
Escort: A Path-Based OS Security Architecture

Oliver Spatscheck and Larry L. Peterson

TR 97-17

Abstract

Escort is the security architecture for Scout, a configurable operating system designed for network appli-

ances. Scout is unique in that it is designed around paths—a communication-centric abstraction that en-

capsulates information flows through the system—rather than the more traditional processes and servers.

Scout uses paths to make end-to-end resource allocation decisions. Escort extends this idea to isolate

these information flows, as well as to provide end-to-end accountability. This paper introduces the Escort

security architecture, shows how it can be used to enforce common security policies, and evaluates its

design according to several well-established criteria.

Department of Computer Science

The University of Arizona

Tucson, AZ 85721



1 Introduction

The ability to secure a computing system depends greatly on the design of its operating system. Saltzer and Schroeder

[14] introduced a set of criteria by which one can evaluate the secure design of a computer system. These criteria have

recently been summarized by Wallach, et. al. [17], and are listed below.

Economy of Mechanism: Designs which are smaller and simpler are easier to inspect and trust.

Fail-safe Defaults: By default, access to every object should be denied unless it is explicitly granted.

Complete Mediation: Every access to every object should be checked.

Least Privilege: Every program should operate with the minimum set of privileges necessary to do the job. This

prevents accidental mistakes from becoming security problems.

Least Common Mechanism: Any resource that is shared among different programs can be used as a communication

path, and thus, a potential security hole. Therefore, as little data as possible should be shared.

Accountability: The system should be able to accurately record who is responsible for using a particular privilege.

Psychological Acceptability: The system should not place an undue burden on its users.

Monolithic operating systems like Unix violate several of these design principles. First, a monolithic kernel is

large, making it difficult to inspect and trust. Second, monolithic systems violate the principle of least privilege

since they offer a single broad interface, and they allow a process to use all privileges given to the user that spawned it.

Third, they do not follow the principle of least common mechanism since many kernel data structures are unnecessarily

shared by all processes. Fourth, monolithic systems do not support full accountability since there are kernel tasks not

associated with any user process; e.g., time spent processing incoming network packets is not associated with the

receiving process. Finally, the principle of complete mediation is only enforced on a very coarse-grain level.

Microkernel-based systems like Mach [1] attempt to address some of these limitations. Instead of a single large

kernel, they consist of a small (micro) kernel and a collection of servers. Each server consists of less code and defines

a narrower interface, making it easier to verify each component and improving the system’s ability to restrict programs

to the minimum set of privileges they need to do the job. Unfortunately, the servers are still fairly coarse-grain—they

are on the order of a UNIX server or a network message server—meaning that many of the limitations outlined above

are only marginally improved: servers are still difficult to inspect, access control is still fairly coarse-grained, processes

that enter a server still have access to shared state, and all the processes that enter a server have to trust that server will

not leak information from one process to another. In addition, server-based designs actually make accountability harder

since a cascading of servers—i.e., one server invoking another—makes end-to-end accountability more difficult.

The DTOS operating system [10] addresses some of these problems by adding finer grain control over the indi-

vidual ports in Mach. For example, a user that has access to the port of a UNIX server in regular Mach can issue all

UNIX system calls; it is up to the UNIX server to make finer grain access control decisions. DTOS makes it possible

to restrict this access in accordance with a global policy; e.g., limit the user to certain file accesses. However, this

approach also falls short. If a server uses another server to fulfill its task, the access control of the user is based on the

rights available to the intermediate server rather than the user that originally issued the request. Again, all servers have

to be trusted.

Based on this experience, it is obvious that a secure OS design depends not only on fine-grain access control and

a global policy, as DTOS provides, but also on the ability to protect the flow of information through the system; i.e.,

from server to server. As early as 1985, Boebert and Kain [5] introduced the idea of protecting information flows in

assured pipelines to enforce certain policies. T-Mach [15] and DTOS also allow policies that define an implicit flow

of information, but no operating system has centered its design around the idea of a flow rather than processes and

servers.

This paper describes an OS security architecture built around the idea of an information flow. The architecture,

called Escort, is designed for the Scout operating system [11], which defines a first class path object to encapsulate

I/O data as it moves through the OS. Scout paths were originally designed to enable code optimizations and to support

1



quality of service guarantees, but as we demonstrate in this paper, they can be extended in a natural way to build

secure systems. While this path-based approach can be applied to Unix-like systems, Scout is designed for network

appliances, such as network-attached devices (cameras, disks, displays), application-level gateways (firewalls, web

caches, proxies), hand-held and portable devices, and specialized servers (file and web servers). This paper describes

the Escort security architecture in terms of network appliances.

Section 2 gives a brief overview of Scout and Section 3 presents the Escort security architecture. Section 4 then

describes an example system—a web server—to illustrate how the architecture works, and Section 5 evaluates Escort

in terms of the criteria outlined earlier in this section.

2 Scout OS

Scout is a configurable OS that includes primitive abstractions to support communication. It is written in C and runs

stand-alone on Intel Pentium and Digital Alpha processors. This section gives a brief overview of Scout.

2.1 Configurability

Modules are the unit of program development and configurability in Scout. Each Scout module provides a well-defined

and independent functionality. Well-defined means that there is usually either a standard interface specification, or

some existing practice that defines the exact functionality of a module. Independent means that each single module

provides a useful, self-contained service. That is, the module should not depend on there being other specific modules

connected to it. Typical examples are modules that implement networking protocols, such as HTTP, IP, UDP, or TCP;

modules that implement storage system components, such as VFS, UFS, or SCSI; and modules that implement drivers

for the various device types in the system.

KBD

WIMP

MOUSE

ETH

IP

ARP

JVM

TCP UDP

VGA

Figure 1: Example Scout Module Graph

To form a complete system, individual modules are connected into a module graph: the nodes of the graph cor-

respond to the modules included in the system, and the edges denote the dependencies between these modules. Two

modules can be connected by an edge if they support a common service interface. These interfaces are typed and

enforced by Scout. By configuring Scout with different collections of modules, we can configure kernels for different

purposes, including network-attached devices, web and file servers, firewalls and routers, and multimedia displays.

2



For example, Figure 1 shows an extract of the module graph for a Scout kernel representing a Java appliance. The

configuration includes a device driver for the network card (ETH), four conventional network protocols (ARP, IP, UDP

and TCP), a Java virtual machine (JVM), and a window manager (WIMP) with a mouse (MOUSE), keyboard (KBD)

and graphics card (VGA) device drivers.1 Such a configuration is specified at build time, and a set of configuration

tools assemble the corresponding modules into an executable kernel. A Java system built around this configuration is

described more fully in [8].

2.2 Path Abstraction

Scout adds a communication-oriented abstraction—the path—to the configurable system just described. Intuitively,

a path can be viewed as a logical channel through a modular system over which I/O data flows. In this way, a path

is analogous to a virtual circuit that cuts through the nodes of a packet-switched network; in fact, one can think of a

path as a continuation of such a circuit through the host OS. In other words, the path abstraction encapsulates data as

it moves through the system, for example, from input device to output device. Each path is an object that encapsulates

two important elements: (1) it defines the sequence of code modules that are applied to the data as it moves through

the system, and (2) it represents the entity that is scheduled for execution.

VGA

WIMP

Display

Device

JVM

TCP

IP

ETH

Network

Device

Figure 2: Example Path

Although the module graph is defined at system build time, paths are created and destroyed at run time as I/O

connections are opened and closed. Figure 2 schematically depicts a path that traverses the module graph shown in

Figure 1; it has a source queue and a sink queue, and is labeled with the sequence of software modules that define how

the path “transforms” the data it carries. This particular path processes incoming ethernet packets and displays them

on the VGA display.

The path-specific local state of each module is stored in a data structure called a stage. Stages from a sequence

of modules are combined to form the path data structure. In addition to this path-specific state, when executing code

within a certain module, paths also have access to the state of the module. For example, a path executing code of the

IP module has access to the routing tables stored in the IP module.

Each path goes through three phases during its lifetime. The first phase is path creation, during which the topology

of the path—i.e., the sequence of modules it traverses—is determined, and the state of the path is initialized. Path

1The configuration can also include access to the file system, but we have not included these modules to simplify the example.

3



creation is triggered by a pathCreate call to the kernel. This operation takes a set of attributes and a starting module

as arguments. The attributes define invariants for the path; e.g., the port number and IP address for the peer. The kernel

then establishes the path incrementally: it invokes an open function on the specified module, which determines the

next module to visit. The kernel then calls the open function for this module, and so on.

The open function for each module visited during path creation inspects the attributes to determine which module

to visit next. It may also modify, add, or delete attributes. The path creation process terminates for two reasons: (1)

the attributes violate some module constraint, or (2) the attributes are not strong enough to determine the next module.

In the first case, path creation is denied. In the second case, the maximum length path has been discovered. Note

that in the case of a failed path creation, no module state is modified. This is for two reasons: the open functions are

side-effect-free, and the modules along a path are not allowed to initialize their path-specific state until the full path is

known.

At this point, the path enters its operational phase and data is sent and received over it. Both send and receive work

in the obvious way: data is enqueued at one end of the path and a thread is scheduled to execute the path. There is

one complication, however. When data arrives on a device—e.g., a network packet arrives on the ethernet—the kernel

must determine which path it belongs to. This is done in a way that is analogous to path creation: the kernel identifies

the path incrementally by invoking a demux operation on a sequence of modules. Each module’s demux function has

three choices: (1) it can determine that a unique path has not yet been identified and call the demux function of some

adjacent module; (2) it can reject the request and drop the data; or (3) it can return a unique path. As was the case with

open, each module’s demux function is side-effect free.

The last phase of a path is invoked by a pathDestroy call to the kernel. The kernel invokes a destroy function

associated with each module along the path in the same order in which they were initialized.

3 Security Architecture

This section introduces the Escort security architecture that we have designed for Scout. We begin with the module

graph configured for a particular network appliance. Figure 3 gives a simple module graph that represents a subset

of the graph given in Section 2. It includes a module that implements the Java Virtual Machine (JVM) and the

TCP/IP/ETH modules upon which JVM depends. This example is obviously simpler than a full-fledged system would

require—for one thing, it is linear—but it does include enough complexity to use as a running example throughout this

section.

TCP

IP

ETH

JVM

Figure 3: A Simple Module Graph for a Java System

The module graph shown in Figure 3 illustrates two important points about Scout. First, the OS includes only

those modules needed by the network appliance; modules not configured into the graph pose no security risk. Second,

each module implements a narrow, well-defined service interface; these services are on the order of “TCP” rather than

“network subsystem”. This means that a given module’s service interface is much more restrictive than one would find

in a server-based system, and that there is less code to inspect and trust.

4



3.1 Filters

The first security mechanism Escort adds to Scout are filters: automatically generated modules that are inserted in the

module graph between the original modules. These filters are configured in the module graph just like the TCP or IP

modules in Figure 3. The only difference is that they are generated from a global policy engine; this policy engine is

described in Section 3.5. Figure 4 shows our example module graph augmented with filters modules.

JVM

ETH

IP

TCP

Filter

Filter

Filter

Figure 4: Module Graph Augmented with Filter Modules

The purpose of filter modules is to restrict the interface between the adjacent modules. For example, the filter

between TCP and IP might restrict the TCP/IP interface from one that supports “send packets” to one that supports

only “send packets to port 1180”. The filter enforces this more restricted interface by filtering data that does not adhere

to this restriction. Note that these filters can be used in conjunction with a vanilla TCP module, and conversely, the

same TCP module can be flanked by different filters; none of the security policy is embedded in the TCP module.

Since filters are just like any other Scout module, they support both an open and a demux function. The former

can restrict what paths can be created (a path might be rejected if it implements a connection to a disallowed port),

while the latter can filter what packets are allowed to traverse the path at data transmission time. More on this below.

Some filters base their decisions on local knowledge; limiting a TCP module to just one port is an example of such

a local decision. There are situations, however, when filters need to make policy decisions based on global runtime

knowledge. For example, a policy might prohibit the coexistence of two paths to enforce the principle of least privilege.

Escort provides a central attribute manager for the purpose of providing filters with access to global knowledge. The

attribute manager is implemented in the kernel and is available only from within filter modules. In effect, the attribute

manager implements a shared tuple-space that filters can use to communicate with each other. Filters can read and

write attributes from and to the attribute manager. The attributes are typed, and the attribute manager uses these types

to restrict what attributes a given filter can access. Obviously, the attribute manager introduces the possibility of data

leakage between different paths, and therefore, the system designer should use this feature with extreme care.

3.2 Protection Domains

Filters serve to limit module interfaces, but they trust that the adjacent modules will use this interface. That is, filters

include no mechanisms to ensure that one module doesn’t bypass the interface and directly access the memory of

5



another. (Scout also does not restrict such access since all modules exist in a single address space.) Filters are

sufficient if two adjacent modules trust each other, but this is not always the case.

Escort’s second mechanism—hardware enforced protection domains—addresses this issue. Protection domain

boundaries can be drawn between any pair of modules to ensure that access from one module to the next is restricted

to that module’s well-defined interface. Protection domain switches are implemented as memory faults on function

calls. Therefore, the presence or absence of protection domain crossings is transparent to the modules involved.

JVM

ETH

IP

TCP

Filter

Filter

Filter

Figure 5: Module Graph Augmented with Protection Domains

A collection of modules, and the filter modules between them, can be placed in a single protection domain as long

as they trust each other. A global policy (see Section 3.5) defines which modules are contained in which protection

domains. When two modules do not trust each other, a domain boundary is drawn on either side of the filter module

that was inserted between them. Figure 5 illustrates how protection domain boundaries might be drawn on our example

module graph. In this case, we assume TCP and IP trust each other, but that there is no trust between this collection

of modules and JVM. Thus, the filter between JVM and TCP resides in its own protection domain, which allows it to

enforce a narrow interface between these two modules.

Device driver modules, such as ETH, have a special status since they are allowed to access hardware devices

directly. They do not necessarily have to be separated from other modules, but all modules contained in the device’s

protection domain will be able to access the address ranges occupied by the hardware device. In our example, we

isolate ETH in it’s own domain; the filter between ETH and IP is therefore also in its own domain.

Another issue is the containment of misbehaving modules. If the module along some path misbehaves by trying

to violate its protection domain boundaries, the protection domain containing this path is removed and pathDestroy
is called on all paths that traverse this protection domain. This rather radical measure guarantees that no state that was

altered in violation of the policy remains within the system after a module has been identified as misbehaving.

3.3 Paths

As described up to this point, Escort is roughly equivalent to DTOS in the support it provides to build a secure system:

it provides mechanisms for fine-grain access control as defined by a global policy. Escort’s main advantage is that

its modules are finer grain, which means each contains less code to trust and their interfaces are more restrictive.

The module graph, filters, and protection domains do nothing to improve end-to-end accountability or isolate flows

6



from each other. That’s where paths come into play. Figure 6 schematically depicts two paths traversing the example

module graph we’ve been considering.

JVM

ETH

IP

TCP

Filter

Filter

Filter

Figure 6: Module Graph with Two Paths

As described in Section 2, paths represent information flows through a modular system, and each path goes through

three phases in its lifetime. Escort controls all three phases. Both the creation and destruction phases are controlled

by a path manager. The path manager, which is implemented in the kernel, restricts the origin of pathCreate and

pathDestroy calls to certain modules. In case of pathCreate, it also validates—and possibly adds or removes—the

attributes provided by the caller. Keep in mind that the filters included between modules can also check and adjust the

attributes passed between modules, as well as deny path creation. The filters are not sufficient, however, since a path

is not rooted at a filter module. This is the main reason for separating out the path manager rather than folding it into

the filter mechanism.

After a path is created and enters its operational phase, the filters configured into the module graph are used to

restrict the data that might traverse the path. It does this by restricting the demultiplexing, as well as the data exchanged

between path modules. A filter can also destroy a path or remove data if the data passed between modules indicates

that the path is used against its policy.

Filters restrict the data that flows through operational paths, but paths themselves play a central role in resource

management. This is because resources are allocated on a per-path basis: CPU utilization is enforced by the scheduler;

memory utilization is enforced by the heap; and device access is limited by the module graph, the filter modules, the

size of the output queue for a device, and the frequency with which a path is scheduled. The path manager defines the

resource limits placed on each path during path creation.

Resource control is made easier by the ability to determine the destination of data at demultiplexing time. No

permanent state is changed and only a few cycles are spent to determine if data is destined for a particular path. This

prevents priority inversion in network-based systems as long as the demultiplexing decision is fast enough to keep up

with incoming traffic.

Escort also encourages the use of appliance-specific schedulers, which use detailed knowledge of the use of the

path to make scheduling decisions. In a WWW server, for example, the priority of a path accepting new connections

and closing paths might decrease under high load, compared to the paths representing existing connections. In many

cases, application specific knowledge can be used to make denial of service attacks substantially harder. The mediation

between different application specific schedulers and their automatic generation is a topic of current research.

7



3.4 Multiple Instantiation

Paths support end-to-end accountability, and provide the machinery needed to separate information flows, but it is still

possible for two mutually untrusting paths to flow through a common module and access shared state. To address this

problem, Escort allows modules to be multiply instantiated. Figure 7 extends our example to multiply instantiate the

JVM module, with each path running through a private copy of this module.

ETH

IP

TCP

Filter

Filter

Filter

JVMJVM

Figure 7: Multiple Instantiation of Modules

The decision as to what modules should be multiply instantiated is up to the appliance designer, and there is a

tradeoff. On the one hand, the more modules are multiply instantiated, the less state is shared between paths. On

the other hand, there are two drawbacks to multiply instantiating a module. First, since multiply instantiated modules

cannot share state, state that must be shared has to either be generated by each module independently, or isolated into

a new module that is then secured by an additional filter. Examples of such state include the IP routing table or a

TCP port manager. Second, each multiply instantiated module consumes some amount of memory for its local state,

although the code segment of each module is shared between all instances, and therefore, does not impose additional

overhead.

It is worth noting that multiple instantiation is useful even within one protection domain. If, for example, mutually

untrusted Java applets are executing on a Java system, both applets could be run on multi-instantiated JVM modules.

Java guarantees the type safety of the individual applets—hence, there is no need to put them in separate protection

domains—but the JVM module might not be trusted to separate the runtime state of the two applets.

3.5 Policy Engine

In a network appliance, both the available resources and the applications to be supported, are known at system build

time. Escort takes advantage of this constraint to provide a central configuration file that defines the policy for the

entire network appliance. Compared with more general systems, such as Unix, the advantage is that there is no

separation between operating system and application policy, and therefore, no translation between these two policies

is necessary. However, the granularity of the policy is limited by the information available outside the modules since

all Escort mechanisms restrict only the external interfaces to these modules.

A security editor generates all the security mechanisms described in previous sections from the policy description

file (config.policy) and the module graph (config.graph). Filters, the attribute manager, and the path manager are

8



config.graphconfig.policy

security editor

configuration editor

code

initialication

compile & link

initialication

code

APPLIANCE

filter config.graph modulemanagers

Figure 8: Build process of an Escort secured Scout kernel.

first translated into C code, compiled, and then linked into the Scout kernel. The steps involved in building an Escort

secured Scout kernel is shown in Figure 8.

The policy configuration language used in config.policy is limited to particular module interfaces, and is still being

developed. The current implementation supports only the netInterface, netListenInterface, and resolverInterface
interfaces. These interfaces are sufficient to build firewalls, network routers, DNS servers, and similar low level

network oriented devices. The language has to be extended if new interfaces are introduced.

The policy configuration language is low-level, and therefore, can easily be translated into the Escort mechanisms.

This makes the definition of higher-level policies like Bell LaPadula [2] rather complicated to configure. We are

currently investigating how higher level policies can be translated automatically into our policy configuration language.

It is important to understand that different policy decisions are enforced at different times. First, since Escort

exploits the fact that it is used to build specialized network appliances, it is able to restrict communication between

modules in the module graph at configuration time. The advantage of this early access control decision is that it does

not affect the runtime performance of the system.

Second, at runtime, paths are explicitly created using attributes that define invariants of the path. This pre-allocation

of communication paths is again utilized by Scout to optimize the performance of the path, and by Escort to make

access control decisions as early as possible. The access control decisions that made at path creation time are of a finer

granularity than those made during configuration time since invariants of the path are not available when the system

is configured. For example, the IP addresses and TCP port numbers for a Telnet connection are known during path

creation, but not during configuration time.

Third, if even finer access control mechanisms are required, Escort provides the mechanism to filter the data be-

tween each processing step in a path. This mechanism obviously imposes the highest performance penalty, depending

on the complexity of the filter.

4 Example

This section illustrates how Escort works by describing the implementation of a simple web server containing both

private documents that have to be protected and public documents that are globally accessible. We first describe the

elements shown in the Scout module graph, and then configure an example policy using Escort.

9



ETH

IP

TCP

SSL

HTTP

PrivateStore PublicStore

Figure 9: The simple WWW server module graph.

4.1 Module Graph

The module graph of our WWW server is shown in Figure 9. It contains the network device module (ETH), along

with modules for the IP, TCP, SSL [6], and HTTP [3] protocols. The configuration includes a PublicStore module

and a PrivateStore module that serve the private and public documents, respectively. In a real system, these latter two

modules would be implemented by a set of modules representing a local or network file system.

Using only Scout, without Escort policy control, the WWW server would operate as follows. At boot time, the

HTTP module opens two paths: one spans the HTTP, SSL, TCP, IP, and ETH modules; the other skips the SSL module

and includes TCP, IP, and ETH. Both paths use the netListenInterface to listen for incoming TCP connections to

different TCP ports. These ports are set at configuration time. We call these paths “passive” because they are used to

listen for incoming connections; they are not used to exchange data.

If a TCP connection is established by a remote site, the TCP or SSL module informs the HTTP module on the corre-

sponding path. The HTTP module then opens an “active” path—one that corresponds to an active TCP connection—all

the way from itself to the ETH module, using the same topology as the passive path on which the connection request

was received.

After HTTP has received the GetDocument request, it extends the path all the way to either the PublicStore or

the PrivateStore module, depending on where the document can be found. The path then starts serving the data. The

path eventually destroys itself when the transfer is complete.

4.2 The Policy

There are obviously many possible security policies, depending on the environment in which this WWW server is being

used. One of Escort’s advantages is that the security policy is defined separately from the appliance’s functionality.

Thus, the same modules and module graph can be used for many different policies. To illustrate the mechanism

introduced by Escort, consider the following simple policy.

Keep Secrets: All documents stored in the PrivateStore should only be transfered via an encrypted channel.

Limit User: Only certain users are allowed access to documents stored in directory /secret/limited/, which is main-

tained by the PrivateStore module.

10



Filter

SSL

TCP

IP

ETH

HTTP HTTP

PublicStorePrivateStore

Figure 10: The simple WWW server with multiple protection domains

Prioritize: Secure connections have higher priority than insecure connections. Existing connections have a higher

priority than new connections.

This policy does not include all aspects of a real world WWW server, but is small enough to describe. A more

complete policy would also deal with other properties, such as restricting the WWW server to GetDocument requests,

and restricting IP and TCP to only provide services necessary for a WWW server. It would also deal with possible

denial of service attacks in a much more thorough way.

4.3 Enforcing the Policy

The first policy restriction to keep information secret can be enforced in multiple ways with different levels of as-

surance. One way to do this is to simply include a filter in front of the PrivateStore module that checks during path

creation that the SSL module is contained in the path. This method has the drawback that state is shared in the HTTP

module between the encrypted and non-encrypted paths.

This sharing can be removed by multi-instantiating the HTTP module and connecting the PrivateStore module

only to the HTTP module connected to SSL, and the PublicStore module to both HTTP modules. It is also necessary

to include a filter between the secure HTTP and the PublicStore module to disallow the access from the PublicStore

module to the secure HTTP module.

This approach makes the assumption that our modules do not try to bypass the established interfaces; i.e., they

do not look in the other modules’ memory. If this is an unreasonable assumption, we can separate the higher part of

the SSL path into its own protection domain. Figure 10 shows the final module graph divided into multiple protection

domains. To further increase assurance, we also separate the device from the remaining modules since a device module

has limited hardware access.

Now turning our attention to the second policy constraint, we can limit the user by inserting the filter shown in

Figure 11 into the encrypting path, just below the HTTP module. This filter destroys the path if any request for

a document in directory /secret/limited is received and the attribute manager does not contain an attribute of type

ALLOWED USER that matches the current user. The ALLOWED USER entries in the attribute manager are either

set during configuration time by the system builder, or at runtime by another filter.

11



Filter

ETH

IP

TCP

SSL

Filter

HTTP HTTP

PubliStorePrivateStore

Figure 11: The complete module graph including not empty filters and protection domains.

Figure 12 shows the part of the config.policy file that is used to configure this filter. The first part of the extract

describes the functionality of the filter itself. The checkTopPart command checks the user name passed to SSL during

path creation and adds the path attribute ALLOWED PATH to the path if the user matches an ALLOWED USER entry

in the attribute manager. If data is received on any path going through this filter, the checkData command checks

if it is not a request to the /secret/limited directory, or if the path is marked ALLOWED PATH. If the predicate

is true, the execution continues. If it is not true, the default action on incoming data is invoked and the path is

destroyed. The second default command allows unrestricted demultiplexing and sending of data. In the second part,

the restrictAttribute command is used to restrict the access to the ALLOWED PATH path attribute to the filter between

SSL and HTTP.

Finally, prioritization is achieved by using a fixed priority round-robin scheduler with four priority levels. The

highest priority is assigned to active secret paths, followed by active non-secret paths, followed by passive secret

paths, and finally followed by passive non-secret paths. The priorities are assigned by the path manager at path

creation time. Note that it would be possible to extend this scheme to limit the number of total non-secret paths, or to

adjust priorities dynamically using filters or a specialized scheduler.

5 Evaluation

Comparing Escort to Unix-like operating systems is like comparing apples to oranges. Scout addresses the need of a

network appliance, whereas Unix is designed as a general purpose operating system. Escort can prevent many attacks

very early by restricting the system’s functionality. This is impossible in a general-purpose operating system. Since

Escort is not directly comparable to Unix-like systems, we evaluate its design in terms of the criteria introduced in

Section 1. We also discuss the performance impact of Escort’s design.

5.1 Economy of Mechanism

Escort addresses the economy of mechanism on different levels. From a global perspective, this property is addressed

by the fact that a network appliance is designed for a certain task, and therefore, it provides restricted functionality.

12



SSL/HTTP{
/* remember if path was created for an ALLOWED_USER */
checkTopPart(CREATE, REMOTE, INDB(ALLOWED_USER,,),
addAttribute(PATH,ALLOWED_PATH,TRUE));

/* allow restricted request */
checkData(POP,
NOT(LINEMATCH(*/secret/limited*))
OR getAttribute(PATH,ALLOWED_PATH),CONTINUE);

/* if on incoming data no filter expression matches destroy
* the path */
default(POP, DESTROY_PATH);
/* data can be send and demultiplexed */
default(DEMUX|PUSH, CONTINUE);

}

/* ALLOWED_PATH path attribute is only accessible from SSL/HTTP
* filter */
restrictAttribute(PATH, ALLOWED_USER, SSL/HTTP, ALL);

Figure 12: An extract of config.policy responsible for the filter between HTTPD and SSL.

On a lower level, the kernel that is trusted by all paths within a network appliance is minimal. It currently consists

of less than 20,000 lines of C and assembler code. Also, the Scout kernel consists of only a few objects: modules,

paths and interfaces. Escort uses the existing module abstraction to introduce filters; it adds only two managers to the

main system.

The central config.policy file addresses the economy of mechanisms issue in yet another way. It combines the

system and application policy in a central file. A disadvantage is that the policy description language is very low level,

which requires complicated config.policy files for complex appliances.

5.2 Fail-Safe defaults

Escort supports fail-safe defaults by the fact that it limits the possible communication flows to the module graph at

configuration time. The filters, path manager, and attribute manager also support this property since all operations by

a path have to be explicitly allowed in config.policy.

5.3 Complete Mediation

As described in Section 3.4, Escort provides mediation of all resources, ranging from coarse-grain mediation during

configuration time, to fine-grain mediation in filters at runtime. This distribution of the mediation mechanism allows

good performance despite the fine-grain control.

5.4 Least Privilege

In Scout, an application is implemented by a set of paths. Using the central configuration file, the privileges of these

paths is easily made minimal. Escort also supports the principle of least privilege within a single application since

each path represents one step in the application’s life time. For example, an application that first needs access to

the network, and later needs access to the file system has to explicitly request access to each by creating a path, and

13



can destroy the former before creating the latter. Moreover, the filters, by exchanging global information through the

shared attribute manger, can enforce this non-concurrent access policy.

5.5 Least Common Mechanism

The principle of least common mechanism is supported by Escort in three different ways. First, the path abstraction

reduces the shared state between different threads. In contrast to Unix-like operating systems, where all data in the

kernel is shared, Escort identifies subsets of these data structures by defining paths. Second, multiply instantiated

modules increase this separations even further by separating the module state of different paths into different data

structures. The third level of support is provided by protection domains, which are used to enforce the separation by

providing guarantees at the operating system-level that data structures are separated. Shared state is present only in

the small kernel, in the form of the path manager and the attribute manager, both of which are under the control of the

central policy.

5.6 Accountability

Accountability in Escort is provided on a per-path basis. The attribute manager can be used to collect different log

information provided by the filters. To allow persistent and possibly tamper-proof storage of the logs, Escort also

provides a specialized log filter that accesses the attribute manager and writes the logs into the path to which it is

attached. This can be used to write logs to a disk or a secure site over the network.

5.7 Psychological Acceptability

Paths are a natural choice to express data flows. Therefore, programming with paths and making path-based access

control decisions are easy to understand by the network appliance developer. However, the fine-grain access control

introduced by filters might become complex. The ongoing research in automatically translating high-level policies

into low-level Escort mechanisms is therefore very important.

5.8 Performance

Filtering data flows is a rather expensive operation. Escort addresses this problem by applying the filter at the appro-

priate time: configuration time, path creation time, demultiplexing time, and path execution time. This allows us to

keep the filters imposed in each path during execution time minimal.

After a path is created, it is also possible to use the invariants defining the path to optimize the code fragments

contained in this path. Filters are especially useful during this process, as they define additional invariants that can be

used to specialize the path. These optimization opportunities are still topic of current research.

6 Related Work

On the surface, Escort and Scout have similarities with Unix pipes [13], assured pipes [5], Corps [16], DaCapo [7] and

Nemesis [12]. Of these, Corps is the only one that has explicit paths, and none of them uses explicit paths to limit and

separate data flows.

Capability-based systems like KeyKOS [9], TMACH [15] and DTOS [10] are also similar to Escort since a path

represents a capability to access data and execute code at each module. However, paths have the advantage of support-

ing global access control and resource allocation decisions before any state is changed.

Our path creation process, which requires a specification of a set of attributes (invariants) for the path is similar to

the query mechanism in PolicyMaker [4]. Specifically Scout’s path attributes are analogous to PolicyMaker’s action

string and its annotations. However, Escort generates and checks the action string and annotations in one phase instead

of two phases, and the processing order of the filter is explicitly limited by the module graph and determined by the

module not by keys and assertions.

14



7 Concluding Remarks

Escort is a security architecture based on the idea of securing data flows instead of processes or users. It uses Scout’s

explicit path abstraction to achieve that goal. Escort also provides the low-level mechanisms necessary to give the

appliance programmer fine-grain control over all aspects of the system, and addresses the implementation of high-

level security policies by providing translation tools to these low-level mechanisms.

Currently, the policy translation tools are only functional for small application domains. All of the Escort mecha-

nisms have been implemented on a Digital Alpha workstation, but they have not yet been integrated. What also remains

to be done is to demonstrate a fully integrated implementation of Escort on a wide set of domains. For example, work

on an Escort-based firewall is currently under way.

Acknowledgments

We would like to thank Brady Montz, Inge Pudell-Spatscheck and the members of the Scout group for there feedback

and support. This work supported in part by DARPA contracts DABT63-95-C-0075 and MailBox, and NSF grant

NCR-9204393.

References

[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A New Kernel Foundation for

UNIX Development. In Proceedings of the Summer 1986 USENIX Technical Conference and Exhibition, June

1986.

[2] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations and model. Technical Report

M74-244, The MITRE Corp., Bedford MA, May 1973.

[3] T. Berners-Lee, R. Fielding, and H. Nielsen. RFC 1945: Hypertext transfer protocol — HTTP/1.0, May 1996.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In SympSecPr, Research in Security

and Privacy, Oakland, CA, May 1996. IEEECSP.

[5] W. E. Boebert and R. Y. Kain. A practical alternative to hierachical inetgrity policies. In Proceedings 8th National

Computing Security Conference, October 1985.

[6] A. Freier, P. Karlton, and P. Koch. The SSL Protocol. IETF Internet Draft, pages 1–63, Nov. 1996.

[7] A. Gotti. The da capo communication system. Technical report, Swiss Federal Institute of Technology, Zuerich,

Switzerland, June 1994.

[8] J. Hartman, L. Peterson, A. Bavier, P. Bridges, B. Montz, R. Pilz, T. Proebsting, and O. Spatscheck. Joust: A

platform for communication-oriented liquid software. Technical Report TR97, The Department of Computer

Science, University of Arizona, Nov. 1997.

[9] C. Landau. Security in a Secure Capability-Based System. Operating Systems Review, 23(4):2–4, Oct. 1989.

[10] S. E. Minear. Providing policy control over object operations in a Mach-Based system. In USENIX Association,

editor, Proceedings of the fifth USENIX UNIX Security Symposium: June 5–7, 1995, Salt Lake City, Utah, USA,

pages 141–156, Berkeley, CA, USA, June 1995. USENIX.

[11] D. Mosberger and L. Peterson. Making paths explicit in the scout operating system. In Proceedings of OSDI ’96,

October 1996.

[12] D. Reed, A. Donnelly, and R. Fairbairns. Nemesis the kernel, Sept. 1997.

15



[13] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Communications of the ACM, 17(7):365–375,

July 1974.

[14] Saltzer and Schroeder. The protection of information in computer systems. Proc.of the IEEE, 63(9), Sept. 1975.

[15] Trusted mach philosophy of protection, May 1993. NIST Document No: TMACH 93-014.

[16] F. Travostino, E. Menze, and F. Reynolds. Paths: Programming with system resources in support of real-time

distributed applications. In Proceedings of the 1996 IEEE Workshop on Object-Oriented Real-Time Dependable

Systems, pages 36–45, Laguna Beach, Ca, Feb. 1996.

[17] D. Wallach, D. Balfanz, D. Dean, and E. Felten. Extensible security architecture for java. In Proceedings of the

Sixteenth ACM Symposium on Operating System Principles, pages 116–128, Saint Malo, France, Oct. 1997.

16


