
Supporting Configurable Real-Time

Communication Services

Xiaonan Han Matti A. Hiltunen Richard D. Schlichting

TR 97-10

Supporting Configurable Real-Time Communication Services1

Xiaonan Han Matti A. Hiltunen Richard D. Schlichting

TR 97-10

Abstract

Constructing communication services that provide real-time guarantees is important for many

applications built on distributed systems. While a variety of such services have been designed

and implemented, most are targeted for specific applications and are correspondingly difficult

to adapt to differing requirements in other areas. This paper presents an approach to building

configurable and customized versions of real-time communication services based on software

modules called micro-protocols. Each micro-protocol implements a different semantic property or

property variant, and interacts with other micro-protocols using an event-driven model supported by

a runtime system providing real-time guarantees. The programming model is presented, together

with an implementation design based on the x-kernel model for building network subsystems and

the OSF/RI MK 7.2 operating system. The design of a highly-configurable real-time channel

abstraction built using this approach is also given. Prototype implementations of the runtime

system and channel abstraction are currently underway.

May 1, 1997

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1This work supported in part by the Office of Naval Research under grant N00014- 96-0207.

1 Introduction

Real-time guarantees for computing services such as network communication and task execution are

important in many application areas. For example, safety critical systems usually require hard guar-

antees on system response time to avoid catastrophe, while multimedia applications behave optimally

with at least soft guarantees. Numerous different types of real-time services and systems have been

developed [ASJS96, BFM+96, KDK+89, KG94, Pow91, TNR90]. However, most such systems are

targeted for specific applications, which makes them rigid and unable to accommodate the different

requirements of a variety of application types. This is especially true for real-time communication

services found in distributed systems, where applications often need guarantees related to such proper-

ties as reliable message transmission, atomic delivery, and consistent message ordering in addition to

real-time guarantees.

This paper presents a new approach to constructing distributed real-time communication services

that allows the service guarantees to be customized to the requirements of a wide array of different

applications. The focus is on building flexible middleware services that use the functionality of an

underlying real-time operating system and network to implement higher-level abstractions for distributed

applications. The goal is to construct services that can provide not only real-time guarantees, but

also reliability, message ordering, and other quality of service (QoS) guarantees optimized for each

application and execution environment. This emphasis on integrating attributes and on providing a

high degree of flexibility distinguishes the approach from other real-time and configurable systems that

support a degree of customization [Her94, RBM96, SBS93, SVK93, TMR96].

Our approach is based on implementing different semantic properties and property variants of

a service as separate fine-grain modules called micro-protocols that interact using an event-based

interaction model. A service is constructed by selecting a set of micro-protocols implementing the

desired properties and configuring them together into a composite protocol that is positioned between

the application and the operating system. A runtime system within each composite protocol schedules

execution of micro-protocols to ensure that real-time properties are satisfied, while an admission control

module ensures that composite protocols are only created if the system has enough resources to satisfy

its requirements. An implementation of the model is currently underway using the OSF/RI MK 7.2

real-time operating system [Rey95] on a cluster of Pentium PCs. An earlier version of the system

has been used to develop highly-configurable versions of communication services without real-time

constraints, including group RPC [HS95, BS95], membership [HS97], and atomic multicast [GBB+95].

The rest of the paper is organized as follows. Section 2 describes our model for configurable

real-time services and outlines an implementation of the model designed for OSF/RI MK 7.2 and the

x-kernel [HP91]. We also outline the composite protocol runtime system, and explain how the execution

time of a collection of micro-protocols can be estimated. In section 3, the model is used to construct

a configurable communication channel abstraction supporting customization of real-time, reliability,

and ordering properties. Section 4 outlines related work and contrasts our approach to others. Finally,

section 5 offers some conclusions.

2 Implementing Configurable Real-Time Services

The system model consists of multiple machines connected by a network. As noted, our focus is on

middleware services for distributed real-time systems, especially those related to interprocess commu-

nication. Thus, we model the software at each site as a layer between the application and the operating

system (OS); the application makes requests to the middleware layer (e.g., message transmission) and

1

receives information as appropriate (e.g., message reception). The middleware in turn uses the facili-

ties provided by the underlying OS and network software to implement the guarantees desired by the

application.

Our specific design and implementation are oriented around the x-kernel model, in which the

middleware is implemented as part of a graph of protocols (i.e., software modules) that form the

network subsystem. However, the approach is independent of the x-kernel and can be implemented

using any number of suitable substrates. For example, a prototype of the previous non-real-time version

has been done using C++ on the Solaris OS [Hil96].

2.1 Event-Driven Model

Our approach is based on implementing different semantic properties and functional components of a

real-time service as separate modules that interact using an event-driven execution model. The basic

building block of this model is a micro-protocol, a software module that implements a well-defined

property of the desired service. A micro-protocol, in turn, is structured as a collection of event handlers,

which are procedure-like segments of code that are executed when an event occurs. Events can be either

user or system defined, and are used to signify changes of state potentially of interest to the micro-

protocol, e.g., “message arrival from the network” (MsgFromNet). When an event is detected, all

event handlers registered for that event are invoked; events can also be triggered explicitly by micro-

protocols, with the same effect. Execution of event handlers is atomic with respect to concurrency, i.e.,

each handler is executed to completion without interruption.

Event registration, detection, and invocation are implemented by a standard runtime system or

framework that is linked with the micro-protocols to form a composite protocol. The framework also

supports shared data (e.g., messages) that can be accessed by the micro-protocols configured into the

framework. Once created, a composite protocol can be composed in a traditional hierarchical manner

with other protocols to form the application’s protocol graph.

The primary event-handling operations are:

� bid = register(event,handler,order,times):

Specifies that handler is to be executed when event occurs. order is a numeric value specifying

the relative order in which handler should be executed relative to other handlers bound to the

same event. The binding automatically expires when the handler has been executed times times

or can remain in effect until explicitly canceled (times = PERM). register returns a handle to the

binding.

� deregister(bid):

Removes a binding previously established by register.

� trigger(event,args,mode,urgency):

Causes handlers registered for event to be executed with args as arguments. Execution can either

block the invoker until the handlers have completed execution (mode = SYNC) or allow the

caller to continue (mode = ASYNC). urgency is a numeric value specifying the relative urgency

of executing the handlers with respect to other handlers that are already queued for execution

(typically determined by the message deadline and type).

2

� delayTrigger(event,args,urgency,delay,times):

Triggers event after delay time units have passed. A value of times greater than one triggers the

event every delay units for the number of times specified, giving periodic execution. An event

for which a delayTrigger operation has been executed is called a timer event.

� stopEvent():

Cancels execution of the collection of event handlers scheduled by the currently executing event

trigger.

Event handlers are expected to be simple and have bounded maximum execution times. This means,

among other thing, that they may not include any infinite loops or use blocking synchronization like

semaphore wait operations, delays, or sleeps. If a micro-protocol requires synchronization, the same

effect can typically be achieved using event operations and one or more handlers. Note that the execution

atomicity of event handlers eliminates the need to protect shared data structures using semaphores.

The event-driven model has a number of appealing features for real-time systems. First, event-

handlers are short and simple, with predictable timing behavior. Thus, given the CPU time for each

event handler and knowledge of which events are triggered by each handler and the framework, we

can easily calculate the CPU time needed by the entire service for a specific situation (see section 2.3).

Second, scheduling can be done at the handler level and each handler executes to completion before

rescheduling. As a result, scheduling is simplified and long priority inversions [TMIM89] are avoided.

Finally, atomic execution of event handlers minimizes the need for synchronization between handlers,

and thus, reduces the well-known problems of synchronization, such as priority inversion.

2.2 Implementing the Model

Our prototype implementation of the real-time event-driven model is designed for the OSF/RI MK

7.2 operating system, which includes real-time support and the CORDS communication subsystem

[TMR96]. CORDS is essentially identical to the x-kernel, but with an additional path abstraction

to support reservation of resources such as buffers and threads. We utilize paths and thread priorities

provided by the system to give services and tasks with tighter deadlines higher priorities. Note, however,

that scheduling within a composite protocol still needs to be addressed to order the execution of event

handlers associated with different events.

The basic design uses one CORDS path for each composite protocol implementing a real-time

service. All threads associated with a single path have the same CORDS priority and thus, would be

executed in arbitrary order by the MK OS scheduler. In many cases, this is not enough. For example, if

two messages arrive from the network to a composite protocol approximately at the same time but one

was delayed longer by the network, the delayed message should often be processed first. Similarly, an

acknowledgment message should often be processed as soon as possible to avoid unnecessary message

retransmissions.

To realize this scheduling of event handlers within a composite protocol, an ordered event handler

queue (EHQ) storing pointers to handlers awaiting execution is maintained. Handlers are added to the

EHQ when an event for which they are registered is triggered, and removed when they are executed.

The order of handlers in the EHQ is determined by the relative urgency of the corresponding event.

Handlers are executed by a dispatcher thread that executes handlers serially.

In some cases, it is useful to have more than one path in a composite protocol, and hence, more

than one EHQ and dispatcher. For example, consider a bidirectional real-time communication channel

where the channel is used to send video in one direction and simple commands in the other. In this

3

situation, the QoS attributes associated with message deadlines and jitter are very different for the two

directions. These varying requirements can easily be implemented in this scheme by having separate

paths within the composite protocol for each direction. Event handlers associated with the different

traffic types within a composite protocol are assigned at configuration time to the paths corresponding

to the traffic types. Note that although a composite protocol may have more than one path, the global

data structures are still shared by all handlers. Note also that execution of handlers is still atomic despite

potentially multiple dispatcher threads since CORDS has non-preemptive scheduling.

Figure 1 illustrates this design. In the figure, solid arrows represent threads of execution, specifically

the dispatcher thread associated with each EHQ. Protocols above and below the composite protocol

interact with it through a procedure call interface—the x-kernel push and pop operations—and thus, the

threads from these components operate within the composite protocol as well. The dashed arrows in

the figure represent handlers being inserted into the EHQs as a result of trigger operations.

trigger(MsgFromNet,...)

. . .

dispatcher 1
EHQ 1

EHQ ndispatcher n

trigger(MsgFromUser,...)

Figure 1: Framework

In addition to the EHQs, each composite protocol contains an event/handler map (EHM) that

maintains information about which handlers are registered for each event. Handlers for a given event

are stored in this structure according to their relative ordering requirements. The register and deregister

operations update the EHM in the obvious way.

The implementation of the trigger operation depends on the mode supplied as an argument in the

call (see Figure 2). A non-blocking trigger simply inserts the handlers registered for this event into

the EHQ. A blocking trigger, however, is more complex since the handlers registered for the event

must be executed prior to resuming the triggering handler. In our design, the thread executing the

trigger operation assumes the role of the dispatcher until all the handlers for this particular event

have completed. This condition is detected by creating a counter that is initialized to the number of

new handlers inserted into the EHQ and decrementing it each time a handler is executed. When this

counter reaches zero, the execution of the triggering handler is resumed by the dispatcher executing a

return operation. Note that more than one handler may be blocked concurrently at a trigger operation

associated with a given EHQ. To guarantee that the return operation resumes the correct handler in

this case, handlers must be ordered in the EHQ so that the last handler to block is the first to resume

operation (LIFO). This can be achieved simply by ensuring that the urgency of the triggered handlers

4

trigger(event, mode, args) f
handlers = EHM(event);
addArgs(handlers, args); /* add args to handler info blocks */
if (mode == ASYNC) insert(handlers);
else f C

h

= new counter(number of handlers);
associate each handler with a reference to C

h

;
insert(handlers);
call dispatcher(); g

g

dispatcher() f
while(true) f

yield(); P(S
n

); h:HandlerInfo = head(EHQ);
call h->func(h->args);
if (h->C

h

!= NULL and ��(h->C
h

) == 0) /* last SYNC triggered handler is done*/
return();

g

g

insert(handlers) f
insert handlers to path’s EHQ ordered by urgency;
S

n

+= number of handlers;
g

delayTrigger(event, args, delay, times) f
handlers = EHM(event);
addArgs(handlers, args);
TimerRecord info; info.handlers = handlers;
info.delay = delay; info.times = times;
evSchedule(timeout,info,delay);

g

void timeout(TimerRecord info) f
if (info.times == PERM or ��info.times > 0)

evSchedule(timeout,info,info.delay);
set my thread priority to channel priority; yield();
insert(info.handlers);

g

Figure 2: Event-handling pseudo code

is always greater or equal to the urgency of the handler that executed the trigger operation. Finally, the

delayTrigger operation is implemented using the timer mechanisms provided by CORDS to realize the

appropriate delay, as illustrated in Figure 2.

Due to the non-preemptive scheduling of CORDS, we also have to ensure that the dispatcher gives

higher priority threads a chance to execute to avoid extended priority inversion. This is represented

in Figure 2 by a call to a yield operation prior to execution of each event handler. This results in the

worst case duration of a priority inversion being the maximum across all handler execution times. The

details of yield are omitted for simplicity, but the operation involves releasing a lock that controls the

execution of protocols in CORDS.

Several other issues must also be addressed. One is preventing the execution of dispatcher threads

whose EHQs are empty to avoid needless consumption of CPU time. This is achieved using a semaphore

S

n

whose value corresponds to the number of handlers in the EHQ at any given time. Another is ensuring

that execution of a high priority thread is not blocked by a low priority event handler if handlers from

different paths are registered for the same event. This problem is avoided in our design by automatically

5

assigning such an event handler to the higher priority path at configuration time. A third is implementing

stopEvent so that canceling an event occurrence is an efficient operation. This is done by linking together

handlers that are added to the EHQ as a result of a single trigger operation, which allows all the handlers

associated with a given event occurrence to be removed easily if stopEvent is invoked.

Finally, note that the maximum execution time of each event handling operation is bounded. These

bounds can be calculated since the maximum sizes of the EHQ and other data structures are determined

by the set of micro-protocols included in each configuration and application characteristics such as

message rate.

2.3 Estimating Execution Time

Managing the CPU to maintain real-time guarantees naturally requires knowledge about the execution

times of different services competing for the CPU. The configurability of the event-driven model would

appear to complicate this issue since the number of different configurations of a given service can

be large and each configuration has its own execution time. However, in reality, relatively simple

calculations based on the execution time of each event handler can be used to determine the execution

time of any valid configuration of micro-protocols. The approach for doing this is outlined in subsequent

paragraphs. We assume that a composite protocol is inactive until it either receives a message (or a call)

from protocols below or above it in the protocol graph, or until a timer event occurs.

First, consider messages from other protocols. Arrival of such a message causes predefined events

MsgFromApp and MsgFromNet to be triggered. Given a specified set of micro-protocols, it is possible

to determine which event handlers are executed as a result of these events, and similarly, which events

these handlers trigger. This process is continued until no more events are triggered. We then sum up

the execution times of the resulting set of event handlers to obtain the time required for processing a

message.

Next, consider estimating the execution time for each occurrence of a timer event. The specifics

here depend on how timers are used within the system. In many distributed protocols, timers are used

mostly to implement timeouts that cause, for example, retransmission of a message. In these cases, the

timer events are directly related to message processing and the CPU time required can simply be added

to the CPU time needed for message processing. In time-driven systems, however, timers are used to

initiate execution at certain moments of time independent of messages or calls from outside the system.

In these cases, the CPU time required for the timer event can be calculated the same way as for message

processing, i.e., by determining the set of event handlers to be executed and summing up the total CPU

requirement.

This approach does have restrictions, however. In particular, there must be no cycles in the chain

of events triggered by event handlers. That is, if handler H is registered for event A, then A must not

be triggered by H nor by any other handler that is executed as a result of events that H directly or

indirectly triggers. If this is not the case, the above calculation—and potentially system execution—is

non-terminating.

2.4 Discussion

As noted in the introduction, the event-driven model presented above is based on an earlier version

for constructing distributed services without real-time constraints [Bha96, HS93, Hil96]. The current

version extends and refines the original model to accommodate the additional requirements that arise

in real-time distributed systems. For example, in the original model handlers are executed logically

in parallel with no relative priority ordering between them, which can lead to undesirable behavior

6

such as unnecessary message retransmission [Bha96]. Furthermore, the logically concurrent model

of handler execution has been modified to the atomic sequential execution model that requires less

synchronization. Finally, the implementation of the model has been completely redesigned to allow

real-time considerations to be addressed.

3 A Configurable Real-Time Channel

As an example, we now describe the implementation of a highly-configurable real-time channel using

our approach. A channel is an abstraction for communicating between two or more application-level

processes on different sites in a distributed system,and a real-time channel is one that provides timeliness

guarantees. We first outline properties of real-time channels that can be used as the basis for a highly-

configurable service, and then present a design using the event-driven model. An implementation of

the design is underway.

3.1 Channel Shapes

Different types of channels can be defined based on whether the traffic is unidirectional (UD) or

bidirectional (BD), and how many processes the channel connects and in what manner. For the latter, a

point-to-point channel (PP) connects two processes, a multi-target (MT) channel connects one source

to many targets, and a multi-source channel (MS) connects multiple sources to a single target. MT and

MS channels are equivalent if the channels are bidirectional, so we use BDM to refer to either. Finally,

a multi-source, multi-target channel (MST) connects multiple sources to multiple targets. A special

case of an MST channel is a group multicast (GM) channel, where the sources and targets are identical.

The different channel shapes are illustrated in Figure 3.

UDPP

UDMS

UDMST BDMST

GM

UDMT

BDPP

BDM

Figure 3: Channel shapes

Each channel shape has application areas for which it is the most suitable choice. For example, UDPP

is good for multimedia transmission, BDPP for implementing video phones, UDMS for transmitting

sensor input from replicated sensors to a controller, and GM for video conferencing and distributed

multiplayer games.

3.2 Channel Properties

A large number of properties can be defined for real-time channels, but for brevity, we describe only

a representative set here. In particular, we consider latency—i.e., the maximum delivery delay, which

affects whether a transmitted message meets a specified deadline or not, reliability—i.e., whether

each message sent on a channel reaches its destination(s), and ordering properties between messages.

7

Other properties not considered here include bounded jitter, atomicity, stability [PBS89], security, and

properties related to changes in the set of processes using the channel, such as virtual synchrony [BSS91]

and safety [MMSA+96].

In addition to the above, real-time services often have a specification defining the importance of the

service meeting its constraints, usually specified using the phrases “hard real-time” or “soft real-time.”

We define a similar property for channels quantitatively using two probabilities,P
D

and P
R

. The first,

called the deadline probability, is the required probability that a given message reaches its destination

by the specified deadline. Various techniques (e.g., congestion control and retransmissions) can be used

to implement the required P
D

, although the maximum latency and the characteristics of the underlying

system naturally constrain the range of feasible values. Similarly, the second probability, called the

reliability probability, is the required probability that a given message sent on a channel eventually

reaches its destination, either before or after its deadline. Note that the two metrics are related in the

sense that establishing a given deadline probability necessarily fixes a minimum reliability level.

Different applications have different requirements for P

D

and P

R

. For example, multimedia

applications can often tolerate the loss of a few packets or missed deadlines, so P

D

and P

R

can be

relatively low—on the order of 0.9 to 0.99 for audio and a minimum of 0.999 for video [MHCN96].

On the other hand, distributed financial systems such as automatic teller machines would likely require

a value of P
R

very close to 1.0, but could tolerate a somewhat smaller value of P
D

.

Message ordering properties define constraints on the relative order in which messages are delivered

to the application at the target sites. An unordered channel is the weakest and imposes no constraints,

while a FIFO channel delivers messages from any given process to the application in the same order

as they were sent. In a causally ordered channel, if message m
i

(potentially) causes a process to send

messagem
j

, then any site that delivers bothm
i

andm
j

deliversm
i

beforem
j

. An application receiving

message m
i

before sending m
j

is typically used as the basis for causality. Finally, in a totally ordered

channel, all sites receiving any two messages m
i

and m

j

deliver them to the application in the same

order.

Numerous other ordering properties could also be defined, including timestamp-based temporal

order [Ver94], semantic order [MPS89], and synchronous order [MG95]. Note also that these definitions

are orthogonal to latency and reliability. This means, for example, that the only guarantee for FIFO

channels with P

D

< 1:0 is that any messages delivered are in order, i.e., there may be gaps in the

message delivery sequence [AS95].

The set of properties that can be provided by a channel is intricately related to its shape. For

example, with a UDPP channel, the only ordering guarantee that can be defined is FIFO, while total

order can only be defined for multi-target channels. Conversely, the need for certain channel properties

can dictate the shape required for an application. From the communication point of view, an application

could replace any channel with a collection of simple UDPP channels. However, in this case, the

application would have to manage the potentially numerous channels and implement the properties

found in more complex channels itself.

3.3 Implementing Real-Time Channels

3.3.1 System Components

Figure 4 shows the major logical components in the system and their interactions. Each channel is

implemented as a composite protocol consisting of selected micro-protocols and uses system resources

allocated as CORDS paths. In our design, resource allocation has been divided into the channel

control module (CCM), which is specific to channels, and the admission control module (ACM), which

8

manages resources across multiple types of services. The CCM translates channel arguments into

general resource requirements. In particular, it translates the channel property requirements into a set

of micro-protocols and paths that satisfies these requirements, and calculates the CPU requirements

given the application traffic model. The ACM is a process that maintains information about available

resources, and based on this information, either grants or denies requested resources. If the request

is granted, the ACM also assigns path priorities. A channel may also interact with the ACM after

being created; for example, it may request additional resources or be instructed to release resources or

terminate should a higher-priority service need resources. Note that the ACMs on different sites may

interact, for example, to allocate the network bandwidth.

other ACMs

Admission

Control

push/pop

grant/deny
Channel Control

Application

C
h

a
n

n
el

change request

change command

push/pop

UDP/IP/Ethernet

C
h

a
n

n
el

create request

communication with

Figure 4: System components and component interactions

3.3.2 Micro-Protocol Suite

The core micro-protocol on which all others build is BasicChannel, which implements the abstraction of

a simple channel with no reliability or ordering guarantees other than those provided by the underlying

network and OS. This functionality can be augmented using different retransmission and ordering micro-

protocols. There are currently two retransmission micro-protocols. The first increases the probability

of timely delivery by transmitting a message a specified number of times with small intervals between

transmissions. The second uses positive acknowledgments, and is thus more applicable for transmitting

non-real-time messages or messages for which the deadline has already been missed.

Any one of three ordering micro-protocols can also be configured into the composite protocol to

enforce FIFO, causal, or total ordering, respectively. The ordering micro-protocols are designed so

that a message will be delivered out of order if waiting any longer would result in missing the delivery

deadline [AS95]. This forced unordered delivery is implemented as an event handler, so the service can

easily be configured without this behavior if ordering is more important than the delivery deadline for

a particular channel.

A number of different events are used in our composite protocol. Two are the system events

MsgFromNet and MsgFromApp, which are triggered by the framework when a message arrives from

the network or application, respectively. There are also eight user-defined events, which are triggered by

micro-protocols to signal completion of a task or otherwise communicate with other micro-protocols.

9

Finally, six timer events are used to implement message retransmissions and the forced out of order

delivery mentioned above.

micro-protocol BasicChannel(�:real,DropLate:bool) /*�: estimated processing time of a message */ f

event handler msg from net(msg)f
if (msg.type == DATA) trigger(DataMsgFromNet,msg);
else trigger(MetaMsgFromNet,msg);

g

event handler data msg from net(msg)f
msg.ready = DeliverOK;
if (msg.type == RTDATA) trigger(RtDataMsgFromNet,msg);
else trigger(NonRtDataMsgFromNet,msg);

g

event handler rt data msg from net(msg)f
if (msg.deadline < currentTime +� and DropLate) f stopEvent(); return(); g /* drop late message */
else setReadyBits(msg,BasicChannel,UP);

g

event handler msg from app(msg)f
msg.ready = SendOK; setReadyBits(msg,BasicChannel,DOWN);

g

event handler rt msg to net(msg)f
push(msg); trigger(RtMsgSentToNet,msg);

g

event handler rt msg to app(msg)f
if (msg passed deadline and DropLate)f stopEvent(); return(); g /*drop late message */
pop(msg);
if (delivered[msg.source] < msg.id)f

delivered[msg.source] = msg.id; deliveredTime[msg.source] = currentTime; g
trigger(RtMsgDeliveredToApp,msg);

g

procedure setReadyBits(msg,micro-protocol id,direction)f
msg.ready[micro-protocol id] = true;
if (msg.ready true for each micro-protocol)

if (direction == UP) trigger(RtMsgToApp,msg);
else trigger(RtMsgToNet,msg);

g

initial f
delivered = 0; SendOK[BasicChannel] = false; DeliverOK[BasicChannel] = false;
register(MsgFromNet,msg from net,5); register(RtMsgToNet,rt msg to net,5);
register(MsgFromApp,msg from app,2); register(RtMsgToApp,rt msg to app,2);
register(RtDataMsgFromNet,rt data msg from net,2);
register(DataMsgFromNet,data msg from net,5); g

g

Figure 5: BasicChannel micro-protocol

The BasicChannel micro-protocol is shown in Figure 5. This micro-protocol implements the

basic function of passing a real-time message through the channel composite protocol, either from the

application to a lower-level protocol or vice versa. Several aspects of this micro-protocol are worth

highlighting. One is how interactions with other micro-protocols in the composite protocol are handled,

and in particular, how micro-protocols can influence passage of a message. This is done primarily

by using specialized events such as RtDataMsgFromNet that are relevant only for the micro-protocols

concerned with this type of message.

10

A second issue is determining when all micro-protocols are ready for a given message to exit the

composite protocol. In our design, the global vectors SendOK and DeliverOK indicate whether a

micro-protocol might potentially wish to delay a message. A matching vector in each message is then

used to record whether a micro-protocol agrees that the message can exit. The SetReadyBits procedure

is invoked by a micro-protocol for this purpose; once the last micro-protocol has given its approval, this

procedure initiates the transmission of the message either up or down the protocol graph.

Finally, note that any missing event-handling arguments take on their default values. Of importance

here is that, when the urgency parameter is omitted, the event handlers inherit the current urgency. In

this case, we assume the framework sets the urgency of the events MsgFromNet and MsgFromApp

based on message deadlines. Furthermore, the default value for the mode parameter of trigger is

ASYNC, while the default value for the time parameter of register is PERM.

The given set of six micro-protocols can be configured to provide a large number of semantically

different channels. Simply considering the different configurations of micro-protocols, we get 16

different combinations ranging from just the BasicChannel to one with both retransmission micro-

protocols and one of three ordering micro-protocols. All these combinations are legal for GM channels.

However, as mentioned above, all properties are not feasible for all channel shapes, so the number

of combinations is less for other shapes; for example, there are five possible combinations for UDPP

channels. Nonetheless, given the eight channel shapes that have been defined, dozens of different

configuration are possible. The behavior of these channels can be customized further by specifying the

desired message latency, P
D

, P
R

, and other arguments that further fine-tune their behavior. Thus, even

this relatively small set of micro-protocols can be used to build channels with properties suitable for a

variety of different applications.

3.4 Implementing Real-Time Properties

Real-time properties are different from ordering and reliability properties in the sense that they cannot

simply be implemented as new micro-protocols. Rather, they must be realized by controlling the

execution of the entire system, including the channel composite protocols and any other components

competing for resources. The main aspects of this control are admission control, which determines

which tasks are allowed to execute, and scheduling, which determines the order in which different tasks

get to use the CPU.

The details of admission control are different for each real-time service type. The following discus-

sion is specific to the channel abstraction, although many of the same principles will undoubtedly apply

to other service types. In this paper, we only address the allocation of memory and network bandwidth

to different channels and the scheduling of CPU time. We do not consider network scheduling, but

assume that by keeping the network load under control through network allocation, the Ethernet network

will behave predictably [BMK88]. In particular, we assume that we know, for a given probability level

P

n

, the maximum network transmission time T

n

such that the probability of a message reaching its

destination in less than or equal to T
n

is P
n

.

Admission control is divided into a capability test that determines if enough resources exist for

the new channel, and a schedulability test that determines whether a feasible schedule that allows

messages to meet their deadlines can be constructed. A new channel is established only if both tests are

satisfied. Before these tests can be developed, however, the appropriate traffic models must be defined

to characterize assumptions made about application message traffic.

11

3.4.1 Traffic Model

Assume that the traffic on a channel is given by a function A, such that A[�; � + t] denotes arrivals in

the time interval [�; � + t]. Then, the traffic constraints of this channel can be given by a function A�,

such that A[�; � + t] � A

�

(t). The basis for our traffic model is the (�; �) model from [WKZL96],

where � is the burstiness factor, � is the average traffic rate, and A

�

(t) = � + � � t. With this model,

the size of the traffic backlog at a server never exceeds � given that the server works at rate � [Cru91].

The server in our case is a channel composite protocol, � is the message rate R (messages/second), and

� is the burst size B (number of messages). Thus, the message traffic constraint is A�

(t) = B + R � t.

While a necessary starting point, this model only describes the traffic originating from the application

processes sending on a given channel. The traffic that a channel composite protocol actually receives

from the network can be very different, however, because of variations in network transmission delay

and extra messages generated by the composite protocol, such as acknowledgments and retransmissions.

These factors mean that the model must be modified for the traffic received from the network. For

example, if A�

s

(t) = B + R � t at the sending site and the maximum network delay is T

n

, then

A

�

r

(t) = B

0

+ R � t at the receiving site, where B0

= B + T

n

� R [Cru91]. Similarly, retransmissions

increase both the message rate and the burst size. Finally, for multisource channels (including GM

channels), the traffic model at the receiving site is the aggregation of the traffic models of the source

sites.

3.4.2 Capability Tests

The three primary resources to be considered are CPU time, memory space, and network bandwidth.

For the CPU capability test on a given site, we assume that a fixed fraction of the total CPU time is

allocated for composite protocols, with the remainder used by the OS and the application. Given a

request to create a channel C, then, the test is performed in two steps. First, the CPU usage for the

composite protocol implementing C is calculated as outlined in section 2.3 based on the application and

network message rates from the traffic model and the message-generation behavior of the composite

protocol. Second, this value is added to the sum of the usage values for the currently existing channels

to determine if adding C would exceed the CPU allocation. If it would, then the request is denied;

otherwise, the request is granted. The network bandwidth test is similar. In this case, the bandwidth

requirements for each channel are calculated based on the message rate, the maximum message size,

and information about any extra messages generated by the composite protocol.

Both the CPU and bandwidth tests are complicated somewhat by the retransmissions used to

increase reliability of non-real-time messages or messages that have already missed their deadline.

These micro-protocols are based on positive or negative acknowledgment schemes, which means that if

a reliability of 1.0 is specified, the number of retransmissions cannot be bounded a priori. This problem

is eliminated in our design by giving retransmissions a low priority so that they use the CPU only when

no higher priority work is available. Additionally, a small fixed upper bound is placed on the number

of messages transmitted each time the retransmission micro-protocol is activated. This ensures that

retransmissions use at most a small fixed fraction of the CPU time and network bandwidth over any

interval.

For the memory capability test, only the memory space required for storing messages needs to be

considered since the size of static data structures can easily be estimated. Calculating this value requires

taking two specific items into account. The first is the schedulability test (below), which dictates how

long a message may have to wait until it can be transmitted. The other is maximum retransmission

time, which determines how long a message must be kept for possible retransmissions before its storage

12

can be reclaimed. In the worst case—which occurs when the specified reliability requirement is 1.0—a

message may have to be kept forever, implying that any fixed amount of memory may be insufficient,

However, a probabilistic estimate of expected memory usage can be calculated even in this case given

the estimated failure rate of the network and a desired level of assurance that the composite protocol

will not exhaust its memory.

3.4.3 Schedulability Test

When a channel creation request is made, a schedulability test is needed to determine if execution

deadlines can be met, even if the CPU, bandwidth, and memory tests indicate sufficient resources.

In our case, a schedulability test is done on each path in the composite protocol implementing the

channel, with the channel only being created if all paths pass the test. For simplicity, we only consider

schedulability tests for CPU time; approaches to network scheduling can be found elsewhere, such as

[MMM96].

For each message, the application specifies a deadline d. Note, however, that this deadline can

be considered the sum of three values, d = d

s

+ T

n

+ d

r

, where d

s

is the maximum allowed delay

on the sending site for the message to traverse the composite protocol down to the network, d
r

is the

corresponding time at the receiving site, and T

n

is the maximum network transmission time as given

above. We assume that T
n

is fixed, so the schedulability test derives the values of d
s

and d

r

. This is

done using the response times for a message. In particular, let r
s

denote the worst case response time

for a message to traverse the composite protocol at the sending site and r
r

the corresponding time at the

receiving site (see below). Then, the schedulability test determines whether values of d
s

and d

r

exist

such that r
s

� d

s

� 1=R and r
r

� d

r

� 1=R, where R is the message rate. If not, the channel creation

request is denied.

The worst case response times r
s

and r
r

are calculated using the algorithm described in [LWF94].

First, the existing paths on a site are sorted based on their priority, where path P

i

has the ith highest

priority. Given this set of paths, the CPU response time r
k

for any channel P
k

is then calculated using

the formula:

r

k

=

P

k

i=1

B

i

�E

i

+�

1�

P

k

i=1

R

i

�E

i

(1)

Here, B
i

, R
i

, and E
i

are the burst size, traffic rate, and maximum CPU time for processing a message

in path P
i

, respectively. The factor � is the maximum priority inversion time, which occurs in CORDS

when a lower priority event handler continues to be executed even though a higher priority path becomes

available. Thus, � = max

j>p

e

j

, where e
j

is the maximum execution time of any single event handler

in pathP
j

. Note that this formula applies only to paths with only one traffic model for arriving messages;

the formula becomes more complex when a path has more than one traffic model.

This formula is used in conjunction with the D order procedure [KSF94] to determine a priority for

the new path that is allocated as a result of the channel creation request. In essence, this step calculates

the highest possible priority for the path that still allows all deadlines to be met. First, the new path

is assigned the highest priority and the response time of all other paths is calculated using the above

formula. If their deadlines can still be satisfied, then the priority of the new path is taken to be the

current value. Otherwise, the priority of the new path is decreased and the process repeated. In addition

to establishing the priority, this procedure also determines the minimum worst case response time.

After calculating the worst-case response times r
s

and r
r

, d
s

and d
r

are assigned to the new path so

that d
s

+ T

n

+ d

r

< d, r
s

� d

s

� 1=R, and r

r

� d

r

� 1=R are satisfied. As noted above, if no such

13

assignment exists, then the path cannot be created and thus, the corresponding channel creation request

is denied. Otherwise, various heuristics can be used to choose reasonable values for d
s

and d

r

, e.g., to

be in proportion to r
s

and r
r

. The set of micro-protocols in the composite protocol affects the decision

as well. For example, if total or causal ordering are included, then a message may be delayed awaiting

the arrival of other messages. In this case, d
r

should be larger than r
r

.

4 Related Work

A number of systems support configurability and customization of communication services in dis-

tributed systems, including Adaptive [SBS93], ANSA [Her94], Horus [RBM96], and the x-kernel

[HP91]. However, only Adaptive and the configurable control system in [SVK93] address issues re-

lated to real time. Adaptive introduces an approach to building protocols that employs a collection of

reusable ‘building-block’ protocol mechanisms that can be composed automatically based on functional

specifications. The objects are tightly coupled in the sense that interactions between objects are fixed

a priori. Furthermore, although Adaptive targets multimedia applications, its runtime system appears

to be designed simply to maximize performance rather than ensuring deadlines as with most real-time

systems.

A reconfigurable real-time software system is introduced in [SVK93]. The target application

domain is sensor-based control systems, rather than real-time communication as is the case here. The

port-based object model is suitable for combining existing software components, but lacks the degree

of flexibility and fine-grain control found in our approach. As such, it would be difficult to use this

model to construct the same type of configurable services.

A large number of real-time systems have been designed and implemented, including Chimera

[SVK93], Delta-4 [PSB+88, Pow91], HARTS [KS91], Mars [KDK+89], MK [Rey95, TMR96], RT-

Mach [TNR90], and TTP [KG94]. While suitable for their target application areas, the lack of support

for configurability and customization in such systems typically limits their applicability to new areas.

Two exceptions are [ASJS96] and [TMR96], which have adopted principles from the x-kernel to add

coarse-grain modularity and a limited degree of configurability to certain real-time communication

services.

Real-time channel abstractions similar to the one described in section 3 have been developed

elsewhere as well. In some cases,these channels address real-time communication at the network level;

for example, a type of real-time channel that is established across multiple point-to-point network links

is introduced in [KS91, KSF94]. Similarly, Tenet provides real-time channels over heterogeneous inter-

networks, as well as a real-time network layer protocol RTIP and two real-time transport layer protocols

RMTP and CMTP [BFM+96]. The latest Tenet suite also provides multicast channels and resource

sharing between related channels. An atomic real-time multicast protocol ensuring total ordering of

messages is introduced in [ASJS96]. This protocol uses a logical token ring, and integrates multicast

and membership services, but without explicitly introducing a real-time channel abstraction.

5 Conclusions

This paper addresses the problem of providing customized real-time communication services for dif-

ferent types of applications. We presented a new event-driven interaction model that allows different

abstract service properties and their variants to be implemented as independent modules called micro-

protocols. A set of micro-protocols is then selected based on the desired properties and configured

14

together into a composite protocol implementing a custom version of the service. We introduced

the interaction model and outlined an implementation design based on the x-kernel model and the

path abstraction in CORDS. The model was then applied to construct a real-time channel abstraction

supporting multiple application interaction patterns, and numerous combinations of properties. As

demonstrated by the example, this model supports a high level of customization without sacrificing

real-time guarantees.

Prototype implementations of a runtime framework supporting the event-driven model and the

channel abstraction are currently underway on a testbed of four Pentium PCs running OSF/RI MK 7.2.

In addition to the implementation, future work will include further refinement of the admission control

tests for the event-driven model, designing and implementing algorithms for distributed admission

control, and experiments with other real-time services.

References

[AS95] F. Adelstein and M. Singhal. Real-time causal message ordering in multimedia systems.

In Proceedings of the 15th International Conference on Distributed Computing Systems,

pages 36–43, May 1995.

[ASJS96] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin. RTCAST: Lightweight multicast

for real-time process groups. In Proceedings of the IEEE Real-Time Technology and

Applications Symposium, pages 250–259, Jun 1996.

[BFM+96] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma, and H. Zhang. The Tenet real-time

protocol suite: Design, implementation, and experiences. IEEE/ACM Transactions on

Networking, 4(1), Feb 1996.

[Bha96] N. T. Bhatti. A System for Constructing Configurable High-Level Protocols. PhD thesis,

Dept of Computer Science, University of Arizona, Tucson, AZ, Nov 1996.

[BMK88] D. Boggs, J. Mogul, and C. Kent. Measured capacity of an Ethernet: Myths and reality.

In Proceedings of SIGCOMM ’88 Symposium on Communications Architectures and

Protocols, pages 222–234, Aug 1988.

[BS95] N. T. Bhatti and R. D. Schlichting. A system for constructing configurable high-level

protocols. In Proceedings of SIGCOMM ’95, pages 138–150, Cambridge, MA, Aug

1995.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multi-

cast. ACM Transactions on Computer Systems, 9(3):272–314, Aug 1991.

[Cru91] R. Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE

Transactions on Information Theory, 37(1):114–131, Jan 1991.

[GBB+95] D. O. Guedes, D. E. Bakken, N. T. Bhatti, M. A. Hiltunen, and R. D. Schlichting. A

customized communication subsystem for FT-Linda. In Proceedings of the 13th Brazilian

Symposium on Computer Networks, pages 319–338, May 1995.

[Her94] A. Herbert. An ANSA overview. IEEE Network, 8(1), Jan 1994.

15

[Hil96] M. A. Hiltunen. Configurable Distributed Fault-Tolerant Services. PhD thesis, Dept of

Computer Science, University of Arizona, Tucson, AZ, Jul 1996.

[HP91] N. Hutchinson and L. Peterson. The x-kernel: An architecture for implementing network

protocols. IEEE Transactions on Software Engineering, 17(1):64–76, Jan 1991.

[HS93] M. A. Hiltunen and R. D. Schlichting. An approach to constructing modular fault-tolerant

protocols. In Proceedings of the 12th Symposium on Reliable Distributed Systems, pages

105–114, Princeton, NJ, Oct 1993.

[HS95] M. A. Hiltunen and R. D. Schlichting. Constructing a configurable group RPC service.

In Proceedings of the 15th International Conference on Distributed Computing Systems,

pages 288–295, Vancouver, BC, Canada, May 1995.

[HS97] M. A. Hiltunen and R. D. Schlichting. A configurable membership service. IEEE

Transactions on Computers, 1997. to appear.

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger.

Distributed fault-tolerant real-time systems: The Mars approach. IEEE Micro, pages

25–40, Feb 1989.

[KG94] H. Kopetz and G. Grunsteidl. TTP - A protocol for fault-tolerant real-time systems.

Computer, 27(1):14–23, Jan 1994.

[KS91] D. Kandlur and K. Shin. Design of a communication subsystem for HARTS. Technical

Report CSE-TR-109-91, University of Michigan, Oct 1991.

[KSF94] D. Kandlur, K. Shin, and D. Ferrari. Real-time communication in multi-hop networks.

IEEE Transactions on Parallel and Distributed Systems, pages 1044–1056, Oct 1994.

[LWF94] J. Liebeherr, D. Wrege, and D. Ferrari. Exact admission control for networks with

bounded delay services. Technical Report TR-94-033, International Computer Science

Institue, University of California at Berkeley, Berkeley, CA, Aug 1994.

[MG95] V. Murty and V. Garg. An algorithm for guaranteeing synchronous ordering of messages.

In Proceedings of the 2nd International Symposium on Autonomous Decentralized Sys-

tems, pages 208–214, Phoenix, AZ, Apr 1995.

[MHCN96] A. Mauthe, D. Hutchison, G. Coulson, and S. Namuye. Multimedia group communi-

cations: towards new services. Distributed Systems Engineering, 3(3):197–210, Sep

1996.

[MMM96] C. Martel, W. Moh, and T.-S. Moh. Dynamic prioritized conflict resolution on multiple

access broadcast networks. IEEE Transactions on Computers, 45(9):1074–1079, Sep

1996.

[MMSA+96] L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, and C. Lingley-Papadopoulos.

Totem: A fault-tolerant multicast group communication system. Communications of the

ACM, 39(4):54–63, Apr 1996.

16

[MPS89] S. Mishra, L. Peterson, and R. D. Schlichting. Implementing replicated objects using

Psync. In Proceedings of the 8th Symposium on Reliable Distributed Systems, pages

42–52, Seattle, Washington, Oct 1989.

[PBS89] L. Peterson, N. Buchholz, and R. D. Schlichting. Preserving and using context in-

formation in interprocess communication. ACM Transactions on Computer Systems,

7(3):217–246, Aug 1989.

[Pow91] D. Powell, editor. Delta-4: A Generic Architecture for Dependable Computing. Springer-

Verlag, 1991.

[PSB+88] D. Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk. The Delta-4 approach to

dependability in open distributed computing systems. In Proceedings of the Eighteenth

Symposium on Fault-Tolerant Computing, Tokyo, Jun 1988.

[RBM96] R. van Renesse, K. Birman, and S Maffeis. Horus, a flexible group communication

system. Communications of the ACM, 39(4):76–83, Apr 1996.

[Rey95] F. Reynolds. The OSF real-time micro-kernel. Technical report, OSF Research Institute,

1995.

[SBS93] D. Schmidt, D. Box, and T. Suda. ADAPTIVE: A dynamically assembled protocol

transformation, integration, and evaluation environment. Concurrency: Practice and

Experience, 5(4):269–286, Jun 1993.

[SVK93] D. Stewart, R. Volpe, and P. Khosla. Design of dynamically reconfigurable real-time soft-

ware using port-based objects. Technical Report CMU-RI-TR-93-11, Carnegie Mellon

University, July 1993.

[TMIM89] H. Tokuda, C. Mercer, Y. Ishikawa, and T. Marchok. Priority inversions in real-time

communication. In Proceedings of the 10th IEEE Real-Time Systems Symposium, pages

348–359, Dec 1989.

[TMR96] F. Travostino, E. Menze, and F. Reynolds. Paths: Programming with system resources

in support of real-time distributed applications. In Proceedings of the IEEE Workshop

on Object-Oriented Real-Time Dependable Systems, Feb 1996.

[TNR90] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach: Toward a predictable real-time

system. In Proceedings of USENIX Mach Workshop, pages 73–82, Oct 1990.

[Ver94] P. Verissimo. Ordering and timeliness requirements of dependable real-time programs.

In Real-Time Systems, pages 105–128. Kluwer Academic Publishers, Boston, 1994.

[WKZL96] D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr. Deterministic delay bounds for

VBR video in packet-switching networks: Fundamental limits and practical tradeoffs.

IEEE/ACM Transactions on Networking, pages 352–362, Jun 1996.

17

