
The GAF Data

Exchange Format

Gene Myers

TR 99-02

- 1 -

The GAF Data

Exchange Format

Gene Myers

TR 99-02

ABSTRACT

GAF is a General Assembly Format for exchanging data in a sequencing project. It provides constructs

for specifying sequences, quality numbers, assemblies, multi-alignments, overlaps between fragments, and

constraints between them. It is designed for coding the information at any point in the assembly process, so

for example, a GAF file can specify just a collection of fragments, a collection of fragments and assigned

quality numbers, a collection of fragments and their overlaps, an assembly of some fragments, assemblies of

assemblies of fragments, and so on. Its specific purpose is to facilitate the exchange of data between a suite of

cooperative software processes handling different aspects of an overall sequencing informatics pipeline. A

very simple translation (using a simple awk script) can convert the CAF format introduced by the Sanger

group into a subset of the GAF format.

February 3, 1999

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported in part by DOE Grant DE-FG03-94ER61911.

- 2 -

The GAF Data Exchange Format

Two basic principles were followed in devising the GAF format: (1) input should be easy in that it should be trivial
to parse, and the information should arrive in a sequence suitable for the creation of the data-structures needed by
the process, and (2) output should be easy in that one should simply be able to write the information in whatever
order it occurs in the data structures of the application in question. To accomplish this goal we adopted a simple
ASCI line-based format with an html-style syntax in anticipation of a possible web-publication connection. With
respect to the order of information we have adopted the idea that there will be a suite of GAF Utilities that will not
only automatically reorder the information, but also validate various aspects of the data set, and further compress
and decompress GAF files for storage.

The GAF format was based on a series of discussions between Granger Sutton, Xiaoqui Huang, and myself
while at TIGR. All three of us have built and continue to refine assemblers and it was our desire to be able to mix-
and-match various components of our systems based on the realization that our respective systems had both
strengths and weaknesses, so that the best system would be the best parts of our respective systems. Moreover, such
an exchange format would permit us to share components and focus on building great individual components.

General and Grammatic Conventions:

We will present the GAF format by interspersing textual description with formal context-free grammar
specification of the language. The conventions for our grammatical specification are as follows.

g Productions are written as: N <- expr, where N is a non-terminal and expr is a regular expression of non-
terminals and terminal strings.

g A non-terminal is a descriptive word between angle-brackets or square brackets, e.g., <contig> or [info].
Those non-terminals within square brackets must occupy one line of the input.

g Terminal strings are distinguished by occurring between double-quotes and may be a regular expression format-
ed according to egrep conventions (a UNIX standard), in which case the terminal string being specified is any
matching the regular expression. For example, "[acgtACGT]+" matches any non-empty string of upper or
lower case DNA sequence letters.

g The right-hand side of a production may be any regular expression of non-terminals and terminal strings built up
with the egrep operators |, (concate), ?, *, and +. Moreover, spaces between concatenated terms implies that
white space (space and tab) must exist between the items involved, and conversely, no space between terms im-
plies no white space exists between the instances of the items involved. For example, "begin"
<id>"("<int>")" * "end", specifies a list of identifiers each followed by a parentheses bracketed integer
and delimited by the strings begin and end. There must be white space between the bracketing strings and
each item in the list, but not between the identifier and its parentheses bracketed integer.

In addition to these syntactic conventions, there are a few semantic conventions that hold throughout.
Specifically,

g Each class of integer ids for the various objects, i.e. ctg_id, ovl_id, and rel_id, below, are assumed to be
ints in a contiguous range beginning at 0.

g Dashes in sequences do not count as index positions.

g Indices are always in absolute coordinates (as opposed to "clipped" coordinates). This only affects index com-
putations when a sequence represents a clipped sequence whose clipping interval is given.

The GAF specification language borrows the style of the html language, in that key-symbols consist of an
identifier with angle braces, e.g. <info>, and that a multi-line object whose description begins with a key-symbol
<X>, is terminated with a bracketing </X>, e.g. <contig> and </contig>.

The GAF language admits variability in the content of some object specifications in order to accommodate ex-
tension and customizability for groups or tool producers that wish or must so augment the language. To facilitate
this, GAF permits many of its initiating key-symbols to have a parenthesized ‘‘type name’’ follow the key-name.
These names may be arbitrarily chosen and consumers of a GAF-file can either ignore or utilize the implication of

- 1 -

the presence of the type name in the data of the object. For example, our assembler, FAKII, may produce a
<contig(FAKII)> contig so that other compatible programs, may take advantage of the fact that FAKII pro-
duces a certain subset of the variable parts of a contig specification and that these parts have a particular interpreta-
tion. Another example might be a <info(Sizes)> line which is guaranteed to contain the number of each type
of object so that one can, for example, allocate a single array of structures for each collection.

The GAF Objects:

At the top level a GAF spec can consist of six different types of data units in any order: an information line, a
contig, an overlap, a constraint, and a relation. Formally:

<spec> <- ([info] | <contig> | <overlap> | [constraint] | <relation>)*

1. Information Lines.

An information line permits the specification of any data a user desires. It consists of an <info> key-symbol
followed by whatever information is desired. It is in effect a comment line to any process that wishes to ignore the
content of the line. The info keyword can be typed so that consumers of information can easily identify which in-
formation lines they should process and the nature of the information on the line.

<info> <- "<info"("("<type:var>")")?">" ".*"

2. Contig Objects.

In contrast to the information line, a contig object is the most proscribed GAF object and is the single vehicle by
which one specifies sequence reads, assemblies, and layouts. A contig object always consists of (1) a header line
and an end line, (2) either a sequence or a layout or both, and (3) some optional information specifying joins, scores,
clips, and tagged regions.

<contig> <- [ctg_hdr]
(<sequence> <quality>*) ? <layout> ? # 1 or both
(<joins> [score] [clip] [tag]) *

[ctg_end]

The contig header starts with an optionally typed <contig> key-symbol, followed by an optional symbolic
name, a mandatory contig id number, the contig’s sequence length in bases, and the padded length of the contig. A
contig’s sequence length is the number of bases specified in the sequence component of contig if any. If not then it
equals the pad-length of the contig. The pad-length of a contig is the number of columns in the multi-alignment, if
any, represented by the contig. If the contig does not represent a multi-alignment/sequence, but just a layout, then
the pad-length may be specified as per the generating agents whim. The contig trailer consists of a line with the
bracketing </contig> key-symbol.

[ctg_hdr] <- "<contig"("("<type:var>")")?">"
<name:var>? <ctg_id:int> <length:int> <pad_len:int>

[ctg_end] <- "</contig>"

2.A. Sequences.

If the contig has a sequence then this is simply specified on a collection of lines between a <sequence> and
</sequence> bracketing pair, each on its own line. The sequence represent either the initial bases of a sequence
read, or the consensus sequence reconstruction from an assembled collection of reads. The sequence can contain
dashes interspersed between its characters in which case the length of the sequence including the dashes is the con-
tigs pad-length. These may be present in a read in order that align with other reads in a contig object representing
an assembly, or they may be present in a consensus sequence in order to correctly model columns whose consensus
symbol is a ‘-’.

- 2 -

<sequence> <- [seq_hdr] ([seq_lines])* [seq_end]

[seq_hdr] <- "<sequence>"
[seq_line] <- "[a-zA-Z-]*"
[seq_end] <- "</sequence>"

A sequence may be optionally followed by one or more quality sequences that are a list of numbers sandwiched
between <quality> and </quality> bracketing lines. The sequence numbers must have the same length as
the character sequence they qualify. The quality key-symbol may be qualified to indicate to a consumer the type of
quality information being provided, e.g., <quality(Phred)> or <quality(Signal2Noise)>.

<quality> <- [qual_hdr] ([qual_line])* [qual_end]

[qual_hdr] <- "<quality"("("<type:var>")")?">"
[qual_line] <- <number> *
[qual_end] <- "</quality>"

For example a sequence read with associated Phred numbers might have a GAF entry as follows:

<contig> sb115.r 13 100 100
<sequence>
acgcagcaccagagtatgactagctacgatcgagca
acgctgctcgatcgaaacgatcgatcccatcgatcc
</sequence>
<quality(Phred)>
10 5 32 ...
</quality>
</contig>

2.B. Assemblies: Layouts and Multi-Alignments.

In the case that the contig object represents an assembly it can have a layout component. A layout consists of a

<layout>, </layout> pair that, in the case of a basic_spec, bracket a series of lines each containing a refer-

ence to a contig subobject and the index range (in the padded interval) of the current contig that is covered by the

referenced sub-contig. In other words, one gives a list of the contig objects that were assembled to form the current

contig (these could be either reads or sub-assemblies), and their positions in the assembly.

<layout> <- [layout_hdr] <basic_spec> | <delta_spec> [layout_end]

<basic_spec> <- [contig_ref] *

<delta_spec> <- <delta> ? ([contig_ref] <delta>)*

[layout_hdr] <- "<layout>"

[layout_line] <- <ctg_id:int>?"("<int>","<int>")"

[layout_end] <- "</layout>"

If one wishes to further indicate how to align the sequences of the sub-contigs together into a proper multi-

alignment, then the delta_spec format permits one to indicate where dashes should be interspersed between the

symbols of the sub-contigs and, optionally the consensus sequence for the assembly (if one is given), so that all se-

quences align as desired. The positions at which dashes occur is specified by an optional list of integers between a

<delta>, </delta> pair following each contig reference. If the assembly has a sequence component, then the

‘‘delta’’ for this consensus sequence is given before the first sub-contig reference. Each delta header is followed

immediately by the length of the delta sequence. As an example, if the referenced contig has

sequence, acgta, and the delta is 1 3 3 6, then the dashed counterpart would be, -ac--gta-.

- 3 -

<delta> <- ["<delta>" <length:int>] ([<int> *])* ["</delta>"]

While at one extreme a contig object can encode simply a sequence or read, at the other it can present just a lay-

out of a collection of clones devoid of any sequence information. We call such an arrangement without any se-

quence information a ‘‘layout’’. For example,

<contig> Layout1 10 55 55
<layout>
0(1,25)
1(11,40)
2(26,50)
3(31,55)
</layout>

represents the following assembly:

0 -------------------------
1 ------------------------------

2 -------------------------
3 -------------------------

without any connection to the underlying sequence giving rise to the assembly. Thus, a given software component

may decide how to assemble a collection of sequences and add to a GAF file, a contig object such as the one above,

that just gives the relative positions at which to place each sequence. Presumably a later ‘‘multi-alignment’’ module

would then take up the task of aligning the sequence of all the fragments so as to determine the most probable se-

quence reconstruction.

There are two principle ways of encoding a multi-alignment (with or without consensus sequence) under the

GAF format. For illustration purposes consider the following multi-alignment:

ata-aagtgagaccttttcctgatagcg-tctacca-tgaaag-atgt
aca-aagtgagaccttttc-tgatagcg-tctacca-tgaa

agtgagaccttttc-tgataggg-tccaccattgaaag-atgt
ctctacca-tgaaag-at

--
ANA-AAGTGAGACCTTTTC-TGATAGCG-TCTACCA-TGAAAG-ATGT

In the first style (used in the CAF format [Dea98]), the sequences of the sub-contigs and the consensus of the

assembly-contig (if there is one), have dashes interspersed in them so that when the first character of each sub-

contig is aligned with the first character/position of the contig’s sequence covered.

- 4 -

<contig> Fragment0 0 44 48
<sequence>

ata-aagtgagaccttttcctgata
gcg-tctacca-tgaaag-atgt

</sequence>
</contig>

<contig> Fragment1 1 37 41
<sequence>

aca-aagtgagaccttttc-tgata
gcg-tctacca-tgaa

</sequence>
</contig>

<contig> Fragment2 2 39 42
<sequence>

agtgagaccttttc-tgataggg-t
ccaccattgaaag-atgt

</sequence>
</contig>

<contig> Fragment3 3 16 18
<sequence>

ctctacca-tgaaag-at
</sequence>

</contig>

<contig> Multi1 4 43 48
<sequence>
ANA-AAGTGAGACCTTTTC-TGATA
GCG-TCTACCA-TGAAAG-ATGT
</sequence>
<layout>

0(1,48)
1(1,41)
2(6,48)
3(29,46)

</layout>
</contig>

Note carefully, that sub-contig intervals are given as the indices of columns in the multi-alignment, or as subinter-

vals of the pad-length interval [1,48] (and not [1,43] the length of the consensus). Moreover, if one did not wish to

specify the consensus (perhaps another subsequent agent will compute this), then one can simply leave out the se-

quence component of Multi1 and set its contig length to 48.

While the above style is quite simple to realize, it has the disadvantage that one cannot encode several different

possible assemblies of the same set of fragments, as a fragment potentially requires dashes at different positions for

each assembly. The second, delta-style encoding uses deltas, specified in the assembly, to indicate where to place

dashes in each reference sub-contig. Continuing with our example, one would have:

- 5 -

<contig> Fragment0 0 44 44
<sequence>

ataaagtgagaccttttcctgatag
cgtctaccatgaaagatgt

</sequence>
</contig>

<contig> Fragment1 1 37 37
<sequence>

acaaagtgagaccttttctgatagc
gctctaccatgaa

</sequence>
</contig>

<contig> Fragment2 2 39 39
<sequence>

agtgagaccttttctgatagggtcc
accattgaaagatgt

</sequence>
</contig>

<contig> Fragment3 3 16 16
<sequence>

ctaccatgaaagatg
</sequence>

</contig>

<contig> Multi1 4 43 48
<sequence>
ANAAAGTGAGACCTTTTCTGATAGC
GTCTACCATGAAAGATGT
</sequence>
<layout>

<delta> 5
4 19 27 34 40

</delta>
0(1,48)

<delta> 4
4 28 35 41
</delta>

1(1,41)
<delta> 4
4 19 27 34
</delta>

2(6,48)
<delta> 3
15 23 37
</delta>

3(29,46)
<delta> 3
1 9 15
</delta>

</layout>
</contig>

Note carefully that the padded length of Multi1 is its consensus length plus the length of the delta for the con-

sensus. The GAF tool suite will provide a utility for converting from one format to another in the event that there is

only one assembly, and for recoding the indices if one wishes to remove a consensus sequence.

2.C. Additional Contig Attributes.

In addition to the core sequence and/or layout information, contig/sequence object description may contain the

following additional items. First, in the case of assemblies or multi-alignments, one may which to indicate which

set of fragment overlaps were used in putting the assembly together. This is indicated by an optionally-typed "join"

pair bracketing a list of references to overlap records (to be described).

- 6 -

<joins> <- [join_hdr] ([join_line])* [join_end]

[join_hdr] <- "<joins"("("<type:var>")")?">"

[join_line] <- <ovl_id:int> *

[join_end] <- "</joins>"

In addition one may which to attribute a score to a contig object reflecting the quality or confidence in the accuracy

of the assembly and/or sequence.

[score] <- "<score"("("<type>")")?">" <floating-point number>

Contig objects representing sequences are often time clipped at the ends to eliminate poor data. This information is

given as a pair of indices delimiting the segment of the sequence to retain, inclusively. The clip record may be op-

tionally typed to indicate, for example, the agent that performed the clip or the criterion used to determine where to

clip.

[clip] <- "<clip"("("<type>")")?">" <index> <index>

Finally, one often wants to ‘‘tag’’ a substring of either an assembly or a sequence and one can do so with an

optionally-typed tag record containing a pair of indices indicating the tagged range, inclusively. In this case the op-

tional type might, for example, indicate what is being tagged, e.g Alu, L1, etc.

[tag] <- "<tag"("("<type>")")?">" <index> <index>

3. Overlap.

One of the major subtasks in assembling a collection of sequences is to determine the overlaps between them.

Such overlaps are described as follows in GAF format. The usual, optionally-typed <overlap>, </overlap>

pair bracket the description where the opening bracket contains an optional symbolic name for the overlap and a

mandatory overlap id-number.

<overlap> <- [ovl_hdr] [ovl_desc] [ovl_align]? [score]* [ovl_end]

[ovl_hdr] <- "<overlap"("("<type:var>")")?">" <name:var>? <ovl_id:int>

[ovl_desc] <- "<spec>" <ctg_id:int>"("<int>,<int>")"

<ctg_id:int>"("<int>,<int>")"

[ovl_align] <- ["<align>"] [<int> *]* ["</align>"]

[ovl_end] <- "</overlap>"

The nature of the overlap is given by specifying the two contigs involved by their id-numbers, each followed by

the range of the sequence aligned with the other. Note that this actually permits the specification of locally aligned

parts of the sequence as well as true end-to-end overlaps.

A precise description of an alignment between the two overlapping parts is optional, and if present is given as a

list of integer positions between a <align>, </align> pair, where each index indicates the character before

which to insert a dash in order to get the desired alignment between the two sequences. While this could have been

done with two <delta> records, it is more convenient to give one integer list, where positive integers indicate

dashes in the first contig and negative integers indicate dashes in the second sequence. For example, the overlap:

- 7 -

. . .

12: accgta-ctacgatacacgg

15: tacctactatac-cggattacag

ˆ ˆ ˆ ˆ

could be encoded by the following overlap record:

<overlap> 12 15

<spec> 12(5,19) 15(1,15)

<align>

7 -13

</align>

</overlap>

Finally one may wish to score an overlap in one or more ways and such scores can be listed on optionally-typed

<score> lines.

4. Relationships and Constraints.

It is often the case in an sequencing project that additional information is known about the relationship of frag-

ments in a valid solution. The most typical case is when pairs of fragments have been sequenced from both ends of

an insert. The GAF permits one to model such a constraint between a pair of sequences or contigs with a con-

straint line. Such a line indicates the ordered pair of sequences involved by id-number, the relationship between

them, also by id-number, and whether the constraint must be true in a valid solution, or whether it may be violated if

there is sufficient contradictory evidence.

[constraint] <- "<constraint>" "must"|"may"
<ctg_id:int> <ctg_id:int> <rel_id:int>

The nature of a constraint is specified by a relation object which is an optionally-typed <relation>,

</relation> pair bracketing the description where the opening bracket contains an optional symbolic name for

the overlap and a mandatory overlap id-number. The relationship is specified as a list of relationship items, the con-

junction of which constitutes the desired relationship.

<relation> <- [rel_hdr] [rel_lines] [rel_end]

[rel_hdr] <- "<relation>" <name:var>? <rel_id:int>

[rel_lines] <- "same" | "opposite" | "no_overlap"
| "overlap" "reversed"? ("proper|contains")?

(("A"|"B")?"offset"|"overlap")"("<int>","<int>")" ?

| "distance" <anchor1:int> <anchor2:int>

"("<min:int>","<max:int>")"

[rel_end] <- "</relation>"

The relationship items and their interpretations are as follows:

same: A fragment may be used directly in a solution or its Watson-Crick complement, constituting the sequence

on the opposing strand of a duplex, is used. This is called the orientation of the fragment. The keyword

same requires that the fragment should be used in the same orientation.

- 8 -

opposite: The fragments should be in opposite orientations.

no_overlap: The fragments should not overlap in the solution.

overlap: The fragments should overlap and optionally in one or more of the following more specific way:

reversed: When a constraint between two fragments is given, the first fragment is assumed to be the ‘‘A’’

fragment and the second the ‘‘B’’ fragment for the purposes of the description that are about to follow.

This keyword indicates that the roles of A and B should be reversed.

proper: The fragment overlap involves only proper prefixes and/or suffixes of the two fragments.

contains: The B fragment is completely contained within the A fragment.

Aoffset(i,j): The A fragment has an initially unaligned segment of length between i and j inclusive.

Boffset(i,j): The B fragment has an initially unaligned segment of length between i and j inclusive.

overlap(i,j): The length of the overlap between the two sequences is between i and j inclusive.

distance a1 a2 (min,max): Consider a fragment on an infinite axis whose origin is immediately to the

left of its first base, and where one unit of length corresponds to one base. The two anchors a1 and a2 are

coordinates on such an axis relative to the first and second fragments, respectively. For example, -100 is 100

bases to the left end of a fragment, +100, 100 bases to the right. This constraint specifies that in any solu-

tion, the distance between anchors a1 and a2 should be in the range [min,max] inclusive.

Note of course that some combinations of relationship items do not make sense and one should not generate such

combinations in a GAF file. As a simple example, suppose that reads are sequenced off the ends of inserts known to

be of length between 1000 and 5000. Then the relationship capturing such mates, would be:

<relation> Mates 1

opposite

distance 0 0 (1000,5000)

</relation>

5. References

[Dea98] Dear, S., Durbin, R., Hillier, L., Marth, G., Thierry-Mieg, J. and Mott, R. "Sequence Assembly with

CAFTOOLS". Genome Research, In press, (1998).

- 9 -

