
The Effect of Mobile Code on File Service

Tammo Spalink and John H. Hartman

Department of Computer Science

The University of Arizona

ftammo,jhhg@cs.arizona.edu

Garth Gibson

School of Computer Science

Carnegie Mellon University

garth+@cs.cmu.edu

Abstract

Mobile code promises to improve the functionality and per-

formance of applications, but may have a detrimental effect

on overall system performance. In this paper we consider

the effect of moving an application from a client to a file

server, both on the application and the server. Under what

circumstances does application performance improve, and

does it come at the expense of other (non-mobile) back-

ground applications using the same server? We use a trace-

driven simulation to measure the effect of mobile code, al-

lowing system parameters such as the size of the server

memory and server speed relative to client speed to be var-

ied. We found that several factors influence the benefit of

mobile code. Server memory does not appear to be a sig-

nificant problem; relatively small server caches have a high

hit rate even when shared with mobile code. The relative

CPU performance of the client and server has a bigger ef-

fect on system performance: mobile code should not be run

on the server if its CPU is a bottleneck.

1 Introduction

Mobile code is location-independent: it moves dynami-

cally from one machine to another, taking advantage of the

different resources available on different machines. Mo-

bile code allows an interactive application to move to the

user, improving interactive response. A data processing

application can move to its data, avoiding the overhead of

transferring the data over the network. The goal is to im-

prove application performance; mobile code does this by

allowing the application to move its functionality dynami-

cally between machines. Java [Microsystems95] is a pop-

ular example of mobile code; its bytecode is architecture-

independent, and its API is operating system-independent,

allowing a Java application to run on any platform that sup-

ports Java.

The assumption underlying mobile code is that the grass

is greener on the other side of the fence: namely, that per-

formance will improve if the application moves to a new lo-

cation. This isn’t always the case, however. Circumstances

may conspire against a mobile application: resources may

be inadequate at the new location, due to performance or

scarcity; the cost of moving the application may exceed the

benefit, etc. Furthermore, how does moving an application

to the “other side of the fence” affect those applications that

choose not to (or can’t) move? Does the mobile application

benefit at the expense of the non-mobile applications that

share the system’s resources? The “benefits” of mobility

might depend on your point of view.

This is a study of the effects of mobility on both a mo-

bile application and the other applications in the same sys-

tem. We use a trace-driven simulation to measure the per-

formance benefits of moving a data-intensive search appli-

cation (agrep [Wu91]) from a client to the file server. By

varying the server memory size and the server speed rel-

ative to the client, we can identify those system configu-

rations in which agrep’s performance improves when it

is moved to the server, and those in which it slows down.

We also measure the server’s response time in servicing

file access requests from other clients, to study the effect of



the mobile code on other applications that compete for the

server’s resources.

Our results show that predicting the benefits of mobil-

ity is difficult. Under extreme circumstances mobility has

obvious benefits, e.g. it is clearly a win to move a data-

intensive application from a slow client to a fast, lightly-

loaded server to avoid transferring data over a slow net-

work. Often it isn’t that easy to predict the benefits. Deal-

ing with this complexity is a major challenge to people de-

signing applications that use mobile code and the systems

that support it. Mobility isn’t always a win, and predict-

ing when it is and when it isn’t is a complex function of

the application behavior, the performance and capacity of

the system resources, and the behavior of the other appli-

cations that share those resources. Server memory does

not appear to be a significant problem; even with relatively

small server caches, the hit rate does not change dramati-

cally when the cache is shared with mobile code. Moving

agrep to the server does reduce the total amount of work

done by the system, by eliminated network protocol over-

head, but increases the amount of work done by the server

itself. The server CPU saturates if it is only half the speed

of the client CPUs, leading to an extremely high agrep

running time and extremely high access latencies. This

sensitivity to server CPU speed is particularly worrisome

because the file server CPU has long been known to be a

bottleneck in network file systems [Lazowska86].

2 Benefits of Mobile Code

Mobile code offers application developers new latitude in

using the system’s resources. No longer must remote re-

sources be accessed remotely; instead, the application can

move to the resources and use them locally. This can re-

duce both network traffic and network protocol overhead

on both the client and the server. Under the right circum-

stances mobility reduces the total amount of work done by

the system, improving the performance of the entire sys-

tem. Under the wrong ones, the entire system slows down.

The expectation that a mobile application’s performance

will improve when it is moved to the server is based on sev-

eral assumptions. First, the overhead of transferring data

between the server and the client via the network is a sig-

nificant fraction of the application’s run-time. Second, suf-

ficient resources exist on the server to run the mobile appli-

cation efficiently. The server must have enough free mem-

ory to run the mobile application without excessive paging.

The server CPU must have enough idle cycles to satisfy

the mobile code. Third, the performance of the server re-

sources must be adequate relative to the client. It won’t do

the mobile application much good to move it to a server

with a slower CPU and memory system.

It is easy to overlook the mobile application’s effect

on the other applications in the system. The service pro-

vided to other applications may degrade because the mo-

bile application consumes the server’s resources. At a min-

imum, the mobile application requires memory and CPU

cycles, reducing the amount of both available to service

other applications. Server memory consumption is partic-

ularly worrisome, because reducing the amount of mem-

ory available for the server cache increases the number of

server disk accesses, which can have a big effect on the

server performance. In general, running an application on

the server requires more server memory than running it on

the client, due to memory pages needed to hold the program

text and data. Moving the application to the server also pre-

sumably reduces its run-time, increasing the rate at which

it issues file access requests and having a greater effect on

other applications that access the server. This can increase

the variance of the server access time. On the other hand,

moving the application to the server reduces the amount of

network protocol processing the server must do, perhaps

freeing those resources for use in servicing other applica-

tions. It also reduces network traffic, decreasing network

congestion and increasing file access performance.

Our hypothesis when we began this study was that the

amount of memory available on the server, and the ratio of

the server CPU speed to the client would have a big effect

on the benefits of mobility. Under some circumstances, it

would actually slow the system down as a whole to move

an application from the client to the server. We tested this

hypothesis using a trace-driven simulation. This allowed

us to vary these system parameters, and measure the effect

on the mobile application and the background jobs.

Although there may not always be a benefit for a client

or the system in remotely executing code on a single shared

server, benefits may be had from exploiting parallelism

when there are multiple servers. Riedel et. al. show a

speedup of 2x for running application-level database code

across 10 Active Disks versus a single-processor special-

ized database server [Riedel98]. Active Disks contain rel-

atively low-powered CPUs and act as storage servers. To

maximize the performance and scalability of such a sys-

tem, it is important to understand how resource utilization

at a specific server influences the rest of the system. Our

study focuses on one server.

3 Experiment Setup

For our experiments we performed a trace-driven simula-

tion of a mobile application, agrep [Wu91], running on

the client of an NFS file server versus on the server itself.

The server also serviced background requests from non-

mobile applications, represented by a trace of NFS activity

[Dahlin]. The server’s performance in handling these back-

ground requests reflects agrep’s effect on the system as a

whole.



3.1 Agrep Trace

agrep is a popular tool for efficient full text searching,

and seems a likely candidate to benefit from mobile code.

It searches entire files for strings that match a given ex-

pression, requiring it to perform a relatively small amount

of computation relative to the amount of data it processes.

Of the many commonly used applications that may bene-

fit from being executed remotely, agrep is data-intensive

with only minimal processing needs. Thus, results using

agrep should be representative of what can be gained us-

ing mobile code in storage systems. As input to our sim-

ulator we used a trace of agrep’s behavior collected by

Tomkins et. al. [Tomkins97]. To create the trace, agrep

ran on an instrumented Digital UNIX kernel, and searched

a kernel source tree of 1400 files comprising 23 MB.

Each record in the trace contains an absolute time, op-

code, file identifier, offset, and size. The opcode distin-

guishes opens, closes, reads and writes. The data associ-

ated with the I/O operations are not available in the trace,

nor is disk layout information. This prevents the simulator

from accurately simulating the file system and disk.

The records were created by a run of agrep, and pre-

sumably are dependent: an I/O is initiated only after the

previous I/O completes and the data processed by agrep.

The time between the completion of one request and the

start of the next is assumed to be agrep computation. This

interval is scaled in the simulation by the CPU speed so that

the I/O rate is higher on a faster CPU, but I/Os are never

overlapped.

Simulating agrep properly requires knowing agrep’s

instantaneous memory requirements during its entire run.

This information allows the simulator to allocate the min-

imum amount of memory to agrep at all times. Unfor-

tunately, this information is not available in the trace, so

we make the very conservative assumption that agrep’s

memory footprint is at all times equal to its maximum foot-

print. During a run of agrep on inputs of similar size,

we determined that its memory image grew to a maximum

size of 800KB; we therefore assume that agrep requires

800KB during its entire run.

3.2 Background Trace

We simulate background requests to the server using a trace

of NFS requests to an Auspex NFS server [Dahlin]. These

traces contain all NFS traffic to an Auspex file server at UC

Berkeley over the period of seven days. The traces were ob-

tained by snooping on the network, and therefore only con-

tain NFS requests to the server; application requests to the

client caches are not present. The Auspex traces therefore

reflect NFS client behavior, and not application file-access

behavior.

Each request in the trace contains an absolute time, NFS

opcode, file identifier, offset, size, and client identifier. The

NFS opcode distinguishes attribute requests from block re-

quests, and reads from writes. Like the agrep trace, the

Auspex trace does not contain the actual data accessed, nor

does it contain disk layout information. This prevents ac-

curate simulation of file system and disk overhead.

The trace also does not contain information about re-

lated events issued by a client. The only context known

about a particular event is the time at which it occurred,

and the client that issued it. It is likely that the events

form a partial ordering: some I/O requests undoubtedly

depend on the completion of previous I/O requests. Un-

fortunately, the trace does not capture these relationships.

It seems unlikely, however, that all events related to a sin-

gle client are dependent, as in the agrep case, so that the

next event should not be issued until the previous event has

completed and the client’s think time expired. We there-

fore make the simplifying assumption that client requests

are independent. Each request from the client to the server

is issued at the absolute time recorded in the trace (scaled

by the client processing speed), regardless of state of pre-

vious requests. It is important to note that this assumption

will affect our results since some of the requests probably

are dependent.

3.3 Simulator

The performance of a network file server is measured by

its response time to client requests. The simulator we have

implemented models a network file server that can host mo-

bile code in addition to servicing traditional file service re-

quests.

The operation of the simulator is straightforward: client

requests are read from the traced workloads, interleaved

based on the traced timing information, and then sent

through various simulator modules which calculate the re-

quest response times. The response time is determined by

the speed of the server CPU, the server memory, the server

disk, and the network, as well as any queuing delay at those

resources. A request can also become queued waiting for

the cache if no free blocks are available.

3.3.1 Cache Simulation

All caches are fully associative with an LRU replacement

policy. Blocks are locked during I/O operations, such as

reading data from the disk into the cache. A request that

tries to access a locked block is queued until the block is

unlocked. Under overload situations this means that server

accesses may find the entire cache locked, causing all re-

quests to be queued and increasing the server access la-

tency.

All caches are write-through. Although write-back

caches would perhaps be more realistic, they complicate

the performance measurements. Dirty blocks in the cache

represent potential work (i.e. work that has been deferred

but must eventually be done). This potential work must be

accounted for in the simulation; a server that defers all disk



writes until after the measurement interval will look very

fast compared to one that doesn’t. Also, the write-back of

dirty blocks is typically started when the number of dirty

blocks exceeds a threshold. An accurate comparison is pos-

sible only if the number of dirty blocks is the same at the

start of each measurement, otherwise it will affect the num-

ber of pages written back during the measurement interval.

For these reasons we chose to use a write-through cache in

our current experiments.

The cache simulator also supports infinite caches, those

in which capacity misses do not occur. This results in the

highest possible hit rate, because the only cache misses are

the capacity misses that occur when a block is accessed for

the first time. The simulator implements infinite caches by

increasing the cache size on each cache miss.

The cache simulator reduces the size of the server block

cache by the number of pages needed by the agrep pro-

gram for its text, data, and stack. This amounts to 800KB,

or 100 blocks.

When the agrep is run on the client its file accesses

are filtered through a client cache, in the same manner that

the Auspex trace records server accesses downstream of the

client caches. As a result, when agrep runs on a client

its accesses should “blend in” to the server access stream,

and the characteristics of its requests should be similar to

the background traffic. We make the assumption that there

is no file sharing between the agrep and the background

traffic, so that the agrep only hits in the server cache for

blocks that it previously accessed.

Metadata requests comprise 87% of the requests made

by the background trace and 42% of the requests made by

agrep, averaged across all six intervals. The server meta-

data cache is infinite, resulting in a hit rate greater than

90%. Although the traces contain some requests for less

than a block of data, the sizes are rounded up by the simu-

lator.

3.3.2 Disk Simulation

The server has one disk, with a peak transfer bandwidth of

10MBs and an average seek time of 8ms. The disk handles

one request at a time, and the simulator assumes that each

request requires an average seek to the proper track. The

lack of data and disk layout information in the traces makes

a more accurate simulation infeasible, and therefore a more

accurate disk model unnecessary. The disk latency for a

request is the amount of time that request spends in the disk

queue plus the actual access and transfer time.

disk latency = queueing + 8 ms seek+
request size
10MBs disk

3.3.3 CPU Simulation

The server CPU is used both to perform protocol and file

system processing on traditional file access requests and to

perform computation for mobile code running at the server.

Read Cycles Write Cycles

(thousands) (thousands)

Metadata 33 64

Block Data 100 199

Figure 1: Average cost of I/O operations

To reduce the effect mobile code running on the server has

on background requests as much as possible, the simula-

tor gives priority to file access requests. If the agrep is

running when a request is received, the server immediately

blocks the agrep and processes the request. The agrep

receives only idle server CPU cycles.

Our model of CPU requirements is very simple (Figure

1), and assigns a constant number of cycles to each type

of server access. Our numbers are derived from those pub-

lished by Gibson et. al. [Gibson97], who measured the

CPU cost of different types of NFS requests. These costs

were calculated for a 133 MHz Digital AlphaStation. The

number of cycles required for a given request is scaled by

the speed of the server, to account for the different server

CPU speeds used in different experiments. Our baseline

speed is 133 to match the table.

CPU latency = queueing + table value
server speed

3.3.4 Network Simulation

The network model is based on a 100Mbps switched Eth-

ernet. Network latency is incurred by both client requests

and server replies. The latency of a network data transfer is

modeled as the sum of a hypothetical link latency and the

data transfer time of the network:

network latency = 20 �s link+ data size
100Mbps netw.

This simple model does not capture network contention;

we assume that the network possesses sufficient aggregate

bandwidth to avoid this problem.

3.3.5 Simulator Validation

To ensure that the simulator was behaving correctly we per-

formed several tests that singled out the effect of important

variables. The problem with simply running the simulator

on many input samples is that the number of interdependent

variables can hide problems. By eliminating the network,

and using an infinitely fast disk, we were able to single out

the CPU for analysis. Removing the cache and using an in-

finitely fast CPU singled out the disk. Once confidence can

be placed in the individual components, remaining prob-

lems can be chased by performing a number of more real-

istic tests, for which the results are predictable.



0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 Infinite

R
un

 T
im

e 
(s

ec
on

ds
)

Cache Size

Agrep/Server
Agrep/Client

Figure 2: agrep run-time as a function of the server cache size.

agrep’s file accesses have poor locality, so larger server caches

provide little benefit. The syntax which/where indicates which

traffic is measured (agrep or Background) and where agrep

was running (Client or Server).

4 Experiment Results

4.1 Measurement Intervals

The entire Auspex trace comprises 168 hours. agrep typi-

cally completes within two minutes on our simulated hard-

ware. Running the agrep against the entire Auspex trace

would obviously have a minimal effect on the background

performance. We are interested in its effect on those ac-

cesses that occur while the agrep is running, or after it

runs but while it still has lingering effects on the system.

To do this, we extracted the six three-minute intervals with

the most server accesses from the trace. For each interval

the simulator was run on the preceding three hours of the

background trace, to warm the caches. Then the agrep

was run at the start of the interval, and the traces processed

until the end of the interval. Because we use the busiest

intervals, the blocks accessed by agrep are flushed out

of the server cache relatively quickly, eliminating any lin-

gering effects caused by running agrep and limiting the

number of background accesses we must consider in our

measurements.

To summarize, the results of our tests are taken from the

short periods of time during which agrep affects the sys-

tem. Prior to each agrep run, a long trace of background

traffic is played to warm caches. These long traces were

taken from the busiest periods of the whole Auspex trace to

make the conditions most challenging for agrep.

4.2 Block Cache Size

Our hypothesis was that the size of the server cache would

have a significant effect on the agrep run-time. Sur-

prisingly, we found that this was not the case (Figure 2).

0

20

40

60

80

100

0 1000 2000 3000 4000 Infinite

C
ac

he
 H

it 
R

at
e

Cache Size

Agrep/Server
Agrep/Client

Agrep/Server
Background/Server
Background/Client

Figure 3: Percentage of block requests that hit in the server

cache, as a function of the cache size. Background traffic ben-

efits from a larger server cache, agrep does not.

agrep makes a single sequential pass through its input

files, resulting in low hit rate on the server cache, indepen-

dent of its size.

Increasing the server cache size does not improve

agrep’s running time, and therefore we would expect it

doesn’t improve agrep’s hit rate on the server cache ei-

ther. Our simulation shows this to be true (Figure 3). When

agrep is run on a client any locality in its accesses is fil-

tered out by the client cache, resulting in a server cache hit

rate of close to zero.

The background traffic exhibits more locality than

agrep, and as a result it benefits from a larger server

cache. When agrep is run on the server it consumes 100

blocks from the server cache, reducing the background hit

rate. The effect is pronounced with a small server cache.

This is hardly surprising: when server memory is valuable

it is costly to use it to run mobile code.

The hit rates on the server cache directly translate into

access latencies (Figure 4). As the server cache grows, the

access latencies for the background traffic drops because

more accesses hit in the (fast) cache. agrep, on the other

hand, has poor locality, so its access latency is close to the

disk latency. The difference between the access latency of

agrep running on the client vs. on the server is caused

by the network latency and the overhead of network proto-

col processing. The background latency is never close to

the disk latency, even for small caches, because of its high

fraction of metadata requests.

A breakdown of access latency (Figure 5) reveals that

faster response times with larger block caches are the re-

sult of higher system resource availability, and therefore

reduced queuing delays. With very small caches the disk

queuing delays are especially evident.

The CPU and network metrics are flat because all re-

quests are of fixed size, and without queueing delay, the



0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 Infinite

A
cc

es
s 

La
te

nc
y 

(m
s)

Cache Size

Agrep/Server
Agrep/Client

Background/Server
Background/Client

Figure 4: Average request response time observed by the client,

for all requests (including metadata) as a function of server cache

size.

0

1

2

3

4

5

0 1000 2000 3000 4000 Infinite

A
cc

es
s 

La
te

nc
y 

(m
s)

Cache Size

Disk
CPU

Cache Queue
Network

Figure 5: Breakdown of the average request response time for the

background load during the runs of agrep on a client machine

for varying cache sizes.

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1 1.5 2 2.5 3 3.5 4

R
un

 T
im

e 
(s

ec
on

ds
)

Server vs. Client CPU Speed Ratio

Agrep/Server
Agrep/Client

Figure 6: Run-time for agrep vs. server CPU speed

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5 4

A
cc

es
s 

La
te

nc
y 

(m
s)

Server vs. Client CPU Speed Ratio

Agrep/Server
Agrep/Client

Background/Server
Background/Client

Figure 7: Access latency for all requests (including metadata)

vs.server CPU speed.

result of the simple modeling algorithms always predicts

the same value for these requests.

4.2.1 Summary

agrep is largely unaffected by the server block cache size,

while the background load performs noticeably better with

larger caches. This is exacerbated by agrep effectively

shrinking the cache when it runs on the server. However,

this effect is prevented from becoming severe by the large

percentage of metadata requests in the background load

which are not affected by the size of the block cache.

4.3 Server/Client Speed Ratio

Another factor that affects the benefits of mobile code is

the speed of the server relative to the speed of the client.

Mobile code benefits from a faster server, but can suffer



from a slower one. As one might expect when the server’s

CPU is faster than the clients’, the agrep benefits from

running on the server (Figure 6). This performance im-

provement is bounded however, because of the relatively

small amount of processing agrep performs. Most of the

run-time is spent in the disk subsystem. A slower server

hurts agrep, because it would have completed faster if

it had stayed home on the (faster) client. agrep’s per-

formance degrades dramatically as the server slows, to the

point of starvation, because background requests receive

priority and they take relatively longer to process on a slow

server.

The server access latencies exhibit similar behavior (Fig-

ure 7). As the server CPU slows, the access latency for both

agrep¡ and the background traffic increases because the

server CPU begins to saturate.

5 Related Work

Acharya et. al. [Acharya98] have modeled a system of Ac-

tive Disks, similar to that of Riedel. They also propose a

“stream-based programming” model of mobile code, and

estimate performance improvement for a number of appli-

cations using their system. This work complements ours

by suggesting a specific platform for mobile code in stor-

age systems.

Ruemmler and Wilkes describe the implications of ac-

curate disk modeling [Ruemmler94]. Wilkes also de-

scribes file system simulation with Thekkath and Lazowska

[Thekkath92]. This work explains it is dangerous to rely

too heavily on abstract models. The level of rigor which

they describe as desirable would have been preferable for

our simulation had the necessary data been available in the

traces we used. However, we believe our assumptions are

sufficiently conservative to predict the coarse trends de-

scribed in our conclusions.

Cache analysis and simulation of caching behavior been

looked at by Shirriff [Shirriff91], Dahlin [Dahlin], and

Welch [Welch91]. Our work extends the principles of

cache analysis to the domain of mobile code.

Mobile code for systems level applications has been ex-

plored by Bershad [Pardyak96] and Douglis [Douglis91].

This work has been primarily concerned with the me-

chanics and practical implementation concerns of mobility.

Our work is different in that we take implementation for

granted, and focus on the performance of its application to

the specialized area of file systems.

6 Conclusions

In this paper we consider the potential benefits of using mo-

bile code on file servers. We implemented a trace-driven

simulator to discover under which circumstances mobile

code improves performance, and to discover the cost to

other applications.

The expectation that mobile code allows for significant

performance improvement was based on several assump-

tions, some of which proved to be incorrect. Initially, we

expected that resource availability on the server, specifi-

cally cache size and a fast CPU, would be critical both to

mobile code performance and to minimizing the cost for

background requests.

The simulations show that server cache size is not very

important to predicting the effects of mobility. The access

locality of our mobile application is low, and the cache hit

rate of background requests is not significantly affected by

the mobile code’s presence. The server CPU speed has a

more pronounced role. If the server CPU is highly uti-

lized and few cycles are available for mobile code use, the

performance of mobile code will be poor. Despite these

discoveries, we still expected that eliminating data trans-

fer between the server and the client would make mobile

code attractive. Unfortunately, we overestimated the over-

head associated with current low latency, high bandwidth

networks. The time lost to the transfer is not significant.

Our experiments demonstrate that predicting the benefits

of mobility is difficult. Although extreme circumstances

such as very high latency congested networks, can still re-

sult in obvious performance gain, the benefit of mobile in

current research environments is not clear cut.

References

[Acharya98] Anurag Acharya, Mustafa Uysal, and

Joel Saltz. Active disks: Programming

model, algorithms, and evaluation. In

Proceedings of the Eighth International

Conference on Architectural Support

for Programming Languages and Op-

erating Systems, San Jose, CA, USA,

1998.

[Dahlin] Michael D. Dahlin, Clifford J. Mather,

Randolph Y. Wang, Thomas E. Ander-

son, and David A. Patterson. A quan-

titative analysis scalability for network

file systems. Technical Report CSD-94-

798, University of California, Berkeley.

[Douglis91] F. Douglis and J. Ousterhout. Trans-

parent Process Migration: Design Al-

ternatives and the Sprite Implementa-

tion. Software Practice & Experi-

ence, to appear. An earlier version is

available as Computer Science Divi-

sion (EECS), University of California,

Berkeley, Technical Report UCB/CSD

89/540, November 1989, 1991.

[Gibson97] Garth A. Gibson, David F. Nagle,

Khalil Amiri, Fay W. Chang, Eu-

gene M. Feinberg, Howard Gobioff,



Chen Lee, Berend Ozceri, Erik Riedel,

David Rochberg, and Jim Zelenka. File

server scaling with network-attached

secure disks. In Proceedings of

the 1997 ACM SIGMETRICS Interna-

tional Conference on Measurement and

Modeling of Computer Systems, vol-

ume 25,1 of Performance Evaluation

Review, pages 272–284, New York,

June15–18 1997. ACM Press.

[Lazowska86] Edward D. Lazowska, John Zahor-

jan, David R. Cheriton, and Willy

Zwaenepoel. File access performance

of diskless workstations. TOCS,

4(3):238–268, AUG 1986.

[Microsystems95] Sun Microsystems. The java language

overview. White Paper, 1995.

[Pardyak96] Przemyslaw Pardyak and Brian Ber-

shad. Dynamic binding for an exten-

sible system. In USENIX, editor, 2nd

Symposium on Operating Systems De-

sign and Implementation (OSDI ’96),

October 28–31, 1996. Seattle, WA,

pages 201–212, Berkeley, CA, USA,

October 1996. USENIX.

[Riedel98] Erik Riedel, Garth Gibson, and Chris-

tos Faloutsos. Active storage for large-

scale data mining and multimedia. In

Proceedings of the 24th VLDB Confer-

ence, New York, USA, 1998.

[Ruemmler94] Chris Ruemmler and John Wilkes. An

introduction to disk drive modeling.

Computer, 27(3):17–28, March 1994.

[Shirriff91] Ken W. Shirriff and John K. Ouster-

hout. A trace-driven analysis of

name and attribute caching in a dis-

tributed system. In Proceedings of the

Usenix Winter 1992 Technical Confer-

ence, pages 315–332, Berkeley, CA,

USA, January 1991. Usenix Associa-

tion.

[Thekkath92] Thekkath, Wilkes, and Lazowska.

Techniques for file system simulation.

Technical Report TR 92-09-08, Univer-

sity of Washington, 09 1992.

[Tomkins97] Andrew Tomkins, R. Hugo Patterson,

and Garth Gibson. Informed multi-

process prefetching and caching. In

Proceedings of the 1997 ACM SIG-

METRICS International Conference on

Measurement and Modeling of Com-

puter Systems, volume 25,1 of Perfor-

mance Evaluation Review, pages 100–

114, New York, June15–18 1997.

ACM Press.

[Welch91] Brent B. Welch. Measured perfor-

mance of caching in the Sprite net-

work file system. Computing Systems,

4(3):315–342, Summer 1991.

[Wu91] Sun Wu and Udi Manber. agrep -

A fast approximate pattern-matching

tool. In Proceedings of the Usenix Win-

ter 1992 Technical Conference, pages

153–162, Berkeley, CA, USA, January

1991. Usenix Association.


