service such as atomic
multicast, this can be done by removing the faulty host from the membership. A crash failure can be

3



detected by monitoring if any message is received from a host within a given time period. No agreement
between hosts is necessary since we assume a crash failure is eventually detected by all the other hosts.

Omission failures can be divided into send and receive omission failures. Send omission failures are
different from crash failures, since a faulty host may continue to send messages after it becomes faulty.
Detecting that messages are missing from a sequence is naturally service specific, but for many services, it
can be based on the use of consecutive message sequence numbers. Agreement between hosts is required
to distribute local omission detections, since a faulty host may fail to send a message only to some hosts,
and thus, all hosts may not locally detect the failure.

Omission to receive failures are more difficult to handle, since a faulty host may mistake the symptoms
for send omission failures of other hosts. Thus, distribution of the detection information is not enough and
a majority vote is required. In this case, a host can locally only suspect the failure of another host until
the agreement is completed. A host may suspect its own receive omission failure if it does not receive
messages from any other host or if other hosts repeatedly disagree with its local detection.

Timing failures can be similarly divided to early and late timing failures. The concept of a message
being early or late is even more service specific than omissions; that is, no standard mechanism such as
sequence numbers can be used to detect timing failures. Late timing failures can often be detected by
setting a local timer event to fire at the time when a message should arrive. If the message arrives by this
time, the timer event is canceled; otherwise, the event handler declares the expected sender of the message
to be faulty. Agreement on late timing failures is similar to agreement on send omission failures, i.e., it is
sufficient to distribute the local detection information. However, a host with an early timing failure may
suspect the failure of other hosts, so an agreement phase similar to that for receive omission failures is
required.

Note that the potentially unbounded worst case transmission time of the network may cause failure
detection mechanisms to falsely detect host failures of any of the above types. The probability of such
false detections can be reduced by allowing a longer transmission time before a failure is suspected, by
using retransmissions, and by using agreement algorithms. Nevertheless, a false detection may still occur
and must be dealt with by forcing the given host to simulate failure and recovery to rejoin the group. Note
that although maintaining such group membership in an asynchronous system is theoretically impossible
[FLP85], practical systems have demonstrated that such heuristics result in operational systems.

All of the above fault-tolerance micro-protocols deal with failures in the time domain, meaning that
only one is configured into any given service. However, failures in the value domain are orthogonal, so
value failure micro-protocols could be used together with any of the above. Detecting value failures is
completely service specific. For example, it may be based on inspecting the format of a message or the
range of the values if there is some known range of reasonable values. Or, if the service involves replication
such as group RPC, the responses from different hosts can be compared to detect value failures. These
types of checks can be implemented easily by a micro-protocol that intercepts and checks messages before
they get to the service micro-protocols.

There is no clear cut boundary between value and arbitrary failures, so typically a value failure micro-
protocol would handle a fixed set of value failures, with more extensive failures handled by a micro-protocol
dealing with arbitrary failures if desired. An additional possibility raised with arbitrary failures is that a
faulty host may try to impersonate another host. Thus, the arbitrary failure micro-protocols add message
authentication, i.e., all messages are signed using RSA encryption and the signature is checked at the
receiver before the message is forwarded to the service micro-protocols. Byzantine agreement rather than
simple voting algorithms are required to agree on host failures. Message atomicity guarantees must also
be implemented using Byzantine algorithms.

4



3 Customizable Group RPC Service

As an example of how to apply the above principles to a specific distributed service, we present a
customizable group RPC (GRPC) service that clients use to access a group of servers. We assume servers
maintain data that can be queried and updated, with the consistency requirements for the data depending
on the application. Host recovery is not considered.

The basic assumptions about the execution environment are the same as in section 2. We assume a
server group of N servers and an arbitrary number of clients, where all servers are assumed to agree on the
server group membership, but the clients are not required to have complete server group information.

3.1 GRPC properties

The GRPC service may be customized to guarantee the following properties.

� Synchronous. The client is blocked until a response is received or the call is terminated as unsuc-
cessful.

� Asynchronous. The client is not blocked and the result of the call is returned to the client application
using an upcall to a designated client procedure.

� Unique. Each call is executed at each server no more than one time.

� FIFO. The calls send by a given client are processed in the same order by all servers.

� Atomicity. All correct servers will execute the same set of calls. This property is guaranteed even if
a client does not send a request to all servers in the group.

� Total order. All correct servers execute the same calls in the same order.

Total order guarantees that all the correct servers have a consistent state provided that their initial states are
consistent. Note, however, that atomicity is sufficient to guarantee consistency if all calls are commutative.

No guarantees are made concerning faulty clients or servers, except that if a correct server processes a
call from a faulty client, all correct servers will process this call if atomicity is guaranteed.

3.2 GRPC failure models

The definitions of faulty behavior for each failure model in section 2 can be refined since hosts now have
specific roles as servers or clients, and the communication patterns are more restricted. For failures in time
domain, we are only concerned about server failures; the effects of a client failing to send a request to all
servers is covered by the assumption that a faulty client might not send requests to all servers. A host is
omission faulty if it does not provide a reply to a client or if it fails to send any of the periodic messages
exchanged between servers. The definition of a value faulty host depends on the semantics of the GRPC.
For example, if the state of the servers is supposed to be identical, a server is value faulty if its reply to a
call differs from the other replies. All other incorrect behavior is considered to be an arbitrary fault.

The goal of the GRPC service is to guarantee that correct clients receive a correct result to their calls
given at most M faulty servers.

5



3.3 Algorithms

This section outlines the algorithms employed to implement the different options and properties of GRPC.

3.3.1 Communication algorithms

Multicast is implemented as multiple point-to-point transmissions. A host establishes and maintains the
state of links with the hosts with which it wishes to communicate. For example, a client creates a link for
each server it sends a request to, and a server creates a link with a client on receiving a request from it. Links
between servers are established for ensuring atomicity, total order and similar properties. Reliability of the
communication is ensured by a modified version of the sliding window protocol on each link that provides
reliable but un-ordered delivery of messages. Hosts timeout and retransmit messages a fixed number of
times; when this value is exceeded, the host raises a host-failure event, notifying other micro-protocols of
the suspected failure. Each link is bi-directional and acknowledgments are piggy-backed on data messages
whenever possible.

3.3.2 Fault-tolerance algorithms

The following algorithms are used to handle failures within the different failure classes. Both servers and
clients maintain server group membership information. As per our assumptions, the servers must agree
on the membership, while each client maintains its own approximation. A client detects that a server is
faulty when it fails to receive a response, which may be either a reply or an acknowledgment. The server
is declared faulty locally in this case and subsequent requests will not be sent to that server.

Crash, omission, and timing failures are detected by observing the communication from other hosts.
In particular, a host is considered failed if it does not acknowledge a message after a fixed number of
retransmissions or if a server fails to send a response or forward a request within a certain time period.
Note that the same detection mechanism works for omission and timing failures because it is message
specific, i.e., if there is any message that is not acknowledged on time or sent on time, the responsible host
is considered faulty.

Although local detection of these failures is similar, the agreement phase varies depending on the
failure model. Crash failures do not require any agreement phase, since each host will eventually detect
the failure independently. Send omission and late timing failures require the local detection information
to be shared between servers. This is done by piggybacking the information on regular messages, which
ensures that all non-faulty servers eventually agree on the failure.

Receive omissions and early timing failures require agreement, since a faulty host may suspect correct
hosts due to a missing message or a fast local clock. Thus, when a failure is detected, the host is declared
suspect. Information about the failure is included in the messages exchanged by servers and when a
sufficient number of servers suspect the host, it is declared faulty. The sufficient number in this case is
M+1, where M is the maximum number of faulty hosts. Thus, even if the M faulty hosts have a receive
omission or early timing failure and suspect some non-faulty host, the non-faulty host will not be removed
from the membership. Naturally, since the M faulty hosts may also be crash faulty, M must be small
enough to ensure there will be M+1 votes from correct hosts. Thus, M must be less than N/2.

Our design does not provide a predefined algorithm for detecting value failures. This is because
the intended uses of the group RPC may vary, from accessing completely identical replicated servers to
parallel access of non-identical servers. Also, the data types of the requests and responses are naturally
application specific. However, our design allows the client application to specify a voting function that is
used to combine the responses. The voting function may employ techniques such as majority voting, range

6



checks, and other application-specific sanity checks. The voting function may also raise events to notify
the composite protocol about server failures.

Byzantine failures require a voting protocol based on Byzantine agreement. Since we use authenticated
messages, no additional redundancy is required compared with receive omission and timing failures. That
is, M+1 votes are required, where M is less than N/2.

3.3.3 Service property algorithms

The implementation of the basic GRPC properties are all based on well-known algorithms. Synchronous
calls are implemented by blocking the client thread on a private semaphore until the call is completed.
Note, however, that the decision on when a call is completed depends on the failure model. Asynchronous
calls return immediately, and the eventual result is delivered to the client using an upcall. Unique execution
is based on identifying each request based on a (client-id, sequence number) pair, except in the Byzantine
case, where a client-id, sequence number, and the actual data bytes are used to uniquely identify a client
request. The latter is necessary to guard against a faulty client sending different byte sequences with the
same client-id and sequence number to different servers. Finally, FIFO message ordering is implemented
by each server queuing client requests until all calls with lower sequence numbers from the same client are
received. If an expected call is not received within a specified period of time, the client is declared faulty.
In this case, all calls from that client are removed from the queue.

The atomicity algorithm in the non-Byzantine case is flexible and offers the tradeoff between the cost
of atomicity and how quickly each server is guaranteed to receive each request. The cost, in particular, can
range fromO(1) toO(N2). The basic idea of the algorithm is that each server maintains a list of identifiers
(client-id, sequence number) of the requests that it has received and a circular list of the other servers.
When a new request is received, its identifier is added to the list and the list is sent to the k next servers on
the circular list. If k = 1, each server will send one extra message and thus, the cost of atomicity is O(N).
On receiving the list, a server checks if it has received all requests in the list; if not, it asks the sender of
the list to forward the missing requests. A server removes a request from its list after it knows that a list
containing the request has been sent to all the servers at least once. Naturally, the cost of atomicity can
be reduced further by sending the list to the next k servers only after some number j of new requests have
been received.

The algorithm for total order in the non-Byzantine case builds on the atomicity algorithm. One of
the servers is elected as a coordinator to order all requests. The order is propagated to all the servers on
the request id lists, i.e., for each request, the list now has client-id, sequence number, and order number.
Since a request cannot be processed before the order is received, the standard slowly propagating atomicity
algorithm would cause too much delay. Thus, the coordinator always sends the summary message to all
the servers. A coordinator failure is handled by a multiphase algorithm in which the process with the next
highest IP number becomes the new coordinator. It collects information from all other servers to determine
the last request ordered by the previous coordinator, and then resumes normal processing.

The above total ordering algorithm does not guarantee FIFO ordering. Thus, if FIFO and total order are
both required, an additional FIFO algorithm is used. The only difference with the regular FIFO algorithm
is that the FIFO queue now contains totally ordered requests.

The algorithms used for Byzantine failures are based on Byzantine agreement with signed messages
[LSM82], in which multiple rounds of message exchange are used. In each round, each server sends a
message to all the other servers containing a set of requests. The specific algorithm involves grouping
consecutive rounds together into a block, which is defined as M+1 rounds. In each round, each server
signs and forwards the requests it receives to all other servers. Any request received from a client during a
block is queued and handled in the next block. When a server receives a forwarded request from another

7



server, it signs and forwards it to all servers that have not signed the request. After M+1 rounds, at least
one non-faulty server has seen the message and hence, forwarded it to all servers. Then, the processing
of the next block is started. If included, a total order micro-protocol orders the requests in each block
after it is completed. Since all requests in a block are seen by all servers by the end of the block, a local
deterministic ordering is sufficient.

For every request, there is an exchange of messages between every pair of servers, meaning that the
algorithm uses O(N2) messages. The latency may be high, however, since every request has to wait for
an entire block to be processed before being serviced by any server. Also, RSA signing and verification
take considerable time, adding to the latency.

4 Implementation

The implementation of the configurable GRPC uses Cactus, where micro-protocols are used to implement
each of the different logical algorithms described in section 3.3.

4.1 Client micro-protocols

Some micro-protocols are used on both clients and servers, but the set on the client is smaller and thus,
simpler as a starting point. Figure 1 represents these micro-protocols and how they interact using Cactus
events. Compulsory micro-protocols are represented by solid boxes and optional with dashed boxes.
The numbered arrows represent events, with single-headed arrows representing non-blocking events and
double-headed arrows representing blocking events. In either case, the micro-protocol(s) pointed to by
the solid head service the event, i.e., they have an event handler bound for the event. Finally, A, B, and
C denote interactions between CORDS protocols, with A being a message pop, B being a message push,
and C being a synchronous call. Note that the custom interfaces at the top and bottom of the composite
protocol translate the interaction with other CORDS protocols into events.

As indicated by the figure, the client has only two compulsory and two optional micro-protocols.
The R NET micro-protocol implements the reliable communication using a sliding window protocol. It
unpacks the message headers and removes piggybacked acknowledgments before forwarding the message
to other micro-protocols using appropriate events. If it suspects a failure of a server based on a delayed or
missing response, it raises a failure event. If a server failure is declared, the micro-protocol stops accepting
its messages. The ACCEPT micro-protocol implements the synchronous and asynchronous call variations.
It sends the client request to all servers and collects responses until a required number is received. At this
point, the response is returned to the client. The micro-protocol keeps track of functioning servers, so that
it knows when every non-faulty server has responded and thus, the call is completed.

The optional CRASH micro-protocol waits for suspect failure events raised by other micro-protocols,
and raises either a server failed event or client failed event depending on the role of the failed site. The
optional RSA micro-protocol signs messages and verifies message signatures using the RSA algorithm.

4.2 Server micro-protocols

The server micro-protocols and their interactions are presented in figure 2. Some of the micro-protocols—
R NET, RSA, and CRASH—and events are identical to those on the client, but a number of new micro-
protocols and events are introduced.

The figure indicates that each configuration of the service must have either BASIC or FIFO micro-
protocols. The BASIC micro-protocol simply forwards requests to the application level server, matches

8



R_NETRSA

8 msg_recv_from_network

ACCEPT

CRASH

Custom bottom interface

A B

1

2

3

4

5

5

6

6

8

Custom top interface

B C A

7

EVENTS

2 reply_popped

4 push_request

6 server_failed

1 msg_popped_to_protocol

3 msg_pushed_to_protocol

5 suspect_failure

7 msg_send_to_network

Figure 1: Client micro-protocols.

responses to requests, and returns responses to the client using the R NET micro-protocol. The FIFO
micro-protocol implements FIFO ordering on top of totally ordered or non-ordered messages, maintaining
the necessary queues and other data structures as described in section 3.3. It also raises the suspect failure
event if a missing message is not received within a specified period of time, and has handlers for the client
and server failure events so that it can clear any data structures for the failed hosts.

The optional ATOMIC, TOTAL, and BYZ ATOMIC micro-protocols implement atomicity and total
ordering for non-Byzantine and Byzantine failures using the algorithms described in section 3.3. In
particular, the ATOMIC micro-protocol maintains the list of request identifiers and sends it out at the
desired frequency. It also requests retransmissions if it detects that a missing message based on a request
list it received, and handles retransmission requests from other servers. The TOTAL micro-protocol
implements coordinator-based total ordering, including dealing with coordinator failures. The details are
omitted here for brevity.

The BYZ ATOMIC micro-protocol implements the basic Byzantine agreement algorithm using au-
thentication, collecting requests in a queue to wait for the beginning of the block in which this set of
requests are processed. Note that all requests forwarded by other servers must be checked for authenticity
— each forwarded request is signed by all the servers that have forwarded the request. In every round,
a server forwards each of the messages it received in the previous round to all servers that have not yet
signed the message.

Interactions between micro-protocols are implemented using events. If any of ATOMIC, TOTAL,
or BYZ ATOMIC are included in a configuration, they have their event-handlers bound to the event
request popped before the handlers of BASIC or FIFO, so that they can stop the event and prevent BASIC
or FIFO from seeing these messages. Later, when all the required properties are satisfied for the messages,

9



CRASH9

BASIC FIFO

R_NET

Custom bottom interface

RSA

6

10/11
13

A B

12

1

9

9

B A

Custom top interface

10/11

2

7 2

13

BYZ_ATOMIC

TOTAL

8
83

9

10/11

ATOMIC

3

4

54 4 5

F_VOTE

F_DISTRIBUTE

2 request_popped

4 atomic_popped
5 total_popped

7 push_reply

10 server_failed
11 client_failed

EVENTS:
1 msg_popped_to_protocol

3 id_list_popped

6 msg_pushed_to_protocol

8 push_id_list
9 suspect_failure

12 msg_send_to_network
13 msg_recv_from_network

10/11

Figure 2: Server micro-protocols

these micro-protocols notify BASIC or FIFO using different events. However, if none of these three are in
a configuration, the request popped event will notify BASIC or FIFO, which will then deliver the request
to the application-level server.

The server micro-protocol suite includes two more optional failure-handling micro-protocols, F VOTE
and F DISTRIBUTE. F DISTRIBUTE handles send omission and late timing failures. It converts local
failure detections—i.e., the suspect failure event—into an agreed membership change event server failed
or client failed. It also distributes the local failure detection information by piggybacking it on the request
identifier messages. The piggybacking is done when push id list is raised. It also extracts any failure
information from the request identifier messages at the receiver and raises the appropriate failure events.

F VOTE implements the voting required for receive omission, early timing, and Byzantine failures by
also piggybacking the local suspicion information and raising the appropriate events when at least M+1
hosts suspect a failure. Note that in the Byzantine case, the suspicion information is piggybacked with
the client request messages in the agreement protocol. As a result, no host can send conflicting detection
information to other hosts undetected.

10



4.3 Performance

The configurable GRPC service allows a tradeoff between the number of failures that can be tolerated
and the service response time. While crash failures are relatively inexpensive to tolerate, the cost of
fault-tolerance increases as the more inclusive failure models are used. To measure this relative cost, as
well as the cost of the various service properties, we tested the service on a cluster of Pentium PCs running
the MK 7.3 operating system, and connected by a 10Mb Ethernet. As a reference point, the UDP and IP
roundtrip times on this platform are around 1.15 ms and 1.12 ms, respectively.

The following execution times are average response times in milliseconds from tests with clients
executing synchronous RPC calls on a server group consisting of one to three servers depending on the
failure model. The number of servers was chosen so that one failure of the given type could be tolerated.
The average response time for one group RPC call is calculated by dividing the total time required to make
1000 consecutive synchronous RPC calls by 1000, except in the Byzantine case where the average was
calculated for 10 requests.

Failure Model/Properties Clients Servers None FIFO Atomic Total

None 1 1 3.3 3.3 3.5 3.6
2 1 5.1 5.1 5.6 5.9

Crash 1 2 4.2 4.2 5.7 6.2
2 2 5.1 5.1 10.9 13.4

Send omission 1 2 4.2 4.1 5.8 6.6
and late timing 2 2 5.1 5.0 10.7 13.8
Receive omission 1 3 5.2 5.3 7.16 10.5
and early timing
Byzantine 1 3 1993.0 2181.0 18923.0 18924.0

Table 1: Average response time (in msec.)

The most important aspect of this table are the relative costs. A number of observations, most of which
are not surprising considering the algorithms used, can be made from these numbers. As far as properties
are concerned, the cost of adding FIFO is insignificant. On the other hand, atomicity and total ordering,
which builds on atomicity, increase the response time considerably. This is to be expected because FIFO
does not introduce extra messages, while atomicity and total order require a message exchange between
servers. Also, note that response time increases with the number of clients because of the extra load on the
servers.

As far as the failure models are concerned, the tests indicate a definite increase in response time as
the complexity of the failure model increases. In the case of crash, omission, and timing failures, this is
mostly due to the increased number of server replicas required to tolerate the failures. Considering the
actual fault-tolerance algorithms used in these cases, the cost of the failure detection mechanism is the
same regardless of the failure model. However, if a failure were to occur during the execution of an RPC
call, the complexity, and thus the cost, of the agreement or voting algorithm would depend on the failure
model. The cost difference increases more when considering complex properties such as atomicity and
total order. This follows because these properties require communication between servers and thus, are
more sensitive to the number of servers required.

The cost of tolerating Byzantine failures is large compared to any of the other failure models. The

11



cost is partially due to the overhead of signing messages using RSA and partially due to the cost incurred
by multiple rounds of message passing. We used an existing software implementation of RSA based on
512-bit keys. The None and FIFO columns only include the cost of authentication, since if atomicity is not
required, the Byzantine agreement protocol is not executed. The Atomic and Total columns include the
rounds algorithms and since the goal is to tolerate a single failure, the algorithm requires two rounds. The
rounds algorithm is synchronous, that is, the second round only starts after the first round is completed. A
timeout is used to terminate a round to ensure progress if all servers do not reply. In this test, the timeout
was set to 8000 ms. This number is determined by estimating how long it takes for a host to complete
a round, including encrypting and sending its set of messages and decrypting all the sets of messages it
receives. If the round timeout is set too small, hosts may be unnecessarily suspected of failures.

We also measured the corresponding times for asynchronous calls. They were consistently lower—up
to 30% less—than the corresponding synchronous call times. This is because asynchronous calls allow a
client to issue a number of concurrent RPC calls and thus, increase the overlap between computation and
communication. When the number of clients increases, however, the servers become saturated and the
benefit of asynchronous calls is considerably reduced.

5 Related work

Related work on fault-tolerant distributed services is extensive. Most implementations of distributed
services such as atomic multicast, membership, group RPC, synchronized clocks, and transactions, tolerate
at least crash failures, and some tolerate more complex failures. Typically, however, each service can
only tolerate a single class of failures and is not configurable. Moreover, each implementation typically
provides a different API, and relies on a specific hardware and software configuration.

Closer to the idea of customizing failure models is the family of group multicast protocols in [CASD85],
which has one protocol each for crash, omission, timing, and arbitrary failures. Another example of a
family of protocols is a set of group multicast protocols that adapt to crash, omission, and arbitrary failures,
respectively [CHS98]. These protocols are not configurable in the same sense as our approach, however. In
particular, rather than customizing one protocol, the user must select from a related collection of protocols.

Other work dealing with multiple failure models is that on hybrid fault models [TP88, LR93, WHS95].
The basic idea is to detect a range of different types of failures at the same time by using multiple failure
detection techniques. This approach allows the system to tolerate a larger number of failures than traditional
Byzantine algorithms, since simpler failures that require less redundancy can be distinguished from true
Byzantine failures. Some algorithms designed for hybrid fault models, in particular [WHS95], allow
specification of the maximum number of faults to be tolerated for each different fault model. Although
such an algorithm could exhibit comparable flexibility to our approach with respect to choice of failure
model, our approach allows greater optimization of the algorithm used in each situation, since each failure
model has a micro-protocol of its own.

A number of object-oriented systems support customization of fault-tolerance by allowing fault-
tolerance techniques such as replication, checkpointing, and checksum error detection to be configured into
an object using reflection [AS94, SA94, FNP+95, FP98]. Although these systems support customization
of fault tolerance in terms of techniques, they do not directly address the issues of customizing the failure
model to be tolerated. Indeed, most existing work in this area appears to focus only on tolerating crash
failures.

Finally, other work on group RPC services has focused on customizing service properties other than
fault tolerance. The event-driven model described in this paper has been used to construct group RPC
services with customizable service properties such as ordering, uniqueness, orphan handling, and bounded

12



termination [HS95, BS95], but no support for customization of failure model. An approach for RPC
customization based on specification languages is presented in [HR94]. Finally, the x-kernel has been used
to construct highly-modular, but not configurable, RPC services [HPOA89].

6 Conclusions

The choice of a failure model is a key factor in determining the performance of a system, as well as its fault
coverage. The approach presented in this paper makes it easy to construct customized services that can
tolerate a given class of failures. It is based on separating the implementation of service properties and fault
tolerance guarantees to the greatest extent possible using fine-grain micro-protocols and the event-based
programming style in the Cactus system. We demonstrated the viability of the approach by presenting the
design and implementation of a group RPC service that supports multiple classes of failures. Performance
results verify the cost incurred by using a more inclusive failure model, even when failures do not occur.

Future work will concentrate in a number of areas. One is applying this approach to other distributed
services, such as a security service and a distributed file system. Another is investigating techniques to
reduce the cost of fault tolerance by using runtime adaptation to dynamically change the class of failures
being tolerated [CHS98]. Finally, we also intend to analyze other quality of service (QoS) tradeoffs
that arise in distributed computing systems designed to provide fault-tolerance, real-time, and security
guarantees.

References

[AS94] G. Agha and D. Sturman. A methodology for adapting to patterns of faults. In G. Koob
and C. Lau, editors, Foundations of Dependable Computing: Models and Frameworks for
Dependable Systems, pages 23–60. Kluwer Academic Publishers, 1994.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley Publishing Company, 1987.

[BHSC98] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A system for constructing
fine-grain configurable communication services. ACM Transactions on Computer Systems,
16(4):321–366, Nov 1998.

[Bir85] K. Birman. Replication and fault-tolerance in the Isis system. In Proceedings of the 10th ACM
Symposium on Operating System Principles, pages 79–86, Orcas Island, WA, Dec 1985.

[BS95] N. Bhatti and R. Schlichting. A system for constructing configurable high-level protocols. In
Proceedings of SIGCOMM ’95, pages 138–150, Cambridge, MA, Aug 1995.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message
diffusion to Byzantine agreement. In Proceedings of the 15th Symposium on Fault-Tolerant
Computing, pages 200–206, Ann Arbor, MI, Jun 1985.

[Che86] D. Cheriton. VMTP: A transport protocol for the next generation of communication systems.
In Proceedings of SIGCOMM’86 Symposium on Communication Architectures and Protocols,
pages 406–415, Aug 1986.

13



[CHS98] I. Chang, M. Hiltunen, and R. Schlichting. Affordable fault tolerance through adaptation. In
J. Rolin, editor, Parallel and Distributed Processing, Lecture Notes in Computer Science 1388,
pages 585–603. Springer, Apr 1998.

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on Computer
Systems, 2(3):251–273, Aug 1984.

[FLP85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, Apr 1985.

[FNP+95] J.-C. Fabre, V. Nicomette, T. Perennou, R. Stroud, and Z. Wu. Implementing fault toler-
ant applications using reflective object-oriented programming. In Proceedings of the 25th
International Symposium on Fault-Tolerant Computing, pages 489–498, Pasadena, CA, Jun
1995.

[FP98] J.-C. Fabre and T. Perennou. A metaobject architecture for fault tolerant distributed systems:
The FRIENDS approach. IEEE Transactions on Computers, Special Issue on Dependability
of Computing Systems, 47(1):78–95, Jan 1998.

[HP91] N. Hutchinson and L. Peterson. The x-kernel: An architecture for implementing network
protocols. IEEE Transactions on Software Engineering, 17(1):64–76, Jan 1991.

[HPOA89] N. Hutchinson, L. Peterson, S. O’Malley, and M. Abbott. RPC in the x-kernel: Evaluating
new design techniques. In Proceedings of the 12th ACM Symposium on Operating Systems
Principles, pages 91–101, Litchfield Park, AZ, Dec 1989.

[HR94] Y-M. Huang and C. Ravishankar. Designing an agent synthesis system for cross-RPC com-
munication. IEEE Transactions on Software Engineering, 19(3):188–198, Mar 1994.

[HS95] M. Hiltunen and R. Schlichting. Constructing a configurable group RPC service. In Proceed-
ings of the 15th International Conference on Distributed Computing Systems, pages 288–295,
Vancouver, BC, Canada, May 1995.

[HSH+98] M. Hiltunen, R. Schlichting, X. Han, M. Cardozo, and R. Das. Real-time dependable channels:
Customizing QoS attributes for distributed systems. Technical Report 98-06, Department
of Computer Science, University of Arizona, Tucson, AZ, Jul 1998. To appear in IEEE
Transactions on Parallel and Distributed Systems.

[KGR91] H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in a synchronous
distributed real-time system. In A. Avizienis and J.C. Laprie, editors, Dependable Computing
for Critical Applications, pages 411–429. Springer-Verlag, Wien, 1991.

[LR93] P. Lincoln and J. Rushby. A formally verified algorithm for interactive consistency under a
hybrid fault model. In Proceedings of the 23rd International Symposium on Fault-Tolerant
Computing, pages 402–411, 1993.

[LSM82] L. Lamport, R. Shostak, and Pease M. The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–401, Jul 1982.

[Nel81] B.J. Nelson. Remote Procedure Call. PhD thesis, Dept of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, 1981.

14



[Pow92] D. Powell. Failure mode assumptions and assumption coverage. In Proceedings of the 22nd
IEEE Symposium on Fault-Tolerant Computing, pages 386–395, 1992.

[SA94] D. Sturman and G. Agha. A protocol description language for customizing failure semantics.
In Proceedings of the 13th Symposium on Reliable Distributed Systems, pages 148–157, Oct
1994.

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299–319, Dec 1990.

[TMR96] F. Travostino, E. Menze, and F. Reynolds. Paths: Programming with system resources in
support of real-time distributed applications. In Proceedings of the IEEE Workshop on Object-
Oriented Real-Time Dependable Systems, Feb 1996.

[TP88] P. Thambidurai and Y.-K. Park. Interactive consistency with multiple failure modes. In
Proceedings of the 7th Symposium on Reliable Distributed Systems, pages 93–100, Oct 1988.

[WHS95] C. Walter, M. Hugue, and N. Suri. Continual on-line diagnosis of hybrid faults. In F. Cristian,
G. Le Lann, and T. Lunt, editors, Dependable Computing for Critical Applications 4, pages
233–249. Springer-Verlag, Wien, 1995.

15


