
Parallel Algorithms for Computing Temporal

Aggregates

�

Jose Alvin G. Gendrano

y

Bruce C. Huang

z

Jim M. Rodrigue

x

Bongki Moon

y

Richard T. Snodgrass

y

y

Dept. of Computer Science

z

IBM Storage Systems Division

x

Raytheon Missile Systems Co.

University of Arizona 9000 S. Rita Road 1151 East Hermans Road

Tucson, AZ 85721 Tucson, AZ 85744 Tucson, AZ 85706

fjag,bkmoon,rtsg@cs.arizona.edu brucelee@us.ibm.com jmrodrigue@west.raytheon.com

Technical Report 98-9

Abstract

The ability to model the temporal dimension is essential to many applications. Furthermore, the rate

of increase in database size and response time requirements has out-paced advancements in processor

and mass storage technology, leading to the need for parallel temporal database management systems.

In this paper, we introduce a variety of parallel temporal aggregation algorithms for a shared-nothing

architecture based on the sequential Aggregation Tree algorithm. Via an empirical study, we found that

the number of processing nodes, the partitioning of the data, the placement of results, and the degree of

data reduction e�ected by the aggregation impacted the performance of the algorithms in di�erent ways.

We designed the Time Division Merge algorithm to produce distributed result placement, as di�erentiated

from the centralized result strategies used by the other proposed algorithms. For centralized results and

high data reduction, we found that the Pairwise Merge algorithm was preferred regardless of the number

of processing nodes, but for low data reduction it was only preferred up to 32 nodes, while a variant of

Time Division Merge was best for larger con�gurations.

September, 1998

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

�

This work was sponsored in part by National Science Foundation grants CDA-9500991 and IRI-9632569.

1 Introduction

Aggregate functions are an essential component of data query languages, and are heavily used in many

applications such as data warehousing. Hence, e�cient execution of aggregate functions is an important goal.

Aggregate computation is expensive, especially in a temporal database where the problem is complicated

by having to compute the intervals of time for which the aggregate value holds. For example, �nding the

(time-varying) maximum salary of professors in the Computer Science Department involves computing the

temporal extent of each maximum value, which requires determining the tuples that overlap each temporal

instant.

The appeal of parallel processing technology becomes even stronger as the size of many data-intensive

applications become large, as can be seen in OLAP systems and data warehousing environments [3, 4].

Although there exist e�cient algorithms for computing temporal aggregates [9, 10, 12], to the best of our

knowledge, no parallel algorithm has been developed for computing temporal aggregates.

In this paper, we present several new parallel algorithms for the computation of temporal aggregates on

a shared-nothing architecture [11]. Speci�cally, we focus on the Aggregation Tree algorithm [9] and propose

several approaches to parallelize that algorithm. The performance of the parallel algorithms relative to

various data set and operational characteristics is our main interest.

The rest of this paper is organized as follows. Section 2 gives a review of related work and presents

the sequential algorithm on which we base our parallel algorithms. Our proposed algorithms on computing

parallel temporal aggregates are then described. Section 4 presents empirical results obtained from the

experiments performed on a shared-nothing Pentium cluster. Finally, section 5 concludes the paper and

gives an outlook to future work.

2 Background and Related Work

There are two types of non-temporal aggregates in relational database systems, scalar aggregates and ag-

gregate functions [7]. Scalar aggregates are operations such as average, min, max, count, and sum that

produce a single value over an entire relation, while aggregate functions �rst partition a relation based on

some attribute value and then compute scalar aggregates independently on the individual partitions.

Simple algorithms for evaluating scalar aggregates and aggregate functions were discussed by Epstein [7].

A di�erent approach employing program transformation methods to systematically generate e�cient iterative

programs for aggregate queries has also been suggested [8]. Tumas extended Epstein's algorithms to apply

to temporal aggregates [12]; these were further extended by Kline [9]. While the resulting algorithms were

quite e�ective in a uniprocessor environment, all su�er from poor scale-up performance, which identi�es the

need to develop parallel algorithms to compute temporal aggregates.

Early research on developing parallel algorithms focused on the framework of general-purpose multi-

processor machines. Bitton et al. proposed two parallel algorithms for processing (conventional) aggregate

functions [1]. The Subqueries with a Parallel Merge algorithm computes partial aggregates on each parti-

tion and combines the partial results in a parallel merge stage to obtain a �nal result. Another algorithm,

Project by list, exploits the ability of the parallel system architecture to broadcast tuples to multiple pro-

cessors. The more recent Gamma database machine project [6] implemented similar scalar aggregates and

aggregate functions on a shared-nothing architecture.

The parallel temporal aggregation algorithms proposed in this paper are based on the (sequential) Ag-

gregation Tree algorithm (SEQ) designed by Kline [9]. The aggregation tree is a binary tree that tracks the

number of tuples whose timestamp periods contain an indicated time span. Each node of the tree contains

a start time, an end time, and a count. When an aggregation tree is initialized, it begins with a single node

containing < 0;1; 0 > (see the initial tree in Figure 1).

In the following example [9], there are 4 tuples to be inserted into an empty aggregation tree (see

Table 1(a)). The start time value 18 of the �rst entry to be inserted splits the initial tree, resulting in the

updated aggregation tree shown in Figure 1. Because the original node and the new node share the same end

date of 1, a count of 1 is assigned to the new leaf node < 18;1; 1 >. The aggregation tree after inserting

the rest of the records in Table 1(a) is shown in Figure 1.

To compute the number of tuples for the period [8; 12) in this example, we simply take the count from

the leaf node [8; 12) (which is 1), and add its parents' count values. Starting from the root, the sum of the

1

Name Salary Begin End

Richard 40K 18 1

Karen 45K 8 20

Nathan 35K 7 12

Nathan 37K 18 21

Count Begin End

1 7 8

2 8 12

1 12 18

3 18 20

2 20 21

1 21 1

(a) Input Database Records (b) Temporal Aggregation Results

Table 1: Sample Database and Its Temporal Aggregation

0 ∞ 0

18 ∞ 1

Final Tree after insert ing [8,20) , [7,12) , [18,21)

0 ∞ 0

Ini t ial Tree

After adding [18,∞)

0 8 0

0 7 0

7 8 1

0 18 0

8 18 1

0 ∞ 0

0 18 0

18 ∞ 1

8 12 1

12 18 0

18 20 2

20 ∞ 0

20 21 1

21 ∞ 0

Figure 1: Example run of the Sequential(SEQ) Aggregation Tree Algorithm

2

parents' counts is 0+ 0+1 = 1 and adding the leaf count, gives a total of 2. The temporal aggregate results

are given in Table 1(b).

It should be noted that the order of tuple insertion into the aggregation tree a�ects its performance,

thought not its result. If the tuples are sorted via the start time and inserted in that order, the aggregation

tree would look more like a linked list, causing insertions to be slower than insertions into a balanced binary

tree.

Though SEQ correctly computes temporal aggregates, it is still a sequential algorithm, bounded by

the resources of a single processor machine (see Figure 2(a)). Therefore, a parallel method for computing

temporal aggregates is needed.

3 Parallel Processing of Temporal Aggregates

In this section, we propose �ve parallel algorithms for the computation of temporal aggregates. We start

o� with two simple parallel extensions to the sequential Aggregation Tree algorithm, the Single Aggregation

Tree (abbreviated SAT) and Single Merge (SM) algorithms. We then go on to introduce the Time Division

Merge with Centralizing step (TDM+C) and Pairwise Merge (PM) algorithms, which hopefully will perform

better, albeit requiring more coordination. Finally, we present the Time Division Merge (TDM) algorithm,

a variant of TDM+C, which distributes the resulting relation, as di�erentiated from the centralized results

produced by the other algorithms.

Disk Disk...

Worker Node
with

Aggregat ion

Tree

Client

R
e

s
u

lt

R
e

q
u

e
s

t

Disk Disk

Aggregat ion

Tree

Coord inator

Process

Disk Disk

...
Worker Nodes

Part i t ioned
Data

Disk Client

Query

Aggregate
Resul t

(a) SEQ (b) SAT

Figure 2: SEQ and SAT Algorithms

3.1 Single Aggregation Tree (SAT)

The �rst algorithm, SAT (see Figure 2(b)), extends the Aggregation Tree algorithm by parallelizing disk

I/O. Each worker node reads its data partition in parallel, constructs the valid-time periods for each tuple,

3

and sends these periods up to the coordinator, along with the attribute over which the aggregate is being

computed (except for the COUNT aggregate). The central coordinator receives the periods from all the worker

nodes, builds the complete aggregation tree, and returns the �nal result to the client.

Disk Disk Disk Disk

...
Worker Nodes

Part i t ioned
Data

Loca l
Aggregat ion

Trees

ClientResult

Loca l
Aggregat ion

Trees

Coord inator

Comple ted
Aggregat ion

Tree

Final Data Col lect ion

Figure 3: Single Merge (SM) Algorithm

3.2 Single Merge (SM)

The second parallel algorithm, SM (see Figure 3), is more complex than SAT, in that it includes computa-

tional parallelism along with I/O parallelism. Each worker node builds a local aggregation tree, in parallel,

based on its data partition. Upon �nishing their local aggregation trees, the worker nodes send the coordi-

nator a Done message. The coordinator keeps track of the worker nodes who have �nished, and polls them

sequentially for their aggregation tree's leaves. For increased parallelism, the coordinator does not wait until

all worker nodes �nish and starts polling for leaves as soon as the �rst Done message is received.

Unlike the SAT coordinator, which inserts periods into an aggregation tree, the SM coordinator merges

each of the leaves it receives using a variant of merge-sort. The use of this e�cient merging algorithm is

possible since the worker nodes send their leaves in a temporally sorted order. Finally, after all the worker

nodes �nish sending their leaves, the coordinator returns the �nal result to the client.

3.3 Time Division Merge with Coordinator (TDM+C)

Like SM, the third parallel algorithm also extends the aggregation tree method by employing both compu-

tational and I/O parallelism (see Figure 4). The main steps for this algorithm are outlined in Figure 5.

3.3.1 Overall Algorithm

TDM+C starts when the coordinator receives a temporal aggregate request from a client. Each worker node

is then instructed to build a local aggregation tree based on its data partition with the knowledge of the

number of worker nodes, p, participating in the query.

4

Disk Disk Disk Disk

...
Worker Nodes

Parti t ioned
Data

Local
Aggregation

Trees

ClientResult

Local
Aggregation

Trees

All-to-All
Exchange

Coordinator

Completed
Aggregation

Tree

Final Data Collect ion

Figure 4: Time Division Merge with Centralizing Step (TDM+C) Algorithm

After each worker node constructs its local aggregation tree, the tree is augmented in the following

manner. The node traverses its aggregation tree in DFS order, propagating the count values to the leaf

nodes. The leaf nodes now contain the full local count for the period they represent, and any parent nodes

are discarded. After all worker nodes complete their aggregation trees, they exchange minimum (earliest)

start time and maximum (latest) end time values to ascertain the overall timeline of the query.

Each local aggregation tree is then split into p local partitions, each consisting of a period and a tuple

count, where each partition contains approximately the same number of tuples. In splitting the local aggre-

gation trees, we try to exploit processor parallelism and implement load balancing. Note that this strategy

allows the periods of the local partitions to have di�erent durations. The local partition set (containing p

partitions) from each processing node is then sent to the central coordinator.

The central coordinator then takes all p local partition sets

1

and computes the p global partitions, one

for each worker node (how this is done is discussed in detail in the next section).

After computing the global time partition set, the coordinator then naively assigns the period of the i

th

partition to the i

th

worker node, and broadcasts the global partition set and respective assignments to all

the nodes. The worker nodes then use this information to decide which local aggregation tree leaves to send,

and to which worker nodes to send them to. Note that inserted periods that span the periods of more than

one partition are cut, and the fragments are sent to the worker nodes assigned to the overlapped partitions

(cutting the inserted periods does not a�ect the correctness of the result).

Worker nodes then merge the leaves they receive with the leaves they already have, and are responsible

for computing the temporal aggregate results for the period of the partition assigned to them. When all

the worker nodes are done merging, the coordinator polls them for �nal answers sequentially, in order of the

periods of their assigned partitions. Finally, the coordinator merely concatenates the results and returns

them to the client. The results are guaranteed not to overlap.

1

A total of p

2

local partitions are created by p worker nodes.

5

1. Client request

2. Build local aggregation trees

3. Calculate local partition sets

4. Calculate global partition set

5. Exchange data and merge

6. Merge local results

7. Return results to client

Figure 5: Major Steps for the TDM+C Algorithm

Count Begin End

50 5 9

50 9 800

50 800 1500

15 0 30

15 30 350

15 350 10000

30 0 10

30 30 1000

30 1000 5000

Table 2: Local Time Partitions from Three Worker Nodes

3.3.2 Calculating the Global Partition Set

We now examine in more detail the computation of the global partition set by the central coordinator. Recall

that the coordinator receives from each processing node a local partition set, consisting of p contiguous

partitions, each containing a period and a tuple count. The goal is to temporally distribute the computation

of the �nal result, with each node processing roughly the same number of leaf nodes (based on the leaf node

information sent by the worker nodes).

As an example, Figure 7 presents 3 local partitions from 3 worker nodes. The number between each hash

mark segmenting the local timeline represents the number of leaf nodes intersecting that local partition. The

total number of leaf nodes from the 3 nodes is 50 �3+15 �5+30 �3 = 285. So the best plan is to have

285

3

= 95

leaf nodes to be processed on each node. Figure 6 illustrates the computation of the global partition set.

We modi�ed the Aggregation Tree algorithm to compute the global partition set, based on the leaf node

information sent by the worker nodes. In doing so, we can treat the local partition sets from the participating

worker nodes as periods (see Table 2), inserting these periods into the modi�ed aggregation tree. Note that

this use of the Aggregation Tree is entirely separate from the use of this same structure in computing the

aggregate. Here we are concerned only with determining a division of the timeline into p contiguous periods,

each with approximately the same number of leaves.

There are three main di�erences between our Modi�ed Aggregation Tree algorithm used in this portion

TDM+C and the original Aggregation Tree [9], used in step 2 of Figure 5. First, the \count" �eld of this

aggregation tree node is incremented by the count value of the local partition being inserted, instead of just

by 1. Second, a parent node cannot have a count value greater than 0. When a leaf node is split and becomes

a parent node, its count is split proportionally between the two new leaf nodes based on the durations of

their respective time periods. This new parent's count becomes 0. Third, during an insertion traversal for a

6

T1 stt

∞
T2 stt Tp stt T2end T1end Tp end

Overall Timeline

Minimum StartTime = T1 stt

Maximum EndTime = Tp
end

Global Time

Segment
Partit ion Lines

T
1

T
2 T

p
T

p-1
T ...

Time Segments

Timeline Covered By Node

Time 0

1

2

p

..
.

W

o

r

k

e

r

N

o

d

e

s

Figure 6: Timeline divided into p partitions, forming a global partition set

record, if the search traversal needs to be split, the record count is split proportionally between the left and

right sub-trees.

As an example, suppose we inserted the �rst three local partitions, and now we are inserting the fourth

one [0,30)(15). The current modi�ed aggregation tree, before inserting the fourth local partition, is shown

in Figure 8. Notice that for leaf node [5,9)(50), the count value is set to 50 instead of 1 (�rst di�erence).

The second and third di�erences are exempli�ed when the fourth local partition is added. At the root

node, we see that the period for this fourth partition overlaps the periods of the left sub-tree and the right

sub-tree. In the original aggregation tree, we simply added 1 to a node's count in the left sub-tree and the

right sub-tree at the appropriate places. Here, we see the third di�erence. We split this partition's count

of 30 in proportion to the durations of the left and right sub-trees. The left sub-tree of the root contains

a period [0,5) for a duration of 5 time units. The fourth local partition's period is [0,30), or 30 time units.

We compute the left sub-tree's share of this local time partition's count as

(5�0)

(30�0)

� 15 = 2, while the right

0

5 9

10

30 350

800

1000

1500

5000

100000

50 50 50

15 15 15

30 30 30

Figure 7: Local Partition Sets from Three Worker Nodes

7

0 ∞ 0

5 ∞ 0

0 5 0

9 800 50

5 9 50

9 ∞ 0 800 ∞ 0

800 1500 50

1500 ∞ 0

Inserted Records [5,9)(50), [9,800)(50), and [800,1500)(50)

Figure 8: Result of Adding the First 3 Local Time Partitions into the Modi�ed Aggregation Tree

0 ∞ 0

5 ∞ 0

0 5 2

9 800 0

5 9 52

9 ∞ 0 800 ∞ 0 800 1500 50

1500 ∞ 0Inserted Records [5,9)(50), [9,800)(50), [800,1500)(50), and [0,30)(15)

9 30 12

30 800 49

Figure 9: Resulting aggregation tree from adding partition 4 from Table 2 to Figure 8

sub-tree's share is 15 � 2 = 13. In this case, the left sub-tree leaf node [0,5) now has a count of 2 (see

Figure 9). We now pass 13 down the right sub-tree, increasing leaf node [5,9)(50) to [5,9)(52) as its share of

the newly added partition's count, 2, is added to it. At leaf node [9,800)(50), the inserted partition's count

is now down to 11, since 2 was taken by node [5,9)(52).

Now, the second di�erence comes into play. Two new leaf nodes are required to be split from [9,800)(50).

The new leaves are [9,30) and [30,800). Leaf [9,30) receives all the remaining inserted partition's count of

11. The count of 50 from [9,800)(50) is now divvied up amongst the two new leaf nodes. The left leaf

node receives

(30�9)

(800�9)

� 50 = 1 of the 50, while the right leaf node receives 49. So the new left leaf node is

now [9,30)(12), where 12 comes from 11 + 1, and the new right leaf node shows as [30,800)(49). Again, see

Figure 9 for the result. Table 3 shows the leaf node values in a tabular format once all 9 local time partitions

from Table 2 are inserted.

Now that the coordinator has the global span leaf counts and the optimal number of leaf nodes to be

processed by each node, it can �gure out the global partition set. The idea is simple. For each node (except

the last one), we continue adding the span leaf counts until it matches or surpasses the optimal number of

leaf nodes. If the count is more than the optimal number, then we break up the leaf node that causes this

node count to be greater than the optimal number. Once again, the leaf node division of counts is done

proportionally to the duration of the periods.

As an example, take the output from Table 3. We know the optimal number of periods per global

partition is 95. So we add the leaf node counts until we reach node [10,30)(12). The sum at this point is 96,

8

Count Begin End

17 0 5

64 5 9

3 9 10

12 10 30

44 30 350

43 350 800

21 800 1000

40 1000 1500

32 1500 5000

9 5000 10000

Table 3: All leaf node values in a tabular format once all 9 partitions from Table 2 are inserted

or 1 more than optimal. We break up [10,30)(12) into two leaf nodes such that the �rst leaf node's period

should contain 11 leaf nodes, and the newly created leaf node should contain only 1. Again using the same

idea of proportional count division, we can see that [10,28)(11) and [28,30)(1) are the two new leaf nodes.

So the �rst global time partition has the period [0,28) and has a count of 95.

The computation for the second global time partition starts at [28,30)(1). Continuing on, the global time

partitions for this example are [0,28), [28,866), and [866,10000).

The reader should be aware that this global time partition resolution algorithm is not perfect. That is,

the actual number of local aggregation tree leaves assigned to each worker node may not be identical. The

reason is that the algorithm uses the local partition sets, which are just guides for the global partitioning.

When a local partition says it has 50 leaf nodes in period [9,800), the global partition scheme assumes it

is a uniform distribution, even though the actual leaf nodes may be heavily skewed. We lose locality by

exchanging local partition information. If we wanted perfect global partitioning, then all the leaf nodes from

all the worker nodes must be sent to the coordinator for resolving the time partitions. But that approach

imposes too much of an overhead.

3.3.3 Expected Performance

We expect better scalability for TDM+C as compared to the SAT and SM algorithms because of the data

redistribution and its load-balancing e�ect. However, there are three global synchronization steps that may

limit the performance obtained. First, all of the local partition sets must be completed before the global

time segment partitioning can begin. Second, all of the worker nodes must complete their merges before the

client receives its �nal result from the coordinator process. Third, all the worker nodes must �nish sending

their �nal results to the coordinator.

The next algorithm, PM, will attempt to obtain better performance, by replacing the three global syn-

chronization steps with log

2

p localized synchronization steps.

3.4 Pairwise Merge (PM)

The fourth parallel algorithm, PM (see Figure 10), di�ers from TDM+C in two ways. First, the coordinator

is more involved than in TDM+C. Secondly, instead of all the worker nodes merging simultaneously as in

TDM+C, pairs of worker nodes merge when the opportunity presents itself. Which two worker nodes are

paired is determined dynamically by the query coordinator.

A worker node is available for merging when its local aggregation tree has been built. The worker

node informs the query coordinator that it has completed its aggregation tree. The query coordinator then

arbitrarily picks another worker node that had previously completed its aggregation tree, thereby allowing

the two worker nodes to merge their leaves. Then, the query coordinator instructs the worker node with the

least number of leaf nodes to send the leaves to the other node, the \buddy worker node", which does the

merging of leaves.

9

1. Client request

2. Build local aggregation trees

3. While not �nal aggregation tree Merge between 2 nodes

4. Return results to client

Figure 10: Major Steps for the PM Algorithm

Once a worker node �nishes transmitting leaves to its buddy worker node, it is no longer a participant

in the query, while the other, now idled, buddy worker node is ready for another merge. This buddying-

up continues until the query coordinator can ascertain that only one worker node is left, containing the

completed aggregation tree. The query coordinator then directs the sole remaining worker node to submit

the results directly to the client. Figure 11 provides a conceptual picture of this \buddy" system.

A portion of a PM aggregation tree may be merged multiple times with other aggregation trees. The

merge algorithm is a merge-sort variant operating on two sorted lists as input (the local list, and the received

list). This merge is near linear in the number of leaf nodes to be merged.

3.5 Time Division Merge (TDM)

The �fth parallel algorithm, TDM (see Figure 12), is identical to TDM+C, except that it has distributed

result placement rather than centralized result placement. This algorithm simply eliminates the �nal co-

ordinator results collection phase and completes with each worker node having a distinct piece of the �nal

aggregation tree. A distributed result is useful when the temporal aggregate operation is a subquery in a

much larger distributed query. This allows further localized processing on the individual node's aggregation

sub-result in a distributed and possibly more e�cient manner.

4 Empirical Evaluation

For the purposes of our evaluation, we chose the temporal aggregate operation COUNT. The COUNT operation

does not require that the attribute itself be sent, thereby simplifying the data structures maintained while

still exhibiting the characteristics of a temporal aggregate computation. Based on this temporal aggregate

operation we perform a variety of performance evaluations on the �ve parallel algorithms presented in this

paper. The matrix in Table 4 summarizes the experiments we have done.

thereby reducing the communication somewhat (as we will see, communication costs dominate).

Expt. Number Algorithms Covered NumProcessors

1 SAT, PM, SM, TDM, TDM+C 2, 4, 8, 16, 32, 64

2 SAT, PM, SM, TDM, TDM+C 2, 4, 8, 16, 32, 64

3 SAT, PM, SM, TDM, TDM+C 2, 4, 8, 16, 32, 64

4 PM, SM, TDM, TDM+C 16

Table 4: Experimental Case Matrix Summary

4.1 Settings for the Experimental Environment

The experiments were conducted on a 64-node shared-nothing cluster of 200MHz Pentium machines, each

with 128MB of main memory and 2GB hard disks. The machines were physically mounted on two racks of 32

10

Disk Disk Disk Disk

...

Part i t ioned
Data

So le
Remain ing

Worker Node

Merge Merge

Client

Part i t ioned
Data

Query

Coordinator

P i P j

...
...

P x P y

Buddy
i &

 j
Buddy x & y

In termediate
Worker Node

Intermediate
Worker Node

Request

...

... ...

Buddy... Buddy...

Comple ted
Aggregat ion Tree Resul t

Figure 11: Pairwise Merge (PM) Algorithm

Disk Disk Disk Disk

...
Worker Nodes

Part i t ioned
Data

Loca l
Aggregat ion

Trees

Loca l
Aggregat ion

Trees

All- to-Al l

Exchange

Decentra l ized Resul ts

Figure 12: Time Division Merge (TDM) Algorithm

11

Parameter Description Values

NumProcessors Number of processing nodes used 2 to 64

Partitioning How the dataset is partitioned by StartDate, by SSN

TupleSize Size (in bytes) of each tuple 41 bytes

PartitionSize Number of tuples per partition 65536 tuples

NumTuples Total database size NumProcessors � PartitionSize

DataReduction Percentage decrease of result 0/20/40/60/80/100 percent

Table 5: Experiment Parameters

machines each. Connecting the machines was a 100Mbps switched Ethernet network, having a point-to-point

bandwidth of 100Mbps and an aggregate bandwidth of 2.4Gbps in all-to-all communication.

Each machine was booted with version 2.0.30 of the Linux kernel. For message passing between the

Pentium nodes, we used the LAM implementation of the MPI communication standard [2]. With the LAM

implementation, we observed an average communication latency of 790 microseconds and an average transfer

rate of about 5 Mbytes/second.

4.2 Experimental Parameters

In order to help precisely de�ne the parameters for each set of tests, we describe an experiment classi�cation

scheme. We later present the experiments in terms of this scheme. Table 5 lists the di�erent parameters, a

short description of each, and the set of values used.

Synthetic datasets were generated to model relations which store time-varying information for each

employee in a database. Each tuple has three attributes, a hypothetic SSN attribute which is �lled with

random digits, a StartDate attribute, and an EndDate attribute. The SSN attribute refers to an entry in

a hypothetic employee relation. On the other hand, the StartDate and EndDate attributes are temporal

instants which together construct a valid-time period. The actual mode of generation varies from one

experiment to another and is described later.

NumProcessors depends on the type of performance measurement. Scale-up experiments used 2, 4, 8, 16,

32, and 64 processing nodes, while the variable reduction experiment used a �xed set of 16 nodes.

To see the e�ects of data partitioning on the performance of the temporal algorithms, the synthetic tables

were partitioned horizontally either by SSN or by StartDate. The SSN and StartDate partitioning schemes

were attempts to model range partitioning based on temporal and non-temporal attributes in a parallel

database system [5].

The tuple size was �xed at 41 bytes/tuple. This parameter is given, for �guring out the actual size of the

dataset, in bytes. Note that the tuple size was intentionally kept small and unpadded so that the generated

datasets could have more tuples before their size made them di�cult to work with.

2

All experiments except the single speed-up test used a �xed database partition size of 65,536 tuples. This

was done to facilitate cross-referencing of results between di�erent tests. Because of this, the 16-node results

of the scale-up experiments are directly comparable to the results of the 16-node data reduction experiment.

The total database size re
ects the total number of tuples across all the nodes participating in a particular

experiment run. For scale-up tests, the total database size increased with the number of processing nodes.

Finally, the amount of data reduction is 100 minus the ratio between the number of resulting leaves in the

�nal aggregation tree and the original number of tuples in the dataset. A reduction of 100 percent means

that a 100-tuple dataset produces 1 leaf in the �nal aggregation tree because all the tuples have identical

StartDates and EndDates. As a general rule, the percentage data reduction is inversely proportional to the

percentage of unique StartDates and EndDates across the entire dataset.

2

The total database size for the scale-up experiment at 64 processing nodes was 64 partitions � 65536 tuples � 41 bytes =

171,966,464 bytes.

12

0

10

20

30

40

50

60

70

2 4 8 16 32 64

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Worker Nodes

SAT
SM
PM

TDM
TDM+C

Figure 13: Scale-Up Results (4M tuple Dataset with No Reduction and SSN Partitioning)

4.3 Baseline Scale-Up Performance : No Reduction and SSN Partitioning

We set up our �rst experiment to compare the scale-up properties of the proposed algorithms on a dataset

with no reduction. We will also use the measurements taken from this experiment as a baseline for later

comparisons in the subsequent experiments. Table 6 gives the parameters for this particular experiment.

Parameter Actual Value

NumProcessors 2, 4, 8, 16, 32, 64

Partitioning by SSN

TupleSize 41 bytes

PartitionSize 65536 tuples

NumTuples (2,4,8,16,32,64)*65536

DataReduction 0 percent

Table 6: Parameters for the No-Reduction with SSN Partitioning Scale-Up Experiment

For this experiment, a synthetic dataset containing 4M tuples was generated. Each tuple had a random-

ized SSN atrribute and was associated with distinct periods of unit length (i.e., EndDate = StartDate+1).

The dataset was then sorted by SSN.

3

These partitions were then distributed to the 64 processing nodes.

To measure the scale-up performance of the proposed algorithms, a series of 6 runs having 2, 4, 8, 16,

32, and 64 nodes, respectively, were carried out. Note that since we �xed the size of the dataset on each

node, increasing the number of processors meant increasing the total database size. Timing results from this

experiment are plotted in Figure 13 and lead us to the following conclusions.

SM performs better than SAT. Intuitively, since the dataset exhibits no reduction, both SM and SAT

send all periods from the worker nodes to the coordinator. The reason behind SM's performance advantage

comes from the computational parallelism provided by building local aggregation trees on each worker node.

3

Since the SSN �elds are generated randomly, this has the e�ect of randomizing the tuples in terms of StartDate and EndDate

�elds.

13

Aside from potentially reducing the number of leaves passed on to the coordinator, this process of building

local trees sorts the periods in temporal order. This sorting makes compiling the results more e�cient

4

than

SAT's strategy of having to insert each valid-time period into the �nal aggregation tree.

SAT exhibits the worst scale-up performance. This result is not surprising, since the only advantage SAT

has over the original sequential algorithm comes from parallelized I/O. This single advantage does not make

up for the additional communication overhead and the coordinator bottleneck.

5

The performance di�erence between TDM and TDM+C increases with the number of nodes. For this

observation, it is important to remember that TDM+C is simply TDM plus an additional result-collection

phase that sends all �nal leaves to the coordinator, one worker node at a time. Because of this additional

overhead, TDM will always perform better than TDM+C. The performance di�erence increases with the

number of nodes because of the non-reducible nature of the dataset and the fact that scale-up experiments

work with more data as the number of nodes increase.

Among the algorithms that provide monolithic results, PM has the best scaleup performance up to 32

nodes. This is attributed to the multiple merge levels needed by PM. A PM computation needs at least

log

2

p merge levels where p is the number of processing nodes. On the other hand, the TDM+C algorithm

only merges local trees once but has three synchronization steps, as described in Section 3. With this analysis

in mind, we expected PM to perform better or as well as TDM+C for 2, 4, and 8 nodes, which have 1, 2,

and 3 merge levels, respectively. We then expected TDM+C to outperform PM as more nodes are added,

but we were suprised to realize that PM was still performing better than TDM+C up to perhaps 50 nodes.

To �nd out what was going on behind the scenes, we used the LAM XMPI package [2] to visually track the

progression of messages within the various TDM+C and PM runs. This led us to the reason why TDM+C

performed worse than PM for 2 to 32 nodes: TDM+C was slowed more by increased waiting time due to

load-imbalance (computation skew) as compared to PM.

4.4 Scale-Up Performance : 100% Reduction and SSN Partitioning

This experiment is designed to measure the e�ect of a signi�cant amount of reduction (100% in this case)

on the scale-up properties of the proposed algorithms. Table 7 gives the parameters for this experiment.

Parameter Actual Value

NumProcessors 2, 4, 8, 16, 32, 64

Partitioning by SSN

TupleSize 41 bytes

PartitionSize 65536 tuples

NumTuples (2,4,8,16,32,64)*65536

DataReduction 100 percent

Table 7: Parameters for the 100% Reduction with SSN Partitioning Scale-Up Experiment

This experiment is modeled after the �rst one but with a synthetic dataset having 100% reduction. This

dataset was generated by creating 4M tuples associated with the same period and having randomized SSN

attributes. The synthetic dataset was then rearranged randomly

6

and split into 64 partitions each having

65,536 tuples.

This experiment, like the �rst one, is a scale-up experiment. Hence, it was conducted in much the same

way. Timing results from this experiment are plotted in Figure 14 and leads us to the following observations.

All algorithms bene�t from the 100% data reduction. Comparing results from the baseline experiment

with results from the current experiment lead us to this observation. Because of the high degree of data

reduction, the aggregation trees do not grow as large as in the �rst experiment. With smaller trees, insertions

of new periods take less time because there are fewer branches to traverse before reaching the insertion points.

Because all of the presented algorithms use aggregation trees, they all experience increased performance.

4

The SM coordinator uses a merge-sort variant in compiling and constructing the �nal results.

5

In SAT, all the periods are sent to the coordinator which builds a single, but large, aggregation tree.

6

The aggregation tree algorithm performs at its worst case when the dataset is sorted by time [9].

14

0

10

20

30

40

50

60

70

2 4 8 16 32 64

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Worker Nodes

SAT
SM
PM

TDM
TDM+C

Figure 14: Scale-Up Results (4M tuple Dataset with 100% Reduction and SSN Partitioning)

With 100% reduction, PM and TDM+C catch up to TDM. Aside from constructing smaller aggregation

trees, a high degree of data reduction decreases the number of aggregation tree leaves exchanged between

nodes. TDM does not send its leaves to a central node for result collection, so it does not transfer as many

leaves as its peers. Because of this, TDM is not impacted by the amount of data reduction as much as either

PM or TDM+C which end up performing as well as TDM.

4.5 Scale-Up Performance : No Reduction and Time Partitioning

This experiment is designed to measure the e�ect of time partitioning on the scale-up properties of the

proposed algorithms. The settings for this experiment are summarized in Table 8.

Parameter Actual Value

NumProcessors 2, 4, 8, 16, 32, 64

Partitioning by Time

TupleSize 41 bytes

PartitionSize 65536 tuples

NumTuples (2,4,8,16,32,64)*65536

DataReduction 0 percent

Table 8: Parameters for the Time Partitioning with No Reduction Scale-Up Experiment

The dataset for this experiment was generated in a manner similar to the �rst one, but with StartDate

rather than SSN partitioning. This was done by sorting the whole dataset by the StartDate attribute and

then splitting it into 64 partitions of 64K tuples each.

Time Partitioning did not signi�cantly help any of the algorithms. We originally expected TDM and

TDM+C to bene�t from the time partitioning but we also realized that for this to happen, the partitioning

must closely match the way the global time divisions are calculated. Because we randomly assigned partitions

to the nodes, TDM did not bene�t from the time partitioning. In fact, it even performed a little bit poorer

15

0

10

20

30

40

50

60

70

2 4 8 16 32 64

T
im

e
 i
n
 S

e
c
o
n
d
s

Number of Worker Nodes

SAT
SM
PM

TDM
TDM+C

Figure 15: Scale-Up Results (4M tuple Dataset with No Reduction and StartDate Partitioning)

in all but the 16-node run. We attribute the small performance gaps to di�erences in how the partitioning

strategies interacting with the number of nodes made TDM redistribute mildly varying numbers of leaves

across the runs. As for SM and PM, they exhibited no conclusive improvement because they were simple

enough to work without considering how tuples were distributed across the various partitions.

4.6 Performance Measurement : Variable Reduction

This experiment is designed to measure the e�ect of a varying amount of data reduction on the scale-up

properties of the proposed algorithms. The settings for this experiment, provided in Table 9, summarizes

the parameters for this experiment.

Parameter Actual Value

NumProcessors 16

Partitioning by StartDate

TupleSize 41 bytes

PartitionSize 65536 tuples

NumTuples (16)*65536

DataReduction 0/20/40/60/80/100 percent

Table 9: Parameters for the Variable Reduction with StartDate Partitioning Experiment

For this experiment, six sets of partitions were generated. Each set had 16 partitions, one for each of

the 16 processing nodes participating in the six runs. The partitions were generated having 0, 20, 40, 60, 80

and 100 percent reduction. Timing results for this experiment are plotted on Figure 16 and leads us to the

following observations.

TDM is the least a�ected by varying data reduction. The low slope of TDM's performance curve in

Figure 16 shows us that it is the algorithm least a�ected by variations in local reduction. The reason for

this is that, among the presented algorithms, TDM exchanges the least number of leaves as discussed when

16

0

2

4

6

8

10

12

14

0 20 40 60 80 100

T
im

e
 i
n

 S
e

c
o

n
d

s

% Reduction

SM
PM

TDM
TDM+C

Figure 16: Variable Reduction Experiment (65536 tuples/node, 16 nodes, StartDate Partitioned)

we observed that the performance for TDM+C and PM caught up with TDM in the second experiment.

Increasing the amount of data reduction improved the performance of the proposed algorithms. Like the

second experiment, increasing the amount of reduction improved the performance of the parallel algorithms.

With higher degrees of data reduction, aggregation trees became increasingly smaller and fewer leaves were

exchanged between nodes.

4.7 Summary

The empirical observations con�rm that dataset partitioning, result placement, data reduction e�ected by

the aggregation, and the number of processing nodes a�ect the proposed algorithms in di�erent ways. SAT

and SM, as seen in Figures 13, 14, and 15, were a�ected most by the number of processing nodes. Figure 16

shows that SM, SAT, PM and TDM+C were signi�cantly a�ected by low data reduction while TDM was the

least a�ected. Also, Figures 13, 14, and 15 show that TDM has the best performance under all situations,

but only if distributed result placement is desired. On the other hand, PM has centralized result placement

but scales well only when data reduction is high, as seen in Figure 14. TDM+C also provides centralized

result placement but does not scale-up better than PM unless there is low reduction and the number of

processing nodes is large. Lastly, dataset partitioning only a�ected the TDM variants, and even then, not

substantially.

5 Conclusions

Temporal aggregate computations are important operations in a temporal database system. Traditionally,

this has been an expensive operation in sequential database systems, therefore, the question arises as to

whether parallelism is a cost-e�ective approach for improving the e�ciency of temporal aggregate computa-

tions.

The main contribution of this paper is a collection of novel algorithms that parallelize the computation

of temporal aggregates. We ran these algorithms through a series of performance measurements and ob-

17

served how di�erent properties a�ected their behavior. From these observations, we provide the following

conclusions which should help in the design of a parallel database system's query optimizer that selects the

right temporal algorithm for a particular situation. Our recommendations are summarized in the matrix in

Table 10.

Result

Placement

Methodology

Node

Config.

Size

Hi Reduction Dataset Low Reduction Dataset

Distributed
Small TDM TDM

Large TDM TDM

Centralized
Small PM PM

Large PM TDM+C

Table 10: Matrix of Recommendations

1. Use TDM whenever distributed result placement su�ces, regardless of any other parameter. As dis-

cussed in Section 3, distributed result placement is useful for distributed subqueries which are parts

of larger distributed queries. Also, distributed result placement su�ces when the aggregation results

are not required for the entire timeline (i.e., �nding the (time-varying) salaries of all employees for the

last year).

2. For centralized result placement, use PM whenever there is a high degree of data reduction, regardless

of the number of processing nodes. Also, use PM for centralized results, if there is low data reduction

and the processing node con�guration has 32 nodes or less.

3. For centralized result placement, low data reduction, and larger processing node con�gurations, use

TDM+C.

Our experimental observations lead us to the following issues for future research.

1. Improved algorithm for assigning time divisions to partitions. We originally expected, StartDate par-

titioning to help TDM and TDM+C signi�cantly. However, we discovered that the random partition

assignment strategy that we employed did not exactly match TDM's naive time division assignment

strategy, which ended up redistributing most of the leaves among the nodes. We still feel that StartDate

partitioning will help the TDM variants perform better but we need a better time division assignment

policy that attempts to minimize the number of leaves redistributed among the processing nodes.

2. Impact of skew. We expect PM to outperform TDM+C in queries with heavy tuple placement skew

and/or selection skew [13]. Tuple placement skew occurs when the number of tuples are not evenly

distributed physically amongst all the worker nodes before a query is initiated. Selection skew happens

when some nodes return more candidate tuples than other nodes. In a temporal aggregate query with

tuple placement and/or selection skew, some worker nodes will complete its local aggregation tree

faster than other nodes. However, the speci�c impact of skew should be investigated.

3. Aggregate functions. Our experiments only considered scalar aggregates, which provide a single result

at each point in time. Aggregate functions, for example listing the average salary by rank, should also

be parallelized. We hypothesize that the algorithms that excel in small con�gurations would also work

well with aggregate functions.

18

4. Load balancing. As mentioned in the empirical section, uneven computing time on the processing

nodes as caused by dataset characteristics, and system load make nodes unnecessarily wait idly for

more loaded nodes. Strategies for balancing the loads among the nodes would help reduce idle-waiting

and improve parallel algorithm performance.

5. Real-world Dataset. All the experiments we have conducted so far have been on synthetic datasets.

We therefore feel that testing the parallel algorithms on an actual dataset would provide a better

understanding of how the parallel algorithms will perform in a realistic setting.

6. Disk-paging strategies. Our proposed algorithms rely solely on main memory for storing runtime

information, which include merged lists, aggregation trees and, message queues. A disk-paging strategy

that is aware of how the parallel algorithms work will allow the algorithms to handle larger dataset

sizes.

7. Other Parallel Architectures. All of our experiments were done on a shared-nothing Pentium cluster.

The algorithms should also be studied on other multi-node architectures, such as shared disk and shared

memory con�gurations, to ascertain the performance tradeo�s of these algorithms under alternate

conditions.

References

[1] D. Bitton, H. Boral, D. DeWitt, and W. K. Wilkinson. Parallel algorithms for the execution of relational

database operations. ACM Transactions on Database Systems, 8(3):324{353, September 1983.

[2] Ohio Supercomputer Center. LAM/MPI parallel computing. http://www.osc.edu/lam.html, 1998.

[3] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP technology.

SIGMOD Record, 26(1), March 1997.

[4] Anindya Datta, Bongki Moon, and Helen Thomas. A case for parallelism in data warehousing and

OLAP. In International Workshop on Data Warehouse Design and OLAP Technology (DWDOT98),

Vienna, Austria, August 1998.

[5] David DeWitt and Jim Gray. Parallel database systems: The future of high performance database

systems. Communications of the ACM, 35(6):85{98, June 1992.

[6] David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider, Allan Bricker, Hui-I Hsiao, and

Rick Rasmussen. The Gamma database machine project. IEEE Transactions on Knowledge and Data

Engineering, 2(1):44{62, March 1990.

[7] R. Epstein. Techniques for processing of aggregates in relational database systems. Technical Report

UCB/ERL M7918, University of California, Berkeley, CA, February 1979.

[8] J.C. Freytag and N. Goodman. Translating aggregate queries into iterative programs. In Proceedings

of the 12th VLDB Conference, pages 138{146, Kyoto, Japan, 1986.

[9] Nick Kline and Richard T. Snodgrass. Computing temporal aggregates. In the 11th Inter. Conference

on Data Engineering, pages 222{231, Taipei, Taiwan, March 1995.

[10] R. T. Snodgrass, S. Gomez, and E. McKenzie. Aggregates in the temporal query language TQuel. IEEE

Transactions on Knowledge and Data Engineering, 5:826{842, October 1993.

[11] Michael Stonebraker. The case for shared nothing. A Quarterly bulletin of the IEEE Computer Society

Technical Committee on Database Engineering, 9(1):4{9, March 1986.

[12] P. A. Tuma. Implementing historical aggregates in TempIS, 1992. Master's Thesis.

[13] Christopher B. Walton, Alfred G. Dale, and Roy M. Jenevein. A taxonomy and performance model

of data skew e�ects in parallel joins. In Proceedings of the 17th VLDB Conference, pages 537{548,

Barcelona, Spain, September 1991.

19

