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Abstract

This paper reports on a set of experiments that measure the amount of CPU processing needed to decode
MPEG-compressed video in software. These experiments were designed to discover indicators that could
be used to predict how many cycles are required to decode a given frame. Such predictors can be used to
do more accurate CPU scheduling. We found that by considering both frame type and size, it is possible
to construct a linear model of MPEG decoding with R? values of 0.97 and higher. Moreover, this model
can be used to predict decoding times at both the frame and packet level that are almost always accurate
to within 25% of the actual decode times. This is a surprising result given the large variability in MPEG
decoding times, and suggests that it is feasible to design systems that make quality of service guarantees
for MPEG-encoded video, rather than less variable encodings, such as JPEG.
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1 Introduction

The ability of modern processors to decode MPEG compressed video in realtime has led to users wanting to run a mix
of applications that includes both MPEG video streams and other realtime and non-realtime tasks. The problem that
arises in this situation is how to schedule these applications on the CPU, which is in turn complicated by the need to
know how much execution time a given realtime task is going to take before the task can be scheduled.

The need to have accurate information about the required MPEG execution time exists at two different levels. At
a coarse-grained level, knowing the number of cycles (percentage of the CPU) needed to decompress a given video
stream, when averaged over a relatively long time interval, is needed to do load control—that is, to determine how
many simultaneous video streams can be supported. At a fine-grained level, knowing how long a particular MPEG
frame will take to decode can be used by the scheduling algorithm. The latest acceptable start time for the decoding
task is the deadline of that frame minus the length of time to decode that frame. Scheduling algorithms are now being
designed to exploit such information [1, 7, 2]. This paper focuses on the fine-grain predictors that are suitable for
scheduling, but in doing so, also lays the ground work for designing better load control mechanisms.

The difficulty is that MPEG decoding does not consume a constant amount of processing, due in part to the fact
that a given MPEG video stream contains different frame types, and in part to the potential wide variation between
scenes (e.g., talking heads versus action). This makes prediction of the time to decode the next frame based on past
behavior difficult. What is needed are finer-grained indicators that can be used to predict future execution times. The
current lack of such indicators is one factor limiting systems that make quality of service guarantees to JPEG videos,
rather than the more ubiquitous MPEG format.

Towards this end, this paper reports on a set of experiments designed to measure the amount of CPU processing
needed to decode MPEG compressed video on a modern processor. An analysis of these experiments is presented in
Section 3. We then use these results to construct a set of estimators, which are described and evaluated in Section 4.
The main results, which are summarized in Section 5, are that it is possible to construct linear models of MPEG
decoding with R? values of 0.97 and higher, and that these models can be used as the foundation for predicting
execution time needed at both the packet and frame levels (for the purpose of scheduling) to within 25% of the time
actually taken to decode these packets and frames.

2 MPEG Decoding

Before presenting our results, we first give a brief overview of MPEG. We also describe the execution environment in
which the measurements were taken, and in which the resulting estimators were eventually employed.

2.1 MPEG

The MPEG video compression standard defines a video stream as a sequence of still images (frames) that are displayed
at some rate, for example, 30 frames per second (fps) [4]. Each frame is of a particular type: I frames (intrapicture),
P frames (predicted picture) and B frames (bidirectional predicted picture). I frames are self-contained, complete
images. P and B frames are encoded as differences from other reference frames. Only I and P frames may be used as
reference frames. A group of pictures (GOP) is a sequence of frames from one I frame to the next; e.g., IBBP B B
I. Note that different videos use different GOP sequences.

A given frame consists of a collection of macroblocks, each of which corresponds to a 16 x16 block of pixels. The
MPEQG algorithm actually operates on macroblocks, not entire frames. In fact, not all the macroblocks contained in a
frame of a given type are necessarily encoded in accordance with that type. It is possible, for example, to have an I
encoded macroblock as part of what is otherwise a B frame.

In way of a brief overview to the computational requirements of MPEG, we observe that I macroblocks are the most
expensive to decode, as doing so involves the computationally expensive Discrete Cosine Transform (DCT). Before
the DCT can be applied, however, the values are first run-length decoded, Huffman decoded, and passed through a
reverse quantization process. In contrast, the processing required to decode B and P macroblocks is less demanding.
Consider the decoding of a B macroblock, which depends on both a previous and a subsequent I or P frame. Each B



macroblock is represented with a 4-tuple: (1) a coordinate for the macroblock in the frame, (2) a motion vector relative
to the previous reference frame, (3) a motion vector relative to the subsequent reference frame, and (4) a delta for each
pixel in the macroblock (i.e., how much each pixel has changed relative to the two reference pixels).! For each pixel in
the macroblock, the first task is to find the corresponding reference pixel in the past and future reference frames using
the two motion vectors. Then, the delta for the pixel is added to the average of these two reference pixels.

2.2 Scout OS

We measured MPEG decoding performance in the context of the Scout operating system [6]. Scout is a configurable
OS explicitly designed to support data streams such as MPEG-compressed video. Specifically, Scout defines a path
abstraction that encapsulates data as it moves through the system, for example, from input device to output device. In
effect, a Scout path is an extension of a network connection through the OS. Each path is an object that encapsulates
two important elements: (1) it defines the sequence of code modules that are applied to the data as it moves through
the system, and (2) it represents the entity that is scheduled for execution.
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Figure 1: Example Scout Paths

Figure 1 schematically depicts a pair of Scout paths: the path on the left implements an MPEG video stream
that transforms network packets into video frames, and the path on the right corresponds to an FTP path that moves
incoming network packets to a disk device. In this figure, each path has a source and a sink queue, and is labeled with
the sequence of software modules that define how the path “transforms” the data it carries. Focusing on the MPEG
path, ETH is the device driver for the network card, IP and UDP are the conventional network protocols, MFLOW is
an MPEG-aware transport protocol, MPEG implements the decompression algorithm described in Section 2.1, WIMP
is the window manager, and VGA is the device driver for the graphics card.

Operationally, network packets that arrive for a particular video stream are inserted into the source queue for the
corresponding Scout path. Since there may be multiple MPEG paths active in the system at a given time, Scout first
classifies each incoming packet according to the path it belongs to; we take a closer look at packet classification in
Section 4. Once enqueued on a path, a thread is scheduled to shepherd this message along the path; this thread inherits
its scheduling parameters from the path, as described below. When the thread runs, it executes the sequence of modules

P macroblocks are decoded in a similar fashion, except they depend on just the previous reference frame, and so include only a single motion
vector. Also, a B-block can optionally be encoded with just one motion vector, rather than two.



associated with the path, and deposits the message in the sink queue. The display device periodically removes frames
from the sink queue and displays them.

There are two reasons why predicting the time to decode helps the implementation of a scheduler that provides
quality of service guarantees. First, due to video’s realtime constraints, each frame must be decoded by a certain
time. It is only by knowning how long this thread will run that we can determine the latest time the thread must start
executing. Classical realtime scheduling algorithms, such as Earliest Deadline First (EDF) [3], do not require knowing
the execution time, but they have the limitation of not operating well under load. This makes EDF inappropriate when
one is trying to mix realtime and non-realtime tasks. Scheduling both realtime and non-realtime tasks under load
requires knowing how long a realtime task is going to run [1, 7, 2].

To illustrate how a scheduling decision might be made, suppose the graphics device is draining the sink queue
at a rate of 30 messages (frames) per second, and after consuming a frame at time ¢ there are two additional frames
on the queue, then the path knows that the deadline for producing the next frame is ¢ + 66ms. That is, the thread
responsible for shepherding messages from the source queue to the sink queue must complete by time ¢ + 66ms. If
the path also knows that it takes 10ms to generate new frame, then the path assigns the thread a latest acceptable start
time of t + 66ms — 10ms. Estimating the execution time—e.g., 10ms in this example—is the goal of this paper.

The second reason stems from Scout’s use of cooperative multithreading. When a thread is scheduled to run along
a path, it owns the CPU until it reaches the end of the path or explicitly yields.? If the scheduler is faced with multiple
threads which can run next, it is impossible to predict the effect running one will have on the others’ ability to meet
their deadlines without knowing how long that thread will run.

There is one additional nuance to video decoding. When the thread finally gets to run, it is allowed to execute the
path one or more times, resulting in the consumption of one or more network packets. In fact, executing an MPEG path
multiple times may be required to produce a single video frame. This is because there is not a one-to-one relationship
between network packets (in the source queue) and video frames (in the sink queue). Quite often a single frame
spans multiple network packets, although it is also possible for multiple compressed video frames to fit in a single
network packet. In our case, the protocol MFLOW is responsible for fragmenting frames into fixed-sized packets.
The important characteristic of this fragmentation algorithm is that each network packet carries an integral number
of macroblocks—i.e., a single macroblock is never split across packet boundaries—and packets containing the last
macroblock of a frame denote this fact with a special End-Of-Frame (EOF) marker.

The path object can be instrumented with multiple cycle counters. For example, by reading the cycle counter
when a path starts running and again when it finishes, it is possible to measure the number of cycles required by a
single execution of a path; this corresponds to the time required to consume a single network packet. One can also
accumulate the number of cycles used by multiple executions of a path; this could be used to count the number of
cycles needed to process a complete frame, or an entire GOP. Note that this can be done without concern for time the
thread is blocked, since each execution of a path runs to completion. Finally, within the MPEG module, one can count
the number of cycles used for each macroblock.

3 Analysis

This section reports the results of experiments designed to measure the number of CPU cycles required to process
MPEG-encoded video. Our objective is not to do a thorough analysis of MPEG, but rather to gain some insight into
the properties of MPEG data that can be exploited to predict execution times. The results presented in this section are
based on measurements of the six video clips identified in Table 1. This sample set contains both computer generated
and natural scene videos, and includes a wide variation in frame type sequences and resolution. For the sake of brevity,
we use one representative video—a two minute clip from Terminator 2—to illustrate the major points made in this
Section; we show results from all the video clips in the next section to quantify the effectiveness of the predictors we
develop.

The results presented in this section measure MPEG at two different granularities: frames and network packets.
The former is a natural unit for MPEG, while the latter is of practical interest since it is the unit of work in a networked
system.

21t is also possible for the thread to block on a semaphore, but this is not the case for an MPEG path.



Video | Number of Frames |

Neptune 1345
RedsNightmare 1210
Canyon 1758
Terminator 2 4471
Road Warrior 1132
Mandelbrot 263

Table 1: Sample Video Clips

3.1 Frames

It has long been understood that there is wide variation in MPEG decoding times. Figure 2 illustrates this variability
for Terminator 2, where the y-axis corresponds to the number of cycles required to decode the frame and the z-axis
corresponds to a sequence of frames processed over time. For this particular clip, decompression takes anywhere
from 6M to 18M cycles per frame. Distinguishing among the three frames types improves the situation, but is only
marginally better, as illustrated in Figure 3.
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Figure 2: Cycles Required to Decode a Sequence of Frames Over Time

In looking at the encoded frames more closely, we observe that the constituent macroblocks—even those of the
same type—are variable in length. This is especially true of P and I macroblocks, which can vary in length by a factor
of four or more within a single video. Based on this observation, and a similar insight by Mosberger[5], we next
plotted the frame decoding time as a function of the length (in bytes) of each frame type, as depicted in Figure 4. This
Figure plots the predicted cycles (z-axis) against the actual required cycles (y-axis), with the regression line shown.
The results are very promising, with an R? coefficient of the linear regression through these sample points of 0.95. In
fact, there seems to be a correlation across multiple videos—the R? coefficient for frames taken from the union of all
six videos identified in Table 1 is 0.93. Unfortunately, the absolute error—the difference between the predicted time
and the actual time—is rather large when frames from all the videos are treated as a single data set, and so developing
a single set of regression coefficients that work for all videos is not a very attractive option.
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3.2 Network Packets

We next consider the decoding of network packets, which in many respects is the most important because it corre-
sponds to the atomic unit of work; that is, scheduling decisions are made on a per-packet basis. (In Scout, processing
one packet corresponds to one execution of a path.) As discussed in Section 2.2, the packets that carry a video stream
are of roughly fixed size (1430 bytes) and do not usually correspond to frames. In general, the packet contents can be
quite diverse: a packet may carry a fragment of a single frame, the end of one frame and the start of another, or even
multiple frames. Our goal is to predict the processing time of a packet within Scout based on a simple inventory of the
packet’s contents.

6e+06

5e+06

4e+06

3e+06 f*

Packet decode cycles

2e+06 | B

le+06 = B

Il Il Il
0 2000 4000 6000 8000 10000 12000 14000 16000
Packet number

Figure 5: Cycles Required by a Sequence of Packets

An initial experiment, presented in Figure 5, shows that the number of cycles required by each packet varies over
a wide range: from 1M to 5M cycles in the case of the Terminator 2 clip. However, we observe two distinguishable
bands of data, which are highlighted in Figure 5 as blue (black) and green (gray) data points. The blue data points
(ranging from roughly 3M to 5M cycles per packet) correspond to those packets that included an EOF marker, while
the green points (ranging from roughly 1M to 3M cycles per packet) correspond to packets that do not contain an EOF
marker. The explanation for this separation is that whenever a full frame is decoded, it must be dithered—translated
to the color map used by the display—and this is a time-consuming process. This is not the case with other packets.
Unfortunately, regression analysis does not produce a strong linear relationship between the number of EOF markers
in the packet and the number of cycles required by each packet; the R? value of such a fit is 0.64.

The next step is to draw on our experience with frames by factoring size into the model. The difficulty, however, is
that it does not make sense to distinguish between packets based on the number of bytes in the packet since all packets
are roughly the same size. Instead of bytes-per-packet, one could represent the number of cycles it takes to decode a
packet as a function of the number of macroblocks it contains. Such a plot is shown in Figure 6 for Terminator 2, where
EOF packets and non-EOF packets show up in separate bands. This example is quite promising, in that the processing
required for both EOF and non-EOF packets seems to grow linearly in the number of macroblocks contained in the
packet. The linear regression confirms this for non-EOF packets (R? = 0.94), but not so strongly for the EOF packets
(R? =0.78).

Focusing on the non-EOF points in Figure 6, we observe a change in slope at about 100 macroblocks. (This change
is more pronounced for other videos, and shows up better for Terminator 2 when only a subset of the data points are
plotted.) This can be explained by macroblock types: I and P-blocks tend to be larger than the B-block, and so fewer
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of them fit in a single packet (on the order of 25-100), while many more B-blocks fit in a network packet (on the order
of 100 to 250). Figure 7 seems to confirm this hunch by distinguishing between the macroblocks types in the non-EOF
band from Figure 6.

The question, then, is what happens when we factor block type into the regression? Figure 8 shows the linear fit
for just I-blocks, with the number of I-blocks in the packet as the independent variable. The result is disappointing,
and in fact, the R? value is only 0.84. The other block types yield similar results. The problem is that the relationship
between the number of blocks and bytes has changed from before since we have lost the invariant that there is a fixed
number of bytes in the packet; now the I-blocks in the packet span a variable number of bytes. We also tried the same
analysis using bytes rather than blocks, but the results were no better; e.g., I-block cycles as a function of I-block bytes
resulted in R? = 0.85. Trying bytes-per-block yielded similarly disappointing results.

Stepping back for a moment, the important thing to remember is that packets carry fragments of frames. We have
seen that there is a linear model of cycles-per-frame as a function of bytes-per-frame. To construct a model for cycles-
per-fragment based on this relation, we might assume that if we know what fraction of the frame a fragment represents,
then it should take that same fraction of the frame processing time to process the fragment. That is, processing half a
frame should take half as long as processing the whole frame. With this assumption, and given the linear model for
predicting cycles-per-frame, we can model cycles-per-packet as follows.

First, let F' denote the fraction of the frame carried by this packet. Second, for each fragment in the packet,
multiply the bytes in the fragment by 1/F to approximate the number of bytes in the frame. Third, plug this result
into the predictor for frames, as defined in Section 3.1, to find the cycles-per-frame. Finally, multiply this result by F’
to find the cycles required for the fragment. The predicted cycles for the packet will be the sum of the cycles required
for all the fragments in the packet.

This only begs the question, though, since we need to know the fraction of the frame we’re working on. Fortunately,
there is a roughly constant number of macroblocks per frame for a particular video, and so the fraction of a frame
contained in a given fragment is related to the number of macroblocks it contains. Applying simple algebra to this
reasoning, we find that the cycles for a frame fragment should be a linear model of two independent variables: the
number of bytes in the fragment and the number of macroblocks in the fragment.

We tested the above reasoning by checking for a linear correlation between the numbers and lengths of each type
of macroblock in a packet (the independent variables) and the corresponding cycles to process blocks of that type
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Figure 7: Distinguishing between Macroblock Types

(the dependent variable). As we had hoped, regression analysis for each block type resulted in excellent linear fits.
Figure 9 shows the resulting regression curves for all four block types. The regression coefficients confirm the visual
observations, with R? values of 0.98 to 0.99 for all four types.

At this point we believe that we have isolated all the important factors in an analysis of packet decode time: EOF
versus non-EOF, macroblock types, and number of blocks and bytes for each type. To complete the analysis, we
constructed a composite model for cycles-per-packet as a linear combination of these factors. The resulting regression
coefficient was a very promising 0.97. However, since the sum of the lengths of all macroblocks in a packet is
approximately equal to the packet length, which is fixed, we suspect that the length factor is no longer as important.
A model that includes only EOF markers and number of macroblocks by type, but omits the length variable, produces
an R? of 0.96.
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4 Estimators

We now describe and evaluate seven different predictors, based on the observations made in the previous section. We
also explain how such predictors can be implemented in an OS like Scout.

4.1 Packet Preprocessing

Predicting how much processing time a packet is going to require—before actually starting to process the packet—is
tricky. This is especially true if the predictor needs detailed information about the contents of the packet, such as how
many I-blocks it contains. Fortunately, Scout’s path architecture already includes a mechanism that addresses this
problem.

As briefly describe in Section 2.2, Scout classifies each incoming packet to determine the path to which it belongs.
This involves inspecting various header fields in the packet, such as ETH’s type field, IP’s protnum field, UDP’s port
fields, and so on. Although the details are beyond the scope of this paper, in essence classification is accomplished
incrementally, with each module (protocol) making a partial classification decision using module-specific information.
For example, the IP module interprets just the IP header. The classification process is considered successful if a unique
path is identified, in which case Scout places the packet on that path’s source queue.

Packet classification can be viewed as a form of preprocessing that takes place when the packet arrives, and as
such, it is possible to do other kinds of preprocessing as well. In our case, the MPEG-specific classifier inspects its
header to learn about the number and type of macroblocks contained in that packet. It then uses this information to
compute an estimate for the packet according to one of the predictors given in the next subsection. This estimator can
be viewed as a derived attribute of the packet, one that Scout can then use to schedule the packet for execution.

4.2 Predictors

We implemented seven predictors, as summarized below. The first three operate at the frame level (predicting the
number of cycles required for each frame) and the last four operate at the packet level (predicting the number of cycles
required for each packet). Within each set, the predictors range from simple averages to more complex estimators
based on the statistical models discussed in Section 3.

Building efficient estimators is more complicated than implementing the models described in Section 3. The first
problem is that the models were applied off-line, with all the data available to them a priori. In the case of predicting,
we have to incrementally estimate the number of cycles needed based on the frames or packets processed so far. The
second problem is that the models used in Section 3 are based on the least squares algorithm, and even if we apply
this algorithm incrementally, it is too computationally expensive for our purposes; we have a budget of only a few
cycles per frame (packet) to estimate how long the the frame (packet) will require to be decoded. Thus, we will have
to design estimators that approximate the models we have developed.

FRAME_AVG: Predicts processing time for next frame based on the average processing time required by all previous
frames that are part of this video stream.

FRAME_TYPE: Same as FRAME_AVG except it distinguishes among frames based on frame type, that is, it main-
tains three separate averages for each video stream.

FRAME_TYPE_LEN: Approximates the model described at the end of Section 3.1. Keeps the same per-type average
as does FRAME _TYPE, but adjusts this prediction to account for the slope of the cycles-per-byte line. The code
fragment that implements FRAME_TYPE_LEN is given in the appendix.

PACKET_AVG: Predicts processing time for next packet based on the average processing time required by all previ-
ous packets that are part of this video stream.

PACKET_EOF: Same as PACKET_AVG except it distinguishes among packets based on the number of EOFs con-
tained in the packet. For most video streams, this means maintaining two averages: one for packets with no
EOF markers and another for packets with one EOF marker.
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PACKET_EOF_TYPE: Tracks the average number of cycles required for each macroblock type. For each type of
macroblock in a given packet, multiplies the number of macroblocks of that type contained in the packet times
the corresponding average. The final prediction is given by the sum of these values, plus the average dithering
time if EOF is present.

PACKET_EOF_TYPE_LEN: Approximates the composite model described at the end of Section 3.2. Similar to
FRAME_TYPE_LEN except defined in terms of blocks-per-packet rather than bytes-per-frame. The code
fragment that implements PACKET_EOF_TYPE_LEN is given in the appendix.

4.3 Evaluation

‘We ran the seven predictors on the videos identified in Table 1. This section evaluates the accuracy of the predictors on
this sample set. For each frame (packet) processed by MPEG, we calculated the prediction error to be the difference
between the number of cycles predicted by the corresponding estimator, and the number of cycles actually required to
decode the frame (packet). The graphs and tables presented in this section report this prediction error in one form or
another.

4.3.1 Frame Predictors

Beginning with the frame predictors, we found that the simple average (FRAME_AVG) did very poorly, the predictor
based on frame type (FRAME_TYPE) did only marginally better, and the predictor based on both frame type and
length FRAME_TYPE_LEN) did very well. Figure 10 illustrates visually how well these three predictors performed
on one representative video: Terminator 2. In this figure, there is one scatter plot for each predictor, where every data
point records the prediction error for one frame processed by that predictor. That is, a data point at O on the y axis
indicates that the prediction for the corresponding frame was exactly right, a data point at 10° on the y axis indicates
that the prediction for the corresponding frame was 1M cycles too low, and a data point at —10° on the y axis indicates
that the prediction for the corresponding frame was 1M cycles too high. One interesting observation is that the plot of
the error for FRAME_AVG has the same structure as the frame decode times shown in Figure 2.

We examined the behavior of FRAME_TYPE_LEN more closely by plotting the distribution of the prediction
error. A histogram for Terminator 2 is given in Figure 11. As this Figure illustrates, the prediction error is normally
distributed about 0, the perfect prediction.

As a final evaluation of our frame predictors, we applied each of them to all six videos. The results for the best
predictor—FRAME _TYPE_LEN—are presented in Table 2. This table shows both the absolute and relative errors
measured for each of the six videos.

Absolute Error Relative Error

Video % wiin 1ms | % w/in 10ms | % w/in 5% | % w/in 10% | % w/in 25%
Neptune 72 99.7 80 97 99.4
RedsNightmare 67 99.0 60 84 97
Canyon 99 100 75 94 99.3
Terminator 2 56 99.7 75 96 99.7
Road Warrior 63 99.6 81 96 99.6
Mandelbrot 16 86 74 88 97

Table 2: Absolute and Relative Error for FRAME_TYPE_LEN Predictor

In the case of the absolute error, the table reports the percentage of frames that MPEG actually decoded within
Ims and 10ms of the predicted time, as measured on a 300MHz Alpha (thus, 1ms = 300,000 cycles and 10ms = 3M
cycles). We chose 1ms because it represents the minimum practical granularity for a scheduling algorithm; predicting
decoding time any more accurately would be of little value. We chose 10ms because it corresponds to the granularity
that scheduling decision are made in practice, and as such, represents a reasonable target upper bound for the absolute

11
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Figure 10: Error Plots for Frame Predictors

error the scheduler can tolerate. As illustrated in Table 2, 56-72% of the frames are predicted to within 1ms for all but
the Mendelbrot video, and (again with the exception of Mandelbrot) virtually all the frames are predicted to within
10ms of the actual time required.

In the case of Mandelbrot, which is so complex that it can be played at a rate of only 2 fps on a 300MHz Alpha,
the absolute errors are large, but the relative errors are quite good. For example, 88% of the Mandelbrot frames are
predicted to within 10% of the time it took to decode that Mandelbrot frame.
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Figure 11: Histogram of Errors for FRAME_TYPE_LEN
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4.3.2 Packet Predictors

We next turn our attention to the packet predictors. Analogous to Figure 10, Figure 12 plots the errors measured for
each of the four packet predictors when applied to Terminator 2. In this case, we see that simple averages work very
poorly, and that PACKET_EOF_TYPE_LEN is clearly the best predictor. A histogram of the error distribution for
PACKET_EOF_TYPE_LEN is shown in Figure 13, and again we see a normal distribution around O prediction error.
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Figure 12: Error Plots for Packet Predictors

Table 3 reports the absolute and relative errors for the PACKET_EOF_TYPE_LEN predictor applied to the six
video clips. In this case, we show the absolute errors in terms of 1ms and 2ms, instead of 10ms, since most packets
can be decoded in less than 10ms. The results are very encouraging: 83-97% of the packets for all six videos are
correctly predicted to within 1ms of the actual time required to decode those packets, and virtually all packets are
predicted to within 25% of their decode times. The absolute results are important because they imply that we can
predict the execution time for each packet to within the granularity of the scheduling decision for the vast majority of
video packets. By comparison, the simple PACKET_AVG predictor got only 32% of the estimates within 25% of the
actual decode time.
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Figure 13: Histogram of Errors for PACKET_EOF_TYPE_LEN

Absolute Error Relative Error

Video % w/in Ims | % w/in 2ms | % w/in 5% | % w/in 10% | % w/in 25%
Neptune 90 99 58 87 99
RedsNightmare 83 95 49 76 96
Canyon 95 99 64 90 99
Terminator 2 91 99 57 86 99
Road Warrior 88 98 62 88 99
Mandelbrot 97 99 49 78 98

Table 3: Absolute and Relative Error for PACKET_EOF_TYPE_LEN Predictor
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5 Conclusions

Being able to schedule and make quality of service guarantees for realtime video depends on knowing how much
processing time is going to be needed to decode each frame or network packet. Unless one wants to limit such a
system—either in terms of the variability of the compression algorithm or in terms of how aggresively it schedules
the CPU—it is necessary to predict the decoding times of variable compression algorithms as accurately as possible.
Developing accurate predictors for the MPEG video compression algorithm is the primary contribution of this paper.

We found that by considering both macroblock types and frame length, it is possible to define tight fitting linear
models of MPEG decoding, with R? values of 0.97 and above. Based on these models, we were then able to build
accurate and robust predictors at both the frame and packet level, with the ability to predict a majority of frames
and packets to with 1ms of the time they required on a modern processor, and with virtually all frames and packets
predicted to within 25% of the time it took to decode those frames and packets.

The question this paper does not answer is if these predictions are good enough. We are currently integrating
the MPEG predictors with our scheduling algorithm, and so have no quantitative answer. However, our experience
leads us to believe that the two best predictors are accurate enough since the errors they introduce are well within the
grainularity with which the CPU is scheduled in practice. In any case, there are three important points to make. First,
the more accurate the predictor, the more aggressively (less conservatively) we can schedule the processor. Second,
the effects of prediction errors are not cumulative; an incorrect prediction affects the corresponding frame or packet,
but not the entire video sequence. Third, we may learn that the scheduling algorithm requires a conservative predictor,
in which case we can use the results presented in this paper to define an envelope that contains virtually all frames or
packets.

Another interesting question raised by this work is whether we can estimate the long-term processing needs of a
video accurately enough to do admission control. We are currently extending the results presented in this paper to
groups of pictures, and expect to be able to make equally accurate predictions of the load a collection of videos can be
expected to put on the system.

Appendix

This appendix gives the prediction code for both frames and packets. Each predictor consists of two functions: one
that gets called to predict the cycles required by a newly arriving frame/packet (frame_predict and packet_predict)
and one that updates the prediction variables based on the frame/packet just processed (update_frame_predict and
update_packet_predict).

The inputs to these routines are retrieved from a frame/packet inventory found in the frame/packet header. Note
that in the case of frames, the frame type is given by this header. In the case of packets, however, the predictor uses a
simple heuristic to decide on a single packet type. This function, called getPacketType in the following code, returns
type B_PKT if the packet contains any B-blocks, else it returns type P_PKT if the packet contains any P-blocks, else
it returns type I_PKT.
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Frame Predictor

struct framePredictor {
long cycles;
long bytes;
long frames;
long x_diff, y_diff;
}i

struct framePredictor framep[3];

long frame_prediction (int frame_type, long bytes)
{

struct framePredictor *fp;

long prediction, avg_bytes, slope;

fp = &framep[frame_type];
if (fp->frames > 0) {
prediction = fp->cycles / fp->frames;
avg_bytes = fp->bytes / fp->frames;
if (fp->x_diff != 0) {
slope = fp-—>y diff/fp->x_diff;
prediction += (bytes - avg_bytes) * slope;
}
} else {
prediction = FRAME_DEFAULT;

return prediction;

#define WAIT 10
void update_frame_predictor (int frame_type, int bytes, long cycles)
{

struct framePredictor *fp;

long avg_cycles, avg_bytes;

fp = &framep[frame_type];
if (fp->frames > 0) {
bool same_signs;

avg_cycles = fp->cycles / fp—->frames;
avg_bytes = fp->bytes / fp->frames;

same_signs = ((bytes - avg_bytes > 0) == (cycles - avg_cycles > 0));
if (same_signs && fp->frames >= WAIT) {
fp->x_diff = ((fp->x_diff*7)>>3) + (abs(bytes - avg_bytes)>>3);
fp->y_diff = ((fp-—>y_diff*7)>>3) + (abs(cycles - avg_cycles)>>3);

}
fp—>frames++;
fp—->cycles += cycles;

17



fp—>bytes += bytes;

Packet Predictor

struct packetPredictor {
long cycles;
long blks;
long packets;
long x_diff, y_diff;
}i

struct packetPredictor packetp[3];
extern long ditherTime;
enum {I_PKT, P_PKT, B_PKT};

long packet_prediction (int num_EOFs, int Iblks, int Pblks, int Blblks, int B2blks)

{
struct packetPredictor *pp;

long prediction, avg_blks, slope, blks;
int type;

type = getPacketType (Iblks, Pblks, Blblks, B2blks);
pp = &packetp(typel;
if (pp—->packets > 0) {

prediction = (pp->cycles / pp->packets) + (ditherTime * num_EOFSs) ;

avg_blks = pp->blks / pp—->packets;
blks = Iblk + Pblk + Blblk + B2blk;
if (pp—>x_diff != 0) {
slope = pp—>y_diff/pp->x_diff;
prediction += (blks - avg_blks) * slope;
}
} else {
prediction = PACKET_DEFAULT;
}

return prediction;

#define WAIT 10
void update_packet_predictor (int num_EOFs, int Iblks, int Pblks,
int B2blks, long cycles)
{
struct packetPredictor *pp;
long avg_cycles, avg_blks;
int type;

type = getPacketType (Iblks, Pblks, Blblks, B2blks);
pp = &packetp[type];
cycles —= ditherTime * num_EOFs;
if (pp—->packets > 0) {
bool same_signs;
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avg_cycles = pp->cycles / pp->packets;

avg_blks = pp->blks / pp—->packets;

blks = Iblk + Pblk + Blblk + B2blk;

same_signs = ((blks - avg_blks > 0) == (cycles - avg_cycles > 0));

if (same_signs && pp—->packets >= WAIT) {
pp—>x_diff += abs(blks - avg_blks);
pp—>y_diff += abs(cycles - avg_cycles);
}
}
pp—>packets++;
pp—>cycles += cycles;
pp—>blks += blks;

Acknowledgments

We are deeply indebted to Pete Downey, who filled in the gaps in our understanding of regression analysis. We
would also like to thank the other members of the Scout group. This work supported in part by DARPA Contract
DABT63-95-C-0075 and NSF grant NCR-9204393.

References

[1] A. Bavier, D. Mosberger, and L. L. Peterson. Scheduling realtime and best effort paths in Scout. Technical report,
In preparation.

[2] P. Goyal, X. Guo, and H. Vin. A hierarchial CPU scheduler for multimedia operating systems. In Proceedings
of the Second Symposium on Operating Systems Design and Implementation, pages 107-122, Seattle, WA, Oct.
1996.

[3] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM, 1(20):46-61, Jan. 1973.

[4] J. Mitchell, W. Pennebaker, C. Fogg, and D. LeGall. MPEG Video Compression Standard. Chapman and Hall,
1996.

[5] D. Mosberger. Scout: A Path-Based Operating System. PhD thesis, University of Arizona, 1997.

[6] D. Mosberger and L. Peterson. Making paths explicit in the Scout operating system. In Proceedings of the Second
Symposium on Operating Systems Design and Implementation, pages 73153-168, Oct. 1996.

[7] J. Nieh and M. Lam. The design, implementation and evaluation of SMART: A scheduler for multimedia ap-
plications. In Proceedings of the Sixteenth Symposium on Operating System Principles, pages 184—197, Oct.
1997.

19



