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This dissertation focuses on caching in distributed file systems, where the per-
formance is constrained by expensive server accesses. This has led to the evolution
of cooperative caching, an innovative technique which effectively utilizes the client
memories in a distributed file system to reduce the impact of server accesses. This
is achieved by adding another layer to the storage hierarchy called the cooperative
cache, allowing clients to access and store file blocks in the caches of other clients.

The major contribution of this dissertation is to show that a cooperative caching
system that relies on local hints to manage the cooperative cache performs better
than a more tightly coordinated fact-based system. To evaluate the performance
of hint-based cooperative caching, trace-driven simulations are used to show that
the hit ratios to the different layers of the storage hierarchy are as good as those of
the existing tightly-coordinated algorithms, but with significantly reduced overhead.
Following this, a prototype was implemented on a cluster of Linux machines, where
the use of hints reduced the average block access time to almost half that of NFS,

and incurred minimal overhead.
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ABSTRACT

This dissertation focuses on caching in distributed file systems, where the per-
formance is constrained by expensive server accesses. This has led to the evolution
of cooperative caching, an innovative technique which effectively utilizes the client
memories in a distributed file system to reduce the impact of server accesses. This
is achieved by adding another layer to the storage hierarchy called the cooperative
cache, allowing clients to access and store file blocks in the caches of other clients.

The major contribution of this dissertation is to show that a cooperative caching
system that relies on local hints to manage the cooperative cache performs better
than a more tightly coordinated fact-based system. To evaluate the performance
of hint-based cooperative caching, trace-driven simulations are used to show that
the hit ratios to the different layers of the storage hierarchy are as good as those of
the existing tightly-coordinated algorithms, but with significantly reduced overhead.
Following this, a prototype was implemented on a cluster of Linux machines, where
the use of hints reduced the average block access time to almost half that of NFS,

and incurred minimal overhead.
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CHAPTER 1
INTRODUCTION

1.1 Distributed File Systems and Caching

Technology trends of the past two decades has led to the evolution of distributed
systems as a key computing paradigm. Low-cost microcomputers now provide the
computing power for a vast range of applications and have replaced the need for a
centralized mainframe-based computing environment in organizations. In tandem,
local area networking has also evolved to provide high-bandwidth connections be-
tween individual computers[Forum93, ANSI87, Metcalfe76]. This has led to the
development of distributed systems where many computers share resources and ser-
vices over a network.

While distributed systems provide advantages over a collection of isolated mi-
crocomputers, they also introduce new challenging issues|/Tannenbaum96|. For ex-
ample, while distributed systems allow incremental growth by simply adding a new
computer to the network, the presence of this computer can saturate the services
provided by the distributed system and lead to poor performance.

A key service provided by a distributed system is that of files. The file service is
typically provided by a process or a thread pool which runs on a machine known as
the server. A distributed system may have one or several servers which serve a set of
files to the other machines in the system. The remaining machines, or clients, use a
predetermined protocol such as NFS[Sandberg85] to access the file service provided
by the servers.

The principal challenge in designing a distributed file system is to achieve high
performance with minimal overhead. Clients should be able to access their files as
fast as possible and the average time to access a file block, or average block access

time, should be minimized. At the same time, the work done by the distributed
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system for providing file service, or overhead, should be kept low, as high overheads

can swamp the network and disrupt client activity.

Clients

Access Disk

Figure 1.1: Caching in Distributed File Systems. This figure shows the storage
hierarchy in distributed file systems. Whenever a client needs to access a block, the
client first looks in the client cache in its local memory or disk. For the purpose of this
dissertation, we assume that the client cache is in memory because file access to memory
is several times faster than that to disk. If the lookup fails, the client forwards the block
request to the server. The server performs a lookup in the server cache and in case of
failure, forwards the block request to its disk subsystem.

Caching is one of the principal mechanisms of achieving this goal[Smith82,
Leach83, Sandberg85, Popek85, Schroeder85, Bach87, Howard88, Nelson93]. The
use of caches creates a storage hierarchy on top of the file service to filter out ac-
cesses to the slower layers of the hierarchy. As seen in Figure 1.1, the topmost layer
in the hierarchy is the client cache which resides in the local memory or disk of each
client. For the purpose of this dissertation, we assume that the client cache is in
memory because file access to memory is several times faster than that to disk. A
client’s file access that hits in its cache avoids the cost of communicating over the
network to a server. Otherwise, the client forwards the request to the appropriate

server. The server then checks for the block in the server cache, where a hit prevents
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an expensive disk access. A simulation using the traces of the BSD UNIX operat-
ing system[Ousterhout85, Nelson93| revealed that client caches can greatly reduce

server accesses.

1.2 The Server Bottleneck

Although client caches are effective at filtering out server accesses, the performance
of a distributed file system is often limited by the poor hit rate on the server
cache[Dahlin94]. The server cache’s poor hit rate increases the number of disk
accesses, which are an order of magnitude slower than server cache accesses. As
a result, the average time to access a file block increases due to expensive disk
accesses, limiting performance even though the hit rate to the local client cache
might be as high as 80%[Dahlin94]. Past studies have also shown that despite
client caching, the server is the principal bottleneck for distributed file system
performance[Lazowska86, Satyanarayanan85]. A recent study points out that such
a phenomenon has been observed even when the server is lightly loaded|Riedel96].

There are two principal reasons for this poor hit rate on the server cache: capacity
and locality. First, as the number of clients increases, the number of accesses to the
server increases proportionately. However, if the server cache is fixed in size, it
will not have the capacity to filter out the increasing number of server accesses.
Second, hits to the local client caches take advantage of locality in file references.
Consequently, server accesses have very poor locality.

One possible way to improve the server cache’s poor hit rate is to add more
memory to the server. However, studies have shown that not only is it much less
expensive to distribute this memory over all the clients, but the average block ac-
cess time improves by 33% if the added memory is moved from the server to the
clients[Dahlin94]. This is mainly because the amount of memory needed to offset the
locality and capacity constraints in a server cache is prohibitively large and requires

expensive DRAM technology.
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1.3 Technology Trends

The performance problems in a distributed file system are rooted in the disparity
in performance between the different layers of the storage hierarchy: disk accesses are
an order of magnitude slower than server cache accesses. Trends in the development
of processors, networks and storage can indicate whether or not this problem will
get worse and point to possible solutions.

The rates of improvement in network, memory and disk performance are a rea-
sonable indicator of future trends in the relative performance between networks,
memory and storage. However, it is difficult to predict improvements because of
uncertainty in the adoption of new standards as well as the effect of business cy-
cles. The interesting statistic is the growth in performance of networks and mem-
ory compared to disks. While network performance grew by 25-45% annually in
the past three years primarily due to the introduction of Fast Ethernet, it is ex-
pected to grow even faster as Gigabit Ethernet and Fibre Channel start becom-
ing more popular[Peterson96]. A similar trend can be seen in memory speeds and
bandwidth[Henessey96]. In contrast, disk performance rose at 10-20% annually from
16 ms in 1991 to 8 ms today[Dahlin95]. Furthermore, storage research is focused
more on capacity rather than on latency[Henessey96]. To put this into perspective
with the problems in distributed file systems, disk accesses are going to be even
more expensive relative to server and client cache accesses and will increasingly
dominate the average block access time. Therefore any proposed solution to the

server bottleneck in distributed file systems must reduce server accesses.

1.4 Cooperative Caching

The goal of this research is to improve the performance of distributed file systems
by reducing the impact of the server cache’s poor hit rate. This is achieved by adding

another layer to the storage hierarchy, positioned between the local client cache and
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the server. This layer resides in the memories of all clients and is known as the
cooperative cache. The technique of cooperative caching allows clients to access and
store file blocks in the caches of other clients, so that local cache misses can be
satisfied without accessing the server. If the hit rate to the remote client caches is
high, the number of server accesses will be reduced and performance improved.
Incorporating the cooperative cache in a storage hierarchy is challenging because
the issues concerning cooperative caching go beyond those for the other layers in

the storage hierarchy:

e Coordination. The cooperative cache is distributed among multiple clients,
which implies that cooperative caching operations could require coordination

between these clients.

e Quverhead. The overhead of coordinating the cooperative cache should be min-

imized so as not to saturate the network or disrupt client activity.

e Resource Sharing. As the cooperative cache and local client caches share
the same physical memory in the clients, there should be a resource-sharing
mechanism to ensure that the performance of the local cache is not be affected

by the cooperative cache.

1.5 Contributions

The major contribution of this dissertation is to show that the use of imprecise
local information (hints) to manage the cooperative cache performs better than a
more tightly-coordinated system with precise global state (facts). The intuition is
simple: hints are less expensive to maintain than facts, and as long as hints are
highly accurate, they will improve performance. However, inaccurate hints increase
overhead and degrade performance, negating the benefits of a hint-based approach.
Thus the key challenge in designing a hint-based system is to ensure that the hints
are highly accurate.

This dissertation describes a cooperative caching system that uses hints instead

of facts whenever possible:
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e Hints are used to locate blocks in the client caches, and maintained to achieve

both high accuracy and low overhead.

e Hints are also used to replace accurately the least valuable blocks in the client

caches without incurring high overhead.

e The server memory is used in an innovative way to augment the use of hints.

To evaluate the performance of hint-based cooperative caching, trace-driven sim-
ulations are used to compare the hint-based algorithm with existing and ideal algo-
rithms. Then, a prototype file system was implemented using hint-based coopera-
tive caching on a cluster of Linux machines, and the prototype’s performance was
measured with actual user activity over one week. The results distinguished the

hint-based algorithm from its tightly-coordinated fact-based peers:

e Simulations show that the average block access times of the hint-based algo-

rithm are the same as those of the existing and ideal algorithms.

e Simulations also reveal that the manager load in the hint-based algorithm is

lower by as much as 30 times when compared to that in the existing algorithms.

e Measurements of the prototype showed that the average block access time was

almost half that of NF'S.

e Measurements also indicated that the average and maximum overhead rate of
cooperative caching was negligible (< 7.5%) compared to the available band-

width of a 10 Mbps Ethernet network.

e Finally, hint accuracy was high (> 98%) both in the simulations and the
prototype.

1.6 Overview of the Dissertation

Cooperative caching is a relatively new concept and differs from traditional forms of

caching. The dissertation begins with an introduction to the components of cooper-
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ative caching, the issues unique to cooperative caching and a discussion of the avail-
able approaches. To evaluate the hint-based algorithm, existing fact-based and ideal
algorithms are elaborated next. Then the hint-based algorithm is described along
with a detailed discussion of how hints are used in cooperative caching. To evaluate
the algorithm, simulations compare its performance and overhead with existing and
ideal algorithms. This is followed by the details of the prototype implementation as
well as the subsequent measurements of the prototype. The dissertation ends with

conclusions on hint-based cooperative caching.
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CHAPTER 2
COOPERATIVE CACHING

This chapter deals with cooperative caching in greater detail. The first section
defines the principal components of cooperative caching. Following this, the is-
sues specific to cooperative caching are discussed along with a summary of possible

approaches to each issue.

2.1 Definitions

C1 Cc2 Cn

. Local Blocks D Global Blocks

Figure 2.1: The Cooperative Cache in Client Memories. The cooperative cache

is the layer of the storage hierarchy positioned between the local client caches and the
server. The introduction of a new layer in the storage hierarchy introduces two types of
blocks in a client’s cache: (i) local blocks, which are those being accessed by the client
itself; (ii) global blocks, which are stored in the client’s memory by other clients. As seen
above, the local and global blocks share the client memories in C1..Cn and the ratio of
these two types of blocks varies from client to client. For example, the fraction of local
blocks in the cache of an active client like C'1 is larger than that in an idle client like C2.

Dahlin defines cooperative caching as a technique to “improve file system per-
formance and scalability by coordinating the contents of client caches and allowing

requests not satisfied by a client’s local in-memory cache to be satisfied by the cache
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of another client” [Dahlin95].

The cooperative cache is the layer of the storage hierarchy positioned between
the client cache and the server. Cooperative caching is a technique that allows a
client to access the caches of other clients when the client misses a block in its
cache. Thus, cooperative caching allows clients to use effectively the entirety of the
client memories in the distributed file system. Cooperative caching is equivalent in
concept to the Global Memory Service[Feeley95], though it is specific to distributed
file systems.

The introduction of a new layer in the storage hierarchy introduces two types of
blocks in the client caches. The first type of blocks in a client’s cache are the local
blocks, which are those being accessed by the client itself. The remaining blocks in
a client’s cache are stored in the client’s memory by other clients and are referred
to as global blocks. Thus, a local block in a client’s cache becomes a global block
when the block is forwarded to the cooperative cache on another client. Similarly,
a global block in a client’s cache becomes a local block if the client starts accessing
the block. The ratio of local and global blocks in a client’s cache is determined by
the activity level of a client. The caches of active clients have a large fraction of
local cache blocks because the clients access most of their memory. In contrast, the
caches of idle clients are underused and therefore contain a larger fraction of global

cache blocks.

2.2 Components

Cooperative caching involves three logical entities: clients, servers, and managers.
As described in Chapter 1.1, clients access file blocks stored on the servers. Servers
do not maintain the state of the distributed file system; this role is reserved for
managers. Thus, clients do not access the server to access the state of the distributed
file system, reducing the server load as a result. However, this also means that servers
are not aware of the contents of the client caches.

The presence of managers is necessitated by the distributed nature of the cooper-

ative cache. The role of managers in cooperative caching is to maintain distributed
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file system state; clients access this state to locate blocks in and replace blocks from
the cooperative cache. The role of managers varies among cooperative caching algo-
rithms and serves as a major distinction between them. For example, a manager in
N-chance[Dahlin94] has a very limited role in replacing blocks from the client caches
compared to a manager in GMS[Feeley95]. There is no restriction on the number
of managers in a cooperative caching system. A manager is likely to be an appli-
cation daemon running on a machine in the distributed file system. A schematic of

cooperative caching is shown in Figure 2.2.

Cient

Manager
Client _Exchange __| | Global
Cache State State

Access
Cooperative
Cache

O her clients Cooperative Cache

Access

Cache

Access Disk

Server

Figure 2.2: Framework of Cooperative Caching. This figure shows the framework
of cooperative caching. Cooperative caching consists of clients, managers and servers.
Clients access file blocks stored on the servers. Managers help coordinate the cooperative
cache and maintain global state. Clients exchange state with the managers to update the
global state. On a local miss on a file block, the clients use the state information to access
the missing block from the caches of other clients. If the block is not found in the client
caches, the client accesses the server.
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2.3 Issues

The issues concerning the cooperative cache go beyond those for the other layers
in the storage hierarchy because the cooperative cache is distributed over multiple

clients:

e (Coordination. The distributed nature of the cooperative cache means that the
state of the cooperative cache is not confined to a single client and any oper-
ation on the cooperative cache could potentially require coordination among
clients. The local state of a client in cooperative caching refers to the state of
the blocks in the client’s cache. An operation on the cooperative cache is said
to be globally optimal if the operation takes the best possible decision based
on the local states of all the clients in the distributed file system. Therefore,
a client cannot invoke an operation on the cooperative cache purely based on
its own local state and expect the operation to approximate the globally op-
timal. In fact, various studies have shown that cooperative cache operations
based solely on local state can seriously hurt performance[Dahlin94, Feeley95,

Sarkar96|, emphasizing the need for coordination among clients.

e Quverhead. The performance of a cooperative caching system depends on the
level of coordination required to manage the cooperative cache. Coordinating
the cooperative cache incurs the overhead of exchanging information between
clients and managers. It is important to minimize this overhead as otherwise
it may negate the benefits of cooperative caching. This underlines the im-
portance of efficient cooperative caching by ensuring high hit ratios to the
cooperative cache without incurring significant overhead. Feeley et al. also

outline the need for efficiency in cooperative caching|[Feeley96].

e Resource Sharing. The local and global blocks shares the client memories, im-
plying the need for a resource sharing protocol. The ratio of local and global

cache blocks in a client’s cache must be maintained such that the cooperative
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cache does not affect performance adversely. For example, too large a coop-
erative cache can tend to reduce the hit ratios to the local caches of clients,

which is the fastest layer in the storage hierarchy.

These issues arise when one considers the management operations for the co-
operative cache. Each layer in a memory or storage hierarchy must support man-
agement operations for resource allocation and deallocation. These management
operations also move data between the layers of the hierarchy for reasons of per-
formance or consistency. In file systems, data is usually transferred in fixed size
segments called blocks, though there are exceptions as in AFS where the unit of

transfer is files]Howard88|.

2.4 Cache Access
2.4.1 Access Policy

The first operation in caching is the access policy which decides when and how a
layer fetches blocks from a lower layer in a hierarchy. The first part of an access
policy is to decide when to fetch the block from the lower layer. A common method
is demand paging in which a fetch is initiated from the lower layer when a client
wants to access a block which is not present in its cache. The disadvantage of this
method is that it incurs the full latency of retrieving a block from the lower layer.
This problem is solved by adding prefetching, which brings blocks into a caching
layer in anticipation of an access in the near future.

Prefetching introduces two issues into cache management. First, prefetching is
speculative as it must be able to predict future accesses with enough precision to
improve performance. Second, prefetching must integrate well with replacement
policies so that prefetched blocks do not replace valuable blocks from the cache.
These two issues have been well studied in literature and practice[McKusick84,
Kotz91, Griffioen94, Patterson95, Ca095]. Current prefetching techniques do not
take cooperative caching into account, though researchers are beginning to address

this issue[Voelker98].
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2.4.2 Block Lookup

Lookup Table
Block Client

Block Request — Forwarded Request
=" Manager | ——

Requested Block

Client A () Client B
Hint Table
Block | Client Block Request

Requested Block

Client A (b) Client B

Figure 2.3: Locating Blocks in the Client Caches. This figure shows two possible
approaches for locating blocks in the client caches. Part (a) shows the manager-centric
approach, where a client contacts a manager on a local cache miss. The manager consults
its lookup table and forwards the block request to the client caching the block. This
client provides the block to the requesting client. Part (b) shows the hint-based approach,
where on a local cache miss, a client consults its hint table and directly contacts the client
caching the block. This client provides the block to the requesting client, avoiding the
overhead of contacting the manager. Of course, the success of the hint-based approach
depends on the accuracy of hints.

The second part of the access policy requires locating a missing block from the
lower levels of the storage hierarchy. In traditional forms of caching, locating and
retrieving a block is trivial as the block is confined to the server. However, this is
not the case in cooperative caching as the block could be anywhere in the client
caches and a lookup decision would require information about the contents of the
client caches.

Existing block lookup strategies use a collection of managers to keep track of
which blocks are present in the client caches, as shown in Figure 2.3(a). To ensure
that managers have up-to-date block location information, all block movement in

and out of the client caches must be reported to the managers. Each manager
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is respomnsible for managing the location information for a distinct subset of the
file system’s blocks. A client performs a block lookup by sending a request to the
manager for the block. The manager forwards this block request to a client caching
the block, if one exists, or to the server otherwise. Following this, the block is
provided to the client from the appropriate source.

The advantage of this strategy is that a block lookup is accurate and always
returns the correct location of the block in the client caches. The disadvantage is
the high overhead which slows down cache accesses. Not only must clients contact a
manager on every block lookup, the movement of all blocks in and out of the client
caches must be reported to the managers. This strategy also greatly increases the
manager load when the working set size of client applications starts to approach
the size of the client memories. Under such a condition, blocks move rapidly in and
out of the client caches, resulting in frequent communication with the manager and
greatly increasing manager load.

The alternative strategy, seen in Figure 2.3(b), trades off accuracy for minimizing
overhead. The clients maintain their own block location hints and do their own
block lookup, avoiding the overhead of contacting a manager. However, if a block
location hint is incorrect, then the client will have to perform extra accesses in
order to retrieve the block from the storage hierarchy, negating the advantage of not
contacting the manager. The key to making this strategy work is to maintain highly
accurate block location hints and to provide a mechanism to deal with inaccurate

hints.

2.4.3 Placement

A secondary management policy related to block lookup is placement, or where to
place the fetched block in a layer. This is not an issue in the local client cache, as
fetched blocks are put in random-access memories where placement is immaterial.
However, the placement problem is a matter of study in those layers of a hierarchy
where access to data is not uniform within a layer. For example, if the clients in

a distributed file system were to be placed in a non-uniform network where there
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was a significant variation in average block access time depending on the location
of a client, then placement of blocks in the client caches would become an issue.
However for the purpose of this dissertation, the average block access times of the

clients in a distributed file system are assumed to be uniform with little variation.

2.5 Replacement Policy

2.5.1 Local Cache

Another important management operation on the cooperative cache is that of re-
placement, which determines the order in which blocks are removed from the client
caches. The replacement policy decides which block to discard from a layer to make
room for a block fetched into the layer. A replacement policy is invoked when a
block is fetched into a layer that is full.

The principal goal of a replacement policy is to minimize the average block
access time. This means that an optimal replacement policy must keep blocks that
are accessed soon and remove those that are accessed in the distant future[Belady66].
More precisely, the goal of an optimal replacement policy is to replace the block that
is accessed the most distant in the future. However, in a practical system, it is not
possible to know the future pattern of block accesses and hence any algorithm can
at best try to approximate the optimal.

The LRU (least recently used) algorithm is the most common basis for practical
replacement policies. The algorithm is based on the heuristic that blocks that are
accessed furthest in the past are also those that are accessed the most distant in the
future. This algorithm provides reasonable performance over a wide variety of ap-
plications. Less common algorithms include frequency counting algorithms such as
LFU and MFU, which replace the least and most frequently used block respectively.
However, these algorithms do not approximate the optimal very well[Silberschatz95].

Another practical consideration in designing a replacement policy is overhead.
The overhead of replacing a block must not negate the benefits attained. Thus,

while many algorithms reasonably approximate the optimal policy, their overheads
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are high and they are rarely implemented. For example, the LRU algorithm is very
expensive to implement without the presence of hardware counters. As a result,
practical algorithms tend to approximate the LRU algorithm itself. An example of
this type of algorithm is Global Clock[Easton79], which organizes the blocks in a
cache into a circular list. The algorithm uses a single reference bit per block and
traverses through the list of blocks like a clock hand, inspecting a block at every
turn. A block that has been referenced since the last inspection is made a candidate
for replacement by clearing the reference bit for the block. A block that has not

been referenced since the last inspection is evicted from the cache.

2.5.2 Cooperative Cache

Cooperative caching adds a new dimension to replacement policies because the coop-
erative cache is distributed over all the client machines. While practical algorithms
like Global Clock are able to achieve a second order approximation of the optimal re-
placement policy, the distributed nature of the cooperative cache makes the problem
of devising an algorithm with the same degree of approximation very challenging.
The cooperative cache replacement policy determines the order in which blocks
are removed from the client caches. The replacement policy is activated when a
client decides to replace a block from its cache. Thus, in contrast to traditional
caching, multiple replacement decisions can go on in parallel in different clients. The
implication is that the overhead of a replacement decision must be low as otherwise
the network can be swamped with the overhead of concurrent replacement messages.
In general, a replacement policy tries to value a block using measures such as
age(LRU) or frequency(LFU) with respect to other blocks in a caching layer when
it decides whether or not to replace the block. In cooperative caching, a similar
valuation is applied to the block being replaced from a client’s cache. Cooperative
caching algorithms usually do not distinguish between local and global cache blocks®.

This allows a global block to replace a less valuable local block in an idle client,

!The GMS algorithm, which aims at cooperative caching for both virtual memory and dis-
tributed file systems, values local blocks more for considerations related to virtual memory
paging[Feeley95].
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increasing the fraction of global blocks in the client’s cache. Similarly, a local block
can replace a global block in an active client and increase the fraction of local blocks
in the client’s cache.

There are two choices when a client decides to replace a block from its cache.
If the block is less valuable than any other block in the cooperative cache, then
there is no reason to forward the block to the cooperative cache and the block is
discarded. Otherwise, the block is forwarded to the cooperative cache and replaces
another block in the client caches, which is then discarded.

The distributed nature of the cooperative cache adds another interesting factor
to the valuation of a block. This factor in determining the value of a block is
derived from the issue of resource sharing and is known as duplicate avoidance. The
cooperative cache is a shared resource requiring coordination of which blocks are
forwarded to the cooperative cache. Without any coordination, it is possible for
clients to forward several copies of the same block to the cooperative cache. While
duplicate local blocks in the client caches cannot be avoided as several clients might
be accessing the same block, duplicate global blocks in the client caches reduce the
effective sizes of both the local and cooperative caches and lower their hit rates. As
a result, cooperative caching algorithms must avoid duplicate global blocks in the
client caches.

Once the client decides to forward a block to the cooperative cache, the client
must then decide the target client, or the client that will receive the block. The
target client choice is important in determining the effectiveness of the replacement
policy. Thus, the target client should be chosen such that the forwarded block
replaces a less valuable block in the target client. Otherwise, if the replaced block
in the target client is more valuable, then a future access to the replaced block will

result in a local cache miss and in the worst case, a disk access.

2.5.3 Examples and Alternatives

There are many choices for a cooperative caching replacement policy. While an

optimal replacement approach is not realizable in practice, LRU for the client caches
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is also impractical as it is expensive to determine the globally LRU block. Even
Global Clock is also expensive to implement in the client caches as it would require
extensive coordination to maintain a circular list of blocks distributed over the client
caches. Clearly, a good approach is to approximate LRU, but keeping the overhead
low at the same time.

Practical approaches to replace blocks from the client caches can broadly be
generalized into two categories: centralized and distributed. The key difference
is the role of the manager in making replacement decisions. In the centralized
approach, a manager collects or maintains information about the contents of the
client caches. The manager either distributes a summary of this information to all
the clients or provides information on demand to the clients. The clients then use this
information to replace blocks from the client caches. While this approach can yield
results closely approximating that from the previously described LRU approach, it
adds to the overhead of cooperative caching and is sensitive to manager failures.

In the distributed approach, clients make a replacement decision based on local
replacement hints. This approach avoids the overhead of contacting the manager.
However, the approach is sensitive to hint accuracy as there is a performance penalty

if the hints are not accurate and a valuable block is replaced from the client caches.

2.6 Cache Consistency

Consistency is a management operation on a caching layer that is dictated by how
multiple users can read and write the same file or block at the same time. One
of the key decisions in a consistency protocol is to specify when modifications of a
file or block by one user are observed by other users of the same file or block. For
example, in the UNIX local file system, writes to an open file by a user are visible

immediately to other users that have this file open at the same time.

2.6.1 Update Policy

The first key decision in a consistency protocol is the update policy, which determines

how soon a write to a client cache is propagated to the server. Distributed file
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systems use a wide range of update policies. The simplest policy is write-through,
where a client write to a cached file or block is immediately reflected to the server.
The advantage of this scheme is its reliability. No file or block data is lost even if a
client crashes because the server is always consistent with the contents of the client
cache. The disadvantage is performance because synchronous writes impose a heavy
penalty in terms of latency and overhead. An alternate policy called delayed write
trades off reliability for performance. This policy updates the server only at specified
intervals or times, lowering the overhead of each write and allowing overwrites of
data at significantly less cost than the write-through scheme. The problem with
delayed write is the reduced reliability as a client crash can lead to the loss of dirty
data that has not yet been written through to the server.

The update policy in cooperative caching schemes is guided by the motivation to
simplify the management of the cooperative cache. As a result, cooperative caching
algorithms either use write-through or a restricted version of delayed write, where
blocks are written out to the server whenever they are shared or forwarded to the
cooperative cache. In either case, the goal is to make sure that all global blocks
are clean. An important consequence of this policy is that if a manager enforces
strong consistency, the server always has an up-to-date copy of the block should
a cooperative cache lookup fail. On the other hand, if a more relaxed form of
consistency is maintained (as in NFS), the copy in the server may be out-of date;
however, with relaxed consistency, the block lookup mechanism also may fetch an

out-of-date copy from the cooperative cache.

2.6.2 Consistency Mechanism

The consistency mechanism decides whether a locally cached copy of a file or block
is older than the most up-to-date copy. If a file or block is determined to be stale,
the client caching the file or block retrieves the most up-to-date copy from the
appropriate source.

There are two principal approaches in maintaining consistency in a distributed

file system[Silberschatz95]. The first approach is client-driven and puts the onus of
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detecting the validity of a file or block to the client caching the file or block. The
client sends a message asking for the status of the file or block to the server, which
replies in the positive only if the file or block is up-to-date. The performance of a
client-driven scheme is determined by the frequency with which the client contacts
the server to validate whether a file or block is up-to-date. A validation scheme that
checks on every block access would be always consistent but the overhead would
also be high. An alternative would be to check on every file open, lowering overhead
but at the same time leaving open the possibility that files or blocks might become
temporarily inconsistent. In general, the problem with a client-driven approach is
that the overhead is high for any reasonable level of consistency[Howard88|.

The second approach relies on a consistency manager to implement a write-
invalidate policy. Whenever the manager is informed about an update to a file or
block from a client, it informs the other clients caching the file or block to invalidate
its contents. A subsequent access to the invalidated file or block causes a server

acCcCess.

2.6.3 Granularity

The granularity of cache consistency is important to cooperative caching because it
directly affects the level of coordination required for cooperative caching.

A block-based protocol maintains consistency on each individual block. If write-
invalidate is used, clients communicate with the manager on every local cache miss
to ensure consistency. With client-driven consistency, clients must frequently check
with the manager to determine the validity of a locally cached block. As a result,
this granularity of consistency is ideal for cooperative caching algorithms which use
manager-centric lookup and replacement strategies. On the other hand, there is
little point in using hints to avoid contacting the manager for block lookup and
replacement.

A file-based protocol is similar to the block-based except that it maintains con-
sistency on entire files rather than blocks, potentially allowing clients to handle

local cache misses without contacting the manager. One drawback is that file-based



32

consistency does not handle concurrent write-sharing of a file by multiple clients
as efficiently as block-based consistency, but this pattern of file access is rare in

distributed file systems[Baker91].

2.7 Server Caching

In a traditional distributed file system, the server maintains a cache of blocks that
have been accessed by the clients. Although the server cache is lower in the storage
hierarchy than the client caches and therefore has a lower hit rate, studies have
shown that the server cache is still effective at reducing disk accesses and improving
performance[Baker91].

The benefits of a server cache are less apparent with cooperative caching because
local cache misses are first serviced by the caches of other clients. This reduces the
server cache’s effectiveness and raises the issue of using the server memory in a
different manner so as to benefit cooperative caching.

One possibility is to use the server cache as part of the cooperative cache. The
advantage of this is that it increases the effective size of the cooperative cache. As the
hit ratio to the client caches is expected to be better than that to a traditional server
cache, the increased use of the server memory would benefit cooperative caching.
However, the disadvantage of this proposal is that the server would be target of
forwards from clients, increasing its load and possibly hampering performance.

Yet another possibility is to augment the use of hints in cooperative caching.
Hints can be inaccurate and it might be helpful to use the server memory to offset
the effect of incorrect hints. These alternatives to traditional disk caching in server

memory are evaluated using trace-driven simulation in Chapter 5.2.6.

2.8 Summary

The cooperative cache is the layer in the storage hierarchy positioned between the
local client caches and allows a client to access and store file blocks in the caches of

other clients. Cooperative caching is challenging because the cooperative cache is
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distributed over the client caches and must be coordinated with minimal overhead
to reap performance benefits.

A block lookup mechanism in cooperative caching must be able to locate effec-
tively a block in the client caches. One approach would be to use a manager to
keep track of the location of blocks in the client caches. While this approach would
be accurate, the overhead would be significantly lowered if clients maintained their
own block location hints.

A cooperative caching replacement strategy must decide the order of replace-
ment of blocks from the client caches. A manager-centric approach in valuating the
blocks in the client caches works well, but lower overhead can be obtained if clients
maintained hints about the values of blocks in the caches of other clients.

Two other design issues in cooperative caching are the granularity of the consis-

tency mechanism and the possible uses of the server memory.
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CHAPTER 3
EXISTING AND IDEAL ALGORITHMS

This chapter introduces existing and ideal algorithms against which the proposed
hint-based algorithm is compared. The performance and overhead of existing algo-
rithms provide insight into the strengths and weaknesses of a fact-based approach,
as well as peer benchmarks for practical cooperative caching algorithms. On the
other hand, the ideal algorithms provide a bound on achievable performance by a
cooperative caching algorithm.

In this chapter, two existing cooperative caching algorithms are introduced —
N-chance and GMS. The algorithms are discussed with respect to the management
operations on the cooperative cache: block lookup, replacement and consistency.
Following this, two ideal algorithms are discussed — Global LRU and Optimal — and
the performance bounds established by each of these algorithms are shown.

The two existing algorithms developed from successive attempts to harness
the remote memory in workstation clusters|Comer90, Felten91, Franklin92, Leff91].
These attempts established important results, which were subsequently used by co-

operative caching algorithms. These results are elaborated on in Chapter 7.1.

3.1 N-chance

Dahlin et al. pioneered the use of cooperative caching by motivating the need
to offset server accesses with those to the client caches[Dahlin94]. The authors
inspected a wide variety of algorithms for using idle memory in a workstation cluster
and settled on the N-chance algorithm for providing the best performance with the
lowest overhead. The algorithm was further refined to separate the roles of the

server and the manager in the zfs file system[Anderson95|.



35

3.1.1 Lookup

The N-chance algorithm uses the server to take on the responsibilities of a manager
and locate blocks in the client caches. When a client has a local cache miss on
a block, the client sends a request to the server, which then forwards this request
to a client caching the block. If the block is not present in the client caches, the
server responds with the block itself. To maintain the locations of blocks in the
client caches, the server is informed whenever a block moves in and out of the client
caches. Thus, whenever a client discards a block or forwards it to another client,
the client must inform the server. Similarly, when a client is forwarded a block from
another client, the client too must inform the server. The only exception where
a notification to the server is not necessary is when a client fetches a block from
the server itself. A generalized schema describing manager-centric block location is
shown in Figure 2.3(a).

However, the original N-chance algorithm does not reduce the number of mes-
sages to the server, adding to the server load. While the algorithm achieves near-
optimal results with a high hit ratio to the cooperative cache, each remote cache
access also involves a message to the server and adds to the server load. This means
that the number of messages to the server will not be reduced even if clients have a
high hit ratio to the cooperative cache.

The zfs file system refined the N-chance algorithm by separating the role of the
manager from the server, so that the server and the manager reside on separate
machines[Anderson95]. This refinement reduces the load on the server as commu-
nication with the manager can now avoid the server. Additionally, in an attempt
to reduce the overhead of contacting the manager, the zfs file system also tries to
co-locate managers with clients. The goal is to ensure that a client wanting to access
a block is physically in the same machine as the manager for the block, and can thus
communicate with the manager without incurring the overhead of a network mes-
sage. The co-location policy used by zfs assigns the management of a file’s blocks to

the client which last wrote the file, the underlying assumption being that this client
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is most likely to access the file in the future.

3.1.2 Replacement

The N-chance algorithm uses a combination of duplicate avoidance and randomness
to replace blocks from the client caches. Whenever a client replaces a block from its
local caches and does not know whether the block is a singlet, or the only copy in
the client caches, the client contacts the appropriate manager to check if the block
is a singlet. If the manager responds in the affirmative, then the client forwards this
block to a randomly chosen target client. In other words, the N-chance algorithm
gives a preference to singlets, as discarding them may cause a future server access.

The N-chance algorithm also takes measures to ensure that these singlets are
discarded from the client caches when they becomes less valuable. The N-chance
algorithm imposes a limit n on the number of times such blocks can be forwarded
from one client cache to another. The authors use measurements as well as empirical
evidence to suggest that a value of 2 for n would provide optimal performance for

this algorithm.

3.1.3 Consistency

The N-chance algorithm specifies a manager-centric block-based consistency scheme.
Whenever a client updates a block, the client informs the appropriate manager
which then invalidates the remaining copies of the block in the client caches (i.e.
write-invalidate). The N-chance algorithm also assumes a write-through policy for

updates, ensuring that only clean blocks are stored in the cooperative cache.

3.1.4 Discussion

The N-chance algorithm uses managers for block lookup, duplicate avoidance and
consistency, and therefore incurs the overhead of frequent communication with the
manager to maintain the exact global state. Moreover, while trying to co-locate a
client accessing a file with the manager for the file’s blocks can potentially reduce

overhead, the disadvantages of such a scheme are many. First, it adds the complexity
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of locating the manager for a block because the manager may move from one machine
to another. In other words, the client must do a manager lookup to locate a manager
for a block. Second, the overhead of co-location is high if files are write-shared across
multiple clients. A co-location mechanism would have to move the management of
the shared blocks from one client to another, the overhead of which would negate any
benefits obtained. All existing evaluations of co-location mechanisms have assumed
a single client accessing blocks and have neglected to measure the overhead in the
case where multiple clients access shared blocks[Feeley95, Anderson95]. A potential
improvement to the above scheme is to maintain block location hints in every client,
and thus avoid both the cost of communication with a manager and the complexity
of a co-location mechanism.

For replacement, N-chance gives more weight to duplicate avoidance, and has
poor performance if block access patterns do not conform to this assumption. For
example, if a block is forwarded to a randomly selected client actively accessing
its cache, then the block might replace a valuable local block. Moreover, if the
same block is successively forwarded n times to such active clients, then the block is
discarded from the client caches even though it may be a valuable cooperative cache
block. Studies have shown this phenomenon frequently occurs in practice when the
fraction of active clients is high and the idle memory is concentrated in the few

remaining clients[Feeley95, Sarkar96].

3.2 GMS

The GMS or Global Memory Service algorithm is also motivated by the need to
use the idle memory in workstation clusters, but does not limit idle memory usage
to file systems. Feeley et al. stress the need for treating the client memories in a
distributed file system as a global resource and demonstrate how the GMS algorithm
is effective at attaining this objective[Feeley95|. Further modifications to GMS deal

with client loads and network overhead[Jamrozik96, Voelker97].
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3.2.1 Lookup

The GMS algorithm is similar to N-chance in that it specifies a manager-centric
approach to block lookup (Figure 2.3(a)). Block movement in and out of the client
caches is reported to managers which maintain exact information about the location
of blocks in the client caches. A client contacts a manager on a local cache miss
for a block, which then redirects the request to a client caching the block, or to the

server if the block is not present in the client caches.

3.2.2 Replacement

The goal of the replacement policy in GMS is to approximate LRU in replacing
blocks from the client caches. A key piece of the GMS algorithm is the use of
managers to collect and distribute information about the ages of blocks in the client
caches.

The GMS algorithm avoids duplicate global blocks in the client caches. Thus,
only singlets are forwarded to the cooperative cache. The managers in GMS keep
track of the number of copies of a block, and whenever a block becomes a singlet in
a client’s cache, the GMS manager informs the client. In contrast to N-chance, the
responsibility of duplicate avoidance is on the manager rather than on the client.
This lowers overhead in GMS as the manager sends a message to a client only when
a block becomes a singlet in the client caches, whereas in N-chance the message
exchange happens in 98% of all block replacements when a replaced block is not
known to be a singlet.

To approximate LRU, a manager in GMS initiates the collection and distribu-
tion of age information from clients at dynamically determined time intervals called
epochs. The duration of an epoch is principally determined by the number of re-
placements during the epoch. At the beginning of an epoch, clients send a summary
of the ages of the blocks in the client caches to the manager coordinating the re-
placement algorithm. The manager then evaluates this summary to determine the
locations of the n oldest blocks in the client caches, where n is determined from the

length of an epoch. Subsequently, the manager computes w; for each client 7, where
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w; is the fraction of the n oldest blocks present in a client 7. The manager then
distributes the w; array to all the clients along with the expected duration of the
epoch. Whenever a client replaces a block from its cache and needs to forward the
block to a target client, the client chooses a client ¢ as the target with probability
w;. Measurements showed that the algorithm was able to reasonably approximate
LRU over a wide range of memory-intensive benchmarks|Feeley95].

The GMS replacement policy was refined further to deal with high loads in
clients. While the original policy was designed to approximate LRU, Voelker et al.
experimented with a combination of both client loads and block ages in replacing
blocks from the client caches[Voelker97]. The authors found that a load-balanced
LRU replacement did not affect performance as the deviations from LRU were mod-
erate, and demonstrated that a 8-node memory server could handle as many as 70

clients with load balancing.

3.2.3 Consistency

The GMS algorithm does not specify any consistency mechanism for the client
caches. Instead, the algorithm states that the consistency semantics are the re-
sponsibility of the application that created the sharing.

The GMS algorithm adopts a restricted version of delayed write for its update
policy. Whenever a dirty block is forwarded to the cooperative cache or shared
across multiple clients, the block is written out to the server to ensure that only

clean blocks exist in the cooperative cache.

3.2.4 Discussion

The GMS block lookup scheme suffers from the same drawback of high overhead
as N-chance because of the reliance on managers to maintain exact block location
state, as discussed in Section 3.1.4. In contrast, an approach based on local hints on
each client would not incur the overhead of contacting the manager on every local
cache miss.

While the GMS replacement policy is able to provide good results, it suffers from
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three important drawbacks. First, the policy is very complex as the policy decisions
in replacements involve hard-to-compute parameters such as the statistical distri-
bution of the oldest blocks in all the clients, the expected rate of replacements and
the rate at which age information is expected to become inaccurate. Second, the
replacement policy incurs the overhead of exchanging information with managers
at every epoch. This creates a tradeoff between overhead and accuracy where opti-
mizing one adversely affects the other. For example, a long epoch would no doubt
minimize overhead, but then the age information would grow increasingly inaccurate
with time during a long epoch. On the other hand, a short epoch would result in
more accurate results but at the cost of increased overhead. The authors have not
performed any experiments on this aspect of the GMS replacement policy. Third,
the GMS algorithm depends on the manager to coordinate the replacement process
and is thus sensitive to manager failures. The GMS algorithm does not specify a
mechanism to deal with manager failures. On the other hand, a replacement pol-
icy based on local hints would have lower overhead as no communication with the

manager is necessary, and would not be susceptible to manager failures.

3.3 Ideal Algorithms

The ideal algorithms provide a performance bound for cooperative caching algo-
rithms. While these algorithms may not be practical to implement, they provide a
lower bound on the average block access time of a cooperative caching algorithm.
The overhead of an ideal algorithm is ignored because of their impracticality and
as a result, the exact mechanisms for implementing cooperative cache management
operations are not consequential.

The ideal algorithms assume accurate block lookup in the client caches and
maintain block-level consistency in the client caches. The algorithms avoid duplicate
global blocks in the client caches by forwarding only singlets and discarding the rest.
The only difference in the two ideal algorithms is in the policy of choosing the target

client when a client decides to forward a block to the cooperative cache.
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3.3.1 Optimal

The replacement policy in the Optimal algorithm always replaces the block in the
client caches whose next access is farthest in the future. It has been shown that
this replacement policy is optimal because it minimizes the number of cache misses
and therefore has the minimal block access time[Belady66]. Thus, whenever a client
decides to forward a block to the cooperative cache, the target client is the one that
contains the block whose next access is farthest in the future. If several clients con-
tain blocks which are never accessed in the future, Optimal chooses one at random.
In addition, if the block to be forwarded to the cooperative cache is itself the one

whose next access is the farthest in the future, the block is discarded.

3.3.2 Global LRU

The Global LRU algorithm uses the distributed version of LRU as the basis of its
replacement policy. Global LRU approximates Optimal by replacing the globally
LRU block from the client caches. Whenever a client needs to forward a block to the
cooperative cache, it chooses the target client with the globally LRU block. As in the
Optimal algorithm, if several clients contain the globally LRU block, the algorithm
chooses one at random. Also, if the block to be forwarded to the cooperative cache
is itself the globally LRU block, it is discarded. In summary, Global LRU removes
blocks from the client caches in order of age.

In a real implementation, this algorithm would be expensive as the overhead of
locating the globally LRU block is high. The degree of approximation achieved by
Global LRU depends on the access patterns of a workload and is determined by the
degree of similarity between optimal replacement for this workload and Global LRU

[Voelker97].

3.4 Summary

This chapter discusses existing and ideal algorithms to provide the basis for com-

parison with the proposed hint-based algorithm discussed in the next chapter. The
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existing algorithms provide a yardstick for comparing performance and overhead,
while the ideal algorithms define the limits to performance.

The pioneering paper on cooperative caching by Dahlin et al.[Dahlin94] described
an algorithm for implementing the cooperative cache called N-chance. Managers are
responsible for maintaining consistency and block location information in N-chance.
The replacement policy in N-chance uses a combination of duplicate avoidance and
randomness to decide the best block to replace. Blocks with more than one copy
are discarded, while singlets are forwarded to another client chosen at random.

A subsequent paper by Feeley et al.[Feeley95] described the Global Memory Ser-
vice (GMS) which provided better performance than N-chance as well as reduced
overhead. GMS is similar to N-chance in that it uses managers to locate blocks in
the client caches. One difference is that it does not specify a consistency mechanism.

GMS, like N-chance, forwards a block to the cooperative cache only if the block
is a singlet. GMS differs from N-chance in that a manager keeps track of the
number of copies of each block and notifies the appropriate client when a block in
its cache becomes a singlet. GMS also differs from N-chance in that a centralized
manager-based algorithm chooses a block for replacement. The algorithm reasonably
approximates LRU over all the client caches.

A summary of the existing algorithms, as well as the hint-based algorithm is
shown in Table 3.1. The key features of the hint-based algorithm are elaborated on

in the next chapter.

Algorithm N-chance GMS Hint-based
Consistency Block-based None File-based
Lookup Manager-based | Manager-based Hints
Replacement Random Manager-based LRU | Best-guess LRU
Server Caching | Traditional Traditional Discard

Table 3.1: N-chance, GMS and the hint-based algorithm. This table lists the key
features of the N-chance, GMS, and hint-based algorithms.

The ideal algorithms provide a lower bound on the average block access time

of any algorithm. The overhead of ideal algorithms is ignored as they are not
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practical to implement. The ideal algorithms assume accurate block lookup, block-
level consistency and forward only singlets to the cooperative cache.

The two ideal algorithms discussed here, Optimal and Global LRU, only differ
in the choice of the target client when a block is forwarded to the cooperative cache.
The Optimal algorithm replaces the block which is accessed the farthest in the future
and chooses the target client having this block. In contrast, Global LRU emulates
the distributed version of LRU and chooses the target client with the globally LRU
block.
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CHAPTER 4
A HINT-BASED ALGORITHM

4.1 Hints

Hints, in general, can be defined as an imprecise state of a given system. A hint is
initially obtained from a system’s actual state. However, a hint is not kept consistent
with the system’s exact state, and may sometimes be updated to reflect the exact
state only if the benefit of updation outweighs the cost. As a result, hints cannot
be guaranteed to be accurate at any given time.

The use of hints has its advantages and disadvantages. The lack of consistency
with the exact system state implies that hints are easier to maintain than is the
system state. On the other hand, inaccurate hints can degrade performance and
increase overhead because they present an incorrect idea about the state of the
system. Consequently, a hint-based system is useful only when the vast majority of
hints are accurate and the benefit of using hints is greater than the penalty of a few
inaccurate hints.

Different categories of hints can be found in the design of computer systems.
The use of hints can be found in networking protocols like TCP /IP[Postel81], where
getting the exact state of a network connection is very difficult; in operating system
functions such as disk block lookup in the Pilot operating system|Redell80], where
locating a block on the disk has high cost; and even in programming languages such
as Smalltalk[Deutsch82] to resolve the types of polymorphic methods. Detailed
information about the use of hints can be found in Chapter 7.2. The goal of this

dissertation is the successful application of hints to cooperative caching.
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4.1.1 Hints in Cooperative Caching

The goal in designing a cooperative caching system was to develop a distributed
algorithm that provides high performance as well as low overhead. One way to do
this is to make clients as independent of managers as possible, and allow the clients
to take decisions based solely on information available locally. A local decision-
making approach has two advantages: not only is there a performance benefit of
not contacting the manager, but there is also reduced overhead as all decisions are
local.

The greatest challenge in making independent decisions in clients is to make the
decision approximate one based on the global state, which is the sum of the local
states of all the clients in the distributed file system. As a result, an independent
client decision cannot achieve this objective based purely on that client’s local state
alone. Thus, a client must also maintain information about the local states of the
remaining clients in the distributed file system in the form of hints.

As implied by the definition, cooperative caching hints refer to a probable global
state of the distributed file system. As a result, hints allow clients to make inde-
pendent decisions about the cooperative cache based on approximate global state
without contacting a manager. Hence, the use of hints fits in perfectly with the
goal of devising a cooperative caching algorithm with high performance and low
overhead.

The challenge of using hints is to make them accurate. Inaccurate hints can not
only hurt performance by causing decisions that do not approximate one based on
global state, but also force the system to rely on a costly mechanism to overcome
their effect. For example, if a hint says that a particular block is in a client’s cache,
and in reality, it is not, then the system must have a mechanism to return the correct
location of the block in the client caches. Thus, the goal is to make sure that the
benefit obtained by using hints more than offsets the cost of making mistakes due

to inaccurate hints.
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4.2 Block Lookup

This section focuses on the use of hints in locating blocks in the client caches. When
a client suffers a local cache miss on a file block, a lookup must be performed on
the client caches to determine if and where the block is cached. In the previous
algorithms, the client contacts the manager responsible for the block to perform the
lookup. Although this approach will always return the correct location of the block
in the client caches, it also increases both the block access time and the manager
load.

An alternative is to let the client itself perform the lookup, using its own hints
about the locations of blocks within the client caches. These hints allow the client
to access the caches of other clients directly without contacting a manager on every
local cache miss. However as discussed in Section 2.4, the hints need to be accurate
for this approach to be effective. In addition, a hint-based block lookup scheme
must provide the correct result even if hints are incorrect. In other words, the
lookup mechanism must be able to return the correct location of the block in the
storage hierarchy even if the block’s location hints are not correct.

The key focus of this hint-based approach to perform block lookup is to make
the location hints accurate and provide a lookup mechanism to deal with inaccurate

hints.

4.2.1 Hint Accuracy

Hint accuracy largely depends on the choice of blocks to which location hints refer.
This choice is important because it affects how fast hints get out-of-date in the
client caches. If the set of blocks referred to by hints changes location rapidly, the
hints would have to be frequently updated to ensure accuracy. However, changes
to block location are determined primarily by access patterns which are not known
in advance, making it difficult to predict the natures of changes to the locations
of blocks. To maximize hint accuracy, clients maintain hints for the part of the

location state that changes the least rapidly. The reasoning is that hints for this
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Figure 4.1: Master Copies. The master copy of a block is that which is obtained from
the server. In this figure, blocks B; and Bj are copies of the block B on the server. Block
B is a master copy because it was obtained from the server (as shown by the arrow). On
the other hand, block By is not a master copy because it was obtained from the client
having Bj.

part of location state are not likely to get out-of-date as fast as those for the parts
that change more rapidly. The key to the success of this approach is to find this
part of the location state of a distributed file system.

One alternative is to keep track of all the copies of all blocks in the client caches
as is done in a manager-centric approach. However, the aggregate rate of movement
of all the copies of a block in and out of the client caches is larger than the rate
of movement of a single copy. Thus, the overhead of maintaining hints for all the
copies of a block in the client caches is more than that for a single copy of a block,
making the latter a more attractive option.

The next question is to decide which copy of a block should a block location
hint refer to. One possibility is to refer to the newest copy of a block in the client

caches because this copy is likely to be present in a client’s cache and consequently,
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a location hint that refers to this block is also likely to be accurate. On the other
hand, the location of the newest copy is likely to change more rapidly than that
for a fixed copy of a block. This makes a fixed-copy scheme more advantageous for
accurate hints.

One concern about a fixed copy scheme is that it increases the load on a client
caching the fixed copy of a block as this client is the target of accesses from clients
needing the block in the future. However, as shown in Section 6.4.3, client loads
were not an issue.

To allow hints to keep track of the location of a fixed copy of a block, the concept
of a master copy of a block is introduced. The first copy of a block to be cached by
any client is called the master copy, as shown in Figure 4.1. The master copy of a
block is distinct from the block’s other copies because the master copy is obtained
from the server. Block location hints only contain the probable location of the

master copy of a block, simplifying the task of keeping the hints accurate:

1. When a client opens a file, the client contacts a consistency manager which
gives the client a set of hints that contain the probable location of the master
copy for each block of the file. Here, we assume that a manager coordinates
the consistency mechanism in the distributed file system, though we place no
restriction on the mechanism itself. The manager obtains the set of hints for
the file from the last client to have opened the file. The assumption is that
the last client to open the file has the most accurate location hints for this file.
While this assumption may not hold for some patterns of block access, they
conform to typical UNIX access patterns[Baker91] and yield highly accurate
hints, as demonstrated in Chapters 5.2.2 and 6.4.4.

2. During the process of replacement (described in Section 4.3), when a client
forwards a master copy of a block to another client, both clients update their

hints to reflect the new location of the master copy in the client caches.
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Figure 4.2: Lookup Mechanism. This figure illustrates the use of location hints in the
lookup mechanism. Once client A obtains location hints, the client uses the information in
the table of location hints to determine that client B is caching a needed block. Following
this, client A sends a request to client B, which responds with the block.

4.2.2 Lookup Mechanism

The hints contain the probable location of the master copy of a block. Thus
the lookup mechanism must ensure that a block lookup is successful, regardless
of whether the hints are right or wrong. Fortunately, in cooperative caching al-
gorithms, dirty blocks are written out to the server whenever they are shared or
forwarded to the cooperative cache. As discussed in Chapter 2.5, an important
corollary of this assumption is that the server can always be relied to have a valid
copy of a block and can satisfy requests for the block should the hints prove false.

This simplifies the lookup mechanism:

1. When a client has a local cache miss for a block, it consults its hint information

for the block.

2. If the hint information contains the probable location for the master copy
of the block, the client forwards its request to this location. Otherwise, the

request is sent to the server.

3. The client which receives a forwarded request for a block checks to see the

block is present in its cache. If so, the client responds with the block to the
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requesting client. Otherwise, the client consults its hint information for the

block and proceeds to Step 2.

Measurements show this algorithm works well when the working set size of client
applications is less than the size of the client memories, as shown in Chapter 5.2.7.1.
However, if several clients share a working set of blocks larger than the client mem-
ories, forwarding a block to a client increases the probability that a master copy will
be replaced. This, in turn, will cause the master copy to be forwarded to another
client, greatly increasing the rate of movement of blocks in and out of the client
caches. As a result, the location hints for blocks will also lose their accuracy at a
faster rate and consequently, these inaccurate hints will decrease the hit ratio to the
cooperative cache.

However, a similar degradation occurs in other cooperative caching algorithms.
When the working set size of client applications starts to approach the size of the
client memories, block movement in and out of the client caches increases as de-
scribed above. While this does not cause any loss of accuracy for block location,
frequent communication with the manager to report this block movement increases
the manager load to as much as 30 times that of the hint-based algorithm, as shown
in Section 5.2.7.1. The high load increases the manager response time, which in

turn degrades performance.

4.3 Replacement

The replacement policy in cooperative caching makes space for a new block entering
the client caches by discarding the least valuable block in the client caches. The dis-
tributed nature of the cooperative cache makes this challenging as the client fetching
the new block might be different from the client holding the least valuable block,
requiring communication among clients. The degree and nature of communication
among clients determines the performance and overhead of a cooperative caching
replacement algorithm.

A client invokes the replacement policy when a block is replaced from its local
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cache. As discussed in Chapter 2.5, the client has to decide first whether or not to
forward this replaced block to the cooperative cache. If the client decides to forward

the block, it must choose the target client to which to forward the block.

4.3.1 Forwarding

The previous algorithms rely on the manager to determine whether or not a block
should be forwarded. A block is forwarded only if it is a singlet. Maintaining this
invariant is expensive: in addition to reporting all block movement in and out of
the client caches to the manager, it also requires an N-chance client to contact the
manager whenever it wishes to replace a block, and the GMS manager to contact a
client whenever a block becomes a singlet.

An alternative is to avoid the use of a manager in determining the copy of a
block to be forwarded to the cooperative cache. To avoid overhead, the copy to be
forwarded to the cooperative cache is predetermined and does not require communi-
cation between the clients and the manager. In particular, only the master copy of
a block is forwarded to the cooperative cache and all other copies are discarded. As
only master copies are forwarded, and each block has only one master copy almost
all the time, there are no duplicate global blocks in the client caches.

Blocks may have more than one master copy in the client caches if location
hints are inaccurate. For example, out-of-date hints in the client caches can cause a
client’s block lookup request to get forwarded to the server even though the block is
present in the cooperative cache. Consequently, the client will fetch the block from
the server, increasing the number of master copies of the block by one. Fortunately,
measurements in Chapter 5.2.2 indicate that less than 0.01% of the server accesses
fetch a second master copy of a block into the client caches. Moreover, after a client
fetches a second master copy of a block, the location hint for the block will now refer
to the second master copy and this hint will propagate to other clients which want
to access the block in the future. Therefore these clients will reference the second
master copy instead of the first. Consequently, the first master copy of the block

will be discarded from the client caches at a faster rate than if there was only one
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master copy in the client caches.

A potential drawback of the master copy algorithm is that it has a different
forwarding behavior than the previous algorithms. Instead of forwarding the last
local copy of a block in the client caches as in GMS or N-chance, the master copy
algorithm forwards the first (master) copy. In some cases, this may lead to unnec-
essary forwards. As the previous algorithms forward the last copy of a block, the
block will not be forwarded at all if it is deleted while there are multiple copies in
the client caches. The hint-based algorithm may unnecessarily forward the master
copy prior to the delete. Fortunately, our measurements in Chapter 5.3 show that

few (1.97%) of the master copy forwards are unnecessary.

4.3.2 Best-Guess Replacement

Once the replacement policy has decided to forward a block to the cooperative cache,
it must choose the least valuable block in the client cache to replace. This block is
present in the cache of a target client, and forwarding a block to the target client
aims to replace this least valuable block.

N-chance chooses a target client at random, while GMS relies on information
from the manager. A policy of randomly choosing a target client may not replace
the least valuable block in the client caches and this results in poor performance,
as seen in Chapter 5.2.1. Relying on information from the manager allows GMS to
reasonably approximate Global LRU. However, this incurs the overhead of frequent
communication with the manager and increases the complexity of a replacement
algorithm.

An attractive alternative is to design a replacement algorithm without involving
a manager, thus avoiding the overhead of contacting the manager. However, this
implies that clients have to exchange information among themselves to implement
the replacement algorithm, incurring overhead in the process. Hence, the key focus
of such an algorithm should be to exchange the minimal amount of information
between clients necessary for a highly accurate replacement policy.

A distributed replacement algorithm must aim for high accuracy as well as adapt-
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ability to changes in the behavior of clients. Thus such an algorithm must able to
identify the active clients (clients accessing the cooperative cache) and idle clients
(clients that are not) in a distributed file system at any given point of time. In
addition, an algorithm must also be able to adapt to situations where an idle client
suddenly becomes active and vice versa. This would imply changes in the distribu-
tion of idle memory in the client caches, requiring adjustments in the replacement
process.

Finally, a distributed replacement algorithm should not be affected by client
failure. In case a client fails, the remaining clients must be able to proceed with the
replacement algorithm. Fortunately, this is achievable in a hint-based algorithm as

each client maintains its own replacement hints.

4.3.2.1 Algorithm

A hint-based algorithm chooses a target based on local information about the state
of the client caches. This is referred to as best-guess replacement because each client
chooses a target client that it believes has the system’s oldest block. The objective
is to approximate Global LRU, without requiring a centralized manager or excessive
communication between the clients. The challenge is that the block age information
is distributed among all the clients, making it expensive to determine the best block
to replace.

In best-guess replacement, each client maintains an oldest block list that contains
what the client believes to be the ages of the oldest block on each client. The
algorithm is simple: blocks are forwarded to the client that has the oldest block in
the oldest block list.

The high accuracy of best-guess replacement comes from exchanging information
about the ages of the oldest block on each client. When a block is forwarded from
one client to another, both clients exchange the age of their current oldest block,
allowing each client to update its oldest block list. This step in the algorithm is
illustrated in Figure 4.3.

When a client boots up, the client assumes that the remaining clients have free
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Figure 4.3: Best-guess Replacement. (a) Each client contains replacement hints in
the form of the oldest block list. The oldest block list is indexed by every client in the
distributed file system and each entry contains the probable age of the oldest block in the
client. (b) When a client A decides to forward a block, the client looks in its oldest block
list and determines that client C has the oldest block in the list of age 70. Client A then
forwards its block to the target client C. (¢) Concurrently with the replacement, clients A
and C exchange the ages of their oldest blocks and update their respective lists.

memory to store global blocks and proceeds with this assumption until the oldest
block list is updated during the course of replacements. Accordingly, the probable
age of the oldest block for each client in the oldest block list is initialized to INF,
where INF is the maximum age of a block. Similarly, a client having free memory

in its cache also returns INF as the age of its oldest block during replacement.

4.3.2.2 Properties

This exchange of block ages allows both active and idle clients to maintain accurate

oldest block lists. Active clients have accurate lists because they frequently forward
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blocks. Idle clients will be the targets of the forwards, keeping their lists up-to-date
as well. Active clients will also tend to have young blocks, preventing other clients
from forwarding blocks to them. In contrast, idle clients will tend to accumulate old
blocks and therefore be the target of most forwards.

Best guess replacement adapts to changes in the behavior of a client. An active
client that becomes idle will initially not be forwarded blocks, but its oldest block
will age relative to the other blocks in the system. Eventually this block will be the
oldest on the lists, and therefore used for replacement. On the other hand, an idle
client that becomes active will initially have an up-to-date list because of the blocks
it was forwarded while idle. This allows it to forward blocks accurately. Other
clients may erroneously forward blocks to the newly-active client but once they do,
their updated oldest block lists will prevent them from making the same mistake
twice.

Best-guess replacement is also not prone to client failures. This is primarily
because replacement information is not centrally managed at any one client and
each client maintains its own replacement hints. As a result, if a client fails, the
remaining clients can stop replacing blocks from the failed client upon detection.
Failure detection can be done either actively using a heartbeat protocol or lazily
during the process of replacement. To minimize overhead, we have opted for lazy

detection (more details are available in Chapter 6.1.1.3).

4.3.2.3 Analysis

The performance of best-guess replacement is measured by the extent of its deviation
from Global LRU, the ideal for this algorithm. The extent of this deviation depends
both on the workload in the distributed file system as well as the deviation of
the optimal replacement algorithm for this workload from Global LRU. An initial
estimate can be obtained by analyzing the bound which determines the maximum
extent of deviation of best-guess replacement from Global LRU.

The performance bound of best-guess replacement indicates that the algorithm

approximates Global LRU very well. Let us assume a distributed file system with



o6

N clients, where we are trying to determine the maximum extent by which the
replacement of the globally LRU block can be delayed. Consider the scenario in
which a client replaces a block from another client in best-guess replacement. The
two clients then exchange the ages of their oldest blocks. After this replacement,
neither client will replace a block younger than the oldest blocks on these two clients
because clients choose the target client with the oldest block in the oldest block list.
Note that at this time, the globally LRU block is the oldest block on one of these
N clients. Therefore, after all possible replacements and subsequent exchanges
of information between NN clients, no client can replace a block younger than the
oldest block on all the N clients, which is the globally LRU block. Since these are
(N —1)(N — 2)/2 possible replacements between N clients, the replacement of the
globally LRU block can be delayed by at most this many replacements. In other
words, if Global LRU replaces a particular block in the i replacement, then best-
guess replacement will replace the block at most by the i + (N — 1)(N — 2)/2%
replacement.

While this limit seems high, it represents the worst case because the analysis
assumes that every client is replacing blocks from the caches of other clients. In
a typical distributed file system, not all clients access the cooperative cache at the
same time[Acharya98]. Under these conditions, best-guess replacement does much
better. If there are k active clients accessing the cooperative cache at any given
time, then the globally LRU block can be assumed to be in the remaining N — k
clients (as the caches of the & clients is filled with young local blocks). Following
the same logic as above, after all possible exchanges between these k£ active clients
and N — k idle clients, no client can replace a block younger than the globally LRU
block, which the oldest block on one of these N — k clients. In such a case, the
replacement of the globally LRU block is delayed by at most (k — 1)(N —k —1)/2
replacements. Furthermore, in both simulations and prototype measurements, k
was on an average a small constant compared to IV, implying that the delay in the
replacement of the globally LRU block was at most by O(V) replacements. Given

that the performance of most applications is not very sensitive to small deviations
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from Global LRU[Voelker97], the existence of a linear bound is very encouraging.

The performance bound of best-guess replacement is not affected by exchanging
more age information. The reason is that the strategy does not reduce the proba-
bility of a replacement error. For example, assume two clients exchange the block
age information of all the clients. However, other than the ages of the oldest blocks
of these two clients, the rest of the block age information can not be guaranteed to
be accurate. The probability of a replacement error depends on the accuracy of the
oldest block’s age on any client and is therefore not affected by the rest of the block
age information. As a result, it is best to exchange only the age of the oldest blocks
of the two clients involved in the replacement.

While the performance bound determines the maximum extent to which best-
guess replacement can deviate from Global LRU, the performance is determined by
the average delay in the replacement of the globally LRU block. Even though the
linear performance bound suggests that best-guess replacement is likely to closely
approximate Global LRU, the actual performance is best evaluated using simulations

and prototype measurements.

4.3.2.4 Forwarding Storms

Although both theory and practice have shown this simple algorithm to work well,
there are potential problems, the most important of which is overloading a client
with simultaneous replacements. This phenomenon is known as a forwarding storm
and happens when several clients believe that the same target client has the oldest
block. In such a situation, the clients all forward their blocks to this target client,
potentially overloading the client and replacing young blocks.

Fortunately, it is highly unlikely that the clients using the cooperative cache
would forward their blocks to the same target. This is because clients that do
forward their blocks to the same target will receive different ages for the oldest
block on the target, since each forwarded block replaces a different oldest block in
the target client. Hence, if the idle memory of the network is uniformly distributed

over k clients, the probability of a client choosing a particular target client among
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these k clients is 1/k. Thus, the probability of x clients choosing the same target
client is (1/k)*~!, as each client replacement decision is independent of one another.
Similarly, the probability of a client choosing the same target client y successive times
is (1/k)Y~'. Consequently, the probability for x clients choosing the same target
client y successive times is (1/k)*T¥ 2. Assuming (arbitrarily) that a forwarding
storm involves 5 clients forwarding blocks to 10 target clients over a period of 10
successive replacements on each forwarding client, the probability of the forwarding
clients choosing the same target client over this period is 10712, This indicates that
clients using the cooperative cache would be very unlikely to forward the block to
the same target client. Furthermore, we did not observe any forwarding storm either

in the simulations or in the prototype.

4.3.2.5 Client Loads

Best guess replacement can also be configured to work with client loads in addition
to block ages. When a client forwards a block to the cooperative cache on a target
client, the two clients involved in a replacement could exchange the age of their
oldest blocks and their CPU loads. As a result, a client could use the information
to avoid a heavily loaded client even though it might have very old blocks in its
memory. However, the exact mechanism with which a block would be valued both
with respect to its age and its CPU load is a matter of future study. Though research
has shown that client loads may be an issue if idle clients are used as dedicated
remote memory servers[Voelker97], these high client loads were not observed in the
course of our measurements because idle clients have very low CPU loads in a typical

distributed file system[Acharya98].

4.4 Cache Consistency

Cooperative caching, for the most part, poses no restrictions on any cache consis-
tency protocol, as discussed in Chapter 2.6. Cooperative caching algorithms can

work with any update policy or consistency mechanism, though the use of certain
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policies like write-though or a restricted version of delayed write simplifies the man-
agement of the cooperative cache. The only aspect of cache consistency which is
directly affected by the choice of a cooperative caching algorithm is granularity,
where the level of coordination in cooperative caching directly impacts the granu-
larity of cache consistency.

One approach is to use block-based consistency, but this requires frequent com-
munication with a manager to locate an up-to-date copy, making it pointless to use
hints for block lookup or replacement. For this reason, the hint-based algorithm uses
a file-based consistency mechanism and uses tokens to control access to shared files.
Clients must acquire either a read or write token from a manager prior to accessing
a file for reading or writing. The manager controls the file tokens, revoking them
as necessary to ensure that at most one client has exclusive access to a write token,
even though multiple clients may hold read tokens simultaneously. Once a client
has a file’s token, the client may access the the file’s blocks without involving the

manager, enabling the use of hints to locate and replace blocks in the client caches.

4.5 Discard Cache

As discussed in Chapter 2.7, the server memory is underused in cooperative caching
because the high hit ratio to the client caches reduces the number of server accesses.
This raises the question of effectively using the server memory to benefit cooperative

caching.

4.5.1 Alternatives

One option is to treat the server memory as part of the cooperative cache. The
server is treated like any other client in the distributed file system and clients can
forward blocks to the cooperative cache in the server memory. This would increase
the effective size of the cooperative cache and therefore the hit rates on the server
memory, as the server no longer duplicates the contents of the client caches.

A more attractive option is to use the server memory to complement the use

of hints in cooperative caching. When the working set of client applications starts



60

to approach the size of the client memories and blocks move frequently in and out
of the client caches, the distribution of idle memory in the distributed file system
also changes rapidly, resulting in incorrect replacement hints. As the number of
clients actively accessing their caches is high under these circumstances, an incorrect
replacement hint will cause a block to be forwarded to such an active client and a
valuable local block is consequently replaced from the client caches. The use of
the server memory to reduce the effect of these incorrect hints would be beneficial.
Furthermore, since the server memory contains young mistakenly replaced blocks,
our hypothesis is that this will increase the use of the server memory more than
if the server memory were used as part of the cooperative cache. Fortunately, the

results in Table 5.7 confirm this hypothesis.

4.5.2 Mechanism

To offset replacement mistakes, the notion of a discard cache is introduced, one that
is used to hold possible replacement mistakes and thus increase the overall cache hit
rate to the server memory. A client chooses to replace a block on a particular target
client because the client believes that the target client contains the oldest block in
the client caches. The target client considers the replacement to be in error if it
does not agree with this assessment.

Two heuristics are used to determine whether the replacement of a block was
erroneous. The first heuristic relates to the type of blocks which are sent to the
discard cache on the server. One possibility is to send all mistakenly replaced blocks
to the server. However, this ignores the fact that mistakenly replacing some types of
blocks does not affect performance. For example, performance would not be affected
if a duplicate copy of a block were to be mistakenly replaced.

Another possibility sends a mistakenly replaced block to the discard cache only if
the block is a singlet, as mistakenly replacing duplicates does not affect performance.
However, in a hint-based system, there is no mechanism to count the number of
copies of a block in the client caches. The next possibility leverages the use of master

copies in the hint-based algorithm and sends only mistakenly replaced master copy
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blocks to the discard cache. First, the target client checks whether the replaced
block is a master copy. If the replaced block is not a master copy, then the replaced
block is discarded and the replacement is not considered erroneous.

The second heuristic tries to determine whether the replacement was a mistake.
The spectrum of possibilities to determine a mistaken replacement is wide. In
general, possible approaches can be classified as either pessimistic or optimistic. The
pessimistic policy would tend to assume that the replacement of a master copy is
in error unless proved otherwise. In contrast, the optimistic policy would be biased
towards declaring the replacement of a master copy to be correct. A pessimistic
policy increases the number of erroneous replacements sent to the discard cache but
at the same time benefits from a higher number of hits to the server memory. The
key in choosing a policy is to ensure that the number of replacement errors does not
overload the server, while at the same time increasing the hit rate on the discard
cache.

To choose an appropriate policy, we experimented with two heuristics. The first
one is optimistic and declares the replacement of a block to be in error if the block
is a master copy and is younger than all blocks in the oldest block list of the client
from which the block is replaced. The second one (pessimistic) is similar to the first
but differs in that a replacement of master copy is declared to be in error if the block
is younger than any of the blocks on the list. In both these heuristics, a mistakenly
replaced block is sent to the discard cache; otherwise, the block is discarded. During
the course of the simulations and prototype measurements, we found that even with
a pessimistic heuristic, the number of replacement errors were low compared to the
number of replacements (Table 6.5), while the server hit rate was higher than that in
other uses of server memory (Table 5.7). This convinced us to go with the pessimistic
heuristic in determining a replacement error, as summarized in Table 4.1.

A more informed decision could possibly be arrived at if the clients had more
knowledge about the ages of blocks in the caches of other clients. For example, if
the clients involved in replacement exchanged the ages of the z oldest blocks in their

respective caches, then the determination of whether the replacement of a block
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is erroneous could be determined more accurately. However, best-guess replace-
ment limits the amount of information exchanged during a replacement process to
minimize overhead. Moreover, as seen during the simulations and the prototype
measurements, the number of replacement errors were too few to warrant the extra

overhead of higher accuracy in determining replacement errors.

Type of block Action
Non-master copy Discard
Old master copy Discard
Young master copy | Send to discard cache

Table 4.1: Discard Cache Policy. This table lists how the hint-based replacement
policy decides which blocks to send to the discard cache. A master copy is old if it is older
than all blocks in the oldest block list, otherwise it is considered young.

The replacement policy in the discard cache is based on the age of the blocks sent
to the discard cache. This means that the discard cache always replaces its oldest
block, even though this oldest block may have been forwarded to the discard cache
more recently than the remaining blocks in the discard cache. This is to ensure that
mistakenly replaced young blocks have a longer lifetime in the discard cache than
relatively older blocks, irrespective of the order in which the blocks were forwarded

to the discard cache.

4.5.3 Size

The size of the discard cache required to augment effectively the use of hints in
cooperative caching is also of concern. If the required size is larger than the average
size of server memories, then the server is unlikely to be useful as a discard cache.
Fortunately, the required size of the discard cache is relatively small at O(N) blocks,
where N is the total number of clients in the distributed file system. This result
is derived from the properties of best-guess replacement. If the replacement of the
globally LRU block is delayed by O(NN) replacements, then a block younger than
the globally LRU block will be replaced from the discard cache before the globally
LRU block unless the size of the discard cache is at least O(N) blocks. In fact,
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in both the simulations and the prototype, the server memory size was adequate

enough that adding memory did not increase the hit ratio to the discard cache.

4.6 Summary

This chapter presents a new cooperative caching algorithm based on hints. Hints
refer to the probable global state of a distributed file system and are less expensive
to maintain than facts. As long as the benefit of hints exceeds the penalty of a few
inaccurate ones, a hint-based system provides high performance and low overhead.

Every client has lookup hints which refer to the master copy of a block which
is that copy directly fetched from the server. The client obtains the location hints
for the blocks of a file from the last client that opened the file (with help from a
consistency manager). A client uses the hints to obtain blocks directly from the
caches of other clients.

Hints are also used to replace blocks from the client caches. A client first decides
to forward a block to the cooperative cache only if the block is a master copy,
discarding the block otherwise. If the client decides to forward the block, the target
client which receives the block is the one which has the oldest block in the forwarding
client’s oldest block list (a list containing the probable ages of the oldest block on
each client). A client maintains the accuracy of this list by exchanging the age of
its oldest block with that of the target client during a replacement.

Hint-based cooperative caching uses file-based consistency rather than block-
based because it allows clients to access blocks without contacting a consistency
manager. The final aspect of the hint-based algorithm is the use of a heuristic to
determine if the replacement of a block from the client caches is a mistake, sending

such mistakenly replaced blocks to a discard cache on the server memory.
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CHAPTER 5
SIMULATION

This chapter evaluates the performance of the hint-based algorithm through
trace-driven simulation. The simulation results allow us to gain detailed insight
into the relative performance and overhead of the hint-based algorithm compared
to existing and ideal algorithms. The simulation environment is described first,
followed by the criteria for evaluating the algorithms. Finally, the performance and

overhead of all the algorithms are analyzed.

5.1 Simulation Environment

5.1.1 Traces

The algorithms were evaluated using trace-driven simulation based on the traces of
applications running on the Sprite network-based operating system[Baker91]. The
Sprite operating system ran on a network of about 40 Sun and DEC workstations
and provided a UNIX application interface[Ousterhout88]. Files in Sprite were
stored in servers and cached by clients, with strong consistency maintained among
the cached copies. One important aspect of these traces with respect to cooperative
caching is that Sprite encouraged sharing of files.

There were about 50 Sprite users, distributed among several academic research
groups, and engaging in multiple office and engineering tasks. The traces record the
file accesses of various applications in electronic communication, typesetting, editing,
software development, VLSI circuit design and graphics. These applications are still
widely used and are thus not specific to Sprite.

These traces cover four two-day periods, and record three different types of traces:
lookups, file activity and attribute management. The lookup and attribute manage-

ment records are not directly relevant to cooperative caching activity and thus not



65

used in our study. The file activity records contain file system accesses by applica-
tions, such as opening and closing files, and seeking on file descriptors. Actual read
and write events were not recorded, but can be inferred from file offsets in other
records.

The traces were restricted to the use of the main file server allspice. Table 5.1

shows statistics for the trace periods, while Table 5.2 shows the simulation param-

eters.
Trace Period
Parameter 1 2 3 4
Block reads 276,628 | 2,011,915 | 261,023 | 343,189
Unique blocks accessed | 53,349 13,108 | 33,063 | 75,273
Active clients 32 24 38 34

Table 5.1: Trace Period Statistics. This table contains statistics for the four trace
periods. Active clients refers to the number of clients that actually used the cooperative
cache during the period.

Most of the simulation parameters are derived from the original study on co-
operative caching by Dahlin et al.[Dahlin94], to simplify performance comparisons.
The access times were obtained from previously published measurements. Although
these measurements were taken around 1994 and are likely to be slow when com-
pared to state-of-the-art equipment, they were obtained from real systems. While
it was possible to update the simulation parameters, it would have made it difficult

to compare results with N-chance.

Clients 42 Servers 1

Client Cache Size 16 MB Consistency strong

Server Cache Size 128 MB || Block Size 8 KB

Local Latency 0.25 ms || Remote Latency | 1.25 ms

Disk Latency 15.85 ms || Write policy write-through
Warm-up Block Accesses | 400,000 | Message Latency | 0.2ms

Table 5.2: Simulation Parameters. This table describes the environment used to
evaluate the various cooperative caching algorithms. The rows Local Latency, Remote
Latency and Disk Latency refer to the average time to access a file block from the local
cache, cooperative or server cache, and disk respectively.
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The N-chance simulator was obtained from the designers of the algorithm, while
we developed the simulators for the hint-based, GMS and the two ideal algorithms.
The design of the simulator for the N-chance algorithm assumed write-through
caching and strong consistency with write-invalidation. The same assumptions were
made in the remaining simulators to make sure that there were no important differ-
ences in how the simulators handled events and to allow for fair comparison.

An important assumption was that there was a single manager handling cen-
tralized functions such as consistency and block location. This makes it easier to
measure the manager load imposed by the different systems, without introducing
an algorithm to distribute the load over multiple managers. This assumption was
also made by the designers of the N-chance simulator.

The N-chance simulator was modified to incorporate additional functionality
used in the zfs file system[Anderson95]. In the modified system, a manager prefer-
entially forwards a request to the client caches instead of a server, improving the
cooperative cache hit ratio and reducing the number of server accesses.

As the GMS algorithm does not specify a consistency mechanism, the GMS
simulator used file-based consistency, which was identical to that used in the hint-

based algorithm for reasons of fairness.

5.1.2 Evaluation Criteria

As stressed earlier, the key focus of this dissertation is to evaluate cooperative
caching algorithms in terms of both performance and overhead. Consequently, the

following two metrics are used to evaluate the cooperative caching algorithms:

e Average Block Access Time: This metric is the average time required to
access a file block. The access time is determined by the hit ratios to the
different layers of the storage hierarchy. Algorithms that make better use of
the local and cooperative caches to avoid disk accesses will have lower access
times. Access time is only measured for block reads because all algorithms
use write-through caches. The average block access time is measured for both

ideal and existing algorithms.
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e Overhead: This metric is the work required to manage the cooperative cache.
The overhead is primarily the messages exchanged between the clients and
the managers to coordinate cooperative caching. The computational overhead
of cooperative cache management is considered negligible: in the simulation
environment, cache management takes about 5 ps on an average while the
total latency to get a 8 KB block from a remote client cache is around 1.25

ms.

The overhead is broken down into manager load, messages for block lookup
and replacement, and network and client loads. The manager load is expressed
as the number of messages sent and received by the manager. This is a rea-
sonable measure of manager load because each message represents work by
the manager to coordinate cooperative caching. The overhead measurements

are not done for ideal algorithms because they are impractical to implement.

5.2 Simulation Results

This section describes the performance and overhead of the cooperative caching
algorithms when simulated using the Sprite traces. These results were first described
in an earlier paper[Sarkar96]. However there were two bugs that affected some of
the results but fortunately not our conclusions. The first bug was related to the
incorrect processing of the file identifier field in the traces by the simulators for the
hint-based, GMS, Optimal and Global LRU algorithms. This reduced the number
of unique file identifiers, and erroneously increased the local cache hit ratio due to
the resultant improved locality. The second bug was related to a version numbering
problem in the simulator for the hint-based algorithm which increased the number
of disk accesses at the expense of remote cache hits. The bugs marginally (< 1%)
affected the average block access times in all the trace periods except for the second.
In the second period, the average block access time of the affected algorithms was
incorrectly reduced by a factor of three. The bugs also affected the sensitivity

analysis, revealing a small divergence (5%) between the block access times of the
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hint-based and ideal algorithms as seen in Section 5.2.7.

The performance of the algorithms are compared in terms of average block access
time while the overhead is discussed using manager load, lookup messages, replace-
ment messages, and network and client loads. The effectiveness of the discard cache
is also measured, as is the sensitivity of the block access time to variations in the
simulation parameters. All the simulation results presented in this chapter ignore

the warm-up block accesses.

5.2.1 Block Access Times
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Figure 5.1: Block Access Time. This figure shows the average block access times for
the N-chance(N), GMS(G), hint-based(H), Global LRU(L) and Optimal(O) algorithms for
each period of the Sprite traces. The segments of the bars show the fraction of the block
access time contributed by hits to the local cache, remote caches, server cache, and disk.

Figure 5.1 shows the average block access time for all the algorithms, broken
down by the time spent in accessing the local cache, remote caches, server cache,
and disk. The average block access times for the GMS and hint-based algorithm are
very close to the ideal algorithms, and they spend similar amounts of time handling
hits to the different levels of the storage hierarchy. The average block access time
of the hint-based algorithm is about 3% worse than that of the other algorithms
in the third period. This working set requirements of this period are sometimes

comparable (as much as 92%) to the aggregate size of the client memories and as a
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result, the degree of block movement in and out of the client caches in this period is
relatively higher than that in the other periods. The high degree of block movement
causes some inaccuracies in block location hints in this particular period, as seen
in Table 5.4. Table 5.3 provides the distribution of hits to the different layers of
the storage hierarchy averaged across all the traces. Overall, the performance of the

hint-based algorithm is particularly encouraging, given that hints can be occasionally

incorrect.
Algorithm N-chance | GMS | Hint-based | Global LRU | Optimal
Local 47.2 45.5 47.3 47.3 47.4
Hit Remote 49.8 52.5 50.4 50.9 50.9
Distr. | Server 0.0 0.0 0.2 0.0 0.0
(%) Disk 3.0 2.0 2.1 1.8 1.7

Table 5.3: Distribution of Hits. This figure shows the distribution of hits (Hit
Distr.) to the different layers of the storage hierarchy for the N-chance(N), GMS(G),
hint-based(H), Global LRU(L) and Optimal(O) algorithms averaged across all the peri-
ods of the Sprite traces. The rows Local, Remote, Server and Disk refer to the percentage
of total accesses to the local cache, remote caches, server cache, and disk.

The N-chance algorithm has a higher number of disk accesses compared to the
others in all of the trace periods except for the third. This is caused by N-chance’s
random replacement policy, coupled with the low degree of sharing in these periods.
The probability that a replaced block in a randomly-chosen target client was being
accessed by the client is higher than that in an idle client. The low degree of sharing
makes it likely that there are no other copies of the randomly replaced block in
the client caches. Consequently, a future access to the replaced block would likely
result in a disk access. Further evidence of this phenomenon was found by Feeley

et al[Feeley95].

5.2.2 Lookup Messages

The overhead imposed by lookup messages in hint-based cooperative caching de-
pends on the accuracy of hints. If a hint is accurate, block lookup takes two mes-

sages: one to send a block request to a client or the server, and one for the client or
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the server to respond with the requested block. If a hint is inaccurate, there is an

additional message for each time the block request is forwarded to another client or

the server.
Period 1 2 3 4 | average
Hint Correctness(%) 99.68 | 99.98 | 99.07 | 99.54 99.94
Absolute Correctness(%) | 99.77 | 99.97 | 99.44 | 99.33 |  99.93
False Negatives(%) 0.008 | 0.010 | 0.015 | 0.007 0.010

Table 5.4: Block Location Hint Accuracy. The row Hint Correctness refers to the
percentage of local cache misses where block location hints correctly determine that the
block is in the client caches. The row Absolute Correctness represents the percentage of
correct block location hints that point to the actual location of the block. The row Fulse
Negatives represents the percentage of local cache misses when the block is in the client
caches but the hints say otherwise. The column average refers to the average for the
categories of hint accuracy across all periods.

The simulations revealed that the block location hints for the client caches are
highly accurate (Table 5.4). For only 0.01% of the local cache misses (averaged
across all periods) is the desired block in the client caches but the hints say otherwise.
Conversely, when a hint says a block is in the client caches, it is correct for 99.94%
of all local cache misses. Of these correct hints, 99.93% point to the actual location
of the block, while the remaining result in requests being forwarded. The high hint
accuracy and the small number of forwarded requests translate into an average of
only 2.001 + 0.006 messages to perform a block lookup. In comparison, both N-
chance and GMS always require 3 messages per block lookup: one to send a block
request to the manager, one for the manager to forward the block request to a client,

and one for the client to respond with the requested block.

5.2.3 Manager Load

The load imposed on the manager is one measure of the overhead of an algorithm.
Figure 5.2 shows the manager load, expressed as the number of messages sent and
received by the manager per block access. This metric allows an estimate of the

load on the manager given block access patterns other than the ones in the traces.
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Figure 5.2: Manager Load. This shows the average manager load of the N-chance(N),
GMS(G) and hint-based(H) algorithms in the Sprite traces. The manager load is defined
as the number of messages received and sent by the manager per block access. The load
is categorized by its cause: consistency, replacement and lookup.

The manager load is further broken down by the source of the load. Consistency
messages are those required to keep block location information up-to-date in the
client caches and this overhead is incurred by all the three algorithms. The Lookup
and Replacement messages are those sent and received by the managers in the GMS
and N-chance algorithms to lookup and replace blocks from the client caches. The
hint-based algorithm does not incur any manager load for lookup and replacement
as these decisions are taken by clients.

As can be seen, managing the client cache consistency imposes a very small load
on the manager. While the choice of a consistency algorithm may affect performance,
it does not contribute significantly to manager load. File-based consistency is still

important for enabling the use of hints for replacement and lookup.

Period 1 2 3 4
Degree of Sharing | 1.98 | 1.85| 4.02| 2.08
Invalidation Rate | 0.008 | 0.005 | 0.035 | 0.01

Table 5.5: Consistency Patterns. The row Degree of Sharing refers to the average
number of copies of a block in the client caches for each trace period. The row Invalidation
Rate represents the average number of invalidations per block access in each trace period.

One further observation is that the consistency traffic per block access is highest
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in the third period. This is due to the higher degree of sharing and increased
invalidation rate in this particular period compared to the others(Table 5.5). When
a client obtains a write token for a file, the consistency manager revokes the tokens
from the clients accessing the file and invalidates the file’s blocks from their caches.
The higher degree of sharing implies that relatively more clients are accessing the
same file block than in other periods. This means that in the event of a write to
the file, the consistency manager needs to contact more clients to invalidate the
file’s blocks than in other periods. Furthermore, since the rate of invalidation is also
higher than in other periods, the amount of consistency traffic per block access is
also higher.

Replacement and lookup traffic account for nearly all of the manager load for the
N-chance and GMS algorithms. The clients must contact the manager each time a
block is forwarded or lookup is done, whereas the hint-based algorithm allows clients
to perform these functions themselves. The result is that the manager load is much
higher for N-chance and GMS.

The replacement traffic is higher in N-chance than GMS in all the periods except
for the third because of the poor performance of the N-chance algorithm as docu-
mented in Section 5.2.1. The increased number of disk accesses in these periods in
N-chance compared to GMS also increases the number of replacements needed to
make space for the blocks fetched from the disk, thereby resulting in replacement

traffic that is higher than that in GMS.

5.2.4 Replacement Messages

Figure 5.2 showed that about half of the N-chance and GMS manager loads are
caused by block replacement messages. Figure 5.3 depicts the number of replacement
messages each algorithm requires to handle a local cache miss. This metric allows
us to estimate the overhead associated with replacing a block in the client caches
for each algorithm. N-chance and GMS have three sources of replacement messages:
forwarding the block to another client and notifying the manager, notifying the

manager when a block is deleted, and exchanging messages between the clients
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Figure 5.3: Replacement Traffic. This figure shows the number of replacement mes-
sages required per local cache miss in the N-chance(N), GMS(G) and hint-based algo-
rithms(H). The messages are categorized by those required to forward a block, delete a
block, and keep track of the number of copies of a block (duplicate avoidance). For N-
chance and GMS, this includes two messages per singlet forwarded (one to forward the
block and another to notify the manager), one message per block deleted, as well the
messages required to keep track of the number of copies of a block. For the hint-based
algorithm, this includes one message per master copy forwarded. Best-guess replacement
does not need to exchange messages with a manager for either duplicate avoidance or
deletion, and as a result, incurs no manager load for these functions.

and the manager to determine when a block should be discarded versus forwarded.
Except for the actual forwarding of the block to another client, all messages involve
the manager, increasing its load. For best-guess replacement, the only message
required is the one to forward the master copy of a block to another client. Best-
guess replacement does not need to exchange messages with a manager for either
duplicate avoidance or deletion, and as a result, incurs no manager load for these
functions. This dramatically reduces the total number of replacement messages
required per local cache miss for the hint-based algorithm.

Further observing the relative replacement traffic between GMS and N-chance,
the former algorithm sends a lower number of replacement messages per local cache

miss. As discussed in Chapter 3.2.2, this is because GMS relies on the manager to
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inform a client only when a block becomes a singlet, while the N-chance algorithm
relies on a client to contact the manager almost every time (98%) the client replaces
a block.

One of the potential drawbacks of the master copy algorithm is that it may un-
necessarily forward the master copy of a block to the cooperative cache as described
in Chapter 4.3.1. Although Figure 5.3 shows that best-guess replacement outper-
formed the other algorithms, the fraction of forwards that are unnecessary were

measured. An average of only 1.97% are unnecessary across all periods (Table 5.6).

Period 1 2 3 4 | average
Unnecessary Forwards | 2.28 | 1.92 | 3.93 | 1.58 1.97

Table 5.6: Unnecessary Forwards. The row Unnecessary Forwards refers to the per-
centage of forwards that are not necessary in the hint-based algorithm (i.e. forwards of
master copy blocks which are deleted before they are down to their last copy). The col-
umn average refers to the average percentage of forwards that were unnecessary across all
periods.

5.2.5 Network and Client Loads

The additional load on the network and clients due to cooperative caching is also
important. Figures 5.4 and 5.5 show the average and maximum network load due
to cooperative caching. Similarly, Figures 5.6 and 5.7 show the average and max-
imum load on a client due to cooperative caching. As is evident, the throughput
requirement of cooperative caching on the network for all the algorithms is negligible
at less than 4% of the available bandwidth of a 10 Mbps Ethernet network. Simi-
larly, the throughput requirement on a client for all the algorithms is also negligible
(< 0.05%) when compared to the bandwidths of 20 MBps and greater that are avail-
able in standard I/O busses. On further inspection, the loads due to cooperative
caching on both the network and clients are higher by a factor of about 20-30 in the
existing algorithms than those in the hint-based algorithm (it is particularly evident
in the second period). This implies that that the existing algorithms are more likely

than the hint-based algorithm to swamp the network and disrupt client activity if
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Figure 5.4: Average Network Load. This figure shows the average load on the network
(Kbps) due to cooperative caching for the trace periods in the N-chance(N), GMS(G) and
hint-based algorithms(H).
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Figure 5.5: Maximum Network Load. This figure shows the maximum load on the
network (Kbps) due to cooperative caching for each trace period in the N-chance(N),
GMS(G) and hint-based algorithms(H).
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Figure 5.6: Average Client Load. This figure shows the average load on a client
(Kbps) due to cooperative caching for the trace periods in the N-chance(N), GMS(G) and
hint-based algorithms(H).
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Figure 5.7: Maximum Client Load. This figure shows the maximum load on a client
(Kbps) due to cooperative caching for each trace period in the N-chance(N), GMS(G) and
hint-based algorithms(H).
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the bandwidth requirement of applications starts to approach the available network

bandwidth.

5.2.6 Discard Cache

Server Mem Hit Ratio(%) Block Access Time(ms)

Use | Period 1 2 3 4| Ave | 1 2 3 4 | Ave
Disk Cache 0.12 1 0.47 1 0.22 1 0.20 | 045 | 3.43 | 3.22 | 3.89 | 3.64 | 3.23
Coop Cache 1.16 | 1.96 | 0.98 | 1.35 | 1.83 | 2.86 | 2.79 | 3.22 | 3.12 | 2.77
Discard Cache | 1.55 | 2.56 | 1.22 | 1.76 | 2.46 | 2.66 | 2.58 | 2.81 | 2.74 | 2.57

Table 5.7: Server Memory Uses. This table shows how different uses of the server
memory affected the hit ratio of the server memory and the average block access time of
the hint-based system. Server memory is used as either a traditional disk cache, as part of
the cooperative cache, or as a discard cache. The results are shown for each of the trace
periods as well as the average across all periods in the column Ave.

The server memory represents a valuable resource to the system and at 128 MB
it constitutes a large fraction of the system’s total memory. The hint-based system
uses the server memory as a discard cache to mask mistakes made by the best-guess
replacement policy. There are other possible uses for the server memory, including
as a traditional server cache and as a portion of the cooperative cache, as discussed
in Chapter 4.5.1.

The default 16 MB client cache size used in the simulations makes it difficult to
measure the effectiveness of the discard cache. The aggregate client memory size
greatly exceeds the working set size of applications and as a result, few accesses go
to the server. Thus, to measure the effectiveness of the discard cache, the sizes of
the client caches and server cache were reduced to 4 MB and 16 MB respectively,
and we reran simulations of the hint-based algorithm with the different uses of the
server memory over the same traces. Reducing the cache sizes makes the aggregate
client memory size comparable to the working set requirements of client applications.
These cache sizes increase the miss ratios on the local and cooperative caches, and
therefore the number of server accesses.

The results are shown in Table 5.7 and indicate that when the server memory is
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used as a server cache, it has a very low hit ratio of 0.45% (averaged over all periods)
because most of the blocks in the server memory are duplicated in the client caches.
This results in an average block access time of 3.23 ms. If the server memory is
instead used as part of the cooperative cache, old blocks with no duplicates are
forwarded to the cooperative cache on the server memory and consequently, the hit
ratio increases by nearly a factor of 4 to 1.83%, causing the block access time to
drop to 2.77 ms. Using the server memory as a discard cache results in forwards of
only young mistakenly replaced master copies to the discard cache, which further
increases the hit ratio to 2.46% and reduces the block access time by nearly 10% to

2.57 ms.

5.2.7 Sensitivity

The analysis presented in the previous sections was based on a single system con-
figuration, in which the number of clients, client cache size, number of servers, and
other parameters were fixed. Although the hint-based algorithm performed well un-
der the chosen configuration, its sensitivity to variations in the environment is also
important. This section presents the sensitivity of the block access time and the
manager load to two environmental variables: the client cache size and the fraction
of the clients that actively use the cooperative cache. These changes allow us to
simulate the effect of memory-intensive workloads by changing the aggregate size of

the client memories relative to the working set requirements of client applications.

5.2.7.1 Client Cache Size Sensitivity

Figure 5.8 shows the average block access time across all the trace periods as the
client cache size is varied from 4 MB to 16 MB. The remaining system parameters
are the same as those shown in Table 5.2. A smaller client cache increases the load
on cooperative caching in two ways: first, it increases the local cache miss ratios
and therefore accesses to the caches of other clients; and second, it reduces the size
of the cooperative cache. Even with 4 MB caches the algorithms do a good job of

finding and using the available idle memory, producing block access times that are
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Figure 5.8: Access Time vs. Cache Size. This figure shows the average block access
time for the algorithms as a function of the client cache size.

close to that of Optimal. The exception is the N-chance algorithm, whose policy of
randomly forwarding blocks hurts performance when the working set size of client
applications starts to approach the aggregate size of the client memories.

The average block access time of the hint-based algorithm is about 5% worse
than that of the ideal algorithms when the client cache size is reduced to 4 MB.
This deviation is expected to grow as the client cache size is reduced further, because
block location hints tend to become increasingly inaccurate as the effective size of
the cooperative cache is reduced compared to the working set requirements of client
applications.

If we consider the manager load for the existing and hint-based algorithms, a
different picture emerges. As Figure 5.9 indicates, the manager load for the existing
fact-based algorithms almost quadruples when the cache size is reduced from 16
MB to 4 MB. The decrease in cache size increases accesses to remote client caches
and the server, causing increased manager load in N-chance and GMS. In contrast,
the manager load in the hint-based algorithm is lower by as much as 30 times than

that in the existing algorithms because most cooperative cache decisions do not
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Figure 5.9: Manager Load vs. Cache Size. This figure shows the manager load
(manager messages per block access) for the algorithms as a function of the client cache
size.

involve the manager. Thus, while the average block access time of the hint-based
algorithm diverges marginally (5%) from that of the ideal algorithms as cache sizes
are reduced, the manager load is substantially lower (30 times) than those of the

existing fact-based algorithms.

5.2.7.2 Active Client Sensitivity

The sensitivity of the block access time to the fraction of clients that are using the
cooperative cache is also important. Increasing the fraction of clients that use the
cooperative cache increases the demand for memory, and also decreases the effective
cooperative cache size compared to the working set requirements of client applica-
tions. This combined effect increases the importance of managing the cooperative
cache efficiently. Figure 5.10 shows the average block access times of the algorithms
for the second period as the fraction of clients that used the cooperative cache was
increased from 50% to 75% (doing this for the remaining periods without altering
workload was difficult). As is evident, the block access time of the N-chance algo-

rithm declines at a faster rate than that of the remaining algorithms as the fraction
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Figure 5.10: Access Time vs. Active Clients. This figure shows the average block
access time for the algorithms as a function of the fraction of clients that used the coop-
erative cache during the period. The fraction of clients using the cooperative cache was
varied by removing idle client trace records from the trace. Due to the difficulty in doing
this without affecting the workload behavior, only the second period was used.

of clients using the cooperative cache increases. Again, this is due to the random
forwarding of blocks to other clients in N-chance. The remaining algorithms all have
block access times close to that of Optimal, while the hint-based algorithm shows
the same marginal divergence from the ideal algorithms as in the previous sensitivity
experiment. Similarly, the manager load for the hint-based algorithm is 30-50 times
lower than that of the existing algorithms (Figure 5.11) because the increased traffic

to the cooperative cache also increases the manager load in N-chance and GMS.

5.3 Summary

This chapter presents trace-driven simulation results which compare the perfor-
mance and overhead of the proposed hint-based algorithm with those of the existing
and ideal algorithms. The traces were obtained from applications running on a
cluster of about 40 workstations and taken over four two-day periods.

The algorithms were measured using two separate criteria. The first was the
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Figure 5.11: Manager Load vs. Active Clients. This figure shows the manager load
(manager messages per block access) for the algorithms as a function of the fraction of
clients that used the cooperative cache during the period. The fraction of clients using
the cooperative cache was varied by removing idle client trace records from the trace. Due
to the difficulty in doing this without affecting the workload behavior, only the second
period was used.

average block access time, which measures how successful an algorithm is in in-
creasing hits to the local and cooperative caches. The second criteria was overhead
which measures the work done by the manager in terms of messages in managing
the cooperative cache.

The important results from the simulation are summarized below:

e The block access times of the hint-based algorithm match those of the existing

and ideal algorithms over all the four periods of the traces.

e Over all the periods, when a hint says that a block is present in the cooperative

cache, it is correct for 99.94% of all local cache misses.

e The manager load in the hint-based algorithm was substantially lower (30

times) than that in the existing algorithms.
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e The evaluation of the discard cache as a use for the server memory reveals

that the hit ratio is the highest at 2.46% among all uses of server memory.
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CHAPTER 6
IMPLEMENTATION

This chapter evaluates the hint-based algorithm by measuring a prototype’s per-
formance. The prototype allows us to test the algorithm with a workload generated
by real users and observe the potential benefits. A prototype also enables us to val-
idate the results obtained from the simulations presented in the previous chapter.
Finally, the prototype gives insight into the complexity of implementing a hint-based
algorithm.

The chapter presents the details of the prototype implementation, and then
discusses the differences between the prototype and the hint-based algorithm. This
is followed by a description of the measurements obtained from the prototype over
the period of one week. The measurements include the client activity profile of
workstations in the cluster, the average block access time as compared to NFS, the
overhead in the cluster as well as the performance of the various design decisions in

the hint-based algorithm.

6.1 Prototype

The prototype was implemented on a cluster of machines running Linux v2.0.23
[Beck96] and NFS v2[Sandberg85]. The Linux kernel was modified to support hint-
based cooperative caching. The extensions to the Linux kernel added about 10
KB to a 390 KB kernel. The kernel extensions are discussed with respect to block
lookup, replacement, cache consistency and discard caching. As mentioned above,
clients and servers communicated using NF'S, while inter-client communication used

the SunRPC protocol[Sun88|.
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6.1.1 Block Lookup

The location mechanism in hint-based algorithm does not use features specific to
any operating system and thus there was no need for modifications tailored to the
Linux kernel.

The composition of a block location hint is shown in Table 6.1. The block
location hints are indexed by the Block Identifier. The entry Cache Location points
to the location of a block present in a client’s cache. If the block is not present
in the cache, the entry Client contains the identity of the client possibly having
the block. Clients are identified by name and a machine uses the DNS naming
service to resolve the client name to the correct network address. The entry Source
contains the identity of the server or the client from which a block was obtained,
thus enabling the client caching the block to determine if the block is a master copy.
The entry Boot Identifier contains the boot identifier of the client referred to in the
entry Client, and is used to determine whether the client was rebooted since the

hint was obtained, as described in Section 6.1.1.2.

‘ Block Identifier ‘ Cache Location ‘ Client ‘ Source ‘ Boot Identifier ‘

Table 6.1: Block Location Hints. The table describes the format of the block location
hints. Further explanation is available in Section 6.1.1.

Each client maintains a cache of these block location hints. These hints are
obtained from other clients when a client opens a file, as described in Section 4.2.1.
Block location hints are deleted if the client is informed that the block referred to
by the hint has been deleted or invalidated. However, the hint cache grows in size
because the rate at which new blocks are referenced by clients is faster than the rate
at which existing blocks are invalidated or deleted. Consequently, the hint cache
is pruned using LRU when the size of the cache exceeds a given threshold. This
threshold is an operating system parameter that can be changed at runtime.

The remaining implementation issues were uniquely identifying a block in the

client caches, and dealing with occasional client reboots and component failures.
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6.1.1.1 Block Identification

In a cooperative-caching file system, clients provide blocks to other clients from
their caches. As servers in a distributed file system might have overlapping block
address spaces, it is important that a request to a client for a block must uniquely
identify the block in the distributed file system. Complicating this fact is that a
Linux NF'S client indexes a block in its file cache using the memory address of the
inode of the block’s file. As the memory address of the inode of a file is not unique
across clients, there needs to be a different indexing mechanism to locate a block in
the client caches.

The block identifier used in the location hints relies on the triplet (Server, File
Identifier, Offset) to uniquely identify a block in the client caches. As in clients,
the server is identified by its name and the client uses the DNS service to resolve
the name to the correct network address. This triplet is sufficient as a block from a
particular server is uniquely identified in NF'S by the identifier of the file to which
the block belongs and the offset of the block within the file.

The sequence of steps for a cooperative cache lookup in Linux is shown in Fig-
ure 6.1. Whenever a Linux application needs a block, the kernel calls readpage to
check if the block is in the cache. If the block is not present in the cache and belongs
to a NF'S-mounted filesystem, the readpage routine calls nfs_readpage . This routine
then checks the hint cache to determine where the block is located in the coopera-
tive cache, and sends a request for the block to the appropriate client. The client
receives this request for a cooperative cache block using a nfsd daemon thread. This
thread then checks with the hint cache to get the location of the block in the client’s
cache. If the receiving client has the block in its file cache, the block is sent to the
requesting client. If the receiving client does not have the block, the hint cache may
contain the identity of another client possibly having the block. In this case, the
receiving client forwards the request for the block to this new client. Otherwise, the
receiving client forwards the request for the block to the server.

There is no limit to the number of times a request can be forwarded from one



87

Client A Client B

readpage

Hint Cache

\

Block Request

Block

Figure 6.1: Block Lookup in Linux. The figure shows the sequence of kernel routines
called in Linux to lookup a block in the cooperative cache.

client to another. However, it is conceivable that the forwarded requests could
add to the network load when there is a lot of block movement in and out of the
client caches. One possibility is to limit the forwarding of requests between clients
whenever the network load exceeds a threshold, directing forwarded requests to the
server from then on. However, this needs to be investigated further and is a matter

of future study.

6.1.1.2 Client Reboots

Clients are occasionally rebooted, clearing their caches. This creates incorrect hints
that refer to the now-empty cache, and lowers the accuracy of hints in other clients.
It is important to incorporate the effect of rebooting into the design of a cooperative-
caching system so that hint accuracy is not adversely affected.

The incorrect hints are largely eliminated by incorporating a boot identifier in
each client which is incremented whenever a client is rebooted. A block location hint
is tagged with the boot identifier of the client to which the hint refers. When a client
reboots, its boot identifier changes. Other clients learn this new boot identifier when
they request block location hints from the rebooted client. To eliminate an incorrect

block location hint, a client checks if the boot identifier of the client referred to by
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the hint is the most current one and discards the hint if the test fails. As the
propagation of block identifiers is piggybacked on existing traffic, this mechanism

imposes minimal overhead on block lookup.

6.1.1.3 Client and Manager Failure

The lookup algorithm uses a lazy approach to handle client failure. A client detects
that another client has failed when messages sent to the client are not acknowledged
within a specified timeout period. If a client detects that another client has failed,
then the client assumes that the failed client is unavailable and ignores all location
and replacement hints that refer to the failed client. Once the failed client comes
back up, it contacts the manager which provides the client with a list of clients in
the distributed file system. The client then gradually contacts the clients on the
list as directed by its location and replacement hints. The contacted clients then
resume communication with this previously-failed client. The disadvantage of this
lazy policy is that a client may remain unaware that a failed client is back up due
to lack of contact. A heartbeat protocol would remedy this disadvantage but the
overhead would be higher.

The lookup algorithm is also the only part of the hint-based cooperative caching
algorithm that deals with a manager. Clients deal with manager failure similarly
to the way they deal with client failure. A client detects that a manager has failed
when requests for hints are not acknowledged within a specified timeout period.
When a client detects that a manager has failed, the client stops contacting the
manager. On being restarted, the manager contacts all clients in the list of clients
in the distributed file system. The contacted clients then resume communication

with the manager.

6.1.2 Replacement

There were two minor differences between the implementation and the hint-based
algorithm. The first was that the discussion of the replacement algorithm in Chap-

ter 4.3 assumed LRU as the replacement policy for a client’s local file cache. In
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contrast, Linux uses Global Clock (described in Section 2.5.1) rather than LRU to
choose blocks for replacement. While LRU discards the block which has been refer-
enced the least recently from a cache, Global Clock chooses one of a set of candidate
blocks which have not been referenced recently and thus does not follow an exact
LRU order in replacing blocks from a cache. Hence, the results obtained from the
implementation may not be identical to that from the simulation. The effect of
not using an exact LRU order in Global Clock is hard to predict without detailed
workload information. However both theory and practice suggest that the extent of
deviation of Global Clock from LRU is minimal[Easton79, Voelker97].

The second difference between the simulation and the implementation is the use
of a threshold to trigger replacement in Linux. In the simulation, a client triggers
the replacement policy when its file cache is full and the client needs to make space
for a new block. In contrast, Linux triggers the kswapd daemon when the number
of free blocks in its file cache falls below a threshold free_pages_low; the daemon
then replaces blocks from its cache until the number of free blocks exceeds the
threshold free_pages_high.. This difference does not affect the order in which blocks
are replaced from a client’s cache, but does affect the time of replacement. As a
result, this difference should not have a significant effect on performance.

The replacement algorithm in hint-based cooperative caching is independent of

manager failures and deals with client failures as described in Section 6.1.1.3.

6.1.3 Consistency

As cooperative caching can work with any consistency mechanism, integrating the
hint-based cooperative-caching algorithm with NFS was not a problem. NFS adopts
a client-driven consistency where the clients keep their caches up-to-date by peri-
odically checking with the NE'S server. While this means that the client caches can
be temporarily inconsistent, the implication for cooperative caching is that clients
can sometimes get stale blocks from other clients, as discussed in Chapter 2.6.1..
Consequently, the number of accesses to stale copies of a block will be higher than

that in the simulation which uses strong consistency.
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The granularity of consistency in NFE'S is also suited for hint-based cooperative
caching. NF'S keeps consistency in terms of files, which is ideal for the use of hints as
clients do not need to frequently communicate with a manager to ensure consistency.
On the other hand, it would be difficult to incorporate the N-chance algorithm into

NF'S as N-chance requires block-based consistency.

6.1.4 Discard Cache

The discard cache could not be located in the server memory because of the con-
straints imposed by the testbed. The server ran a proprietary operating system and
there was no license to modify the source code to incorporate the discard cache. In
addition, the server provided uninterruptible file service for instructional purposes,
as a result of which there was no possibility of kernel development in the server.
Similarly, there was no possibility of using the server as part of the cooperative
cache.

However, the utility of the discard cache was extrapolated by designating an
idle machine to serve as the host for an independent discard cache. The number of
forwards to the discard cache and the hit rate on the discard cache was monitored
to measure its effectiveness. An independent discard cache incurs extra overhead
as clients may have to check both the discard cache and the server in sequence
to locate a mistakenly replaced master copy, while a discard cache in the server
memory would require only one check with the server to locate the block. The
extra overhead caused by an independent discard cache depends on the number of
unsuccessful accesses to the discard cache, but fortunately the results documented

in Section 6.4.6 indicate that this traffic was negligible.

6.1.5 Miscellaneous

Finally, as the server ran a proprietary operating system and did not provide the
necessary statistics, it was not possible to measure server cache hits. As a result,
server accesses were not segregated into cache and disk accesses. Another implication

of this was the inability to compare a traditional server cache with the discard cache.



91

6.2 Experimental Setup

The measurement of the prototype was done on a cluster of 8 Pentium client work-
stations over the period of one week. Each workstation was a 200 MHz Pentium
Pro running Linux and NF'S; connected by 100 Mbps switched Ethernet. The work-
stations were located on the desktops of faculty and students. The workstations
rosewood, pelican, blackoak, delphin, carta and omega were used by students and
had 64 MB of memory. The workstations roadrunner and cicada were used by
faculty and had 128 MB of memory.

The server was a Network Appliance F520 machine with 128 MB of memory and
4 MB of NVRAM[Hitz94]. All the data files and most of the Linux binaries were
stored in the server. The remaining Linux binaries were stored in the local disk of
each workstation because they were required during bootup time. Typical appli-
cations run on the cluster ranged from word processing, editing, operating system
development and compiler benchmarking[Mosberger96, Proebsting97]. There was a

single manager running on rosewood which coordinated the cooperative cache.

Local Memory Latency 0.1 ms
Remote Memory Latency | 0.5 ms

Server Access Latency 12 ms
Forward Latency 0.5 ms
Block Size 4 KB

Table 6.2: Experimental Setup Parameters. This table lists the average access times
and block size in the experimental setup. The average times to fetch a 4 KB block in the
local cache, the cache of another client and the server are shown in the rows Local Memory
Latency, Remote Memory Latency and Server Access Latency. The average roundtrip time
for forwarding a block using kernel-level SunRPC is shown in the row Forward Latency.

The block size and average access times are shown in Table 6.2. The average
times to fetch a 4 KB block in the local cache, the cache of another client and
the server are shown in the rows Local Memory Latency, Remote Memory Latency
and Server Access Latency. These latency values were the average to fetch 10,000
blocks from each layer of the storage hierarchy. The server access latency was

measured repeatedly to even out differences at different times of the day and week.
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Measurements of individual accesses could not be obtained as the Linux kernel
did not support a microsecond timer. The average roundtrip time for forwarding a
block using kernel-level SunRPC was also measured by taking the average for 10,000

messages and is shown in the row Forward Latency.

6.3 Methodology

Measurements were collected on every workstation at 15 minute intervals. The
measurements included the hits to the layers of the storage hierarchy, forwards to
the cooperative cache, forwarded block location requests, deletes, hint requests, hint
accuracy among others.

The criteria used to evaluate the hint-based cooperative caching file system is
similar to that used in the simulation. First, the benefit of hint-based cooperative
caching was measured by estimating the average block access time with and without
cooperative caching. To measure whether hint-based cooperative caching disrupted
the network and client activity, the overhead of maintaining hints in the distributed
file system was also monitored. Finally, each of the various design decisions taken
in hint-based cooperative caching was individually evaluated. The utility of the
discard cache was extrapolated by designating an idle machine to serve as the host

for an independent discard cache.

6.4 Prototype Measurements

6.4.1 Client Activity Profiles

To understand better the