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This dissertation focuses on caching in distributed �le systems, where the per-

formance is constrained by expensive server accesses. This has led to the evolution

of cooperative caching, an innovative technique which e�ectively utilizes the client

memories in a distributed �le system to reduce the impact of server accesses. This

is achieved by adding another layer to the storage hierarchy called the cooperative

cache, allowing clients to access and store �le blocks in the caches of other clients.

The major contribution of this dissertation is to show that a cooperative caching

system that relies on local hints to manage the cooperative cache performs better

than a more tightly coordinated fact-based system. To evaluate the performance

of hint-based cooperative caching, trace-driven simulations are used to show that

the hit ratios to the di�erent layers of the storage hierarchy are as good as those of

the existing tightly-coordinated algorithms, but with signi�cantly reduced overhead.

Following this, a prototype was implemented on a cluster of Linux machines, where

the use of hints reduced the average block access time to almost half that of NFS,

and incurred minimal overhead.
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ABSTRACT

This dissertation focuses on caching in distributed �le systems, where the per-

formance is constrained by expensive server accesses. This has led to the evolution

of cooperative caching, an innovative technique which e�ectively utilizes the client

memories in a distributed �le system to reduce the impact of server accesses. This

is achieved by adding another layer to the storage hierarchy called the cooperative

cache, allowing clients to access and store �le blocks in the caches of other clients.

The major contribution of this dissertation is to show that a cooperative caching

system that relies on local hints to manage the cooperative cache performs better

than a more tightly coordinated fact-based system. To evaluate the performance

of hint-based cooperative caching, trace-driven simulations are used to show that

the hit ratios to the di�erent layers of the storage hierarchy are as good as those of

the existing tightly-coordinated algorithms, but with signi�cantly reduced overhead.

Following this, a prototype was implemented on a cluster of Linux machines, where

the use of hints reduced the average block access time to almost half that of NFS,

and incurred minimal overhead.
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CHAPTER 1

INTRODUCTION

1.1 Distributed File Systems and Caching

Technology trends of the past two decades has led to the evolution of distributed

systems as a key computing paradigm. Low-cost microcomputers now provide the

computing power for a vast range of applications and have replaced the need for a

centralized mainframe-based computing environment in organizations. In tandem,

local area networking has also evolved to provide high-bandwidth connections be-

tween individual computers[Forum93, ANSI87, Metcalfe76]. This has led to the

development of distributed systems where many computers share resources and ser-

vices over a network.

While distributed systems provide advantages over a collection of isolated mi-

crocomputers, they also introduce new challenging issues[Tannenbaum96]. For ex-

ample, while distributed systems allow incremental growth by simply adding a new

computer to the network, the presence of this computer can saturate the services

provided by the distributed system and lead to poor performance.

A key service provided by a distributed system is that of �les. The �le service is

typically provided by a process or a thread pool which runs on a machine known as

the server. A distributed system may have one or several servers which serve a set of

�les to the other machines in the system. The remaining machines, or clients, use a

predetermined protocol such as NFS[Sandberg85] to access the �le service provided

by the servers.

The principal challenge in designing a distributed �le system is to achieve high

performance with minimal overhead. Clients should be able to access their �les as

fast as possible and the average time to access a �le block, or average block access

time, should be minimized. At the same time, the work done by the distributed
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system for providing �le service, or overhead, should be kept low, as high overheads

can swamp the network and disrupt client activity.

Server
Cache

Disk

Access
Server
Cache

Access Disk

ClientClient
Cache Cache

Client
Cache

Server

Clients

Figure 1.1: Caching in Distributed File Systems. This �gure shows the storage

hierarchy in distributed �le systems. Whenever a client needs to access a block, the

client �rst looks in the client cache in its local memory or disk. For the purpose of this

dissertation, we assume that the client cache is in memory because �le access to memory

is several times faster than that to disk. If the lookup fails, the client forwards the block

request to the server. The server performs a lookup in the server cache and in case of

failure, forwards the block request to its disk subsystem.

Caching is one of the principal mechanisms of achieving this goal[Smith82,

Leach83, Sandberg85, Popek85, Schroeder85, Bach87, Howard88, Nelson93]. The

use of caches creates a storage hierarchy on top of the �le service to �lter out ac-

cesses to the slower layers of the hierarchy. As seen in Figure 1.1, the topmost layer

in the hierarchy is the client cache which resides in the local memory or disk of each

client. For the purpose of this dissertation, we assume that the client cache is in

memory because �le access to memory is several times faster than that to disk. A

client's �le access that hits in its cache avoids the cost of communicating over the

network to a server. Otherwise, the client forwards the request to the appropriate

server. The server then checks for the block in the server cache, where a hit prevents
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an expensive disk access. A simulation using the traces of the BSD UNIX operat-

ing system[Ousterhout85, Nelson93] revealed that client caches can greatly reduce

server accesses.

1.2 The Server Bottleneck

Although client caches are e�ective at �ltering out server accesses, the performance

of a distributed �le system is often limited by the poor hit rate on the server

cache[Dahlin94]. The server cache's poor hit rate increases the number of disk

accesses, which are an order of magnitude slower than server cache accesses. As

a result, the average time to access a �le block increases due to expensive disk

accesses, limiting performance even though the hit rate to the local client cache

might be as high as 80%[Dahlin94]. Past studies have also shown that despite

client caching, the server is the principal bottleneck for distributed �le system

performance[Lazowska86, Satyanarayanan85]. A recent study points out that such

a phenomenon has been observed even when the server is lightly loaded[Riedel96].

There are two principal reasons for this poor hit rate on the server cache: capacity

and locality. First, as the number of clients increases, the number of accesses to the

server increases proportionately. However, if the server cache is �xed in size, it

will not have the capacity to �lter out the increasing number of server accesses.

Second, hits to the local client caches take advantage of locality in �le references.

Consequently, server accesses have very poor locality.

One possible way to improve the server cache's poor hit rate is to add more

memory to the server. However, studies have shown that not only is it much less

expensive to distribute this memory over all the clients, but the average block ac-

cess time improves by 33% if the added memory is moved from the server to the

clients[Dahlin94]. This is mainly because the amount of memory needed to o�set the

locality and capacity constraints in a server cache is prohibitively large and requires

expensive DRAM technology.
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1.3 Technology Trends

The performance problems in a distributed �le system are rooted in the disparity

in performance between the di�erent layers of the storage hierarchy: disk accesses are

an order of magnitude slower than server cache accesses. Trends in the development

of processors, networks and storage can indicate whether or not this problem will

get worse and point to possible solutions.

The rates of improvement in network, memory and disk performance are a rea-

sonable indicator of future trends in the relative performance between networks,

memory and storage. However, it is di�cult to predict improvements because of

uncertainty in the adoption of new standards as well as the e�ect of business cy-

cles. The interesting statistic is the growth in performance of networks and mem-

ory compared to disks. While network performance grew by 25-45% annually in

the past three years primarily due to the introduction of Fast Ethernet, it is ex-

pected to grow even faster as Gigabit Ethernet and Fibre Channel start becom-

ing more popular[Peterson96]. A similar trend can be seen in memory speeds and

bandwidth[Henessey96]. In contrast, disk performance rose at 10-20% annually from

16 ms in 1991 to 8 ms today[Dahlin95]. Furthermore, storage research is focused

more on capacity rather than on latency[Henessey96]. To put this into perspective

with the problems in distributed �le systems, disk accesses are going to be even

more expensive relative to server and client cache accesses and will increasingly

dominate the average block access time. Therefore any proposed solution to the

server bottleneck in distributed �le systems must reduce server accesses.

1.4 Cooperative Caching

The goal of this research is to improve the performance of distributed �le systems

by reducing the impact of the server cache's poor hit rate. This is achieved by adding

another layer to the storage hierarchy, positioned between the local client cache and
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the server. This layer resides in the memories of all clients and is known as the

cooperative cache. The technique of cooperative caching allows clients to access and

store �le blocks in the caches of other clients, so that local cache misses can be

satis�ed without accessing the server. If the hit rate to the remote client caches is

high, the number of server accesses will be reduced and performance improved.

Incorporating the cooperative cache in a storage hierarchy is challenging because

the issues concerning cooperative caching go beyond those for the other layers in

the storage hierarchy:

� Coordination. The cooperative cache is distributed among multiple clients,

which implies that cooperative caching operations could require coordination

between these clients.

� Overhead. The overhead of coordinating the cooperative cache should be min-

imized so as not to saturate the network or disrupt client activity.

� Resource Sharing. As the cooperative cache and local client caches share

the same physical memory in the clients, there should be a resource-sharing

mechanism to ensure that the performance of the local cache is not be a�ected

by the cooperative cache.

1.5 Contributions

The major contribution of this dissertation is to show that the use of imprecise

local information (hints) to manage the cooperative cache performs better than a

more tightly-coordinated system with precise global state (facts). The intuition is

simple: hints are less expensive to maintain than facts, and as long as hints are

highly accurate, they will improve performance. However, inaccurate hints increase

overhead and degrade performance, negating the bene�ts of a hint-based approach.

Thus the key challenge in designing a hint-based system is to ensure that the hints

are highly accurate.

This dissertation describes a cooperative caching system that uses hints instead

of facts whenever possible:
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� Hints are used to locate blocks in the client caches, and maintained to achieve

both high accuracy and low overhead.

� Hints are also used to replace accurately the least valuable blocks in the client

caches without incurring high overhead.

� The server memory is used in an innovative way to augment the use of hints.

To evaluate the performance of hint-based cooperative caching, trace-driven sim-

ulations are used to compare the hint-based algorithm with existing and ideal algo-

rithms. Then, a prototype �le system was implemented using hint-based coopera-

tive caching on a cluster of Linux machines, and the prototype's performance was

measured with actual user activity over one week. The results distinguished the

hint-based algorithm from its tightly-coordinated fact-based peers:

� Simulations show that the average block access times of the hint-based algo-

rithm are the same as those of the existing and ideal algorithms.

� Simulations also reveal that the manager load in the hint-based algorithm is

lower by as much as 30 times when compared to that in the existing algorithms.

� Measurements of the prototype showed that the average block access time was

almost half that of NFS.

� Measurements also indicated that the average and maximum overhead rate of

cooperative caching was negligible (< 7:5%) compared to the available band-

width of a 10 Mbps Ethernet network.

� Finally, hint accuracy was high (> 98%) both in the simulations and the

prototype.

1.6 Overview of the Dissertation

Cooperative caching is a relatively new concept and di�ers from traditional forms of

caching. The dissertation begins with an introduction to the components of cooper-



18

ative caching, the issues unique to cooperative caching and a discussion of the avail-

able approaches. To evaluate the hint-based algorithm, existing fact-based and ideal

algorithms are elaborated next. Then the hint-based algorithm is described along

with a detailed discussion of how hints are used in cooperative caching. To evaluate

the algorithm, simulations compare its performance and overhead with existing and

ideal algorithms. This is followed by the details of the prototype implementation as

well as the subsequent measurements of the prototype. The dissertation ends with

conclusions on hint-based cooperative caching.
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CHAPTER 2

COOPERATIVE CACHING

This chapter deals with cooperative caching in greater detail. The �rst section

de�nes the principal components of cooperative caching. Following this, the is-

sues speci�c to cooperative caching are discussed along with a summary of possible

approaches to each issue.

2.1 De�nitions

C1 C2 Cn

Local Blocks Global Blocks

Figure 2.1: The Cooperative Cache in Client Memories. The cooperative cache

is the layer of the storage hierarchy positioned between the local client caches and the

server. The introduction of a new layer in the storage hierarchy introduces two types of

blocks in a client's cache: (i) local blocks, which are those being accessed by the client

itself; (ii) global blocks, which are stored in the client's memory by other clients. As seen

above, the local and global blocks share the client memories in C1..Cn and the ratio of

these two types of blocks varies from client to client. For example, the fraction of local

blocks in the cache of an active client like C1 is larger than that in an idle client like C2.

Dahlin de�nes cooperative caching as a technique to \improve �le system per-

formance and scalability by coordinating the contents of client caches and allowing

requests not satis�ed by a client's local in-memory cache to be satis�ed by the cache
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of another client"[Dahlin95].

The cooperative cache is the layer of the storage hierarchy positioned between

the client cache and the server. Cooperative caching is a technique that allows a

client to access the caches of other clients when the client misses a block in its

cache. Thus, cooperative caching allows clients to use e�ectively the entirety of the

client memories in the distributed �le system. Cooperative caching is equivalent in

concept to the Global Memory Service[Feeley95], though it is speci�c to distributed

�le systems.

The introduction of a new layer in the storage hierarchy introduces two types of

blocks in the client caches. The �rst type of blocks in a client's cache are the local

blocks, which are those being accessed by the client itself. The remaining blocks in

a client's cache are stored in the client's memory by other clients and are referred

to as global blocks. Thus, a local block in a client's cache becomes a global block

when the block is forwarded to the cooperative cache on another client. Similarly,

a global block in a client's cache becomes a local block if the client starts accessing

the block. The ratio of local and global blocks in a client's cache is determined by

the activity level of a client. The caches of active clients have a large fraction of

local cache blocks because the clients access most of their memory. In contrast, the

caches of idle clients are underused and therefore contain a larger fraction of global

cache blocks.

2.2 Components

Cooperative caching involves three logical entities: clients, servers, and managers.

As described in Chapter 1.1, clients access �le blocks stored on the servers. Servers

do not maintain the state of the distributed �le system; this role is reserved for

managers. Thus, clients do not access the server to access the state of the distributed

�le system, reducing the server load as a result. However, this also means that servers

are not aware of the contents of the client caches.

The presence of managers is necessitated by the distributed nature of the cooper-

ative cache. The role of managers in cooperative caching is to maintain distributed
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�le system state; clients access this state to locate blocks in and replace blocks from

the cooperative cache. The role of managers varies among cooperative caching algo-

rithms and serves as a major distinction between them. For example, a manager in

N-chance[Dahlin94] has a very limited role in replacing blocks from the client caches

compared to a manager in GMS[Feeley95]. There is no restriction on the number

of managers in a cooperative caching system. A manager is likely to be an appli-

cation daemon running on a machine in the distributed �le system. A schematic of

cooperative caching is shown in Figure 2.2.

Server
Cache

Disk

Global
State

Cooperative Cache

Exchange

State

Access
Cooperative
Cache

Access
Server
Cache

Access Disk

Client
Cache

ClientClient
Cache Cache

Client
Cache

Client
Manager

Other clients

Server

Figure 2.2: Framework of Cooperative Caching. This �gure shows the framework

of cooperative caching. Cooperative caching consists of clients, managers and servers.

Clients access �le blocks stored on the servers. Managers help coordinate the cooperative

cache and maintain global state. Clients exchange state with the managers to update the

global state. On a local miss on a �le block, the clients use the state information to access

the missing block from the caches of other clients. If the block is not found in the client

caches, the client accesses the server.
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2.3 Issues

The issues concerning the cooperative cache go beyond those for the other layers

in the storage hierarchy because the cooperative cache is distributed over multiple

clients:

� Coordination. The distributed nature of the cooperative cache means that the

state of the cooperative cache is not con�ned to a single client and any oper-

ation on the cooperative cache could potentially require coordination among

clients. The local state of a client in cooperative caching refers to the state of

the blocks in the client's cache. An operation on the cooperative cache is said

to be globally optimal if the operation takes the best possible decision based

on the local states of all the clients in the distributed �le system. Therefore,

a client cannot invoke an operation on the cooperative cache purely based on

its own local state and expect the operation to approximate the globally op-

timal. In fact, various studies have shown that cooperative cache operations

based solely on local state can seriously hurt performance[Dahlin94, Feeley95,

Sarkar96], emphasizing the need for coordination among clients.

� Overhead. The performance of a cooperative caching system depends on the

level of coordination required to manage the cooperative cache. Coordinating

the cooperative cache incurs the overhead of exchanging information between

clients and managers. It is important to minimize this overhead as otherwise

it may negate the bene�ts of cooperative caching. This underlines the im-

portance of e�cient cooperative caching by ensuring high hit ratios to the

cooperative cache without incurring signi�cant overhead. Feeley et al. also

outline the need for e�ciency in cooperative caching[Feeley96].

� Resource Sharing. The local and global blocks shares the client memories, im-

plying the need for a resource sharing protocol. The ratio of local and global

cache blocks in a client's cache must be maintained such that the cooperative
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cache does not a�ect performance adversely. For example, too large a coop-

erative cache can tend to reduce the hit ratios to the local caches of clients,

which is the fastest layer in the storage hierarchy.

These issues arise when one considers the management operations for the co-

operative cache. Each layer in a memory or storage hierarchy must support man-

agement operations for resource allocation and deallocation. These management

operations also move data between the layers of the hierarchy for reasons of per-

formance or consistency. In �le systems, data is usually transferred in �xed size

segments called blocks, though there are exceptions as in AFS where the unit of

transfer is �les[Howard88].

2.4 Cache Access

2.4.1 Access Policy

The �rst operation in caching is the access policy which decides when and how a

layer fetches blocks from a lower layer in a hierarchy. The �rst part of an access

policy is to decide when to fetch the block from the lower layer. A common method

is demand paging in which a fetch is initiated from the lower layer when a client

wants to access a block which is not present in its cache. The disadvantage of this

method is that it incurs the full latency of retrieving a block from the lower layer.

This problem is solved by adding prefetching, which brings blocks into a caching

layer in anticipation of an access in the near future.

Prefetching introduces two issues into cache management. First, prefetching is

speculative as it must be able to predict future accesses with enough precision to

improve performance. Second, prefetching must integrate well with replacement

policies so that prefetched blocks do not replace valuable blocks from the cache.

These two issues have been well studied in literature and practice[McKusick84,

Kotz91, Gri�oen94, Patterson95, Cao95]. Current prefetching techniques do not

take cooperative caching into account, though researchers are beginning to address

this issue[Voelker98].
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2.4.2 Block Lookup

Manager

Block Client

Lookup Table

Block Request Forwarded Request

Requested Block

... ...

Client A Client B

Client A Client B

Block Client Block Request

Requested Block
... ...

Hint Table

(a)

(b)

Figure 2.3: Locating Blocks in the Client Caches. This �gure shows two possible

approaches for locating blocks in the client caches. Part (a) shows the manager-centric

approach, where a client contacts a manager on a local cache miss. The manager consults

its lookup table and forwards the block request to the client caching the block. This

client provides the block to the requesting client. Part (b) shows the hint-based approach,

where on a local cache miss, a client consults its hint table and directly contacts the client

caching the block. This client provides the block to the requesting client, avoiding the

overhead of contacting the manager. Of course, the success of the hint-based approach

depends on the accuracy of hints.

The second part of the access policy requires locating a missing block from the

lower levels of the storage hierarchy. In traditional forms of caching, locating and

retrieving a block is trivial as the block is con�ned to the server. However, this is

not the case in cooperative caching as the block could be anywhere in the client

caches and a lookup decision would require information about the contents of the

client caches.

Existing block lookup strategies use a collection of managers to keep track of

which blocks are present in the client caches, as shown in Figure 2.3(a). To ensure

that managers have up-to-date block location information, all block movement in

and out of the client caches must be reported to the managers. Each manager
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is responsible for managing the location information for a distinct subset of the

�le system's blocks. A client performs a block lookup by sending a request to the

manager for the block. The manager forwards this block request to a client caching

the block, if one exists, or to the server otherwise. Following this, the block is

provided to the client from the appropriate source.

The advantage of this strategy is that a block lookup is accurate and always

returns the correct location of the block in the client caches. The disadvantage is

the high overhead which slows down cache accesses. Not only must clients contact a

manager on every block lookup, the movement of all blocks in and out of the client

caches must be reported to the managers. This strategy also greatly increases the

manager load when the working set size of client applications starts to approach

the size of the client memories. Under such a condition, blocks move rapidly in and

out of the client caches, resulting in frequent communication with the manager and

greatly increasing manager load.

The alternative strategy, seen in Figure 2.3(b), trades o� accuracy for minimizing

overhead. The clients maintain their own block location hints and do their own

block lookup, avoiding the overhead of contacting a manager. However, if a block

location hint is incorrect, then the client will have to perform extra accesses in

order to retrieve the block from the storage hierarchy, negating the advantage of not

contacting the manager. The key to making this strategy work is to maintain highly

accurate block location hints and to provide a mechanism to deal with inaccurate

hints.

2.4.3 Placement

A secondary management policy related to block lookup is placement, or where to

place the fetched block in a layer. This is not an issue in the local client cache, as

fetched blocks are put in random-access memories where placement is immaterial.

However, the placement problem is a matter of study in those layers of a hierarchy

where access to data is not uniform within a layer. For example, if the clients in

a distributed �le system were to be placed in a non-uniform network where there
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was a signi�cant variation in average block access time depending on the location

of a client, then placement of blocks in the client caches would become an issue.

However for the purpose of this dissertation, the average block access times of the

clients in a distributed �le system are assumed to be uniform with little variation.

2.5 Replacement Policy

2.5.1 Local Cache

Another important management operation on the cooperative cache is that of re-

placement, which determines the order in which blocks are removed from the client

caches. The replacement policy decides which block to discard from a layer to make

room for a block fetched into the layer. A replacement policy is invoked when a

block is fetched into a layer that is full.

The principal goal of a replacement policy is to minimize the average block

access time. This means that an optimal replacement policy must keep blocks that

are accessed soon and remove those that are accessed in the distant future[Belady66].

More precisely, the goal of an optimal replacement policy is to replace the block that

is accessed the most distant in the future. However, in a practical system, it is not

possible to know the future pattern of block accesses and hence any algorithm can

at best try to approximate the optimal.

The LRU (least recently used) algorithm is the most common basis for practical

replacement policies. The algorithm is based on the heuristic that blocks that are

accessed furthest in the past are also those that are accessed the most distant in the

future. This algorithm provides reasonable performance over a wide variety of ap-

plications. Less common algorithms include frequency counting algorithms such as

LFU and MFU, which replace the least and most frequently used block respectively.

However, these algorithms do not approximate the optimal very well[Silberschatz95].

Another practical consideration in designing a replacement policy is overhead.

The overhead of replacing a block must not negate the bene�ts attained. Thus,

while many algorithms reasonably approximate the optimal policy, their overheads
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are high and they are rarely implemented. For example, the LRU algorithm is very

expensive to implement without the presence of hardware counters. As a result,

practical algorithms tend to approximate the LRU algorithm itself. An example of

this type of algorithm is Global Clock[Easton79], which organizes the blocks in a

cache into a circular list. The algorithm uses a single reference bit per block and

traverses through the list of blocks like a clock hand, inspecting a block at every

turn. A block that has been referenced since the last inspection is made a candidate

for replacement by clearing the reference bit for the block. A block that has not

been referenced since the last inspection is evicted from the cache.

2.5.2 Cooperative Cache

Cooperative caching adds a new dimension to replacement policies because the coop-

erative cache is distributed over all the client machines. While practical algorithms

like Global Clock are able to achieve a second order approximation of the optimal re-

placement policy, the distributed nature of the cooperative cache makes the problem

of devising an algorithm with the same degree of approximation very challenging.

The cooperative cache replacement policy determines the order in which blocks

are removed from the client caches. The replacement policy is activated when a

client decides to replace a block from its cache. Thus, in contrast to traditional

caching, multiple replacement decisions can go on in parallel in di�erent clients. The

implication is that the overhead of a replacement decision must be low as otherwise

the network can be swamped with the overhead of concurrent replacement messages.

In general, a replacement policy tries to value a block using measures such as

age(LRU) or frequency(LFU) with respect to other blocks in a caching layer when

it decides whether or not to replace the block. In cooperative caching, a similar

valuation is applied to the block being replaced from a client's cache. Cooperative

caching algorithms usually do not distinguish between local and global cache blocks

1

.

This allows a global block to replace a less valuable local block in an idle client,

1

The GMS algorithm, which aims at cooperative caching for both virtual memory and dis-

tributed �le systems, values local blocks more for considerations related to virtual memory

paging[Feeley95].



28

increasing the fraction of global blocks in the client's cache. Similarly, a local block

can replace a global block in an active client and increase the fraction of local blocks

in the client's cache.

There are two choices when a client decides to replace a block from its cache.

If the block is less valuable than any other block in the cooperative cache, then

there is no reason to forward the block to the cooperative cache and the block is

discarded. Otherwise, the block is forwarded to the cooperative cache and replaces

another block in the client caches, which is then discarded.

The distributed nature of the cooperative cache adds another interesting factor

to the valuation of a block. This factor in determining the value of a block is

derived from the issue of resource sharing and is known as duplicate avoidance. The

cooperative cache is a shared resource requiring coordination of which blocks are

forwarded to the cooperative cache. Without any coordination, it is possible for

clients to forward several copies of the same block to the cooperative cache. While

duplicate local blocks in the client caches cannot be avoided as several clients might

be accessing the same block, duplicate global blocks in the client caches reduce the

e�ective sizes of both the local and cooperative caches and lower their hit rates. As

a result, cooperative caching algorithms must avoid duplicate global blocks in the

client caches.

Once the client decides to forward a block to the cooperative cache, the client

must then decide the target client, or the client that will receive the block. The

target client choice is important in determining the e�ectiveness of the replacement

policy. Thus, the target client should be chosen such that the forwarded block

replaces a less valuable block in the target client. Otherwise, if the replaced block

in the target client is more valuable, then a future access to the replaced block will

result in a local cache miss and in the worst case, a disk access.

2.5.3 Examples and Alternatives

There are many choices for a cooperative caching replacement policy. While an

optimal replacement approach is not realizable in practice, LRU for the client caches
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is also impractical as it is expensive to determine the globally LRU block. Even

Global Clock is also expensive to implement in the client caches as it would require

extensive coordination to maintain a circular list of blocks distributed over the client

caches. Clearly, a good approach is to approximate LRU, but keeping the overhead

low at the same time.

Practical approaches to replace blocks from the client caches can broadly be

generalized into two categories: centralized and distributed. The key di�erence

is the role of the manager in making replacement decisions. In the centralized

approach, a manager collects or maintains information about the contents of the

client caches. The manager either distributes a summary of this information to all

the clients or provides information on demand to the clients. The clients then use this

information to replace blocks from the client caches. While this approach can yield

results closely approximating that from the previously described LRU approach, it

adds to the overhead of cooperative caching and is sensitive to manager failures.

In the distributed approach, clients make a replacement decision based on local

replacement hints. This approach avoids the overhead of contacting the manager.

However, the approach is sensitive to hint accuracy as there is a performance penalty

if the hints are not accurate and a valuable block is replaced from the client caches.

2.6 Cache Consistency

Consistency is a management operation on a caching layer that is dictated by how

multiple users can read and write the same �le or block at the same time. One

of the key decisions in a consistency protocol is to specify when modi�cations of a

�le or block by one user are observed by other users of the same �le or block. For

example, in the UNIX local �le system, writes to an open �le by a user are visible

immediately to other users that have this �le open at the same time.

2.6.1 Update Policy

The �rst key decision in a consistency protocol is the update policy, which determines

how soon a write to a client cache is propagated to the server. Distributed �le
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systems use a wide range of update policies. The simplest policy is write-through,

where a client write to a cached �le or block is immediately re
ected to the server.

The advantage of this scheme is its reliability. No �le or block data is lost even if a

client crashes because the server is always consistent with the contents of the client

cache. The disadvantage is performance because synchronous writes impose a heavy

penalty in terms of latency and overhead. An alternate policy called delayed write

trades o� reliability for performance. This policy updates the server only at speci�ed

intervals or times, lowering the overhead of each write and allowing overwrites of

data at signi�cantly less cost than the write-through scheme. The problem with

delayed write is the reduced reliability as a client crash can lead to the loss of dirty

data that has not yet been written through to the server.

The update policy in cooperative caching schemes is guided by the motivation to

simplify the management of the cooperative cache. As a result, cooperative caching

algorithms either use write-through or a restricted version of delayed write, where

blocks are written out to the server whenever they are shared or forwarded to the

cooperative cache. In either case, the goal is to make sure that all global blocks

are clean. An important consequence of this policy is that if a manager enforces

strong consistency, the server always has an up-to-date copy of the block should

a cooperative cache lookup fail. On the other hand, if a more relaxed form of

consistency is maintained (as in NFS), the copy in the server may be out-of date;

however, with relaxed consistency, the block lookup mechanism also may fetch an

out-of-date copy from the cooperative cache.

2.6.2 Consistency Mechanism

The consistency mechanism decides whether a locally cached copy of a �le or block

is older than the most up-to-date copy. If a �le or block is determined to be stale,

the client caching the �le or block retrieves the most up-to-date copy from the

appropriate source.

There are two principal approaches in maintaining consistency in a distributed

�le system[Silberschatz95]. The �rst approach is client-driven and puts the onus of
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detecting the validity of a �le or block to the client caching the �le or block. The

client sends a message asking for the status of the �le or block to the server, which

replies in the positive only if the �le or block is up-to-date. The performance of a

client-driven scheme is determined by the frequency with which the client contacts

the server to validate whether a �le or block is up-to-date. A validation scheme that

checks on every block access would be always consistent but the overhead would

also be high. An alternative would be to check on every �le open, lowering overhead

but at the same time leaving open the possibility that �les or blocks might become

temporarily inconsistent. In general, the problem with a client-driven approach is

that the overhead is high for any reasonable level of consistency[Howard88].

The second approach relies on a consistency manager to implement a write-

invalidate policy. Whenever the manager is informed about an update to a �le or

block from a client, it informs the other clients caching the �le or block to invalidate

its contents. A subsequent access to the invalidated �le or block causes a server

access.

2.6.3 Granularity

The granularity of cache consistency is important to cooperative caching because it

directly a�ects the level of coordination required for cooperative caching.

A block-based protocol maintains consistency on each individual block. If write-

invalidate is used, clients communicate with the manager on every local cache miss

to ensure consistency. With client-driven consistency, clients must frequently check

with the manager to determine the validity of a locally cached block. As a result,

this granularity of consistency is ideal for cooperative caching algorithms which use

manager-centric lookup and replacement strategies. On the other hand, there is

little point in using hints to avoid contacting the manager for block lookup and

replacement.

A �le-based protocol is similar to the block-based except that it maintains con-

sistency on entire �les rather than blocks, potentially allowing clients to handle

local cache misses without contacting the manager. One drawback is that �le-based



32

consistency does not handle concurrent write-sharing of a �le by multiple clients

as e�ciently as block-based consistency, but this pattern of �le access is rare in

distributed �le systems[Baker91].

2.7 Server Caching

In a traditional distributed �le system, the server maintains a cache of blocks that

have been accessed by the clients. Although the server cache is lower in the storage

hierarchy than the client caches and therefore has a lower hit rate, studies have

shown that the server cache is still e�ective at reducing disk accesses and improving

performance[Baker91].

The bene�ts of a server cache are less apparent with cooperative caching because

local cache misses are �rst serviced by the caches of other clients. This reduces the

server cache's e�ectiveness and raises the issue of using the server memory in a

di�erent manner so as to bene�t cooperative caching.

One possibility is to use the server cache as part of the cooperative cache. The

advantage of this is that it increases the e�ective size of the cooperative cache. As the

hit ratio to the client caches is expected to be better than that to a traditional server

cache, the increased use of the server memory would bene�t cooperative caching.

However, the disadvantage of this proposal is that the server would be target of

forwards from clients, increasing its load and possibly hampering performance.

Yet another possibility is to augment the use of hints in cooperative caching.

Hints can be inaccurate and it might be helpful to use the server memory to o�set

the e�ect of incorrect hints. These alternatives to traditional disk caching in server

memory are evaluated using trace-driven simulation in Chapter 5.2.6.

2.8 Summary

The cooperative cache is the layer in the storage hierarchy positioned between the

local client caches and allows a client to access and store �le blocks in the caches of

other clients. Cooperative caching is challenging because the cooperative cache is
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distributed over the client caches and must be coordinated with minimal overhead

to reap performance bene�ts.

A block lookup mechanism in cooperative caching must be able to locate e�ec-

tively a block in the client caches. One approach would be to use a manager to

keep track of the location of blocks in the client caches. While this approach would

be accurate, the overhead would be signi�cantly lowered if clients maintained their

own block location hints.

A cooperative caching replacement strategy must decide the order of replace-

ment of blocks from the client caches. A manager-centric approach in valuating the

blocks in the client caches works well, but lower overhead can be obtained if clients

maintained hints about the values of blocks in the caches of other clients.

Two other design issues in cooperative caching are the granularity of the consis-

tency mechanism and the possible uses of the server memory.
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CHAPTER 3

EXISTING AND IDEAL ALGORITHMS

This chapter introduces existing and ideal algorithms against which the proposed

hint-based algorithm is compared. The performance and overhead of existing algo-

rithms provide insight into the strengths and weaknesses of a fact-based approach,

as well as peer benchmarks for practical cooperative caching algorithms. On the

other hand, the ideal algorithms provide a bound on achievable performance by a

cooperative caching algorithm.

In this chapter, two existing cooperative caching algorithms are introduced {

N-chance and GMS. The algorithms are discussed with respect to the management

operations on the cooperative cache: block lookup, replacement and consistency.

Following this, two ideal algorithms are discussed { Global LRU and Optimal { and

the performance bounds established by each of these algorithms are shown.

The two existing algorithms developed from successive attempts to harness

the remote memory in workstation clusters[Comer90, Felten91, Franklin92, Le�91].

These attempts established important results, which were subsequently used by co-

operative caching algorithms. These results are elaborated on in Chapter 7.1.

3.1 N-chance

Dahlin et al. pioneered the use of cooperative caching by motivating the need

to o�set server accesses with those to the client caches[Dahlin94]. The authors

inspected a wide variety of algorithms for using idle memory in a workstation cluster

and settled on the N-chance algorithm for providing the best performance with the

lowest overhead. The algorithm was further re�ned to separate the roles of the

server and the manager in the xfs �le system[Anderson95].
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3.1.1 Lookup

The N-chance algorithm uses the server to take on the responsibilities of a manager

and locate blocks in the client caches. When a client has a local cache miss on

a block, the client sends a request to the server, which then forwards this request

to a client caching the block. If the block is not present in the client caches, the

server responds with the block itself. To maintain the locations of blocks in the

client caches, the server is informed whenever a block moves in and out of the client

caches. Thus, whenever a client discards a block or forwards it to another client,

the client must inform the server. Similarly, when a client is forwarded a block from

another client, the client too must inform the server. The only exception where

a noti�cation to the server is not necessary is when a client fetches a block from

the server itself. A generalized schema describing manager-centric block location is

shown in Figure 2.3(a).

However, the original N-chance algorithm does not reduce the number of mes-

sages to the server, adding to the server load. While the algorithm achieves near-

optimal results with a high hit ratio to the cooperative cache, each remote cache

access also involves a message to the server and adds to the server load. This means

that the number of messages to the server will not be reduced even if clients have a

high hit ratio to the cooperative cache.

The xfs �le system re�ned the N-chance algorithm by separating the role of the

manager from the server, so that the server and the manager reside on separate

machines[Anderson95]. This re�nement reduces the load on the server as commu-

nication with the manager can now avoid the server. Additionally, in an attempt

to reduce the overhead of contacting the manager, the xfs �le system also tries to

co-locate managers with clients. The goal is to ensure that a client wanting to access

a block is physically in the same machine as the manager for the block, and can thus

communicate with the manager without incurring the overhead of a network mes-

sage. The co-location policy used by xfs assigns the management of a �le's blocks to

the client which last wrote the �le, the underlying assumption being that this client
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is most likely to access the �le in the future.

3.1.2 Replacement

The N-chance algorithm uses a combination of duplicate avoidance and randomness

to replace blocks from the client caches. Whenever a client replaces a block from its

local caches and does not know whether the block is a singlet, or the only copy in

the client caches, the client contacts the appropriate manager to check if the block

is a singlet. If the manager responds in the a�rmative, then the client forwards this

block to a randomly chosen target client. In other words, the N-chance algorithm

gives a preference to singlets, as discarding them may cause a future server access.

The N-chance algorithm also takes measures to ensure that these singlets are

discarded from the client caches when they becomes less valuable. The N-chance

algorithm imposes a limit n on the number of times such blocks can be forwarded

from one client cache to another. The authors use measurements as well as empirical

evidence to suggest that a value of 2 for n would provide optimal performance for

this algorithm.

3.1.3 Consistency

The N-chance algorithm speci�es a manager-centric block-based consistency scheme.

Whenever a client updates a block, the client informs the appropriate manager

which then invalidates the remaining copies of the block in the client caches (i.e.

write-invalidate). The N-chance algorithm also assumes a write-through policy for

updates, ensuring that only clean blocks are stored in the cooperative cache.

3.1.4 Discussion

The N-chance algorithm uses managers for block lookup, duplicate avoidance and

consistency, and therefore incurs the overhead of frequent communication with the

manager to maintain the exact global state. Moreover, while trying to co-locate a

client accessing a �le with the manager for the �le's blocks can potentially reduce

overhead, the disadvantages of such a scheme are many. First, it adds the complexity
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of locating the manager for a block because the manager may move from one machine

to another. In other words, the client must do a manager lookup to locate a manager

for a block. Second, the overhead of co-location is high if �les are write-shared across

multiple clients. A co-location mechanism would have to move the management of

the shared blocks from one client to another, the overhead of which would negate any

bene�ts obtained. All existing evaluations of co-location mechanisms have assumed

a single client accessing blocks and have neglected to measure the overhead in the

case where multiple clients access shared blocks[Feeley95, Anderson95]. A potential

improvement to the above scheme is to maintain block location hints in every client,

and thus avoid both the cost of communication with a manager and the complexity

of a co-location mechanism.

For replacement, N-chance gives more weight to duplicate avoidance, and has

poor performance if block access patterns do not conform to this assumption. For

example, if a block is forwarded to a randomly selected client actively accessing

its cache, then the block might replace a valuable local block. Moreover, if the

same block is successively forwarded n times to such active clients, then the block is

discarded from the client caches even though it may be a valuable cooperative cache

block. Studies have shown this phenomenon frequently occurs in practice when the

fraction of active clients is high and the idle memory is concentrated in the few

remaining clients[Feeley95, Sarkar96].

3.2 GMS

The GMS or Global Memory Service algorithm is also motivated by the need to

use the idle memory in workstation clusters, but does not limit idle memory usage

to �le systems. Feeley et al. stress the need for treating the client memories in a

distributed �le system as a global resource and demonstrate how the GMS algorithm

is e�ective at attaining this objective[Feeley95]. Further modi�cations to GMS deal

with client loads and network overhead[Jamrozik96, Voelker97].
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3.2.1 Lookup

The GMS algorithm is similar to N-chance in that it speci�es a manager-centric

approach to block lookup (Figure 2.3(a)). Block movement in and out of the client

caches is reported to managers which maintain exact information about the location

of blocks in the client caches. A client contacts a manager on a local cache miss

for a block, which then redirects the request to a client caching the block, or to the

server if the block is not present in the client caches.

3.2.2 Replacement

The goal of the replacement policy in GMS is to approximate LRU in replacing

blocks from the client caches. A key piece of the GMS algorithm is the use of

managers to collect and distribute information about the ages of blocks in the client

caches.

The GMS algorithm avoids duplicate global blocks in the client caches. Thus,

only singlets are forwarded to the cooperative cache. The managers in GMS keep

track of the number of copies of a block, and whenever a block becomes a singlet in

a client's cache, the GMS manager informs the client. In contrast to N-chance, the

responsibility of duplicate avoidance is on the manager rather than on the client.

This lowers overhead in GMS as the manager sends a message to a client only when

a block becomes a singlet in the client caches, whereas in N-chance the message

exchange happens in 98% of all block replacements when a replaced block is not

known to be a singlet.

To approximate LRU, a manager in GMS initiates the collection and distribu-

tion of age information from clients at dynamically determined time intervals called

epochs. The duration of an epoch is principally determined by the number of re-

placements during the epoch. At the beginning of an epoch, clients send a summary

of the ages of the blocks in the client caches to the manager coordinating the re-

placement algorithm. The manager then evaluates this summary to determine the

locations of the n oldest blocks in the client caches, where n is determined from the

length of an epoch. Subsequently, the manager computes w

i

for each client i, where
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w

i

is the fraction of the n oldest blocks present in a client i. The manager then

distributes the w

i

array to all the clients along with the expected duration of the

epoch. Whenever a client replaces a block from its cache and needs to forward the

block to a target client, the client chooses a client i as the target with probability

w

i

. Measurements showed that the algorithm was able to reasonably approximate

LRU over a wide range of memory-intensive benchmarks[Feeley95].

The GMS replacement policy was re�ned further to deal with high loads in

clients. While the original policy was designed to approximate LRU, Voelker et al.

experimented with a combination of both client loads and block ages in replacing

blocks from the client caches[Voelker97]. The authors found that a load-balanced

LRU replacement did not a�ect performance as the deviations from LRU were mod-

erate, and demonstrated that a 8-node memory server could handle as many as 70

clients with load balancing.

3.2.3 Consistency

The GMS algorithm does not specify any consistency mechanism for the client

caches. Instead, the algorithm states that the consistency semantics are the re-

sponsibility of the application that created the sharing.

The GMS algorithm adopts a restricted version of delayed write for its update

policy. Whenever a dirty block is forwarded to the cooperative cache or shared

across multiple clients, the block is written out to the server to ensure that only

clean blocks exist in the cooperative cache.

3.2.4 Discussion

The GMS block lookup scheme su�ers from the same drawback of high overhead

as N-chance because of the reliance on managers to maintain exact block location

state, as discussed in Section 3.1.4. In contrast, an approach based on local hints on

each client would not incur the overhead of contacting the manager on every local

cache miss.

While the GMS replacement policy is able to provide good results, it su�ers from
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three important drawbacks. First, the policy is very complex as the policy decisions

in replacements involve hard-to-compute parameters such as the statistical distri-

bution of the oldest blocks in all the clients, the expected rate of replacements and

the rate at which age information is expected to become inaccurate. Second, the

replacement policy incurs the overhead of exchanging information with managers

at every epoch. This creates a tradeo� between overhead and accuracy where opti-

mizing one adversely a�ects the other. For example, a long epoch would no doubt

minimize overhead, but then the age information would grow increasingly inaccurate

with time during a long epoch. On the other hand, a short epoch would result in

more accurate results but at the cost of increased overhead. The authors have not

performed any experiments on this aspect of the GMS replacement policy. Third,

the GMS algorithm depends on the manager to coordinate the replacement process

and is thus sensitive to manager failures. The GMS algorithm does not specify a

mechanism to deal with manager failures. On the other hand, a replacement pol-

icy based on local hints would have lower overhead as no communication with the

manager is necessary, and would not be susceptible to manager failures.

3.3 Ideal Algorithms

The ideal algorithms provide a performance bound for cooperative caching algo-

rithms. While these algorithms may not be practical to implement, they provide a

lower bound on the average block access time of a cooperative caching algorithm.

The overhead of an ideal algorithm is ignored because of their impracticality and

as a result, the exact mechanisms for implementing cooperative cache management

operations are not consequential.

The ideal algorithms assume accurate block lookup in the client caches and

maintain block-level consistency in the client caches. The algorithms avoid duplicate

global blocks in the client caches by forwarding only singlets and discarding the rest.

The only di�erence in the two ideal algorithms is in the policy of choosing the target

client when a client decides to forward a block to the cooperative cache.
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3.3.1 Optimal

The replacement policy in the Optimal algorithm always replaces the block in the

client caches whose next access is farthest in the future. It has been shown that

this replacement policy is optimal because it minimizes the number of cache misses

and therefore has the minimal block access time[Belady66]. Thus, whenever a client

decides to forward a block to the cooperative cache, the target client is the one that

contains the block whose next access is farthest in the future. If several clients con-

tain blocks which are never accessed in the future, Optimal chooses one at random.

In addition, if the block to be forwarded to the cooperative cache is itself the one

whose next access is the farthest in the future, the block is discarded.

3.3.2 Global LRU

The Global LRU algorithm uses the distributed version of LRU as the basis of its

replacement policy. Global LRU approximates Optimal by replacing the globally

LRU block from the client caches. Whenever a client needs to forward a block to the

cooperative cache, it chooses the target client with the globally LRU block. As in the

Optimal algorithm, if several clients contain the globally LRU block, the algorithm

chooses one at random. Also, if the block to be forwarded to the cooperative cache

is itself the globally LRU block, it is discarded. In summary, Global LRU removes

blocks from the client caches in order of age.

In a real implementation, this algorithm would be expensive as the overhead of

locating the globally LRU block is high. The degree of approximation achieved by

Global LRU depends on the access patterns of a workload and is determined by the

degree of similarity between optimal replacement for this workload and Global LRU

[Voelker97].

3.4 Summary

This chapter discusses existing and ideal algorithms to provide the basis for com-

parison with the proposed hint-based algorithm discussed in the next chapter. The



42

existing algorithms provide a yardstick for comparing performance and overhead,

while the ideal algorithms de�ne the limits to performance.

The pioneering paper on cooperative caching by Dahlin et al.[Dahlin94] described

an algorithm for implementing the cooperative cache called N-chance. Managers are

responsible for maintaining consistency and block location information in N-chance.

The replacement policy in N-chance uses a combination of duplicate avoidance and

randomness to decide the best block to replace. Blocks with more than one copy

are discarded, while singlets are forwarded to another client chosen at random.

A subsequent paper by Feeley et al.[Feeley95] described the Global Memory Ser-

vice (GMS) which provided better performance than N-chance as well as reduced

overhead. GMS is similar to N-chance in that it uses managers to locate blocks in

the client caches. One di�erence is that it does not specify a consistency mechanism.

GMS, like N-chance, forwards a block to the cooperative cache only if the block

is a singlet. GMS di�ers from N-chance in that a manager keeps track of the

number of copies of each block and noti�es the appropriate client when a block in

its cache becomes a singlet. GMS also di�ers from N-chance in that a centralized

manager-based algorithm chooses a block for replacement. The algorithm reasonably

approximates LRU over all the client caches.

A summary of the existing algorithms, as well as the hint-based algorithm is

shown in Table 3.1. The key features of the hint-based algorithm are elaborated on

in the next chapter.

Algorithm N-chance GMS Hint-based

Consistency Block-based None File-based

Lookup Manager-based Manager-based Hints

Replacement Random Manager-based LRU Best-guess LRU

Server Caching Traditional Traditional Discard

Table 3.1: N-chance, GMS and the hint-based algorithm. This table lists the key

features of the N-chance, GMS, and hint-based algorithms.

The ideal algorithms provide a lower bound on the average block access time

of any algorithm. The overhead of ideal algorithms is ignored as they are not
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practical to implement. The ideal algorithms assume accurate block lookup, block-

level consistency and forward only singlets to the cooperative cache.

The two ideal algorithms discussed here, Optimal and Global LRU, only di�er

in the choice of the target client when a block is forwarded to the cooperative cache.

The Optimal algorithm replaces the block which is accessed the farthest in the future

and chooses the target client having this block. In contrast, Global LRU emulates

the distributed version of LRU and chooses the target client with the globally LRU

block.
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CHAPTER 4

A HINT-BASED ALGORITHM

4.1 Hints

Hints, in general, can be de�ned as an imprecise state of a given system. A hint is

initially obtained from a system's actual state. However, a hint is not kept consistent

with the system's exact state, and may sometimes be updated to re
ect the exact

state only if the bene�t of updation outweighs the cost. As a result, hints cannot

be guaranteed to be accurate at any given time.

The use of hints has its advantages and disadvantages. The lack of consistency

with the exact system state implies that hints are easier to maintain than is the

system state. On the other hand, inaccurate hints can degrade performance and

increase overhead because they present an incorrect idea about the state of the

system. Consequently, a hint-based system is useful only when the vast majority of

hints are accurate and the bene�t of using hints is greater than the penalty of a few

inaccurate hints.

Di�erent categories of hints can be found in the design of computer systems.

The use of hints can be found in networking protocols like TCP/IP[Postel81], where

getting the exact state of a network connection is very di�cult; in operating system

functions such as disk block lookup in the Pilot operating system[Redell80], where

locating a block on the disk has high cost; and even in programming languages such

as Smalltalk[Deutsch82] to resolve the types of polymorphic methods. Detailed

information about the use of hints can be found in Chapter 7.2. The goal of this

dissertation is the successful application of hints to cooperative caching.
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4.1.1 Hints in Cooperative Caching

The goal in designing a cooperative caching system was to develop a distributed

algorithm that provides high performance as well as low overhead. One way to do

this is to make clients as independent of managers as possible, and allow the clients

to take decisions based solely on information available locally. A local decision-

making approach has two advantages: not only is there a performance bene�t of

not contacting the manager, but there is also reduced overhead as all decisions are

local.

The greatest challenge in making independent decisions in clients is to make the

decision approximate one based on the global state, which is the sum of the local

states of all the clients in the distributed �le system. As a result, an independent

client decision cannot achieve this objective based purely on that client's local state

alone. Thus, a client must also maintain information about the local states of the

remaining clients in the distributed �le system in the form of hints.

As implied by the de�nition, cooperative caching hints refer to a probable global

state of the distributed �le system. As a result, hints allow clients to make inde-

pendent decisions about the cooperative cache based on approximate global state

without contacting a manager. Hence, the use of hints �ts in perfectly with the

goal of devising a cooperative caching algorithm with high performance and low

overhead.

The challenge of using hints is to make them accurate. Inaccurate hints can not

only hurt performance by causing decisions that do not approximate one based on

global state, but also force the system to rely on a costly mechanism to overcome

their e�ect. For example, if a hint says that a particular block is in a client's cache,

and in reality, it is not, then the system must have a mechanism to return the correct

location of the block in the client caches. Thus, the goal is to make sure that the

bene�t obtained by using hints more than o�sets the cost of making mistakes due

to inaccurate hints.
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4.2 Block Lookup

This section focuses on the use of hints in locating blocks in the client caches. When

a client su�ers a local cache miss on a �le block, a lookup must be performed on

the client caches to determine if and where the block is cached. In the previous

algorithms, the client contacts the manager responsible for the block to perform the

lookup. Although this approach will always return the correct location of the block

in the client caches, it also increases both the block access time and the manager

load.

An alternative is to let the client itself perform the lookup, using its own hints

about the locations of blocks within the client caches. These hints allow the client

to access the caches of other clients directly without contacting a manager on every

local cache miss. However as discussed in Section 2.4, the hints need to be accurate

for this approach to be e�ective. In addition, a hint-based block lookup scheme

must provide the correct result even if hints are incorrect. In other words, the

lookup mechanism must be able to return the correct location of the block in the

storage hierarchy even if the block's location hints are not correct.

The key focus of this hint-based approach to perform block lookup is to make

the location hints accurate and provide a lookup mechanism to deal with inaccurate

hints.

4.2.1 Hint Accuracy

Hint accuracy largely depends on the choice of blocks to which location hints refer.

This choice is important because it a�ects how fast hints get out-of-date in the

client caches. If the set of blocks referred to by hints changes location rapidly, the

hints would have to be frequently updated to ensure accuracy. However, changes

to block location are determined primarily by access patterns which are not known

in advance, making it di�cult to predict the natures of changes to the locations

of blocks. To maximize hint accuracy, clients maintain hints for the part of the

location state that changes the least rapidly. The reasoning is that hints for this
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part of location state are not likely to get out-of-date as fast as those for the parts

that change more rapidly. The key to the success of this approach is to �nd this

part of the location state of a distributed �le system.

One alternative is to keep track of all the copies of all blocks in the client caches

as is done in a manager-centric approach. However, the aggregate rate of movement

of all the copies of a block in and out of the client caches is larger than the rate

of movement of a single copy. Thus, the overhead of maintaining hints for all the

copies of a block in the client caches is more than that for a single copy of a block,

making the latter a more attractive option.

The next question is to decide which copy of a block should a block location

hint refer to. One possibility is to refer to the newest copy of a block in the client

caches because this copy is likely to be present in a client's cache and consequently,
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a location hint that refers to this block is also likely to be accurate. On the other

hand, the location of the newest copy is likely to change more rapidly than that

for a �xed copy of a block. This makes a �xed-copy scheme more advantageous for

accurate hints.

One concern about a �xed copy scheme is that it increases the load on a client

caching the �xed copy of a block as this client is the target of accesses from clients

needing the block in the future. However, as shown in Section 6.4.3, client loads

were not an issue.

To allow hints to keep track of the location of a �xed copy of a block, the concept

of a master copy of a block is introduced. The �rst copy of a block to be cached by

any client is called the master copy, as shown in Figure 4.1. The master copy of a

block is distinct from the block's other copies because the master copy is obtained

from the server. Block location hints only contain the probable location of the

master copy of a block, simplifying the task of keeping the hints accurate:

1. When a client opens a �le, the client contacts a consistency manager which

gives the client a set of hints that contain the probable location of the master

copy for each block of the �le. Here, we assume that a manager coordinates

the consistency mechanism in the distributed �le system, though we place no

restriction on the mechanism itself. The manager obtains the set of hints for

the �le from the last client to have opened the �le. The assumption is that

the last client to open the �le has the most accurate location hints for this �le.

While this assumption may not hold for some patterns of block access, they

conform to typical UNIX access patterns[Baker91] and yield highly accurate

hints, as demonstrated in Chapters 5.2.2 and 6.4.4.

2. During the process of replacement (described in Section 4.3), when a client

forwards a master copy of a block to another client, both clients update their

hints to re
ect the new location of the master copy in the client caches.
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Figure 4.2: Lookup Mechanism. This �gure illustrates the use of location hints in the

lookup mechanism. Once client A obtains location hints, the client uses the information in

the table of location hints to determine that client B is caching a needed block. Following

this, client A sends a request to client B, which responds with the block.

4.2.2 Lookup Mechanism

The hints contain the probable location of the master copy of a block. Thus

the lookup mechanism must ensure that a block lookup is successful, regardless

of whether the hints are right or wrong. Fortunately, in cooperative caching al-

gorithms, dirty blocks are written out to the server whenever they are shared or

forwarded to the cooperative cache. As discussed in Chapter 2.5, an important

corollary of this assumption is that the server can always be relied to have a valid

copy of a block and can satisfy requests for the block should the hints prove false.

This simpli�es the lookup mechanism:

1. When a client has a local cache miss for a block, it consults its hint information

for the block.

2. If the hint information contains the probable location for the master copy

of the block, the client forwards its request to this location. Otherwise, the

request is sent to the server.

3. The client which receives a forwarded request for a block checks to see the

block is present in its cache. If so, the client responds with the block to the
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requesting client. Otherwise, the client consults its hint information for the

block and proceeds to Step 2.

Measurements show this algorithm works well when the working set size of client

applications is less than the size of the client memories, as shown in Chapter 5.2.7.1.

However, if several clients share a working set of blocks larger than the client mem-

ories, forwarding a block to a client increases the probability that a master copy will

be replaced. This, in turn, will cause the master copy to be forwarded to another

client, greatly increasing the rate of movement of blocks in and out of the client

caches. As a result, the location hints for blocks will also lose their accuracy at a

faster rate and consequently, these inaccurate hints will decrease the hit ratio to the

cooperative cache.

However, a similar degradation occurs in other cooperative caching algorithms.

When the working set size of client applications starts to approach the size of the

client memories, block movement in and out of the client caches increases as de-

scribed above. While this does not cause any loss of accuracy for block location,

frequent communication with the manager to report this block movement increases

the manager load to as much as 30 times that of the hint-based algorithm, as shown

in Section 5.2.7.1. The high load increases the manager response time, which in

turn degrades performance.

4.3 Replacement

The replacement policy in cooperative caching makes space for a new block entering

the client caches by discarding the least valuable block in the client caches. The dis-

tributed nature of the cooperative cache makes this challenging as the client fetching

the new block might be di�erent from the client holding the least valuable block,

requiring communication among clients. The degree and nature of communication

among clients determines the performance and overhead of a cooperative caching

replacement algorithm.

A client invokes the replacement policy when a block is replaced from its local
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cache. As discussed in Chapter 2.5, the client has to decide �rst whether or not to

forward this replaced block to the cooperative cache. If the client decides to forward

the block, it must choose the target client to which to forward the block.

4.3.1 Forwarding

The previous algorithms rely on the manager to determine whether or not a block

should be forwarded. A block is forwarded only if it is a singlet. Maintaining this

invariant is expensive: in addition to reporting all block movement in and out of

the client caches to the manager, it also requires an N-chance client to contact the

manager whenever it wishes to replace a block, and the GMS manager to contact a

client whenever a block becomes a singlet.

An alternative is to avoid the use of a manager in determining the copy of a

block to be forwarded to the cooperative cache. To avoid overhead, the copy to be

forwarded to the cooperative cache is predetermined and does not require communi-

cation between the clients and the manager. In particular, only the master copy of

a block is forwarded to the cooperative cache and all other copies are discarded. As

only master copies are forwarded, and each block has only one master copy almost

all the time, there are no duplicate global blocks in the client caches.

Blocks may have more than one master copy in the client caches if location

hints are inaccurate. For example, out-of-date hints in the client caches can cause a

client's block lookup request to get forwarded to the server even though the block is

present in the cooperative cache. Consequently, the client will fetch the block from

the server, increasing the number of master copies of the block by one. Fortunately,

measurements in Chapter 5.2.2 indicate that less than 0.01% of the server accesses

fetch a second master copy of a block into the client caches. Moreover, after a client

fetches a second master copy of a block, the location hint for the block will now refer

to the second master copy and this hint will propagate to other clients which want

to access the block in the future. Therefore these clients will reference the second

master copy instead of the �rst. Consequently, the �rst master copy of the block

will be discarded from the client caches at a faster rate than if there was only one
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master copy in the client caches.

A potential drawback of the master copy algorithm is that it has a di�erent

forwarding behavior than the previous algorithms. Instead of forwarding the last

local copy of a block in the client caches as in GMS or N-chance, the master copy

algorithm forwards the �rst (master) copy. In some cases, this may lead to unnec-

essary forwards. As the previous algorithms forward the last copy of a block, the

block will not be forwarded at all if it is deleted while there are multiple copies in

the client caches. The hint-based algorithm may unnecessarily forward the master

copy prior to the delete. Fortunately, our measurements in Chapter 5.3 show that

few (1:97%) of the master copy forwards are unnecessary.

4.3.2 Best-Guess Replacement

Once the replacement policy has decided to forward a block to the cooperative cache,

it must choose the least valuable block in the client cache to replace. This block is

present in the cache of a target client, and forwarding a block to the target client

aims to replace this least valuable block.

N-chance chooses a target client at random, while GMS relies on information

from the manager. A policy of randomly choosing a target client may not replace

the least valuable block in the client caches and this results in poor performance,

as seen in Chapter 5.2.1. Relying on information from the manager allows GMS to

reasonably approximate Global LRU. However, this incurs the overhead of frequent

communication with the manager and increases the complexity of a replacement

algorithm.

An attractive alternative is to design a replacement algorithm without involving

a manager, thus avoiding the overhead of contacting the manager. However, this

implies that clients have to exchange information among themselves to implement

the replacement algorithm, incurring overhead in the process. Hence, the key focus

of such an algorithm should be to exchange the minimal amount of information

between clients necessary for a highly accurate replacement policy.

A distributed replacement algorithmmust aim for high accuracy as well as adapt-
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ability to changes in the behavior of clients. Thus such an algorithm must able to

identify the active clients (clients accessing the cooperative cache) and idle clients

(clients that are not) in a distributed �le system at any given point of time. In

addition, an algorithm must also be able to adapt to situations where an idle client

suddenly becomes active and vice versa. This would imply changes in the distribu-

tion of idle memory in the client caches, requiring adjustments in the replacement

process.

Finally, a distributed replacement algorithm should not be a�ected by client

failure. In case a client fails, the remaining clients must be able to proceed with the

replacement algorithm. Fortunately, this is achievable in a hint-based algorithm as

each client maintains its own replacement hints.

4.3.2.1 Algorithm

A hint-based algorithm chooses a target based on local information about the state

of the client caches. This is referred to as best-guess replacement because each client

chooses a target client that it believes has the system's oldest block. The objective

is to approximate Global LRU, without requiring a centralized manager or excessive

communication between the clients. The challenge is that the block age information

is distributed among all the clients, making it expensive to determine the best block

to replace.

In best-guess replacement, each client maintains an oldest block list that contains

what the client believes to be the ages of the oldest block on each client. The

algorithm is simple: blocks are forwarded to the client that has the oldest block in

the oldest block list.

The high accuracy of best-guess replacement comes from exchanging information

about the ages of the oldest block on each client. When a block is forwarded from

one client to another, both clients exchange the age of their current oldest block,

allowing each client to update its oldest block list. This step in the algorithm is

illustrated in Figure 4.3.

When a client boots up, the client assumes that the remaining clients have free
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Client   A   B   C   D   E  . . .

Client   A   B   C   D   E  . . .

Client A
Forward Block

Target client C

Client A Target client C

Age of A’s oldest block

Age of C’s oldest block

(a) Oldest Block List

(b) Selecting a target client

(c) Exchanging age information

Oldest 10  45  70  30  25  . . .

Oldest 10  45  70  30  25  . . .

Figure 4.3: Best-guess Replacement. (a) Each client contains replacement hints in

the form of the oldest block list. The oldest block list is indexed by every client in the

distributed �le system and each entry contains the probable age of the oldest block in the

client. (b) When a client A decides to forward a block, the client looks in its oldest block

list and determines that client C has the oldest block in the list of age 70. Client A then

forwards its block to the target client C. (c) Concurrently with the replacement, clients A

and C exchange the ages of their oldest blocks and update their respective lists.

memory to store global blocks and proceeds with this assumption until the oldest

block list is updated during the course of replacements. Accordingly, the probable

age of the oldest block for each client in the oldest block list is initialized to INF,

where INF is the maximum age of a block. Similarly, a client having free memory

in its cache also returns INF as the age of its oldest block during replacement.

4.3.2.2 Properties

This exchange of block ages allows both active and idle clients to maintain accurate

oldest block lists. Active clients have accurate lists because they frequently forward
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blocks. Idle clients will be the targets of the forwards, keeping their lists up-to-date

as well. Active clients will also tend to have young blocks, preventing other clients

from forwarding blocks to them. In contrast, idle clients will tend to accumulate old

blocks and therefore be the target of most forwards.

Best guess replacement adapts to changes in the behavior of a client. An active

client that becomes idle will initially not be forwarded blocks, but its oldest block

will age relative to the other blocks in the system. Eventually this block will be the

oldest on the lists, and therefore used for replacement. On the other hand, an idle

client that becomes active will initially have an up-to-date list because of the blocks

it was forwarded while idle. This allows it to forward blocks accurately. Other

clients may erroneously forward blocks to the newly-active client but once they do,

their updated oldest block lists will prevent them from making the same mistake

twice.

Best-guess replacement is also not prone to client failures. This is primarily

because replacement information is not centrally managed at any one client and

each client maintains its own replacement hints. As a result, if a client fails, the

remaining clients can stop replacing blocks from the failed client upon detection.

Failure detection can be done either actively using a heartbeat protocol or lazily

during the process of replacement. To minimize overhead, we have opted for lazy

detection (more details are available in Chapter 6.1.1.3).

4.3.2.3 Analysis

The performance of best-guess replacement is measured by the extent of its deviation

from Global LRU, the ideal for this algorithm. The extent of this deviation depends

both on the workload in the distributed �le system as well as the deviation of

the optimal replacement algorithm for this workload from Global LRU. An initial

estimate can be obtained by analyzing the bound which determines the maximum

extent of deviation of best-guess replacement from Global LRU.

The performance bound of best-guess replacement indicates that the algorithm

approximates Global LRU very well. Let us assume a distributed �le system with
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N clients, where we are trying to determine the maximum extent by which the

replacement of the globally LRU block can be delayed. Consider the scenario in

which a client replaces a block from another client in best-guess replacement. The

two clients then exchange the ages of their oldest blocks. After this replacement,

neither client will replace a block younger than the oldest blocks on these two clients

because clients choose the target client with the oldest block in the oldest block list.

Note that at this time, the globally LRU block is the oldest block on one of these

N clients. Therefore, after all possible replacements and subsequent exchanges

of information between N clients, no client can replace a block younger than the

oldest block on all the N clients, which is the globally LRU block. Since these are

(N � 1)(N � 2)=2 possible replacements between N clients, the replacement of the

globally LRU block can be delayed by at most this many replacements. In other

words, if Global LRU replaces a particular block in the i

th

replacement, then best-

guess replacement will replace the block at most by the i + (N � 1)(N � 2)=2

th

replacement.

While this limit seems high, it represents the worst case because the analysis

assumes that every client is replacing blocks from the caches of other clients. In

a typical distributed �le system, not all clients access the cooperative cache at the

same time[Acharya98]. Under these conditions, best-guess replacement does much

better. If there are k active clients accessing the cooperative cache at any given

time, then the globally LRU block can be assumed to be in the remaining N � k

clients (as the caches of the k clients is �lled with young local blocks). Following

the same logic as above, after all possible exchanges between these k active clients

and N � k idle clients, no client can replace a block younger than the globally LRU

block, which the oldest block on one of these N � k clients. In such a case, the

replacement of the globally LRU block is delayed by at most (k � 1)(N � k � 1)=2

replacements. Furthermore, in both simulations and prototype measurements, k

was on an average a small constant compared to N , implying that the delay in the

replacement of the globally LRU block was at most by O(N) replacements. Given

that the performance of most applications is not very sensitive to small deviations
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from Global LRU[Voelker97], the existence of a linear bound is very encouraging.

The performance bound of best-guess replacement is not a�ected by exchanging

more age information. The reason is that the strategy does not reduce the proba-

bility of a replacement error. For example, assume two clients exchange the block

age information of all the clients. However, other than the ages of the oldest blocks

of these two clients, the rest of the block age information can not be guaranteed to

be accurate. The probability of a replacement error depends on the accuracy of the

oldest block's age on any client and is therefore not a�ected by the rest of the block

age information. As a result, it is best to exchange only the age of the oldest blocks

of the two clients involved in the replacement.

While the performance bound determines the maximum extent to which best-

guess replacement can deviate from Global LRU, the performance is determined by

the average delay in the replacement of the globally LRU block. Even though the

linear performance bound suggests that best-guess replacement is likely to closely

approximate Global LRU, the actual performance is best evaluated using simulations

and prototype measurements.

4.3.2.4 Forwarding Storms

Although both theory and practice have shown this simple algorithm to work well,

there are potential problems, the most important of which is overloading a client

with simultaneous replacements. This phenomenon is known as a forwarding storm

and happens when several clients believe that the same target client has the oldest

block. In such a situation, the clients all forward their blocks to this target client,

potentially overloading the client and replacing young blocks.

Fortunately, it is highly unlikely that the clients using the cooperative cache

would forward their blocks to the same target. This is because clients that do

forward their blocks to the same target will receive di�erent ages for the oldest

block on the target, since each forwarded block replaces a di�erent oldest block in

the target client. Hence, if the idle memory of the network is uniformly distributed

over k clients, the probability of a client choosing a particular target client among
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these k clients is 1=k. Thus, the probability of x clients choosing the same target

client is (1=k)

x�1

, as each client replacement decision is independent of one another.

Similarly, the probability of a client choosing the same target client y successive times

is (1=k)

y�1

. Consequently, the probability for x clients choosing the same target

client y successive times is (1=k)

x+y�2

. Assuming (arbitrarily) that a forwarding

storm involves 5 clients forwarding blocks to 10 target clients over a period of 10

successive replacements on each forwarding client, the probability of the forwarding

clients choosing the same target client over this period is 10

�13

. This indicates that

clients using the cooperative cache would be very unlikely to forward the block to

the same target client. Furthermore, we did not observe any forwarding storm either

in the simulations or in the prototype.

4.3.2.5 Client Loads

Best guess replacement can also be con�gured to work with client loads in addition

to block ages. When a client forwards a block to the cooperative cache on a target

client, the two clients involved in a replacement could exchange the age of their

oldest blocks and their CPU loads. As a result, a client could use the information

to avoid a heavily loaded client even though it might have very old blocks in its

memory. However, the exact mechanism with which a block would be valued both

with respect to its age and its CPU load is a matter of future study. Though research

has shown that client loads may be an issue if idle clients are used as dedicated

remote memory servers[Voelker97], these high client loads were not observed in the

course of our measurements because idle clients have very low CPU loads in a typical

distributed �le system[Acharya98].

4.4 Cache Consistency

Cooperative caching, for the most part, poses no restrictions on any cache consis-

tency protocol, as discussed in Chapter 2.6. Cooperative caching algorithms can

work with any update policy or consistency mechanism, though the use of certain
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policies like write-though or a restricted version of delayed write simpli�es the man-

agement of the cooperative cache. The only aspect of cache consistency which is

directly a�ected by the choice of a cooperative caching algorithm is granularity,

where the level of coordination in cooperative caching directly impacts the granu-

larity of cache consistency.

One approach is to use block-based consistency, but this requires frequent com-

munication with a manager to locate an up-to-date copy, making it pointless to use

hints for block lookup or replacement. For this reason, the hint-based algorithm uses

a �le-based consistency mechanism and uses tokens to control access to shared �les.

Clients must acquire either a read or write token from a manager prior to accessing

a �le for reading or writing. The manager controls the �le tokens, revoking them

as necessary to ensure that at most one client has exclusive access to a write token,

even though multiple clients may hold read tokens simultaneously. Once a client

has a �le's token, the client may access the the �le's blocks without involving the

manager, enabling the use of hints to locate and replace blocks in the client caches.

4.5 Discard Cache

As discussed in Chapter 2.7, the server memory is underused in cooperative caching

because the high hit ratio to the client caches reduces the number of server accesses.

This raises the question of e�ectively using the server memory to bene�t cooperative

caching.

4.5.1 Alternatives

One option is to treat the server memory as part of the cooperative cache. The

server is treated like any other client in the distributed �le system and clients can

forward blocks to the cooperative cache in the server memory. This would increase

the e�ective size of the cooperative cache and therefore the hit rates on the server

memory, as the server no longer duplicates the contents of the client caches.

A more attractive option is to use the server memory to complement the use

of hints in cooperative caching. When the working set of client applications starts
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to approach the size of the client memories and blocks move frequently in and out

of the client caches, the distribution of idle memory in the distributed �le system

also changes rapidly, resulting in incorrect replacement hints. As the number of

clients actively accessing their caches is high under these circumstances, an incorrect

replacement hint will cause a block to be forwarded to such an active client and a

valuable local block is consequently replaced from the client caches. The use of

the server memory to reduce the e�ect of these incorrect hints would be bene�cial.

Furthermore, since the server memory contains young mistakenly replaced blocks,

our hypothesis is that this will increase the use of the server memory more than

if the server memory were used as part of the cooperative cache. Fortunately, the

results in Table 5.7 con�rm this hypothesis.

4.5.2 Mechanism

To o�set replacement mistakes, the notion of a discard cache is introduced, one that

is used to hold possible replacement mistakes and thus increase the overall cache hit

rate to the server memory. A client chooses to replace a block on a particular target

client because the client believes that the target client contains the oldest block in

the client caches. The target client considers the replacement to be in error if it

does not agree with this assessment.

Two heuristics are used to determine whether the replacement of a block was

erroneous. The �rst heuristic relates to the type of blocks which are sent to the

discard cache on the server. One possibility is to send all mistakenly replaced blocks

to the server. However, this ignores the fact that mistakenly replacing some types of

blocks does not a�ect performance. For example, performance would not be a�ected

if a duplicate copy of a block were to be mistakenly replaced.

Another possibility sends a mistakenly replaced block to the discard cache only if

the block is a singlet, as mistakenly replacing duplicates does not a�ect performance.

However, in a hint-based system, there is no mechanism to count the number of

copies of a block in the client caches. The next possibility leverages the use of master

copies in the hint-based algorithm and sends only mistakenly replaced master copy
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blocks to the discard cache. First, the target client checks whether the replaced

block is a master copy. If the replaced block is not a master copy, then the replaced

block is discarded and the replacement is not considered erroneous.

The second heuristic tries to determine whether the replacement was a mistake.

The spectrum of possibilities to determine a mistaken replacement is wide. In

general, possible approaches can be classi�ed as either pessimistic or optimistic. The

pessimistic policy would tend to assume that the replacement of a master copy is

in error unless proved otherwise. In contrast, the optimistic policy would be biased

towards declaring the replacement of a master copy to be correct. A pessimistic

policy increases the number of erroneous replacements sent to the discard cache but

at the same time bene�ts from a higher number of hits to the server memory. The

key in choosing a policy is to ensure that the number of replacement errors does not

overload the server, while at the same time increasing the hit rate on the discard

cache.

To choose an appropriate policy, we experimented with two heuristics. The �rst

one is optimistic and declares the replacement of a block to be in error if the block

is a master copy and is younger than all blocks in the oldest block list of the client

from which the block is replaced. The second one (pessimistic) is similar to the �rst

but di�ers in that a replacement of master copy is declared to be in error if the block

is younger than any of the blocks on the list. In both these heuristics, a mistakenly

replaced block is sent to the discard cache; otherwise, the block is discarded. During

the course of the simulations and prototype measurements, we found that even with

a pessimistic heuristic, the number of replacement errors were low compared to the

number of replacements (Table 6.5), while the server hit rate was higher than that in

other uses of server memory (Table 5.7). This convinced us to go with the pessimistic

heuristic in determining a replacement error, as summarized in Table 4.1.

A more informed decision could possibly be arrived at if the clients had more

knowledge about the ages of blocks in the caches of other clients. For example, if

the clients involved in replacement exchanged the ages of the z oldest blocks in their

respective caches, then the determination of whether the replacement of a block
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is erroneous could be determined more accurately. However, best-guess replace-

ment limits the amount of information exchanged during a replacement process to

minimize overhead. Moreover, as seen during the simulations and the prototype

measurements, the number of replacement errors were too few to warrant the extra

overhead of higher accuracy in determining replacement errors.

Type of block Action

Non-master copy Discard

Old master copy Discard

Young master copy Send to discard cache

Table 4.1: Discard Cache Policy. This table lists how the hint-based replacement

policy decides which blocks to send to the discard cache. A master copy is old if it is older

than all blocks in the oldest block list, otherwise it is considered young.

The replacement policy in the discard cache is based on the age of the blocks sent

to the discard cache. This means that the discard cache always replaces its oldest

block, even though this oldest block may have been forwarded to the discard cache

more recently than the remaining blocks in the discard cache. This is to ensure that

mistakenly replaced young blocks have a longer lifetime in the discard cache than

relatively older blocks, irrespective of the order in which the blocks were forwarded

to the discard cache.

4.5.3 Size

The size of the discard cache required to augment e�ectively the use of hints in

cooperative caching is also of concern. If the required size is larger than the average

size of server memories, then the server is unlikely to be useful as a discard cache.

Fortunately, the required size of the discard cache is relatively small at O(N) blocks,

where N is the total number of clients in the distributed �le system. This result

is derived from the properties of best-guess replacement. If the replacement of the

globally LRU block is delayed by O(N) replacements, then a block younger than

the globally LRU block will be replaced from the discard cache before the globally

LRU block unless the size of the discard cache is at least O(N) blocks. In fact,
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in both the simulations and the prototype, the server memory size was adequate

enough that adding memory did not increase the hit ratio to the discard cache.

4.6 Summary

This chapter presents a new cooperative caching algorithm based on hints. Hints

refer to the probable global state of a distributed �le system and are less expensive

to maintain than facts. As long as the bene�t of hints exceeds the penalty of a few

inaccurate ones, a hint-based system provides high performance and low overhead.

Every client has lookup hints which refer to the master copy of a block which

is that copy directly fetched from the server. The client obtains the location hints

for the blocks of a �le from the last client that opened the �le (with help from a

consistency manager). A client uses the hints to obtain blocks directly from the

caches of other clients.

Hints are also used to replace blocks from the client caches. A client �rst decides

to forward a block to the cooperative cache only if the block is a master copy,

discarding the block otherwise. If the client decides to forward the block, the target

client which receives the block is the one which has the oldest block in the forwarding

client's oldest block list (a list containing the probable ages of the oldest block on

each client). A client maintains the accuracy of this list by exchanging the age of

its oldest block with that of the target client during a replacement.

Hint-based cooperative caching uses �le-based consistency rather than block-

based because it allows clients to access blocks without contacting a consistency

manager. The �nal aspect of the hint-based algorithm is the use of a heuristic to

determine if the replacement of a block from the client caches is a mistake, sending

such mistakenly replaced blocks to a discard cache on the server memory.
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CHAPTER 5

SIMULATION

This chapter evaluates the performance of the hint-based algorithm through

trace-driven simulation. The simulation results allow us to gain detailed insight

into the relative performance and overhead of the hint-based algorithm compared

to existing and ideal algorithms. The simulation environment is described �rst,

followed by the criteria for evaluating the algorithms. Finally, the performance and

overhead of all the algorithms are analyzed.

5.1 Simulation Environment

5.1.1 Traces

The algorithms were evaluated using trace-driven simulation based on the traces of

applications running on the Sprite network-based operating system[Baker91]. The

Sprite operating system ran on a network of about 40 Sun and DEC workstations

and provided a UNIX application interface[Ousterhout88]. Files in Sprite were

stored in servers and cached by clients, with strong consistency maintained among

the cached copies. One important aspect of these traces with respect to cooperative

caching is that Sprite encouraged sharing of �les.

There were about 50 Sprite users, distributed among several academic research

groups, and engaging in multiple o�ce and engineering tasks. The traces record the

�le accesses of various applications in electronic communication, typesetting, editing,

software development, VLSI circuit design and graphics. These applications are still

widely used and are thus not speci�c to Sprite.

These traces cover four two-day periods, and record three di�erent types of traces:

lookups, �le activity and attribute management. The lookup and attribute manage-

ment records are not directly relevant to cooperative caching activity and thus not
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used in our study. The �le activity records contain �le system accesses by applica-

tions, such as opening and closing �les, and seeking on �le descriptors. Actual read

and write events were not recorded, but can be inferred from �le o�sets in other

records.

The traces were restricted to the use of the main �le server allspice. Table 5.1

shows statistics for the trace periods, while Table 5.2 shows the simulation param-

eters.

Trace Period

Parameter 1 2 3 4

Block reads 276,628 2,011,915 261,023 343,189

Unique blocks accessed 53,349 13,108 33,063 75,273

Active clients 32 24 38 34

Table 5.1: Trace Period Statistics. This table contains statistics for the four trace

periods. Active clients refers to the number of clients that actually used the cooperative

cache during the period.

Most of the simulation parameters are derived from the original study on co-

operative caching by Dahlin et al.[Dahlin94], to simplify performance comparisons.

The access times were obtained from previously published measurements. Although

these measurements were taken around 1994 and are likely to be slow when com-

pared to state-of-the-art equipment, they were obtained from real systems. While

it was possible to update the simulation parameters, it would have made it di�cult

to compare results with N-chance.

Clients 42 Servers 1

Client Cache Size 16 MB Consistency strong

Server Cache Size 128 MB Block Size 8 KB

Local Latency 0.25 ms Remote Latency 1.25 ms

Disk Latency 15.85 ms Write policy write-through

Warm-up Block Accesses 400,000 Message Latency 0.2ms

Table 5.2: Simulation Parameters. This table describes the environment used to

evaluate the various cooperative caching algorithms. The rows Local Latency, Remote

Latency and Disk Latency refer to the average time to access a �le block from the local

cache, cooperative or server cache, and disk respectively.
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The N-chance simulator was obtained from the designers of the algorithm, while

we developed the simulators for the hint-based, GMS and the two ideal algorithms.

The design of the simulator for the N-chance algorithm assumed write-through

caching and strong consistency with write-invalidation. The same assumptions were

made in the remaining simulators to make sure that there were no important di�er-

ences in how the simulators handled events and to allow for fair comparison.

An important assumption was that there was a single manager handling cen-

tralized functions such as consistency and block location. This makes it easier to

measure the manager load imposed by the di�erent systems, without introducing

an algorithm to distribute the load over multiple managers. This assumption was

also made by the designers of the N-chance simulator.

The N-chance simulator was modi�ed to incorporate additional functionality

used in the xfs �le system[Anderson95]. In the modi�ed system, a manager prefer-

entially forwards a request to the client caches instead of a server, improving the

cooperative cache hit ratio and reducing the number of server accesses.

As the GMS algorithm does not specify a consistency mechanism, the GMS

simulator used �le-based consistency, which was identical to that used in the hint-

based algorithm for reasons of fairness.

5.1.2 Evaluation Criteria

As stressed earlier, the key focus of this dissertation is to evaluate cooperative

caching algorithms in terms of both performance and overhead. Consequently, the

following two metrics are used to evaluate the cooperative caching algorithms:

� Average Block Access Time: This metric is the average time required to

access a �le block. The access time is determined by the hit ratios to the

di�erent layers of the storage hierarchy. Algorithms that make better use of

the local and cooperative caches to avoid disk accesses will have lower access

times. Access time is only measured for block reads because all algorithms

use write-through caches. The average block access time is measured for both

ideal and existing algorithms.
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� Overhead: This metric is the work required to manage the cooperative cache.

The overhead is primarily the messages exchanged between the clients and

the managers to coordinate cooperative caching. The computational overhead

of cooperative cache management is considered negligible: in the simulation

environment, cache management takes about 5 �s on an average while the

total latency to get a 8 KB block from a remote client cache is around 1.25

ms.

The overhead is broken down into manager load, messages for block lookup

and replacement, and network and client loads. The manager load is expressed

as the number of messages sent and received by the manager. This is a rea-

sonable measure of manager load because each message represents work by

the manager to coordinate cooperative caching. The overhead measurements

are not done for ideal algorithms because they are impractical to implement.

5.2 Simulation Results

This section describes the performance and overhead of the cooperative caching

algorithms when simulated using the Sprite traces. These results were �rst described

in an earlier paper[Sarkar96]. However there were two bugs that a�ected some of

the results but fortunately not our conclusions. The �rst bug was related to the

incorrect processing of the �le identi�er �eld in the traces by the simulators for the

hint-based, GMS, Optimal and Global LRU algorithms. This reduced the number

of unique �le identi�ers, and erroneously increased the local cache hit ratio due to

the resultant improved locality. The second bug was related to a version numbering

problem in the simulator for the hint-based algorithm which increased the number

of disk accesses at the expense of remote cache hits. The bugs marginally (< 1%)

a�ected the average block access times in all the trace periods except for the second.

In the second period, the average block access time of the a�ected algorithms was

incorrectly reduced by a factor of three. The bugs also a�ected the sensitivity

analysis, revealing a small divergence (5%) between the block access times of the
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hint-based and ideal algorithms as seen in Section 5.2.7.

The performance of the algorithms are compared in terms of average block access

time while the overhead is discussed using manager load, lookup messages, replace-

ment messages, and network and client loads. The e�ectiveness of the discard cache

is also measured, as is the sensitivity of the block access time to variations in the

simulation parameters. All the simulation results presented in this chapter ignore

the warm-up block accesses.

5.2.1 Block Access Times
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Figure 5.1: Block Access Time. This �gure shows the average block access times for

the N-chance(N), GMS(G), hint-based(H), Global LRU(L) and Optimal(O) algorithms for

each period of the Sprite traces. The segments of the bars show the fraction of the block

access time contributed by hits to the local cache, remote caches, server cache, and disk.

Figure 5.1 shows the average block access time for all the algorithms, broken

down by the time spent in accessing the local cache, remote caches, server cache,

and disk. The average block access times for the GMS and hint-based algorithm are

very close to the ideal algorithms, and they spend similar amounts of time handling

hits to the di�erent levels of the storage hierarchy. The average block access time

of the hint-based algorithm is about 3% worse than that of the other algorithms

in the third period. This working set requirements of this period are sometimes

comparable (as much as 92%) to the aggregate size of the client memories and as a
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result, the degree of block movement in and out of the client caches in this period is

relatively higher than that in the other periods. The high degree of block movement

causes some inaccuracies in block location hints in this particular period, as seen

in Table 5.4. Table 5.3 provides the distribution of hits to the di�erent layers of

the storage hierarchy averaged across all the traces. Overall, the performance of the

hint-based algorithm is particularly encouraging, given that hints can be occasionally

incorrect.

Algorithm N-chance GMS Hint-based Global LRU Optimal

Local 47.2 45.5 47.3 47.3 47.4

Hit Remote 49.8 52.5 50.4 50.9 50.9

Distr. Server 0.0 0.0 0.2 0.0 0.0

(%) Disk 3.0 2.0 2.1 1.8 1.7

Table 5.3: Distribution of Hits. This �gure shows the distribution of hits (Hit

Distr.) to the di�erent layers of the storage hierarchy for the N-chance(N), GMS(G),

hint-based(H), Global LRU(L) and Optimal(O) algorithms averaged across all the peri-

ods of the Sprite traces. The rows Local, Remote, Server and Disk refer to the percentage

of total accesses to the local cache, remote caches, server cache, and disk.

The N-chance algorithm has a higher number of disk accesses compared to the

others in all of the trace periods except for the third. This is caused by N-chance's

random replacement policy, coupled with the low degree of sharing in these periods.

The probability that a replaced block in a randomly-chosen target client was being

accessed by the client is higher than that in an idle client. The low degree of sharing

makes it likely that there are no other copies of the randomly replaced block in

the client caches. Consequently, a future access to the replaced block would likely

result in a disk access. Further evidence of this phenomenon was found by Feeley

et al[Feeley95].

5.2.2 Lookup Messages

The overhead imposed by lookup messages in hint-based cooperative caching de-

pends on the accuracy of hints. If a hint is accurate, block lookup takes two mes-

sages: one to send a block request to a client or the server, and one for the client or
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the server to respond with the requested block. If a hint is inaccurate, there is an

additional message for each time the block request is forwarded to another client or

the server.

Period 1 2 3 4 average

Hint Correctness(%) 99.68 99.98 99.07 99.54 99.94

Absolute Correctness(%) 99.77 99.97 99.44 99.33 99.93

False Negatives(%) 0.008 0.010 0.015 0.007 0.010

Table 5.4: Block Location Hint Accuracy. The row Hint Correctness refers to the

percentage of local cache misses where block location hints correctly determine that the

block is in the client caches. The row Absolute Correctness represents the percentage of

correct block location hints that point to the actual location of the block. The row False

Negatives represents the percentage of local cache misses when the block is in the client

caches but the hints say otherwise. The column average refers to the average for the

categories of hint accuracy across all periods.

The simulations revealed that the block location hints for the client caches are

highly accurate (Table 5.4). For only 0.01% of the local cache misses (averaged

across all periods) is the desired block in the client caches but the hints say otherwise.

Conversely, when a hint says a block is in the client caches, it is correct for 99.94%

of all local cache misses. Of these correct hints, 99.93% point to the actual location

of the block, while the remaining result in requests being forwarded. The high hint

accuracy and the small number of forwarded requests translate into an average of

only 2:001 � 0:006 messages to perform a block lookup. In comparison, both N-

chance and GMS always require 3 messages per block lookup: one to send a block

request to the manager, one for the manager to forward the block request to a client,

and one for the client to respond with the requested block.

5.2.3 Manager Load

The load imposed on the manager is one measure of the overhead of an algorithm.

Figure 5.2 shows the manager load, expressed as the number of messages sent and

received by the manager per block access. This metric allows an estimate of the

load on the manager given block access patterns other than the ones in the traces.
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Figure 5.2: Manager Load. This shows the average manager load of the N-chance(N),

GMS(G) and hint-based(H) algorithms in the Sprite traces. The manager load is de�ned

as the number of messages received and sent by the manager per block access. The load

is categorized by its cause: consistency, replacement and lookup.

The manager load is further broken down by the source of the load. Consistency

messages are those required to keep block location information up-to-date in the

client caches and this overhead is incurred by all the three algorithms. The Lookup

and Replacement messages are those sent and received by the managers in the GMS

and N-chance algorithms to lookup and replace blocks from the client caches. The

hint-based algorithm does not incur any manager load for lookup and replacement

as these decisions are taken by clients.

As can be seen, managing the client cache consistency imposes a very small load

on the manager. While the choice of a consistency algorithmmay a�ect performance,

it does not contribute signi�cantly to manager load. File-based consistency is still

important for enabling the use of hints for replacement and lookup.

Period 1 2 3 4

Degree of Sharing 1.98 1.85 4.02 2.08

Invalidation Rate 0.008 0.005 0.035 0.01

Table 5.5: Consistency Patterns. The row Degree of Sharing refers to the average

number of copies of a block in the client caches for each trace period. The row Invalidation

Rate represents the average number of invalidations per block access in each trace period.

One further observation is that the consistency tra�c per block access is highest
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in the third period. This is due to the higher degree of sharing and increased

invalidation rate in this particular period compared to the others(Table 5.5). When

a client obtains a write token for a �le, the consistency manager revokes the tokens

from the clients accessing the �le and invalidates the �le's blocks from their caches.

The higher degree of sharing implies that relatively more clients are accessing the

same �le block than in other periods. This means that in the event of a write to

the �le, the consistency manager needs to contact more clients to invalidate the

�le's blocks than in other periods. Furthermore, since the rate of invalidation is also

higher than in other periods, the amount of consistency tra�c per block access is

also higher.

Replacement and lookup tra�c account for nearly all of the manager load for the

N-chance and GMS algorithms. The clients must contact the manager each time a

block is forwarded or lookup is done, whereas the hint-based algorithm allows clients

to perform these functions themselves. The result is that the manager load is much

higher for N-chance and GMS.

The replacement tra�c is higher in N-chance than GMS in all the periods except

for the third because of the poor performance of the N-chance algorithm as docu-

mented in Section 5.2.1. The increased number of disk accesses in these periods in

N-chance compared to GMS also increases the number of replacements needed to

make space for the blocks fetched from the disk, thereby resulting in replacement

tra�c that is higher than that in GMS.

5.2.4 Replacement Messages

Figure 5.2 showed that about half of the N-chance and GMS manager loads are

caused by block replacement messages. Figure 5.3 depicts the number of replacement

messages each algorithm requires to handle a local cache miss. This metric allows

us to estimate the overhead associated with replacing a block in the client caches

for each algorithm. N-chance and GMS have three sources of replacement messages:

forwarding the block to another client and notifying the manager, notifying the

manager when a block is deleted, and exchanging messages between the clients
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Figure 5.3: Replacement Tra�c. This �gure shows the number of replacement mes-

sages required per local cache miss in the N-chance(N), GMS(G) and hint-based algo-

rithms(H). The messages are categorized by those required to forward a block, delete a

block, and keep track of the number of copies of a block (duplicate avoidance). For N-

chance and GMS, this includes two messages per singlet forwarded (one to forward the

block and another to notify the manager), one message per block deleted, as well the

messages required to keep track of the number of copies of a block. For the hint-based

algorithm, this includes one message per master copy forwarded. Best-guess replacement

does not need to exchange messages with a manager for either duplicate avoidance or

deletion, and as a result, incurs no manager load for these functions.

and the manager to determine when a block should be discarded versus forwarded.

Except for the actual forwarding of the block to another client, all messages involve

the manager, increasing its load. For best-guess replacement, the only message

required is the one to forward the master copy of a block to another client. Best-

guess replacement does not need to exchange messages with a manager for either

duplicate avoidance or deletion, and as a result, incurs no manager load for these

functions. This dramatically reduces the total number of replacement messages

required per local cache miss for the hint-based algorithm.

Further observing the relative replacement tra�c between GMS and N-chance,

the former algorithm sends a lower number of replacement messages per local cache

miss. As discussed in Chapter 3.2.2, this is because GMS relies on the manager to
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inform a client only when a block becomes a singlet, while the N-chance algorithm

relies on a client to contact the manager almost every time (98%) the client replaces

a block.

One of the potential drawbacks of the master copy algorithm is that it may un-

necessarily forward the master copy of a block to the cooperative cache as described

in Chapter 4.3.1. Although Figure 5.3 shows that best-guess replacement outper-

formed the other algorithms, the fraction of forwards that are unnecessary were

measured. An average of only 1.97% are unnecessary across all periods (Table 5.6).

Period 1 2 3 4 average

Unnecessary Forwards 2.28 1.92 3.93 1.58 1.97

Table 5.6: Unnecessary Forwards. The row Unnecessary Forwards refers to the per-

centage of forwards that are not necessary in the hint-based algorithm (i.e. forwards of

master copy blocks which are deleted before they are down to their last copy). The col-

umn average refers to the average percentage of forwards that were unnecessary across all

periods.

5.2.5 Network and Client Loads

The additional load on the network and clients due to cooperative caching is also

important. Figures 5.4 and 5.5 show the average and maximum network load due

to cooperative caching. Similarly, Figures 5.6 and 5.7 show the average and max-

imum load on a client due to cooperative caching. As is evident, the throughput

requirement of cooperative caching on the network for all the algorithms is negligible

at less than 4% of the available bandwidth of a 10 Mbps Ethernet network. Simi-

larly, the throughput requirement on a client for all the algorithms is also negligible

(< 0:05%) when compared to the bandwidths of 20 MBps and greater that are avail-

able in standard I/O busses. On further inspection, the loads due to cooperative

caching on both the network and clients are higher by a factor of about 20-30 in the

existing algorithms than those in the hint-based algorithm (it is particularly evident

in the second period). This implies that that the existing algorithms are more likely

than the hint-based algorithm to swamp the network and disrupt client activity if
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Figure 5.4: Average Network Load. This �gure shows the average load on the network

(Kbps) due to cooperative caching for the trace periods in the N-chance(N), GMS(G) and

hint-based algorithms(H).
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Figure 5.5: Maximum Network Load. This �gure shows the maximum load on the

network (Kbps) due to cooperative caching for each trace period in the N-chance(N),

GMS(G) and hint-based algorithms(H).
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Figure 5.6: Average Client Load. This �gure shows the average load on a client

(Kbps) due to cooperative caching for the trace periods in the N-chance(N), GMS(G) and

hint-based algorithms(H).
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Figure 5.7: Maximum Client Load. This �gure shows the maximum load on a client

(Kbps) due to cooperative caching for each trace period in the N-chance(N), GMS(G) and

hint-based algorithms(H).
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the bandwidth requirement of applications starts to approach the available network

bandwidth.

5.2.6 Discard Cache

Server Mem Hit Ratio(%) Block Access Time(ms)

Use Period 1 2 3 4 Ave 1 2 3 4 Ave

Disk Cache 0.12 0.47 0.22 0.20 0.45 3.43 3.22 3.89 3.64 3.23

Coop Cache 1.16 1.96 0.98 1.35 1.83 2.86 2.79 3.22 3.12 2.77

Discard Cache 1.55 2.56 1.22 1.76 2.46 2.66 2.58 2.81 2.74 2.57

Table 5.7: Server Memory Uses. This table shows how di�erent uses of the server

memory a�ected the hit ratio of the server memory and the average block access time of

the hint-based system. Server memory is used as either a traditional disk cache, as part of

the cooperative cache, or as a discard cache. The results are shown for each of the trace

periods as well as the average across all periods in the column Ave.

The server memory represents a valuable resource to the system and at 128 MB

it constitutes a large fraction of the system's total memory. The hint-based system

uses the server memory as a discard cache to mask mistakes made by the best-guess

replacement policy. There are other possible uses for the server memory, including

as a traditional server cache and as a portion of the cooperative cache, as discussed

in Chapter 4.5.1.

The default 16 MB client cache size used in the simulations makes it di�cult to

measure the e�ectiveness of the discard cache. The aggregate client memory size

greatly exceeds the working set size of applications and as a result, few accesses go

to the server. Thus, to measure the e�ectiveness of the discard cache, the sizes of

the client caches and server cache were reduced to 4 MB and 16 MB respectively,

and we reran simulations of the hint-based algorithm with the di�erent uses of the

server memory over the same traces. Reducing the cache sizes makes the aggregate

client memory size comparable to the working set requirements of client applications.

These cache sizes increase the miss ratios on the local and cooperative caches, and

therefore the number of server accesses.

The results are shown in Table 5.7 and indicate that when the server memory is
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used as a server cache, it has a very low hit ratio of 0:45% (averaged over all periods)

because most of the blocks in the server memory are duplicated in the client caches.

This results in an average block access time of 3.23 ms. If the server memory is

instead used as part of the cooperative cache, old blocks with no duplicates are

forwarded to the cooperative cache on the server memory and consequently, the hit

ratio increases by nearly a factor of 4 to 1.83%, causing the block access time to

drop to 2.77 ms. Using the server memory as a discard cache results in forwards of

only young mistakenly replaced master copies to the discard cache, which further

increases the hit ratio to 2.46% and reduces the block access time by nearly 10% to

2.57 ms.

5.2.7 Sensitivity

The analysis presented in the previous sections was based on a single system con-

�guration, in which the number of clients, client cache size, number of servers, and

other parameters were �xed. Although the hint-based algorithm performed well un-

der the chosen con�guration, its sensitivity to variations in the environment is also

important. This section presents the sensitivity of the block access time and the

manager load to two environmental variables: the client cache size and the fraction

of the clients that actively use the cooperative cache. These changes allow us to

simulate the e�ect of memory-intensive workloads by changing the aggregate size of

the client memories relative to the working set requirements of client applications.

5.2.7.1 Client Cache Size Sensitivity

Figure 5.8 shows the average block access time across all the trace periods as the

client cache size is varied from 4 MB to 16 MB. The remaining system parameters

are the same as those shown in Table 5.2. A smaller client cache increases the load

on cooperative caching in two ways: �rst, it increases the local cache miss ratios

and therefore accesses to the caches of other clients; and second, it reduces the size

of the cooperative cache. Even with 4 MB caches the algorithms do a good job of

�nding and using the available idle memory, producing block access times that are
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Figure 5.8: Access Time vs. Cache Size. This �gure shows the average block access

time for the algorithms as a function of the client cache size.

close to that of Optimal. The exception is the N-chance algorithm, whose policy of

randomly forwarding blocks hurts performance when the working set size of client

applications starts to approach the aggregate size of the client memories.

The average block access time of the hint-based algorithm is about 5% worse

than that of the ideal algorithms when the client cache size is reduced to 4 MB.

This deviation is expected to grow as the client cache size is reduced further, because

block location hints tend to become increasingly inaccurate as the e�ective size of

the cooperative cache is reduced compared to the working set requirements of client

applications.

If we consider the manager load for the existing and hint-based algorithms, a

di�erent picture emerges. As Figure 5.9 indicates, the manager load for the existing

fact-based algorithms almost quadruples when the cache size is reduced from 16

MB to 4 MB. The decrease in cache size increases accesses to remote client caches

and the server, causing increased manager load in N-chance and GMS. In contrast,

the manager load in the hint-based algorithm is lower by as much as 30 times than

that in the existing algorithms because most cooperative cache decisions do not
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Figure 5.9: Manager Load vs. Cache Size. This �gure shows the manager load

(manager messages per block access) for the algorithms as a function of the client cache

size.

involve the manager. Thus, while the average block access time of the hint-based

algorithm diverges marginally (5%) from that of the ideal algorithms as cache sizes

are reduced, the manager load is substantially lower (30 times) than those of the

existing fact-based algorithms.

5.2.7.2 Active Client Sensitivity

The sensitivity of the block access time to the fraction of clients that are using the

cooperative cache is also important. Increasing the fraction of clients that use the

cooperative cache increases the demand for memory, and also decreases the e�ective

cooperative cache size compared to the working set requirements of client applica-

tions. This combined e�ect increases the importance of managing the cooperative

cache e�ciently. Figure 5.10 shows the average block access times of the algorithms

for the second period as the fraction of clients that used the cooperative cache was

increased from 50% to 75% (doing this for the remaining periods without altering

workload was di�cult). As is evident, the block access time of the N-chance algo-

rithm declines at a faster rate than that of the remaining algorithms as the fraction
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Figure 5.10: Access Time vs. Active Clients. This �gure shows the average block

access time for the algorithms as a function of the fraction of clients that used the coop-

erative cache during the period. The fraction of clients using the cooperative cache was

varied by removing idle client trace records from the trace. Due to the di�culty in doing

this without a�ecting the workload behavior, only the second period was used.

of clients using the cooperative cache increases. Again, this is due to the random

forwarding of blocks to other clients in N-chance. The remaining algorithms all have

block access times close to that of Optimal, while the hint-based algorithm shows

the same marginal divergence from the ideal algorithms as in the previous sensitivity

experiment. Similarly, the manager load for the hint-based algorithm is 30-50 times

lower than that of the existing algorithms (Figure 5.11) because the increased tra�c

to the cooperative cache also increases the manager load in N-chance and GMS.

5.3 Summary

This chapter presents trace-driven simulation results which compare the perfor-

mance and overhead of the proposed hint-based algorithm with those of the existing

and ideal algorithms. The traces were obtained from applications running on a

cluster of about 40 workstations and taken over four two-day periods.

The algorithms were measured using two separate criteria. The �rst was the
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Figure 5.11: Manager Load vs. Active Clients. This �gure shows the manager load

(manager messages per block access) for the algorithms as a function of the fraction of

clients that used the cooperative cache during the period. The fraction of clients using

the cooperative cache was varied by removing idle client trace records from the trace. Due

to the di�culty in doing this without a�ecting the workload behavior, only the second

period was used.

average block access time, which measures how successful an algorithm is in in-

creasing hits to the local and cooperative caches. The second criteria was overhead

which measures the work done by the manager in terms of messages in managing

the cooperative cache.

The important results from the simulation are summarized below:

� The block access times of the hint-based algorithm match those of the existing

and ideal algorithms over all the four periods of the traces.

� Over all the periods, when a hint says that a block is present in the cooperative

cache, it is correct for 99.94% of all local cache misses.

� The manager load in the hint-based algorithm was substantially lower (30

times) than that in the existing algorithms.
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� The evaluation of the discard cache as a use for the server memory reveals

that the hit ratio is the highest at 2.46% among all uses of server memory.
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CHAPTER 6

IMPLEMENTATION

This chapter evaluates the hint-based algorithm by measuring a prototype's per-

formance. The prototype allows us to test the algorithm with a workload generated

by real users and observe the potential bene�ts. A prototype also enables us to val-

idate the results obtained from the simulations presented in the previous chapter.

Finally, the prototype gives insight into the complexity of implementing a hint-based

algorithm.

The chapter presents the details of the prototype implementation, and then

discusses the di�erences between the prototype and the hint-based algorithm. This

is followed by a description of the measurements obtained from the prototype over

the period of one week. The measurements include the client activity pro�le of

workstations in the cluster, the average block access time as compared to NFS, the

overhead in the cluster as well as the performance of the various design decisions in

the hint-based algorithm.

6.1 Prototype

The prototype was implemented on a cluster of machines running Linux v2.0.23

[Beck96] and NFS v2[Sandberg85]. The Linux kernel was modi�ed to support hint-

based cooperative caching. The extensions to the Linux kernel added about 10

KB to a 390 KB kernel. The kernel extensions are discussed with respect to block

lookup, replacement, cache consistency and discard caching. As mentioned above,

clients and servers communicated using NFS, while inter-client communication used

the SunRPC protocol[Sun88].



85

6.1.1 Block Lookup

The location mechanism in hint-based algorithm does not use features speci�c to

any operating system and thus there was no need for modi�cations tailored to the

Linux kernel.

The composition of a block location hint is shown in Table 6.1. The block

location hints are indexed by the Block Identi�er. The entry Cache Location points

to the location of a block present in a client's cache. If the block is not present

in the cache, the entry Client contains the identity of the client possibly having

the block. Clients are identi�ed by name and a machine uses the DNS naming

service to resolve the client name to the correct network address. The entry Source

contains the identity of the server or the client from which a block was obtained,

thus enabling the client caching the block to determine if the block is a master copy.

The entry Boot Identi�er contains the boot identi�er of the client referred to in the

entry Client, and is used to determine whether the client was rebooted since the

hint was obtained, as described in Section 6.1.1.2.

Block Identi�er Cache Location Client Source Boot Identi�er

Table 6.1: Block Location Hints. The table describes the format of the block location

hints. Further explanation is available in Section 6.1.1.

Each client maintains a cache of these block location hints. These hints are

obtained from other clients when a client opens a �le, as described in Section 4.2.1.

Block location hints are deleted if the client is informed that the block referred to

by the hint has been deleted or invalidated. However, the hint cache grows in size

because the rate at which new blocks are referenced by clients is faster than the rate

at which existing blocks are invalidated or deleted. Consequently, the hint cache

is pruned using LRU when the size of the cache exceeds a given threshold. This

threshold is an operating system parameter that can be changed at runtime.

The remaining implementation issues were uniquely identifying a block in the

client caches, and dealing with occasional client reboots and component failures.
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6.1.1.1 Block Identi�cation

In a cooperative-caching �le system, clients provide blocks to other clients from

their caches. As servers in a distributed �le system might have overlapping block

address spaces, it is important that a request to a client for a block must uniquely

identify the block in the distributed �le system. Complicating this fact is that a

Linux NFS client indexes a block in its �le cache using the memory address of the

inode of the block's �le. As the memory address of the inode of a �le is not unique

across clients, there needs to be a di�erent indexing mechanism to locate a block in

the client caches.

The block identi�er used in the location hints relies on the triplet (Server, File

Identi�er, O�set) to uniquely identify a block in the client caches. As in clients,

the server is identi�ed by its name and the client uses the DNS service to resolve

the name to the correct network address. This triplet is su�cient as a block from a

particular server is uniquely identi�ed in NFS by the identi�er of the �le to which

the block belongs and the o�set of the block within the �le.

The sequence of steps for a cooperative cache lookup in Linux is shown in Fig-

ure 6.1. Whenever a Linux application needs a block, the kernel calls readpage to

check if the block is in the cache. If the block is not present in the cache and belongs

to a NFS-mounted �lesystem, the readpage routine calls nfs readpage . This routine

then checks the hint cache to determine where the block is located in the coopera-

tive cache, and sends a request for the block to the appropriate client. The client

receives this request for a cooperative cache block using a nfsd daemon thread. This

thread then checks with the hint cache to get the location of the block in the client's

cache. If the receiving client has the block in its �le cache, the block is sent to the

requesting client. If the receiving client does not have the block, the hint cache may

contain the identity of another client possibly having the block. In this case, the

receiving client forwards the request for the block to this new client. Otherwise, the

receiving client forwards the request for the block to the server.

There is no limit to the number of times a request can be forwarded from one
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nfs_readpage Hint Cache
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nfsd Hint Cache

Block Request

Block

Client A Client B

Figure 6.1: Block Lookup in Linux. The �gure shows the sequence of kernel routines

called in Linux to lookup a block in the cooperative cache.

client to another. However, it is conceivable that the forwarded requests could

add to the network load when there is a lot of block movement in and out of the

client caches. One possibility is to limit the forwarding of requests between clients

whenever the network load exceeds a threshold, directing forwarded requests to the

server from then on. However, this needs to be investigated further and is a matter

of future study.

6.1.1.2 Client Reboots

Clients are occasionally rebooted, clearing their caches. This creates incorrect hints

that refer to the now-empty cache, and lowers the accuracy of hints in other clients.

It is important to incorporate the e�ect of rebooting into the design of a cooperative-

caching system so that hint accuracy is not adversely a�ected.

The incorrect hints are largely eliminated by incorporating a boot identi�er in

each client which is incremented whenever a client is rebooted. A block location hint

is tagged with the boot identi�er of the client to which the hint refers. When a client

reboots, its boot identi�er changes. Other clients learn this new boot identi�er when

they request block location hints from the rebooted client. To eliminate an incorrect

block location hint, a client checks if the boot identi�er of the client referred to by
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the hint is the most current one and discards the hint if the test fails. As the

propagation of block identi�ers is piggybacked on existing tra�c, this mechanism

imposes minimal overhead on block lookup.

6.1.1.3 Client and Manager Failure

The lookup algorithm uses a lazy approach to handle client failure. A client detects

that another client has failed when messages sent to the client are not acknowledged

within a speci�ed timeout period. If a client detects that another client has failed,

then the client assumes that the failed client is unavailable and ignores all location

and replacement hints that refer to the failed client. Once the failed client comes

back up, it contacts the manager which provides the client with a list of clients in

the distributed �le system. The client then gradually contacts the clients on the

list as directed by its location and replacement hints. The contacted clients then

resume communication with this previously-failed client. The disadvantage of this

lazy policy is that a client may remain unaware that a failed client is back up due

to lack of contact. A heartbeat protocol would remedy this disadvantage but the

overhead would be higher.

The lookup algorithm is also the only part of the hint-based cooperative caching

algorithm that deals with a manager. Clients deal with manager failure similarly

to the way they deal with client failure. A client detects that a manager has failed

when requests for hints are not acknowledged within a speci�ed timeout period.

When a client detects that a manager has failed, the client stops contacting the

manager. On being restarted, the manager contacts all clients in the list of clients

in the distributed �le system. The contacted clients then resume communication

with the manager.

6.1.2 Replacement

There were two minor di�erences between the implementation and the hint-based

algorithm. The �rst was that the discussion of the replacement algorithm in Chap-

ter 4.3 assumed LRU as the replacement policy for a client's local �le cache. In
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contrast, Linux uses Global Clock (described in Section 2.5.1) rather than LRU to

choose blocks for replacement. While LRU discards the block which has been refer-

enced the least recently from a cache, Global Clock chooses one of a set of candidate

blocks which have not been referenced recently and thus does not follow an exact

LRU order in replacing blocks from a cache. Hence, the results obtained from the

implementation may not be identical to that from the simulation. The e�ect of

not using an exact LRU order in Global Clock is hard to predict without detailed

workload information. However both theory and practice suggest that the extent of

deviation of Global Clock from LRU is minimal[Easton79, Voelker97].

The second di�erence between the simulation and the implementation is the use

of a threshold to trigger replacement in Linux. In the simulation, a client triggers

the replacement policy when its �le cache is full and the client needs to make space

for a new block. In contrast, Linux triggers the kswapd daemon when the number

of free blocks in its �le cache falls below a threshold free pages low; the daemon

then replaces blocks from its cache until the number of free blocks exceeds the

threshold free pages high.. This di�erence does not a�ect the order in which blocks

are replaced from a client's cache, but does a�ect the time of replacement. As a

result, this di�erence should not have a signi�cant e�ect on performance.

The replacement algorithm in hint-based cooperative caching is independent of

manager failures and deals with client failures as described in Section 6.1.1.3.

6.1.3 Consistency

As cooperative caching can work with any consistency mechanism, integrating the

hint-based cooperative-caching algorithm with NFS was not a problem. NFS adopts

a client-driven consistency where the clients keep their caches up-to-date by peri-

odically checking with the NFS server. While this means that the client caches can

be temporarily inconsistent, the implication for cooperative caching is that clients

can sometimes get stale blocks from other clients, as discussed in Chapter 2.6.1..

Consequently, the number of accesses to stale copies of a block will be higher than

that in the simulation which uses strong consistency.
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The granularity of consistency in NFS is also suited for hint-based cooperative

caching. NFS keeps consistency in terms of �les, which is ideal for the use of hints as

clients do not need to frequently communicate with a manager to ensure consistency.

On the other hand, it would be di�cult to incorporate the N-chance algorithm into

NFS as N-chance requires block-based consistency.

6.1.4 Discard Cache

The discard cache could not be located in the server memory because of the con-

straints imposed by the testbed. The server ran a proprietary operating system and

there was no license to modify the source code to incorporate the discard cache. In

addition, the server provided uninterruptible �le service for instructional purposes,

as a result of which there was no possibility of kernel development in the server.

Similarly, there was no possibility of using the server as part of the cooperative

cache.

However, the utility of the discard cache was extrapolated by designating an

idle machine to serve as the host for an independent discard cache. The number of

forwards to the discard cache and the hit rate on the discard cache was monitored

to measure its e�ectiveness. An independent discard cache incurs extra overhead

as clients may have to check both the discard cache and the server in sequence

to locate a mistakenly replaced master copy, while a discard cache in the server

memory would require only one check with the server to locate the block. The

extra overhead caused by an independent discard cache depends on the number of

unsuccessful accesses to the discard cache, but fortunately the results documented

in Section 6.4.6 indicate that this tra�c was negligible.

6.1.5 Miscellaneous

Finally, as the server ran a proprietary operating system and did not provide the

necessary statistics, it was not possible to measure server cache hits. As a result,

server accesses were not segregated into cache and disk accesses. Another implication

of this was the inability to compare a traditional server cache with the discard cache.
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6.2 Experimental Setup

The measurement of the prototype was done on a cluster of 8 Pentium client work-

stations over the period of one week. Each workstation was a 200 MHz Pentium

Pro running Linux and NFS, connected by 100 Mbps switched Ethernet. The work-

stations were located on the desktops of faculty and students. The workstations

rosewood, pelican, blackoak, delphin, carta and omega were used by students and

had 64 MB of memory. The workstations roadrunner and cicada were used by

faculty and had 128 MB of memory.

The server was a Network Appliance F520 machine with 128 MB of memory and

4 MB of NVRAM[Hitz94]. All the data �les and most of the Linux binaries were

stored in the server. The remaining Linux binaries were stored in the local disk of

each workstation because they were required during bootup time. Typical appli-

cations run on the cluster ranged from word processing, editing, operating system

development and compiler benchmarking[Mosberger96, Proebsting97]. There was a

single manager running on rosewood which coordinated the cooperative cache.

Local Memory Latency 0.1 ms

Remote Memory Latency 0.5 ms

Server Access Latency 12 ms

Forward Latency 0.5 ms

Block Size 4 KB

Table 6.2: Experimental Setup Parameters. This table lists the average access times

and block size in the experimental setup. The average times to fetch a 4 KB block in the

local cache, the cache of another client and the server are shown in the rows Local Memory

Latency, Remote Memory Latency and Server Access Latency. The average roundtrip time

for forwarding a block using kernel-level SunRPC is shown in the row Forward Latency.

The block size and average access times are shown in Table 6.2. The average

times to fetch a 4 KB block in the local cache, the cache of another client and

the server are shown in the rows Local Memory Latency, Remote Memory Latency

and Server Access Latency. These latency values were the average to fetch 10,000

blocks from each layer of the storage hierarchy. The server access latency was

measured repeatedly to even out di�erences at di�erent times of the day and week.
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Measurements of individual accesses could not be obtained as the Linux kernel

did not support a microsecond timer. The average roundtrip time for forwarding a

block using kernel-level SunRPC was also measured by taking the average for 10,000

messages and is shown in the row Forward Latency.

6.3 Methodology

Measurements were collected on every workstation at 15 minute intervals. The

measurements included the hits to the layers of the storage hierarchy, forwards to

the cooperative cache, forwarded block location requests, deletes, hint requests, hint

accuracy among others.

The criteria used to evaluate the hint-based cooperative caching �le system is

similar to that used in the simulation. First, the bene�t of hint-based cooperative

caching was measured by estimating the average block access time with and without

cooperative caching. To measure whether hint-based cooperative caching disrupted

the network and client activity, the overhead of maintaining hints in the distributed

�le system was also monitored. Finally, each of the various design decisions taken

in hint-based cooperative caching was individually evaluated. The utility of the

discard cache was extrapolated by designating an idle machine to serve as the host

for an independent discard cache.

6.4 Prototype Measurements

6.4.1 Client Activity Pro�les

To understand better the performance of the �le system, it is important to get an

idea of the activity pro�le of every client. The average composition of each client's

cache is shown in Figure 6.2. There are two observations to be made. First, the ratio

between the number of local and global blocks depended on the level of activity of

clients. Highly active clients such as carta had a larger fraction of local blocks and

a smaller fraction of global blocks. By the same token, mostly idle clients such as

cicada had a correspondingly larger fraction of global blocks and a smaller fraction
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Figure 6.2: Client Cache Composition. This �gure shows the composition of the

caches in the clients. The legends Local Master, Global and Local Non-master indicate

the average number of local master copy blocks, global blocks, and local non-master copy

blocks in each client.

of local blocks.

Second, the average percentage of local non-master copy blocks (local blocks

fetched from other clients instead of the server) in the client caches was around

27.5%. This percentage is comparable to the average percentage of local master

copy blocks (local blocks fetched directly from the server) which is 33.6%. This

indicates that a substantial portion of the local blocks were obtained from other

clients instead of the server. This implies that clients were able to use the cooperative

cache e�ectively as a result of sharing or using idle memory in the distributed �le

system.

6.4.2 Bene�t of Hint-based Cooperative Caching

To measure the bene�t of hint-based cooperative caching, the average block access

time was estimated with and without cooperative caching. To compensate for the

lack of support for a microsecond timer in the Linux kernel, the average block

access time was calculated from the distribution of reads to the various layers of the

storage hierarchy and the average times needed to access each layer. The average

block access time with cooperative caching includes the time due to extra remote

client accesses caused by forwarded requests.

Measuring the average block access time without cooperative caching is compli-
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cated because it must be estimated from the prototype measurements. The straight-

forward way to estimate the average block access time without cooperative caching

is to replace the remote cache accesses with server accesses. However, this ignores

the fact that the cooperative cache can reduce the size of the local cache and in turn,

the local cache hit ratio. Since it is di�cult to measure the extent to which the local

cache hit ratio is a�ected by the cooperative cache, the worst case assumption was

taken that each forward to a client replaced a local block and therefore decreased

the number of local cache hits by one, causing an extra server access. Thus if the

number of local blocks in a client decreased over a time period, each forward to the

client in that time period was assumed to be responsible for replacing a local block

and therefore reduced the number of local cache hits by one, causing an extra server

access in that time period.

To illustrate the above, assume the following variables for a particular time

period i at a client in the distributed �le system:

l

i�1

= number of local blocks at the end of time period i� 1

l

i

= number of local blocks at the end of time period i

m

i

= number of local blocks fetched during time period i

e

i

= expected number of local blocks at the end of time period i

(without taking replacements into account)

f

i

= the number of blocks forwarded to the client during time period i

Then if replacements are not taken into account, the expected number of local blocks

at the end of time period i is the sum of the number of local blocks fetched during

time period i and the number of local blocks present at the end of time period i�1:

e

i

= l

i�1

+m

i

Then if x

i

is the reduction in the number of local blocks in time period i:

x

i

=

8

>

<

>

:

e

i

� l

i

if e

i

> l

i

0 otherwise

Then, the reduction in the number of local blocks due to replacements caused by

forwarded global blocks in time period i is given by d

i

:
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d

i

= min(x

i

; f

i

)

This reduction in the number of local blocks due to cooperative caching (i.e. for-

warded global blocks) in time period i is used to compute the number of local cache

hits and server hits in time period i if no cooperative caching is used. If l

i

; c

i

; s

i

represent the number of local cache hits, cooperative cache hits and server hits in

time period i when cooperative caching is used, then the number of local cache hits

and server hits in time period i without cooperative caching is given by l

0

i

and s

0

i

:

l

0

i

= l

i

+ d

i

s

0

i

= s

i

+ c

i

� d

i

Using the above extrapolation, Table 6.3 shows that the the average block access

time for all machines with cooperative caching was 1.01 ms, which was 85% faster

than the average block access time without cooperative caching. This estimation

used worst case assumptions; on the other hand if an optimistic assumption was

made that cooperative caching did not a�ect the local cache hit ratios, then the

average block access time with cooperative caching would be 90% faster than the

average block access time without cooperative caching. In reality, the percentage

di�erence between the average block access times with and without cooperative

caching would be somewhere in between the optimistic and pessimistic analysis

�gures. Nevertheless, this di�erence was mainly due to the fact that almost half

of all local cache misses hit in the caches of other clients, reducing server accesses

by the same amount. The result corroborates previous results[Dahlin94] and shows

that cooperative caching can reduce the average block access time in NFS by nearly

a factor of two.

6.4.3 Overhead

The e�ect of hint-based cooperative caching on the network and client activity is

a concern. The e�ect is primarily due to the overhead messages to manage the

cooperative cache which include hint requests to managers and clients, the extra

accesses due to incorrect block location hints, and the forwards to the cooperative

cache. Another concern is the overhead imposed on a client due to servicing requests
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Cooperative Caching

Local Hits Remote Hits Server Access Improv-

[Hit Ratio(%)] [Hit Ratio(%)] Hits Time -ement

Machine (ms) (%)

blackoak 416183[78] 59250[50] 58933 1.46 78.09

carta 1474668[87] 116199[52] 106141 0.87 86.90

cicada 58094[97] 1076[52] 991 0.30 61.72

delphin 715714[85] 61692[50] 61270 1.00 85.49

omega 339191[87] 22517[43] 29210 1.01 86.77

pelican 60808[67] 12873[43] 16826 2.37 71.23

roadrunner 187806[87] 9194[32] 19676 1.20 33.46

rosewood 146402[94] 5737[63] 3313 0.37 89.40

total 3398866[85] 288538[49] 296360 1.01 85.32

No Cooperative Caching

Local Hits Remote Hits Server Access

[Hit Ratio(%)] [Hit Ratio(%)] Hits Time

Machine (ms)

blackoak 417278[78] - 117088 2.71

carta 1474693[87] - 22315 1.66

cicada 58186[97] - 1975 0.49

delphin 716956[86] - 121720 1.83

omega 340500[87] - 50418 1.63

pelican 64472[71] - 26035 3.52

roadrunner 189387[87] - 27289 1.60

rosewood 147689[95] - 7813 0.70

total 3407065[86] - 576699 1.82

Table 6.3: Block Read Access Time. This table shows the estimated block access time

with and without cooperative caching. The columns Local Hits, Remote Hits and Server

Hits indicate the number of references to the local cache, the caches of other clients and

the server cache in the cases with and without cooperative caching. The column Access

Time contains the average block access time with and without cooperative caching. The

column Improvement refers to the percentage improvement obtained in the average block

access time if cooperative caching is added to NFS. The row total refers to the cumulative

behavior of all clients.
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Figure 6.3: Average Rate of Overhead Messages. This �gure shows the average

rate of overhead messages processed by all the clients. The legends Location and Replace-

ment refer to the overhead due to block lookup and replacement tra�c. The sub-category

of location overhead that involves communication with the manager is given by the leg-

end Location-Manager. The remainder of the location overhead is shown by the legend

Location-Other. The column total refers to the cumulative average overhead of all clients.

for cache blocks.

Figure 6.3 shows the average rate of overhead messages processed by the clients.

Note that there is no overhead due to consistency because the manager does not

enforce strong consistency and allows �les to become temporarily inconsistent ac-

cording to NFS conventions. Figure 6.4 documents the maximum rate of overhead

messages processed by the clients during one week.
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Figure 6.4: Maximum Rate of Overhead Messages. This �gure shows the maximum

rate of overhead messages processed by all the clients during one week. The column total

refers to the cumulative maximum overhead of all clients.



98

The conclusion is that the rate of overhead messages in any client was not sig-

ni�cant. The average overhead message size was 2,218 bytes, and the cumulative

average and maximum throughput requirement was 35 and 755 Kbps. Even on a 10

Mbps shared Ethernet network, the maximum throughput requirement represents a

small percentage (7.5%) of the available network bandwidth.

Further measurements revealed the possibility of reducing the number of location

messages if the functionality of the manager is incorporated into the NFS server.

The number of hint requests to clients (518,696) was half the number of messages

sent to the manager (1,003,742). This is because a client contacts the manager on

every �le open even if the client was the last to the open the �le and had the most

current location hints related to the �le. The number of messages could be reduced

if the functionality of the manager is incorporated into the NFS server. Whenever

a NFS client contacts the server to open a �le, there would be no need for an extra

message to the manager.

Finally, the overhead rate of servicing block requests in the clients was measured

(Figure 6.5). The measurements indicated that block service requests to clients

imposed of an average throughput requirement of 2:25 � 0:5 Kbps on the clients,

negligible (< 0:01%) compared to the bandwidths of 20 MBps and greater found

in standard I/O busses. Even the maximum throughput requirement recorded in a

client at 738 Kbps is a mere 0.5% of the bandwidths of such I/O busses. The disrup-

tions observed in GMS[Voelker97] were not seen because clients with idle memory

were largely inactive (Figure 6.2). In contrast, GMS clients with idle memory acted

as remote memory servers to applications running outside the GMS cluster and

thereby incurred heavier load.

6.4.4 Block Location Hints

To evaluate the accuracy of block location hints, we tried to ascertain whether hint-

based cooperative caching was able to locate blocks present in the caches of other

clients (Table 6.4). As can be seen, on an average, hints correctly determined that

a block was in the client caches in about 98% of the local cache misses. Of these
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Figure 6.5: Average Rate of Block Service. This �gure shows the average rate of

block service requests (Kbps) processed by the clients during one week. The error bars

show the standard deviation of the distribution of block service requests to each client.

The column total refers to the average overhead of all clients.

correct hints, 97:72% pointed to the actual location of the block in the client caches.

Also, in only 0:23% of the local cache misses was the block in the cooperative cache

but the hints said otherwise. This result is almost identical to that obtained from

the simulation.

The results also showed that tagging block location hints with client boot identi-

�ers solved the problem of reboots. To test this hypothesis, experiments were done

without using client boot identi�ers. These results showed that with a similar rate

of rebooting, the block location hint accuracy dropped to about 80%.

As a �nal measure, the average number of messages required for block lookup

was found to be 2:002 � 0:00135, demonstrating that lookup requests were rarely

forwarded.

6.4.5 Best-guess Replacement

To investigate the performance of best-guess replacement, the measurements focused

on whether or not best-guess replacement was removing the least valuable blocks

from the client caches.

One way to do this is to compare the age of blocks replaced from the client

caches to the ages of blocks present in the client caches. However, as Linux does
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Workstation Hint Absolute False

Correctness Correctness Negatives

(%) (%) (%)

blackoak 98.71 97.86 0.25

carta 98.57 97.98 0.22

cicada 96.87 95.51 0.15

delphin 97.76 96.18 0.37

omega 97.48 95.79 0.55

pelican 97.44 93.35 0.36

roadrunner 98.62 97.01 0.26

rosewood 96.48 92.79 0.39

total 98.23 87.72 0.23

Table 6.4: Accuracy of Block Location Hints. The row Hint Correctness refers

to the percentage of local cache misses where block location hints correctly determine

that the block is in the client caches. The column Absolute Correctness represents the

percentage of correct block location hints that point to the actual location of the block.

The column False Negatives represents the percentage of local cache misses when the block

is in the client caches but the hints say otherwise. The row total refers to the combined

hint accuracy of all clients.

not maintain the age of blocks in its �le cache, this was not possible.

The accuracy of best-guess replacement was evaluated by monitoring the activity

of clients which were the targets of high rates of forwards from other clients. The

activity of a client was estimated based on the number of forwards from that client,

as replacing blocks from the client caches is a de�nite sign of activity. The activity

forwards of a client are the number of forwards from a client during the time when

the client itself is the target of high rates of forwards from other clients. If the

client has a relatively high number of activity forwards, it means that the client

was busy when it was the target of forwards from other clients. In contrast, a

relatively low number of activity forwards indicates that the client was idle when it

was the target of forwards from other clients. To represent this better, the forward

ratio of a client is de�ned as the ratio of the activity forwards of the client to the

total number of forwards from the client. A small forward ratio indicates that the

client was idle when there was a high rate of forwards to that client, implying high

accuracy in best-guess replacement. On the other hand, if best-guess replacement
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Figure 6.6: Accuracy of Best-Guess Replacement. This �gure demonstrates the

accuracy of best-guess replacement. The forward ratio of a client is the ratio of the

number of forwards during the time when the client is the target of high rates of forwards

to the total number of forwards from the client. The legends Fa100, Fa500 and Fa1000

represent the forward ratio of each client when the client was the target of forwards at

rates greater than 100, 500 and 1000 per hour respectively. The column total refers to the

combined forward ratios of all clients.

was making mistakes in replacing the least valuable blocks from the client caches,

then the forward ratio would be high as active clients would erroneously become the

target of forwards.

Figure 6.6 shows the forward ratio of each client during the experiment. Since

the de�nition of high rates of forwards to a client is subjective, a high rate is de-

�ned as one greater than the following spectrum of forward rates to a client: 100,

500 and 1000 per hour. While these rates of forwards to a client are low (< 1 for-

ward/second) and therefore unlikely to cause disruption in the client, these rates

are chosen conservatively to reveal whether best-guess replacement was making even

the slightest mistakes in forwarding blocks to active clients. A higher threshold for

the forward rate to a client makes it less likely the client was actively forwarding

blocks during the period of high rate of forwards and consequently, the forward ratio

decreases as the threshold rate increases.

Overall, the forward ratio of all clients was low at 0.2-1.1% during the periods

of high rates of forwards. This means that clients were rarely busy when they were

the target of high rates of forwards and best-guess replacement was doing a good
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job of selecting the target client. In fact, the maximum observed forward ratio was

only 2.5%, assuming a forward rate of 100 per hour or greater.

6.4.6 Discard Cache

Using the client cache sizes in Figure 6.2, the average sizes of the client caches were

summed up to determine the average working set size of all the applications running

in the cluster. While this analysis optimistically assumed that the entirety of the

client caches was being accessed, the analysis gave an upper bound on the average

working set size. The aggregate size of the client memories (640 MB) was found to

exceed the average working set size of all the applications(150 MB). This led to the

hypothesis that the discard cache was unlikely to be useful in such circumstances. To

test this hypothesis, the number of replacements, replacement errors (replacements

of master copy blocks in a client which are younger than any block in the oldest

block list of the client) and hits to the discard cache were measured.

Workstation Replace- Replace- Error Discard Discard

-ments -ment Ratio Hits Hit Ratio

Errors (%) (%)

blackoak 5560 33 0.59 6 0.01

carta 534 8 1.48 0 0.00

cicada 155403 868 0.56 0 0.00

delphin 20554 101 0.49 0 0.00

omega 55203 268 0.48 5 0.01

pelican 39133 902 2.25 11 0.08

roadrunner 112896 847 0.74 6 0.06

rosewood 38937 407 1.03 7 0.12

total 428220 3434 0.80 35 0.01

Table 6.5: Utility of Discard Cache. The rows Replacements, Replacement Errors,

Error Ratio, Discard Hit and Discard Hit Ratio refer to the number of replacements, the

number of blocks forwarded to the discard cache as a result of replacement errors, the

percentage ratio of replacement errors to the total number of replacements, the number

of hits on the discard cache and the percentage ratio of the number of discard cache hits

to the number of remote cache hits respectively on each client. The column total refers to

the combined discard cache use by all clients.

As seen in Table 6.5, the number of replacement errors was less than 1% of the
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total number of replacements, further indicating that best-guess replacement does a

good job of choosing the target clients for replacement. Moreover, the hit rate on the

discard cache was very low at 0.01% implying that there was no performance bene�t

by adding a discard cache to the experimental setup. However, as the simulation

results have shown, the discard cache can become useful if the working set size of

client applications starts to approach the aggregate size of the client memories.

6.5 Summary

This section describes a prototype implementation of the hint-based cooperative

caching system on a cluster of workstations running Linux and NFS. The prototype

allows the evaluation of the algorithm on a real user workload and the validation of

the simulation results.

As the hint-based algorithm did not rely on features speci�c to any particular

operating system, implementing the algorithm on the cluster posed no problems,

except for some minor implementation issues:

� The chief issue in block lookup was to design an indexing mechanism to allow

Linux clients to uniquely identify blocks in the distributed �le system.

� Linux uses Global Clock for replacing blocks from the local cache while the

simulations assumed LRU, resulting in performance deviations.

The implementation was based on a cluster of 8 Pentium Pro workstations con-

nected by 100 Mbps switched Ethernet and served by a Network Appliance F520

machine. The important results obtained from the prototype measurements were as

follows:

� The average block access time with cooperative caching was almost half that

of NFS.

� The average and maximum overhead rate in the hint-based cooperative caching

system was negligible (< 1%) compared to the available bandwidth of even a

10 Mbps Ethernet network.
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CHAPTER 7

RELATED WORK

This chapter presents work related to cooperative caching in distributed �le

systems. The �rst section discusses e�orts to harness remote memory in virtual

memory systems, databases and multiprocessors. The �nal section focuses on the

use of hints in the design of computer systems with examples from the �eld of

operating systems, computer architecture, networks and programming languages.

7.1 Remote Memory Use

7.1.1 Virtual Memory

Research on remote memory use grew out of the desire to use memory as a backing

store for virtual memory systems. Traditional virtual memory systems use disks

as a backing store. As disk performance lags that of memory by at least an order

of magnitude, Comer and Gri�oen suggested the use of dedicated remote mem-

ory servers in distributed systems[Comer90]. Each remote memory server provides

clients with additional memory to store client data. However, unlike cooperative

caching, the data stored in a remote memory server cannot be shared across ap-

plications in di�erent clients. In addition, the mechanism does not use any idle

memory in the clients themselves. Therefore, in contrast to cooperative caching,

active clients cannot take advantage of the memory in idle clients.

Felten and Zahorjan removed the limitation of dedicated remote memory servers

and allowed idle clients to make their memory available for use by the remaining

clients[Felten91]. Whenever a client becomes idle, the client informs a manager that

the client is ready to provide remote memory service to other clients. Clients contact

the manager to locate a remote memory server and proceed to use the server as a

backing store for virtual memory. While the system allows e�ective use of idle client
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memory, this system does not allow data stored in the memory of an idle client to

be shared across applications in di�erent clients. Cooperative caching improves on

this by allowing applications in di�erent clients to bene�t from sharing of data.

Schilit and Duchamp introduced remote memory paging to mobile computing

[Schilit91]. Mobile computers have limited storage space, making remote memory

paging an attractive alternative. As mobile clients operate in a weakly-connected

environment, the authors designed a remote paging system that adapts to changes

in connectivity and allows clients to locate e�ciently remote memory servers after

a disconnection.

7.1.2 Databases

Franklin et al. examined traditional client-server database architectures and found

that their performance was limited by the inability to use e�ectively the idle memory

in client workstations. Franklin introduced a global approach to memory manage-

ment by extending the architecture of the Exodus system using three important

concepts[Carey86, Franklin92]. First, in a manner similar to block lookup in co-

operative caching, a database client obtains pages directly from another database

client instead of contacting the server. Second, a database client sends a locally

replaced page to the server if the database client is informed by the server that the

page is a singlet. This mechanism uses the server memory to hold pages that are

replaced from the caches of database clients. Finally, to prevent duplicate caching of

a page by both database clients and the server, a page in the server cache is marked

for deletion if the page is also cached by database clients.

Many of the principles of this extended client-server database architecture in
u-

enced the designers of N-chance. Franklin's architecture emphasizes the utility of

duplicate avoidance in a replacement algorithm and focuses on the e�ective use of

the server memory. However, the replacement algorithm in this system is not global

as the algorithm does not attempt to estimate the value of a page with respect to

the pages in the caches of all database clients. In addition, the algorithm does not

attempt to reduce the number of messages to the database server, a primary aim in
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cooperative caching.

7.1.3 Multiprocessors

Cooperative caching is also related to caching strategies found in multiprocessors.

The caching strategy in a multiprocessor depends on its type, and cooperative

caching relates to each caching strategy in a di�erent way.

Multiprocessors are principally of two types: shared-memory or distributed mem-

ory. A shared memory multiprocessor provides hardware support to address the en-

tirety of system memory from a single processor. This simpli�es parallel program-

ming as every processor accesses memory using the same load/store mechanism

seen in uniprocessors. Shared memory architectures are of three types: uniform

memory access(UMA), non-uniform memory access(NUMA) and cache-only mem-

ory access(COMA).

UMA machines consist of a collection of processors, each with a local cache, and

a main memory connected by a shared memory bus[SGI96]. The memory hierarchy

in a UMA machine is very similar to the storage hierarchy in a distributed �le

system. However, as the shared memory bus is a bottleneck for a UMA machine, it is

important to reduce the amount of message tra�c in such a machine. Consequently,

cooperative caching strategies are not suitable for UMA machines as managing the

cooperative cache adds message overhead. While there is hardware support for

locating a block in the caches of other processors, cooperative caching replacement

policies are usually not implemented in hardware because the bene�t obtained from

global replacement does not warrant the cost of a hardware implementation of the

replacement policy.

NUMA machines avoid the bottleneck of UMA machines by removing the re-

striction of a single memory bus. NUMA machines consist of multiple memories and

processors connected by multiple busses and an interconnection network[Lenoski90,

Agarwal91, Cray93]. The chief di�erence between a distributed �le system and a

NUMA machine is that one processor is more likely to be separated from another

by multiple network hops in a NUMA machine than in a distributed �le system. As
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a result, there is a much larger variation in access times to the memories of di�erent

processors in a NUMA machine than there is in a distributed �le system. Non-

uniform access times complicate cooperative caching replacement policies because

of the need to factor in the access time in determining the value of a block. As a

result, cooperative caching replacement is not suitable for NUMA machines because

of the cost of implementing a complicated replacement policy in hardware.

COMA machines are similar to NUMA machines but operate on cache lines

rather than memory pages or �le blocks[KSR92]. This �ne-grained memory access

requires the memory management policy to be implemented in hardware, making a

global replacement policy unsuitable.

In contrast to shared memory architectures, distributed memory architectures

do not provide support for direct access to the memory in remote processors. Dis-

tributed memory architectures consists of several nodes connected by an inter-

connect, where each node has its own processor, cache and local memory[Intel91,

Felten96]. A processor accesses the memory in another processor using an explicit

send/receive message, as in a cooperative-caching distributed �le system. Caching

strategies for distributed memory systems usually provide support for looking up

pages in the memory of remote processors. However, there has been no focus on

global replacement policies for distributed memory architectures because typical

applications are more compute-intensive than memory-intensive.

One important di�erence between multiprocessors and distributed �le systems

is that message costs are greater in distributed �le systems than in multiprocessors

and have a greater impact on performance. Thus there must be a concerted e�ort

to reduce the number and size of messages required. This is a focus of distributed

shared memory research where researchers try to emulate the behavior of a dis-

tributed memory multiprocessor on a cluster of workstations[Carter91]. However,

distributed shared memory researchers have not focused on a global replacement

primarily because typical applications focus more on parallelism than memory use.
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7.2 Hints in Computer System Design

Lampson noted that hints are an e�ective way to speed up the performance of

computer systems[Lampson83]. Lampson describes a hint to be the saved result

of some computation whose purpose is to make a system run faster. Echoing the

principles stated in Chapter 4, Lampson states that hints need to be correct almost

all the time for an improvement in performance and points out that checking hints

against facts must be adequate and optimizable.

7.2.1 Operating Systems

The use of hints in operating system design is mostly found in the area of �le

organization, caching and prefetching. The Alto and Pilot operating systems use

hints to lookup �le blocks on a disk[Lampson79, Redell80]. In the Alto operating

system, each �le block on a disk contains a hint as to the location of the next �le

block on the disk. In the Pilot operating system, a special data structure implements

a direct map between a �le and the address of its �rst block on the disk, assuming

that consecutive �le blocks occupy contiguous disk space. These hints are used to

speed up �le accesses to the disk. However in this particular case, the cost of an

incorrect hint is enormous because both operating systems reconstruct their hints

by scanning the entire disk.

Caching and prefetching techniques use hints to improve �le system and database

performance. For example, LRU treats the time of last use of a cached object as a

hint to determine the value of the object. If the object has not been used a long

time, LRU diminishes the value of a block.

Hints are aggressively used in prefetching blocks in a �le system or a database. As

the future accesses to a �le system or a database can never be known with absolute

certainty, system designers use historical information about previous accesses as

hints to predict future accesses. For example, in the sequential read-ahead technique,

an operating system aggressively prefetches blocks whenever it detects a pattern of

sequential access[McKusick84]. A past pattern of sequential access is taken as a hint
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for future sequential accesses and the hint is discarded whenever accesses becomes

non-sequential. In this case, a correct hint hides the latency of a �le system access.

However, an incorrect hint hurts the cache hit ratio and incurs the full latency

to access a block. As a result, read-ahead techniques tend to be conservative in

determining a sequential access pattern.

7.2.2 Distributed Shared Memory

The use of hints to perform block lookup is similar to the techniques used to perform

page lookup in distributed shared memory systems that support parallel computa-

tion. Li and Hudak describe several strategies for managing distributed shared

pages in a cluster of workstations[Li89]. The location of a page changes due to

program execution as reading and writing processes on di�erent workstations try to

access the page. The authors try out several strategies for managing page location

information which include centralized management, �xed distributed management,

and dynamic distributed management. In the centralized management scheme, one

workstation keeps track of the location of all the shared memory pages. In the

�xed distributed management scheme, page management is distributed over mul-

tiple workstations but the assignment of pages to a workstation manager is �xed.

The dynamic distributed management removes the restriction of �xed assignment

and allows any workstation to manage the location of a page. Workstations use

hints to keep track of the probable location of a page and use these hints to access

shared pages. When a workstation needs a page, the workstation sends a request

to the probable location of the page. If the workstation receiving the request does

not have the page, the request is forwarded to the workstation which is believed to

be the probable location of the page. If the page location hints are accurate, the

message overhead of a dynamic distributed management scheme will be less than

the other schemes as they require an extra message to a manager to locate a page.

Indeed, experimental results show that the location hints are quite accurate and the

actual number of forwarded requests is very small.

However, there are important di�erences between this work and the hint-based
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cooperative caching algorithm presented in the dissertation. Unlike the hint-based

algorithm, all workstations keep track of probable location information for all pages,

so that a request eventually reaches the correct location of a page. In the hint-based

algorithm, the number of �le blocks in the server is too large for a client to keep

track of. Consequently, a client keeps track of only the location of those blocks

which are being accessed by the client. The hint-based algorithm also di�ers in that

blocks can be forwarded to the cooperative cache, necessitating a global replacement

policy. In contrast, the distributed shared memory work relies solely on the local

replacement policy in each individual workstation.

7.2.3 Victim Cache

There are some similarities between the discard cache and the victim cache proposed

by Jouppi[Jouppi90]. A victim cache is a small (2-4 lines) fully-associative miss cache

which is used to store the victims from a larger direct-mapped level-one processor

cache, where a victim is the entry that is removed from the level-one cache to make

room for other entries. As a result, two cache lines that con
ict in the processor

cache can both be cached in the victim cache. While fully-associative caches are

expensive in terms of logic to build, the size of this very small supplemental cache

makes it feasible to implement on-chip between the direct-mapped level-one and

level-two caches. The bene�t of a victim cache therefore depends on the relative

cost of fetching a cache line from the victim cache as opposed to a level-two cache.

Consequently, the performance of a victim cache is more bene�cial if the level-two

cache is o�-chip. However, with technology trends pointing to more on-chip level-two

caches, the utility of a victim cache may decline in the future.

Both the victim cache and the discard cache augment the use of hints in computer

systems. In essence, the victim cache catches replacement mistakes made by the

direct-map cache allocation in the level-one processor cache. Similarly, the discard

cache catches replacement mistakes due to incorrect age hints about the blocks in

the client caches.
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7.2.4 Networking

Hints are also prevalent in wide-area computer networks because of the di�culty

in capturing the entire state of a system. Network hints are also unique in that

a correctness check for a hint is practically impossible. In Internet routing, each

node broadcasts its local routing table and the quality of its links to its neighbors

[Schwartz80, McQuillan80]. These broadcast messages can be viewed as hints as

the messages are best-e�ort and do not guarantee a consistent view of local routing

tra�c. Hints are also found in Internet protocols like TCP which use transmission

delays and sequence numbers to infer 
ow-control and congestion properties about

a TCP connection[Postel81].

7.2.5 Programming Languages

Dynamically binding programming languages sometimes use hints to infer the spe-

ci�c method to be invoked based on the type of the arguments passed to a poly-

morphic method. For example, Smalltalk uses a cache of methods indexed by the

type of the �rst argument to a method[Deutsch82]. This cache is treated as a hint

and is used by Smalltalk to directly invoke a method based on the type of its �rst

argument. Experiments have shown that this type of hint is highly accurate.

7.3 Summary

Cooperative caching for �le systems developed from research involving remote mem-

ory usage. The idea of remote memory servers in distributed systems was �rst in-

troduced by Comer and Gri�oen. Felten and Zahorjan proposed the use of idle

machines as remote memory servers. Franklin et al. introduced the concept of

remote client servers to extend the traditional client-server database architecture.

Cooperative caching is also related to multiprocessor caching in that processor nodes

can access blocks in the local memory or cache in another processor node.

The use of hints is system design is widely prevalent. Operating system designers

use hints to speed up performance in critical areas such as �le systems, caching and
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prefetching. Hints can be found even in computer architecture: a small associative

cache known as the victim cache catches replacement mistakes from the level-one

processor cache. Hints can also be seen in computer networks and dynamic-binding

programming languages.
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CHAPTER 8

CONCLUSIONS

Researchers have devised a new technique to improve the performance of dis-

tributed �le systems by introducing the cooperative cache, a new layer in the stor-

age hierarchy between the client caches and the server. The technique of cooperative

caching not only allows a client to access the caches of other clients on a local cache

miss, but also enables clients to store valuable blocks in the caches of other clients

for later reference.

The goal of cooperative caching is to ensure both high performance and low

overhead. Existing fact-based algorithms achieve the �rst goal of high performance

by using managers but incur high overhead in the process. To achieve both the

goals of high performance and low overhead, we introduce the use of hints. Hints

are attractive because they are less expensive to maintain than the exact state of

the system. However, inaccurate hints increase overhead and degrade performance,

implying the need to make hints as accurate as possible.

This dissertation describes a cooperative caching system that uses hints to locate

and replace blocks from the client caches:

� Block location hints allow a client to access blocks in the caches of other clients

without involving a manager. To make hints accurate, the cooperative caching

system relies on a block's master copy, one which is obtained from the server.

Every client caches block location hints which refer to the probable location

of the master copy of a block in the client caches.

� For replacement, clients maintain an oldest block list containing the probable

ages of the oldest block on every client. A client uses its oldest block list to

replace the oldest block in the client caches and exchanges age information
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on every replacement to keep the oldest block list accurate. The replacement

algorithm does not involve any interaction with a manager.

� To use better the server memory in cooperative caching, replacement mistakes

are sent to a discard cache in the server memory.

Two experimental methodologies are used to evaluate the use of hints in man-

aging the cooperative cache. First, trace-driven simulations compare the hint-based

algorithm with existing and ideal algorithms. The simulations revealed that hints

are highly successful in locating and replacing blocks from the client caches:

� The block access time of the hint-based algorithmmatches those of the existing

algorithm over all four periods of the Sprite traces.

� Block location hints are highly accurate: when a location hint indicates that

a block is present in the cooperative cache, the hint is correct 99.94% of the

time.

� The manager load in the hint-based algorithm is lower by as much as 30 times

when compared to that in the existing algorithms.

� The evaluation of the discard cache as a use for the server memory reveals

that the hit ratio to the server memory as a discard cache is the highest at

2.46% compared to that of 1.84% and 0.46% when the server memory is used

as part of the cooperative cache and as a traditional server cache respectively.

� The block access time of the hint-based algorithm diverges by about 5% from

that of the ideal algorithms when the client cache sizes are reduced by a factor

of four, but the hint-based algorithm's manager load is 30-50 times lower than

that of the existing algorithms.

A subsequent prototype implementation over a cluster of Linux workstations not

only showed that hint-based cooperative caching was able to provide high perfor-

mance and low overhead over a real user workload, but also validated the results

from the simulations:
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� The average block access time with cooperative caching was almost half that

of NFS, providing considerable performance gains to applications.

� The average and maximum overhead rate in the hint-based cooperative caching

was found negligible (< 7:5%) compared to the available network bandwidth

of a 10 Mbps Ethernet network.

� The accuracy of block location hints in the prototype mirrored those from the

simulation at 98%.

� The accuracy of best-guess replacement was also found to be very high, as

only 0.2-1.1% of the forwards were found to be directed towards active clients.

8.1 Future Research

While the hint-based algorithm was e�ective with the workloads used in this dis-

sertation, the cooperative caching system must be tested further in di�erent en-

vironments. Of particular interest are memory-intensive benchmarks such as large

databases which test how e�ciently a cooperative caching system uses the idle mem-

ory in the distributed �le system. While the hint-based algorithm was evaluated in

this mode by varying simulation parameters, the implementation must also be eval-

uated using real workloads whose working sets are comparable to the aggregate size

of the client memories in the distributed �le system.

There are also other directions for improving the hint-based algorithm. The hint-

based algorithm assumes LRU for replacing blocks from the client caches. However,

LRU is less than ideal as a replacement policy for a signi�cant number of bench-

marks. As a result, future research should concentrate on how best-guess replace-

ment could be con�gured to take into account other parameters in replacing a block

from the client caches.

Another important research area is to construct a cost-bene�t model for coop-

erative caching. A distributed �le system might reach a state where the bene�t

of cooperative caching is outweighed by the overhead in managing the cooperative
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cache. One example of such a state is when the working set of applications greatly

exceeds the aggregate size of the client memories, as seen in Chapter 5.2.7. While a

distributed cost-bene�t model is hard to formulate or implement, the active clients

accessing idle memory could each use a local model to independently decide when

to stop using the cooperative cache.

Even though there is scope for further research on cooperative caching, the dis-

sertation e�ectively shows how hints are used to achieve high performance and low

overhead in cooperative caching.
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