
Submitted to ACM Transactions on Database Systems, August, 1998. If accepted, copyright will transfer to ACM.
Available at http://www.cs.arizona.edu/research/reports.html.

\Have your Data and Index it, too"

E�cient Storage and Indexing for Data Warehouses

Anindya Datta� Bongki Moony Krithi Ramamrithamz

Helen Thomas� Igor Viguier�

Technical Report 98-7

Abstract

Two possible strategies may be utilized to enhance the e�ciency of processing OLAP queries: (a)

precomputation strategies (e.g., view materialization, realizing data cubes), and (b) ad-hoc strategies.

While a signi�cant amount of work has been done in developing precomputation strategies, it is generally

recognized that it is di�cult to materialize the answers to all possible queries. Thus, ad-hoc querying must

be supported in data warehouses. This realization has sparked an interest in exploring indexing strategies

suitable for OLAP queries. There appears to have been relatively little work done in ad-hoc query support

for data warehouses [45, 46, 55, 39].

In this paper we propose DataIndexes as a new paradigm for storing the base data. An attractive feature

of DataIndexes is that they serve as indexes as well as the store of base data. Thus, DataIndexes actually

de�ne a physical design strategy for a data warehouse where the indexing, for all intents and purposes,

comes for \free". We also present two e�cient algorithms for performing star-joins with DataIndexes.

In addition, we present a mathematical analysis of all the indexes presented by O'Neil and Quass as

well as our DataIndexes and present analytical expressions categorizing the cost of query evaluation using

these structures for range selections and star-joins, two common classes of queries in OLAP. These aid

in performing an analysis yielding precise \break-even" points for comparing these indexing alternatives.

Overall, it turns out that DataIndexes are very attractive in a wide variety of cases in terms of enhancing

the performance of range and star-join queries in data warehouses.

August, 1998

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

�Georgia Institute of Technology, College of Computing, Atlanta, GA 30332
yUniversity of Arizona, Department of Computer Science, Tucson, AZ 85721
zUniversity of Massachusetts, Department of Computer Science, Amherst, MA 01003

Contents

1 Introduction 2

2 Motivation behind DataIndexes 3

3 The DataIndex 5

3.1 Basic DataIndex (BDI) . 5
3.2 Join DataIndex (JDI) . 7
3.3 Comparison of BDIs and JDIs with existing Indexing Approaches 9
3.4 The DataIndex Physical Design Strategy . 10

4 Fast Star-Join Algorithms Based on DataIndexes 10

4.1 The Range Selection Phase Using DataIndexes . 12
4.2 The Join Phase . 12

4.2.1 SJL algorithm . 12
4.2.2 The SJS algorithm . 14

5 Cost Analysis of the Star-Join Algorithms 15

5.1 Cost for Constructing Rowsets Using DataIndexes (NROWSET) . 17
5.2 Cost for Joining Tables (NJOIN) . 17

5.2.1 Cost of the SJL Algorithm . 18
5.2.2 Cost of the SJS Algorithm . 19

6 Comparative Analyses 21

6.1 Comparative Anaysis of NROWSET . 21
6.1.1 NROWSET for B-tree Index . 21
6.1.2 NROWSET for a Bitmap Index . 22
6.1.3 NROWSET for a Projection Index . 23
6.1.4 NROWSET for a Bit-sliced Index . 23
6.1.5 Cost comparisons . 23

6.2 Comparative Analysis of NJOIN . 25
6.2.1 Bitmapped-Join Indexes . 26
6.2.2 Bitmapped Indexes . 27
6.2.3 Cost comparison of Bitmapped-Join and DataIndexes 27

7 Overall Cost Comparison of Star Join Performance 28

7.1 Baseline Case . 30
7.2 Sensitivity to Query Selectivity . 31
7.3 Sensitivity to Compression Factor . 32
7.4 Memory Requirements . 33

8 Conclusions 33

1

1 Introduction

Data warehousing and On-Line Analytical Processing (OLAP) are becoming critical components of decision

support as advances in technology are improving the ability to manage and retrieve large volumes of data.

Data warehousing refers to \a collection of decision support technologies aimed at enabling the knowledge

worker (executive, manager, analyst) to make better and faster decisions" [11]. Thus, loosely speaking, a data

warehouse is a \very large" repository of historical data pertaining to an organization [35]. OLAP refers to the

technique of performing complex analysis over the information stored in a data warehouse [13]. The signi�cance

of data warehousing is evidenced by the recent growth in the number of related products and services o�ered -

the market for data warehousing, including hardware, database software, and tools, is projected to be $8 billion

in 1998, up from $2 billion in 1995 [11]. These technologies are gaining widespread acceptance in a multitude

of industries including retail sales (supermarkets, department stores, etc), telecommunications, and �nancial

services.

Data warehousing/OLAP systems are best understood by comparing them to traditional On-Line Trans-

action Processing (OLTP) systems. OLTP systems are designed to automate clerical data processing tasks

(e.g., order entry), which are structured and repetitive, tasks that operate on detailed data. Therefore, the

emphasis in such systems is placed on maximizing transaction throughput. In contrast to OLTP systems, data

warehouses are designed for decision support purposes and contain long periods of historical data. For this

reason, data warehouses tend to be extremely large - it is not uncommon for a data warehouse to be hundreds

of gigabytes to terabytes in size [11]. OLAP applications are characterized by the rendering of enterprise data

into multidimensional perspectives, which is achieved through complex, ad-hoc queries that frequently aggre-

gate and consolidate data, often using statistical formulae [13]. Thus, OLAP environments are query intensive,

where aggregated and summarized data are much more important than detailed records. Typical OLAP queries

require computationally expensive operations such as joins and aggregation. Further complicating this situation

is the fact that such queries must be performed on tables having potentially millions of records. Moreover, the

results have to be delivered interactively to the business analyst using the system. Given these characteristics,

it is clear that the emphasis in OLAP environments is on e�cient query processing. This area is starting

to receive the attention it deserves. A number of \conventional" relational query processing approaches have

been applied to or extended for answering OLAP queries. Some of this work has concentrated on e�ciently

performing GROUP BY [8, 9, 20], aggregation [10, 23, 33, 30, 50, 68, 69], join or range queries [32, 60, 64], or

supporting incomplete query answers [6, 29, 66]. Several approaches have been proposed for supporting the

SQL CUBE operator, including [2, 17, 23, 42, 53, 58].

Yet another facet of query processing that has received attention in the literature is that of e�ciency. Fast

query evaluation is critical in OLAP environments given the interactive nature of most OLAP sessions. There

are two basic approaches for quickly evaluating OLAP queries:

1. Precomputation Strategies. This approach relies on summary tables, derived tables that house precomputed

or \ready-made" answers to queries [11]. This has been, by far, the most explored area in the context of data

warehouses [1, 14, 22, 24, 25, 26, 28, 40, 41, 48, 49, 70]. The basic premise underlying this work is that data

warehouses can achieve faster response times by pre-aggregating (i.e., materializing) the answers to frequently

asked queries. It is recognized however, that such anticipation only works up to a point [11, 46], and a con-

siderable fraction of the workload in OLAP applications will consist of ad-hoc queries which will need to be

computed on demand [3]. This has led to work on strategies for ad-hoc query processing.

2. Ad-hoc Strategies. This approach to fast OLAP query processing supports ad-hoc querying by using fast

2

access structures on the base data. Database systems use indexes to improve e�ciency of access to data.

Various general purpose indexing techniques have been proposed and are utilized in OLTP systems, including

hashing [54], B trees [12, 15], and multidimensional trees such as the R-tree [27], the K-D-B tree [52], and the

BV tree [18]. There exists another class of multidimensional structures, namely grid �les [43], that allows for

very fast access to multidimensional data. However, in these and other index structures proposed for OLAP,

one envisions a set of relations or table structures, and a separate set of indices or access structures. That

is, thus far, databases have considered index and data separately. Given the large size of data warehouses,

storage is a non-trivial cost, and so is the additional storage requirement due to the index structures. This is

especially true given that data and storage maintenance costs are often up to seven times as high per year as the

original purchase cost [59]. Hence, a terabyte-sized system, with an initial media cost of $100,000, could cost an

additional $700,000 for every year it is operational. This cost is certainly non-trivial. Indexess, obviously, add

to this cost and hence it is essential to minimize these additional costs. Unfortunately, as we show in Section

2, even the simplest index structure used today incurs substantial increase in total storage requirements, both

in absolute and percentage terms. This, in turn, translates into higher media and maintenance costs. More

importantly though, intuition dictates that an increased overall database size should result in lower perfor-

mance. This prompts us to ask the following question: \is it possible to reduce storage requirements, without

sacri�cing the e�ciency obtained from indexing?"

In this paper we answer the above question in the a�rmative by proposing DataIndexes as a novel paradigm

for storing the base data as well as serving as access structures to this data in warehouses. Because DataIndexes

are both storage and access structures, substantial space savings are realized.

As we shall see, DataIndexes combine and extend, in an e�ective way, ideas embedded in other well-known

database structuring techniques, speci�cally vertical partitioning and transposed �les [57], as well as indexing

techniques, speci�cally projection indexes [46] and bit-mapped join indexes [45].

As a second contribution, we propose two algorithms for e�ciently performing star joins and show that

these algorithms outperform existing approaches in a vast majority of situations.

A third contribution of this paper is an extensive mathematical analysis of the performance of OLAP queries

based on DataIndexes as well as other indexes and query processing approaches. This analysis as well as a

quantitative performance study show that DataIndexes are preferable to other popular index types in a large

number of cases.

The rest of this paper is organized as follows. In Section 2 we motivate the need to reduce the additional

storage costs introduced by the presence of indexes and in Section 3 we introduce the notion of DataIndexing

and describe two types of DataIndexes. Also, we compare it with related work motivated by similar goals. In

Section 4, we propose e�cient algorithms for performing star-join operations with DataIndexes and in Section 5,

we present a cost framework to model the performance of the proposed algorithms. In Section 6 we present the

query performance costs for other selected indexing structures, in Section 7, we analyze the costs of performing

star-join queries using the various indexing structures under study, and �nally, in Section 8, we conclude the

paper.

2 Motivation behind DataIndexes

DataIndexes are motivated by the desire to reduce the additional storage costs due to index structures. To

illustrate these costs we refer to the star schema [37] presented in Figure 1, which was derived from the TPC-D

benchmark database [62] with a scale factor of 1. This schema models the activities of a world-wide wholesale

supplier over a period of 7 years, and will be used as a running example throughout this paper. The central fact

3

table is the SALES table, and the dimensions of the data are captured through the PART, SUPPLIER, CUSTOMER

and TIME tables. Each dimension table has a primary key. The fact table is associated, through foreign-key

reference, to the four dimension tables. Note that some applications do not enforce referential integrity between

the fact and dimension tables. However, we assume throughout the paper that referential integrity is strictly

enforced in all star schemas.

Comment

4 bytes
4 bytes
4 bytes
8 bytes
8 bytes
8 bytes

1 byte
1 byte

8 bytes

2 bytes
2 bytes
2 bytes
25 bytes

200,000 rows

10,000 rows

131 bytes

150,000 rows

6,000,000 rows

44 bytes
10 bytes

PartKey
SuppKey
CustKey
Quantity

Tax
Discount
ExtPrice

RetFlag
Status
ShipDate
CommitDate
ReceiptDate

2,557 rows

ShipInstruct
ShipMode

PartKey 4 bytes
Name 55 bytes
Mfgr 25 bytes
Brand 10 bytes
Type 25 bytes
Size 4 bytes
Others...41 bytes

PART

164 bytes

SUPPLIER

SuppKey
Name
Address
Nation
Region
Phone
AcctBal
Comment

4 bytes
25 bytes
40 bytes
25 bytes
25 bytes
15 bytes
8 bytes

101 bytes

243 bytes

TIME

Month

TimeKey
Alpha

Week
Day

10 bytes
Year 4 bytes

4 bytes
4 bytes
4 bytes

2 bytes

28 bytes

SALES

: Fact Table

: Dimension Table

: Foreign-key Relation

: Key Attribute

: Non-key AttributeAttribute

CustKey 4 bytes
Name 25 bytes

Address 40 bytes

Nation 25 bytes

Region 25 bytes

Phone 15 bytes

269 bytes

117 bytes
10 bytes

Comment
MktSegment
AcctBal 8 bytes

CUSTOMER

Attribute

Figure 1: A Sample Warehouse Star Schema

We �rst compute the storage requirements for the data, based on a conventional relational implementation,

where the 5 tables would be represented as a series of records partitioned over a set of data blocks. To simplify

our analysis, we assume that each record is small enough to �t within a data block. Given the usually large sizes

(� 8 KB) of warehouse data blocks, this assumption is very realistic. We also assume that each block contains

some header information (e.g., version number, pointers to other blocks, etc.) which makes its e�ective size, B,

smaller than its actual size, Bact. Given a particular table, T , with a record width w(T) and cardinality jT j,

one can compute the number of records that �t in a data block, i.e., the blocking factor for T , as �(T) =
j

B
w(T)

k
.

In turn, we determine the size of the table to be Bact�
j
jT j
�(T)

k
. Let us further assume that the implementation

platform uses a block size (Bact) of 8192 bytes and an e�ective block size (B) of 8000 bytes. From this we

compute the size of each table as shown in Table 1.

Table Table Size (bytes)

SALES 805,773,312

PART 34,136,064

SUPPLIER 2,564,096

CUSTOMER 42,377,216

TIME 73,728

all tables 884,924,416

Table 1: Table Sizes For Example Star Schema

We next compute the total storage requirements of the sample database based on the exact expressions for

the size of the various index types derived in [65]. We have selected four popular index structures for data

warehousing : B-trees [15], bitmapped indexes [44, 47], bit-sliced indexes [46, 34], and projection indexes [46, 61].

It is assumed that only the PartKey, SuppKey, CustKey, ShipDate, CommitDate and ReceiptDate columns of

the SALES table are indexed. Table 2 summarizes the storage requirements of each indexing scheme for the

4

sample database1. Table 2 indicates that the the indexing overhead for projection indexes is the least; the

Indexed Column B+-tree Bitmapped Projection Bit-sliced

PartKey 1,675,288,576 1,640,816,640 24,576,000 24,649,728

SuppKey 118,800,384 82,780,160 24,576,000 24,649,728

CustKey 1,265,680,384 1,230,807,040 24,576,000 24,649,728

ShipDate or CommitDate or ReceiptDate 36,896,768 21,733,376 12,288,000 12,324,960

total 3,170,459,648 3,019,603,969 110,592,000 110,936,064

Table 2: Indexing Costs for Example Star Schema

other access structures yield higher storage overheads. But even projection indexes incur a more than 12.5%

increase in size of the indexed database over the unindexed database, assuming the index structures are stored

in addition to the data. (Some implementations of projection indexes, such as Sybase IQ [61], do not store both

the index and data.) We also emphasize that projection indexes are not very e�ective for many OLAP queries.

While they may perform well for simple queries involving a single table (e.g., restrictions, counting), they do

not o�er any improvement over conventional pairwise join techniques [21]. Typically, additional indexes are

required along with projection indexes to improve join performance, incurring additional overhead.

Clearly, there is a need to minimize the additional overhead incurred by index structures. This is the

motivation behind DataIndexes, introduced next.

3 The DataIndex

In this section, we propose the DataIndex, which is a storage structure that serves both as an index as well

as data. Speci�cally, we examine two types of DataIndexes, both based on the same basic idea of vertical

partitioning. We refer to these as Basic DataIndexes and Join DataIndexes. We then compare Dataindexes to

existing indexing approaches and then discuss physical database design based on DataIndexes.

3.1 Basic DataIndex (BDI)

A DataIndex can be simply created as a vertical partition of a relational table. In this sort of partitioning,

the columns being indexed are removed from the original table, and stored separately, with each entry being

in the same ordinal position as its corresponding base record. The isolated partitions can then be used for fast

access to data in the table. We call this partition a Basic DataIndex (BDI). A graphical representation of this

structure is shown in �gure 2.

Basic DataIndex on Discount, Tax and Status

Base Table

Basic DataIndex on RetFlag

Record

RetFlag RetFlag

Status

RetFlag RetFlag

Status StatusDiscount Tax StatusDiscount Tax StatusDiscount Tax

Status

StatusDiscount Tax

RetflagDiscount TaxTax StatusRetflagDiscount TaxDiscount

RetFlag

Retflag

RetFlag

Status

RetFlag RetFlag

Basic DataIndex Representation

Conventional Relational Representation

(b)

(a)

RetFlag

Discount

RetFlag

Discount

Figure 2: The Basic DataIndex

1Note that the sizes of both the standard and bitmapped B-trees depend on the distribution of data values. The numbers
presented in table 2 correspond to a perfectly uniform distribution of values.

5

In this �gure, we show the actual storage con�gurations of the two cases: a base table (Fig. 2a) and the

corresponding BDIs (Fig. 2b). The base table consists of the attributes Discount, Tax, RetFlag, Status and the

two BDIs are constructed on the RetFlag column, and on the Discount, Tax and Status columns.

As indicated by the dotted lines joining records from the two BDIs, the order of the records in the base

table is conserved in both DataIndexes. This allows for an easy mapping between entries in the two BDIs.

This mapping relies on the fact that, for a given BDI, there exists a �xed number of \slots" for holding records

in each data block. Denoting by w(�) the width of a record of BDI �, the number of slots per page in the BDI

is given by �(�) =
j

B
w(�)

k
.

Based on this value, one can simply associate the elements of a record in the two BDIs through a simple

arithmetic mapping. Assume for instance that we need to access the record in the base table corresponding to

some RetFlag value. This translates to associating the corresponding RetFlag BDI record r with its matching

record in the other BDI. Denoting the BDI on RetFlag by �R and the BDI on Discount, Tax, and Status by

�DTS , we �rst compute the RID of record r in �R, i.e., we determine that r is located in the (bR)
th block of

�R, at slot number sR. This can be done by simply keeping track of the number of data blocks loaded during

the scan operation and seeing the position of the matching record within its data block. The ordinal position,

, of this record in the base table is simply given by
 = bR� �(R)+ sR. From this number, we can determine

the RID of the corresponding entry in the other BDI (�DTS). This RID is characterized by bDTS , the ordinal

number of the �DTS data block in which the record is located, and sDTS , the slot in block bDTS corresponding

to record r. This RID can be expressed as bDTS =
j

�(R)

k
, and the slot number as sR =
 mod �(R).

It is the ordinal mapping that makes this basic approach more e�cient than existing vertical partitioning

methods such as the Decomposition Storage Model (DSM) [16, 36, 63]. Indeed, DSM utilizes surrogate keys

to map individual attributes together, hence requiring a surrogate key to be associated with each attribute of

each record in the database.

The resulting database size is essentially the same as the size of the raw data in the original database

con�guration. However, we can now utilize the separate dimensional columns of the partitioned fact table as

both elements of and indexes onto that table. Through this simple technique, we can store the data and index

for the same storage cost as for the data alone. Hence, in terms of storage, the indexing is free.

Turning to our running example, we can divide the SALES table in Fig. 1, into �ve smaller tables, as shown

in Fig. 3. The new schema is then composed of 5 vertical partitions: one for each of the SuppKey, PartKey,

ShipInstruct
ShipMode
Comment

25 bytes
10 bytes
44 bytes

Quantity

Tax
Discount
ExtPrice

RetFlag
Status

8 bytes
8 bytes
8 bytes

1 byte
1 byte

8 bytes
200,000 rows

10,000 rows

6,000,000 rows

113 bytes

6M rows

2 bytes 2 bytes

6M rows

2 bytes

6M rows

4 bytes

6M rows

6M rows

4 bytes

6M rows

4 bytes

2,557 rows

150,000 rows

PartKey 4 bytes
Name 55 bytes
Mfgr 25 bytes
Brand 10 bytes
Type 25 bytes
Size 4 bytes
Others...41 bytes

PART

164 bytes

SUPPLIER

SuppKey
Name
Address
Nation
Region
Phone
AcctBal
Comment

4 bytes
25 bytes
40 bytes
25 bytes
25 bytes
15 bytes
8 bytes

101 bytes

243 bytes

SALES
CustKey

SALES
SuppKey PartKey

SALES

SALES

269 bytes

117 bytes
10 bytes

Comment
MktSegment
AcctBal 8 bytes

CUSTOMER

15 bytesPhone

25 bytes

: Ordinal Mapping

TIME

Month

TimeKey
Alpha

Week
Day

10 bytes
Year 4 bytes

4 bytes
4 bytes
4 bytes

2 bytes

28 bytes

Region

25 bytesNation

40 bytes

SALES
ShipDate

Address

25 bytesName
4 bytesCustKey

SALES
ReceiptDateCommitDate

SALES

: Fact Table

: Dimension Table

: Foreign-key Relation

Attribute : Non-key Attribute

Attribute : Key Attribute

Figure 3: Example Warehouse Schema with DataIndex

6

and CustKey dimensional attributes, one for the combination of ShipDate, CommitDate, and ReceiptDate

dimensional attributes and one for the remaining columns from the original SALES table. A record in the

original SALES table is now partitioned into 5 individual records, one in each of the resulting tables. Any such

record can easily be re-built from these, since its component rows in the 5 resulting tables all share the same

ordinal position. In the example, each of the 5 new tables is a DataIndex.

We note that a potential problem arises in the presence of variable-length attributes (e.g., those of type

VARCHAR). In such cases, the number of records can vary from one page to the next. To solve this problem, one

can de�ne a maximum number of records per page, as is done in the model 204 database system [44]. In this

case, a few ordinal position numbers (
) may not actually correspond to actual records. Alternatively, one can

\encode" each unique value to a �xed length surrogate. To simplify our analysis, in this paper we thus assume

that �eld lengths are �xed with no loss of generality.

3.2 Join DataIndex (JDI)

In decision support databases, a large portion of the workload consists of queries that operate on multiple

tables. Many queries on the star schema of Fig. 1 would access one or more dimension tables and the central

SALES table. For instance, a marketing analyst might want to identify the part type most often purchased

by di�erent customer groups identi�ed by their nation and market segment. The PART, CUSTOMER and SALES

table must be joined to answer this query. Access methods that e�ciently support join operations thus become

crucial in decision support environments [45, 51]. The idea of a BDI presented in the previous section can very

easily be extended to support such operations. Consider for instance, an analyst who is interested in possible

trends or seasonalities in discounts o�ered to customers. This analysis would be based on the following query:

SELECT TIME.Year, TIME.Month, average(SALES.Discount)

FROM TIME, SALES

WHERE TIME.TimeKey = SALES.ShipDate

GROUP BY TIME.Year, TIME.Month

Using the conventional relational approach, the association between the two tables TIME and SALES in Fig. 1

is implemented through the primary key/foreign key relationship linking the columns ShipDate and TimeKey.

To perform a join operation on these two tables, the two columns must be accessed to determine the records

that are join candidates. There exist relatively fast algorithms (e.g., merge and hash joins) for evaluating joins.

However, approaches that use pointers to the underlying data, instead of the actual records, tend to give a

better performance than other join strategies [21]. Thus, if a DataIndex relied on pointers to records to both

store and index the underlying data, it would perhaps have a good join performance.

Indeed, one can signi�cantly reduce the number of data blocks to be accessed while processing a join by

storing the RIDs of the matching records in the corresponding dimension table { instead of the corresponding

key values { in a BDI for a foreign key column. This structure is a Join DataIndex (JDI). The JDI on

SALES.ShipDate would then consist of a list of RIDs on the TIME table. Such a JDI is shown in Fig. 4.

As before, we show both the conventional relational and our proposed representations. In the conventional

approach, we show referential integrity links between the SALES and TIME tables as dashed arrows. For our

proposed approach, we use solid arrows to show the rows to which di�erent RIDs point and dotted lines to

show that the order of the records in the JDI and the SALES BDI is preserved from the base table.

As can be seen in this �gure, instead of storing the data corresponding to the ShipDate column, the JDI

provides a direct mapping between individual tuples of the SALES and TIME tables. The join required to answer

the above query can thus be performed in a single scan of the JDI (more details in section 4). This property

7

Reduced SALES BDI

JDI on ShipDate

Base TIME Table

Base SALES Table

Base TIME Table

RowID

Status CommitDate

RowID

Status CommitDate

RowID

TimeKey Alpha Year WeekMonth Day

RowID

TimeKey Alpha Year WeekMonth Day

RowIDRowIDRowID RowID

TimeKey

RowID

TimeKeyTimeKey Alpha Year WeekMonth Day TimeKey Alpha Year WeekMonth Day

Status

DayWeek

ShipDate CommitDate

DayWeek

RowID

.... Status

RowID

ShipDate CommitDate

Status

RowID

Status ShipDate CommitDate

RowID

Status CommitDate

RowID

Status

Conventional Relational Representation

JDI Representation

Status

CommitDate

Figure 4: The Join DataIndex

of JDIs is indeed attractive, since the size of this index is, of course, proportional to the number of tuples in

the table from which it was derived. In our example schema, for instance, the JDI on ShipDate contains 6

million entries. A join operation could thus be performed by examining each one of these entries in turn. This

approach should be signi�cantly faster than with conventional join algorithms, which typically perform joins

between two or more tables in a pairwise fashion. Such algorithms include nested-loop joins, merge joins [4],

hash-joins [5], or any derivative of these techniques [38, 56] (see [21] for a survey). In fact, the exact number

of block accesses needed to scan a JDI is simply the number of data blocks occupied by this structure. This is

given by
l
jSALESj
�(r)

m
, where r is the size of a RID (6 bytes). This results in

�
6;000;000

b 80006 c

�
= 4502 block accesses.

However, a JDI does not contain any data values. It might thus make the evaluation of queries where these

values are needed more di�cult. For instance, consider the following query:

SELECT ShipDate FROM SALES

If the ShipDate column is stored as a JDI, this query requires access to both the SALES and TIME tables, even

though the latter one is not explicitly speci�ed. We can thus compute the number of block accesses necessary

to evaluate the above query as 4502+
l
jTIMEj
�(TIME)

m
= 4511. This �gure is somewhat larger than would be required

with a BDI. With a BDI, evaluating the above query would require only
l

jSALESj
�(ShipDate)

m
= 1500 block accesses.

However, this would not always be the case: if the foreign table is small and the width of the indexed column

is large, then scanning it to obtain data values will be more e�cient than actually scanning a corresponding BDI.

For instance, consider the (somewhat unlikely) case where a TimeKey value is 8-bytes wide (i.e., w(TimeKey) =

8). Evaluating the above query with a JDI would require 4502+
l
jTIMEj
�(TIME)

m
= 4513 block accesses, where �(TIME)

is now
�
8000

34

�
, while a BDI would require

l
jSALESj

�(TimeKey)

m
= 6000 I/O operations, where �(TimeKey) is now

�
8000

8

�
.

There would thus appear to be situations where a JDI is, in fact, preferable to a BDI even when no join is

explicitly involved2. Hence, even though a JDI is useful for a column storing foreign keys, it is also useful when

the column is wide and the number of distinct values in the column is small. In this case, it is preferable to

realize the column as a JDI with the addition of another (small) lookup column storing the distinct values in

the original columns. When it pays to do this is precisely characterized in section 6.1.5.

2Interestingly, we can signi�cantly reduce the cost of accessing the TIME table in this sort of query by storing its primary key
column (i.e., TimeKey) as a BDI. In this case, the number of I/Os required to evaluate the above query with a JDI is equivalent
to the number of blocks of both the JDI on SALES.ShipDate and the BDI on TimeKey. As it turns out, the TIME table is so small
that only 3 blocks are required to store the BDI on TimeKey. Hence, in this particular example, the total number of block accesses
required to evaluate the above query is only 4505, which is again smaller than would be required with a regular BDI (whose size,
in this case, was computed above to be 6000 blocks).

8

In Sections 6.1.1 and 6.1.5 we perform an analysis of the performance of the di�erent indexing schemes in

order to characterize exactly when a particular indexing scheme is to be preferred. Now we provide a qualitative

summary of the features embedded in DataIndexes.

3.3 Comparison of BDIs and JDIs with existing Indexing Approaches

The Basic DataIndex is closely related to the idea of the Projection Index. A projection index is simply a mirror

image of the column being indexed. When indexing columns of the fact table, storing both the index and the

corresponding column in the fact table results in a duplication of data. In such situations, it is advisable to

only store the index if original table records can be reconstructed easily from the index itself. This is the

starting point of the proposed DataIndex scheme and is how Sybase IQ stores data [19, 46]. Furthermore,

with DataIndexes, each BDI of a table is stored separately { with ordinal positon based mapping providing

more e�cient access to individual record �elds compared to other vertical partitioning based methods. Because

BDIs are stored separately, only columns of interest need to be loaded in memory when joins are performed.

Another attractive aspect of BDIs, and a point of departure from pure projection indexes, is that each BDI can

contain any number of columns from the original table, unlike projection indexes which are restricted to single

columns. Finally, as mentioned previously in Section 2, projection indexes do not improve join performance.

We introduce the notion of Join DataIndexes (JDI) for this purpose.

O'Neil and Graefe [45] brie
y introduced the idea of a bitmapped join index for e�ciently supporting

multi-table joins. JDIs capitalize on this idea in the context of the Basic DataIndex. A bitmapped join index

(BJI) associates related rows from two tables [45], as follows. Consider two tables, T1 and T2, related by a

one-to-many relationship (i.e., one record of T1 is referenced by many records of T2). A BJI from T1 to T2 can

be seen as a bitmapped index that uses RIDs of T1 instead of search-key values to index the records of T2.

Using a similar basic philosophy, a JDI stores the RIDs of the matching records in the corresponding dimension

table instead of the corresponding key values. There are however, two important di�erences between JDIs and

BJIs implemented in commercial systems:

1. Commercial implementations of BJI (such as in INFORMIX) are tree structured and exist as separate

index structures. JDIs are
at structures and do not exist as auxiliary index structures. Rather, JDIs

are a representation of the base data itself.

2. As we saw, JDIs are useful even when no joins are performed, speci�cally, when a column stores foreign

keys, it is useful when the column is wide and the number of distinct values in the column is small.

This implies that with DataIndexes, the amount of storage required may even be smaller than the storage

required for the base tables.

We discussed above how DataIndexes are di�erent from the indexes proposed for warehouses so far. In this

context we must also mention that the way we use these structures is also radically di�erent from how cur-

rent structures are employed. More speci�cally, we design a number of query processing algorithms that use

DataIndexes in novel ways to deliver much improved performances of star-join queries in a large number of

cases.

In summary, DataIndexes take the best aspects of vertical partitioning, projection indexes, and Bitmapped

Join Indexes and integrates as well as extends them in (what we will show to be) an e�ective manner.

Before we conclude this section, it is important to point out that a number of variant indexes are supported

in commercial products such as Sybase IQ [61], Oracle 8 [47], Informix Universal Server [34], and Red Brick

Warehouse [51]. In addition to projection indexes[46] and bitmapped join indexes [45] mentioned already, such

9

index structures include bitmapped indexes [44], bit-sliced indexes[46]. Wu and Buchmann [67] presented an

e�cient encoding scheme for reducing the size of bitmapped indexes, and Chan and Ioannidis [7] proposed a

framework for the design and evaluation of bitmap indexing schemes. An analysis of three index structures

along with B+-trees is presented in [46], which indicates that these four structures are particularly appropriate

for warehousing/OLAP environments. In Section 6, we present the results of extensive analysis of the previously

proposed index structures along with DataIndexes.

3.4 The DataIndex Physical Design Strategy

Having introduced the two types of DataIndexes, we now brie
y describe a physical design strategy based on

these indexing structures. In general, we propose that a JDI be established for each foreign column in the

fact table, and single-column BDIs be established for all other fact table columns and for all dimension table

columns. Thus every column in a given star schema is represented as either a single-column BDI or as a JDI.

To illustrate, consider again the star schema of Figure 1. The foreign columns in the SALES fact table are

SALES.PartKey, SALES.SuppKey, SALES.CustKey, SALES.ShipDate, SALES.CommitDate, and SALES.ReceiptDate.

If we let jA denote a JDI on attribute A in the SALES fact table, then our physical design strategy assumes

the following JDIs are de�ned: jPartKey corresponding to the PART dimension table, jSuppKey corresponding to

the SUPPLIER dimension table, jCustKey corresponding to the CUSTOMER dimension table, jShipDate, jCommitDate,

and jReceiptDate all corresponding to the TIME dimension table. The remaining columns in the fact table would

be stored as BDIs. For instance, single-column BDIs would be de�ned for SALES.Quantity, SALES.ExtPrice,

and SALES.Discount. Likewise, single-column BDIs would be de�ned for all dimension table columns. These

would include, for instance, TIME.TimeKey, TIME.Alpha, TIME.Year, TIME.Month, TIME.Week, and TIME.Day

for the TIME dimension table. The physical design strategy we have described will be assumed throughout this

paper.

4 Fast Star-Join Algorithms Based on DataIndexes

A common operation in OLAP applications is the star-join query. In a star-join, the fact table is joined with

a set of dimension tables. Due to the large size of most data warehouses, a star-join is typically an extremely

expensive operation. As mentioned previously, response time is critical in OLAP applications. Therefore, it

is imperative to have algorithms that can perform star-join queries very quickly. Such algorithms must ensure

that the appropriate access structures are utilized. In this section, we present e�cient algorithms for performing

star-join operations with DataIndexes.

A typical OLAP query is of the form

SELECT column list FROM F, D1, : : : , Dm WHERE P./ AND P�

where F is the central fact table, D1; : : : ; Dm are the m dimensional tables participating in the join, P� is

a set of selection predicates (i.e., each individual predicate only concerns one table), and P./ is a set of join

predicates (i.e., each predicate is of the form F:A1 = Di:A2). To illustrate, consider the following query, based

on our example from section 3, which lists the prices for sales made locally by suppliers in the United States:

SELECT U.Name, S.ExtPrice

FROM SALES S, TIME T, CUSTOMER C, SUPPLIER U

WHERE T.Year BETWEEN 1996 AND 1998 AND U.Nation='United States' AND C.Nation='United States'

AND S.ShipDate = T.TimeKey AND S.CustKey = C.CustKey AND S.SuppKey = U.SuppKey

10

In this query, the selection predicates (i.e., P�) are \T.Year BETWEEN 1996 AND 1998 AND U.Nation=`United

States' AND C.Nation=`United States'"; the joining predicates (P./) on the other hand are \S.ShipDate

= T.TimeKey AND S.CustKey=C.CustKey AND S.SuppKey = U.SuppKey". We will utilize this query example

through the remainder of our discussion.

Before presenting the algorithms, we �rst brie
y describe the notion of a rowset, an important underlying

concept used throughout this analysis. A rowset is simply a representation of selected tuples from a table.

Evaluation of a star-join query consists of two phases: creating access structures to identify which tuples are to

be retrieved to answer the query, and retrieving the actual data for the selected tuples. A rowset is the access

structure used in the �rst phase. Two approaches to representing a rowset would be to represent it as a list of

row identi�ers (RIDs) or a bit vector [46]. In a RID-list representation, a rowset can be thought of as a list

structure containing a set of RIDs for selected tuples, and so the rowset cardinality is the number of selected

tuples. In a bit vector representation, a rowset is a vector of bits (having cardinality of the table itself), where

bits are set only for selected tuples.

The size of a rowset R, in either form, can easily be computed. For an RID-list representation, the size

of the rowset is governed by the number of rows in the set, jRj. In this case, the minimum size of the rowset

representation is r � jRj, where r is the size of a RID. For a bit vector representation, the size of a rowset is

governed by the number of records present in the table. It is given by
l
jT j
8

m
�

jT j
8
. Thus, from the point of

view of storage requirements, a RID-list representation is better than a bit vector if the following condition

holds.

r � jRj <
jT j

8
()

jRj

jT j
<

1

8r
(1)

In other words, a RID-list is only smaller when the selectivity (jRjjT j) of the rowset is less than
1

8r
. In the example

presented in section 3, where r is 6 bytes, a RID-list representation of a rowset would only be better if this

rowset corresponds to less than 2% of the number of records in the underlying table. In decision support

environments, many queries access signi�cant portions of the underlying database [11]. In addition, many

operations on bitmaps are much faster than on RID lists[46]. For these reasons, in the remainder of this paper

we assume that the rowsets used in evaluating a selection predicate are implemented as bit vectors.

Now we turn our attention to analyzing how a star-join query is evaluated in a data warehouse.

Essentially, star-join query is evaluated in two phases: the range selection phase and the join phase. In the

range selection phase, the selection predicates (P�) are applied individually to each table that participates in

the join. This results in a set of rowsets that indicate which tuples from each table are candidates for inclusion

in the join result. In the join phase, the rowsets are used in conjunction with index structures to retrieve the

data for tuples appearing in the join result.

To illustrate this approach, consider again our sample query that was presented earlier in this section. The

set of dimension tables participating in the join is D = fTIME; CUSTOMER; SUPPLIERg, the set of dimension table

columns that contribute to the join result is CD = fSUPPLIER.Nameg, and the set of fact-table columns that

appear in the result is CF = fExtPriceg.

To answer this query, we would begin the range selection phase by �rst applying the predicates T.Year

BETWEEN 1996 AND 1998, U.Nation='United States' and C.Nation='United States' to the corresponding

dimension tables (i.e., TIME, CUSTOMER and SUPPLIER). These selections would result in a set of rowsets, R,

one for each of the dimension tables involved (i.e., R = fRTIME; RCUSTOMER; RSUPPLIERg). Since no predicates were

applied on the fact table, F , the corresponding rowset, RF , corresponds to all tuples of F .

Once the range selection phase completes, the join phase would commence. We now discuss the execution

11

of these two phases separately. Once we have completed describing the two phases, we will present our analysis

which computes the costs of performing each phase.

4.1 The Range Selection Phase Using DataIndexes

In this phase, rowsets are computed based on the restriction (selection) criteria applied in the query under

consideration. Performing this phase using BDIs and JDIs is quite simple.

To evaluate a selection using a BDI, it is necessary to scan the entire BDI and evaluate the selection

predicate on each value in the BDI. For example, to evaluate the predicate T.Year BETWEEN 1996 AND 1998,

it would be necessary to scan the T.Year BDI and generate a rowset where a set bit corresponds to an ordinal

position such that the record at this position in the BDI satis�es the predicate.

A JDI is fundamentally di�erent from a BDI in that none of the search-key values are present in the index.

Rather, the RIDs corresponding to foreign records that hold these values are stored in the index. So, evaluating

a predicate-based selection operation on a JDI can not be done by only accessing the JDI. Rather, the foreign

column is �rst scanned, and a rowset of all matching entries is generated and kept in memory. The JDI is then

scanned and a second rowset is constructed by determining which entries in the JDI are present in the �rst

rowset.

For instance, consider the TPC-D schema shown in Figure 1. Assume a JDI exists on SALES.SuppKey

and a BDI exists on SUPPLIER.Nation. To evaluate the predicate \SUPPLIER.Nation = 'United States' \

requires �rst scanning the SUPPLIER.Nation BDI and determining which values have 'United States' in the

Nation �eld. A rowset (having cardinality equal to that of the SUPPLIER table) indicating which entries in the

SUPPLIER table meet this condition is then created and kept in memory. Next the JDI on SALES.SuppKey is

scanned and compared to the �rst rowset to determine which entries in the SALES fact table meet the predicate

condition. The result of this comparison is a second rowset (having cardinality equal to that of the SALES

table) indicating the requested SALES records. Having described the range selection phase, we now turn our

attention to describing the join phase evaluation of a star-join query.

4.2 The Join Phase

A star-join can be evaluated in a variety of ways using DataIndexes. We propose two such approaches. Each

one should be used depending on the amount of available memory. We call the �rst approach Star-Join with

Large memory (SJL). It is the more e�cient of the two in terms of response time, but may require signi�cant

amounts of memory in certain cases. The second one is somewhat less e�cient but has negligible memory

requirements. We refer to it as Star-Join with Small memory (SJS).

4.2.1 SJL algorithm

The basic idea behind SJL is to perform a star join with a single pass over each table participating in the join.

Clearly the performance a�orded by such an algorithm would be di�cult to improve upon. The SJL algorithm

is shown in Algorithm 1.

To illustrate this approach, consider again our sample query that was presented earlier in this section. The

set of dimension tables participating in the join is D = fTIME; CUSTOMER; SUPPLIERg, the set of dimension table

columns that contribute to the join result is CD = fSUPPLIER.Nameg, and the set of fact-table columns that

appear in the result is CF = fExtPriceg.

12

Algorithm 1 SJL (Star Join with Large memory)

Note: Needs enough memory to hold all dimension BDIs used in the join result.

Input:

D: set of dimension tables involved in the join.

CD: set of dimension table columns that contribute to the join result.

CF : of fact-table columns that contribute to the join result.

R: set of rowsets, one for each table in D and one for the fact table F (R = fR1; : : : RjDj; RF g). These are computed

through the range selection phase, before SJL starts. Note that R1; : : : RjDj are already loaded into memory, whereas

RF is not.

1: for each column ci 2 CD do

2: for each row r 2 Ri do

3: if the block of BDI on ci where r is located is not loaded then

4: Load this block into memory array aci and pin in memory

5: for each row r 2 RF do

6: for each JDI j on a table of D do

7: if j(r) 62 Rj then

8: goto 5

9: for each ci 2 CD do

10: s[ci] aci(jci(r))

11: for each cj 2 CF do

12: s[cj] r[cj]

13: Output s.

Now assume that the range selection phase is complete for this query, using methods outlined in section 4.1.

The output of this phase is a set of rowsets, R, one for each of the dimension tables involved (i.e., R =

fRTIME; RCUSTOMER; RSUPPLIERg). Since no predicates were applied on the fact table, F , the corresponding rowset,

RF , corresponds to all tuples of F .

The SJL algorithm would then execute the join phase, beginning by loading all blocks of the dimensional

BDIs where it is known that some record of interest occurs that appear in the join result (i.e., all columns in

CD). This is done by steps 1 through 4 in Alg. 1, by scanning rowset RSUPPLIER. The result of this operation

is that the appropriate blocks of the SUPPLIER.Name BDI would be in memory, along with the three rowsets

generated during predicate selection (i.e., RTIME, RCUSTOMER, and RSUPPLIER).

After this, SJL would begin scanning the appropriate SALES JDIs to determine which SALES records should

appear in the join result (steps 5-8). This would proceed as follows. For each record in the fact table, the

JDIs linking F to elements of D are examined (step 6). We will denote these JDIs as jTIME, jCUSTOMER and

jSUPPLIER, corresponding to the three elements of D. SJL uses these JDIs to \look up" matching entries in the

corresponding rowsets (step 7). To illustrate, consider two successive fact-table rows, r1 and r2. SJL would

�rst examine the entry corresponding to r1 in jTIME (step 6). This entry, noted jTIME(r1), is a RID onto the

TIME dimension table and it can thus be used to access the corresponding bit in RTIME through a simple array

look-up (step 7). Assume that this bit is cleared (i.e., set to 0); SJL would then simply skip r1 and examine

the next record (step 8). This next record, r2, would undergo a similar set of operations. First of all, the

corresponding entry in jTIME (step 6) (i.e., jTIME(r2)) would be checked against RTIME (step 7); assuming that r2

corresponds to a sales in the years 1996 to 1998, then the next JDI, i.e., jCUSTOMER would be checked (step 6). If

the corresponding bit in RCUSTOMER is set to 1 (step 7), then the last JDI (i.e., jSUPPLIER) would be checked as well

(step 6). Assuming that the corresponding bit in RSUPPLIER is also set to 1 (step 7), then this would indicate

that r2 does indeed appear in the join result.

Once a fact-table row r has been identi�ed as contributing to the join result, SJL builds the corresponding

join record (steps 9-12) prior to output (step 13). To do this, the corresponding entry in the in-memory BDI

for SUPPLIER.Name is accessed and used to construct the output record s (step 9-10). To access the correct

13

entry, the RID of the SUPPLIER record referenced by r is simply obtained from jSUPPLIER (step 10). This RID

is mapped to an ordinal position and used to access the in-memory BDI on SUPPLIER.Name. Since this BDI

is represented as an array (aSUPPLIER.Name), this step simply consists of a lookup into the array, based on the

ordinal position in SUPPLIER of jSUPPLIER(r) (step 10).

Finally, the attribute values corresponding to fact-table columns are loaded from disk to complete the

output record (step 11-12). In our example, the only such column is ExtPrice. The appropriate page from

the ExtPrice BDI would then simply be loaded from disk and the corresponding attribute (i.e., r[ExtPrice])

would be used to �nish constructing output record s (step 12).

4.2.2 The SJS algorithm

Recall that in SJL (steps 1-4 of Algorithm 1), the dimension table BDI's for columns appearing in the join result

are loaded and pinned in memory. Thus, SJL assumes that all relevant columns from dimension tables are small

enough to �t in memory. Clearly, in some cases, this assumption is not realistic. In Algorithm 2, we present the

SJS algorithm for performing a star-join on a DataIndexed warehouse, when the combined size of all relevant

columns from dimension tables cannot �t in memory. Like SJL, the SJS algorithm assumes that all restrictions

on participating tables have been computed and the results stored in a set of rowsets, R = fR1; : : : ; RjDj; RF g,

with the dimensional rowsets fR1; : : : ; RjDjg loaded into memory prior to the start of the algorithm. Thus,

it is assumed that enough memory exists to load all dimensional rowsets. However, it is not assumed that

su�cient memory exists to load all dimension table BDIs. Rather, the join is performed on smaller subsets of

the dimensional BDIs by loading as many blocks of these BDIs as will �t into the available memory. Temporary

structures and merge techniques are required to perform these operations. Clearly memory plays a critical role

in the performance of this algorithm, which we will analyze in more detail in a later section. For now, we

describe the SJS algorithm in more detail.

Algorithm 2 SJS (Star Join with Small memory)

Note: Has negligible memory requirements.

Input: Same as in Algorithm 1.

1: for each JDI j on a table of D do

2: for each row r 2 RF do

3: if j(r) 62 Rj then

4: RF RF � frg /* turn corresponding bit off */

5: for each JDI jt on a table t 2 D do

6: for each row r 2 RF do

7: write jt(r) to temporary JDI jt;temp on disk

8: for each BDI bi on a column ci 2 CD do

9: Create output BDI bi(out) on disk

10: k 1

11: while 9 unloaded blocks of bi do

12: Load as many blocks of bi as possible into in-memory array ai
13: for each row r in ji;temp do

14: if bi(r) 2 ai then
15: bi(out) bi(r) /* write matching entry to output BDI */

16: k k + 1

17: for each row r 2 RF do

18: for each column ci 2 CD do

19: s[ci] bi(r)

20: for each column cj 2 CF do

21: s[cj] r[cj]

22: Output s

14

We describe the algorithm in four main phases. We refer to the �rst phase (steps 1-4) as the fact table rowset

(RF) restriction phase. This phase restricts the initial rowset on the fact table, RF , so that it only indicates

records that will appear in the join result. This is done by accessing the JDIs of the fact table corresponding to

all participating dimensional tables. This process is similar to scanning the JDIs in the SJL algorithm (steps

5-7 of Algorithm 1), except that RF is updated. We refer to the second phase (steps 5-7) as the JDI restriction

phase. This phase restricts the JDIs to those rows of the fact table that appear in the join result. This is done

by simply scanning the restricted fact table rowset created in the previous phase. The resulting restricted JDIs

are stored in temporary structures on disk. These �rst two phases basically prepare the data for the actual

join, which we describe in the next two phases.

We refer to the third phase (steps 8-16) as the output BDI creation phase. This phase constructs an output

BDI for each dimension table column appearing in the join result (i.e., all columns in CD). This is done by

loading into memory as many blocks of the dimension table BDI as will �t; i.e., loading some fraction of the

BDI. Then for this loaded portion of the BDI, the restricted JDI is scanned to �nd matching BDI entries, which

are then written to the output BDI. Each value is written to the output BDI in the order corresponding to the

restricted JDI, so the output BDI will have the same cardinality as the restricted JDI. The JDI and output

BDI are processed sequentially, one block at a time. This processing is repeated as many times as necessary

to load all dimension table BDIs. The same processing is done for all columns in CD.

Referring back to our example query, recall that CD = fSUPPLIER.Nameg. Suppose the total memory

required for the entire SUPPLIER.Name BDI is 250 MB, yet only 64 MB of memory is available. In other words,

we assume here that 64 MB of memory is available after accounting for the memory already occupied by the

JDI and output BDI blocks that are currently loaded for this phase. Clearly we cannot load all dimensional

BDIs at once, but rather, can load up to 64 MB at a time. If we assume an e�ective block size of 8 KB, then

we can load 8,000 blocks of this BDI at once (
�
64 MB
8 KB

�
), which is roughly one-fourth of the SUPPLIER.Name

BDI (
�
250 MB
64 MB

�
). Once we have 8,000 blocks of the SUPPLIER.Name BDI loaded, the JDI for the SUPPLIER

dimension, jSUPPLIER, is scanned for RIDs that point to one of the BDI entries in memory. Matching entries are

then written to the output BDI. This process is repeated until all blocks for the BDI have been loaded, 4 times

in our example. The result is the output BDI for SUPPLIER.Name, which contains the corresponding output

values in fact table order based on the restricted JDI.

We refer to the fourth phase (steps 17-22) as the �nal output merge phase. This phase creates the �nal

output by scanning RF and merging the dimension table output BDIs (created in the third phase) with the

fact table output BDIs (i.e., all columns CF). In our example, for each record in RF , the corresponding value

from the output BDI for SUPPLIER.Name is obtained along with the corresponding value from the output BDI

for ExtPrice. Note the simplicity of this phase since all output BDIs are in fact table order.

We now proceed to estimate the cost of performing star-joins using the algorithms outlined above.

5 Cost Analysis of the Star-Join Algorithms

In a relational system, a query is generally �rst translated from its original format (e.g., SQL) into some internal

format (often an extension of SPJ relational algebra) which is then used by the query optimizer to determine a

query execution plan, i.e., a sequence of data and index accesses and manipulations. This plan is then executed

as a series of disk accesses { which load the relevant portions of the database to main memory { interleaved with

bursts of CPU activity, when the loaded data is operated upon. Mapping functions are required to determine

the speci�c disk block that needs to be accessed and these depend on the index structure used. The mapping

operations needed for DataIndexes are similar to the ones used in other systems, which utilize bitmap vectors

15

(in bitmapped indexes or for bitmapped rowsets). Depending on the system in use, the logical block numbers

discussed in the previous section are translated into physical block IDs either by the operating system or by

low-level routines of the storage manager of the DBMS itself. The logical block numbers allow the system

to work as if the �les were allocated contiguous storage when in fact they are not. In all cases the mapping

operations can be implemented through a few integer operations and are thus quite fast. In fact, in most cases,

we believe that the delays associated with these computations will be negligible compared to the much slower

storage access times. This belief is strengthened by other studies [46, 31], which have shown that I/O related

costs (disk access plus I/O related CPU costs) are several orders of magnitude more than other CPU costs

relating to query processing. Based on these �ndings, in the rest of the paper, we will focus on analyzing the

index structure performance with respect to disk access. Speci�cally, we characterize the performance of a

query as the number of data blocks, N , that are accessed during the execution of that query.

Overall, the number of block accesses necessary to perform a star-join, Nstar, can be expressed in terms

of the cost of creating all initial rowsets and that of joining the corresponding rows together to compute the

�nal result. More speci�cally, we de�ne NROWSETto be the number of data block accesses required to construct

a rowset corresponding to a particular selection predicate. We also de�ne NJOINto be the number of block

accesses required to join theses rowsets to form the �nal query result. Putting these two costs together gives

the following expression for the cost (in terms of number of block accesses) to perform a star-join:

Nstar =
X

NROWSET +NJOIN (2)

Following this model, we now present an analysis of the cost of performing rowset constructions based on the

DataIndexes and then present two separate analyses of the cost of performing the actual join based upon the

two di�erent algorithms outlined in the previous section.

First, we summarize in table 3 the notation used throughout this paper. Note that some of the notation in

this table has not yet been used.

Notation Description

B E�ective Size, in bytes, of a data block

� Size, in bytes, of a pointer to a data block

r Size, in bytes, of a RID

jT j Number of records present in table T

V Number of distinct values present in the column being indexed

&T Selectivity factor on table T (0 � &T � 1)

c Distinctness factor of range selection (0 � c � 1)

Vrange Number of distinct search-key values referenced by a particular range selection (i.e., number of

all such vk values present in the table such that k1 � vk � k2). Note that Vrange = &T jT jc

w(C) Width, in bytes, of a particular column C

w(T) Width, in bytes, of a table T

K Number of search key values per node of B+-tree

P Order of B+-tree , i.e., P = K + 1

f Compression factor such that 0 < f � 1 where f = 1 indicates no compression

D Set of dimension tables involved in a join

CD Set of dimension table columns that contribute to the join result

CF Set of fact-table columns that contribute to the join result

Ri Rowset corresponding to dimension i (i = 1; 2; : : : ;D)

RF Rowset corresponding to the fact table

R Set of rowsets, one for each table in D and one for the fact table F (R = fR1; : : : RjDj; RF g)

Ma Number of blocks allocated to input BDI

Table 3: Notation used in this paper

16

5.1 Cost for Constructing Rowsets Using DataIndexes (NROWSET)

We now examine the �rst component of query cost,NROWSET, for BDIs and JDIs. Most OLAP selection operations

will consist of range predicates, i.e., having the form k1 � C � k2, where k1 and k2 are (possibly equal) constants

and C is the column being inspected. Our analysis can easily be extended to more complex predicates.

First, to evaluate a selection using a BDI, it is necessary to scan the entire list and evaluate the selection

predicate on each value in the list. Hence, the cost of evaluating a selection on a column C indexed by a BDI

is simply the number of block accesses required to scan the index:

NROWSET(BDI) =

�
jT j � w(C)

B

�
(3)

where jT j represents the number of records in the table, w(C) represents the width of the column being indexed,

and B is the e�ective size of a data block in bytes.

To simplify the analysis, we drop the ceiling (d�e) function and approximate the cost of building a rowset

using a BDI to be:

NROWSET(BDI) �
jT j � w(C)

B
. (4)

Second, as mentioned previously, a JDI is fundamentally di�erent from a BDI in that none of the search-key

values are present in the index. Rather, the RIDs corresponding to foreign records that hold these values are

stored in the index. So, evaluating a predicate-based selection operation on a JDI can not be done by only

accessing the JDI. Rather, the foreign column is �rst scanned, and a rowset of all matching entries is generated

and kept in memory. The JDI is then scanned and a second rowset is constructed by determining which entries

in the JDI are present in the �rst rowset.

The cost to construct a rowset for the SALES fact table using this method yields the following expression,

where the �rst term corresponds to scanning the BDI and the second term corresponds to scanning the JDI:

NROWSET(JDI) =

�
V w(C)

B

�
+

�
jT jr

B

�
(5)

Here V represents the number of distinct values present in the column being indexed. It is assumed that the

foreign column is a primary key of the dimension table and is stored as a BDI. Thus the cardinality of the

referenced BDI is V . Note that V is usually much smaller than jT j. In the second term, r represents the size

of a RID in bytes. Applying the same simpli�cations as before results in the following expression for the cost

to construct a rowset using a JDI:

NROWSET(JDI) �
V w(C) + jT jr

B
(6)

5.2 Cost for Joining Tables (NJOIN)

In this section we examine the cost to perform a join using both the SJL algorithm, NJOIN(SJL), and the SJS

algorithm, NJOIN(SJS). In this analysis we assume that disk fragmentation is neglible. Unlike transactional

processing systems, in a data warehouse, the emphasis is on querying rather than updating. Updates in a data

warehouse typically occur in bulk, so records will be packed. It is therefore reasonable to assume that the

degree of fragmentation will be insigni�cant and so we assume packed records throughout this analysis.

17

5.2.1 Cost of the SJL Algorithm

It should be clear from the discussion in Section 4.2.1 that SJL performs a single scan of the central SALES

fact table, and that only a limited number of columns is ever examined. During this scan, only pages that

correspond to records in RF are actually considered (step 5 of Algorithm 1), and often, only a subset of the

corresponding JDI pages will need to be loaded and examined (steps 6-8 of Algorithm 1). Indeed, a query

optimizer should determine the order in which these JDIs should be examined, so as to minimize the number

of page accesses. A simple rule of thumb for this type of optimization would be to select the JDI whose

corresponding rowset has the smallest selectivity. Finally, once a record is known to participate in the join,

only a subset of the columns from the di�erent tables is ever accessed (steps 9-12 of Algorithm 1).

This simple approach allows for very e�cient star-join evaluation. Indeed, the cost of a query on a fact

table F and a set of dimension tables D can be expressed as follows:

NJOIN(SJL) = ND(BDI) +NF (JDI) +NF (BDI) (7)

where ND(BDI)represents the cost of retrieving all blocks containing relevant records from dimensional BDIs,

NF (JDI), the cost of scanning each of the relevant JDIs from the fact table, and NF (BDI), the cost of scanning

all relevant records from fact table BDIs. We now derive expressions for each of these terms.

The cost to retrieve the relevant blocks for dimensional BDIs requires scanning the dimensional rowset for

each dimension table column involved in the join result. This cost can be expressed as follows:

ND(BDI) =
X
D2D

X
C2CD

�
jDj � w(C)

B

�
(8)

where D represents the set of dimension tables involved in the join, jDj represents the cardinality of the rowset

for dimension table D, and CD represents the set of columns from a table D that appear in the join result.

The cost to scan the relevant JDIs from the fact table is given by:

NF (JDI) = jDj

�
rjF j

B

�
(9)

Here
l
rjF j
B

m
represents the number of block accesses required for a particular JDI and jDj the number of

dimension tables participating in the join. In the worst case, all foreign colums satisfy the restriction conditions

and so all jDj JDIs must be examined.

Finally, the last part of the algorithm involves loading columns from the fact table to complete the output

record. The cost to scan the relevant records from the fact table is given by:

NF (BDI) =
X
C2CF

min

�
&F jF j;

�
jF j � w(C)

B

��
(10)

Here &F denotes the �nal selectivity on the fact table (i.e., the number of records in the join is &F jF j and

0 � &F � 1). The cost of loading the fact table columns depends on the selectivity. This cost will be the

lesser of the number of records in the join (i.e., the �rst term in (10) by random access), and the total number

of blocks required for all relevant columns in F (i.e., the second term in (10) by sequential scan of the entire

index).

By inspection, we can thus establish that the dominant factor in these equations is jF j�jDj, which indicates

that the worst-case performance of this algorithm will be O(jF j � jDj) or simply O(jF j) since jDj is bounded

18

by a small constant for a given star schema.

We note again that this e�cient approach can only be utilized if enough memory can be allocated to the

query. This memory requirement is given by

MJOIN(SJL) = 1 + jDj+ jCF j+
X
D2D

X
C2CD

�
jDj � w(C)

B

�
+ jDj

X
D2D

�
jDj

8B

�
. (11)

Here the �rst term corresponds to one block of memory for the fact table, the second term corresponds to jDj

blocks for the JDIs, and the third term corresponds to jCF j blocks for the fact table BDIs. Thus we assume

that the algorithm proceeds by accessing the fact table rowset, each JDI, and each fact table display column

one block at a time. The fourth term corresponds to the memory requirements for the dimension table BDIs,

and the last term corresponds to the memory requirements for the dimension table rowsets, both of which are

loaded into memory for the duration of the algorithm.

From 11, we can conclude the following:

Result 1 The memory requirements for the SJL algorithm are independent of the size of the fact table.

This is an interesting result because it allows us to see that the SJL algorithm often does not require much

memory, and that the memory requirements do not increase as the size of the fact table increases..

To illustrate, consider again the star-join query from Section 4, which joins the SALES fact table with

the TIME, CUSTOMER, and SUPPLIER dimension tables. Using 11, it is easily shown that a total of 52 blocks

of memory are required to answer the query using SJL. While this is by no means a \monster" query, it is

certainly respectable. Yet, on any given system, it would only require about 416KB of memory, regardless

of the size of the fact table. This amount of memory is small enough as to be even available on low-end

personal computers. In addition, the corresponding columns could be used concurrently by other queries,

thereby reducing the e�ective memory requirements of each query. This can be done because SJL always loads

the entire columns \as-is", without pre-performing selections or reordering the data. Overall, thus, it would

appear that the memory requirements of SJL are indeed acceptable for many OLAP-type queries.

5.2.2 Cost of the SJS Algorithm

We now present the cost to perform a join using the SJS approach. This cost is given by:

NJOIN(SJS) = NRF +NJDI +NOBDI +NMerge (12)

where NRF represents the cost of the RF restriction phase, (steps 1-4 of Algorithm 2), NJDIrepresents the cost

of the JDI restriction phase (steps 5-7), NOBDIrepresents the cost of the output BDI creation phase (steps

8-16), and NMergerepresents the cost of the �nal output merge phase (steps 17-22). The expressions for each

of these terms is given below. The cost to restrict RF is given by:

NRF = 2

�
jF j

8B

�
+NF (JDI) (13)

The term
l
jF j
8B

m
in (13) represents the total number of blocks required to store RF . Since the entire rowset

must be loaded and written back to disk, the �rst term thus represents the cost both to load and write the

rowset. The second term represents the cost to load the JDIs and is given by (9).

19

The cost to restrict the JDIs is given by:

NJDI =

�
jF j

8B

�
+NF (JDI) + jDjNR(JDI) (14)

where the �rst term represents the cost to load RF and the second term represents the cost to load the JDIs

and is given by (9). The third term represents the cost to write the new restricted JDIs where NR(JDI) is given

by

�
rjF

0

j
B

�
and jF

0

j = &F &
jDj
D jF j. Here &F represents selectivity on the fact table and similarly, &D represents

selectivity on dimension table D. For simplicity, it is assumed that selectivity is the same for all dimension

tables. The e�ect of this restriction is to reduce the number of relevant tuples based on &F and &D. Hence the

cardinality of each JDI is reduced to jF
0

j.

The cost to create the output BDIs can be expressed as:

NOBDI =
X
D2D

X
C2CD

LC

�
NR(JDI) +

Ni(C)

LC
+No(C)

�
(15)

For each participating dimension table and for each column appearing in the join result, several passes may

have to be made in order to scan the restricted JDI, locate the associated dimension table column value, and

then write the value to the output BDI. We let LC represent the number of passes required, which is given byl
Ni(C)

Ma

m
, where Ni(C) is the total number of blocks required for the input BDI and is given by

l
jDj�w(C)

B

m
.

Ma is the number of blocks allocated to the input BDI and depends on the available memory, which is the

total memory less what is already loaded. We discuss memory requirements of SJS in more detail later in this

section. No(C) represents the total number of blocks required for the output BDI and is given by

�
jF

0

j�w(C)
B

�
.

Returning to the actual processing, for each pass, all blocks of the corresponding JDI must be loaded (the �rst

term in (15)), the number of blocks of the input BDI that �t in memory must be loaded (the second term

in (15)), and all blocks of the output BDI must be accessed (the third term in (15)).

The expression in (15) can be simpli�ed to give the following:

NOBDI = NR(JDI)
X
D2D

X
C2CD

LC +ND(BDI) +
X
D2D

X
C2CD

LCNo(C) (16)

where ND(BDI)is the cost to retrieve all blocks containing relevant dimension table BDIs and is given by (8).

The cost to create the �nal output can be expressed as:

NMerge =

�
jF j

8B

�
+NF (BDI) +

X
D2D

X
C2CD

LCNo(C) (17)

where the �rst term corresponds to the cost to load RF , the second term corresponds to the cost to load the

fact table output BDIs and is given by (10), and the third term corresponds to the cost to load the dimension

table output BDIs created in the previous phase.

The minimum memory requirements for SJS are quite small and are given by:

MJOIN(SJS) = 1 + jCDj+ jCF j+
X
D2D

�
jDj

8B

�
. (18)

Since each phase in SJS has di�erent memory requirements, (18) is based on the memory requirements for the

�nal output merge phase, which requires the most memory of all phases. Therefore, the �rst term corresponds

20

to one block of memory for RF , the second term corresponds to one block for each of the dimension table output

columns, and the third term corresponds to one block for each of the fact table output columns. Finally, the

last term corresponds to the number of blocks required for the dimensional rowsets.

6 Comparative Analyses

Having analyzed the query processing cost based on DataIndexes, we now turn our attention to di�erent types

of indexing structures. This cost, as expressed in equation (2), is the sum of the cost to construct rowsets

corresponding to all selection predicates (
P
NROWSET), and the cost to join these rowsets (NJOIN). Following

this model again, we analyze the cost of evaluating star join processing using di�erent techniques and index

structures. In the ensuing analysis we consider virtually all the state-of-the-art access structures used in

datawarehouses currently. For rowset selections, we use B-Tree indexes, Bitmap indexes, Bit-sliced indexes and

Projection Indexes, while for joins we use the Bitmap Join Index. In each case, we �rst derive expressions that

yield the best case expected performance of each approach and then compare these results to determine which

approach is the most promising, and under what conditions.

6.1 Comparative Anaysis of NROWSET

6.1.1 NROWSET for B-tree Index

Possibly the most common indexing scheme available is the B+-tree . This structure consists of a balanced

tree whose nodes occupy each a single data block. The data blocks in the leaf level make up a sorted list of the

V distinct search-key values in the column being indexed (in our sample query above, this would match, for

instance, the number of unique values for the Nation �eld in the Customer table). Attached to each one of the

unique values is a list of the RIDs of the records corresponding to that value. B+-trees are often implemented so

as to reduce the number of tree reorganizations necessary when the underlying data is updated. This translates

to an average utilization of about 69% for the nodes in the tree. While this is indeed useful in transaction

processing systems, this overhead is not needed in the read-mostly environment of data warehouses. In this

study, thus, we assume that the tree is optimally �lled (i.e., almost all nodes are full). We also assume that all

values obtained in a range query are contiguous.

The cost to construct a selection predicate rowset with a B-tree can be expressed as follows:

NROWSET(B-tree) = Ndescent(B-tree) +Nleaf(B-tree) +NRID-list(B-tree) (19)

where Ndescent is the cost of descending the tree, Nleaf is the cost of scanning the leaf-level for all matching

entries, and NRID-list is the cost of actually accessing all RID-lists. We now derive expressions for each of these

components.

The cost to descend a B+-tree depends on the number of levels in the tree. The number of levels is given

by dlogP V e, where P is the order of the tree and V represents the number of distinct values present in the

column being indexed. The order of the tree is K+1 where K is the number of search key values per node and

K is given by
l

B
w(C)+�

m
. This expression determines the number of key values that can �t in a node given the

size of each key value, pointer pair (w(C) + �), and the e�ective blocksize, B. Since we do not need to include

the leaf level, the cost to descend the tree is then as follows:

Ndescent(B-tree) = dlogP V � 1e (20)

21

The cost of scanning the leaf-level is the number of blocks accessed at the leaf level and is given by:

Nleaf(B-tree) =

�
Vrange

K

�
(21)

where Vrange is the number of distinct search-key values referenced by the range selection and K is as de�ned

previously. This expression follows from the fact that there are Vrange distinct search-key values in the range

and K key values per node. Note that in the best case, this expression evaluates to one since only a single

block access is required.

The cost of accessing the RID-lists is given by the following expression:

NRID-list(B-tree) =

�
rjT j

V �B

�
Vrange (22)

where r is the size of a RID in bytes, jT j is the number of records present in the table, Vrange is the number

of distinct search-key values referenced by the range selection, and B and V are as de�ned previously. In

the sample query from the previous section, Vrange for the predicate \T.Year BETWEEN 1996 AND 1998" is 3,

since the range covers 3 years. In deriving this expression, we assume that the distribution of distinct values

is uniform. Thus the average number of RIDs per RID-list is given by jT j
V
. The size of a RID-list, in bytes, is

then rjT j
V

. Dividing by the e�ective blocksize then gives the number of blocks per RID-list,
l
rjT j
V�B

m
. Finally,

multiplying by the number of distinct search-key values in the range results in the number of blocks required

to access the RID-lists, as given in equation (22).

To simplify the analysis, we drop all ceiling (d�e) functions and approximate the cost of building a rowset

using a B-tree to be:

NROWSET(B-tree) � logP V � 1 +
Vrange

K
+

�
rjT j

V �B

�
Vrange (23)

6.1.2 NROWSET for a Bitmap Index

A bitmapped index is identical to a conventional B-tree except that the rowsets corresponding to each unique

search-key value are represented as bit vectors instead of RID lists [46]. As in the case of the B+-tree , the cost

of performing a range selection with a bitmapped index can be expressed as follows:

NROWSET(Bitmap) = Ndescent(Bitmap) +Nleaf(Bitmap) +NRID-list(Bitmap) (24)

where Ndescent and Nleaf are exactly the same as for the B
+-tree . The di�erence in these two structures appears

in the third term, the cost to access the RID-lists, since these are stored di�erently in the two structures. In

practice, in a bitmapped index, a certain amount of compression is typically employed in storing the bitmaps.

We thus assume a compression factor f (0 < f � 1), which is a percentage indicating the compression level

(f = 1 indicates no compression). We can then express NRID-list as follows:

NRID-list(Bitmap) = f

�
jT j

8 B

�
Vrange (25)

where jT j
8

is the size of a bit vector in bytes, and so
l
jT j
8 B

m
represents the average number of blocks per bit

vector. Multiplying this expression by Vrange gives the total number of blocks accessed, which is then weighted

by the compression factor. Applying the same simpli�cations as in (23), the rowset construction cost using a

22

bitmapped index can be expressed as:

NROWSET(Bitmap) � logP V � 1 +
Vrange

K
+ f

�
jT j

8 B

�
Vrange (26)

From equations 23 and 26, there appears to be a tradeo� between B+-tree and bitmapped indexes. However,

in practice, bitmapped indexes almost always require less storage than B+-tree as signi�cant compression can

usually be achieved on the bitmaps. We now provide an illustrative example. A simple compression technique

used in bitmapped indexes [46] is to represent the rowsets as bitmaps only when the bitmap representation is

smaller than a RID list representation. It is easily seen that a bitmapped index constructed according to this

method can never require more storage than a B+-tree . Of course, this compression technique is quite simple

and more e�ective compression mechanisms can be used. Thus we conclude the following result:

Result 2 The performance of a bitmapped index is never worse than that of a conventional B-tree index.

Because of this result, in the remainder of this paper, we do not consider the B+-tree but rather concentrate

on the bitmapped index.

6.1.3 NROWSET for a Projection Index

A projection index corresponds to a mirror copy of the column being indexed [46]. Like a single column BDI,

to evaluate a selection using a projection index, it is necessary to scan the entire list and evaluate the selection

predicate on each value in the list.

6.1.4 NROWSET for a Bit-sliced Index

Like the projection index and BDI, the bit-sliced index3 also scans the entire index. In addition, each slice

must be accessed in turn, which requires that a small header that points to each of the bit-slices will need to

be accessed. Since the cost to access each slice is usually quite small, we can disregard this cost. Thus the

actual cost incurred with these two techniques can be expressed as:

NROWSET(Bit-sliced) = NROWSET(Projection) =

�
jT j � w(C)

B

�
(27)

Applying the usual simpli�cations, the cost of evaluating a selection on a column C indexed by either of the

above two methods is simply given by:

NROWSET(Bit-sliced) � NROWSET(Projection) �
jT j � w(C)

B
(28)

Note that equations (27) and (28) are equivalent to (3) and (4), respectively. Thus we conclude that the cost

to construct a rowset using either a projection index, bit-sliced index, or BDI are essentially the same.

6.1.5 Cost comparisons

Having determined the best-case performance of rowset evaluation with di�erent techniques, we can now

compare these performances to understand the conditions under which a particular scheme performs the best.

To lend some structure to these comparisons, we classify the indexing mechanisms into two classes: (a) Indexing

3[46] gives an e�cient algorithm for performing ranging queries on bit-sliced indexes. This algorithm uses multiple bit vectors
to compute the �nal rowset. These intermediary bit vectors are generated by scanning each bit slice in the index.

23

techniques based on ordinal positions, which include projection indexes, bit-sliced indexes, BDIs and JDIs, and

(b) Tree Based Indexing Techniques, which include B-Trees and Bitmapped indexes.

Comparison of Indexing Techniques based on Ordinal Positions

From expressions (4) and (28), it can be seen that the performances of projection indexes, BDIs and bit-sliced

indexes is equivalent. We thus turn our attention to comparing BDIs and JDIs. Using (4) and (6), we can

determine that the performance of a BDI is better than that of a JDI if

r

w(C)
� 1�

V

jT j
. (29)

This result provides an easy decision guideline for the physical design of a table in a data warehouse. The

right-hand side of this inequality can never be greater than 1. Thus, we immediately note the following result.

Result 3 Contrary to popular belief, a BDI does not always perform better than a JDI. In fact, a JDI performs

better if r < w(C), that is, if the size of a RID is smaller than the width of the column.

More precisely, the higher the ratio V
jT j of the column of interest, the smaller the right hand side of the above

equation and hence the larger the value of w(C) for which BDI is preferable (for a given r).

Recall that we proposed the JDI only for foreign key columns. An alternative approach using a JDI would

consist of a BDI containing each of the V distinct values taken by the column and an associated JDI onto that

BDI, to map these V values to records in the table. To illustrate, let us consider the SALES.ShipMode column

from the example in section 3; the TPC-D benchmark indicates that this can take one of 9 di�erent values.

Equation 29 clearly indicates that ShipMode would be better represented as a JDI with an associated look-up

BDI (e.g., ShipMode Type) than as a simple BDI; indeed, (29) indicates r
w(C)

= 0:6 � 1� V
jT j � 1. In this case,

the JDI/BDI combination would require only 4503 blocks, whereas a simple BDI would need 7500 blocks of

storage. Hence, it may be more e�cient to implement a wide, repeating column as a JDI with an associated

look-up BDI than as a simple BDI.

Comparison of Tree-Based Techniques and Ordinal-Position Based Techniques

Since we have shown already that a bitmapped index can never cost more than a B-tree index, we begin by

comparing bitmapped indexes with BDIs. By comparing the last term of (26) (the �rst two terms are usually

quite small and can thus be disregarded to simplify the analysis) and (4), it is easily seen that a BDI will

perform better if:

Vrange �
8 w(C)

f
. (30)

This simply states that, for a given compression factor, a BDI performs better than a bitmapped index

when the selection range of a query is 'large'. For example, suppose f is 0.2 and the indexed column is

CUSTOMER.AcctBal from the star schema of Figure 1, which has a width w(C) of 8 bytes. This column appears

to be a reasonable candidate for indexing since it is likely that account balances would be queried frequently.

The above relationship indicates that a BDI will perform better if the number of distinct values in the selection

range (i.e., Vrange) is at least 320. Note that even though we claim that a BDI performs better for 'large' values

of Vrange, 320 is not really that large when compared to the cardinality of the CUSTOMER table, 150,000. Larger

values of f would imply that a BDI is preferable for even smaller values of Vrange. Thus we can conclude the

following:

24

Result 4 A BDI outperforms a bitmapped index if the number of search-key values in the predicate range is

large (with respect to the ratio of the width of the column, in bits, to the compression factor).

Note that BDIs, like bitmapped indexes, can also be compressed, which would improve their performance.

However, in this analysis, we compare uncompressed BDIs to compressed bitmapped indexes. In other words,

we compare the worst case BDI to the best case bitmapped index.

A similar analysis can be performed to compare the performance of bitmapped indexes and JDIs. From (26)

and (6), it is easily seen that a JDI will perform better if:

Vrange � 8

�
V w(C) + rjT j

f jT j

�
. (31)

Similar to the results obtained for the BDI, we conclude the following:

Result 5 A JDI outperforms a bitmapped index if the number of search-key values in the predicate range is

relatively large.

These results conclude our study of the rowset construction performance of the di�erent indexing schemes

under study. The results of this analysis can be summarized as follows. Of the indexes that rely on the ordinal

position of records, the best performing ones are the JDI or the BDI (or the projection index). The cuto�

point between the two occurs when r
w(C)

= 1� V
jT j . However, the bitmapped index sometimes performs better

than each one of these approaches, but this would only occur when Vrange is relatively small. We summarize

the above results in table 4, where BI denotes the bitmapped index.

Better than BI if Better than BDI if Better than JDI if

BI { Vrange <
8 w(C)

f
Vrange < 8

�
V w(C)+rjT j

f jT j

�
BDI Vrange �

8 w(C)

f
{ r

w(C)
� 1� V

jT j

JDI Vrange � 8

�
V w(C)+rjT j

f jT j

�
r

w(C)
< 1� V

jT j
{

Table 4: Comparison of the rowset-construction performance of the di�erent indexes under study

Having examined the rowset construction performance of di�erent access schemes, we now turn our attention

to the second part of the cost of performing star joins, namely NJOIN, the cost of performing a join on restricted

tables.

6.2 Comparative Analysis of NJOIN

Bitmapped indexes are used in Oracle 8 and BJIs in the Informix Universal Server. Though we would have liked

to compare the performance of our algorithms with that of Red Brick's STARjoin approach, we were unable to

obtain enough information to model STARjoins with any level of detail. However, as will become clear later

on in this section, the high-performance of our algorithms is strongly tied to the fact that DataIndexes do

not store table rows contiguously. The Red Brick system, however, relies on conventional storage approaches;

hence we believe that our proposed algorithms also outperform the STARjoin approach for the majority of

OLAP-type queries. It would, however, be interesting to verify {or refute{ this belief.

Also, we note that some of the indexes analyzed in section 6.1.1 (namely projection indexes and bit-sliced

indexes) seem to provide little help in computing joins. Our analysis in section 6.1.1 also indicates that

bitmapped indexes will never perform worse than B-trees. We thus do not investigate the performance of star

25

joins using projection indexes, bit-sliced indexes or B-trees. Instead, we concentrate on the approaches based

on bitmapped indexes, BJIs and DataIndexes.

6.2.1 Bitmapped-Join Indexes

Based on BJIs, a star join algorithm proceeds roughly as follows. The dimensional rowsets (i.e., R1; : : : RjDj)

computed during the predicate selection phase are used to determine the set of matching records in the fact

table with the corresponding BJI. In other words, for a dimension table, D, the leaf-level of the corresponding

BJI is scanned, and the rowsets associated with rows that appear in rowset RD are loaded and bitwise OR'ed

together. When these operations have been applied to all participating dimension tables, the result is the join

rowset RJOIN which indicates which records of the fact table appear in the join result. RJOIN can then be used

in one of two ways, depending on the amount of available memory.

In the �rst approach, all relevant columns and rows from the dimension tables (including the primary

key column) are extracted from the dimension tables and pinned in memory. The algorithm then proceeds

similarly to the SJL algorithm we proposed: the fact table F is scanned in RJOIN order, and the result rows are

constructed from the in-memory structures, then output.

Hence, we can compute that the overall best case cost of performing the join with bitmapped indexes, given

that enough memory is available, and assuming that all rowsets are packed (for reasons stated previously), is:

NJOIN(BJI) = NRJOIN
+NDim +NF -scan , (32)

where NRJOIN
represents the cost of forming the join-rowset (RJOIN), NDimthe cost of loading all dimensional

tuples of interest, and NF -scanthe cost of scanning the fact-table itself. We now derive expressions for each of

these components. To form RJOIN requires descending the tree, scanning the leaf level, and then loading the

blocks having rowsets that appear in the join. Thus the cost to form RJOIN , can be expressed as follows:

NRJOIN
=
X
D2D

��
logPD VD � 1

�
+min

�
&DjDj;

�
jDj

KD

��
+ f

��
jF j

8 B

�
&DjDj

��
(33)

where the �rst term corresponds to the cost to descend the tree, the second term corresponds to the cost to

scan the leaf level, and the third term corresponds to the cost to load the relevant blocks of rowsets. In the

�rst term, PD represents the order of the tree for dimension table D and VD represents the number of distinct

search key values in D. Both of these terms are as de�ned in section 6.1.1, with the exception that the width

of each column, pointer pair is di�erent. Speci�cally, a RID is contained in each node rather than a column

value. Thus, the expression for PD is then KD + 1, where KD represents the number of search keys per node

in the index for D and KD =
l

B
r+�

m
. In the second term, jDj represents the cardinality of dimension table D

and &D represents the selectivity on D. In the best case, only &D jDj blocks must be accessed at the leaf level,

whereas in the worst case, all blocks must be accessed.

The cost to load dimensional tuples, NDim, is given by:

NDim =
X
T2D

�
jT jw(T)

B

�
(34)

where w(T) represents the width of dimension table T . Note that in this case the entire tuple (all columns)

must be loaded.

26

Finally, the cost to scan the fact table, NF -scan, is given by:

NF -scan = min

�
&F jF j;

�
jF jw(F)

B

��
(35)

where w(F) represents the width of the fact table. This cost depends on the selectivity of F . In the best case,

only &F jF j blocks must be accessed, whereas in the worst case, all blocks must be accessed.

The total memory requirements for this �rst approach can be expressed as:

MJOIN(BJI) = 1 + jDj+
X
D2D

�
jDjw(D)

B

�
(36)

where the �rst term corresponds to a block of memory for the fact table, the second term corresponds to a

block of memory for each dimension table, and the third term corresponds to the memory required for pinning

the relevant dimension tables in memory.

The second approach for evaluating star-joins with BJIs is based on the pairwise, hash-join technique. It

should be applied when there is not enough memory to load all necessary dimensional columns into memory.

Once RJOIN has been determined, the relevant values from the di�erent tables are extracted from the source

tables and stored in temporary �les. These temporary �les are then joined pair-wise until the �nal join result

is computed, thereby requiring jDj individual two-way joins. Since it is well known [46] that pairwise joins do

not perform well in a data warehouse environment, we do not include the cost analysis of this approach.

6.2.2 Bitmapped Indexes

Bitmapped indexes may also be used to perform a star-join similarly to BJIs. However, since bitmapped indexes

are single-table structures, more operations are required during a join. Speci�cally, while a BJI contains RIDS

and thus allows direct access to a particular dimension table, a bitmapped index contains values and therefore

requires accessing the primary key values from the participating dimensional table tuples. These tuples are then

used to scan the bitmapped indexes on the corresponding fact table columns, resulting in additional accesses

in creating the join rowset RJOIN. These additional accesses result in approximately the same number of block

accesses as a pairwise join between the fact table and each of the dimension tables. In addition, the size of

the tree structure of each index might be slightly di�erent from those used in BJIs. For instance, the values

in bitmapped indexes may vary in size, while the RIDS in BJIs are typically rather small and constant in size.

Based on these di�erences, the following result can easily be shown:

Result 6 Bitmapped join indexes outperform bitmapped indexes for evaluating star joins.

6.2.3 Cost comparison of Bitmapped-Join and DataIndexes

We now compare the performance of DataIndexes and bitmapped join indexes under packed conditions. To

do so, we compare the worst-case performance expressions for SJL to the best case expressions for bitmapped

join indexes. By comparing (and making the usual simpli�cations) to (7) and (32), it can be shown that SJL

can outperform BJI and other approaches if the following condition holds true:

P
D2D &DjDj

jDj
�

8r

f
. (37)

27

To derive this condition, we have assumed that all columns from the fact table appear in the output (i.e.,P
C2CF

w(C) = w(F)) and that all dimension table columns for participating dimension tables also appear in

the output (i.e.,
P

C2CD
w(C) = w(D)). These assumptions are strongly biased towards traditional approaches.

Clearly, the fewer the number of output columns, the better dataindexes will perform, as only the relevant

columns will need to fetched, unlike traditional approaches where all columns will be fetched, regardless of the

desired output. Thus, by making the assumption that all fact table columns are needed for output, we nullify

a strong advantage of dataindexes. Even then, SJL outperforms the other approaches in a number of cases.

Indeed the above condition can be understood as follows:

Result 7 SJL outperforms other star-join approaches if the selectivity on the dimension tables is relatively

large (with respect to the ratio of the RID size, in bits, to the compression factor).

In other words, SJL outperforms other star-join approaches if the average number of tuples accessed from each

dimension table is large. Referring again to the star schema of Figure 1, if we assume a RID size r of 6 bytes

and a compression factor f of 0.2, then at least 240 tuples must be selected, on average, from a dimension table

for SJL to outperform the other approaches. For less compressed representations (i.e., larger values of f), SJL

can outperform other approaches for even smaller dimension table selectivities.

7 Overall Cost Comparison of Star Join Performance

In this section, we perform a comparative analysis of the star-join query costs (Nstar) associated with the

di�erent index structures under study. We showed in the last two sections that a DataIndex-based approach

and the bitmapped index/BJI approach are both among the most e�cient known approaches for evaluating

star-joins. In this section, thus, we only consider these approaches and will refer to them as the SJL/DataIndex

(SJL), SJS/DataIndex (SJS), and the bitmapped index/BJI (BJI) approaches. Also, to simplify the analysis,

we only consider the best performance obtainable with the BJI approach with the worst-case performance of

DataIndexes, which should be su�cient to demonstrate the superiority of DataIndexes.

The cost comparisons were generated based on the expressions we have presented in this paper for the

worst- or best-case performance achievable with the di�erent algorithms under study. The query utilized to

perform the analysis is the query presented in Section 4 and joins the TIME, CUSTOMER, SUPPLIER and SALES

tables of our sample star-schema. The query is repeated below for convenience.

SELECT U.Name, S.ExtPrice

FROM SALES S, TIME T, CUSTOMER C, SUPPLIER U

WHERE T.Year BETWEEN 1996 AND 1998 AND U.Nation='United States' AND C.Nation='United States'

AND S.ShipDate = T.TimeKey AND S.CustKey = C.CustKey AND S.SuppKey = U.SuppKey

The corresponding selection predicates occur on the TIME.Year, CUSTOMER.Nation and SUPPLIER.Nation

columns, and the columns displayed in the result are SUPPLIER.Name and SALES.ExtPrice. This query is thus

similar to the \Volume Shipping Query" in [62], which identi�es sales volumes between di�erent nations. Such

a query is relatively typical of OLAP environments.

Finally, we continue to use the same metric as used previously, the number of blocks accessed to evaluate

the query, Nstar. Using this metric, we �rst examine a baseline case where only the overall size of the ware-

house is varied. We then analyze the corresponding performance sensitivities with respect to query selectivity,

compression levels, and, for the SJS approach, available memory. Table 5 lists the parameter values used in

the baseline analysis.

28

Parameter Description Value

jDj Number of dimensions tables involved in join 3

jCF j Number of fact-table columns that contribute to the join result 1

B E�ective Size, in bytes, of a data block 8,000

� Size, in bytes, of a pointer to a data block 4

r Size, in bytes, of a RID 6

jSALESj Number of records in SALES fact table 6; 000; 000� scale

factor

&F Selectivity factor on fact table 0.01

jTIMEj Number of records in TIME dimension table 2; 557

jCUSTOMERj Number of records in CUSTOMER dimension table 150; 000� scale

factor

jSUPPLIERj Number of records in SUPPLIER dimension table 10; 000� scale fac-

tor

&D Selectivity factor on dimension table D 0.05

c Distinctness factor of range selection 0.2

Vrange Number of distinct search-key values referenced by a particular

range selection

&T jT jc

w(T:Year) Column width of TIME.Year, in bytes 4

w(C:Nation) Column width of CUSTOMER.Nation, in bytes 25

w(U:Nation) Column width of SUPPLIER.Nation, in bytes 25

w(U:Name) Column width of SUPPLIER.Name, in bytes 25

w(SALES) Table width, in bytes 131

w(TIME) Table width, in bytes 28

w(CUSTOMER) Table width, in bytes 269

w(SUPPLIER) Table width, in bytes 243

f Compression factor 0.2

Ma Number of blocks allocated to input BDI 8,000

Table 5: Parameters used in the Baseline Analysis

29

7.1 Baseline Case

For the baseline experiment, we assume the following parameter values:

� Selectivity on the fact table, &F , is 0.01 (i.e., 1% of fact table rows appear in the join result).

� Selectivity on each dimension table, &D , is 0.05 (i.e., 5% of the rows of each dimension table appear in

the join result).

� Selectivity on each range predicate, Vrange, is computed as &T jT jc, where &T jT j represents the number of

rows appearing in the join result for table T and c is the distinctness factor of the range selection, which

we assume to be 0.2. For instance, consider the base case for the SUPPLIER.Nation selection predicate. If

&D = 0:05 and jSUPPLIERj = 10; 000, then 500 rows from this table appear in the join result. Multiplying

this number by the distinctness factor of 0.2 results in a Vrangevalue of 100. Thus there are 100 distinct

values in this range selection.

Holding the above values constant, we then vary the size of the database by varying the scale factor from

0.1 to 1000. This results in overall database sizes ranging from about 86 MB to about 860 GB. As we will

soon show, the expressions derived for the memory requirements for BJI in (36), for SJL in (11), and for SJS

in (18), indicate that BJI requires more memory than either SJL or SJS. Thus we assume in this analysis

that, for a given database size, the system is equipped with su�cient memory to perform a star-join using the

BJI approach. For instance, from (36), we know that a star-join using BJI for an 860 GB database requires

approximately 2.5 GB of memory. We then assume that for an 860 GB database, there exists 2.5 GB of main

memory. For larger databases (e.g., scale factor greater than 1000), this assumption may not be valid and so

di�erent techniques must be used, such as SJS for DataIndexes and hash-join for BJI. However, we do not

consider such cases and instead focus our analysis on databases that are 860 GB or less in size. We include

the performance of SJS in this range for comparison purposes. In the baseline case, we assume that 64 MB of

memory is available to be allocated to the input BDI (i.e., Ma = 8; 000 blocks).

The resulting plots for the baseline case are presented in Fig. 5 (Note that Fig. 5 as well as the sensitivity

plots are displayed using a log scale for both axes). All three approaches exhibit a similar pattern - the cost

or number of required block accesses increases as the size of the database increases. However, it is quite clear

from Figure 5 that both SJL and SJS outperform the BJI approach over the entire range. In addition, the cost

of the BJI approach increases much more quickly than does the cost of either SJL or SJS. This is primarily

due to the fact that BDIs are maintained separately with DataIndexes and so only columns of interest need

to be brought from disk. For a relatively small database, e.g., 86 MB or scale factor 0.1, SJL requires only

2; 007 block accesses, SJS requires 3; 403 accesses, and BJI requires 7; 810 such accesses. For larger databases,

this di�erence is at least an order of magnitude. For instance, an 86 GB database (scale factor 100) requires

approximately 2 million accesses for SJL and approximately 3 million for SJS, compared to 1:5 billion for BJI.

The weak performance of BJI, especially with large database sizes, is largely due to the last term in (33), the

expression for the cost to form the join-rowset RJOIN. From this expression, we can see that BJI performs in

O(jF j � jDj).

Overall, the base case curves clearly show that DataIndexes outperform the BJI approach. As we shall see,

this pattern is repeated throughout the rest of our experiments.

30

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.1 1 10 100 1000

Q
ue

ry
 E

va
lu

at
io

n
C

os
t,

N
st

ar

Scale Factor

SJL
SJS
BJI

Figure 5: Base Case Performance (&F = 1%, &D = 5% and f = 20%)

7.2 Sensitivity to Query Selectivity

Query or fact table selectivity, &F , is an important factor in peforming a star-join for all three approaches. For

SJL, &F impacts the cost of scanning the fact table to create the �nal query output, as shown in (10). For SJS,

&F impacts the cost to restrict the JDIs (14), the cost to create the output BDIs (16), and the cost to create

the �nal output (17). For BJI, &F also impacts the cost to construct the �nal output, as shown in (35). Based

on these expressions, we would expect a decrease in &F (i.e., higher selectivity) to improve the performance of

all approaches. In order to study this sensitivity of the di�erent approaches to query selectivity, we repeated

the baseline experiments using several fact table selectivities ranging from 0.0003 to 0.1. From this analysis,

it became clear that all approaches are more sensitive to relatively small values of &F (e.g., less than 0.0005)

and that BJI is most sensitive to changes in &F . We therefore chose to include results for the following values

of &F : 0.03%, 0.1%, and 2%.

The resulting plots are shown in Fig. 6.

As expected, the overall shape of the curves in Fig. 6 remains the same as in the base case, and all approaches

do in fact bene�t from higher selectivity. Overall, SJL still outperforms BJI over the entire range, as shown

by the two lower-most curves in Fig. 6, which represent the cost of SJL for 1% selectivity (i.e., the baseline

case) and 0.03% selectivity. These are the only two curves displayed for SJL because the performance of SJL

is largely insensitive to changes in &F , except for very small values of &F . BJI, on the other hand, exhibits a

signi�cant improvement from lower values of &F , but these improvements only occur for small to medium sized

databases. In fact, for very small values of &F and small database size, the performance of BJI approaches that

of SJL. However, SJL still performs better. For instance, an 86 MB database (scale factor 0.1) and selectivity

of 0.03% requires 1; 587 block accesses for SJL and 1; 990 accesses for BJI. However, the same selectivity with

an 86 GB database (scale factor 100) requires about 1:5 million block accesses for SJL and about 1:5 billion

accesses for BJI.

We now examine the curves for the SJS approach (the two curves just above the SJL curves). Like SJL, SJS

is also rather insensitive to changes in &F . It is interesting to note, however, that for very small values of &F and

31

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0.1 1 10 100 1000

Q
ue

ry
 E

va
lu

at
io

n
C

os
t,

N
st

ar

Scale Factor

SJL - Selectivity 0.03%
SJL - Selectivity 1%

SJS - Selectivity 0.03%
SJS - Selectivity 1%

BJI - Selectivity 0.03%
BJI - Selectivity 0.1%

BJI - Selectivity 1%
BJI - Selectivity 2%

Figure 6: Sensitivity to Query Selectivity

small database size, BJI outperforms SJS. For example, an 86 MB database (scale factor 0.1) and selectivity

of 0.03% requires only 1; 990 accesses for BJI compared to 2; 983 block accesses for SJS. As the database size

increases, however, the performance of SJS surpasses that of BJI. For instance, an 86 GB database (scale factor

100) and selectivity of 0.03% requires about 2:9 million accesses for SJS compared to about 1:5 billion accesses

for BJI.

From this analysis, it appears that BJI is somewhat more sensitive to changes in &F than either SJL or SJS.

This phenomenon can be explained by examining the expressions for the cost to scan the fact table to create

the �nal query result for SJL in (10) and for BJI in (35). Both expressions are similar in that they take the

minimum of either the number of fact table rows appearing in the join result (i.e., &F jF j) or the number of

blocks required for all relevant fact table columns. The di�erence is that for BJI, the number of blocks required

for fact table columns will be much greater than for SJL, since BJI requires that the entire fact table tuple be

loaded for each tuple appearing in the join result. Thus the term representing the number of fact table rows

will usually be the minimum term for BJI and so selectivity will typically have a greater impact.

7.3 Sensitivity to Compression Factor

Another important factor in performing a star-join with the approaches in this study is compression. As

mentioned previously, some degree of compression is typically used in data warehouses, so it is worth examining

the impact of such compression. Recall that we de�ne the compression factor f to be a percentage representing

the degree of compression, where f = 1 indicates no compression. Also recall that we assume no compression of

BDIs, therefore, this analysis a�ects only the BJI approach. The level of compression appears to be a signi�cant

factor in the BJI approach, as f appears in both the NROWSET and NJOIN expressions in (26) and (33), respectively.

By examining these expressions, we would expect an increase in the amount of compression achieved (i.e., a

decrease in f) to improve the performance of BJI. In order to study this sensitivity of BJI to varying degrees

of compression, we repeated the baseline experiments with compression factors of 1% and 3%. The results are

displayed in Fig. 7.

32

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0.1 1 10 100 1000

Q
ue

ry
 E

va
lu

at
io

n
C

os
t,

N
st

ar

Scale Factor

SJL - Compression 20%
SJS - Compression 20%
BJI - Compression 10%
BJI - Compression 20%
BJI - Compression 30%

Figure 7: Sensitivity to Compression Factor

Here again the overall shape of the curves in Fig. 7 remains the same as in the base case. As expected,

the performance of BJI does in fact improve when more compression is used. For instance, for a database

size of 86 GB (scale factor 100) in the baseline case (20% as shown in Fig. 7), 1:5 billion block accesses are

required for BJI. When more compression is applied, or f is reduced to 0.1, the number of accesses decreases

to approximately 759 million. For lower compression levels (i.e., higher f), as expected, the number of block

accesses increases for BJI (from 1:5 billion to 2:2 billion).

7.4 Memory Requirements

Finally, we compare the memory requirements for SJL and BJI. As shown in Figure 8, SJL requires signi�cantly

less memory than BJI on average. For instance, a database of 86 GB (i.e., scale factor 100) requires only 31 MB

of memory for SJL, yet requires 243 MB for BJI. As the database size increases, the memory requirements for

BJI increase much more quickly than for SJL. For example, a 344 GB database (i.e., scale factor 400) requires

125 MB of memory for SJL, yet requires 972 MB for BJI. This result is largely due to the fact that SJL loads

only the columns that are relevant for the join, whereas BJI loads the entire dimension table for such columns.

For larger databases, the SJS approach would be used, which requires only a small amount of memory, 64 KB

for our example query. For smaller databases, SJL still requires less memory than BJI. For instance, a database

of 86 MB (i.e., scale factor 0.1) requires 0.14 MB of memory for SJL and 0.28 MB for BJI.

8 Conclusions

In this paper, we proposed a new type of storage and indexing structure speci�cally geared towards data

warehouses: the DataIndex. One of the main advantages of this structure is that it essentially provides free

indexing. This is achieved by vertically partitioning the tables that form the relational schema and maintaining

the ordinal mapping among the columns. Many of these partitions can be stored as is, in basic DataIndexes

(BDIs). Some others - especially foreign-key columns - should instead be represented as lists of RIDs of foreign

33

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

M
em

or
y

R
eq

ui
re

m
en

ts
 (

M
B

)

Scale Factor

SJL
BJI

Figure 8: Memory Requirements for SJL and BJI

column records, or join DataIndexes (JDIs). We also proposed two fast algorithms for performing star-join

operations on DataIndexed data warehouses.

We have derived expressions that show the expected performance of DataIndexes and a number of other

indexing approaches that have been proposed and utilized in data warehousing[45, 46]. Based on these expres-

sions, we have analytically shown that the performance obtainable with DataIndexes is most often superior to

that of even the best conventional approach. Speci�cally, we have analyzed the performance of DataIndexes

with respect to range selections and star joins, two of the most common operations in OLAP. The corresponding

results are summarized in table 6.

Structure Best for Range Selections When : : :

Bitmapped Indexes Small Ranges

BDI Medium to Large Ranges and Narrow Columns

JDI Medium to Large Ranges and Wide Columns

Structure Best for Star-Joins When : : :

Bitmapped Indexes & Bitmapped Join Indexes Very High Selectivities

DataIndexes Otherwise

Table 6: Summary of Results

Evidently the main contributions of this paper are the development of the DataIndexes and fast star-join

algorithms based on them, and the extensive performance study that shows the clear superiority of the proposed

methods. There are, however, a number of other advantages of this approach.

Bulk Loading: Data warehouses are typically \refreshed" periodically from production systems. During

these refreshes, a large amount of new data is appended to the existing base. Our intuition is that

DataIndexes are particularly amenable to these bulk append operations, due to the fact that they can be

done by simple additions of new data pages to existing BDIs instead of repeated insertions of records into

sophisticated index structures such as B-trees. Bulk-append operations on JDIs would occur in much the

same way. However, since JDIs utilize RIDs on foreign tables, these foreign tables should be updated

34

prior to the JDI. This imposes a partial ordering on the sequence of operations to follow in refreshing a

data warehouse. Also, it adds the additional constraint that the foreign table (or at least the column(s)

composing its primary key) be available to the loading program during the creation of the JDI (to map

from the actual column values to RIDs). These two problems, however, are likely to be negligible when

compared with the overhead incurred by expensive index update operations.

Compressibility: It should be clear that DataIndexes can be compressed much more readily than conventional

tables, since the range of values each DataIndex covers is much smaller [19]. Some compression techniques

allow operations on the underlying data to be performed without decompression. Thus, we can expect

that compressed DataIndexes can provide even better performance than those studied in this paper.

Other OLAP queries: The results in [46], lead us to believe that DataIndexes would yield relatively low

evaluation costs for other types of warehousing queries (such as group-bys and aggregations). Of course,

analysis and experimentation similar to those conducted for rowset construction and star join queries

must also be done for these other types of queries to verify this belief.

Bu�er Utilization: Queries often access the same column a number of times (e.g., when this column appears

both in the SELECT and the WHERE clause). When these columns are small (which will often be true when

compression is used), or the size of main memory is large, query cost can be signi�cantly reduced by

keeping one or more of these columns in memory for the duration of the query evaluation. For instance,

if the SALES.ShipDate attribute of our earlier example appears in both the SELECT and WHERE clauses

of an SQL query, then one can save 1500 block accesses if the BDI for that attribute is kept in memory

after being loaded. Similarly, since the overall size of the database is smaller with DataIndexes than with

conventional structures, it is likely that the number of memory faults will be smaller with DataIndexes.

References

[1] B. Adelberg, H. Garcia-Molina, and J. Widom. The STRIP rule system for e�ciently maintaining derived
data. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 147{158, Tucson, AZ, May
13-15 1997.

[2] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan, and S. Sarawagi.
On the computation of multidimensional aggregates. In Proc. 22nd VLDB Conf., Mumbai, India, 1996.

[3] R. Armstrong. Data warehousing: Dealing with the growing pains. In Proc. Thirteenth Intl. Conf. on

Data Engineering, pages 199{205, Birmingham, UK, April 7-11 1997. IEEE.

[4] M.W. Blasgen and K.P. Eswaran. On the evaluation of queries in a database system. Technical Report
RJ-1745, IBM Corp., San Jose, CA, April 1976.

[5] K. Bratbergsengen. Hashing methods and relational algebra operations. In Proc. 10th VLDB, Singapore,
August 1984.

[6] M.J. Carey and D. Kossman. On saying \enough already" in SQL. In Proc. ACM SIGMOD Intl. Conf.

on Management of Data, pages 219{230, Tucson, AZ, May 13-15 1997.

[7] C.Y. Chan and Y. Ioannidis. Bitmap index design and evaluation. In Proc. ACM SIGMOD Intl. Conf.

on Management of Data, pages 355{366, Seattle, WA, June 1-4 1998.

[8] D. Chatziantoniou and K.A. Ross. Querying multiple features of groups in relational databases. In Proc.

22nd VLDB Conf., Mumbai, India, 1996.

35

[9] S. Chaudhuri and K. Shim. Including group-by in query optimization. In Proc. 20th Intl. Conf. on Very

Large Databases, pages 131{139, Santiago, Chile, September 1994.

[10] S. Chaudhuri and K. Shim. Optimizing queries with aggregate views. In P. Apers, M. Bouzeghoub,
and G. Gardaring, editors, Advances in Database Technology { EDBT'96 5th Intl. Conf. on Extending

Database Technology, volume 1057 of Lecture Notes in Computer Science, pages 167{182. Springer-Verlag,
New York, 1996.

[11] S. Chauduri and U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD Record,
26(1):65{74, March 1997.

[12] J-H. Chu and G. Knott. An analysis of B-trees and their variants. Information Systems, 14(5), 1989.

[13] E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (on-line analitycal processing) to user-analysts:
An IT mandate. Technical report, E.F. Codd & Associates, 1993.

[14] L. Colby, T. Gri�n, L. Libkin, I. Mumick, and H. Trickey. Algorithms for deferred view maintenance. In
Proc. ACM SIGMOD Intl. Conf. on Management of Data, Montreal, Quebec, Canada, June 1996.

[15] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121{138, June 1979.

[16] G.P. Copeland and S. Khosha�an. A decomposition storage model. In Proc. ACM SIGMOD, pages
268{279, 1985.

[17] C. Dyreson. Information retrieval from an incomplete data cube. In Proc. 22nd VLDB Conf., Mumbai,
India, 1996.

[18] M. Freeston. A general solution to the n-dimensional B-tree problem. In Proc. ACM SIGMOD Intl. Conf.

on Management of Data, San Jose, CA, 1995.

[19] C.D. French. Teaching an OLTP database kernel advanced datawarehousing techniques. In Proc. 13th

ICDE, pages 194{198, Birmingham, UK, April 7-11 1997.

[20] P. Goel and B. Iyer. Sql query optimization: Reordering for a general class of queries. In Proc. ACM

SIGMOD Intl. Conf. on Management of Data, pages 47{56, Montreal, Quebec, Canada, June 4-6 1996.

[21] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73{170, June
1993.

[22] T. Gri�n and L. Libkin. Incremental maintenance of views with duplicates. In Proc. ACM SIGMOD Intl.

Conf. on Management of Data, San Jose, CA, May 23-25 1995.

[23] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehousing environments.
In Proc. 21st VLDB Conf., Zurich, Switzerland, 1995.

[24] A. Gupta, H. Jagadish, and I. Mumick. Data integration using self-maintainable views. In Proc. Fifth

Intl. Conf. on Extending Database Technology, Avignon, France, March 1996.

[25] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views incrementally. In Proc. ACM SIGMOD

Intl. Conf. on Management of Data, pages 26{28, Washington, DC, May 26-28 1993.

[26] H. Gupta, V. Harinarayan, A. Rajaraman, and J.D. Ullman. Index selection for OLAP. In Proc. Thirteenth
Intl. Conf. on Data Engineering, pages 208{219, Birmingham, UK, April 7-11 1997. IEEE.

[27] A. Guttman. R-trees: a dynamic index structure for spatial searching. In M. Stonebraker, editor, Readings
in Database Systems, pages 599{609. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[28] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes e�ciently. In Proc. ACM

SIGMOD, pages 205{216, Montreal, Canada, June 4-6 1996.

[29] J.M. Hellerstein, P.J. Haas, and H.J. Wang. Online aggregation. In Proc. ACM SIGMOD Intl. Conf. on

Management of Data, pages 171{182, Tucson, AZ, May 13-15 1997.

36

[30] J.M. Hellerstein and J.F. Naughton. Query execution techniques for caching expensive methods. In Proc.

ACM SIGMOD Intl. Conf. on Management of Data, pages 423{424, Montreal, Quebec, Canada, June
1996.

[31] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann
Publishers, 2nd edition, 1996.

[32] C-T. Ho, R. Agrawal, N. Meggido, and R. Srikant. Range queries in OLAP data cubes. In Proc. ACM

SIGMOD Intl. Conf. on Management of Data, pages 73{88, Tucson, AZ, May 13-15 1997.

[33] C-T. Ho, J. Bruck, and R. Agrawal. Partial-sum queries in OLAP data cubes using covering codes. In
Proc. 16th ACM Symposium on Principles of Database Systems, Tucson, AZ, May 1997.

[34] Informix Software. INFORMIX-online extended parallel server and INFORMIX-universal server: A new
generation of decision-support indexing for enterprise data warehouses. White Paper, 1997.

[35] W.H. Inmon. Building the Data Warehouse. J. Wiley & Sons, Inc., second edition, 1996.

[36] S. Khosha�an, G.P. Copeland, T. Jagodis, H. Boral, and P. Valduriez. A query processing strategy for
the decomposed storage model. In Proc. ICDE, pages 636{643, 1987.

[37] R. Kimball. The Data Warehouse Toolkit. J. Wiley & Sons, Inc., �rst edition, 1996.

[38] M. Kitsuregawa, M. Nakayama, and M. Takagi. The e�ect of bucket size tuning in the dynamic hybrid
GRACE hash join method. In Proc. 15th VLDB, Amsterdam, August 1989.

[39] Y. Kotidis and N. Roussopoulos. An alternative storage organization for rolap aggregate views based on
cubetrees. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 249{258, Seattle, WA, June
1-4 1998.

[40] D. Lomet, ed. Special issue on materialized views and data warehousing. IEEE Data Engineering Bulletin,
18(2), 1995.

[41] I.S. Mumick and A. Gupta, editors. Proc. Workshop on Materialized Views: Techniques and Applications,
Montreal, Canada, June 7 1996.

[42] I.S. Mumick, D. Quass, and B.S. Mumick. Maintenance of data cubes and summary tables in a warehouse.
In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 100{111, Tucson, AZ, May 13-15 1997.

[43] J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid �le: An adaptable, symmetric multikey �le
structure. In M. Stonebraker, editor, Readings in Database Systems, pages 582{598. Morgan-Kaufmann
Publishers, Inc., San Mateo, CA, 1988.

[44] P. O'Neil. Model 204 architecture and performance. In 2nd Intl. Workshop on High Performance Trans-

action Systems (HPTS), volume 359 of Springer-Verlag Lecture Notes on Computer Science, pages 40{59.
Springer-Verlag, Asilomar, CA, 1987.

[45] P. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD Record, 24(3):8{11,
September 1995.

[46] P. O'Neil and D. Quass. Improved query performance with variant indexes. In Proc. ACM SIGMOD Intl.

Conf. on Management of Data, pages 38{49, Tucson, AZ, May 13-15 1997.

[47] Oracle Corp. Star queries in Oracle8. White Paper, June 1997.

[48] D. Quass. Maintenance expressions for views with aggregations. In Proc. Workshop on Materialized Views:

Techniques and Applications, Montreal, Canada, June 7 1996.

[49] D. Quass and J. Widom. On-line warehouse view maintenance. In Proc. ACM SIGMOD Intl. Conf. on

Management of Data, pages 393{404, Tucson, AZ, May 13-15 1997.

37

[50] S.G. Rao, A. Badia, and D. Van Gucht. Providing better support for a class of decision support queries.
In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 217{227, Montreal, Quebec, Canada,
June 4-6 1996.

[51] Red Brick Systems. Star schema processing for complex queries. White Paper, July 1997.

[52] J.T. Robinson. The K-D-B-tree: A search structure for large multi-dimensional dynamic indexes. In Proc.

ACM SIGMOD Intl. Conf. on Management of Data, pages 10{18, New York, NY, 1981.

[53] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and bulk updates on the
data cube. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 89{99, Tucson, AZ, May
13-15 1997.

[54] B. Salzberg. Access methods. ACM Computing Surveys, 28(1):117{120, March 1996.

[55] S. Sarawagi. Indexing OLAP data. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, pages 36{43, 1997.

[56] L.D. Shapiro. Join processing in database systems with large main memories. ACM TODS, 11(3), October
1986.

[57] A. Shoshani. OLAP and statistical databases: Similarities and di�erences. ACM TODS, 22, 1997.

[58] A. Shukla, P.M. Deshpande, J.F. Naughton, and K. Ramasamy. Storage estimation for multidimensional
aggregates in the presence of hierarchies. In Proc. 22nd VLDB Conf., Mumbai, India, 1996.

[59] D. Simpson. Corral your storage management costs. Datamation, pages 88{93, April 1997.

[60] M. Spiliopoulou, M. Hatzopoulos, and Y. Cotronis. Parallel optimization of large join queries with set
operators and aggregates in a parallel environment supporting pipeline. IEEE TKDE, 8(3):429{45, June
1996.

[61] Sybase, Inc. Sybase IQ { optimizing interactive performance for the data warehouse. White Paper, 1997.

[62] Transaction Processing Performance Council, San Jose, CA. TPC Benchmark D (Decision Support)

Standard Speci�cation, revision 1.2.3 edition, June 1997.

[63] P. Valduriez, S. Khosha�an, and G.P. Copeland. Implementation techniques of complex objects. In Proc.

VLDB, pages 101{110, 1986.

[64] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian products. In Proc. ACM

SIGMOD Intl. Conf. on Management of Data, pages 35{46, Montreal, Quebec, Canada, June 4-6 1996.

[65] I.R. Viguier, A. Datta, and K. Ramamritham. Exact performance expressions for olap queries. Technical
Report GOOD-TR-9709, U. of Arizona, 1997. Available from http://loochi.bpa.arizona.edu.

[66] S.V. Vrbsky and J.W.S. Liu. APPROXIMATE { a query processor that produces monotonically improving
approximate answers. IEEE Transactions on Knowledge and Data Engineering, 5(6):1056{1068, 1993.

[67] M-C. Wu and A. Buchmann. Encoded bitmap indexing for data warehouses. In Proc. 14th ICDE, pages
220{230, Orlando, Florida, February 1998.

[68] W.P. Yan and P.A. Larson. Eager aggregation and lazy aggregation. In Proc. 21st Intl. Conf. on Very

Large Databases, pages 345{357, Zurich, Switzerland, September 1995.

[69] Y. Zhao, P.M. Deshpande, and J.F. Naughton. An array-based algorithm for simultaneous multidimen-
sional aggregates. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 159{170, Tucson,
AZ, May 13-15 1997.

[70] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing environment.
In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 316{327, San Jose, CA, May 23-25
1995.

38

