
alto : A Link-Time Optimizer for the DEC Alpha�

Robert Muth Saumya Debray Scott Watterson
Department of Computer Science

University of Arizona

Tucson, AZ 85721, USA

fmuth, debray, sawg@cs.arizona.edu

Koen De Bosschere
Vakgroep Elektronica en Informatiesystemen

Universiteit Gent

B-9000 Gent, Belgium

kdb@elis.rug.ac.be

Technical Report 98-14

December 9, 1998

Abstract

Traditional optimizing compilers are limited in the scope of their optimizations by the fact that only a sin-

gle function, or possibly a single module, is available for analysis and optimization. In particular, this means

that library routines cannot be optimized to specific calling contexts. Other optimization opportunities, exploit-

ing information not available before linktime such as addresses of variables and the final code layout, are often

ignored because linkers are traditionally unsophisticated. A possible solution is to carry out whole-program op-

timization at link time. This paper describes alto, a link-time optimizer for the DEC Alpha architecture. It is

able to realize significant performance improvements even for programs compiled with a good optimizing com-

piler with a high level of optimization. The resulting code is considerably faster that that obtained using the OM

link-time optimizer, even when the latter is used in conjunction with profile-guided and inter-file compile-time

optimizations.

�The work of Robert Muth, Saumya Debray and Scott Watterson was supported in part by the National Science Foundation under grant

numbers CCR-9502826 and CCR-9711166. Koen De Bosschere is a research associate with the Fund for Scientific Research – Flanders.

1 Introduction

Optimizing compilers for traditional imperative languages often limit their program analyses and optimizations to

individual procedures [1]. This has the disadvantage that some possible optimizationsmay be missed because they

depend on propagating information across procedure boundaries. This is addressed to some extent in procedure-

call-intensive programming languages, such as Prolog and Scheme, that rely greatly on inter-procedural analyses

and optimizations [11, 24, 32, 36]; recent years have also seen a great deal of interest in inter-procedural analyses
for languages like C (see, for example, [13, 14, 25, 29, 38]). However, even here the scope of the possible analy-

ses and optimizations are limited to code that is available for examination at compile time. This means that code

involving calls to library routines, to procedures defined in separately compiled modules, and to dynamically dis-

patched “virtual functions” in object-oriented languages, cannot be effectively optimized. Other optimizations,

e.g., to reduce the cost of address computations [35] requires information not available at link time.

A possible solution is to carry out program optimization when the entire program—library calls and all—is
available for inspection: that is, at link time. While this makes it possible to address the shortcomings of the

traditional compilation model, it gives rise to its own problems, for example:

– Machine code usually has much less semantic information than source code, which makes it much more

difficult to discover control flow or data flow information (as an example, even for simple first-order pro-

grams, determining the extent of a jump table in an executable file, and hence the possible targets of the
code derived from a case or switch statement, can be difficult when dealing with executables; at the

source level, by contrast, the corresponding problem is straightforward).

– Compiler analyses are typically carried out on representations of source programs in terms of source lan-
guage constructs, disregarding“nasty” features such as pointer arithmetic and out-of-boundsarray accesses.

At the level of executable code, on the other hand, all we have are the nasty features. Nontrivial pointer

arithmetic is ubiquitous, both for ordinary address computations and for manipulating tagged pointers. If

the number of arguments to a function is large enough, some of the arguments may have to be passed on the

stack. In such a case, the arguments passed on the stack will typically reside at the top of the caller’s stack
frame, and the callee will “reach into” the caller’s frame to access them: this is nothingbut an out-of-bounds

array reference.

– Executable programs tend to be significantly larger than the source programs they were derived from. Cou-
pled with the lack of semantic information present in these programs, this means that sophisticated analyses

that are practical at the source level may be overly expensive at the level of executable code because of their

time or space requirements.

This paper describes such an optimizer that we have built for the Alpha architecture. Our system, which we call

alto (“a link-time optimizer”), reads in an executable file produced by the linker (we currently support DEC
UNIX ECOFF binaries; a version for Elf binaries under Linux has been developed and is currently being tested),

as well as execution profile information (optional),1 carries out various analyses and optimizations, and produces

another executable file. Experiments indicate that even though it currently implements only relatively simple

analyses—for example, checks for pointer aliasing are only implemented in the most rudimentary and conserva-

tive way—the performance of the code generated by the system is considerably better than that generated by the
om link-time optimizer [34] supplied by DEC.

The remainder of the paper is organized as follows: Section 2 describes the overall organization ofalto. Sec-

tion 3 discusses how control flow analysis is carried out. Section 4 describes the analyses carried out by alto,

Section 5 describes the optimizations that are performed, and Section 6 gives performance results. Section 7 sum-

marizes work related to ours. Finally, Section 8 concludes.

1Alto can use either basic block profiles, generated using the pixie tool, or basic block and edge profiles that it can itself generate; we are

currently extending the system to also generate value profiles [5] at specific points of interest.

1

2 System Organization

The execution of alto can be divided into five phases. In the first phase, an executable file (containing relocation

information for its objects) is read in, and an initial, somewhat conservative, inter-procedural control flow graph is

constructed. In the second phase, a suite of analyses and optimizations is then applied iteratively to the program.

The activities during this phase can be broadly divided into three categories:

Simplification : Program code is simplified in three ways: dead and unreachable code is eliminated; operations

are normalized, so that different ways of expressing the same operation (e.g., clearing a register) are rewrit-
ten, where possible, to use the same operation; and no-ops, typically inserted for scheduling and alignment

purposes, are eliminated to reduce clutter.

Analysis : A number of analyses are carried out during this phase, including register liveness analysis, constant

propagation, stack usage patterns, and jump table analysis.

Optimization : Optimizations carried out during this phase include standard compiler optimizations such as

peephole optimization, branch forwarding, copy propagation, and invariant code motion out of loops;

machine-level optimizations such as elimination of unnecessary register saves and restores at function call

boundaries; architecture-specific optimizations such as the use of conditional move instructions to simplify
control flow; as well as improvements to the control flow graph based on the results of jump table analysis.

This is followed by a function inlining phase. The fourth phase repeats the optimizations carried out in the second

phase to the code resulting from inlining. The final phase carries out profile-directed code layout [27], instruction

scheduling, and insertion of no-ops for alignment purposes, after which the code is written out.

3 Control Flow Analysis

Traditional compilers generally construct control flow graphs for individual functions, based on some intermediate

representation of the program. The determination of intra-procedural control flow is not too difficult; and since

an intermediate representation is used, there is no need to deal with machine-level idioms for control transfer. As

a result, the construction of a control flow graph is a fairly straightforward process [1].

Things are somewhat more complex at link time because machine code is harder to decompile. The algorithm
used by alto to construct a control flow graph for an input program is as follows:

1. The start address of the program appears at a fixed location within the header of the file (this location may

be different for different file formats). Using this as a starting point, the “standard” algorithm [1] is used

to identify leaders and basic blocks, as well as function entry blocks. The relocation information of the

executable is used to identify additional leaders which would otherwise not be detected (eg. jump table

targets) and those basic blocks are marked relocatable. At this stage alto makes two assumptions: (i)

that each function has a single entry block; and (ii) that all of the basic blocks of a function are laid out

contiguously. If the first assumption turns out to be incorrect, the flow graph is “repaired” at a later stage;

if the second assumption does not hold, the control flow graph constructed by alto may contain (safe)

imprecisions, and as a result its optimizations may not be as effective as they could have been.

2. Edges are added to the flow graph. Whenever an exact determination of the target of a control transfer is

not possible, alto estimates the set of possible targets conservatively, using a special node Bunknown and

a special function Funknown that are associated with the worst case data flow assumptions (i.e., that they
use all registers, define all registers, etc.). Any basic block whose start address is marked as relocatable

is considered to be a potential target for a jump instruction with unresolved target, and has an edge to it

from Bunknown ; any function whose entry point is marked as relocatable is considered to be potentially a

target of an indirect function call, and has a call edge to it from Funknown. Any indirect function call (i.e.,

2

using the jsr instruction) is considered to call Funknown while other indirect jumps are considered to jump

to Bunknown .

3. Inter-procedural constant propagation is carried out on the resulting control flow graph, and the results used

to determine addresses being loaded into registers. This information, in turn, is used to resolve the targets of

indirect jumps and function calls: where such targets can be resolved unambiguously, the edge to Funknown

or Bunknown is replaced by an edge to the appropriate target.

4. The assumption thus far has been that a function call returns to its caller, at the instruction immediately after

the call instruction. At the level of executable code, this assumption can be violated in two ways. The first

involves escaping branches, i.e., ordinary (i.e., non-function-call) jumps from one function into another:

this can happen either because of tail call optimization, or because of code sharing in hand-writtenassembly

code that is found in, for example, some numerical libraries. The second involves nonlocal control transfers
via functions such as setjmp and longjmp. Each of these cases is handled by the insertion of additional

control flow edges, which we call compensation edges, into the control flow graph: in the former case,

escaping edges from a function f to a function g result in a single compensation edge from the exit node of

g to the exit node of f ; in the latter case, a function containing a setjmp has an edge from Funknown to its

exit node, while a function containing a longjmp has a compensation edge from its exit node to Funknown .

The effect of these compensation edges is to force the various dataflow analyses to safely approximate the
control flow effects of these constructs.

5. Finally, alto attempts to resolve indirect jumps through jump tables, which arise from case or switch

statements. This is done as part of the optimizations mentioned at the beginning of this section. These

optimizations can simplify the control and/or data flow enough to allow the extent of the jump table to be

determined. The essential idea is to use constant propagation (Section 4.1) to identify the start address of

the jump table, and the bounds check instruction(s) to determine the extent of the jump table. The edge
from the indirect jump toBunknown is then replaced by a set of edges, one for each entry in the jump table. If

all of the indirect jumps within a function can be resolved in this way, any remaining edges from Bunknown

to basic blocks within that function are deleted.

4 Program Analysis

Once the flow graph has been constructed for a program, it is subjected to various dataflow analyses, the most

important of which are described here.

4.1 Interprocedural Constant Propagation

There are generally more opportunities for interprocedural constant propagation at link time than at compile time.

There are two reasons for this: first, the entire program, including all the library routines, is available for inspec-
tion; and second, at link time it is possible to detect and deal with architecture-specific computations that are not

visible at the intermediate code representation level typically used by compilers for most optimizations. An ex-

ample of the latter case is the computation of the gp register on the Alpha processor: the value of this register

is generally recomputed at the entry to each function as well as on return from every function call, but in many

cases the recomputation is unnecessary and can be eliminated by propagating the value of the register through a

program. It should be noted that this optimization cannot be carried out at compile time since the value of gp is
only determined at link time.

The analysis used in alto is essentially a standard iterative constant propagation, limited to registers but car-

ried out across the control flow graph of the entire program. This has the effect of communicating information

about constant arguments from a calling procedure to the callee. To improve precision, alto attempts to deter-

mine the registers saved on entry to a function and restored at the exit from it: if a register r that is saved and

3

Program No. of instructions Evaluated/Total

Total Evaluated

compress 20707 3140 0.152

gcc 353002 67352 0.191

go 83929 14661 0.175

ijpeg 62639 7470 0.119

li 40832 7464 0.183

m88ksim 53498 10576 0.198

perl 107229 20920 0.195

vortex 155030 39204 0.253

Geometric Mean: 0.180

Table 1: Efficacy of Interprocedural Constant Propagation

restored by a function in this manner contains a constant c just before the function is called, then r is inferred to

contain the value c on return from the call.2

The results of constant propagation, after all optimizations have been carried out, are shown in Table 1. The

column labelled “Total” gives the (static counts for) the total number of instructions in each program (after un-

reachable code elimination—see Section 5.1), while the column labelled “Evaluated” gives the number of instruc-
tions whose operands and result could be determined at link time. It can be seen that, on the average, it is possible

to evaluate about 18% of the instructions of a program at link time. However, this does not mean that these 18%

of the instructions in a program can be removed by alto, since very often the instructions whose outcome can

be evaluated ahead of time represent address computations for accessing arrays or records. This information can,

nevertheless, be used to advantage in many cases, e.g., by replacing register operands by immediate operands.

As shown in Table 2, this analysis has a profound impact on the performance of the generated code. For ex-
ample, the SPEC-95 benchmarks li, m88ksim, perl, and vortex suffer slowdowns of 15–20% when this analysis

is turned off. The reason for this impact, in great part, is that many control and data flow analyses rely on the

knowledge of constant addresses computed in the program. For example, the code generated by the compiler for

a function call typically first loads the address of the called function into a register, then uses a jsr instruction

to jump indirectly through that register. If constant propagation can be used to determine that the address being
loaded is a fixed value, and the callee is not too far away, the indirect function call can be replaced by a direct

call using a bsr instruction: this is not only cheaper, but also vital for the construction of the inter-procedural

control flow graph of the program and for other optimizations such as inlining. Another example of the use of

constant address information involves the identification of possible targets of indirect jumps through jump tables:

unless this can be done, an indirect jump must be assumed as being capable of jumping to any basic block of
a function,3 which can significantly hamper optimizations. Finally, knowledge of constant addresses is useful

for optimizations such as the removal of unnecessary memory references (Section 5.3) and strength reduction in

constant computations (Section 5.2).

4.2 Interprocedural Liveness Analysis

Interprocedural dataflow analyses can be either context-insensitive or context-sensitive. Context-insensitive anal-
yses simply combine the control flow graphs for individual procedures into a single large graph and analyze this

2Unfortunately, we cannot rely on the calling conventions being observed: hand-written assembly code in libraries does not always obey
such conventions, and compilers may ignore them when doing interprocedural register allocation.

3More precisely, any basic block that is marked as “relocatable.”

4

Program Execution Time (sec) Improvement

without analysis with analysis (%)

compress 280.21 259.46 0.926

gcc 248.72 229.74 0.924

go 341.19 304.35 0.892

ijpeg 333.29 328.90 0.987

li 293.15 248.62 0.848

m88ksim 267.89 210.98 0.788

perl 216.64 181.77 0.839

vortex 391.47 312.55 0.798

Table 2: Performance impact of interprocedural constant propagation

using standard intra-procedural techniques, without keeping track of which return edges correspond to which call

edges. This has the advantages of simplicity and efficiency: nothing special needs to be done to handle inter-

procedural control flow, and a procedure does not have to be re-analyzed for its various call-sites [2, 3, 13, 29].

The problem is that such analyses can suffer from a loss of precision because they can explore execution paths
containing call/return pairs that do not correspond to each other and therefore cannot occur in any execution of

the program. Context-sensitive analyses, by contrast, avoid this problem by maintaining information about which

return edges correspond to which call sites, and propagating information only along realizable call/return paths

[14, 25, 38]. The price paid for this improvement in precision is an increase in the cost of analysis.

Alto implements a relatively straightforward interprocedural liveness analyses [1], restricted to registers, and
extended to deal with idiosyncracies of the Alpha instruction set. For example, the call pal instruction, which

acts as the interface with the host operating system, has to be handled specially since the registers that may be used

as through this instruction are not visible as explicit operands of the instruction: our implementation currently

implements this using the node Bunknown mentioned in Section 3. The conditional move instruction also requires

special attention as the destination register has to be considered as a source register as well. The remainder of

this section gives a high-level overview of our liveness analysis: details of the dataflow equations are given in the
Appendix.

In order to propagate dataflow information along realizable call/return paths only, alto computes summary

information for each function, and models the effect of function calls using these summaries. Given a call site,

consisting of a call node nc and a return node nr, for a call to a function f , the effects of the function call on liveness

information are summarized via two pieces of information:

1. mayUse[f], which gives the registers that may be used by f . A register r may be used by f if there is a
realizable path from the entry node of f to a use of r without an intervening definition of r. mayUse(f)

hence describes the set of registers that are always live at the entry to f independent of the calling context,

and which are therefore necessarily live at the call node nc.

2. byPass[f]. The set of registers which, if live at nr, will also be live at nc.

Our analysis proceeds in three phases. The first two phases compute summary information for functions, i.e.,

their mayUse and byPass sets; the third phase then uses this information to do the actual liveness computation.

While the first two phases can be carried out in parallel, doing them sequentially reduces the amount of space used,

though possibly at the cost of increased execution time. Our implementation carries out the phases sequentially
in order to conserve space.

5

Load Instructions Executed (�106
)

Program Trivial Context-insensitive Context-sensitive Triv/C-Ins Triv/C-Sens

(Triv) (C-Ins) (C-Sens)

compress 12.069 12.069 11.706 1.000 0.970

gcc 11.750 11.464 11.160 0.976 0.950

go 19.706 18.850 17.897 0.957 0.908

ijpeg 20.116 20.000 19.955 0.994 0.991

li 18.102 17.948 17.628 0.991 0.974

m88ksim 15.506 15.028 14.469 0.967 0.933

perl 12.616 12.267 11.930 0.972 0.946

vortex 24.504 24.048 23.326 0.981 0.952

Table 3: Effect of Liveness Analysis on Load Instructions Executed

It turns out that even context-sensitive liveness analyses may nevertheless be overly conservative if they are

not careful in handling register saves and restores at function call boundaries. Consider a function that saves the

contents of a register, then restores the register before returning. A register r that is saved in this manner will

appear as an operand of a store instruction, and therefore appear to be used by the function; in the subsequent
restore operation, register r will appear as the destination of aload instruction, and therefore appear to be defined

by the function. A straightforward analysis will therefore infer that r is used by the function before it is defined,

and this will cause r to be inferred as live at every call site for f . To handle this problem, alto attempts to

determine, for each function, the set of registers it saves and restores. 4 If the set of callee save registers of function

f , save[f], can be determined we can use it to make the analysis somewhat less conservative by removing this set

from mayUse[f] and adding it to byPass[f] whenever those values are updated during the fixpoint computation.
Ultimately, the utilityof various analyses should be measured by the extent to which they enable optimizations

to be carried out. In particular, analyses that attain improved precision at the cost of increased complexity should

be justified by the additional code optimizations that become possible as a result of the improvement in precision.

Table 3 compares context-insensitive and context-sensitive versions of our interprocedural register liveness anal-

yses with respect to the reduction in the number of load and store instructions executed; the column marked Trivial
corresponds to the base case, i.e., where no liveness information is available. It can be seen that our liveness anal-

ysis leads to a reduction in the number of loads from memory by about 2.5–5%, with the go program achieving a

reduction of over 9%. Compared to a simple context-insensitive analysis, the context-sensitive liveness analysis

yields an additional improvement of about 2.5–3%.

5 Optimizations

This section describes some of the more important optimizations implemented within alto. To maintain con-

tinuity, with each such optimization we discuss its performance impact. The performance impact of a particular

optimization is measured by comparing the execution speeds attained when all optimizations are turned on against

that attained when only that optimization is turned off. The details of the methodologyused for these experiments,
including the benchmarks, compiler options, and hardware processor used, are given in Section 6.

4We do not make a priori assumptions that a program will necessarily respect the calling conventionswith regard to callee-saved registers:
this is safe, though possibly conservative.

6

Program Original Unreachable Unreachable/Original

(no. of instrs) (no. of instrs)

compress 25097 4391 0.175

gcc 367760 14759 0.040

go 89346 5418 0.061

ijpeg 74307 11669 0.157

li 46117 5286 0.115

m88ksim 59656 6159 0.103

perl 114782 7554 0.066

vortex 186655 31626 0.169

Geometric Mean: 0.098

Table 4: Experimental Results: Unreachable Code Elimination

5.1 Unreachable Code Elimination

In compilers, unreachable code—i.e., code that will never be executed—typically arises due to user constructs

(such as debugging statements that are turned off by setting a flag) or as a result of other optimizations, and is

usually detected and eliminated using intra-procedural analysis. By contrast, unreachable code that is detected

at link time usually has very different origins: most of it is due to the inclusion of irrelevant library routines,

together with some code that can be identified as unreachable due to the propagation of actual parameter values
into a function. In either case, link-time identification of unreachable code is fundamentally interprocedural in

nature.

Even though unreachable code can never be executed, its elimination is desirable for a number of reasons:

1. It reduces the amount of code that the link-time optimizer needs to process, and can lead to significant im-

provements in the amount of time and memory used.

2. It can enable optimizations that otherwise might not have been enabled, such as bringing two basic block

closer together, allowing for more efficient control transfer instructions to be used, or allowing for a more
precise liveness analysis which might trigger several other optimizations.

3. The elimination of unreachable code can reduce the amount of “cache pollution” by unreachable code that
is loaded into the cache when nearby reachable code is executed. This, in turn, can improve the overall

cache behavior of the program.

4. The elimination of unreachable code simplifies the processing of extended basic blocks (i.e., a sequence of

instructionswhere incoming control flow edges are allowed only at the top, but where there may be outgoing

control flow edges at intermediate points in the sequence), since it makes it unnecessary to check for certain

situations, such as an unreachable cycle of basic blocks, that could otherwise prove to be problematic.

Unreachable code analysis involves a straightforward depth-first traversal of the control flow graph, and is per-
formed as soon as the control flow graph of the program has been computed. Initially, all basic blocks are marked

as dead, and then basic blocks are marked reachable if they can be reached by another block that is reachable. The

entry point of the program is always reachable. This analysis also makes use of context information as a basic

block that follows a function call will be marked reachable if the corresponding call site is reachable, rather than

the function that is called as the function could already be reachable due to a call from another call site.
The amount of unreachable code detected in our benchmarks is shown in Table 4. These numbers do not

include no-ops inserted into reachable basic blocks for alignment and instruction scheduling purposes. It can be

7

Program Execution Time (sec) Improvement

without optimization with optimization (%)

compress 269.54 259.46 0.963

gcc 232.24 229.74 0.989

go 304.77 304.35 0.999

ijpeg 329.44 328.90 0.998

li 260.74 248.62 0.954

m88ksim 233.38 210.98 0.904

perl 192.72 181.77 0.943

vortex 338.63 312.55 0.923

Table 5: Performance impact of constant computation optimization

seen that the amount of unreachable code is quite significant: in many programs, it exceeds 10%, and in one case,
the vortex program, it is almost 17%. On the average, about 10% of the instructions in our benchmarks were

found to be unreachable. This is somewhat higher than the results of Srivastava, whose estimate of the amount

of unreachable code in C and Fortran programs was about 4%–6% [33].

For our benchmarks, the primary impact of unreachable code elimination is on code size: the measured impact

of this optimization on execution speed is small.

5.2 Optimization of Constant Value Computations

If it is possible to determine, from constant propagation/folding, that a value being computed or loaded into a

register is a constant, alto attempts to find a cheaper instruction to compute the constant into that register. (This

optimization could be generalized to cheap instruction sequences to replace high latency operations, such as mul-

tiplication.) The simplest case of this optimization involves computing the values of constants using specific reg-

isters whose values are known at each program point, namely, register $31, whose value is always 0, and the
global pointer register gp, whose value at any program point is known at link time. If the (signed) constant k can

be represented with 16 bits, the instruction to compute that constant into a register r is replaced by the instruction

‘lda r, k($31)’. 5 Similarly, if the difference between the constant k and the value of thegp register is repre-

sentable as a signed 16 bit integer, we can do the same thing using gp as the base register. The basic optimization

is described by Srivastava and Wall [35]; in alto it is generalized so that a constant can be computed from a
known value in any register, not just $31 or gp.

Care most be taken to assure the constants involved are not addresses with the code sections of the executable.

Sincealto changes the code section, addresses therein are almost certain to chnage: such constants are therefore

excluded from this optimization.

As an example of this optimization, consider the following C statement, where a, b and c are global variables
of type long, with addresses 0x1400021558, 0x1400021560, and 0x1400021568 respectively:

a = b + c;

The code generated for this would typically be as follows:

5An instruction lda ra, m(rb) computes into register ra the result of adding m to the contents of rb, where m is a signed 16-bit value.

8

(1) ldq $r1, 16($29) (1) ldq $r1, 16($29) (1) ldq $r1, 16($29)

(2) ldq $r2, 96($29) (20

) lda $r2, 8(r1)

(3) ldq $r3, 32($29) (30

) lda $r3, 16(r1)

(4) ldq $r4, 0($r1) (4) ldq $r4, 0($r1) (4) ldq $r4, 0($r1)

(5) ldq $r5, 0($r2) (50

) ldq $r5, 8($r1) (50

) ldq $r5, 8($r1)

(6) addq $r4, $r5, $r6 (6) addq $r4, $r5, $r6 (6) addq $r4, $r5, $r6

(7) stq $r6, 0($r3) (70

) stq $r6, 16($r1) (70

) stq $r6, 16($r1)

(a) original code (b) initial optimized code (c) final optimized code

In the original code, instructions (1)� (3) load the addresses of the variables from the global address table, using

the global pointer register$gp to index into this table. Instructions (4)�(7) implement the actual addition. Alto

is able to determine the addresses loaded into registers r1, r2 and r3, since it it is able to determine the contents

of $gp, and the global address table is a read only area of memory. This allows constant value optimization of

instructions (2) and (3), which replaces the address loads with cheaper lda instructions. Instructions (5) and 7) are
also modified, to use r1 as the base register. The resulting code is shown in the column labelled “initial optimized

code.” Note that registers r2 and r3 are no longer used in this code: assuming that they are now dead at the end

of this code fragment, instructions (20

) and (30

) will subsequently be deleted, resulting in the final optimized code

sequence shown.

Alto also tries to optimize the use of constants. Some Alpha instructions allow the use of a small immediate

value in place of the second operand register. Alto attempts to exploit this feature whenver possible. If only the
first operand register is determined to be constant, alto will try to swap the operands of the instruction. This is

trivial if the instruction is commutative in its operands, but requires more serious analysis and modifications if it

is not.

The performance impact of this optimization is illustrated in Table 5. The programs that benefit the most from

this optimization are compress, li, m88ksim, perl, and vortex, with improvements ranging from 3.7% to 9.6%.

5.3 Elimination of Unnecessary Memory Operations

It is sometimes possible to identify load (and, less frequently, store) operations as unnecessary at link time,

and eliminate such operations. Unnecessary loads and stores can arise for a variety of reasons: a variable

may not have been kept in a register by the compiler because it is a global, or because the compiler was unable

to resolve aliasing adequately, or because there were not enough free registers available to the compiler. At link

time, accesses to globals from different modules become evident, making it possible to keep them in registers

[37]; inlining across module boundaries, and of library routines, may make it possible to resolve aliasing beyond
what can be done at compile time; and a link time optimizer may be able to scavenge registers that can be used

to hold values that were spilled to memory by the compiler. In alto, three distinct optimizations are used to

eliminate unnecessary memory operations:

1. Suppose that an instruction I1 stores a register r1 to memory location l (or loads r1 from memory location l),

and is followed soon after by an instruction I2 that loads from location l into register r2. If it can be shown

that that location l is not modified between these two instructions, then load forwarding attempts to delete

instruction I2 and replace it with a register move from r1 to r2. It may happen that register r1 is overwritten

between instructions I1 and I2: in this case, alto tries to find a free register r3 (which may or may not be
the same as r2) that can be used to hold the value in r1.

If the instruction I1 can now be shown to be dead, it can be deleted. In our current implementation, this hap-

pens less frequently for store than for load operations because liveness analysis for memory locations
is very limited.

2. Memory accesses can result from the saving and restoring of callee-save registers at function boundaries.

Some of these accesses may be unnecessary, either because the registers saved and restored in this man-

9

Program Execution Time (sec)

without optimization with optimization Ratio

compress 259.10 259.46 1.001

gcc 236.16 229.74 0.973

go 300.69 304.35 1.012

ijpeg 327.19 328.90 1.005

li 253.90 248.62 0.979

m88ksim 210.38 210.98 1.003

perl 184.35 181.77 0.986

vortex 313.78 312.55 0.996

Table 6: Performance impact of memory operation elimination

ner are not touched along all execution paths through a function, or because the code that used those reg-

isters became unreachable, e.g., because the outcome of a conditional branch could be predicted as a re-

sult of inlining or interprocedural constant propagation, and therefore was deleted. To reduce the num-

ber of such unnecessary memory accesses, alto uses a variation on shrink-wrapping [4] to move register
save/restore actions away from execution paths that don’t need them. The difference between our imple-

mentation of shrink-wrapping, and that originally proposed by Chow [4], is that we don’t allow any exe-

cution path through a function to contain more than one each of save and restore actions. Apart from this,

if a function saves and subsequently restores a callee-save register r but does not change r, the instructions

to save and restore r are eliminated.

The performance impact of this optimization is illustrated in Table 6. The programs that benefit the most from

this optimization are gcc and li, with improvements in the neighborhood of 2–2.5%.

5.4 Partial Dead Code Removal

The code generated for a program may contain instructions that are partially dead, i.e., whose results may not be

needed along some execution paths. Alto attempts to remove partially dead code where feasible. The algorithm

used is as follows. Let B be a basic block ending in a conditional branch, such that the successor of B if the

branch is taken is BT and the successor if it is not taken is BF . Let B contain an instruction I that has no side
effects (e.g., a system call or a store to memory), and does not have a dependence to any later instruction in B,

where an instruction i has a dependence to an instruction j if one of the following holds:

(1) i reads a register or memory location that may be defined by j; or

(2) i defines a register or memory location that may be read or defined by j.

In this case, if the register defined by instruction I is not live at entry to one of the successors of B, it is moved

into the other successor. That is, if I is not live on entry to BT , it is moved from B into BF , and vice versa.

This transformation can later be undone by the instruction scheduler, which works on extended basic blocks

and may decide to move the instruction back into B if this results in a better schedule.

The performance impact of this optimization is shown in Table 7. The greatest impact of this optimization is
on perl, whose speed improves by 3%.

10

Program Execution Time (sec)

without optimization with optimization Ratio

compress 261.16 259.46 0.993

gcc 229.20 229.74 1.002

go 310.07 304.35 0.982

ijpeg 327.91 328.90 1.003

li 248.78 248.62 0.999

m88ksim 213.60 210.98 0.988

perl 187.45 181.77 0.970

vortex 313.14 312.55 0.998

Table 7: Performance impact of partial dead code elimination

5.5 Function Inlining

The motivations for carrying out inlining within alto are three-fold. The first is to eliminate the function

call/return overhead. Usually, inlining a function call gets rid of 2–6 instructions (the call and return instructions,

load and store instructions for saving and restoring the return address at the callee, and allocating and deallocating
the callee’s stack frame; a leaf function, i.e., one that does not call any other functions, will not need to save and

restore its return address, and may not have to allocate a stack frame). Additionally, register reassignment can

be used to reduce the overhead of saving and restoring registers across call boundaries. The second is to exploit

callsite-specific information in the callee: for example, aliasing relationships between the caller’s code and the

callee’s code may become easier to determine after inlining, when they would refer to the same stack frame rather
than two different frames (see Section 5.3). The final reason is to improve branch prediction and instruction cache

behavior using profile-directed code layout (cf. Section 5.6). Code growth due to inlining is controlled in alto

as follows: a function is inlined into a call site only if at least one of the following hold:

(i) the callee is “small enough” that the calling and return sequences are longer than its body;

(ii) the call site under consideration is the only call site for that function; or

(iii) the call site is “hot,” i.e., has a sufficiently high execution count, and (alto’s estimate of) the cache foot-

print of the resulting code does not exceed the size of the instruction cache.

The reason for the last condition is that inlining without attention to cache behavior can have a significant neg-

ative effect on program performance. To address this problem, a hot call site C to a function f is considered for

inlining by alto if it satisfies the following criteria (here, a critical subgraph of a control flow graph refers to a
subgraph consisting of the hot basic blocks, together with enough other blocks and edges to permit a path, within

this subgraph, from the entry node to each hot block and thence to the exit node):

1. for each loop L enclosing the call site C, the number of instructions in the critical basic blocks of L, together

with the instructions in the critical subgraph of the callee f , should not exceed the capacity of the level-1

instruction cache (in our case, 8 Kbytes, i.e., 2048 instructions); and

2. if C is not within any loop, then the total number of instructions in the critical subgraphs of the caller and

the callee should not exceed the capacity of the level-1 instruction cache.

More sophisticated strategies are possible [26], but these have not been implemented within alto at this time.

11

Program Number of Instructions

without optimization with optimization Ratio

compress 21408 21632 1.010

gcc 317648 318784 1.004

go 78112 77760 0.995

ijpeg 60016 59936 0.999

li 37856 37952 1.003

m88ksim 50720 50912 1.004

perl 98864 100560 1.017

vortex 130032 129840 0.999

Table 8: Code growth due to inlining

Inlining through indirect function calls, e.g., via function pointers in C or due to higher order functions in

languages such as Scheme, is generally considered problematic. Traditional C compilers usually do not inline

functions that are called indirectly at a call site. Some Scheme compilers deal with higher order functions using

sophisticated control flow analyses [22] that are, we believe, too expensive to be practical at the level of machine
code. Instead, we use a simple profile-guided inlining technique we call guarded inlining to achieve similar re-

sults. Suppose we have an indirect function call whose target we are unable to resolve. We use value profiling [5]

to identify the most frequent target address at the call: suppose that this is an address addr0, corresponding to a

function f . With guarded inlining, we test whether the target address is addr0: if this is the case, execution drops

through into the inlined code for f ; otherwise, an indirect function call occurs, as before. It’s not too difficult to
see, in fact, that in general the transformation can be adapted to any indirect branch. This mechanism allows us to

get the benefits of inliningeven for call sites that can, in fact, have multiple possible targets, in contrast to schemes

that require control flow analysis to identify a unique target for a call site before inlining can take place [22].

In the actual low-level realization of this optimization, we take advantage of the facts that (i) the DEC Alpha

uses the global register gp to compute global addresses; and (ii) at link time, the actual value of the gp register

at any point in the program is known, which means that alto can determine the offset δ between the value of
gp at the indirect function call and the desired address addr0. Further, in the code prior to this optimization, the

return address register $ra cannot be live at the point immediately before the call (since the jsr instruction will

overwrite it), which means we can load addr0 into this register and carry out the comparison, resulting in the

following instruction sequence: 6

ldq r0, memloc

lda $ra, δ(gp) # $ra := gp+δ � addr0

subq $ra, r0, $ra # $ra := addr0�r0

bne $ra, : : :

h inlined body of function f i

The overhead incurred in testing for the common case is, therefore, 3–4 (relatively cheap) instructions. Moreover,

in order for an indirect function call to be eligible for inlining, it will have to have a sufficiently high execution

count (see above): often, this will be a result of the indirect call being within a loop. In this case, if there are
any callee-saved registers available, the amortized cost of guarded inlining can be reduced further by loading the

address addr0 into a callee-saved register outside the loop, resulting in an overhead of 2 instructions per loop

iteration. Finally, if the indirect function call is within a loop and we can determine that the target address is

6If δ� 216, an additional ldah instruction is needed, since the lda instruction shown can set only the low 16 bits of a register.

12

Program Execution Time (sec)

without optimization with optimization Ratio

compress 267.87 259.46 0.969

gcc 230.27 229.74 0.998

go 306.32 304.35 0.994

ijpeg 327.29 328.90 1.005

li 254.10 248.62 0.978

m88ksim 220.43 210.98 0.957

perl 176.12 181.77 1.032

vortex 314.01 312.55 0.995

Table 9: Performance improvements due to inlining

invariant within the loop, we create two versions of the loop: one containing a direct function call to the most

frequent target (which subsequently gets inlined at this call site), the other the original indirect function call, and

choose among the versions by testing the target address, as discussed above, outside the loop.

The notion of guarded inlining is conceptually very similar to a technique for optimizing dynamically dis-
patched function calls in object-oriented languages called “receiver class prediction” [20]. The transformation

we describe is somewhat more general, for two reasons. First, it does not rely on specific language features such

as an inheritance hierarchy, and so is applicable to any language. More importantly, it can be adapted to any indi-

rect jump, not just indirect function calls. For example, in systems that support tail call optimization, it can be used

to carry out “inlining” at function return points—recall that in such systems the target of a function return may
not be obvious due to tail call optimization, since the callee may not return to its caller—and inline the function

being returned to into the body of the function that is returning.

The extent of code growth due to inlining is shown in Table 9. Inlining causes only a modest increase in code

size, in most cases in th neighborhood of 1%, and in a few cases leads to small decreases in code size.

The performance improvements resulting from inlining are shown in Table 8. The greatest benefits are ob-

served for compress, li, and m88ksim, with improvements ranging from 2.2% to 4.3%. On the other hand, inlining
leads to a slowdown of 3% for perl; presumably due to cache effects.

5.6 Code Layout

When alto creates the interprocedural control flow graph for a program, all unconditional branches are elimi-

nated. The responsibity of the code layout phase is to arrange the basic blocks in the program into a linear se-

quence, reintroducing unconditional branches where necessary. There are three important issues that should be
considered when determining the linear arrangement of basic blocks:

1. Branch mispredict penalties : During the execution of a conditional branch, instructions are fetched from

memory before the branch target has been determined in order to keep the instruction pipeline full and hide

memory latencies. In order to do this, the CPU “predicts”—i.e., guesses—the target of the branch. If the

guess is wrong, the instructions in the pipeline fetched from the incorrectly predicted target have to be dis-

carded, and instructions from the actual target have to be fetched. The execution cost associated with an

incorrect prediction is referred to as a branch mispredict penalty.

Older processors often use static branch prediction schemes, e.g., where backward branches are predicted

as taken and forward branches as not taken. For such processors the benefit of a careful basic block layout is

obvious. More modern CPUs, such as the Alpha 21164 used in our experiments, use history-based dynamic

13

Program Execution Time (sec)

without profiling information with profiling information Ratio

compress 261.48 259.46 0.992

gcc 276.82 229.74 0.830

go 329.98 304.35 0.922

ijpeg 329.17 328.90 0.999

li 257.71 248.62 0.965

m88ksim 254.59 210.98 0.829

perl 212.72 181.77 0.854

vortex 329.14 312.55 0.950

Table 10: Performance improvements due to profile guided basic block layout

branch prediction schemes in the hardware, and result in code where branch misprediction penalties are

much less sensitive to code layout. For this reason, alto does not consider this issue in determining code

layout.

2. Control flow change penalty : Since instruction fetching precedes instruction decoding in the instruction

pipeline, a change in control flow causes the fetch performed while decoding the instruction causing the
control flow change to be wasted, thereby incurring a small performance penalty. Note that this is different

from the branch mispredict penalty discussed above, since this penalty is incurred even for an unconditional

branch, which can always be correctly predicted. A change in control flow also increases the possibility of

a miss in the instruction cache.

This suggests the following guidelines for code layout: unconditional branches should be avoided where

possible, and conditional branches should be oriented so that the fall-through path is more likely than the

branch-taken path.

3. Instruction cache conflicts : Because modern CPUs are significantly faster than memory, delivering instruc-

tions to them is a major bottle neck. A high hit-rate of the instruction cache is therefore essential. Primary

instructioncaches typicallyare relatively small in size and have low associativity, in order to improve speed.
This makes it advantageous to lay out the basic blocks in a program in such a way that frequently executed

blocks are positioned close to each other, since this is less likely to lead to cache conflicts [27].

Alto implements two code layout schemes, one that exploits profiling information while the other does not. If no

execution profile is available, alto attempts to minimize the number of uncoditional branches while maintaining

the original code layout in the input program as closely as possible. If profiling information is available, our

primary goal is to reduce cache conflicts as far as possible. Given a value φ in the interval (0,1], we determine the
largest execution frequency threshold N such that, the hot basic blocks in a program are defined to be the smallest

set of blocks that together account for at least the fraction φ of the total number of instructions executed by the

program (as indicated by its basic block execution profile), and contains at least as many instructionsas will fit into

the instruction cache For example, given φ = 0:95, the hot basic blocks of a program consist of those that allow

us to account for at least 95% of the instructions executed at runtime. If those basic blocks fill up the instruction

cache we have found N otherwise we will go beyond the 95% until we are able to fill the instruction cache.
The code layout algorithm proceeds by grouping the basic blocks in a program into three sets: The hot set

consists of the hot blocks in the program (φ = 0:66); the zero set contains all the basic blocks that were never

executed; and The cold set contains the remaining basic blocks. We then compute the layout seperately for each

14

Program Execution Time (sec)

without optimization with optimization Ratio

compress 262.41 259.46 0.989

gcc 239.27 229.74 0.960

go 309.74 304.35 0.983

ijpeg 330.31 328.90 0.996

li 262.71 248.62 0.946

m88ksim 230.78 210.98 0.914

perl 190.43 181.77 0.955

vortex 334.42 312.55 0.935

Table 11: Performance improvements due to scheduling

set and concatenate the three resulting layouts to obtain the overall program layout. Our layout algorithm follows

the (bottom-uppositioning)approach of Pettis and Hansen [27], with minor modifications to address the problems

identified by Calder and Grunwald [10]. Currently, alto does not carry out procedure placement.

The performance impact of profile-directed code layout, compared to code layout without the use of profile
data (which adheres closely to the layout of the original code), is shown in Table 10. Many programs can be seen

to benefit significantly from profile-directed code layout: the greatest benefits are obtained for gcc, m88ksim, and

perl, with improvements of around 17%.

5.7 Instruction Scheduling

Since the various optimizations effected by alto can significantly alter the instruction sequence executed by the

processor, an instruction rescheduling phase before regenerating the executable is desirable. This is especially true
since the Alpha 21164 processor can issue upto four instructions per cycle, provided that appropriate constraints

are met (e.g., not more than one instruction in such a group should try to access memory, access the same functional

unit, etc.). Because of this, it is possible that a plausible link-time code transformation, such as the deletion of a

no-op instruction, can alter the instruction sequence in such a way that opportunities for multiple instruction

issues are reduced dramatically, with a corresponding loss in performance. For these reasons, alto carries out
instruction scheduling after its optimizations have been carried out and the layout of code determined based on

execution profiles.

The instruction scheduler works on extended basic blocks—that is, a sequence of basic blocks that can be

entered only at the beginning, but where control may leave at intermediate points in the sequence—subject to

the restriction that the basic blocks constituting the extended basic block must be consecutive in the code layout.
Increasing the scope of the scheduler to handle extended basic blocks has two benefits:

1. The scheduler might choose to move instructionsover basic blocks boundaries if this improves the schedule.

This is especially useful for no-ops which have been introduced for basic block alignment purposes.

2. Basic blocks are not scheduled in isolation: inter-block dependencies are taken into account.

Since profile-directed code layout is carried out prior to scheduling, this achieves an effect very similar to trace

scheduling [17].

The performance impact of instruction scheduling is shown in Table 11. Several programs show performance
improvements exceeding 4%, with m88ksim showing the largest gain of over 8%.

15

Execution Time (sec)

Program Base Om Ifo+FB+Om alto Tom=Tbase Tifo=Tbase Talto=Tbase

(Tbase) (Tom) (Tifo) (Talto)

compress 282.49 276.14 272.49 259.46 0.978 0.965 0.918

gcc 270.12 232.96 229.52 229.74 0.862 0.850 0.851

go 340.32 301.38 300.70 304.35 0.886 0.884 0.894

ijpeg 337.63 329.95 333.57 328.90 0.977 0.988 0.974

li 315.08 292.44 289.36 248.62 0.928 0.918 0.789

m88ksim 325.78 255.44 231.63 210.98 0.784 0.711 0.648

perl 246.64 209.54 203.94 181.77 0.850 0.827 0.737

vortex 469.56 394.38 396.14 312.55 0.840 0.844 0.666

Geometric Mean: 0.886 0.869 0.802

Table 12: Performance results: C Programs

6 Performance Results

Previous sections have discussed the effects of specific analyses and optimizations implemented in alto. This

section presents the overall performance improvements attained using alto, and compares this with the per-
formance obtained using inter-file and profile-directed optimizations within the compiler together with link-time

optimization using the om link-time optimizer [34].

Because most of the development and testing of alto was carried out using C benchmarks, we wanted to

evaluate its effect on code generated from source programs in very different languages. To this end, we also tested

it on a set of Prolog and Scheme programs, whose low-level dynamic characteristics are considerably different
from those of C programs [12]. These are both dynamically typed languages, which means that, unlike C, there

is extensive low-level pointer arithmetic to add and remove “tag bits” that are used to attach type information to

pointers. Further, the presence of garbage collection induces a greater proportion of memory references in these

languages. The control flow characteristics of Scheme and Prolog programs can also be expected to be different

than those of C programs, due to the use of higher-order and/or call-cc constructs in Scheme and backtracking
in Prolog.

Our results are shown in Tables 12, 13 and 14. The timings were obtained on a lightly loaded DEC Alpha

workstation with a 300 MHz Alpha 21164 processor with a split primary direct mapped cache (8 Kbytes each of

instruction and data cache), 96 Kbytes of on-chip secondary cache, 2 Mbytes of off-chip backup cache, and 512

Mbytes of main memory, running Digital Unix 4.0. In each case, the execution time reported is the smallest time

of 15 runs.

6.1 C Programs

The benchmarks we used to test the effect ofalto on C programs were the eight programs in the SPEC-95 integer

benchmark suite; characteristics of these programs are given in Appendix B.1. The execution times reported are

for the SPEC reference inputs.

For processing by alto, the programs were compiled with the DEC C compiler V5.2-036 invoked as cc
-O4, with linker options to retain relocation information and to produce statically linked executables. The ex-

ecution times for these executables is given under the column labelled “Base” (Tbase). These executables were

instrumented using pixie and executed on the SPEC training inputs to obtain an execution profile that was pro-

vided to alto, which was invoked with default switches together with a flag to use this profile information. The

16

execution times of the executables produced by alto are reported in the column labelled alto (Talto). The col-

umn labelled Tbase=Talto gives the improvement obtained from using alto.

We also compared the performance improvements obtained using alto with those obtained using the OM

link-time optimizer from DEC [34]. For this, we obtained an execution profile for the base program usingpixie,
as described above, and then used the resulting profile to recompile each program, this time specifying that the

compiler should invoke OM, using the command

cc -O4 -om -WL,-om compress lita -WL,-om ireorg feedback,profile-input

-WL,-om dead code $(CFILES) -non shared -o om.out -lm

where CFILES is a list of all the C source files for the program. The execution times obtained with the resulting

executables are reported in the column labelled “Om” (Tom). The column labelled Tbase=Tom gives the improve-
ment obtained from using OM.

Finally, we measured the performance achievable using the existing capabilities for static optimization avail-

able under Digital Unix. For this, we compiled the programs at the same optimization level as before, but ad-

ditionally with profile-directed inter-file optimization and link-time optimization using OM [34]. For this, the

programs were compiled as follows:

1. First, the programs were compiled as

cc -O4 $(CFILES) -non shared -o orig.out -lm

where CFILES is a list of all the C source files for the program.

2. The resulting executable orig.out was instrumented with pixie and run on the SPEC training input
for the benchmark to produce an execution profile. A feedback file was then generated from this profile

using the command

prof -pixie -feedback opt.out.fbo orig.out

3. The source files were recompiled with profile-guided and inter-file optimization turned on, using the feed-

back file generated in the previous step:

cc -O4 -ifo -inline speed -feedback opt.out.fbo $(CFILES)

-non shared -o ifo fb.out -lm

The switch-ifo turns on inter-file optimization (this is the reason all the C files are specified together using
CFILES), and -inline speed instructs the compiler to inline routines to enhance execution speed.

4. The resulting executable ifo fb.out was again instrumented with pixie, using the SPEC training in-

puts.

5. The resulting execution profile was used to recompile the program a final time, this time with the OM link-

time optimizer turned on as well:

cc -O4 -ifo -inline speed -feedback opt.out.fbo

-om -WL,-om compress lita -WL,-om ireorg feedback,ifo fb.out

-WL,-om dead code $(CFILES) -non shared -o ifo fb om.out -lm

The reason it is necessary to regenerate the profile information for OM is that the feedback-directed opti-
mizations can change code addresses, rendering the original profile useless from the perspective of OM.

Notice that in this step, two distinct sets of profiles are being used: the feedback file opt.out.fbo, gen-

erated from the original profile obtained in step 2; and the profile for ifo fb.out, obtained for the exe-

cutable resulting from feedback-directed inter-file optimization in step 4.

17

Execution Time (sec)

Program Base Om Ifo+FB+Om alto Tom=Tbase Tifo=Tbase Talto=Tbase

(Tbase) (Tom) (Tifo) (Talto)

boyer 10.33 10.02 9.97 9.73 0.970 0.966 0.942

conform 8.44 7.67 7.68 7.92 0.909 0.910 0.939

dynamic 17.39 16.42 17.23 15.49 0.944 0.991 0.891

earley 11.86 11.97 12.13 10.51 1.009 1.023 0.886

graphs 4.55 4.37 4.38 4.03 0.959 0.961 0.884

lattice 27.11 24.19 24.01 22.92 0.892 0.886 0.845

matrix 22.96 23.67 23.91 20.22 1.031 1.041 0.880

nucleic 4.34 4.16 4.17 3.85 0.960 0.961 0.887

scheme 33.92 29.70 29.86 28.66 0.875 0.880 0.845

Geometric Mean: 0.949 0.956 0.888

(a) Gambit-C

Execution Time (sec)

Program Base Om Ifo+FB+Om alto Tom=Tbase Tifo=Tbase Talto=Tbase

(Tbase) (Tom) (Tifo) (Talto)

boyer 10.04 8.89 8.96 7.55 0.885 0.893 0.752

conform 3.81 3.24 3.26 3.04 0.850 0.855 0.797

dynamic 3.95 3.56 3.52 3.24 0.900 0.891 0.819

earley 8.52 8.00 7.90 7.17 0.939 0.927 0.841

graphs 11.98 10.74 10.79 10.21 0.896 0.901 0.852

lattice 18.50 16.06 16.69 16.55 0.868 0.902 0.894

matrix 21.51 19.27 19.35 17.89 0.896 0.899 0.832

nucleic 18.52 13.91 13.90 12.69 0.751 0.751 0.685

scheme 21.92 19.35 19.53 17.72 0.882 0.891 0.808

Geometric Mean: 0.873 0.877 0.807

(b) Bigloo

Table 13: Performance results: Scheme Programs

18

The execution times of the resulting executables are given in the column labelled “Ifo+FB+Om”7 (Tifo).

It can be seen, from Table 12, that for most of the programs tested, the executable obtained using alto is

faster than those obtained using OM and Ifo+FB+Om. In several cases, the difference in the improvements is

quite significant: for example, li gets an 8% improvement with both OM and Ifo+FB+Om, compared to a 21%
improvement withalto. Interestingly, we find that—with the exception of m88ksim and perl—the use of profile-

guided inter-file optimization within the compiler has very little additional effect on performance beyond what

is achieved using just OM; indeed, for two programs, namely, ijpeg and vortex, the executables obtained with

Ifo+FB+Om are slightly slower than those obtained using just OM. Overall, link-time optimization using OM

produces an average improvement of around 11%, and the use of profile-guided inter-file optimizations within
the compiler in addition to link-time optimization using OM yields an average improvement of about 13%; by

contrast, link-time optimization using alto produces an average improvement of just under 20%.

6.2 Scheme Programs

To evaluate alto on Scheme programs, we used two different optimizing Scheme compilers: Bigloo version

1.8, by Serrano [31], and Gambit-C version 3.0 by Feeley [15]. Our experiments were run using nine commonly

used Scheme benchmarks, whose characteristics are reported in Appendix B.2. We considered only compiled
systems, and restricted ourselves to compilers that translated Scheme programs to C code, because alto requires

relocation information to reconstruct the control flow graph from an executable program, which means that the

linker needs to be invoked with the appropriate flags that instruct it to not discard the relocation information;

systems that compiled to C seemed to offer the simplest way to communicate the appropriate flags to the linker.

The Bigloo compiler was invoked with the options -O4 -unsafe -farithmetic -cgen, except for
the nucleic program, for which the options used were -O3 -unsafesv -cgen; the Gambit-C compiler was

invoked without any additional compiler options. The resulting C programs were compiled as described in Sec-

tion 6.1, with the Gambit-C benchmarks additionally having the switch -D___SINGLE_HOST passed to the C

compiler to generate faster code. The profiling inputs used, for each of alto, Om, and Ifo+FB+Om, were the

same as that used for the actual benchmarking.
It can be seen, from Table 13, that the OM link-time optimizer achieves an improvement of about 5% on the

average for Gambit-C and about 12% for Bigloo programs. As for the C benchmarks, these numbers do not change

much when inter-file and profile-directed optimization is used in conjunction with OM. On the other hand, alto

produces significant improvements for all of the benchmarks used, and yields executables that are uniformly faster

than those obtained using Om and Ifo+FB+Om. On average, alto produces an overall improvement of about

11% for Gambit-C and about 20% for Bigloo.

6.3 Prolog Programs

To evaluate alto on Prolog programs we used wamcc version 2.21, by Codognet and Diaz [6]. This system

relies on extensions to C implemented within gcc, which precludes a comparison against the effects of alto

with those of profile-directed inter-file and link-time optimization within cc. The programs were compiled with

the option-fast math, and the resulting C code compiled using gcc version 2.7.2.2 at optimization level -O2,
with additional flags to produce a statically linked executable and retain relocation information. The resulting

executables were profiled using the same inputs as were used for the actual benchmarking. The benchmarks we

used are part of the wamcc distribution: their characteristics are reported in Appendix B.3.

As can be seen from Table 14, alto produces significant performance improvements. The overall improve-

ment is about 35% on the average, with one program (sendmore) experiencing an improvements of 46%.

7Here, Ifo stands for inter-file optimization; FB for feedback; and Om for the om link-time optimizer.

19

Program Execution Time (sec) Talto=Tbase

Base (Tbase) alto (Talto)

boyer 23.27 15.09 0.649

chat 21.28 14.48 0.680

nand 20.88 12.70 0.608

poly10 20.98 12.87 0.614

reducer 19.27 12.83 0.666

sendmore 19.11 10.32 0.540

tak 20.97 19.17 0.914

zebra 22.26 13.88 0.624

Geometric Mean: 0.655

Table 14: Performance results: Prolog Programs

7 Related Work

Link-time code optimization has been considered by a number of other researchers. Link-time register allocation,

aimed at allowing global variables to be kept in registers and reducing register saves and restores at inter-module

calls, is discussed by Santhanam and Odnert [30] and Wall [37]. The Zuse Translation System [9] and the mld

link-time optimizer [16] are aimed at reducing the cost of abstraction in object-oriented languages. These works
rely on specially engineered compilers that produce either object files containing special annotations to assist the

link-time optimizer [37], or an intermediate representation of the program (together with semantic information

about it) that is subsequently optimized and translated to executable code by the linker [9, 16, 30]. One implication

of this is that third-party software such as libraries for which source code is not available, or code that is not in

the source language supported by the compiler, is not amenable to optimization by these tools. Machine-level
global optimization is discussed also by Johnson and Miller [23], but unlikealto, this system does not carry out

interprocedural analysis and optimizations.

The systems that are the closest to ours are the OM [34, 35], Spike [8], and Etch [28] link-time optimizers.

The actions carried out by these systems are conceptually very similar to ours (as they must be), though they dif-

fer in details. Spike and Etch are intended for executables running under Windows, on DEC Alpha and Intel x86
processors respectively. Spike carries out three different optimizations [8]: hot-cold optimization [7], register al-

location, and profile-directed code layout; of these, alto does not currently implement hot-cold optimization,

but implements the other two optimizations, as well as others described earlier. Because they are targeted to dif-

ferent operating systems, a direct comparison of alto against these systems was not feasible. Our comparisons

with OM (see Section 6) indicate that the code produced by alto is considerably faster than that produced by

OM. Unfortunately, because Spike and Etch run on a different operating system than alto, it was not possible
to compare alto with these two systems.

8 Conclusions

Traditional compile-time analyses and optimizations are limited by the scope of the compilation unit: analyses
and optimizations are usually limited to individual procedures (even interprocedural optimizations are generally

limited to individual modules, and library routines are not available for either analysis or optimization). Since the

entire program is available for inspection after linking, link-time optimization can overcome some of these defi-

ciencies. This paper describes alto, a link-time optimizer that we have implemented for the DEC Alpha. Ex-

periments indicate that even though it currently implements only relatively simple analyses—for example, checks

20

for pointer aliasing are only implemented in the most rudimentary and conservative way—the performance of the

code generated by the system is, on the average, significantly better than that generated by the OM link-time op-

timizer [34] supplied by DEC.

Acknowledgements

We are grateful to Craig Neth for his help with the use of OM and feedback-directed optimization; and to Jeffrey

Siskind and Marc Feeley for their help with benchmarking the Scheme programs.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers – Principles, Techniques and Tools, Addison-Wesley, 1986.

[2] A. L. Chow and A. Rudnick, “The Design of a Data Flow Analyzer”, Proc. SIGPLAN ’82 Conference on

Compiler Construction, June 1982, pp. 106-119.

[3] D. R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of Pointers and Structures”, Proc. SIGPLAN ’90

Conference on Programming Language Design and Implementation, June 1990, pp. 296–310.

[4] F. C. Chow, “Minimizing Register Usage Penalty at Procedure Calls”, Proc. SIGPLAN ’88 Conference on

Programming Language Design and Implementation, June 1988, pp. 85–94.

[5] B. Calder, P. Feller, and A. Eustace, “Value Profiling”, Proc. MICRO-30, Dec. 1997.

[6] P. Codognet and D. Diaz, “wamcc: Compiling Prolog to C”, Proc. Twelfth International Conference on

Logic Programming, June 1995, pp. 317–332. MIT Press.

[7] R. Cohn and P. G. Lowney, “Hot Cold Optimization of Large Windows/NT Applications”, Proc. MICRO29,
Dec. 1996.

[8] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Optimizing Alpha Executables on Windows NT with

Spike”, Digital Technical Journal vol. 9 no. 4, 1997, pp. 3–20.

[9] C. S. Collberg, Flexible Encapsulation, Ph.D. Thesis, Lund University, 1992.

[10] B. Calder and D. Grunwald, “Reducing Branch Costs via Branch Alignment”, 6th International Conference

on Architectural Support for Programming Languages and Operating Systems, October 1994, pp. 242–251.

[11] K. De Bosschere, S. K. Debray, D. Gudeman, and S. Kannan, “Call Forwarding: A Simple Interprocedural

Optimization Technique for Dynamically Typed Languages”, Proc. 21st. ACM Symposium on Principles of

Programming Languages, Portland, Oregon, Jan. 1994, pp. 409–420.

[12] S. K. Debray, R. Muth, and S. Watterson, “Link-Time Improvement of Scheme Programs”, Proc. 8th. Inter-

national Conference on Compiler Construction (CC’99), March 1999 (to appear).

[13] A. Deutsch, “Interprocedural May-Alias Analysis for Pointers: Beyond k-Limiting”, Proc. SIGPLAN ’94

Conference on Programming Language Design and Implementation, June 1994, pp. 230–241.

[14] M. Emami, R. Ghiya, and L. J. Hendren, “Context-Sensitive Interprocedural Analysis in the Presence of

Function Pointers”, Proc. SIGPLAN ’94 Conference on Programming Language Design and Implementa-

tion, June 1994, pp. 242–256.

[15] M. Feeley, Gambit-C, version 2.8c: a portable implementation of Scheme, Edition 2.8c, Dept. of Computer

Science and Operations Research, University of Montreal, Feb. 1998.

21

[16] M. F. Fernández, “Simple and Effective Link-Time Optimization of Modula-3 Programs”, Proc. SIGPLAN

’95 Conference on Programming Language Design and Implementation, June 1995, pp. 103–115.

[17] J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction”, IEEE Transactions on

Computers, C-30(7):478–490, July 1981.

[18] D. W. Goodwin, “Interprocedural dataflow analysis in an executable optimizer”, In Proc. ACM SIGPLAN

’97 Conference on Programming Language Design and Implementation, pp. 122–133, June 1997.

[19] R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

[20] D. Grove, J. Dean, C. Garrett, and C. Chambers, “Profile-Guided Receiver Class Prediction”, Proc. Tenth

Annual Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA

’95), Oct. 1995, pp. 108–123.

[21] F. Henglein, “Global Tagging Optimization by Type Inference”, Proc. 1992 ACM Symposium on Lisp and

Functional Programming, pp. 205–215.

[22] S. Jagannathan and A. Wright, “Flow-directed Inlining”, Proc. SIGPLAN ’96 Conference on Programming

Language Design and Implementation, May 1996, pp. 193–205.

[23] M. S. Johnson and T. C. Miller, “Effectiveness of a Machine-Level Global Optimizer”, Proc. SIGPLAN ’86

Symposium on Compiler Construction, June 1986, pp. 99–108.

[24] D. Krantz, ORBIT: An Optimizing Compiler for Scheme, Ph.D. Dissertation, Yale University, 1988. (Also
available as Technical Report YALEU/DCS/RR-632, Dept. of Computer Science, Yale University, Feb.

1988.)

[25] W. Landi and B. G. Ryder, “A Safe Approximate Algorithm for Interprocedural Pointer Aliasing”, Proc.

SIGPLAN ’92 Conference on Programming Language Design and Implementation, June 1992, pp. 235–248.

[26] S. McFarling, “Procedure Merging with Instruction Caches”, Proc. SIGPLAN ’91 Conference on Program-

ming Language Design and Implementation, June 1991, pp. 71–79.

[27] K. Pettis and R. C. Hansen, “Profile-Guided Code Positioning”, Proc. SIGPLAN ’90 Conference on Pro-

gramming Language Design and Implementation, June 1990, pp. 16–27.

[28] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. N. Bershad, and J. B. Chen, “Instrumen-

tation and Optimization of Win32/Intel Executables”, 1997 USENIX Windows NT Workshop (to appear).

[29] E. Ruf, “Context-Insensitive Alias Analysis Revisited”, Proc. SIGPLAN ’95 Conference on Programming

Language Design and Implementation, June 1995, pp. 13–22.

[30] V. Santhanam and D. Odnert, “Register Allocation across Procedure and Module Boundaries”, Proc. SIG-

PLAN ’90 Conference on Programming Language Design and Implementation, June 1990, pp. 28–39

[31] M. Serrano and P. Weis, “Bigloo: a portable and optimizing compiler for strict functional languages” Proc.

Static Analysis Symposium (SAS ’95), 1995, pp. 366–381.

[32] O. Shivers, “Control Flow Analysis in Scheme”, Proc. SIGPLAN ’88 Conference on Programming Lan-

guage Design and Implementation, June 1988, pp. 164–174.

22

[33] A. Srivastava, “Unreachable Procedures in Object-Oriented Programming”, ACM Letters on Programming

Languages and Systems vol. 1 no. 4, Dec. 1992, pp. 355–364.

[34] A. Srivastava and D. W. Wall, “A Practical System for Intermodule Code Optimization at Link-Time”, Jour-

nal of Programming Languages, pp. 1–18, March 1993.

[35] A. Srivastava and D. W. Wall, Link-time Optimization of Address Calculation on a 64-bit Architecture”,

Proc. SIGPLAN ’94 Conference Programming Language Design and Implementation, June 1994, pp. 49–
60.

[36] P. Van Roy, Can Logic Programming Execute as Fast as Imperative Programming? PhD thesis, University

of California at Berkeley, 1990.

[37] D. W. Wall, “Global Register Allocation at Link Time”, Proc. SIGPLAN ’86 Symposium on Compiler Con-

struction, July 1986, pp. 264–275.

[38] R. P. Wilson and M. S. Lam, “Efficient Context-SensitivePointer Analysis for C Programs”, Proc. SIGPLAN

’95 Conference on Programming Language Design and Implementation, June 1995, pp. 1–12.

23

A Dataflow Equations for Interprocedural Register Liveness Analysis

Our analysis proceeds in three phases, as described below. The first two phases compute summary information

for functions; the third phase then uses the summary information to do the actual liveness computation. The basic

dataflow equations we use are:

in[n] = use[n][(out[n]�def [n])

out[n] =

8

<

:

[fin[s] j s a successor of ng if n is not a call node

mayUse[f][(in[n0

]\byPass[f]) if n is a call node to a function f and

n0 the corresponding return node

Throughout the analysis, we use the following equations for Bunknown and Funknown :

in[Bunknown] = all registers mayUse[Funknown] = all registers

out[Bunknown] = all registers byPass[Funknown] = all registers

Phase 1 : Computation of byPass[f] : iteratively compute the least fixpoint of the basic dataflow equations listed

above, augmented with the equation

byPass[f] = in[entry(f)]

and with the modification that information is not propagated into the exit node of any function, i.e., out[n]

is always taken to be the set of all registers for an exit node n. The initial values used are the following:

in[n] = use[n]

out[n] =

�

all registers if n is the exit node of a function
/0 otherwise

byPass[f] = mayUse[f] = /0 for all functions f (f 6= Funknown).

Once the fixpoint has been computed, byPass[f] is determined as in[entry(f)] for each function f .

The principal difference between these dataflow equations and those used by Goodwin [18] lies in the equa-

tion for ByPassIn[n]: we have added (unioned) use[n] on the right hand side. Since use[n]�MayUse[n] our

equation for ByPassIn[n] still lies within the bounds given above. The major virtue of this change is that

it makes the equations of this and the following phases so similar that one fixpoint computation algorithm

can be used for all 3 phases.

Phase 2 : Computationof mayUse[f] : iteratively compute the least fixpoint of the basic dataflow equations listed
above, augmented with the equation

mayUse[f] = in[entry(f)]

and with the modification, as in Phase 1, that information is not propagated into the exit node of any func-
tion. The initial values used are the following:

in[n] = use[n]

out[n] =
/0

�

for all nodes n (n 6= Bunknown)

mayUse[f] = /0 for all functions f (f 6= Funknown).

Once the fixpoint has been computed, mayUse[f] is determined as in[entry(f)] for each function f .

24

Phase 3 : Computation of liveness information: iteratively compute the least fixpoint of the basic set of dataflow

equations listed above, starting out with no registers being live at the exit nodes but allowing propagation

of liveness information into the exit nodes. The values of byPass[f] and mayUse[f] are those determined

in Phases 1 and 2. The initial values used are the following:

in[n] = use[n]

out[n] =
/0

�

for all nodes n (n 6= Bunknown)

mayUse[f] = /0 for all functions f (f 6= Funknown).

It turns out that the in and out sets computed in this phase must contain, or be equal to, the sets computed
in Phase 2. The last fixpoint iteration therefore does not to start from scratch, but can start with the results

from the previous run.

Since the dataflow equations of the three phases are very uniform it is not hard to see that the interative fix-

point computation will converge and could even be done in parallel. However, if the three phases described

above are executed sequentially the space used to hold ByPassOut[n] and ByPassIn[n] in Phase 1 can be used

to hold MayUseOut[n] and MayUseIn[n] in Phase 2 which in turn can be reused in Phase 3 to hold LiveIn[n]

and LiveOut[n]. So not only can we use an almost identical algorithm for all three phases, the algorithm also
uses identical memory locations. Furthermore, it is safe to initialize LiveIn[n] := MayUseIn[n] and LiveOut[n] :=

MayUseOut[n] thereby accelerating Phase 3 which does not need to start the fixpoint iteration from scratch.

Next we describe how to improve Phase 3 more drastically exploiting the followingobservation. For a register

r at node n of function f , we have

r 2 LiveOut[n]) r 2MayUseOut[n] _ r 2 ByPassOut[n] (1)

Conversely,

r 2MayUseIn[n]) r 2 LiveIn[n] (2)

But r2 ByPassIn[n] 6) r2 LiveIn[n]. The latter does not hold because our initial values for ByPassOut of the exit

nodes was pessimistic; we essentially assumed that all registers could be live. During Phase 3 it might turn out

that not all registers are live at some exit nodes. The correct condition is

r 2 ByPassOut[n] ^ r 2 LiveOut[ExitNode[f]]) r 2 LiveOut[n] (3)

This suggests the following alternative approach for Phase 3 which has the virtue that it only iterates over the

call graph rather than the much bigger supergraph.

(1) FOREACH n 2 Nodes DO

(2) LiveOut[n]:= MayUseOut[n]

(3) LiveIn[n] := MayUseIn[n]

(4) REPEAT

(5) change := false

(6) FOREACH f 2 Functions DO

(7) new out :=
S

s2Succ[ExitNode[f]] : LiveIn[s]

(8) IF new out 6= LiveOut[ExitNode[f]] THEN

(9) change := true

(10) liveOut[exit[f]] := new out

(11) FOREACH n 2 Nodes[f] DO

(12) LiveOut[n]:= MayUseOut[n][(ByPassOut[n] \ new out)

(13) LiveIn[n] := MayUseIn[n] [(ByPassIn[n] \ new out)

(14) UNTIL : change

25

We begin by setting the start values for the fixpoint iterations using the improvement mentioned above (Lines

1 through 3). Then, we recompute the liveness information at the exit nodes for all functions until there is no

change (Lines 4-14). If the liveness information at an exit node has changed we propagate this change according

to Equation 3 to all nodes of this function (Lines 11 through 13). 8

LiveOut and MayUseOut (resp. LiveIn and MayUseIn) need not be kept in separate location they can be

merged into one, ie. all occurences of LiveOut (resp. LiveIn) can be replaced by MayUseOut (resp. MayUseIn)

which will then contain the liveness information upon completion of the fixpoint iteration.

Since the last phase is usually the costliest of the three, this enhancement typically cuts down execution time

drastically. (See the following section for experimental results). The drawback is that space usage almost doubles
because both ByPass and MayUse information have to be kept around for each node.

8It would be sufficient to propagate this information to return nodes only.

26

B Characteristics of Benchmark Programs

B.1 C Programs

The C programs used were the eight SPEC-95 integer benchmarks: compress is a file compression program; gcc is

a commonly used C compiler; go is a game-playing program; ijpeg is an image compression program; li is a Lisp

interpreter; m88ksim is a simulator for the Motorola 88100 microprocessor; perl is a Perl language interpreter;

and vortex is a single-user object-oriented database transaction benchmark. The size of each program, at both
the source and object code levels, is shown below: the number of source lines reported were measured using the

command wc -l *.c.

Program Source lines functions blocks instructions

compress 1420 316 5092 20707

gcc 193752 2465 77839 353002

go 28457 945 16035 83929

ijpeg 17848 788 11682 62639

li 6916 722 9213 40832

m88ksim 17251 638 11582 53498

perl 23678 722 22765 97079

vortex 52624 1446 28884 155030

B.2 Scheme Programs

The Scheme benchmarks we used are taken from Gambit-C 2.7 distribu-

tion, available at www.iro.umontreal.ca/˜gambit. They consist of the following programs: boyer, a

term-rewriting theorem prover; conform is a type checker, written by J. Miller; dynamic is an implementation of
a tagging optimization algorithm for Scheme [21], applied to itself; earley is an implementation of Earley’s pars-

ing algorithm, by Marc Feeley; graphs, a program that counts the number of directed graphs with a distinguished

root and k vertices each having out-degree at most 2; lattice enumerates the lattice of maps between two lattices;

matrix tests whether a given random matrix is maximal among all matrices of the same dimension obtainable via

a set of simple transformations of the original matrix; nucleic is a floating-point intensive program to determine
nucleic acid structure; and scheme is a Scheme interpreter by Marc Feeley. The source sizes given are for the

“core program”, i.e., without system-specific definitions, measured using the wc utility.

Program Source BIGLOO GAMBIT-C

lines functions blocks instructions functions blocks instructions

boyer 568 2061 24358 114007 1050 39004 188178

conform 432 2080 24689 115809 1036 39388 190257

dynamic 2318 2202 27633 132576 1050 43716 220461

earley 651 2069 24608 115928 1050 39319 191091

graphs 602 2079 24538 115885 1050 39200 189977

lattice 219 2061 24331 113994 1050 39016 188451

matrix 763 2091 24746 116729 1050 39734 192569

nucleic 3478 2162 27131 126612 1050 40257 199192

scheme 1078 2301 26333 123465 1050 41479 202127

B.3 Prolog Programs

The Prolog benchmarks we used are available with the wamcc 2.21 distribution, which can be obtained from

ftp://ftp.inria.fr/INRIA/Projects/ChLoE/LOGIC PROGRAMMING/wamcc/. The eight pro-

27

grams we used were the following: boyer, a term-rewriting theorem prover; chat, a small database with a natural

language front end; nand, a logic synthesis program; poly10, a program for symbolic manipulation of polyno-

mials; reducer, a combinator graph reduction program; sendmore, a cryptarithmetic puzzle; tak, a small, heavily

recursive, program; and zebra, a logical puzzle based on constraints. Their characteristics are as follows:

Program Source lines functions blocks instructions

boyer 377 2932 22833 85812

chat 1138 4640 29940 109274

nand 493 3389 25520 93438

poly10 86 2495 19758 74651

reducer 301 2939 22146 82103

sendmore 43 2433 19316 73020

tak 15 2336 18788 71541

zebra 36 2378 19092 72734

28

