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Abstract

The ability to model time-varying natures is essential to many database applications such as data

warehousing and mining. However, the temporal aspects provide many unique characteristics and chal-

lenges for query processing and optimization. Among the challenges is computing temporal aggregates,

which is complicated by having to compute temporal grouping. In this paper, we introduce a variety of

temporal aggregation algorithms that overcome major drawbacks of previous work. First, for small-scale

aggregations, both the worst-case and average-case processing time have been improved signi�cantly.

Second, for large-scale aggregations, the proposed algorithms can deal with a database that is substan-

tially larger than the size of available memory. Third, the parallel algorithm designed on a shared-nothing

architecture achieves scalable performance by delivering nearly linear scale-up and speed-up. The contri-

butions made in this paper are particularly important because the rate of increase in database size and

response time requirements has out-paced advancements in processor and mass storage technology.
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Name Salary Dept Begin End

Richard 46,000 Accounting 18 31

Karen 45,000 Shipping 8 20

Nathan 35,000 Marketing 7 12

Nathan 38,000 Accounting 18 21

Count Max Begin End

1 35,000 7 8

2 45,000 8 12

1 45,000 12 18

3 46,000 18 20

2 46,000 20 21

1 46,000 21 31

(a) Input Database Tuples (b) Temporal Aggregation Results

Figure 1: Sample Database and Its Temporal Aggregation

1 Introduction

Aggregate functions compute a scalar value, such as the maximum salary, when applied to a set of tuples.

These functions are an essential component of database query languages, and are heavily used in many

applications. Several prominent query benchmarks such as TPC-D [18] and AS

3

AP [20] contain a high

percentage of aggregate operations. Hence, e�cient execution of aggregate functions is an important goal.

Database applications often need to capture the time-varying nature of an enterprise they model. The

importance of such need has been recognized by several database research groups, and temporal database

models and query languages have been developed and reported in the literature [11, 17]. In fact, there are

several temporal query languages supporting temporal aggregation [14, 15]. However, temporal data and

queries provide many unique characteristics and challenges for query processing and optimization. Among the

challenges is computing temporal aggregates, which is complicated by having to compute temporal grouping.

In temporal databases, temporal grouping is a process where the time-line is partitioned over time and

tuples are grouped over these partitions. Then, aggregate values are computed over these groups. In

general, temporal grouping is done by two types of partitioning [14]: span grouping and instant grouping.

Span grouping is based on a de�ned length in time, such as week or month, and is independent of temporal

attribute values of database tuples. On the other hand, instant grouping depends on the data stored. Any

pair of consecutive instants create a time interval, over which the aggregate value remains constant. Such

intervals are called constant intervals. Aggregations based on span and instant groupings are called span

aggregation and instant aggregation, respectively. In this paper, we focus on computing instant aggregates,

which we believe is the most common and challenging temporal aggregation.

Computing instant aggregates is expensive because it is necessary to know which tuples overlap each

instant, and simply considering each tuple in order in a sorted-by-time relation will not be su�cient due to

the varying interval lengths [12]. For example, computing the time-varying maximum salary of employees

involves computing the temporal extent of each maximum value, which requires determining the tuples that

overlap each temporal instant. Figure 1(a) shows a sample Employees table with two temporal attributes,

which represent the beginning and ending of the valid-times of individual tuples. The resulting instant

aggregation of the maximum salary (along with the number of employees) is given in the table in Figure 1(b).

Note that while multiple values are returned, the aggregate results in a single scalar value at each point in

time, with the period over which the aggregate value remains constant collected into a single tuple. One

could also envision an instant aggregate function, which would evaluate a time-varying maximum salary for

each department.

This temporal aggregation can be processed in a sequential or parallel fashion. The parallel processing

technology becomes even more attractive, as the size of data-intensive applications grows as evidenced in

OLAP and data warehousing environments [4, 6]. Although several sequential and parallel algorithms have

been developed for computing temporal aggregates [10, 12, 15, 19, 21], they su�er from serious limitations

such as the size of aggregation restricted by available memory and requirement of a priori knowledge about

the orderedness of an input database.

In this paper, we propose a variety of temporal aggregation algorithms that overcome major drawbacks

of previous work. The proposed solutions provide the following bene�ts over the state of the art:
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� Two new algorithms proposed for small-scale aggregations do not require a priori knowledge about

an input database, and they have improved both the worst-case and average-case processing time

signi�cantly.

� Another new algorithm proposed for large-scale aggregations relies on a novel data partitioning scheme,

so that it can deal with a database substantially larger than the size of available memory.

� Lastly, a parallel algorithm has been developed for shared-nothing architectures for large-scale aggre-

gations. This solution achieves scalable performance by delivering nearly linear scale-up and speed-up.

It should be noted that the problem of computing temporal aggregates is di�erent from the relational

aggregation that can often be seen in the data warehousing environment. While data items in the data ware-

housing environment are envisioned as points in their data domain, we deal with temporal data associated

with time intervals of arbitrary lengths.

The rest of this paper is organized as follows. Section 2 surveys the background and related work on

computing temporal aggregates. Major Limitations of previous work are also discussed in the section. In

Sections 3, 4 and 5, we present the improved algorithms for small-scale aggregations, and scalable solutions

for large-scale aggregations based on data partitioning and parallel processing techniques. Section 6 presents

the results of experimental evaluation of the proposed sequential and parallel solutions. Finally, Section 7

summarizes the contributions of this paper and gives an outlook to future work.

2 Background and Previous Work

There are two types of aggregate computations in conventional relational database systems: scalar aggregates

and aggregate functions. Scalar aggregates are operations such as count, sum, avg, max, and min that

produce a single value over an entire relation, while aggregate functions �rst partition a relation based on

some attribute value and then compute scalar aggregates independently on the individual partitions.

A scalar aggregate is composed of an aggregate expression and an optional quali�cation. A simple two-step

algorithm was proposed by Epstein for evaluating scalar aggregates [8]. To handle many scalar aggregates

in a query, the algorithm computes each of them separately and stores each result in a singleton relation,

referring to that singleton relation when evaluating the rest of the query. A di�erent approach employing

program transformation methods was proposed to systematically generate e�cient iterative programs for

aggregate queries [9].

The �rst approach for implementing temporal aggregation was proposed by Tuma [19] and was based on

an extension of Epstein's algorithm. In this approach, the constant intervals are determined �rst, then the

aggregate is evaluated using the Epstein's technique. Since the two steps are separate and the �rst one must

be completed before the second one, a database must be read twice.

More recent algorithms were proposed by Kline and Snodgrass [12] for temporal aggregation based on

instant grouping of tuples. The algorithms are called aggregation tree and its variant k-ordered aggregation

tree, as they build a tree while scanning a database. Both algorithms are fast and require minimal I/O

overhead, as they need to scan the database only once to build a tree in memory. Then, the resulting tree

stores enough information to compute temporal aggregates by traversing it using depth �rst search.

The aggregation tree is a binary tree that tracks tuples whose timestamp periods contain an indicated

time span. Each node of the tree contains a start time, an end time and an aggregate value. When an

aggregation tree is initialized, it begins with a single node containing < 0;1; 0 > (see the initial tree in

Figure 2), assuming that 0 and 1 are used as the earliest and latest timestamps. The sample Employees

table in Figure 1(a) has 4 tuples to be inserted into the empty aggregation tree. Inserting the �rst record

adds four new nodes to the initial tree, resulting in the updated aggregation tree shown in Figure 2(b). A

count of one is assigned to the new leaf < 18; 31; 1 >, since it is the only node in the tree representing a valid

interval for the inserted tuple. The aggregation tree after inserting the rest of the records in Figure 1(a) is

shown in Figure 2(d).

To compute the number of tuples (i.e., count aggregate) for the period [8; 12] in this example, The count

from the leaf node [8; 12] (which is 1) is added to its parents' count values. Starting from the root, the sum

of the parents' counts is 0 + 0+ 1 = 1 and adding the leaf count, gives a total of 2. The temporal aggregate

results are given in Table 1(b).
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(a) Initial tree (c) Tree after adding [8,20]

(d) Final tree after adding [7,12] and [18,21]
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Figure 2: A Sample Aggregation Tree for count Aggregation

2.1 Limitations of Previous Methods

It should be noted that the order of tuples inserted into the aggregation tree a�ects its performance, though

not its result. If the tuples are sorted via the start time and inserted in that order, the aggregation tree

would look more like a linked list, causing insertions to be slower than insertions into a balanced binary

tree. For the reason, the worst case time to create an aggregation tree is O(N

2

) for N tuples sorted in time.

However, more serious limitation of the aggregation tree approach is that the entire tree must be kept in

memory. Since the size of an aggregation tree is proportional to the number of distinct timestamps (both

start times and end times), the size of the database the aggregation tree algorithm can deal with tends to

be limited by the size of available memory and the number of distinct timestamps of tuples.

To circumvent this problem, a variant of the aggregation tree, called k-ordered aggregation tree, was

proposed by the same authors. The k-ordered aggregation tree takes advantage of the k-orderedness of tuples

to enable garbage collection of tree nodes, so that the memory requirements can be reduced signi�cantly.

However, the k-ordered aggregation tree approach assumes that the tuples in a table be ordered within a

certain degree. Speci�cally, each tuple is at most k positions from its position in a totally ordered version

of the table. This requirement is di�cult to be met in a real database system. Without a priori knowledge

about a given table, the k-orderedness is expensive to measure, as it requires an external sort of the table.

The worst case running time of the k-ordered aggregation tree algorithm is still O(N

2

).

Apparently the aggregation tree, the most e�cient among the aforementioned algorithms, su�ers from

poor scale-up performance, due to the O(N

2

) worst-case running time and memory requirement. Recently,

there have been some research e�orts to develop parallel algorithms for computing temporal aggregates for

large-scale databases. Ye and Keane proposed two approaches to parallelize the aggregation tree algorithm on

a shared-memory architecture [21]. Gendrano et al. have also developed several new parallel algorithms [10]

for computing temporal aggregates, speci�cally on a shared-nothing architecture, by parallelizing the ag-
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gregation tree algorithm. Gendrano et al. showed promising scale-up performance of the parallel algorithms

through extensive empirical studies under various conditions. Nonetheless, all the aforementioned paral-

lel algorithms inherit the same limitations from the aggregation tree algorithm, as the parallel algorithms

were developed by parallelizing the aggregation tree. In particular, the size of the database those parallel

algorithms can handle will be limited by the aggregate memory of participating processors.

3 Improved Algorithms for Small-Scale Aggregation

In this section, we present two new algorithms for computing temporal aggregates, as alternatives to the

aggregation tree algorithm [12]. The aggregation tree is a binary tree, which is similar to the segment tree

by Bentley [2]. The segment tree is a static structure, which can be balanced for a given set of abscissae.

However, there is no guarantee that the aggregation tree is always balanced, because the aggregation tree

is dynamically constructed as the tuples in a database are being scanned and inserted into the tree. Thus,

the structure of the resulting aggregation tree depends on the order of tuples inserted. This fact may cause

the worst case running time of O(N

2

) for a database of N tuples, particularly when the tuples are ordered

by their timestamp values. Such a quadratic complexity may be impractically costly for many database

applications.

As will be seen in this section, we have observed that the �ve most common aggregation operators can

be categorized into two groups, namely, count, sum, avg in one group, and max, min in the other. For the

latter group, there is more demand to keep track of attribute values of tuples. This observation has led us to

develop a di�erent algorithm for each of the two groups of aggregation operators. The solution to the �rst

group of operators, which we call a balanced tree algorithm, will be presented in Section 3.1. The main idea

of this algorithm is that the tree can be balanced dynamically as tuples are being inserted, by giving up the

notion of maintaining intervals in the tree nodes. The solution to the second group is called a merge-sort

aggregation algorithm, which is similar to the classical merge-sort algorithm [13]. This algorithm will be

presented in Section 3.2. In this section, we assume that the memory is large enough to store the entire data

structures required by each aggregation algorithm. In the rest of this paper, we use the count and max as

the representatives of the two groups of operators, respectively.

3.1 Balanced Tree Algorithm for count Aggregation

A relatively simple approach based on timestamp sorting can provide an e�cient solution for the count

aggregation. This approach starts with loading the entire tuples in memory. Then, the timestamp values

are extracted from the tuples, and each timestamp is associated with a tag, which indicates whether the

timestamp is a start time or an end time of a tuple. These timestamps and tags are then sorted in an

increasing order of the timestamp values. See Figure 3 for a sorted list of timestamps and tags for a sample

database given in Figure 1(a).

Finally, the count aggregate is computed by scanning the sorted timestamps and tags in an increasing

order. Getting started with a counter initialized to zero, the counter is incremented by one when a START

tag is encountered, and it is decremented by one when an END tag is encountered. When more than one tags

are associated with a timestamp, the counter is incremented by the number of START tags or decremented

by the number of END tags. For example, in Figure 3, when the timestamp value 18 is encountered, the

counter is incremented by two from 1 to 3 because there are two START tags associated with the timestamp.

Apparently, the worst case processing time of this approach is O(N logN), where N is the number of tuples

in an input database.

In real world temporal databases, it may be the case that many tuples share the same timestamp values

for their start times and end times. Nonetheless, this approach requires the same amount of memory and

processing time regardless of the repeated timestamp values. Thus, we propose a balanced tree algorithm to

further optimize its performance for such databases with repeated timestamp values.

The motivation behind the balanced tree algorithm is that the sorted list of timestamps can be built even

without loading an entire database into memory at once. Instead, the timestamps can be sorted incrementally

by inserting them into a balanced tree, as the tuples of an input database are being scanned. Each node of

a balanced tree stores a timestamp, either a start time or an end time, but need not store a START/END

tag. Instead of the tag, each node stores two counters: one storing the number of tuples starting at the
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Figure 3: Example of count Aggregation by Sorting Timestamps and Tags
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Figure 4: Example of Balanced Tree Construction

timestamp and the other storing the number of tuples ending at the timestamp.

1

Additionally, a color tag

is stored in each node, as we use the red-black insertion algorithm [5] to keep the tree balanced dynamically.

Figure 4 shows the process of building a balanced tree for the sample Employees table in Figure 1(a). In

the �gure, we only show timestamps and counters, which are relevant to temporal aggregate computation.

When the start time 18 of the �rst record is inserted into an empty tree, a new node is created for the

timestamp, and then its start-counter and end-counter are set to one and zero, respectively. The resulting

tree having a single node is shown in Figure 4(a). Figures 4(b) and (c) illustrate snapshots of the tree before

and after the tree is balanced by the red-black insertion algorithm. We do not elaborate on the red-black

insertion because it is not the focus of this paper.

The balanced tree algorithm proceeds in two steps, �rst by creating the tree and then by traversing the

tree. Whenever a tuple is read from an input database, the balanced tree is probed to see whether the start

and end times of the tuple are already in the tree. If the start (or end) timestamp is not found in the tree,

then a new node is created and inserted into the tree. Otherwise, the start time (or end time) counter of a

node that contains the timestamp is incremented by one without inserting a new node. Once the balanced

tree has been built, the algorithm computes aggregate values while performing an in-order traversal of the

tree. Speci�cally, whenever a tree node is visited, the count aggregate value is incremented by the start-

counter value of the node and decremented by the end-counter value of the node. The proposed balanced

tree algorithm is summarized in Figure 5.

By eliminating redundant timestamp values from the tree, the balanced tree algorithm reduces the

memory requirements and tree traversal time substantially especially for a database with a small percentage

of unique timestamps. The balanced tree stores information needed for temporal grouping and aggregation

both in internal nodes and leaf nodes. Thus, the balanced tree algorithm uses only half the nodes required

by the aggregation tree algorithm, which stores constant intervals only in leaf nodes.

1

For sum aggregation, each node stores two variables: one storing the attribute value sum of the tuples starting at the

timestamp and the other storing the attribute value sum of the tuples ending at the timestamp.

5



Algorithm 1 Balanced Tree

set T  an empty balanced tree;

for each tuple t in a table do begin

if (t:start time = n:ts for any node n in T ) then n.no starts++;

else insert a new node n

0

(with n

0

.ts = t.start time) into T ;

endif

if (t:end time = n:ts for any node n in T ) then n.no ends++;

else insert a new node n

0

(with n

0

.ts = t.end time) into T ;

endif

end

set count  0;

for each node n in T traversed by in-order do begin

count += n.no starts;

output n.ts and count;

count -= n.no ends;

end

end Algorithm

Figure 5: Balanced Tree Algorithm for count Aggregation

3.2 Merge-Sort Algorithm for max Aggregation

While the balanced tree algorithm is simple and e�cient for count aggregations, it cannot be use for max

aggregations. Since a balanced tree stores only unique timestamps and associated counters for count ag-

gregation, it is not possible to keep track of all the tuples that are alive at a given time instant with the

information available in the tree. For example, in Figure 4(c), the root node shows that there exist two

tuples whose start times are 18. However, the tree does not convey any information about the life spans of

the tuples (i.e., the exact end times of the two speci�c tuples). Unlike count aggregations, it is impossible

to compute max aggregations without knowing the exact life spans of tuples in a database.

One can modify the balanced tree algorithm to compute max aggregates, by allowing repeated timestamp

values in a tree and using additional data structures such as dual heaps while traversing the tree. The dual

heaps store the attribute values (on which the max aggregation is performed) of live tuples and dead tuples,

separately. While traversing the tree, the max aggregate can be computed by comparing two maximum values

in both the heaps and popping matched maximum values from the heaps. In fact, the dual heaps are used

to keep track of the life spans of tuples that are required to compute the max aggregate. However, with this

modi�cation, we will lose all the bene�ts of using the balanced tree algorithm, because the tree will need

exactly two nodes per each tuple (i.e., no reduction in memory requirements due to repeated timestamps)

and additional overhead for processing the heaps will be non-trivial.

Instead, we propose a bottom-up aggregation approach, which we call a merge-sort aggregation algorithm.

Like the classical merge-sort algorithm based on the divide-and-conquer strategy, the merge-sort aggregation

algorithm computes a larger (intermediate) aggregate result by merging two smaller (intermediate) aggregate

results. The algorithm starts with merging tuples in pairs at the bottom and terminates when a �nal

aggregate result is obtained at the top.

Formally, an intermediate aggregate can be de�ned as (T

k

;M

k

), where T

k

= ft

0

; t

1

; : : : ; t

k

g and M

k

=

fm

1

;m

2

; : : : ;m

k

g for an integer k � 1. T

k

is a set of k + 1 unique timestamps in an increasing order

(t

0

< t

1

< : : : < t

k

). M

k

is a set of k attribute values, where m

i

(1 � i � k) is a maximum attribute value

associated with a time interval [t

i�1

; t

i

) if there exist at least one live tuple in [t

1�1

; t

i

). Otherwise, m

i

= nil

for an empty interval. No two consecutive values in M

k

are equal (i.e., m

i

6= m

i+1

for any i (1 � i � k� 1)).

Each tuple t in an input database can be considered as a (T

1

;M

1

) with T

1

= ft:start time; t:end timeg and

M

1

= ft:attribute valueg.

Figure 6 illustrates the process of merging the tuples of the sample Employees table in Figure 1(a). The
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Figure 6: Example of Merging for max Aggregation

sample tuples are described as four line segments in Figure 6(a). In the �rst step, the �rst two tuples in the

Employees table are merged into an intermediate result (f8; 18; 31g; f45000; 46000g); the last two tuples are

merged into an intermediate result (f7; 12; 18; 21g; f35000; nil; 38000g). The result of the �rst step is shown

in Figure 6(b). In the second step, the two intermediate results are merged together into the �nal aggregate

result (f7; 8; 18; 31g; f35000; 45000; 46000g), as shown in Figure 6(c).

As an input database of N tuples is scanned, the merge-sort aggregation algorithm generates dN=2e �rst-

step intermediate aggregates in memory. Then, the algorithm recursively merges the intermediate results

until a �nal aggregate result is obtained. Thus, the worst case processing time of the algorithm is O(N logN).

As is shown in Figure 6, the size of an intermediate result (T

k

;M

k

) may be smaller than the tuples themselves

covered by (T

k

;M

k

), because two consecutive intervals can be merged into a single interval if they share the

same aggregate value (i.e., maximum in the example). Thus, the amount of additional memory required

for intermediate results is likely to be smaller than the size of an input database. Nonetheless, for count

aggregations, the balanced tree will remain as the algorithm of choice. This is because the balanced tree

algorithm will keep the memory requirement (i.e., the number of tree nodes) down to the minimum by

building a balanced tree incrementally and by removing repeated timestamps, and thereby minimizing its

processing time.

4 Bucket Algorithm for Large-Scale Aggregation

In addition to the algorithms for small-scale aggregations proposed in the previous section, another major

component of the work proposed in this paper is to develop new techniques for computing temporal aggregates

under the constraint of limited bu�er space. Then, the size of databases we can deal with is not limited by

the size of available memory. Additionally, it is crucial that temporal aggregation require only a constant

number (say, two or three) of database scans, due to potentially huge amount of temporal data. It will be

prohibitively costly for a large-scale database, if the number of required database scans is not limited and

is rather proportional to the size of database. For this reason, we do not consider as an acceptable solution

any method that requires more than a small constant number of database scans.

In this section, we propose a new algorithm based on partitioning database tuples into several buckets,

which has been used for many important database operations such as the relational hash join algorithm. The

idea of the hash join algorithm is to hash two joining relations on the join attribute, using the same hash

function. Then, it is assured that tuples of one relation in a bucket can join only with tuples of the other

relation in the same bucket. Thus once both relations are partitioned, the join operation can be performed

by reading the relations just once, provided that enough memory is available to keep all the tuples of one

relation in a bucket in memory. Assuming uniform distribution of data, it has been shown that the hash

7



t

1

t

2

t

3

t

4

Bucket B

1

Bucket B

2

Bucket B

3

Bucket B

4

Bucket B

1

= ft

1

; t

4

g Bucket B

2

= ft

3

; t

4

g

Bucket B

3

= ft

2

; t

3

; t

4

g Bucket B

4

= ft

2

; t

3

; t

4

g

Figure 7: Time-line partitioning and assignment of tuples into buckets.

join algorithm requires three database scans if the number of bu�er pages is larger than a square root of the

number of disk pages in a smaller relation [7].

Although the idea of data partitioning appears promising for relational hash join operation, it cannot be

applied directly to temporal aggregation. Tuples associated with time intervals are not readily partitioned

into temporally disjoint equivalence classes (e.g., hash buckets), because the time intervals of tuples may be

of any length. Some tuples may overlap with the intervals of more than one buckets, and such tuples must be

checked with tuples in all the overlapping buckets. That is, there is no guarantee that temporal aggregates

can be computed by reading the buckets only a constant number of times.

To circumvent this problem, one can allow assignment of a data object into multiple buckets by replicating

it. This approach can be best described by an example given Figure 7. The time-line of a given temporal

database is partitioned into N

B

disjoint intervals, where N

B

is the number of buckets. If a tuple's life span

is contained in the interval of a bucket, the tuple is assigned to the bucket. For example, in Figure 7, tuple

t

1

will be assigned to bucket B

1

as t

1

's life span is properly contained in that of bucket B

1

. On the other

hand, if a tuple's life span overlaps two or more intervals (say, k intervals), the tuple's life span is split into

k pieces and these pieces may be assigned to k buckets. (It turns out that splitting a tuple into several does

not impact the result of the aggregation.) In Figure 7, the life spans of tuples t

2

, t

3

and t

4

overlap with 2, 3

and 4 buckets, respectively. Thus, tuple t

2

will be assigned to buckets B

3

and B

4

, t

3

to buckets B

2

, B

3

and

B

4

, and t

4

to buckets B

1

, B

2

, B

3

and B

4

.

This process entails replicating tuples and may lead to considerable duplication of data, especially for long-

lived tuples. To minimize duplication of tuples, we propose to assign each tuple solely to the buckets where the

tuple's start and end timestamps lie. Suppose the life span of a tuple t overlaps buckets B

i

; B

i+1

; : : : ; B

j

(0 �

i < j < N

B

). Then, the tuple t will be replicated only in the buckets B

i

and B

j

, but the intermediate buckets

will not store the tuple t. Instead, a meta array is used to aggregate the information that the tuple t's life

span overlaps the intermediate buckets B

i+1

; : : : ; B

j�1

. The size of a meta array is equal to the number of

buckets. The i-th element of a meta array stores an aggregate value (e.g., count) for the i-th bucket.

For example, in Figure 8, the time interval of tuple t

3

spans over three buckets B

2

, B

3

and B

4

. Thus, t

3

is split into two segments (i.e., t

3

and t

0

3

) with adjusted time intervals so that each segment can be properly

contained in the interval of its corresponding bucket. (Solid lines in Figure 8 represent adjusted time intervals

of split tuples.) Then, t

3

and t

0

3

are assigned to two buckets B

2

and B

4

, respectively; the third element of

the meta array is incremented by one. In a similar way, t

4

and t

0

4

are assigned to two buckets B

1

and B

4

respectively, and the second and third elements of the meta array are incremented by one. The resulting

data partitioning and meta array are illustrated in Figure 8. Note that neither the �rst nor the last element

of the meta array stores a valid aggregate value, as no tuple can have a life span longer than the time-line

of an entire database.

Once all the tuples are scanned and partitioned into buckets and a meta array is created, the temporal

aggregate operation can be performed on each bucket independently. Figure 9(a) shows the partial results

of the aggregation performed on each bucket. Then, each aggregate value stored in the meta array is com-
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Figure 9: Steps of the aggregation based on data partitioning and meta array

bined with the aggregation results from each corresponding bucket (e.g., simply by adding counts for count

aggregation). Lastly, the �nal aggregation results can be obtained by merging each pair of adjacent buckets

at their boundaries if the two adjacent aggregate values are equal. Figure 9(b) shows the �nal aggregation

results. The dotted vertical bars in the �gure represent the merged bucket boundaries. Figure 10 outlines

the proposed temporal aggregation algorithm based on data partitioning.. In the algorithm description, it

is assumed that the entire time-line of a table is partitioned into N

B

disjoint intervals of an equal length,

each of which is associated with a bucket. Note that any small-scale aggregation algorithm proposed in the

previous section can be used to aggregate each individual bucket.

Provided that the meta array is small enough to �t in memory and su�cient memory is available to

hold all the tuples in a bucket, the temporal aggregate operation can be performed by reading each bucket

just once. Thus, in total, this approach requires three database accesses (i.e., two reads and one write)

to compute temporal aggregates. Considering the data replication for the tuples overlapped with multiple

buckets, the database access requirement of this approach is likely to increase to some extent depending on
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Algorithm 2 Temporal Bucketization

set I

B

 time interval for each bucket ((T

max

� T

min

)=N

B

);

for each tuple t in a table do begin

set start bucket  (t:start time� T

min

)=I

B

;

set end bucket  (t:end time� T

min

)=I

B

;

insert t into a bucket B

start bucket

;

if (start bucket 6= end bucket) insert t

0

into a bucket B

end bucket

;

for (i=start bucket+1 to end bucket-1) do update meta array[i];

end

for (i=0 to N

B

� 1) do begin

perform temporal aggregation on the bucket B

i

;

combine the scalar value of meta array[i] to the bucket B

i

;

merge the bucket boundary with B

i�1

as needed;

end

end Algorithm

Figure 10: Bucket Algorithm based on Temporal Data Partitioning

various factors such as the life spans of tuples and the number of buckets used. Even in the worst case,

however, the size of a given table can increase only up to twice its original size by replicating each tuple

in the table into two buckets. Thus, the database access requirement of this approach is still bounded to a

small constant number of scans. We will show the performance impact of data replication in Section 6.

5 Parallel Bucket Algorithm

Parallel processing for database applications typically involves partitioning of data, followed by allocation

of the partitions to a set of processors. Then, the processors perform operations on the partitioned data

in parallel, achieving speed-up in query processing times. Among the various architectures that have been

proposed for parallel database systems, a shared-nothing architecture [16] has made it an attractive choice

for large-scale database applications due to its high potential for scalability. By scalability we mean the

capability of delivering an increase in performance proportional to an increase in the number of participating

processors.

In a shared-nothing architecture, each processor owns local memory and secondary storage units, and

communicates each other by message passing. Initial data placement can be either centralized or distributed

across multiple processors. For most of the parallel database operations, however, some of the data may have

to be redistributed amongst processors that actually participate in the operations. We assume that resulting

aggregates remain in local storage units of the participating processors without collecting the results on a

special coordinator processor. Then, the resulting aggregates can be used as intermediate data for the next

phase of parallel query processing.

As was pointed out in Section 2, most of the previous attempts to develop scalable methods for computing

large-scale temporal aggregates were based on parallelizing the aggregation tree algorithm. For the reason,

those approaches inherit all the limitations the aggregation tree algorithm has. Speci�cally, these approaches

will su�er from O(N

2

) worst-case running time and tight limitations on a database size they can deal with.

In this section, we propose a new parallel temporal aggregation algorithm based on the bucket algorithm

(Algorithm 2) presented in the previous section. It is relatively straightforward to parallelize the bucket

algorithm by distributing buckets across participating processors. The time-line of a given temporal database

is partitioned into P disjoint intervals, where P is the number of processors. Then, on each processor, the

time-line of the processor is again partitioned into N

B

disjoint intervals. However, distributing the buckets

is not enough to compute correct aggregate results, because the construction of meta arrays must also be

processed in parallel in an e�cient way.

10
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Figure 11: Data distribution and meta arrays for P

0

's local data

We propose to use a local meta array and a global meta array on each processor for tuples whose life spans

overlap time-lines of multiple local buckets and multiple processors, respectively. Speci�cally, if the life span

of a tuple t overlaps the k-th bucket (B

P

i

k

) of processor P

i

through the l-th bucket (B

P

j

l

) of processor P

j

,

the tuple t will be replicated only in B

P

i

k

and B

P

j

l

. Then, a local meta array of P

i

is used to aggregate the

information that the tuple t's life span overlaps the intermediate buckets B

P

i

k+1

; : : : ; B

P

i

N

B

, and so is a

local meta array of P

j

for B

P

i

1

; : : : ; B

P

i

l�1

. Finally, a global meta array is updated on a processor that owns

the tuple t to inform the intermediate processors P

i+1

; : : : ; P

j�1

of the existence of the tuple t overlapped

with their time-lines. The size of a global meta array is equal to the number of processors. The i-th element

of a global meta array stores an aggregate value (e.g., count) for the i-th processor. Local meta arrays are

identical with the ones used for the sequential bucket algorithm. Each processor computes its own global

and local meta arrays independently.

In Figure 11, for example, suppose that tuples t

1

; : : : ; t

4

are initially stored on a processor P

0

, and four

processors P

0

; : : : ; P

3

participate in a count aggregation. Since the time interval of t

3

spans over three remote

processors P

1

, P

2

and P

3

, t

3

is split into two segments t

3

and t

0

3

, which are then sent to the processors P

1

and

P

3

, respectively. Then, the third element of the global meta array of P

0

is incremented by one. In a similar

way, t

4

is assigned to P

0

's local bucket B

03

and t

0

4

is sent to processor P

3

; the second and third elements of

P

0

's global meta array are incremented by one. Figure 11 shows the resulting data distribution across P

0

's

local buckets, data shipping to other processors, and P

0

's local and global meta arrays. Note that there may

be some tuples sent from other processors to P

0

, but they are not shown in Figure 11.

The proposed parallel aggregation algorithm is summarized in Figure 12. In the algorithm description,

it is assumed that the entire time-line of a table is partitioned into N

B

� P disjoint intervals of an equal

length, each of which is associated with a bucket, and the buckets are distributed across P processors by

range partitioning so that each processor is assignedN

B

consecutive buckets. This range partitioning scheme

obviously minimizes the size of a global meta array in a way that only one array element is required per each

processor. Since each processor computes a global meta array independently only for its local data, all the P

processors need to communicate each other to compute a �nal global meta array for an entire database with

respect to a given operator op. The operator op is determined by a kind of aggregate operation. For example,

op will be an addition operator for a count aggregation and a maximum operator for a max aggregation.

Such collective communication for computing a �nal global meta array can be implemented e�ciently on

most parallel computers and networks of workstations [1]. Thus the overhead for combining global meta

arrays is expected to be negligible because the volume of communication is only P words per processor.
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Algorithm 3 Parallel Temporal Bucketization

set P  number of participating processors;

set I

B

 time interval for each bucket ((T

max

� T

min

)=(N

B

�P));

set this proc  a local processor id (0 � this proc < P);

for each tuple t in a local partition or from a remote processor do begin

set start proc  (t:start time� T

min

)=(I

B

�P);

set end proc  (t:end time� T

min

)=(I

B

�P);

if (start proc 6= this proc) then send t to a processor P

start proc

;

if (end proc 6= this proc) then send t

0

to a processor P

end proc

;

for (i=start proc+1 to end proc-1) do update global meta array[i];

insert t into one or two local buckets as in Algorithm 2;

update local meta array as in Algorithm 2;

end

Globally combine the global meta array wrt. an aggregate operator op;

for (i=0 to N

B

� 1) do begin

local meta array[i] op(local meta array[i]; global meta array[this proc]);

perform temporal aggregation on the bucket B

i

with local meta array[i] as in Algorithm 2;

end

end Algorithm

Figure 12: Parallel Bucket Algorithm based on Temporal Data Partitioning

6 Empirical Evaluation

In this section, we evaluate the proposed algorithms empirically and compare with the previous work. We

chose a count temporal aggregation and carried out experiments under various operational conditions that

may a�ect the performance of the algorithms. In particular, we focus on the performance gain by the

proposed algorithms for small-scale aggregations, and the scalability of the sequential and parallel bucket

algorithms.

6.1 Experimental Settings

Testing and benchmarks were performed on a cluster of 64 Intel Pentium workstations with 200 MHz clock

rate.

2

Each workstation has 128 MBytes of memory and 2 or 4 GBytes of disk storage with Ultra-wide

SCSI interface, and runs on Linux kernel version 2.0.30. The workstations are connected by a 100 Mbps

switched Ethernet network. The switch can handle an aggregate bandwidth of 2.4 Gbps in an all-to-all type

communication. For message passing between the Pentium workstations, we used the LAM implementation

of the MPI communication standard [3]. With the LAM message passing package on the Pentium cluster,

we observed an average communication latency of 790 microseconds and an average transfer rate of about

5 Mbytes/second. Note that this is relatively high latency and low transfer rate compared with parallel

computers equipped with high performance switches such as IBM SP-2 parallel systems.

3

For both sequential and parallel implementations, the same bu�er size of 4 Kbytes was used for disk

IO and message passing. Non-blocking message passing primitives were used in an attempt to minimize

communication overhead by allowing inter-processor communication to be overlapped with local computa-

tion and disk IO. Throughout the experiments, we measured elapsed times including disk access time and

communication overhead. For accurate measurement, we averaged elapsed times from multiple runs after

eliminating extreme cases. Additionally, we avoided the system cache e�ects for disk accesses by loading

2

For scalable performance evaluation, we were able to carry out experiments on only up to 32 workstations because several

of them were under repair at the time of our experimental study.

3

On a SP-2 system with a proprietary MPI implementation mpif, we observed an average communication latency of 55

microseconds and an average transfer rate of about 35 Mbytes/second.
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irrelevant data into the entire memory between consecutive runs of our experiments.

We generated synthetic data in the same way as in [12]. Each database has a time-line of one million

temporal instants. We considered two basic life spans for tuples: short-lived and long-lived. The life span

of a short-lived tuple was determined randomly between one and 1,000 instants; the life span of a long-lived

tuple was determined randomly between 200,000 and 800,000 instants, namely, between 20 and 80 percent

of the time-line of a database. In most of our experiments, the population of long-lived tuples was �xed

at 10 percent or 30 percent. The start times of tuples were uniformly distributed over the time-line of a

database. Each tuple was 20 bytes including two temporal attributes (start time and end time) and other

non-temporal attributes as well. Synthetically generated databases used in our experiments were not sorted

by any temporal attribute unless stated otherwise.

6.2 Small-Scale Aggregation

The �rst set of experiments were carried out on relatively small databases between 1 MBytes and 20 MBytes

so that all the required data structures can �t in available memory. Recall that the algorithms proposed in

Section 3 as well as the aggregation tree algorithm and its variation require that the entire data structures

be kept in memory. In this section, we used the balanced tree algorithm for count aggregations, and the

merge-sort aggregation algorithm for max aggregations.

Figure 13(a) compares the balanced tree and aggregation tree algorithms for count aggregations; Fig-

ure 13(b) compares the merge-sort and aggregation tree algorithms for max aggregations. The proposed

balanced tree and merge-sort aggregation algorithms consistently performed about twice faster than the

aggregation tree algorithm for count and max aggregations, respectively. While the aggregation tree took

more time to aggregate a database with higher percentage of long-lived tuples, the processing times of the

two proposed algorithms remained constant for di�erent percentage of long-lived tuples. Note that the per-

formance of the aggregation tree algorithm remains unchanged for count and max aggregations, since the

algorithm works essentially in the same way for both the aggregations.

In Figure 13(c) and (d), the tuples in input databases were sorted by their start time, where we expected

the worst-case performance from the aggregation tree algorithm. The processing times of the aggregation

tree were several orders of magnitude slower than the two proposed algorithms, and were plotted as almost

vertical lines in the �gures. Thus, we compared with the k-ordered aggregation tree algorithm (with k = 1)

instead. The proposed algorithm still performed two to three times faster than the k-ordered aggregation

tree algorithm.

In summary, the proposed algorithms outperformed the aggregation tree and k-ordered aggregation tree

consistently by a signi�cant margin. The k-ordered aggregation tree requires a priori knowledge about

the orderedness of databases, whereas the proposed algorithms do not. (Such knowledge will help reduce

the processing time of the merge-sort algorithm, but it is not required.) The performance of the proposed

algorithms was not a�ected by the percentage of long-lived tuples, as Figure 13(e) and (f) show the processing

times measured on databases (20 MB) with a varying percentage of long-lived tuples.

6.3 Bucket Algorithm for Large-Scale Aggregation

Despite the fact that the balanced tree and merge-sort aggregation algorithms were designed for two dif-

ferent groups of aggregate operations, both algorithms showed almost identical performance behaviors in

the previous experiments. Thus, for the rest of this section, we present experimental results only for count

aggregations.

The second set of experiments were carried out to evaluate the bucket algorithm proposed in Section 4.

First, we performed aggregations with and without data partitioning for small databases, so that we could

measure the overhead of data partitioning. The balanced tree algorithm was used to compute count ag-

gregates. In Figure 14(a), we used 64 buckets irrespective of database sizes, which was large enough to

demonstrate the overhead of data partitioning. Compared with the balanced tree algorithm without data

partitioning, we observed about 10 to 30 percent increase in processing time of the bucket algorithm. Despite

the additional overhead, however, the bucket algorithm still outperformed the aggregation tree algorithm

signi�cantly. (Compare Figure 13(a) and Figure 14(a).)
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Figure 13: Aggregation time for small-scale databases

For small databases, the amount of overhead of data partitioning was expected to be smaller than what it

should be for large databases, because all the buckets might remain in memory even after they were written

to disk. So, for the next step of aggregating individual buckets, the cached buckets would be used instead of

the disk copies. Also note that performance of the bucket algorithm is a�ected by the percentage of long-lived

tuples. The reason appears quite obvious because long-lived tuples are more likely to be replicated than

short-lived tuples, leading to increased computation time and disk access time.

From the experiments, we have noticed that performance of the bucket algorithm is a�ected by the

number of buckets used for data partitioning. More interestingly, there seemed to exist local optimum
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Figure 14: Aggregation time for large-scale databases

values, which were determined by database sizes. For example, in Figure 14(b), three, eight and �fteen were

the optimal bucket numbers for a database of 100 MBytes, 200 MBytes and 400 MBytes with 10 percent of

long-lived tuples, respectively. Our conjecture is that this is caused by two opposite performance e�ects from

data partitioning. First, since the computational complexity of the balanced tree algorithm is higher than

linear (O(N logN)), the overall computational complexity will be reduced by data partitioning. Speci�cally,

the cost of a balanced tree construction is reduced from O(N logN) down to O(N logN �N logN

B

), where

N is the number of tuples and N

B

is the number of buckets. Second, the more buckets are used for data

partitioning, the more tuples are likely to be replicated, which will in turn increase the cost of disk accesses.

We acknowledge that this issue should be addressed more carefully.

Figure 14(c) shows processing times of the bucket algorithm for databases of size from 20 MBytes up to

1 GBytes. The number of buckets used for data partitioning was 2, 8, 16, 24, 32 and 40 for 20 MBytes, 200

MBytes, 400 MBytes, 600 MBytes, 800 MBytes and 1 GBytes databases, respectively. Since each of these

databases is too large to �t in memory (with an exception of a 20 MByte database), none of the small-scale

aggregation algorithms could be used for this experiment. The results shown in Figure 14(c) demonstrate

that the proposed bucket algorithm can compute temporal aggregates for databases substantially larger than

the size of available memory. However, it should be noted that the processing time of the algorithm grows

faster than linearly as the size of a database increases. This clearly motivates the need of scalable solutions

such as the parallel bucket algorithm we proposed in Section 5.
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Figure 15: Scale-up performance of parallel aggregation
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Figure 16: Speed-up performance of parallel aggregation

6.4 Parallel Algorithm for Large-Scale Aggregation

The third set of experiments were designed to evaluate the scalability of the parallel bucket algorithm

proposed in Section 5. For all the experiments presented in this section, input databases were distributed

across participating processors by round-robin partitioning on a non-temporal attribute. By choosing such

a non-temporal partitioning scheme for initial data placement, we can e�ectively eliminate any potential

advantage that the parallel bucket algorithm can exploit for better performance. On the other hand, range

partitioning on a temporal attribute would be the most favorable data placement for the parallel bucket

algorithm, because the number of tuples to be shipped to remote processors could be minimized and thereby

reducing communication overhead.

For the scale-up performance measurements, we �xed the size of a database partition on each processor

to 10 million tuples (i.e., 200 MBytes), in a way that the entire database would grow proportionally as the

number of processors increased. While the number of processors was varied from 1 to 32, the number of local

buckets was �xed at 8. Thus, the total number of buckets used for data redistribution was 8� P , where P

was the number of participating processors. The number of local buckets was determined from the previous

experiments (see Figure 14(b)) based on the local partition size. Note that we used the sequential bucket

algorithm for the case P = 1.
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In Figure 15(a), the scale-up plots were fairly close to a horizontal line, which indicated a nearly linear

scale-up performance with respect to the increasing number of processors. This was corroborated by fact

that the time spent on data partitioning remained quite static when the number of processors was no less

than eight. See Figure 15(b) for measurements (from the case of 10% long-lived tuples) separated into two

processing stages. As the number of processors was increased from one to two, data partitioning time was

increased by about 80 percent, due mainly to additional cost for message passing between processors. In

contrast, the time spent on aggregation was increased only by 12 percent due to increased data replication.

As the number of processors increased, however, the increase of overhead leveled o� and became essentially


at above the four processor case, and thereby allowing nearly linear scale-up performance.

For the speed-up performance measurements, we �xed the size of an entire database to 320 million tuples

(i.e., 6.4 GBytes), and determined the size of a database partition based on the number of participating

processors. That is, the size of a local partition on a single processor was 6.4 GBytes=P. Due to a limited disk

space on each processor, we started experiments from 8 processors and increased the number of processors

up to 32, changing the size of local database partitions accordingly from 800 MBytes to 200 MBytes. The

resulting speed-up performance of the parallel bucket algorithm was shown in Figure 16(a).

As a matter of fact, it was surprising that a super-linear speed-up was observed whenever the number

of processors increased. From the separate measurements in Figure 16(b) (from the case of 10% long-lived

tuples), such a super-linear speed-up was largely attributed to the performance gain from local aggregation,

which grew much faster than linearly as the number of processors increased Note that the number of buckets

used for data redistribution increases proportionally to the number of processors. Thus, we conjecture that

the overall aggregation cost is reduced by computing many smaller aggregations rather than computing a

few larger aggregations.

7 Conclusions and Future Work

We have developed new algorithms for computing temporal aggregates. The proposed algorithms provide

signi�cant bene�ts over the current state of the art in di�erent ways. The balanced tree and merge-sort

aggregation algorithms have improved the worst-case and average-case processing time signi�cantly for small

databases that �t in memory. We have also developed new sequential and parallel bucket algorithms based

on novel data partitioning schemes. These algorithms can be used to compute temporal aggregates for

databases that are substantially larger than the size of available memory, by processing data partitions in a

sequential or parallel fashion. In particular, with the local and global meta arrays for partitioned data, we

have demonstrated that the parallel bucket algorithm achieves scalable performance for large-scale databases

by delivering nearly linear scale-up and speed-up.

From our experiments, we have observed that there are a few factors that a�ect the performance. They

include the percentage of long-lived tuples and the number of buckets used for data partitioning. Although

the proposed algorithms outperformed previous approaches consistently irrespective of such conditions, we

believe it is worth elaborating further on the issues. In this paper, we assumed that tuples were uniformly

distributed within a time-line of a database. The performance of the proposed solutions may degenerate

if there exist skews in data distribution. We will investigate the use of adaptive data partitioning or data

sampling techniques to handle such data skews. Additionally, we plan to study performance impacts of

such factors as initial data placement (e.g., temporal partitioning vs. non-temporal partitioning) and data

reduction by aggregation.

We also plan to extend the data partitioning approach to spatio-temporal databases, which requires com-

puting aggregates for data objects with two or more dimensional extents. Unlike the temporal aggregation,

we expect that the process of data partitioning and generating meta arrays will be more sophisticated.
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