
SCOUT: A PATH-BASED OPERATING SYSTEM

by

David Mosberger

Copyright c

 David Mosberger 1997

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 7

This page intentially left blank.

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an ad-

vanced degree at The University of Arizona and is deposited in the University Library to

be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgment of source is made. Requests for permission for ex-

tended quotation from or reproduction of this manuscript in whole or in part may be

granted by the copyright holder.

SIGNED:

4

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Larry Peterson, for his support,

patience, and encouragement throughout my graduate studies. It is not often that one finds

an advisor and colleague that always finds the time for listening to the little problems and

roadblocks that unavoidably crop up in the course of performing research. His technical

and editorial advice was essential to the completion of this dissertation and has taught me

innumerable lessons and insights on the workings of academic research in general.

My thanks also go to the members of my major committee, John Hartman and Todd

Proebsting for reading previous drafts of this dissertation and providing many valuable

comments that improved the presentation and contents of this dissertation. I would like to

thank the members of my minor committee, Robert Schowengerdt and Jeffrey Gonzalez

for their help during my minor studies in the field of Remote Sensing.

The friendship of Peter Druschel and Larry Brakmo is much appreciated and has led to

many interesting and good-spirited discussions relating to this research. I am also grateful

to my colleagues Patrick Bridges and Brady Montz for helping considerably with realiz-

ing the path-related code optimizations. In particular, Brady implemented the last call

optimization and Patrick, with great diligence and ingenuity, convinced gcc to perform

path-inlining the way we wanted it. My thanks go to Abhiram Kunesh who adapted the

MGR window management system to Scout, to Andy Beavier for turning MGR into the

path-cognizant WiMP, and to Dave Larson and Rob Piltz for helping with various aspects

of the Scout implementation.

Last, but not least, I would like to thank my wife Ning for her understanding and love

during the past few years. Her support and encouragement was in the end what made

this dissertation possible. My parents, Marta and Erwin, receive my deepest gratitude and

love for their dedication and the many years of support during my undergraduate studies

that provided the foundation for this work.

This work is supported in part by DARPA contracts DABT63-91-C-0030, DABT63-

95-C0075, and N66001-96-C-8518.

5

To my parents, for making it possible to embark on this journey.

To my wife, for making it possible to conclude it.

6

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS . 10

LIST OF TABLES . 12

ABSTRACT . 13

CHAPTER 1: INTRODUCTION . 14

1.1 From Mainframes To Personal Computers 15

1.2 The Advent of the Information Appliance 16

1.3 The Need for Configurable and Modular Operating Systems 19

1.4 Performance Implications of Modular Systems 21

1.4.1 Potential For Performance Improvements 23

1.4.2 Implications on Quality-of-Service and Predictability 25

1.5 Beyond Modularity: The Path Abstraction 26

1.6 Thesis Statement and Contributions . 28

CHAPTER 2: PATH ABSTRACTION . 32

2.1 Communication Network Analogy . 33

2.2 Path Model . 35

2.2.1 Basic Path . 36

2.2.2 Path Processing . 37

2.2.3 Path Creation . 39

2.2.4 Generalized Paths . 48

2.3 Summary and Discussion . 50

2.3.1 Policy Issues . 51

2.3.2 Intuitive Models . 52

2.3.3 Limitations . 52

2.4 Applications . 53

7

TABLE OF CONTENTS — Continued

2.4.1 Code Optimizations . 54

2.4.2 Resource Management . 55

2.5 Related Work . 57

CHAPTER 3: SCOUT ARCHITECTURE . 59

3.1 Overview . 59

3.1.1 Scout Epochs . 60

3.2 Modularity . 61

3.2.1 Module Granularity . 62

3.2.2 Module Structure . 63

3.2.3 Module Graph . 65

3.2.4 Discussion . 70

3.3 Paths . 71

3.3.1 Attributes . 72

3.3.2 Visual Overview of a Scout Path 73

3.3.3 Path Object . 75

3.3.4 Stage . 77

3.3.5 Interface . 78

3.3.6 Creation . 80

3.3.7 Extension . 82

3.3.8 Optimization . 83

3.3.9 Destruction . 83

3.3.10 Evaluation and Discussion . 84

3.4 Demultiplexing . 85

3.4.1 Scout Packet Classifier . 85

3.4.2 The Role of Classifiers . 86

8

TABLE OF CONTENTS — Continued

3.4.3 Realizing the Scout Classifier 88

3.4.4 Evaluation . 96

3.5 Execution Model . 100

3.5.1 Thread Scheduling . 101

3.5.2 Thread Creation . 103

3.6 Related Work . 104

CHAPTER 4: USING PATHS TO OPTIMIZE CODE 110

4.1 Preliminaries . 111

4.1.1 Experimental Testbed . 111

4.1.2 Test Cases . 112

4.1.3 Base Case . 113

4.2 Latency Reducing Techniques . 115

4.2.1 Outlining . 115

4.2.2 Cloning . 118

4.2.3 Path-Inlining . 122

4.2.4 Last Call Optimization . 123

4.3 Evaluation . 124

4.3.1 Test Cases . 124

4.3.2 End-to-End Results . 125

4.3.3 Detailed Analysis . 129

4.4 Concluding Remarks . 136

CHAPTER 5: USING PATHS FOR RESOURCE MANAGEMENT 138

5.1 Building NetTV . 138

5.1.1 Module Graph . 139

5.1.2 Paths . 140

9

TABLE OF CONTENTS — Continued

5.1.3 Base Performance . 145

5.2 Resource Management . 147

5.2.1 Queues . 147

5.2.2 Scheduling . 149

5.2.3 Admission Control . 154

CHAPTER 6: CONCLUSIONS . 157

6.1 Summary . 157

6.2 Contributions . 159

6.3 Future Directions . 160

6.3.1 CPU Scheduling . 162

6.3.2 Distributed Paths . 163

6.3.3 Secure Paths . 163

REFERENCES . 164

10

LIST OF ILLUSTRATIONS

FIGURE 1.1 System Design Spectrum . 28

FIGURE 2.1 Example Communication Network 33

FIGURE 2.2 Example Modular System . 35

FIGURE 2.3 Simple Path . 37

FIGURE 2.4 Example Path in Modular System 38

FIGURE 2.5 Dynamic Routing Decision . 42

FIGURE 2.6 Path Creation Using pathExtend 43

FIGURE 2.7 Example Path . 50

FIGURE 2.8 Approximating Fan-In/Fan-Out With Multiple Paths 53

FIGURE 3.1 Scout Development Timeline 61

FIGURE 3.2 Module With Two Services . 64

FIGURE 3.3 Modular Graph for Network-Attached Camera 66

FIGURE 3.4 Graph Description File for Network-Attached Camera 66

FIGURE 3.5 Path Structure . 74

FIGURE 3.6 Paths Versus Classifiers . 87

FIGURE 3.7 Classification Pseudo-Code . 89

FIGURE 3.8 Update of Demux Tree . 91

FIGURE 3.9 Typical Partial Classifier . 93

FIGURE 3.10 Example Requiring Global Hierarchical Classification 93

FIGURE 3.11 Generalized Partial Classifier 94

FIGURE 3.12 Classification Performance as a Function of Number of Filters . 99

FIGURE 4.1 Test Protocol Stacks . 113

FIGURE 4.2 Effects of Outlining and Cloning 119

FIGURE 5.1 Module Graph For MPEG Example 140

11

LIST OF ILLUSTRATIONS — Continued

FIGURE 5.2 Paths Created at Boot Time . 142

FIGURE 5.3 Example Video Paths . 146

FIGURE 5.4 Correlation Between MPEG Frame Size and Decoding Time . . 155

12

LIST OF TABLES

TABLE 1.1 SPECnfs Results and System Configurations 23

TABLE 2.1 Module Descriptions . 36

TABLE 3.1 Example Mappings . 94

TABLE 3.2 Summary of Scout Classifier and DPF Comparison 97

TABLE 4.1 Comparison of TCP/IP Implementations 114

TABLE 4.2 Roundtrip Latency . 126

TABLE 4.3 Roundtrip Latency Adjusted for Network and Controller 129

TABLE 4.4 Cache Performance . 131

TABLE 4.5 Protocol Processing Costs . 132

TABLE 4.6 Comparison of Latency Improvement 134

TABLE 4.7 Outlining Effectiveness . 136

TABLE 5.1 Description of NetTV Modules 141

TABLE 5.2 Description of NetTV Interfaces 141

TABLE 5.3 Description of a Commonly-used Path Attributes 144

TABLE 5.4 Coarse Grain Comparison of Scout and Linux 147

TABLE 5.5 Frame Rate Under Load . 150

13

ABSTRACT

Scout is a new operating system architecture that is designed specifically to accom-

modate the needs of communication-centric systems. An important class of such sys-

tems is formed by information appliances, which, broadly speaking, are devices whose

primary task is to facilitate communication. Appliances are typically relatively small,

special-purpose, and often mobile devices such as remote controls, personal information

managers, network-attached disks, cameras, displays, or dedicated file-servers.

Scout has a modular structure that is complemented by a new abstraction called the

path. The modular structure enables the efficient building of systems that are tailored

precisely to the requirements of a particular appliance. Paths address issues related to

the performance and quality with which a communication service is rendered. A path

can be visualized as a vertical slice through a layered system or viewed abstractly as a

bidirectional flow of data. As such, a path typically traverses multiple modules in a Scout

system. This means that paths provide additional context to the modules that process data

that is being communicated through the system. This context often makes it possible to

implement data processing more efficiently or to improve the quality with which resource

management, such as CPU scheduling or memory allocation, is realized.

This dissertation develops the path abstraction from first principles and then intro-

duces the various aspects of the Scout architecture. Aside from the path abstraction,

Scout uses a novel approach for network packet classification. With the Scout archi-

tecture defined, two studies are presented that provide an in-depth look at how to use

Scout and its path abstraction. The first study employs the path abstraction to reduce pro-

cessing latency in the networking subsystem. Evaluating these path optimizations also

provides important insights on the performance behavior of networking subsystems on

modern RISC machines. The second study employs the path abstraction to improve re-

source management for an information appliance that involves a networked TV displaying

MPEG encoded video.

14

CHAPTER 1

INTRODUCTION

A ship in port is safe,

but that is not what ships are for.

Sail out to sea and do new things.

– Admiral Grace Hopper, Computer Pioneer

Computer systems are continuing to evolve at a rapid pace. Based on SPECint95 re-

ports, system performance has doubled in the past seven years roughly once every twenty

months [96]. In 1965, Moore predicted that the transistor density of semiconductor chips

would double roughly every twelve to eighteen months and his prediction has largely

held true ever since [90, 69].1 To put this in perspective, the first microprocessor, the Intel

4004, was implemented using only 2,300 transistors in a 16-pin package. Twenty-seven

years later, the DEC Alpha 21264 contains about 15.2 million transistors in a single 588-

pin PGA package. Despite this breathtaking pace, fundamental changes in the way we in-

teract with these systems are exceedingly rare. As we argue later in this chapter, one such

fundamental paradigm shift occurred when time-sharing replaced batch-oriented systems.

Paradigm shifts imply deep changes in the way we perceive problems, the languages we

use to express them, and the infrastructure we employ to solve them. A central tenet of

this dissertation is that the world is facing another paradigm shift that will lead us into the

age of information appliances. The aim of this work is to anticipate the changes required

to support the new appliance paradigm and to propose, discuss, and evaluate an operating

system infrastructure that will serve well the needs of such appliances. Before going into

more detail, it is illustrative to give a brief history of operating systems to this date.

1The 1965 prediction called for a doubling each year for the next ten years. In 1975, Moore adjusted

the rate to one doubling every eighteen months.

15

1.1 From Mainframes To Personal Computers

The first operating systems started to appear with the arrival of second generation com-

puters in the mid-fifties to early sixties. At that time, computers had reached a level of

complexity that made it no longer possible to write every program from scratch. The

solution was to abstract commonly encountered tasks into a set of routines that could be

used by any program. These routines were typically provided as part of the runtime sys-

tem of a programming language such as FORTRAN. While this avoided having to write

each program from ground-up, it still resulted in much duplicated efforts in writing each

runtime system. Abstracting and factoring the common functionality present in each run-

time system led to language-independent run-time systems, which were arguably the first,

albeit primitive, operating systems. The noteworthy point is that the boundary between

the operating system and the application does not follow from any kind of natural law,

but instead is a contrived entity. Consequently, the study of operating systems not only

involves the study of how the desired operating system services should be provided, but

also what services should be present in the first place.

Not surprisingly, the what and how of operating systems changed over the decades as

computers became ever more powerful. For example, with the arrival of batch-oriented

systems, job-control languages were added to the operating systems. These job-control

languages made it possible to specify the requirements and actions of a compute-job

off-line, thus leading to greatly increased utilization of the expensive central processing

unit (CPU). Utilization was further improved by the introduction of multi-programming.

Multi-programming allowed the system to keep multiple jobs in the core-memory so the

idle-time of a job that arises from its input/output requests and other synchronization con-

straints could be filled with computation from other jobs. This improved utilization, but

unfortunately also increased job completion time. In 1962, the CTSS operating system

introduced time-sharing to alleviate this problem [21]. Time-sharing made it possible give

short jobs higher priority than long-running batch jobs. This preserved the high utilization

of batch-processing while greatly reducing the job completion time for short jobs. More

importantly, however, time-sharing made it possible for the first time to have multiple

16

users work with a computer interactively. This fundamentally changed how programmers

and users perceived computer systems.

The evolution of time-sharing systems culminated in the development of MULTICS, a

system designed to support hundreds of simultaneous users [22]. MULTICS aimed to be

everything to everybody and its extant complexity caused repeated and excessive delays.

Even though it eventually shipped to a few customers, it was widely considered a commer-

cial failure. Nevertheless, it laid the foundation for much of the operating system research

of the coming thirty years. There continued to be dramatic technological advances, such

as the introduction of the mini-computers, then micro- and personal-computers (PCs),

but the fundamental structure of operating systems has remained remarkably unchanged

since. To be sure, all modern operating systems support networking and are, in a sense,

part of a world-wide distributed system, but the fundamental abstraction of these systems

was, and is, the process—an abstraction that computes.

1.2 The Advent of the Information Appliance

In the light of recent events, such as the popularization of the Internet, it is reasonable

to wonder whether the continued focus on computation is appropriate. The increasing

emphasis on networking may indicate that communication, as opposed to computation

will soon be the raison d’être of computers. As a matter of fact, a NIST report on the

National Information Infrastructure (NII) rejected the term computer on the grounds that it

puts too much emphasis on computation [71]. The report suggested the term information

appliances be used instead for systems that support communication, information storage,

and user interactions.

Intuitively, appliances are small, special-purpose, and often mobile devices such as

remote controls, personal information managers, network-attached disks, cameras, dis-

plays, set-top boxes, embedded web-servers, and dedicated file-servers. Since there is

no widely-accepted exact definition of the term information appliance, the remainder of

this section conveys our vision of what the realm of appliances might be. The following

section will then use this vision to make some predictions on the potential impact of the

17

appliance paradigm on operating system design.

First, we observe that the ubiquity of communication networks is fueling an explosion

in the number of appliances. Already, there are many network-attached devices such as

printers, disks, thermometers, cameras, and filers (special purpose network file servers).

A result of this explosive growth is that some appliances are taking over jobs that were tra-

ditionally served by general purpose machines. However, this is not to say that traditional

computers will disappear completely: appliances serve a purpose that is mostly orthog-

onal to that of existing general purpose computers. The latter will therefore continue

to have their place. Nevertheless, it is not unimaginable that the market penetration of

information appliances will reach such a magnitude that, relatively speaking, traditional

computer systems may look like niche products.

Another aspect that refines the realm of appliances is ease-of-use. To paraphrase Joel

Birnbaum [9]: just like automobiles, telephones, or television sets, information appliances

are more noticeable by their absence than their presence. Without a doubt, the ease-of-use

of general purpose computers has improved significantly over the past decade, but it is not

even close to the point where general purpose computers could be considered appliances.

Besides the ease-of-use aspect of appliances, there are technical characteristics that set

them apart from traditional, general-purpose computers:

� Communication: Information appliances are communication-oriented. Computa-

tion may still occur but it is incidental to moving data through the system. The

main task of information appliances is to facilitate locating, accessing, and moving

around data. The move to a communication-centric world also implies a shift away

from the traditional application-oriented thinking. In a communication-oriented

system, it is often the entire data-path that forms the “application.” For example,

when shopping via the world-wide web, is it the browser that is the application? Or

is it the server data-base that provides the product information? Or the web server

that presents the information? Or the Internet routers that faithfully deliver the data?

The user most likely perceives the web browser to be the application, but in reality,

it is all components taken together that form the application. Indeed, service may

be a better term in this context.

18

� Specialization: Each individual appliance serves a well-defined purpose. A file

server does not turn into a remote control over night. Having a well-defined pur-

pose does not necessarily imply that an appliance supports just a single service.

A relatively general system, such as a web-browser with builtin Java-support, is

certainly in the realm of the information appliance. However, compared to general-

purpose computers, the breadth of generality for appliances is substantially smaller.

Unlike for traditional computers, the software installed in deployed appliances will

change infrequently. This is both a consequence of the ease-of-use requirement

of appliances and their ubiquity. Who would want to worry about upgrading the

software in their light-switches? With dozens of appliances per house-hold, even

moderate rates of (manual) upgrades could impose an undue burden on the owner or

maintainer. Some appliances will want to make provisions for executable content,

e.g., by providing a secure virtual machine, but even so the native software of an

appliance remains relatively fixed.

� Diversity: While each individual appliance is specialized, their union spans a wide

range of functionality. As indicated above, appliances cover the spectrum from

remote controls, SmartCards, all the way to dedicated servers.

For example, at one end of the spectrum, a remote control unit may employ a com-

modity 4-bit processor with a reasonably large read-only memory (ROM) but only

a few bytes of random-access memory (RAM). On the other end of the spectrum, a

dedicated web-server may employ a high-performance CPU with several gigabytes

of RAM and a terabyte disk-subsystem for caching-purposes.

Just as important, appliances will employ a wealth of different input/output (I/O)

devices. Some appliances will use a relatively low-resolution touch-sensitive screen

as the primary user-interaction device, others a traditional keyboard/monitor com-

bination, while still others may have no user-interaction devices at all since they are

controlled and operated completely through the communication network.

19

� Predictability: Proper operation of an appliances often requires meeting certain

realtime constraints. Since most appliances are consumer-devices, these constraints

are typically soft, that is, missing a realtime constraint causes a degradation in the

perceived quality of the service but does not cause a life-threatening situation.

1.3 The Need for Configurable and Modular Operating Systems

The previous section presented our vision of what an information appliance is. It is now

time to turn attention to what implications this vision might have on system design.

First, the diversity of appliances implies that performance and cost requirements may

differ widely between any pair of information appliances. Of course, there have been

differences before, say between PCs and workstations, but in the appliance arena, differ-

ences of order-of-magnitude scale exist and need to be accommodated. Given this variety,

it is clear that a one size fits all approach would not be able to do justice to all information

appliances. Instead, what is needed is an infrastructure that represents the least common

denominator among all information appliances. That infrastructure can then be extended

to provide the exact functionality required by a particular appliance. In the traditional

sense, this least-common denominator represents the operating system, but since the least

common denominator is probably small, the usefulness of such an operating system is

also very limited. Indeed, if it were necessary to build each appliance directly on top of

this infrastructure, not much were gained relative to writing the system from scratch.

A key requirement for an appliance-oriented system is, therefore, that it must facilitate

the building of reusable higher-level software in an easy and flexible manner. This can

be achieved by structuring the higher-level software in a modular fashion. A modular de-

sign supports a mix-and-match approach that allows building the software for a particular

appliance by simply selecting and combining the modules that implement the required

functionality.

In the ideal case, building a new appliance should be a simple matter of configuration

without involving any costly or time-consuming programming. A modular approach also

meshes well with the fact that, due to the diverse nature of appliances, the rate at which

20

new products are introduced will be high. A modular approach makes it possible to adopt

a new appliance simply by programming the smallest delta that is required to go from the

next closest appliance to the new one. Typically, this would involve programming device

drivers for the few devices that were added or changed in the new appliance and maybe

the addition of a few other modules that extend or enhance the functionality of the new

appliance.

Modularity also implies configurability. The question is when configurability needs

to be supported. In the extreme case, a system can be reconfigured on the fly at run-time.

However, since appliances are expected to be of relatively stable nature, it seems that

supporting configurability only at system build time might be versatile enough. Limit-

ing appliances to static configuration reduces the complexity of the resulting systems and

also simplifies building highly efficient appliances. Note that static configurability does

not mean that appliances cannot be upgraded. It just means that an upgrade will typi-

cally involve replacing the entire system software, rather than performing an incremental

upgrade.

The specialized and unchanging nature of appliances also reduces the need for sepa-

rate address spaces. In traditional systems, address spaces serve two roles: they provide

fault-domains that protect competing and mistrusting processes from each other and they

simplify the loading and unloading of programs at run-time. The native code in an ap-

pliance is available to the system builder, so mistrust is usually not an issue. Similarly,

the various services in an appliance are normally of a collaborative, rather than competi-

tive nature. That is, the traditional incentives for multiple address spaces exist to a much

smaller degree. This is not to say that multiple address spaces never make sense for an

appliance, but it is fully expected that many, if not most appliances will not fundamentally

depend on them. Since some appliances may need fault-isolation, but not dynamic load-

ing of programs, the two issues should be kept separate. Doing so makes it possible to

employ light-weight protection techniques such as software fault-isolation (SFI) or type-

safe languages such as Modula-3, Java, or Limbo when protection is all that is desired

[109, 7, 4, 102].

As appliances are likely to be realized in a single address space, the distinction be-

21

tween application and operating system becomes fuzzy. There is nothing wrong with this.

In fact, this is in line with the realization that, in a communication-oriented system, it is

difficult or meaningless to attempt to pin-point the application. It is much more appro-

priate to view an appliance as being composed of a collection of modules that are more

or less simple filters. Some of these filters certainly can be complex (such as an MPEG

video codec) and some may even exhibit characteristics of traditional applications, but

whenever reasonably possible, it will be advantageous to employ the filter-view when

building modules for an appliance.

1.4 Performance Implications of Modular Systems

The benefit of modular systems stems from the fact that each module is developed in-

dependently and without making any assumptions about the context in which it will be

used. This enables system builders to combine modules in ways not anticipated by the

programmer, subject to only one constraint: that modules be connected in a compatible

and meaningful fashion. But this very benefit is also a disadvantage: many performance

optimizations are either difficult or impossible to employ in the absence of the full con-

text in which a module is being used. Aside from impacting performance, modularity

also makes it difficult to solve problems that require global context, such as guaranteeing

a certain quality-of-service or optimal resource management.

The alternative to modular systems is to build systems in a vertically integrated fash-

ion. With this approach, a system is programmed from the ground up and tailored exactly

to the problem that it is designed to solve. By definition, the entire context of a system

is known and available at the time the system is programmed. Given enough time and

effort, this is guaranteed to lead to a system with the best possible performance. On the

other hand, since modularity is given up, this approach is complex, time-consuming, and

expensive. In other words, it is justifiable only when the lifetime or market for that one

particular appliance is so large that the development costs can be amortized.

It would be interesting to quantitatively compare the two approaches. This is sur-

prisingly difficult because hardly ever is one and the same functionality (product) imple-

22

mented both ways and then compared in an objective and direct manner. There are a few

exceptions to this rule, however. Network file system servers are commercially impor-

tant enough that there are several companies that build vertically integrated servers. For

example, Network Appliance manufactures what can be reasonably considered vertically

integrated file servers, whereas Digital Equipment is manufacturing relatively modular,

UNIX based servers.2 By comparing the SPEC file server benchmark [111] results for

one file server from each company, we can provide at least one data-point that directly

quantifies the cost of modularity. A price/performance ratio would be easiest to interpret,

but prices for computer systems are notoriously volatile and pricing strategies also vary

greatly between different companies. Thus, instead of comparing a price/performance ra-

tio, we use the SPEC result and the amount of hardware required to achieve that result as a

performance metric. Table 1.1 lists the SPEC file server benchmark results and hardware

configurations for two comparable systems: a Network Appliance F540 and a Digital Al-

phaServer 2000 4/275. The table shows that for a response time of around 7.7ms, the

F540 delivers more than five times the throughput of the AlphaServer. This is particu-

larly remarkable when comparing the hardware configurations. As the table shows, the

AlphaServer has much more raw hardware power than the F540; it has twice the number

of CPUs, twice the amount of second level cache, four times the memory capacity, and

almost twice the number of disks of the F540!

To be fair, the performance differential is not entirely due to modularity. Although no

quantitative results are available, the fact that UNIX is a general user environment likely

accounts for a good portion of the performance gap. What we can say with confidence,

however, is that the above comparison demonstrates that a vertically integrated system

greatly outperforms a relatively modular and general system. In the remainder of this

section, we provide more direct evidence that modularity can have a significant cost on

performance.

2Note that modularity is independent of whether a system is monolithic or not. Even though UNIX uses

a monolithic kernel, it is relatively modular in that it has well-defined kernel-internal interfaces that make

it easy to add new file systems, network protocols, or device drivers.

23

F540 [97] AlphaServer 2000 [98]

SPECnfs A93 2,230 ops/sec @ 7.7ms 404 ops/sec @ 7.6ms

CPU 275MHz 21064A Alpha 275 MHz 21064 Alpha

Number of CPUs 1 2

Second-level cache 2MB 4MB

Other cache 8MB NVRAM Prestoserve

Memory 256MB 1024MB

Number of disks 14 25

Table 1.1: SPECnfs Results and System Configurations

1.4.1 Potential For Performance Improvements

Since it is rare to find systems that exist both in a modular and a vertically integrated

version, it is necessary to look for other metrics that help quantifying the cost of modular-

ity. A useful metric is the performance improvement that can achieved when (manually)

optimizing the performance of a modular system. There are many examples of this in the

literature, of which we now discuss a few.

1.4.1.1 Code Synthesis

Code synthesis, also known as run-time code-generation, has been used in the Synthesis

kernel to optimize code across module boundaries [86, 60]. The two main-techniques in-

volved factoring invariants and collapsing layers, which are forms of partial evaluation. In

extreme cases, such as reading a single byte from a memory pseudo-device (/dev/mem

in UNIX), these techniques achieved order-of-magnitude improvements compared to reg-

ular UNIX kernels [89]. Similar techniques were applied in a later project called Syn-

thetix. While less aggressive, it was more practical in that it applied code synthesis to an

existing commercial operating system, namely HP-UX. The results reported in [85] indi-

cate speedups in the range from 1.12 to 3.61 for the UNIX read system-call compared

to the regular HP-UX version.

24

1.4.1.2 Integrated Layer Processing

The fundamental observation behind Integrated Layer Processing (ILP) [16, 1] is that

as a network packet passes through various protocol processing steps, its data may be

traversed multiple times. For example, an Ethernet driver may first copy the data from

the network adapter to main-memory, then UDP may compute a checksum and, finally,

a Remote Procedure Call (RPC) protocol may swap the byte order of the data. This is

suboptimal since more or less the same data is accessed multiple times. This a causes

larger-than-necessary overhead per data byte, and worse, results in a poor memory access

pattern since the same data is moved from the memory to the CPU and then back to the

memory multiple times. A system that uses ILP collapses all data processing into a single

loop. That is, the data is brought into the CPU only once, thus greatly improving the

efficiency of the memory system. Indeed, Abbott and Peterson [1] report communication

bandwidth improvements in the range of 10 to 30% due to ILP.

1.4.1.3 PathIDs

PathIDs [56] is a mechanism that allows substituting the implementation of a specific

network protocol stack with hand-optimized, vertically integrated code. The mechanism

essentially involves inserting an additional network header right above the link-layer. This

extra header indicates which, if any, optimized code should be used to process an incom-

ing network packet. In a test-implementation, PathIDs helped reduce one-byte UDP la-

tency between a pair of FDDI-connected Alpha workstations running UNIX from 759µs

to 578µs; a 23 percent reduction. It should be noted that PathIDs optimize the receive-side

of protocol processing only. That is, a large fraction of the 578µs of the optimized time is

due to fixed costs such as time on the wire and sender-side processing. In this light, a 23

percent improvement is very significant.

1.4.1.4 Single-Copy TCP/IP

Banks and Prudence [6] present what amounts to a vertically integrated networking stack.

The stack under consideration was a typical UNIX networking stack consisting of a

25

socket-layer, TCP and IP layers [83, 82], and a network driver layer. The vertical in-

tegration ensured that both on the outgoing and incoming side, network data is copied

only once. This involved combining the copy routine with the checksumming routine,

changing the socket layer so that outgoing data is placed in appropriately sized chunks of

network-adapter memory, changing the network driver processing so incoming packets

are split into headers and data, and changing TCP to properly handle delayed acknowl-

edgements that arise from the fact that the checksum of received packets can be computed

only when the user-level process is ready to receive the packet’s data. Clearly, creating

this vertically integrated version was not without difficulties, but the resulting perfor-

mance improvements were impressive: communication bandwidth increased from about

7,500 to 11,600 kilobytes per second. This corresponds to a 66 percent improvement in

bandwidth.

1.4.2 Implications on Quality-of-Service and Predictability

The preceding examples show that modularity can have a tremendous impact on perfor-

mance. Researchers were able to achieve speedups in the range from twenty to several

hundred percent by applying various verticalization techniques to otherwise purely mod-

ular systems. But modularity also has a negative effect that cannot be quantified eas-

ily: resource-management problems such as quality-of-service or predictability are often

difficult, if not impossible, to solve in purely modular systems. The key issue is that

sometimes a reasonable combination of modules has unwanted behavior, even though the

modules themselves work according to their specifications.

For example, consider a simple filter that takes as input a message (sequence of data

bytes) and produces as output a message that contains the run-length encoded data of

the input message. Suppose this filter were used as part of a networking stack through

which a mix of different packets may flow, some of which may have realtime constraints

associated. Unfortunately, since the filter does not know which packets have realtime

constraints, it cannot schedule the CPU appropriately. As a result some of realtime pack-

ets may miss their deadlines needlessly. Rather than fixing the filter to make it aware of

what packets have realtime constraints, a better solution would be to simply recognize

26

that there are resource management issues that are associated with the data, rather than

with the particular module that is currently processing it. Once we recognize that fact, we

can look for a more general solution that would make it possible to use unmodified fil-

ters, such as the run-length encoder, while retaining the ability to perform proper resource

management.

Note that such resource management problems can occur not just for CPU scheduling

but also for memory management and indeed for any resource in a computer system.

In the memory management realm, consider that some applications may require hard

guarantees on the availability of memory. For example, paging over the network requires

that the networking subsystem can guarantee that it does not run out of memory while

processing a packet related to paging. Otherwise, the pager itself may deadlock when

attempting to free up memory by paging out over the network. Again, one might be able

to solve this problem by modifying each module in the networking subsystem, but a more

general solution would certainly be preferable.

To summarize, since a module by definition does not concern itself with the context in

which it is being used, modular systems by themselves cannot accommodate applications

that need to provide global service guarantees such as the processing of a data-item within

a given deadline or without running out of memory.

1.5 Beyond Modularity: The Path Abstraction

Despite its disadvantages, modularity is a fundamental structuring technique with a long

and successful history in system design. From early work on layered operating systems

and networking architectures [44, 114], to more recent advances in stackable systems

[88, 49, 46, 108], modularity has played a central role in managing complexity, isolating

failure, and enhancing configurability. Clearly, it is not something that can be discarded

lightly. So the question is whether it is possible to avoid the disadvantages of modularity

without giving up on its strengths. It is our contention that this is indeed the case: we pro-

pose a new abstraction, called path, that is complementary to, but equally fundamental as

layering in a modular system. Whereas layering is typically used to manage complexity,

27

paths are applied to modular systems to improve their performance and to solve problems

that require global context.

Paths have many faces and we defer a detailed description to Chapters 2 and 3. For

now, we appeal to the reader’s intuition that a path is a vertical slice through a layered

system that provides the context that is ordinarily unavailable in a modular system. For

example, a path could represent the dataflow that occurs when transferring a file from

a disk to a network adapter through the Internet file-transfer protocol (FTP). In a sense,

paths are like small, or localized, vertically integrated systems. With this view, purely

modular systems and purely vertically integrated systems represent extreme cases in the

design spectrum illustrated in Figure 1.1. With the addition of paths, it becomes possible

to pick intermediate points in this spectrum: those parts of a system that are not perfor-

mance critical can be realized in a purely modular fashion, whereas performance critical

parts can be realized as optimized paths, giving performance close to that of a vertically

integrated system, but keeping cost and complexity down as only performance sensitive

parts need to be verticalized. Furthermore, with a well-designed path architecture, it

should be possible to carry out this verticalization in a structured and mostly automatic

fashion. Ideally, a system designer could specify in a declarative manner what parts of the

system are performance critical, and the path infrastructure would use this specification to

automatically translate modular code into an optimized path implementation. If the criti-

cal path has particular resource-management needs, such as a specific quality-of-service

requirement, the same declarative specification could be used to associate appropriate

resource-management policies with the path.

The degree to which this ideal case can be achieved will of course vary from appliance

to appliance and also depends on the quality of the tools that are available in the path

infrastructure. Realistically, a system with paths will always require slightly more effort to

build than a purely modular system and is unlikely to completely reach the performance or

resource-management potential of a fully vertically integrated system. But paths provide

the ability to start out quickly with an almost purely modular system and then optimize

performance for the parts that warrant the extra effort. In this sense, paths provide an

additional degree of freedom: the set of modules in a system and the manner in which

28

Vertical Integration:

Best performance

Expensive
Complex

Modular design:

Flexible

Performance suffers
Reusable modules

Figure 1.1: System Design Spectrum: the left-hand side represents a modular system with

a set of modules (boxes) and explicit dependencies (lines between boxes). The right-hand

side represents a vertically integrated system with intricate and arbitrary dependencies

throughout the system (spaghetti line inside box).

they are connected determine the functionality of an appliance, where as the degree to

which optimized paths are employed controls the performance, quality-of-service, and

predictability attainable in the system.

1.6 Thesis Statement and Contributions

This dissertation contributes to the area of pure experimental computer science. Specifi-

cally, it introduces novel thinking and techniques to the fields of operating systems, net-

working systems, and experimental systems research in general. The primary objective

of this dissertation is to test the hypothesis that:

1. information appliances require and benefit from novel operating system concepts

designed to exploit their characteristics,

2. paths can be evolved into an abstraction that is fundamental to communication-

oriented systems, and that

29

3. a path abstraction can be defined that is both useful and general enough to build any

information appliance.

It should be noted that it is not possible to formally prove the correctness or falsehood

of this hypothesis. Instead, this dissertation is limited to providing, hopefully strong,

evidence for or against its validity. It does so by introducing a new operating system,

called Scout, and two Scout-based demonstrations.

Scout is designed specifically for information appliances and has been implemented

from ground up to avoid inappropriate concessions to or influences from traditional,

computation-oriented systems. Founded on a modular infrastructure that can cope well

with the diversity of information appliances, Scout provides a fertile ground for novel

solutions.

Chapters 2 and 3 present the Scout architecture. Chapter 2 begins with developing

a path model from first principles. As part of this development, many design-rationales

and trade-offs are exposed and discussed. With the path-model articulated, Chapter 3

proceeds to outline the overall architecture: Scout is modular to provide the layering

abstractions needed to cope with the diversity of information appliance. This modular

foundation is complemented by a concrete path architecture as a means to go beyond the

limits of purely modular systems. In particular, the use of paths in Scout enables it to

achieve better performance and better resource management than has been possible in the

past. The chapter also introduces a packet-classification scheme that is modular, has low

overhead, and avoids duplication of work.

After establishing the Scout architecture, Chapter 4 is a first evaluation that involves

studying a networking subsystem employing TCP/IP and remote-procedure call (RPC)

stacks. While not an appliances in and of itself, the communication-oriented nature of

appliances implies that the networking subsystem will be an essential aspect of many

appliances. Understanding this subsystem with respect to its behavior and its suitability

towards path-based optimizations is thus both important and interesting. Consequently,

the chapter presents a detailed analysis of the performance and behavior of the TCP/IP

stack when running on a modern 64-bit RISC architecture. Results for Scout are con-

trasted with those for a traditional, DEC UNIX based implementation. After establishing

30

the performance base-line, three path-based techniques are proposed and their effective-

ness evaluated. A fourth, compiler-based technique aimed at improving the predictability

of network processing is studied as well. All four techniques were applied to both the

TCP/IP and RPC stacks so as to provide insight into how they behave on networking

stacks with radically different design and implementation strategies. The three major

contributions from this study are that:

1. when processing small, latency-sensitive packets, the memory system can be the

primary bottleneck on a modern RISC machine,

2. the three path-techniques resulted in significant performance improvements, and

3. the fourth technique works in principle, but did not measurably affect performance

or predictability.

The first result is surprising: while it has long been known that the memory system is a

primary bottleneck for large, throughput-sensitive packets, it was generally assumed that

latency-sensitive processing is cache-friendly and thus bottlenecked by the CPU. This

study refutes that assumption at least for a large class of machines. The second result

implies that for the appliance under study, paths are useful to improving the performance

of latency sensitive processing. The third result is disappointing in the sense that the

compiler-based technique failed to improve predictability, but in analyzing the reasons

for its failure, a better understanding of the technique is obtained. With this improved

understanding, it is possible to enumerate the scenarios in which the technique might be

employed beneficially.

Chapter 5 introduces a demonstration appliance consisting of a networked TV that dis-

plays MPEG-encoded video streams [54, 67] through a windowing system on a graphics

frame-buffer. This appliance emphasizes the resource management aspects of paths. In

contrast to the networking study, almost all execution time is spent in the MPEG decoder,

hence the fact that modular code does not provide the best possible code-path hardly mat-

ters. Since video-display is a soft realtime application, proper resource management (in

particular proper CPU scheduling) is essential. Using paths and application-level framing

31

[16], the Scout appliance is able to run multiple video streams and non-realtime back-

ground loads all without causing unnecessary interference. Specifically, paths avoid pri-

ority inversion by allowing early segregation of work belonging to different streams, they

allow to schedule the entire processing of a video-packet according to the bottleneck

queue, and they provide the ability to account memory and CPU usage on a per-stream

basis. Chapter 6 presents a summary of the dissertation work, an outline of future research

directions, and some concluding remarks.

As a final remark, it is important to acknowledge that much of the inspiration and

motivation for this work derived from the vision of the future of information appliances.

In the end, it is this vision that provided the guiding framework. However, it is equally

important to understand that many of the results and techniques developed in this work

are not limited to the appliance context. For example, path-based code optimizations

are likely to be relevant to all modular and communication-intensive environments. The

results of the networking study provide insights into the behavior of communication sub-

systems that are interesting in their own right. Similarly, the considerations with respect

to resource managment are likely to be applicable to other multimedia-oriented systems.

Thus, even though appliances are used to motivate this dissertation, its impact is likely to

transcend beyond that specific environment.

32

CHAPTER 2

PATH ABSTRACTION

Our way is not soft grass,

it’s a mountain path with lots of rocks.

But it goes upward, forward, toward the sun.

– Ruth Westheimer

This chapter establishes the vocabulary and fundamental concepts required to under-

stand the path-architecture of Scout. As motivated in the previous chapter, paths are

intended to facilitate tackling problems that are difficult or impossible to solve in purely

modular systems.

The systems research community has long harbored an intuitive notion of what a

path is. For example, it often refers to the fast path through a system [85, 73, 2, 112],

implying that the most commonly executed sequence of instructions have been optimized.

As another example, it sometimes talks about optimizing the end-to-end path [17, 15]

meaning the focus is on the global performance of the system (e.g., from I/O source to

sink), rather than on the local performance of a single component. As a final example,

it sometimes distinguishes between a system’s control path and its data path, with the

former being more relevant to latency and the latter more concerned with throughput [27,

84]. But the wide-spread use of this term has so far not been translated into a well-

defined abstraction that could serve as a foundation of system design. The reason for

this is probably two-fold: first, the recognition that many path-like techniques could be

unified with an explicit path-abstraction has been missing in the past, and, second, even

once the usefulness of a unified path abstraction is recognized, it is non-trivial to define

and explain an abstraction that is, on the one hand, general enough to be widely applicable

and, on the other hand, specific enough to facilitate the various path-based optimizations

and resource management benefits.

33

2.1 Communication Network Analogy

The path abstraction proposed in this dissertation derives from an analogy between com-

munication networks and modular systems. Consider the example communication net-

work depicted in Figure 2.1. It consists of hosts at the edge of the network and of routers

in the interior of the network. The hosts and routers are connected by point-to-point links.

Router 2

Router 5

Host 2
Host 3

Host 5

Host 6

Router 1

Router 3

Router 4

Router 6

Router 7

Router 8

Router 9

Router 10

Host 7Host 1

Host 4

Figure 2.1: Example Communication Network

How does a pair of hosts, say host 1 and 3, communicate in such a network? If we

assume a datagram-oriented network [100, 76], such as the Internet, then host 1 would

prepare a message, append the network address of host 3 to the message, and then inject

this datagram into the network by sending it to router 1. Router 1 would forward it to

router 2 which has a choice between router 3 and 10. Consulting its routing table, it might

decide that router 10 provides a better (e.g., shorter) path to host 3, so it may decide to

34

forward the datagram to router 10. This process continues through router 8 and 9 where

the datagram is eventually delivered to host 3.

Purely datagram-oriented networks work fine, but make it difficult to solve certain

tasks, such as transmitting data with quality-of-service guarantees such as a maximum

latency or a minimum throughput. Also, such networks require a routing decision per

router and per packet. If a sequence of packets is transmitted between a pair of hosts, this

results in a needlessly large overhead.

An alternative to the datagram style of communication is a connection-oriented style.

With a network of this type, if host 1 desires to communicate with host 3, it has to setup a

virtual circuit first. It can do so by sending a connection request message to the network

which causes the virtual circuit to be established (if possible). Once the virtual circuit

exists, host 1 can send data to host 3 simply by injecting messages into the virtual circuit—

no address information is required, since all the necessary routing information is already

present in the virtual circuit. This means that a routing decision has to be made only once

per router, independent of whether one or a million messages are eventually transmitted.

In this sense, a virtual circuit can be interpreted as a sequence of fixed routing decisions.

Virtual circuits also make it relatively easy to support quality-of-service policies on a

per-connection basis. On the negative side, connection-oriented networks require explicit

connection setup and tear-down phases (both of which take time) and each virtual circuit

ties up some resources in each router (such as memory buffers).

Interestingly, the goals and features of virtual circuits are not unlike those desired for

paths. The extra routing overhead in a purely datagram-oriented network loosely corre-

sponds to extra call-overhead in a purely modular system. Similarly, datagram-oriented

networks and purely modular systems have difficulty providing quality-of-service guaran-

tees for the same reason: data is processed independently, without regards to the context

in which the data appears. Indeed, a modular system can be viewed quite naturally as a

network: Figure 2.2 illustrates a modular system (on a single host) that has a structure that

is isomorphic to the communication network shown in Figure 2.1. In Figure 2.2, instead

of hosts and routers there are modules. The function of these modules is summarized in

Table 2.1. One can see that at the edge of the network are modules that represent devices.

35

UFS

FDDI

MPEG

VFS MFLOW

NFS

RPC

UDP

IP

ATM

ETH

BCACHE

SCSI

KBD

MOUSE

DISPLAY

WiMP

Figure 2.2: Example Modular System

For example, module KBD represents a keyboard. Interior modules represent data fil-

ters, e.g., MPEG is an MPEG video codec. The modules are connected according to the

dependencies between them. For example, as is apparent from the figure, module UFS

interacts directly with modules VFS, BCACHE, and SCSI.

2.2 Path Model

This section uses the communication network analogy as a guide in developing a path

model from first principles. The model is developed while largely ignoring the details of

the various applications of paths that have been discussed on Chapter 1. This approach

allows us to derive a path model without getting overwhelmed by the sometimes conflict-

ing details of specific applications of paths. Once the path model has been developed, its

usability is discussed and evaluated in Section 2.4 based on several sample applications.

36

Module: Description: Module: Description:

KBD Keyboard driver MOUSE Mouse driver

DISPLAY Graphics adapter driver WiMP Window manager

MPEG MPEG codec VFS Virtual File System

UFS UNIX File System BCACHE Buffer cache

SCSI SCSI driver MFLOW Multimedia flowcontrol

NFS Network File System RPC Remote Procedure Call

UDP User Datagram Protocol IP Internet Protocol

ETH Ethernet driver ATM ATM driver

FDDI FDDI driver

Table 2.1: Module Descriptions

2.2.1 Basic Path

Abstractly, a virtual circuit is a dataflow between two end-points. Thus, to a first approx-

imation, we can model a path as a dataflow that starts at a source device and ends at a

destination device. Since, respectively, the arrival and departure rates at the source and

destination device may not always match with the rate at which data is processed by the

path, the input and output devices are decoupled from the path by an input and output

queue. These queues loosely correspond to the socket queues of a virtual circuit.

For paths to be general, arbitrary processing must be supported as part of moving data

from the input to the output queue of a path. For example, if a path is used to receive a file

on an Ethernet network adapter and save it to a disk, then the processing might involve

TCP/IP and FTP protocol processing, as well as file system and SCSI related processing

to save the file on disk. In essence, this processing would transform a sequence of network

packets into a sequence of SCSI disk blocks. This arbitrary processing can be represented

by a function g. If the input data (message) is m, then the output data deposited in the

output queue is g(m). Note that this general processing in a path is in contrast to that of

virtual circuits, where the processing function g is restricted to g(m) =m (ignoring packet

losses and/or corruptions).

The basic path as discussed so far is illustrated in Figure 2.3. Devices are represented

as circles; the path is shown in the center of the figure with its input and output queues,

and the processing function g.

37

Device
g(m)

Device

Figure 2.3: Simple Path

The input and output queues are needed to accommodate transients in the arrival and

departure rates at the devices. However, the existence of those queues also implies that

there is flexibility (within certain bounds) in choosing the time at which a data-item is

moved from the path’s input queue to its output queue. That is, the time at which g(m)

is evaluated is under explicit control of a path scheduler. Path scheduling loosely cor-

responds to the queue service discipline used in the routers that are crossed by a virtual

circuit.

Note that there is no one-to-one correspondence between paths and device-pairs. The

same device-pair can be connected by zero, one, or several paths. Using multiple paths

between the same device-pair may be sensible since either the g(m) or the scheduler may

differ between the paths.

2.2.2 Path Processing

As alluded to earlier, the processing function g of a path can be arbitrarily complex. The

question of what exactly determines g is best discussed with an example. Figure 2.4

repeats the modular system from Figure 2.2 but also shows a sample path as a bold line

starting at module FDDI, passing through IP, UDP, MFLOW, MPEG, WiMP, and finally

arriving at DISPLAY (for simplicity, the path queues are not shown).

Presumably, each module processes data in a well-defined manner. For example, when

receiving input data m, module IP might apply standard IP processing. This would result

in output data gIP(m) which is the input data with the IP header stripped off. If we as-

sume similar partial processing functions can be defined for the other modules along the

path, then the processing that occurs along the path is equivalent to the composite of the

38

UFS

FDDI

MPEG

VFS MFLOW

NFS

RPC

UDP

IP

ATM

ETH

BCACHE

SCSI

KBD

MOUSE

DISPLAY

WiMP

Figure 2.4: Example Path in Modular System

application of the partial functions along the path:

g(m) = gDISPLAY(gWiMP(gMPEG(gMFLOW(gUDP(gIP(gFDDI(m)))))))

Note that the right-hand side corresponds exactly to what would happen in a purely mod-

ular system without paths. An advantage of paths is that the sequence of partial functions

is known and fixed once the path has been created. Using a semicolon (;) as the functional

infix operator denoting function composition [66], the path processing function g can be

expressed as:

g = gFDDI;gIP;gUDP;gMFLOW;gMPEG;gWiMP;gDISPLAY

This concisely demonstrates one of the fundamental benefits of paths: they make it pos-

sible to express g independent of the input data m. Among other things, this enables

39

optimizing g by reducing or simplifying the functional composite. For example, suppose

g consists of the composition g0;g1;g2;g3. If it turns out that g2 is the inverse of func-

tion g1, then g can be reduced to g0;g3.1 In general, g can be partially evaluated. If, for

example, one partial function depends on a part of the input data that has been added by

another partial function and that part is constant, then it may be possible to significantly

simplify the partial function that depends on this constant.

Note that our functional approach to defining a path’s semantics should not be mis-

taken to imply a particular implementation. It is certainly possible to realize the partial

processing functions as individual procedures in a programming language such as C, but

it would be equally legitimate to construct a path from a sequence of basic blocks, for

example.

2.2.3 Path Creation

A critical missing piece of the path model defined so far is how and when paths are

created. In many cases it is beneficial to exploit information that is available at runtime

only. For this reason, paths need to be created and destroyed dynamically at runtime. For

example, to distinguish between a video stream requiring realtime service and a video

stream requiring best-effort service only, it is typically necessary to take some runtime

information into account to be able to distinguish the two. If the video streams arrive over

the network, then the port-number of the corresponding network connections may furnish

this information.

The issue of how to create a path is rather interesting. There are two possible ap-

proaches:

1. paths are pre-specified (externally), or

2. paths are created (discovered) incrementally.

1This example is more practical than it may seem at first glance: oftentimes, a network connection is

local, meaning that the source and destination communicate through a loop-back device. Since the network

protocol processing above the loop-back layer will cancel out, that protocol processing can, at least in

principle, be removed from the path processing.

40

This division corresponds to the two sources of information that influence path creation:

global (system-wide) and local (module-specific). Considering that a primary goal of

paths is to exploit global information, it may seem like pre-specifying paths is the right

solution. In such a case, the system would provide a table that translate the properties of

the desired path into a sequence of modules that the path needs to traverse to satisfy these

properties. Consider the example system shown in Figure 2.4. In this system, there could

be a mapping that says that a path to display MPEG-encoded video on a graphics display

must start at module FDDI, go through IP etc., and stops at module DISPLAY. In other

words, the mapping would specify the path shown as the bold line in the figure.

Unfortunately, there are serious problems realizing this approach in practice. Pre-

specifying a path often requires detailed knowledge of the internal workings of the mod-

ules encountered along a path. For example, whether the path in Figure 2.4 should go

from IP to FDDI or to ATM will typically depend on the host that is sending the video

and the routing information that is managed by the IP protocol. It certainly is imaginable

to embed such detailed knowledge in the part of the system that would manage paths, but

it is our contention that a much better solution is to follow the second approach, i.e., to

create paths incrementally. With this approach, IP itself can make the decision whether

or not the path should extend to ATM or FDDI.

Of course, when creating paths incrementally, there is the problem that path optimiza-

tions that depend on knowing the full path cannot be implemented this way. For this

reason, incremental path creation must (in general) be followed by a second phase that

takes the incrementally created path and transforms it into a globally optimized version.

More on this later.

With these considerations in mind, we can now explain the path creation process in

the proposed path model. When creating a path, it is first necessary to describe the kind

of path that is desired. This description is in the form of name/value pairs. These pairs

express information about the path that is guaranteed to remain true throughout the life-

time of the path. In other words, with respect to the lifetime of the path, these name/value

pairs express invariants. In general, the more invariants are specified for a path, the better

the quality of the path. This can be understood intuitively since we would expect that the

41

more is known about a path, the easier it should be to create a well-optimized path.

Given a set of invariants, path creation is initiated at the module that is to form one end

of the path. This module uses the invariants to make a routing decision, that is, a decision

as to which module a path with the specified invariants must traverse next. Path creation

is then forwarded to that next module. This process repeats itself until either there is no

next module (i.e., the edge of the module graph has been reached) or until a module is

reached that, based on the specified invariants, cannot make a definite routing decision.

As part of making a routing decision, a module is free to update the invariants since new

invariants may become available in that module or old invariants may be invalid beyond

that module. Note that this does not contradict the requirement that invariants must hold

true for the lifetime of the path. It simply means that there can be invariants that hold true

only for a certain portion of a path.

2.2.3.1 Short Paths

An artifact of creating paths incrementally is that if the specified invariants are weak, the

created path may be short. For example, with the module graph shown in Figure 2.4,

UDP might create a path through IP specifying that any remote host is allowed to send

packets to this path. In such a case, IP could not make a unique routing decision because

packets could arrive through ETH, ATM, or FDDI. The resulting path would be short as

it would go from UDP to IP only.

In the path model, paths therefore cannot be restricted to connecting device pairs.

Instead, a path may connect any pair of modules. What are the implications of this? When

a path is created, the creator expects a certain service from that path. That service must

be rendered independent of whether the path happens to be short or long, although the

quality or efficiency with which the service can be rendered may certainly be affected. In

the previous example, IP would be responsible to ensure that packets for the short UDP-

to-IP path are received independent of the remote host and it would also be responsible

to forward such packets to the UDP-to-IP path. In other words, when a path terminates

at a certain module, it is the responsibility of that module to ensure that data arriving on

this path is continued to be processed appropriately. If the module is an interior module,

42

this typically means that the module must make a dynamic routing decision that may lead

to the data being forwarded to another (possibly also short) path. This case is illustrated

in Figure 2.5. It depicts an interior module with a path that ends at this module and two

paths that start at the module. When data arrives from the path above the module, it must

make a dynamic routing decision to determined whether the data needs to be forwarded

to the path at the lower left or the path at the lower right.

?

Figure 2.5: Dynamic Routing Decision

In the extreme case, a path may be so short that it simply connects a pair of neigh-

boring modules. Of course, such degenerate paths do not help in avoiding the problems

of purely modular systems, but the flip side of this coin is that the path model allows

us to approximate a purely modular system with little extra complexity. In other words,

for applications that are not performance sensitive and place no stringent demands on

the quality of resource management they receive, it is possible to use short paths. This

property also allows building prototypes quickly and optimize performance and behavior

later, when the system is better understood.

2.2.3.2 Extending Paths

One difficulty that remains with the previously described path creation scheme is that it

forces path creation to start at the end of a path. This can be illustrated easily in our run-

43

ning example from Figure 2.4. Let us consider how a user might specify the playback of

a video in the illustrated system. Most likely, the user would issue a command instruct-

ing playing the video located at, e.g., http://www.mpeg1.de/movies/maze.mpg on, for

example, the graphics display of the machine (as opposed to saving the video to a local

disk). Thus, one end of the path is implicitly determined by the address of the video server

(http://www.mpeg1.de/) and the other end by the specification of the output device (the

graphics display). The entity creating the path can and should specify the video source

and output devices as path invariants, but it should not have to know how to translate those

names into the modules that will terminate the path.

UFS

FDDI

MPEG

VFS MFLOW

NFS

RPC

UDP

IP

ATM

ETH

BCACHE

SCSI

KBD

MOUSE

DISPLAY

pathCreate
(output=DISPLAY)

WiMP

UFS

FDDI

MPEG

VFS MFLOW

NFS

RPC

UDP

IP

ATM

ETH

BCACHE

SCSI

KBD

MOUSE

DISPLAY

pathExtend
(input=http://www...)

WiMP

Figure 2.6: Path Creation Using pathExtend

An elegant solution is to split up path creation: when a command is received to dis-

play an MPEG encoded video, it is clearly necessary that the path contains the MPEG

module.2 Hence, path creation could start there and, in a first step, a (short) path from

MPEG to the output device (DISPLAY) could be created. Then the path can be extended

from MPEG to the module that provides the video source (FDDI, in our example). The

2One possible mechanism to determine the starting module will be presented later in Chapter 5.

44

first step can already by realized using the path creation operation with an invariant speci-

fying the output device (see left hand side of Figure 2.6). For the second step, we need to

add to the model a path extension operation. This operation works in the exact same way

as path creation, except that, rather than being invoked on a module, it is invoked on the

end of an existing path. The invariants specified for the path extension will of course be

different from those specified for the path creation operation (though some may remain

the same). In our example, the path extension operation would be invoked with an invari-

ant specifying the URL of the video to be displayed. This is illustrated in the right hand

side of Figure 2.6.

In such a scenario, there is not much point in applying global path optimizations

right after creating a path that will be extended. Doing so would not cause incorrect

behavior but it would most likely be wasteful. For this reason, it is best to keep global

path optimization separate from path creation and extension. This also makes it possible

to skip global path optimizations for paths that are not worth the added time or memory

required to build an optimized path.

An alternative to path extension would be to first create two independent paths which

are then combined at their common endpoint (at module MPEG, in the example). This

solution was rejected since it would either necessitate transforming the identity of one

path into that of the other or changing the path model to allow a hierarchical structure

that can contain sub-paths. A change of identity might also necessitate moving resources

reserved for one path to the other path, which is complex at best and impossible at worst.

Hierarchical paths are undesirable as well since that would sacrifice the simple structure of

paths. Both solutions would also suffer from the problem that a path combining operator

would allow creation of nonsensical paths, such as circular paths. The path extension

operator defined above suffers from none of these problems.

2.2.3.3 Optimization Phase

As explained earlier, paths are created incrementally, which results in maximum-length,

though not necessarily optimal, paths. To obtain optimal paths, path transformations

(optimizations) need to be applied in a second phase of path creation.

45

Abstractly, optimizing a path involves transformation rules which consist of hguard,

transformationi pairs. If Path denotes the set of all possible paths, then the type signa-

tures of the guard and the transformation functions are:

guard : Path! Boolean

transformation : Path! Path

The idea of a transformation rule is that given a path p, guard(p) is first evaluated. If

true, p is replaced by p0 transformation(p), otherwise, p0 p (i.e., the path is used

unmodified). Since a path represents a maximum length sequence of modules and all

other information pertinent to the operation of the path, transformation rules have as much

context available as is possible. The quality of path optimization is therefore limited only

by how long the path is (some paths may be shorter than one would like ideally) and

by the quality of the transformation itself. Since it is applied at runtime, the amount of

time available to the transformation is certainly bounded and in most cases limited to

relatively short time-spans. Since the transformation needs to operate within a limited

time budget, it is often advantageous to precompute expensive parts of the transformation

off-line. Examples of such transformations will be discussed in Chapter 4.

A real system is expected to employ many path transformation rules. When multiple

rules exist, they are applied repeatedly and in no particular order. The optimization phase

stops when no rule can be found whose guard evaluates to true. Note that this is a con-

ceptual model. An actual implementation would likely attempt to exploit the structure

that may be present in the guards of the rules. For example, rather than evaluating guards

linearly, it may be possible to build a decision tree that reduces the number of guards that

need to be checked for a newly created path.

2.2.3.4 Invariants

Invariants form the backbone of path creation and it is therefore worthwhile to discuss

them in more detail. First, observe that invariants are essentially the vehicle that allows

communicating information (knowledge) between modules. As such, the meaning of each

name of an invariant must be universally agreed upon. Of course, each module does not

46

have to know about all possible invariants, but it must be assured that if it uses an invariant

of a given name, then every other module in the system must understand that invariant in

the same way.

One question that arises is what a module should do if it encounters an invariant whose

meaning it does not understand. It could either remove that invariant when passing on the

path creation request, or it could leave it in the invariant set. The former is guaranteed to

be safe, since it simply means that the path being constructed may end up being shorter

than ideally would be the case. However, there are cases of important invariants that are

known to be pervasive throughout the path. In such a case, it is desirable to tunnel such

invariants through modules that do not understand their meaning. For this reason, two

classes of invariants are defined: limited invariants that are removed when encountered by

a module that does not understand them, and pervasive invariants that are passed through

such modules unchanged. Finer-grained classifications are of course imaginable, but our

experience is that this two-class scheme works well in practice.

At this point it may be helpful to discuss some concrete examples of invariants. Since

invariants affect routing decisions, any kind of address information is typically specified

as an invariant. For example, the path name of a datafile could be specified by an invariant

named FILENAME. Similarly, the network address of a remote host that one wants to

communicate with could be specified using an invariant called PARTICIPANT. Another

kind of invariant that is often useful provides information about the data that will traverse

the path. For example, if possible, it is often useful to specify a lower and upper bound

on the size of a single data-item. Such an invariant obviously belongs to the class of

limited invariants, since a module that does not understand this invariant may still change

the size of any data-item passing through it. Thus, if the invariant were not limited, the

module might unknowingly cause it to be violated. Data access patterns can also often

be exploited, so specifying them as invariants is useful as well. For example, if a file is

accessed in a strictly sequential fashion and its size is known, a cache module might be

able to tell whether it is likely to be worthwhile to cache the file or whether it is better to

leave the file uncached so other, already cached data does not get displaced. An example

of a pervasive invariant may be one that indicates that the created path is intended to be

47

used in a realtime environment. This property will be true independent of whether an

intermediate module understands it or not.

This discussion should make it clear that there is a dependency between the invariants

that can be usefully exploited and the invariants that can be specified. If the creator

of a path does not know about the existence of some type of invariant, then it clearly

cannot specify that invariant, even if it happens to be true for the path. Conversely, if

a module does not know about the existence of an invariant, it cannot exploit it, even

though it might be easy to do so if it had known about the invariant. Since it is not

really possible to solve this dilemma perfectly, an iterative process seems appropriate. As

will be discussed later on, Scout defines a (small) initial set of invariant names that are

considered useful in exploiting various path benefits. As experience is collected and new

means to exploit paths are invented, this set is bound to grow. This is unfortunate since it

may require changing existing code to fully exploit new invariants (this is never required

for correctness), but the hope is of course that this process will eventually converge on a

manageable number and stable set of invariants.

2.2.3.5 Who Creates Paths?

The final question that needs to be answered with respect to path creation is: what is

the entity that creates paths? In the path model we are proposing, this works as follows.

When a system starts up, the constituent modules are initialized in some order. As part

of its initialization, a module may elect to create one or more initial paths. After module

initialization is complete, new paths may be created as a side effect of execution of other,

already existing, paths. In other words, once the system is initialized, paths create paths.

For example, a networking service would typically create a path for its well-known

address while its module is being initialized. Then, whenever it receives a new connection

request, the service may elect to create a new path to handle the new connection. Sim-

ilarly, a command-line interpreter is likely to create a path to the input device (e.g., the

keyboard) during initialization. New paths are then created as a side-effect of handling

key-strokes.

48

2.2.4 Generalized Paths

As defined so far, paths are simple and highly predictable: a data-item arrives at the

input queue, the path is scheduled for execution, and the transformed data is deposited in

the output queue. While this simplicity is ideal for the purpose of optimization, it also

severely limits the usefulness of paths. It is thus necessary to extend paths to make them

more widely applicable. The challenge is in doing this in a way that does not destroy the

properties that make the path abstraction attractive in the first place.

2.2.4.1 Directionality

Basic paths are essentially unidirectional dataflows. To be able to communicate in both

directions (source to destination and vice versa), it would therefore be necessary to create

two paths. This is a workable solution in many cases, but is not sufficient in others. In

particular, for request-response like applications, it is typically necessary to guarantee

that a reply returns along the exact same path through which the corresponding request

arrived. Just as important, from the point of a user of a path, it is more convenient if the

path used to send a request is also the one that will yield the reply.

In other cases, the two dataflow directions are mutually dependent. For example, in

networking protocols it is often convenient and more efficient to piggy-back information

about the state of the receiver on packets produced by the sender. If the two directions

were handled by separate paths, it would be difficult, if not impossible, to communicate

the necessary information from the receiver path to the sender path. As a final argument,

consider resource consumption. Unidirectional paths consume less resources (memory,

primarily) in a system where most paths are unidirectional, but they would use more

resources in a system where many path pairs are needed to emulate bidirectional path.

This argues neither for nor against bidirectional paths. However, it seems much easier to

optimize bidirectional paths that are used in a unidirectional manner only than it would be

to optimize a path-pair, since the latter consists of two independent entities. Based on this

slight advantage and the other considerations that suggest bidirectional paths, it appears

that extending the path model to support bidirectional dataflows is appropriate.

49

To support bidirectional dataflows, the path model can be extended as follows. Each

extended path has four queues—an input and an output queue for each of the two di-

rections. Also, the path function g is extended to take a second argument d that gives

the direction (forward or backward) in which the path should be traversed. The module

specific partial processing functions are extended analogously.

The reason the two directions are called forward and backward is that a path may

wind its way up and down through a module graph. Thus, terms commonly used in

layered systems, such as above and below or top and bottom are meaningless for paths.

Forward and backward are more neutral terms but it is important to understand that these

are just labels—the two directions are completely symmetric as far as the path model is

concerned.

2.2.4.2 Complex Processing

So far, the path model assumes that the path processing is work conserving in the sense

that for every input data-item, there is exactly one output data-item.3 This is limiting

since it means that certain common operations cannot be accommodated. For example, it

is not unusual for a module to consume multiple input data-items before producing output

data. Conversely, some modules may respond with multiple output data-items for each

input item. Finally, in some cases a module may generate a data-item spontaneously, e.g.,

in response to the expiration of an internal timeout.

For these reasons, it is necessary to loosen the evaluation rule for paths as follows.

Suppose path processing consists of the composition of functions g1; : : : ;gn. With the

new evaluation rule, a data-item may be injected at any one of these sub-functions and

the invocation of gi may result either in gi�1 or in gi+1 being invoked. That is, these

sub-functions can be invoked in any order, subject to the restriction that only neighboring

functions are invoked, or that the data be enqueued at an output queue. Note that in

the extreme, this allows for a data-item to loop endlessly inside a path. Of course, few,

3Work conserving is often used in the context of queueing theory, but that use is only indirectly related

to the way we employ the term here. The commonality is that in both contexts, the term means that no

additional work is created inside a system itself.

50

if any, useful paths would do this. However, the fact that the path model allows for

endless looping is analogous to universal (Turing-complete) programming languages [24]

which must allow for the possibility of infinite looping even though most useful programs

terminate in a finite amount of time.

2.3 Summary and Discussion

In summary, a path is created by invoking a create operation on a module and specifying

a set of invariants. The invariants describe the properties of the desired path, and are

used to determine a next module that must be traversed by data traveling along the path.

The process of determining the next module is called making a routing decision, since

it affects the route that the path takes through the module graph of the system. Routing

decisions are made repeatedly until the path reaches its maximum length. This occurs

either when the invariants are no longer strong enough to make a unique routing decision

or when the edge of the module graph is reached. Each module that is traversed by a path

supplies a partial processing function gi that implements the semantics of the module for

the path under construction. A detailed view of a path that traverses three modules is

shown in Figure 2.7. In addition to path creation, there is a path extension operation that

allows creating paths when only an interior instead of an endpoint module of the path is

known.

Module Moduleg1 g2 g3

Figure 2.7: Example Path

Once a path has been created, the path optimization operation can be invoked on it.

During this phase, transformation rules are applied repeatedly until none of the rules can

be applied any longer. This allows to exploit optimizations that require the full context of

the path for proper operation.

51

Path execution is decoupled from the data arrival and departure processes at the end-

point modules by four queues. For each of the two directions of dataflow, there is an

input and an output queue. Typically, path execution involves dequeuing data from an

input queue and evaluating the gi functions in sequence until the other end of the path is

reached. However, for generality, a message may get absorbed in the middle of a path, or

be turned around, or a new message may be created spontaneously inside a path.

2.3.1 Policy Issues

The path model defines a mechanism and avoids policy issues to the degree possible.

Nevertheless, it is necessary to discuss the policy issues that arise as a result of this model.

Paths create a two-dimensional policy space. One dimension could be labelled length

and the other width. The length of a path is related to how many modules it crosses. The

width of a path is related to how specialized a path is. A highly specialized path would

be considered narrow, whereas a general path would be considered wide. For example,

a wide path may process data from many different remote hosts, whereas a narrow path

may be tailored for the processing of data from one particular host.

It might seem that it is always desirable to create long and narrow paths. A long path

has much of the global context available that is needed to achieve good performance. And

a narrow path is specialized which further simplifies the task of creating a well-optimized

path. But in reality, paths have costs: it takes both time and space to create them and

having many paths means that each path will be used less often, meaning that there is less

locality of use. Thus, the choice of whether a path should be long and/or narrow depends

completely on the intended use of the path. Tasks that are not performance critical are

usually best realized with short and wide paths, whereas performance critical tasks would

most likely be realized with long, and possibly narrow, paths.

Since the path model is claimed to be policy-free, what parts of a path-based system

do implement policy? Ultimately, it is the invariants that determine the route of a path and

its width. Thus the creator of a path realizes policy by specifying more or fewer invariants.

Similarly, a module making a routing decision is affecting policy by choosing to either

honor or ignore a specified invariant. This means that path policy is not implemented in

52

a well-defined, separate entity but instead is scattered throughout the various modules.

This is not surprising since the width and length of a path cannot be specified without

taking into account the semantics of each module that is traversed by the path. Of course,

it would be possible to define an invariant that specifies the desired length of a path.

Limiting a path’s length is always possible, but forcing a minimum length is not, since

an intermediate module may not be able to make a unique routing decision based on the

specified invariants.

2.3.2 Intuitive Models

When reasoning about paths, it is often helpful to focus on one of the several aspects that

make up a path. As a result, paths have many faces. Depending on the context in which

they are being discussed or used, a path can be viewed as:

� a bidirectional dataflow,

� a processing pipe-line.

� a path of execution,

� a resource account, or

� a locus of identity.

When dealing with processing efficiency concerns, one of the first three views is typically

employed, whereas for resource management problems, the latter two views are more

helpful. Note that neither view is the correct one since no single view adequately captures

all of the various aspects of paths.

2.3.3 Limitations

A limitation of the proposed path model is that it does not directly support any form

of fan-in/fan-out or multicasting, loosely speaking. In the path model, this would be

approximated either by several point-to-point paths or by a single path that covers the

53

Figure 2.8: Approximating Fan-In/Fan-Out With Multiple Paths

common parts and then several small paths that cover the independent parts. The former

solution is illustrated in the left hand side of Figure 2.8, the latter in the right hand side.

The absence of direct support for fan-in or fan-out is a limitation but at the same time a

feature of paths. With multiple input or output points, code optimization techniques such

as ILP could not always be realized because at path branching points, it would not be

clear what module would be entered next. Similarly, for resource management it is often

useful to know what the exact source or the destination of a data-item is. With fan-in and

fan-out, this question could not be answered for all paths and would thus largely defeat

the purpose of paths.

2.4 Applications

With the path model in place, it is time to discuss a few specific applications of paths.

The goal of this section is provide a more concrete idea of how paths are used, and at the

same time, argue that many ideas and techniques that have been implemented in an ad hoc

fashion in the past, can be realized in a straight-forward manner using paths. In that sense,

the path model is believed to be a unifying abstraction. However, this discussion should

not be taken to mean that paths are limited to the specific examples given below. Rather,

the path model should be considered a framework that simplifies realizing the specific

examples and that should enable development of other path-based techniques that have

yet to be discovered.

54

Broadly speaking, paths can provide two kinds of benefits: (1) they can improve code

quality, and (2) they can improve resource management. The two kinds of benefits are

typically independent, and hence, additive.

2.4.1 Code Optimizations

Paths can help improving the code quality by virtue of the fact that they allow partial

evaluation of the path processing function, as explained in Section 2.2. A few specific

examples follow below.

2.4.1.1 Code Synthesis

Pu et al. propose a runtime code synthesis technique that involves collapsing layers to

avoid the overhead that is typically caused by crossing module or layer boundaries [86].

The technique allows further optimization of the collapsed code through factoring of in-

variants and elimination of data copying. For this technique to be applicable, it is neces-

sary to know the invariants that are true for the code-path through the system that is to be

optimized. In addition, it is necessary to know the sequence of functions that need to be

collapsed. The path model proposed in this chapter provides both kinds of information

and thus makes this technique readily applicable.

2.4.1.2 Integrated Layer Processing

For this technique (see Section 1.4.1.2) to be applicable, it is necessary to know the se-

quence of data-processing steps that a network packet will follow. The path model can

trivially support this kind of application since the sequence of modules being traversed

is known and fixed for the lifetime of a path. A combination of the language-based ILP

approach presented by Abbott and Peterson [1] and paths should therefore enable making

ILP a truly practical technique.

55

2.4.1.3 PathIDs

The PathID approach (see Section 1.4.1.3) consists of a combination of two techniques:

a mechanism to efficiently find the path for a network packet and a highly sophisticated

partial evaluator—namely a human being. The issue of how paths are located is not part of

the path model proper, but as will be discussed in Section 3.4, a solution to this problem is

needed in any path-based system, and as such, the PathID technique is applicable. More

interesting to the path model is the way the hand-optimized (partially evaluated) code

is employed. This could be done by specifying a path transformation rule that matches

the sequence of network protocols that were manually optimized. If a path contains a

sequence for which hand-optimized code exists, the old (unoptimized) code in the path

can be replaced with this manually optimized version.

2.4.1.4 Single-Copy TCP/IP

As far as the path model is concerned, the single-copy TCP/IP technique discussed in

Section 1.4.1.4 is almost identical to PathIDs. Again, unoptimized code is replaced by

highly tuned, manually written code.

2.4.1.5 Summary

The four examples discussed above all depend on being able to associate optimized code

with a particular path. They all differ in what type of partial evaluation they apply, but

fundamentally they are all quite similar in that they exploit the linear structure that is

often present in the performance critical code. The defined path model therefore is ideally

suited for this kind of code-related optimizations.

2.4.2 Resource Management

The second kind of benefits that the path model affords is related to improved resource

management. A discussion of three applications that exploit this follows.

56

2.4.2.1 Fbufs

Fbufs [29] are a path-oriented buffer management mechanism designed to efficiently

move data across multiple modules that are in different protection domains. This tech-

nique depends on knowing the sequence of modules that will be traversed by a data-item.

In addition, it requires a provision for path-specific memory allocators. Both requirements

can be accommodated easily in the proposed path model.4

2.4.2.2 Migrating/Distributed Threads

Migrating (distributed) threads [19, 45, 37] address the issue of anonymity of processing

that often poses problems in modular systems. Typically, when data enters a new module,

information on whose behalf the data is being processed is lost. Since, in the path model,

all execution is in the context of paths, they can serve the same purpose as distributed

threads. In essence, this application uses paths as an account that can be charged for

resources (e.g., memory or CPU cycles) that are consumed as part of the data processing.

2.4.2.3 Segregation of Work

The dataflow view of paths is important when building systems that require offering dis-

tinct quality-of-service (QoS) to different data streams (applications). In a modular sys-

tem, lower layers often mix processing of different data streams. This multiplexing makes

it difficult to provide differentiated service. Paths force a segregation of work on a per-

path basis. Thus, as long as each service class is represented by a separate path, even

lower layer modules can easily distinguish between the needs of different streams and

provide service accordingly. For example, when processing data with a realtime con-

straint, the deadline by which the data needs to be processed could be associated with the

path. This makes the deadline accessible and visible to all modules along the path as well

as to the path scheduler itself.

4Note that the Scout implementation of the path model that will be presented in Chapter 3 does not

support protection domains. But this does not mean that the path model could not be applied to systems

with multiple protection domains.

57

2.5 Related Work

At the surface, paths are similar to UNIX pipes [89] and Pilot streams [87]. While all three

have in common a linear sequence of components (processes in UNIX, Mesa modules in

Pilot, modules in the path model), neither pipes nor streams provide any global context to

the individual components. Neither do they attempt to optimize the code along a path. It

is also the case that UNIX pipes are more coarse-grain and unidirectional.

The system that is, at least terminology-wise, close to the proposed path model is

Da CaPo [40]. Da CaPo stands for dynamic configuration of protocols and defines an

infrastructure for building multimedia protocols. It has an explicit notion of paths, but

there are important differences to our proposed path model at all levels. At lowest level,

Da CaPo paths are unidirectional and the partial processing functions have restricted se-

mantics (they are essentially non-blocking event-handlers). As a result, Da CaPo is not

universal or even powerful enough to accommodate all but the most basic tasks that arise

from network protocol processing. Another important difference is that path creation is

left completely to an external configuration manager. As pointed out in Section 2.2.3,

this means that in any reasonably complex system, the configuration manager will be

burdened by detailed knowledge of the internal workings of particular modules. In con-

trast, the path model makes it easy to exploit both local and global information during

path creation. At a higher level, Da CaPo focuses completely on automatically selecting

appropriate protocol functionality; performance and resource management appear to be

lesser issues to Da CaPo.

CORDS is a communication subsystem by the Open Group (formerly Open Software

Foundation) that is based on the x-kernel [49]. It employs a path abstraction that is based

on early work that lead to the path model proposed here. As such, paths as presented

in [105] are limited in several ways. First, they are applicable in the communication

subsystem only. Second, they do not admit path-oriented code optimizations as discussed

in Section 2.4.1. Third, they do not admit paths that are shorter than anticipated or desired.

Indeed, it is not clear whether CORDS would be able to detect and handle such cases. A

final, and arguably the most significant, difference is that in CORDS, paths are defined as

58

an add-on abstraction that is often in conflict with other abstractions (e.g., session objects

in the x-kernel). In contrast, the path model proposed here provides a unifying and general

path abstraction.

In addition to the above mentioned work, there is a wealth of research on mechanisms

that offer point-solutions to the more general problem of exploiting paths, both as a code

optimization and resource management framework. Examples of code, or fast-path op-

timizations include Synthesis [60], Synthetix [85], PathIDs [56], Protocol Accelerators

[107], and integrated layer processing [16, 1]. Examples in the second category include

processor capacity reserves [64], distributed/migrating threads [19, 37], and Rialto activ-

ities [52]. These related works do not attempt to define an explicit and universal path

abstraction, but are a source of interesting examples of how paths can be employed.

The work on Synthetix is also interesting in that it introduces the notion of quasi-

invariants. Quasi-invariants are similar to invariants as discussed in Section 2.2.3.4 but

differ in that they may become invalid during the lifetime of a path. The idea behind

quasi-invariants is that, in some cases, invariants are likely to be true for a long time-span,

but there is a chance that they may become invalid at any point in time. Supporting quasi-

invariants enables exploiting such almost invariants and thus allow for more aggressive

optimization. They also introduce more complexity in the path model, since invalidation

of a quasi-invariant will require corrective actions. There is no reason to believe that the

proposed model could not be extended to accommodate quasi-invariants, but this avenue

of research has not been explored as part of this dissertation.

59

CHAPTER 3

SCOUT ARCHITECTURE

Nobody trips over mountains.

It is the small pebble that causes you to stumble.

Pass all the pebbles in your path and

you will find you have crossed the mountain.

– Unknown

This chapter describes the most important aspects of the Scout architecture, which

includes its modular system, its path implementation, how it demultiplexes (classifies)

data onto paths, and its execution model. The goal of this chapter is to motivate and

discuss architectural issues of Scout that are interesting and novel. For a comprehensive

and detailed description of the various programming interfaces, the reader is referred to

the Scout manual [101].

3.1 Overview

Scout is an operating system designed for information appliances such as set-top boxes,

or file- and web-servers. It is implemented in C [57], founded on a modular structure

and built around the path abstraction which makes it suitable for the communication-

oriented nature of appliances. The current system supports both best-effort and soft re-

altime scheduling. It is optimized for the needs of appliances and, at present, does not

support multiple address spaces, protection domains, or shared-memory multiprocessors.

The reason for limiting the initial realization of Scout to simple uniprocessors is

twofold. First, we expect that many appliances will not require more than what is cur-

rently provided by Scout. This is a direct consequence of the characteristics of appliances:

they are specialized and often relatively small. Thus, shared memory multiprocessors and

multiple protection domains are unlikely to be a requirement of many appliances.

60

Second, simplifying the structure of Scout allows us to focus on the intrinsic issues of

communication-oriented systems. For example, it allows designing the path abstraction

without worrying about how well it would be supported by the protection mechanisms

of current hardware. This is a valid approach since it may be desirable and reasonable to

change current hardware abstractions in response to the needs of communication-oriented

systems. On the other hand, this approach bears the danger of conjuring up abstractions

that have no hope of ever being able to run efficiently in a more complex system. While

this danger exists, we have no reason to believe that this is the case for the Scout system

presented in this chapter. Indeed, as the system is developed, informal arguments are

presented as to why and how it could be extended to more complex environments.

With the above considerations in mind, it should be no surprise that conformance

with standard programming interfaces, such as POSIX [94], is not a primary goal of

Scout. An understanding of how existing interfaces support or interfere with the needs of

a communication-oriented system could be useful, but is a secondary issue. In contrast to

the internal programming interfaces, the external communication protocols are considered

a given. This is not to say that existing protocols are sufficient or that they could not be

improved upon, but it does mean that Scout must be capable of supporting existing, wide-

spread protocols such as the Internet’s TCP and IP protocols.

3.1.1 Scout Epochs

Before going into the details of Scout, it is useful to discuss the various epochs in a

Scout system that are illustrated in Figure 3.1. The first epoch occurs when individual

modules are implemented by a programmer. At a later time, the system designer decides

what kind of paths are likely to be important to system performance. For those, path

transformations can be implemented as described in Chapter 2. Once these are realized,

the desired functionality for a particular information appliance is chosen by selecting the

appropriate modules and connecting them into a module graph. At the same time, the

designer can also specify complete path transformation rules (i.e., pick the appropriate

path transformations and associate them with the proper guards). When this is all done,

the system (kernel) is built. All steps mentioned so far are considered to occur during build

61

time. In contrast, runtime covers all the steps that occur after the system has been booted

on the target machine. During that time, paths may be created, used, and destroyed.

build time
runtime

Early

Late

module implementation

path transformations

kernel build

path creation

path execution

module graph & transformation rules

Figure 3.1: Scout Development Timeline

3.2 Modularity

Modules are the unit of program development in Scout. In the Scout implementation,

modules are actually called routers to encourage thinking of them as entities that route

data through the system and also to avoid the overloaded term module. The flip-side

of this convention is, of course, that the term router sometimes causes confusion when

speaking of Scout in the context of communication networks that employ conventional

network routers. Independent of the implementation, this dissertation continues to use

the term module for the sake of consistency.

62

3.2.1 Module Granularity

The choice of the granularity of modules is important since modularity is not free of costs.

First, modularity often causes runtime overhead. Sometimes, the overhead is due to the

limited context that is available when building the modules. For example, the programmer

may not know in what context the module will be used and therefore is forced to imple-

ment the most general case, or independent compilation limits the context available to the

compiler’s optimizer, making it difficult to optimize across module boundaries. Second,

modularity implies the use of standardized interfaces. These interfaces ensure that a large

number of module pairs can be connected to form new and interesting systems. However,

adhering to these relatively strict and difficult-to-change interfaces forces implementing

modules in a way that is often suboptimal. For example, auxiliary data sometimes needs

to be packaged into abstract data types to communicate them across module boundaries.

Consequently, dividing up a system into the smallest possible modules is generally not a

good idea. On the other hand, the extreme case of not using modules at all is certainly not

ideal either since that would be equivalent to building a vertically integrated system.

Out of these considerations, a Scout module is expected to provide a well-defined

and independent functionality. Well-defined means that there usually is either a standard,

interface specification, or other existing practice that defines the exact functionality of a

module. Independent means that each single module should, by itself, provide a useful,

independent service. That is, the module should not depend on there being other specific

modules connected to it. While Scout does not enforce these rules, they are assumed in

the design. As a result, Scout works best when modules have an intermediate level of

granularity. Typical examples are modules that implement networking protocols, such

as IP, UDP, or TCP; modules that implement storage system components, such as VFS,

UFS, or SCSI; and modules that implement drivers for the various device types in the

system. Examples of modules that, for Scout, are likely too fine-grained include the

IP fragmentation algorithm, the MPEG inverse discrete cosine transform, or the UDP

checksumming algorithm.

Given that Scout claims to be able to avoid the disadvantages of modularity by using

63

paths, it may be surprising that it does not advocate modules of the smallest possible

granularity. The reason for this is two-fold. First, paths primarily address inefficiencies

due to limited optimization context. It is distinctly more difficult to automatically avoid

overhead that arises due to interface mismatches. Of course, it would be possible to

manually implement an optimized path that avoids interface mismatches, but whenever

possible, it is preferable that efficient paths be created automatically from the underlying

modules. Second, there is also a third cost to modularity: the act of decomposing a system

into modules takes time and consideration. If the resulting modules are so small that they

can be used in only one possible module configuration (i.e., they cannot be reused), then

nothing is gained. In other words, there is no advantage to going below a certain level of

granularity.

3.2.2 Module Structure

Abstractly, a Scout module implements a certain functionality and provides access to this

functionality through services. Each service provides access to one aspect of the module’s

functionality. For example, modules often provide filter-like functionality, which could

be realized by a pair of services: one service representing the filter’s input, the other the

filter’s output. However, the number of services provided is not limited to two, but is

determined by the module. In the degenerate case, a module might not have any services

at all, though such an isolated module would not be very interesting as it could not be

connected to any other module. More typically, modules provide on the order of two or

three services. The services in an module are assigned unique names to make it possible

to reference and distinguish them. Other than the requirement that the names are unique,

they can be arbitrary strings. Since services are accessed by other modules, they also have

a type associated that specifies the protocol (language) that the service uses to communi-

cate. The exact meaning of this type will be discussed later in this chapter. For now, it is

sufficient to know that each service has a name and type associated with it.

An example module is shown in Figure 3.2. The big box represents a run-length

compression filter [91]. The two nested boxes represent services: plain provides access

to the plain, uncompressed data and compr provides access to the run-length compressed

64

plain:ByteStream

compr:ByteStream

RLCODEC

Figure 3.2: Module With Two Services

data. Both services are of type ByteStream. As shown in the figure, it is customary in

Scout to separate the service name from its type by a colon (a convention adopted from

Pascal-like languages [20]). Suppose ByteStream represents a bidirectional stream of

data bytes. In this case, data sent into the plain service would be run-length encoded

and sent out through the compr service. Conversely, data sent into the compr service

would be run-length decoded and then passed on through the plain service. This is

the reason the module is called RLCODEC: it provides both run-length encoding and

decoding functionality.

Concretely, a Scout module is implemented as a collection of C source files. Each

module is described by a so-called spec file that lists the names of the C source files that

belong to the module and the services that the module provides. The syntax for spec files

is shown below:

module name f

files = ffilename, ...g;

service = f[<]name:type, ...g;

g

As indicated, a service name may optionally be preceded by a less-than marker (<).

This is used to constrain module-initialization order and is discussed in detail in Sec-

tion 3.2.3.2. For the run-length codec module in Figure 3.2, the spec file might look as

shown here:

module RLCODEC f

files = frl-encoder.c, rl-decoder.c, rlcodec.hg;

service = fplain:ByteStream, compr:ByteStreamg;

g

65

The spec file completely defines a module: it specifies its functionality (semantics) by

listing the C files that belong to the module and it defines the external interface to the

module by listing the names and types of each service. Each module m is expected to

export a global C function called mCreate. This function is used to create a module at

runtime, as explained later in this section.

3.2.3 Module Graph

To form a complete system, individual modules need to be connected into a module graph.

A module graph consists of a collection of modules whose services are connected in a

(hopefully) meaningful manner. For example, to build a network-attached camera whose

video data should be run-length encoded before being sent out on the network, one could

use the module graph shown in Figure 3.3. In this graph, RLCODEC represents the

run-length codec introduced earlier in this chapter, CAMERA is the device driver for the

camera, MONITOR is a device driver for the small monitoring display of the camera,

and NETWORK is the module implementing network support (in reality, the networking

subsystem is likely to consist of multiple modules). Recall that a ByteStream is a

bidirectional data streams, so in this simplistic example, commands that are sent from the

network to the camera would have to be run-length encoded as well.

In Scout, the module graph of a system is described by the file config.graph.

This file consists of a list of module declarations, followed by a list of connections. The

two lists are separated by an at-sign (@). The syntax of this file is illustrated below:

name=iname module=mname; ...

@

iname1.sname1<>iname2.sname2; ...

In this description, iname represents an instance name, mname a module name, and sname

a service name. The graph description distinguishes between the instance name and the

module name to allow using the same functionality (module) in multiple places in the

module graph. Instance names can be arbitrary strings as long as they are unique within

a module graph. To keep the discussions in this dissertation simple, we generally will

not distinguish between a module (a given functionality implemented by a collection of

66

plain:ByteStream

compr:ByteStream

RLCODEC

net:ByteStream

NETWORK

cam:ByteStream

CAMERA

MONITOR

data:ByteStream

Figure 3.3: Modular Graph for Network-Attached Camera

C files) and the instantiation of a module (the type of object that the module graph is

composed of). Analogously, if the instance name of a module is omitted in a graph

description file, the module name is used by default. In the graph description file, the

binary operator <> represents a connection between the module/service pair mentioned

on the left hand side, and the module/service pair on the right hand side.

module=CAMERA; module=RLCODEC; module=NETWORK;

module=MONITOR;

@

CAMERA.cam<>RLCODEC.plain;

RLCODEC.compr<>NETWORK.net;

CAMERA.cam<>MONITOR.data;

Figure 3.4: Graph Description File for Network-Attached Camera

The graph shown in Figure 3.3 could be implemented by the graph description file

shown in Figure 3.4. Most of the connections in this graph are straight-forward. Note,

however, that the cam service of module CAMERA has been connected twice: once to the

plain service of RLCODEC and once to the data service of MONITOR. In general,

the number of connections allowed is both service and module dependent. The current

67

implementation of Scout does not provide the means to express such constraints in the

module’s spec file, but modules can ensure at runtime that the correct number of con-

nections have been made. This is the most flexible solution since the logic verifying the

connection count can take into account all of the information available at runtime; e.g.,

the number of expected connections may very well depend on the number of connections

made to another service of the same module. On the other hand, the experience gained so

far suggests that most services expect either at most one, exactly one, at least one, or an

arbitrary number of connections. Thus, supporting these constraints in the spec file would

seem like a good idea since that would help to catch most configuration errors at system

build time instead of at runtime. Moreover, this solution would not sacrifice flexibility:

in the case where none of the four proposed constraints is perfectly appropriate, the ser-

vice could specify arbitrary number of connections as the constraint in the spec file and

perform the actual verification at runtime, as is presently done.

The semantics of multiply connecting the same service is also module dependent. In

the case of the CAMERA module, it presumably would mean that video data is sent to

both connections and that commands are accepted from either one. Multiple connections

are commonly used by modules that do some form of multiplexing and demultiplexing

among multiple data streams. Such modules essentially route data through the module.

Finally, as Figure 3.3 shows, a module graph often represents a layered system. That

is, higher-level modules provide services that are implemented in terms of other, lower-

level services. For reasons of flexibility, Scout does not, however, enforce strict layering.

Cyclic module graphs are admissible as long as there is a partial (non-cyclic) order in

which the modules can be initialized; more on this later.

3.2.3.1 Compatibility

A pair of services can be connected in the module graph only if they are compatible.

For the purpose of compatibility testing, a service consists of a pair of interface names:

the first element specifies the name of the interface that the service provides and the

second element specifies the name of the interface that the service expects. Interfaces

are explained in detail in Section 3.3, but for the purpose of this discussion, it is sufficient

68

to think of an interface as a collection of (typed) routines that can be called by the user of

the interface.

A pair of services is considered compatible if the interface provided by one service is

compatible with the interface expected by the other service and vice versa. Suppose the

ByteStream service had been declared like this:

service ByteStream = <ByteStreamIface, ByteStreamIface>

This would mean that a service of type ByteStream provides an interface of type

ByteStreamIface and also expects an interface of the same type. This implies that a

ByteStream service can be connected to any other ByteStream service. Asymmet-

ric services are of course possible. The most common asymmetric case is where a service

provides an interface but does not expect any interface (or vice versa). This is used for

connections in which communication can be initiated in one direction only.

The current Scout implementation does not check for compatibility in a module graph.

Supporting this would again catch more configuration errors early in the lifetime of a

system, namely during build time.

3.2.3.2 Runtime Representation and Module Initialization

During build time, the module graph exists in the form of the config.graph descrip-

tion. Scout also provides an explicit representation of the module graph at runtime. This

makes it possible to address connections in the graph by names that are computable at

runtime (the names are actually integer indices). For example, the CAMERA module

described earlier needs to send out the video data on all connections to its cam service.

With a runtime representation of the graph, this can be achieved with a simple for-loop.

Each module m exports a global function called mCreate that creates and returns an

object representing the module. The prototype for these functions is shown below:

Module mCreate (String n, int c[]);

Formal argument n specifies the instance name of the module and c is an array that spec-

ifies how many times each service has been connected to other services. The module

69

creation function can verify the connection counts and, if correct, return the newly cre-

ated module, or if incorrect, return NULL. The module creation functions are called by

the Scout runtime system at boot time. The order in which the modules are created is

unspecified.

The value returned by the module creation function is a pointer to a C structure of the

following type:

typedef struct Module f

String name;

String module name;

long (*init)(Module m);

CreateStageFunc createStage;

DemuxFunc demux;

struct ModuleLink f

Module module;

int service;

g links[][];

g * Module;

The members name and module name hold the instance and module name of the mod-

ule, respectively. Function pointer init is used to initialize the module. It is called once

the entire module graph has been built, that is, after all modules have been created and

connected according to the module graph description. The createStage and demux

members are function pointers that are used in conjunction with path creation and de-

multiplexing, respectively. These will be described later. The last member, links, is a

two-dimensional array of connections to other services. The first dimension in the array is

indexed by the service name and the second dimension is indexed by the instance number.

For example, for the graph in Figure 3.3, links[cam][0].modulewould point to the

object representing module RLCODEC and links[cam][0].servicewould be the

index that corresponds to the plain service. Similarly, links[cam][1].module

would point to the object representing module MONITOR and expression links[ca-

m][1].service would evaluate to the index that corresponds to the data service of

that module. The mapping from service names to integers is performed automatically by

the Scout infrastructure. It ensures that the service indices of a module with n services

70

will be unique and in the range from 0 : : :n�1. Other than that, the mapping is arbitrary.

The analogous applies to the numbering of service connections.

As alluded to in the previous paragraph, the module initialization functions are called

once the runtime version of the module graph has been created. To a first approximation,

the order in which these functions are called is arbitrary. However, it is not uncommon

that initialization of a module requires the invocation of services provided by other mod-

ules. In support of this, the initialization order can be constrained using the less-than

marker described in 3.2.2. When a module is initialized, it is guaranteed that all modules

connected through services that are marked in this way have already been initialized. In

other words, the less-than marker imposes a partial order on module initialization. A valid

module graph may not contain any cyclic dependencies in the module initialization order

constraints.

3.2.4 Discussion

An interesting question is whether the choice of C as the implementation language com-

plicates the problem of realizing a modular system. If that were the case, then clearly a

more appropriate language would be desirable. However, there is little reason to believe

this to be true. For example, consider object-oriented languages. The main feature of

Scout’s module infrastructure is that it moves the point at which external interfaces are

bound from the time a module is implemented to the time a system is configured (cf., Fig-

ure 3.1). With an object-oriented language, the same can be achieved by realizing each

type of service as a separate class. Assuming modules are represented by their own class,

then a module could be instantiated by passing one service object for each connection in

the module graph. But in effect, this is just a slightly different implementation from the

modular system described earlier. In other words, object-oriented languages do not, by

themselves, provide a form of modularity that would be sufficient for Scout.

Just as important, a key challenge to building modular systems is to find and define an

appropriate set of interfaces. There are two conflicting goals in selecting interfaces. On

the one hand, an interface should be well-suited to the needs of a module. Otherwise, us-

ing the interface might be cumbersome and cause additional overhead for the module. On

71

the other hand, if this were followed to the extreme, then every module might end up us-

ing its own interface, meaning that they could not connected in to a useful module graph.

Note that this issue, too, is completely independent of the implementation language.

So, in summary, there seem to be few and only minor disadvantages to using a rela-

tively low-level language such as C. A major advantage of C, as far as systems program-

ming, is concerned is the transparency it affords: since it operates at such a low level, it

is generally easy to guess what kind of machine code a given piece of source code trans-

lates into. This reduces the likelihood of small changes in the source code inadvertently

leading to large performance differences. In this sense, using a language such as C im-

proves predictability at the programming level. The biggest disadvantage of using C is

likely to be found not in convenience-of-use issues, but in suitability for optimization. For

example, high level functional languages such as SML are more amenable to aggressive

optimization than C [8]. But the high level of abstraction that enables these aggressive

optimizations is also the reason that makes such languages difficult to compile into code

as efficient as C. As long as there is a performance differential on the order of a factor of

two or more, C appears to be a more practical choice.

Another modularity issue worth discussing is that the Scout module graph is presently

configured at build time and, hence, it is not possible to extend the graph at runtime. How-

ever, it is straight-forward to add a dynamic module-loading facility to Scout. The biggest

issue in doing so is the security issue, not the actual dynamic loading. An alternative to

extending the module graph at runtime would be to configure a virtual machine module

into the graph that would allow interpreted code to be downloaded and executed inside

Scout [39, 25].

3.3 Paths

This section describes how paths are realized in Scout. Scout paths closely follow the

model presented in Chapter 2. Since paths make frequent use of lists of name/value

pairs, this section begins with a description of attributes—the Scout representation of

name/value pairs.

72

Each path is represented by several nested C objects. Since they recursively depend

on each other, they cannot be described in a linear fashion without forward references.

Thus, the approach taken here is to first present an overview of the objects involved,

then to discuss each of them individually in more detail. The descriptions of the objects is

followed by an introduction to path dynamics, which involves issues such as how paths are

created, used, and destroyed. The section concludes with a brief evaluation and discussion

of paths as implemented in Scout.

3.3.1 Attributes

In Scout, an attribute is a name/value pair. The corresponding C type is called Attr.

The name of an attribute is a (unique) integer index that is usually written in the form

of a manifest constant. In contrast, the value can be of arbitrary type. The name of the

attribute implies the type of the value. In this sense, an attribute can be thought of as a

tagged union variable. Since the association between attribute name and the attribute’s

value type is by convention, it is not explicitly represented in the implementation. For

example, the attribute with name MAX SIZE might (by convention) have a value of type

integer. Similarly, the attribute with name PEER ADDR might have a value that is a

pointer to a network address.

Sets of attributes are implemented in Scout by an abstract type called Attrs. A

variable of this type can hold an arbitrary number of attributes. The operations supported

on attribute sets include insertion, and removal of attributes, enumeration of the attributes

present in the set, and membership test.

Why are attributes so important in Scout? They basically serve two different, but

equally fundamental roles. During path creation, attributes convey path invariants. In this

case, they are primarily a substitute for the variable length argument list support that is

missing in the C language (varargs are not defined by the language, but by the runtime

system). But it is more than that. Attribute lists turn argument lists into first class objects,

that is, they make it possible to enumerate all elements in an argument list under program

control, and to dynamically add and remove elements in it.

The second role of attributes is in serving as information repositories that allow mu-

73

tually anonymous parties to communicate through a third, common party. Consider a

path that requires realtime scheduling. For such a path, there typically exists a deadline

by which a task has to be completed. The entity that can compute the deadline may be

somewhere in the middle of the path, but a device driver that enqueues newly arrived data

for the path may need to know what the current deadline is, so it can schedule the path

in an appropriate manner. This problem can be solved easily by using an attribute stored

in the path. All that is required is that the users of attributes agree that, for example,

attribute DEADLINE specifies a task deadline in units of micro-seconds. This attribute

attached to the path allows communicating the deadline from the middle of the path to

the device driver at the edge of the path. Note that this communication is anonymous: the

producer of the deadline does not know who makes use of the attribute and conversely,

the consumer does not know who produced the attribute. Also, the path object holding

the attributes does not have to understand the meaning of the attributes stored in it.

3.3.2 Visual Overview of a Scout Path

Figure 3.5 presents an enlarged view of the path and module graph originally presented in

Figure 2.4. The path is shown as the big rectangular box in the right half of the figure. For

space reasons, the middle of the path has been cut out of the figure. Internally, the path

contains four queues, shown near the top and bottom of the box representing the path.

It also contains several smaller boxes called stages. As indicated, there is one stage per

module that the path traverses. Inside stages there are various labelled arrows. The exact

meaning of these arrows will be described in Section 3.3.4. Aside from the queues and

the stages, the path contains other minor objects which have been omitted in the figure

for the sake of clarity.

The stages inside the path are created by the modules along the path; e.g., the fig-

ure suggests that the bottom-most stage was created by FDDI. Stages provide a place to

store information that is path-specific, but private to the modules. For example, the stage

created by module IP might contain a pre-formatted IP-header that is used when sending

data from the path to the network. Since no other module along the path needs to know

about IP headers, it is best to store it in the stage created by module IP.

74

next

stage
back

next

back
stage

next

back
stage

next

stage
back

FDDI

MPEG

MFLOW

UDP

IP

path

path

path

path

interfaces

back
stage

next

stage
back

next

DISPLAY stages

path

module

module

module

module

iface[1]
iface[0]

iface[0]

iface[1]

iface[0]

iface[1]

iface[0]

iface[1]

WiMP

Figure 3.5: Path Structure

75

The figure also shows that stages contain semi-circular shapes, called interfaces. An

interface provides a controlled (type-checked) way to move data from one stage to the

next one. Interior stages typically have a pair of interfaces (one per direction) whereas

stages at the ends of the path typically contain just one interface.

The figure further shows that interfaces are chained together. The interfaces in the left

half of the path are used to move data from the top end of the path towards the bottom,

whereas the interfaces in the right half are used to move data from the bottom end towards

the top. As discussed in Chapter 2, it is sometimes necessary to turn around the direction

in which data flows. This is supported by the arrows in the interfaces that are labelled

back. That is, when data arrives at an interface, it is possible to continue moving it in the

same direction by passing it along the arrow labelled next, or it can be turned around and

passed along the arrow labelled back.

3.3.3 Path Object

The most important elements of the actual Scout path object are shown in the C structure

below. In addition to the members shown, the Scout path object contains state that assists

the creation, extension and destruction of paths. That state has been omitted since it is not

relevant to the discussions presented here.

typedef struct Path f

long pid;

Stage end[2];

PathQueue q[4];

struct Attrs attrs;

bool realtime;

u long prio;

g * Path;

Every path has a unique integer associated that is called the path id. This id is stored in

member pid, and permits accounting resources on a per-path basis. The id is guaranteed

to be unique, but is otherwise arbitrary. In particular, if n paths exist in the system, it is

not guaranteed that the path id is in the range 0::n�1.

76

The stages at the extreme ends of the path are pointed to by end[0] and end[1].

For an unextended path, end[0] refers to the stage created first, whereas end[1] refers

to the stage created last. If a path is extended at the end pointed to by end[0], then,

once path extension is complete, end[0]will point to the last stage created during exten-

sion. The corresponding applies for path extension applied to end[1]. In other words,

end[0] and end[1] are guaranteed to point to the stages at the opposing ends of the

path—which expression points to which end is, in general, difficult to say. As explained

in Section 2.2.4.1, this is due to the fact that paths are completely symmetric as far as the

two data-transmission directions are concerned.

The four path queues can be accessed through array q. The path queues are imple-

mented in the stages at the ends of the path, so array q consists of pointers to the actual

queues. If a stage does not implement a particular queue, then the corresponding pointer

in q is NULL. The mapping between the queue index and the function of the queue is

given in the following table:

expression functions as. . . in direction. . .

q[0] source forward (end[0]!end[1])

q[1] sink forward (end[0]!end[1])

q[2] source backward (end[1]!end[0])

q[3] sink backward (end[1]!end[0])

To leave the stages flexibility in choosing the implementation for each path queue, only

two queue operations are globally defined: one to determine the maximum length of

the queue and another to determine the current length of the queue. These operations

tend to be sufficient to assist in making resource management decisions since they allow

computing the percentage to which a queue is full. Other operations that could prove

useful in the future are certainly imaginable, however. One example is an operation that

would allow resizing the path queue.

The attribute set attrs provides a place to associate arbitrary information with the

path. In essence, it provides the means to dynamically (at runtime) expand the path object.

This is useful to communicate information between different stages in the path and also

encourage exploring new, path-related ideas. The latter is true since the attribute set makes

77

it possible to associate new state with a path without requiring compile-time modifications

the path object type. Also, path attributes are useful for performance measurements. It is

often the case that the measurements are performed in one part of the path, but reported

in another, or that measurements need to be accumulated over a certain period of time.

Both cases can be accommodated easily using attributes to store performance statistics in

the path object.

The last two members listed in the structure are realtime and prio. These rep-

resent the scheduling parameters of the path and will be described in more detail later in

Section 3.5.

3.3.4 Stage

Figure 3.5 shows that path-interior stages essentially represent fixed routing decisions:

data enters the stage, which is then processed by code specific to the module that created

the stage, and, eventually, leaves the stage through the other side. In a traditional system

without paths, the module-specific processing would also require a routing decision to

determine where to send the data next. In contrast, interior stages have these decisions

pre-made (builtin). However, the stages at the ends of the path are special. They do not

represent fixed routing decisions. Instead they simply serve as hooks into the modules

at which the path terminates. These are the modules that will need to make dynamic

routing decisions to find out where to send the data next. In the ideal case, a path termi-

nates at modules at the edge of the module graph, where data is simply passed on to the

appropriate device. For this case, all dynamic routing decisions can be avoided.

The C structure that implements the stage object in Scout is shown below:

typedef struct Stage f

Iface iface[2];

Path path;

Module module;

long (*establish)(Stage s, Attrs a);

void (*destroy)(Stage s);

Stage nextStage;

g * Stage;

78

The elements of array iface are pointers to the interfaces in the stage. If such an in-

terface does not exist, the corresponding element is NULL. Expression iface[0] refers

to the interface on the side of the stage through which the creation request for this path

arrived (see Section 3.3.6). For an unextended path, this is equivalent to the interface in

the forward direction of the path. Expression iface[1] refers to the other interface

in the stage. For an unextended path, this is equivalent to the interface in the backward

direction of the path. For stages that were created as part of a path extension, this simple

and direct relationship between the elements in array iface and the path direction does

not hold, however.

The path to which the stage belongs is pointed to by path. Similarly, the module

that created the stage can be accessed through member module. The function pointers

establish and destroy are used during path creation and destruction and are ex-

plained in detail later in this section. The final member, nextStage, is part of a chain

that lists all of a path’s stages in the order in which they were created. Due to path exten-

sion, this chain does not necessarily correspond to a linear traversal of the path and hence

is typically used during path creation and destruction only.

3.3.5 Interface

As mentioned in the overview, interfaces are used to move data from one stage to the next

one. The simplest possible interface has the structure shown below:

typedef struct Iface f

Iface next;

Iface back;

Stage stage;

g * Iface;

In words, the most primitive interface simply consists of a next pointer that refers to

the next interface in the current direction of the path, a back pointer that refers to the

next interface in the opposite direction, and a stage pointer that refers to the stage that

the interface belongs to. This is simple, but does not provide any way to deliver data to

the interface. Thus, all useful interfaces are expanded versions of this primitive interface.

That is, Scout uses single inheritance for interfaces [38]. For example, the interface that

79

is commonly used to pass a message (a sequence of data bytes) to an interface is called

AioIface (asynchronous I/O interface). This interface looks the same as the basic

Iface, except that it additionally declares a function pointer that can be used to deliver

a message:

typedef struct AioIface f

struct Iface i;

long (*deliver)(Iface i, Msg m);

g * AioIface;

To deliver message m to the asynchronous I/O interface i, one would simply invoke

i->deliver (i, m).

Since interfaces provide for single inheritance, the service compatibility rules pre-

sented in Section 3.2.3.1 can be slightly relaxed: if a service requires an interface of type

T , then any interface type that is equal to or a subtype of T can be used to satisfy this

requirement. For example, if interface type Iface were required, then an interface of

type AioIface could be used instead. This is sensible since any asynchronous I/O in-

terface is also a plain interface. A more interesting example involves TCP since, to a

first approximation, TCP provides a bytestream, it clearly would be desirable if it were

possible to connect TCP to any other module that requires a bytestream. However, a so-

phisticated user of TCP might want to adjust its flow-control window sizes, so it would

be useful if TCP provided functions to do so. With single inheritance, TCP can use a sub-

type of AioIface that provides the additional functions needed to adjust the window

sizes. Suppose that subtype was called WindowedAioIface. With this arrangement,

a sophisticated user that depends on being able to control window sizes could specify

a service that requires an interface of type WindowedAioIface, whereas naive users

could continue to connect to TCP as if it were a regular asynchronous I/O interface.

Technically, Scout can support an arbitrary number of interface types. However, the

more interface types there are, the less likely that any given pair of services can be con-

nected. Thus, the intent is to keep this number as small as possible. At present, there

are about eight different interface types that are relatively stable and in frequent use. In

addition to those, there are another eight interface types related to the disk subsystem.

80

Since that subsystem is still being evolved, its interfaces are not as well factored and sta-

ble as the others. The simplest useful interface, asynchronous I/O, is employed by many

data filters and almost all modules related to networking. The most complicated interface

so far is a window management system interface that defines more than thirty distinct

operations.

The decision as to whether a new module should be coerced into using existing in-

terface types or whether a new interface type should be defined instead is sometimes not

easy. It should be guided by the semantics of the operation involved and by performance

considerations. Semantics must be taken into consideration to ensure that compatible

services really result in meaningful behavior when connected. If performance were not

taken into account, there would be no reason to support multiple interfaces, since every-

thing could be built based on a universal data-delivery function such as the deliver

function in the asynchronous I/O interface.

3.3.6 Creation

Now that all parts of the Scout path have been described, it is possible to explain the

details of path creation. Scout provides a single pathCreate function for this purpose.

Its C prototype is given by:

Path pathCreate (Module m, Attrs a);

As the prototype suggests, a path is created by invoking the function on a module m with

an attribute set a. The attribute set describes the kind of path that is desired. That is, the

invariants discussed in Chapter 2 are passed in this set.

The call to pathCreate eventually results in an invocation of the createStage

function in module m (see Section 3.2.3.2). The createStage function has the follow-

ing type:

Stage (*CreateStageFunc)(Module m, int s, Attrs a,

ModuleLink* n);

In the prototype, argument m is the module on which pathCreatewas invoked and s is

the index of the service through which the path being created entered the module. Since

m is the first module in the path, there is no such service, so a value of -1 is passed (which

81

is not a valid service index). Argument a is the set of attributes that was passed to the

pathCreate function. In response to this invocation, the createStage function is

expected to allocate and initialize a stage and the interfaces contained therein. As part of

this processing, the function may also update the attribute set as new information about the

path may become available in the module or existing information may become obsolete.

After creating the new stage, the module attempts to make a routing decision based on

the attributes (invariants) that were passed to it. If the module can decide where the path

has to go next, it sets *n to point to the module and service index of that next point. If

no routing decision can be made based on the attributes, then path creation stops at this

module and *n is set to NULL.

If the call to createStage returned a non-NULL value in *n, then path creation

continues at the point given by *n. This is done by invoking createStage on the

module indicated by *n and with argument s set to the service index specified in *n. The

attribute set a is the possibly updated set returned by the previous createStage invo-

cation. The reason the service index s is passed to the stage creation routine is because

stages usually need to be created differently depending on the service through which the

path entered the module. In a sense, the service index is a very short-lived path invariant,

but since it changes so frequently (with every stage creation call), it is more efficient and

more convenient to pass it as a separate function argument. Given the service index and

the current attribute set, a new stage is created and a routing decision made and stored in

*n, if possible. This process repeats until the path reaches its full length which happens

either when it reaches a leaf module or when the attributes are too weak for a module to

make a static routing decision.

Once the path has reached its full length, a sequence of stages exists. At this point,

the pathCreate function creates the actual path object, inserts the stages into it, and

establishes the various chains through the path structure. In a third step, the establish

callbacks in the stage objects are invoked in the order in which the stages were created.

The establish callbacks are necessary since some stages cannot be fully initialized until

the entire path structure exists. The first argument passed to the establish callback

is a self-reference to the stage being established and the second argument is an attribute

82

set. This attribute set is initialized to the empty set before invoking the first callback. The

establish callbacks may use and modify this attribute set as necessary and then pass it on

to the next establish callback. The purpose of this attribute set is to allow passing auxil-

iary information between neighboring stages. This can be done safely since neighboring

stages are known to be compatible in the sense defined in Section 3.2.3.1. An example

for such auxiliary information is attribute PREVIOUS DEMUX NODE, which will be de-

scribed in Section 3.4.3. Note that the attribute set used in the establish callbacks has

nothing in common with path invariants or the attribute set passed to pathCreate.

3.3.7 Extension

The path extension function operates analogously to the path creation function. The only

difference is that path extension is invoked at the end of an existing path, rather than on a

module. The prototype for this function is shown below:

long pathExtend (Stage s, Attrs a);

The first argument, stage s, points to the end of the path that should be extended. If path

p is being extended, this must be either p->end[0] or p->end[1]. If s points to any

other stage, path extension will fail. The second argument, attribute set a, is the set of

invariants that are true for the path extension operation.

If path extension fails for any reason (e.g., because the system runs out of memory),

then the path being extended is destroyed as well. This fate sharing is reasonable since an

extended path is still just one path; it does not consist of two independent sub-paths. It is

therefore only logical that if path extension fails, then the entire path creation should be

considered to have failed.

For path extension to make sense, the attribute set must be consistent with the one

specified in the pathCreate call and those specified during previous calls to path-

Extend (if any). Scout does not have a formal model for path invariants. Thus, it is not

possible to give a formal procedure to test whether a pair of attribute sets is consistent.

Informally, it is easier to discuss cases that make attribute set pairs inconsistent. For

example, if the first set contains the invariant that the path needs to be scheduled using

a realtime scheduler and the second set contains an invariant that request a best-effort

83

scheduler, then the attribute sets are inconsistent. Such direct contradictions are relatively

easy to detect. More subtle are inconsistencies that arise from not specifying invariants;

e.g., the first attribute set may contain an invariant that says no single data-item (message)

is going to be larger than 100 bytes, while the second attribute set may not have any

invariants related to the size of messages, so even though there is no direct contradiction

in the invariants, the attribute sets may be inconsistent.

The reason we introduced the issue of attribute set consistency here is that the problem

is most apparent with path extension. However, it is not limited to this operator. Since the

create-stage functions may update the attribute set, consistency problems may arise within

a single path creation operation. Note that prohibiting stage creation from updating the

invariant set is not a solution since modules do process and modify data, and as a result,

invariants may have to be updated to reflect those changes.

3.3.8 Optimization

The current incarnation of Scout does not employ an explicit pathOptimize function

to apply the path transformations described in Chapter 2. Instead, path transformations

are applied in an ad hoc fashion. This certainly will not be sufficient in the long run, but

does have the advantage of providing maximum flexibility in experimenting with path

transformations. A sample path transformation designed to improve processing speed

inside will be discussed in detail in Chapter 4.

While no explicit path optimization routine exists, it is important to point out that it

is straight-forward to replace the code of a path with a more optimized version. This is

because interfaces contain function pointers, not actual code. Hence, to replace the code

used by a path, all that needs to be done is change the function pointers in the interfaces

to make them point to the optimized versions.

3.3.9 Destruction

The final path-related operation allows one to destroy a path when it is no longer needed.

The C prototype for this operation is shown below:

void pathDelete (Path p);

84

Invocation of this function will eventually cause path p to be destroyed. However, before

this happens, the destroy callbacks in the path’s stages are called in the order in which

the stages were created. The only argument passed to this callback is the stage (and,

implicitly, the path) that is being destroyed. The destroy callback of a stage needs to

ensure that all resources held by the stage are relinquished. Once all callbacks have been

executed, the resources held by the path are relinquished and the path ceases to exist.

3.3.10 Evaluation and Discussion

As implemented in Scout, paths are light-weight. For example, a path to transmit and

receive UDP network packets consists of six stages. Creating such a path on a first-

generation, 21064A 300MHz Alpha takes on the order of 200µs (not including the appli-

cation of any potential path optimization transformations). The path object itself is about

300 bytes long and each stage is on the order of 150 bytes in size, including all the inter-

faces. In total, each UDP path takes about 1200 bytes. Since interfaces consist of pointers

to functions, creating a path does not cause any code duplication. Code duplication can

occur only as a result of path transformations.

The current Scout architecture does not support multiple protection domains. How-

ever, extending Scout paths to multiple protection domains should be straight-forward.

Indeed, paths raise the interesting opportunity to use protection not just between layers

(horizontal partitioning) but also between paths (vertical partitioning). With horizontal

partitioning, layers are protected from each other, whereas with vertical partitioning the

paths are protected from each other. Depending on the needs of a system (e.g., debugging

of a new layer versus ensuring the integrity of the data sent through a path), one or the

other or even a combination of the two may be appropriate.

For horizontal partitioning, note that all communication between stages is through

a pair of interfaces. Splitting a path at such a boundary into two protection domains

would therefore be rather natural and easy. Another concern is that the actual path object

needs to be accessible from all protection domains that a path crosses. Different solutions

are conceivable. One would involve caching the path object in the different domains.

Another would involve keeping the path object in a protection domain that is accessible

85

by all other domains. A third would involve accessing the path object through a system

call-like interface. Most likely, an actual implementation would use a combination of the

three proposed solutions, but the key point is that there do not seem to be any unusual

difficulties in defining paths that cross multiple protection domains.

Vertical partitioning does not appear to be problematic either. The entire path would

be contained in its own protection domain and the domain would have to be crossed only

when moving from a module into a path or vice versa. Ideally, paths directly connect

modules representing device pairs, so the number of domain crossings for moving data

from a source device to sink device would be two, just as is the case with a traditional,

monolithic kernel based system [95].

3.4 Demultiplexing

So far, we have not discussed the issue of how the appropriate path is found for a given

message. In many cases, this is trivial. For example, a path is often used like a file

descriptor, a window handle, or a socket descriptor. In these cases, paths are created

specifically for communicating a certain kind of data and the appropriate path is known

from the context in which it is being used. In other cases, however, there is no such

context and the appropriate path is implicitly determined by the data itself. The most

notable area where this is the case is for the networking subsystem. Networking protocols

typically require hierarchical demultiplexing for arriving network packets. For example,

when a network packet arrives at an Ethernet adapter [65], the Ethernet type field needs

to be looked up to determine whether the packet happens to be, e.g., an IP packet or

an ARP packet. If it is an IP packet, it is necessary to look up the protocol field to

determine whether it is a UDP or TCP packet, and so on. This hierarchical demultiplexing

is suboptimal since as more knowledge becomes available with each demultiplexing step,

another path might become more suitable to process that packet.

3.4.1 Scout Packet Classifier

To alleviate the hierarchical demultiplexing problem, Scout uses a packet classifier that

factors all demultiplexing operations to the earliest possible point. This lets Scout pick a

86

path and start processing a packet only after as many demultiplexing decisions as possible

have been made. Of course, a solution that would be better still (as far as Scout is con-

cerned) would be to modify the header of the lowest layer protocol to include a field that

can store the path id [56]. That way, demultiplexing could be reduced to a simple table

lookup. However, since Scout needs to be able to interoperate with existing networking

infrastructure, this is not always an option.

The factoring of demultiplexing decisions is best explained with an example. Suppose

a UDP packet were received by an Ethernet adapter. The processing that would occur with

hierarchical demultiplexing is shown on the left, with a classifier on the right:

Without Classifier: With Classifier:

Ethernet processing Ethernet demux) it’s an IP packet

Ethernet demux) it’s an IP packet IP demux) it’s a UDP packet

IP processing Ethernet processing

IP demux) it’s a UDP packet IP processing

UDP processing UDP processing
...

...

As the left half of the table shows, without a classifier, processing would have to occur in

a layer by layer fashion since each layer is decoupled by a demultiplexing step (shown in

bold). In contrast, the right half of the table shows that with a classifier, all demultiplexing

operations are performed first, which makes it possible to execute all protocol processing

steps inside a single, long path. Note that the total amount of work is same: there are two

demultiplexing steps and three processing steps in both cases. What the table does not

show is that the demultiplexing steps are usually much shorter than the processing steps,

so the actual time spent in the classifier is typically much smaller than the time spent in

the processing steps.

3.4.2 The Role of Classifiers

The way packet classifiers are used in Scout is unique and therefore worth discussing

in some more detail. In particular, their role with respect to dynamic routing decisions

87

is interesting. Consider Figure 3.6. It would be preferable to process every incoming

packet destined for UDP using path p1. Unfortunately, this ideal case cannot always be

achieved. For example, the UDP packets may have been fragmented by IP, or IP might

have employed a non-trivial data transformation, such as encryption or compression. In

all three cases, some protocol headers may not be available to the classifier. Scout copes

with this problem by employing short paths as necessary. In the example, an IP fragment

would have to be processed first by path p2 and then by path p4, even though this would

be less optimal than processing with p1.

p3p2p1

p5p4

ETH

ARPIP

TCPUDP

Figure 3.6: Paths Versus Classifiers

The specifics of how the partial classification problem is solved in Scout are explained

next. As previously suggested, the Ethernet module (ETH) employs a classifier to decide

whether a packet should be processed using path p1, p2, or p3. Suppose an IP fragment

that does not contain the higher-level headers arrives at the Ethernet adapter. Without

higher-level headers, the best the classifier may be able to do is to determine that path p2

is appropriate for processing the fragment.1 Once IP receives the fragment through p2, it

will buffer the fragment until the entire datagram has been reassembled. At that point, IP

needs to make a dynamic routing decision to find out where to send the complete datagram

1Note that, strictly speaking, since the UDP protocol identifier is stored in the IP header, in this partic-

ular example it would be possible to classify the packet to path p1, but this is only because the example

is artificially simple. In a more realistic scenario, path p1 would extend beyond UDP, meaning that the

fragment could not be classified to p1.

88

next. IP can do this by running its own classifier on the complete datagram, which, with

a UDP packet, will tell IP that p4 should be used.

This example shows that, in Scout, a classifier is not something specific to network

drivers, but instead is a mechanism that can be employed by any module that needs to

make a dynamic routing decision based on the contents of the data being communicated.

Typically, each network device driver uses a classifier which is invoked when a packet re-

ceive interrupt is processed, but other modules may use their own classifiers if necessary.

3.4.3 Realizing the Scout Classifier

Since Scout is a modular system, we would like to be able to express classification in a

modular fashion as well. That way, the complete classifier can be built automatically from

partial classification algorithms that are specified by the module that appear along a path.

Note that a modular specification of the classifier does not necessarily imply a modular

implementation, though this is true for the current Scout implementation.

As discussed earlier, classifiers are used in Scout by any module that may need to

make a dynamic routing decision based on the contents of a message. The task of a

classifier can therefore be described as: given a module m and a message, determine a

path that is appropriate for processing the given message. Since it is module m that is

making the routing decision, the path must start at that module.

The classification task can be implemented in an iterative fashion using partial clas-

sifiers of the following form: given a set of paths and a message, determine the subset

of paths that qualify for the processing of the given message, the module that needs to

make the next (refining) classification (if any), and the message for that next module. The

message for the next module is normally the same as the original message, except that

the protocol header at the front of the message will have been stripped off. This scheme

works as long as the classification problem is locally hierarchical. The ramifications of

this constraint will be explained in detail in Section 3.4.3.1. For now, we assume that

the Scout classification problem satisfies this constraint. Using such partial classifiers,

the problem can be solved with the pseudo-code shown in Figure 3.7. Lines 2–5 of the

pseudo-code determine the set of paths that either begin or end at module m. This path set

89

1 classify (Module m, Message d):
2 pset /0
3 for (p in pset)
4 if (p.end[0].module == m || p.end[1].module == m)
5 pset pset [fpg;
6 path NULL
7 while (m != NULL ^ pset != /0) do
8 hm, pset, di m.demux (pset, d)
9 for (p in pset)

10 if (p.end[0].module == m || p.end[1].module == m)
11 path p
12 return path

Figure 3.7: Classification Pseudo-Code

is stored in variable pset. Then, as long as there is a module m and a set of candidate

paths pset, the partial classifier demux of module m is invoked (line 8), passing the

current candidate set and message d as parameters. The partial classifier is expected to

return the next module m that should refine the classification, a new candidate set pset,

and a new message d. If there is no next module, then m will be NULL. Given the new

candidate set, the code checks in lines 9–11 whether there is any path p in pset that

ends at module m. If there is such a path, it is suitable for processing the original message

and is stored in variable path. Scout does not allow ambiguity in classification, meaning

that there is at most one path per iteration that is suitable for processing the message.2

However, finding a suitable path does not stop the search since there may be a longer path

that would be preferable over a shorter one. Thus, the search continues as long as there is

a next module and the candidate set is not empty. Once the search stops, line 12 returns

the best path found or NULL, if no suitable path exists.

We observe that the classification process can be viewed as a tree traversal where

the partial classifiers are used to select the next node to be visited and where each node

corresponds to a path set. This tree-traversal can be implemented efficiently. Note that

2Scout’s rule of disallowing ambiguity is different from most packet filters, which typically adopt the

semantics of delivering a message to every matching path in the case of ambiguity.

90

the search tree contains one node per module and per path set. In Scout, demultiplexing

nodes have the following structure:

typedef struct f

long numPaths;

Path path;

Module nextModule;

g * DemuxNode;

Integer numPaths gives the size of the set of paths represented by this node. The

pointer path of a demux node n is NULL if no path exists that could handle a mes-

sage that reaches node n during classification. If it is non-NULL, it points to the longest

path that can be used for a message that reaches node n during classification. Pointer

nextModule either refers to the next module that should be used to refine the classifi-

cation or is NULL if there is no such module. The latter case implies that there is no path

that extends beyond the module represented by the demux node and that the path referred

to by path should be used to process the message.

Given the definition of a demux node, the partial classifiers are functions with a proto-

type shown below (Msg is the Scout type to represent a message, i.e., a sequence of data

bytes):

Path (*DemuxFunc) (DemuxNode pset, Msg m);

Note that the return value is a path. This is because each partial classifier will invoke the

partial classifier of the next module, if necessary. Thus, the tree traversal loop is implicitly

implemented as a sequence of nested calls. Also note that the partial classifier function

of each module is stored in the module object (see Section 3.2.3.2). When a new module

object is created, the module must initialize member demux in the object to the module’s

partial classifier function.

The next question is how the tree of demux nodes is created and maintained. Suppose

a new path p has been created. The first stage s in this path is p->end[0]. If we assume

that the module at which the path starts uses a hash table h to implement the partial clas-

sifier function and that the module’s partial key for path p is k, then the first module in the

path can update its demux node by calling function updateDemuxNode passing s, h,

91

k and NULL as arguments in this order. The updateDemuxNode function is illustrated

with the pseudo-code shown in Figure 3.8. In line 3, the function concatenates the bits

1 void
2 updateDemuxNode (Stage s, HashTable h, Key k, DemuxNode pn) f
3 dk = concat (pn, k);
4 n = hashLookup (h, dk);
5 if (!n) f
6 n = new (DemuxNode);
7 n->numPaths = 0;
8 n->path = NULL;
9 n->nextModule = next module in path;
10 hashEnter (h, dk, n);
11 g

12 if (s == s->path->end[1])
13 n->path = s->path;
14 else if (pn)
15 n->path = pn->path;
16 ++n->numPaths;
17 g

Figure 3.8: Update of Demux Tree

of the previous demux node with those for the partial key k. Since this is the first stage

in the path, there is no previous demux node (pn is NULL), so dk equals k. In line 4,

the demux node is looked up using the demux key. If no demux node exists for that key

yet, lines 6–10 create a new node and enter it in the hash table. In lines 12–15, the path

member of the node is updated if necessary. Specifically, if stage s is the last stage of the

path, then path p can be used for any message that gets classified at least to node n. If

the end of the path has not been reached yet, n->path is simply set to the path of the

previous node, or left unmodified if there is no previous node. In line 16, the number of

paths in the path set represented by n is incremented.

A demux node is normally updated during the establish callback of a stage. Note that

the same routine can be used to update the demux nodes for all stages in a newly created

path. The only difference compared to the first stage is that pn, the previous node pointer

92

is no longer NULL. This pointer is passed as attribute PREVIOUS DEMUX NODE in the

attribute set passed to each stage. Note that, in general, classification can be initiated

at either end of the path. Thus, when descending in the establish callback chain, this

attribute points to the previous demux node with respect to classification in the forward

direction, but once the end of the path is reached, the attribute changes its meaning into

representing the previous node with respect to classification in the backward direction.

Note that the updateDemuxNode function works properly even in the case of a

module that does not perform demultiplexing in the given direction. In such a case, the

key k simply has zero length. While the function works properly, this special case can be

optimized by simply updating the nextModule pointer of the previous node to the next

module along the path. This has the effect that modules that do not perform classification

in the given direction are skipped.

With this setup, a partial classification function is typically implemented similar to

that shown in Figure 3.9. First, line 2 extracts the partial demux key from the message

(typically from a header) and stores it in k. Then the bits of the previous demux node and

the partial key are concatenated and looked up in the hash table. If an appropriate demux

node exists for the message, the classification is refined by calling the partial classifier

function of the next module. If that classification succeeds, the path found is returned.

Otherwise, the path associated with demux node n is returned (which may be NULL if no

suitable path exists).

3.4.3.1 Globally Hierarchical Classification

As alluded to before, the classification scheme as described so far works for locally hi-

erarchical classification problems. By this we mean that each partial classifier can make

its decision in isolation. Unfortunately, for real networking protocols, the problem is

not limited to this special case. It is hierarchical, but only at the global level. This is

illustrated in Figure 3.10, which shows the IP and UDP header fields that are used for

classification purposes. IP uses the protocol field, and the local and remote addresses.

In the figure, these fields are labelled protl, laddr, and raddr respectively. For UDP, the

fields used are the local and remote port number; lport and rport in the figure. For paths

93

1 Path demux (DemuxNode pn, Msg m) f
2 extract key k from m;
3 dk = concat (pn, k);
4 n = hashLookup (h, dk);
5 if (n) f
6 if (n->nextModule)
7 path = n->nextModule->demux (n, msg);
8 if (path)
9 return path;

10 return n->path;
11 g

12 return NULL;
13 g

Figure 3.9: Typical Partial Classifier

laddr=192.12.69.168
raddr=18.181.0.21

rport=3949protl=UDP

IP UDP

lport=21

Figure 3.10: Example Requiring Global Hierarchical Classification

that represent actively opened network connections (active paths), all five fields need to be

matched. On the other hand, for paths representing passively opened connections (passive

paths), only the protocol field and local port field need to be matched. This means that the

classification process is still hierarchical, but only at the global level. Suppose a system

has the mappings shown in Table 3.1 in place. If a packet with the fields hprotl=UDP,

laddr=192.12.69.168, raddr=18.181.0.21, lport=21, rport=3950i were to arrive, then

IP could not make a proper decision as to whether the path subset it passes to UDP should

include both the active path and the passive path or only the former. If it were to pass

on the active path only, classification would erroneously fail, since there is no active path

matching the packet. On the other hand, if it were to pass on both paths, then classifica-

tion would be erroneously ambiguous for packets that belong to the active path. That is,

94

protl laddr raddr lport rport maps to:

hUDP, any any 21, anyi) path 1 (passive)

hUDP, 192.12.69.168, 18.181.0.21, 21, 3949i) path 2 (active)

Table 3.1: Example Mappings

whether IP should use the fields for an active path or the a passive path depends on the

classification decision of UDP. Since IP cannot know how UDP’s partial classifier works,

it may make the wrong choice no matter how careful it is.

To solve this problem in general, it is necessary to try to find a path with the most

specific keys first and, if that fails, backtrack and try the same with a less specific key.

For example, networking protocols such as IP that distinguish between active and passive

keys, could use logic similar to the one shown in Figure 3.11. In the figure, functions

1 path try active demux (pn, m);

2 if (!path)

3 path try passive demux (pn, m);

Figure 3.11: Generalized Partial Classifier

try active demux and try passive demux correspond to classifiers as shown in

Figure 3.9 that use the active and passive keys, respectively. With this kind of backtrack-

ing in place, it is guaranteed that the correct combination of keys is eventually found and

therefore classification is guaranteed to find the correct path, if it exists.

Unfortunately, adding backtracking causes classification complexity to increase from

O(N) to O(2N
), where N is the number of partial demux functions that require backtrack-

ing. Even though this involves exponential complexity, it might be quite practical since

the number of demultiplexing layers is rarely bigger than four or five (not all of which may

require backtracking). Better still, for networking protocols backtracking can be limited

in a way that allows bringing back classification to linear time complexity. Observe that

95

for the vast majority of systems, it is acceptable to limit paths to use either all active or all

passive keys.3 In this limited scenario, classification can be achieved by first trying to find

an active path. If an active key lookup anywhere along the chain of partial classifiers fails,

then classification can be aborted and retried with passive keys only. Thus, in the worst

case, 2N classification decisions have to be made, where N is the number of modules that

are traversed by a path. Note that this scheme does not force limited backtracking in every

module. If there are any modules that require richer backtracking (e.g., because there are

more than two possible choices), then they can still do so. In other words, this scheme

reduces classification overhead to linear time complexity for the common case yet is not

limited to locally hierarchical classification.

3.4.3.2 Classification in Non-Demultiplexing Modules

Most demultiplexing occurs in modules implementing networking protocols, but it cer-

tainly is desirable to be able to connect modules implementing networking protocols and

other modules without any bad consequences (as long as the module graph is sensible).

For example, a filter that converts MPEG-encoded video into a sequence of images should

work properly independent of whether its input is fed from a disk or the network. Simi-

larly, it should be possible to insert a filter (e.g., one that counts the number of bytes that

pass through it) between a pair of networking protocols (e.g., TCP and IP) and have the

system operate as expected.

This kind of support requires answering how demultiplexing needs to be interpreted

with respect to modules that do not perform any demultiplexing themselves. Fortunately,

this is straight-forward in Scout: a module simply needs to ensure that its partial classifier

applies the same data transformations as the actual processing. If the data is not trans-

formed at all (such as in the byte-counting filter mentioned previously), then the partial

classifier would not have to do anything either. On the other hand, if a module modifies

all data passing through it—e.g., by complementing it—then the partial classifier would

3This is indeed a common restriction. For example, while the x-kernel [49] does not explicitly enforce

such a restriction, it is unable to guarantee proper demultiplexing if a connection exists with an active key

in a layer beneath a layer that uses a passive key.

96

have to do the same. Of course, if the operation is complex or computationally expensive

(such as encryption), then the module might prefer not to let classification proceed beyond

itself. A module can do this by blocking the PREVIOUS DEMUX NODE attribute during

the establish callback. When a module does this, it implies that the earlier modules have

to be able to make an accurate enough classification so that a unique path can be found

even without the help of the partial classifiers in later modules.

3.4.4 Evaluation

To gain a better understanding of the Scout classifier, we compare it to other existing

packet classifiers. The two classifiers with the best published performance are DPF [30]

and PathFinder [5]. Unfortunately, the existing implementation of PathFinder is not 64-bit

clean and even on 32-bit systems there appear to be problems that prevent it from working

reliably. For this reason, the remainder of this discussion is limited to a comparison with

DPF. The available DPF implementation is version 2.0 beta, which is a re-implementation

of the version presented in [30]. The measurements for this comparison were performed

in a user-level test environment running on Linux on an AlphaStation 600/333. This

machine uses a 21164 Alpha chip running at 333MHz. All measurements were done with

warm caches. Measurements not reported here indicated that the slowdown due to cold

caches is significant, but comparable for the two versions and therefore of no particular

interest to this discussion. To make the comparison with DPF more meaningful, the Scout

classifier was implemented assuming messages are represented as a linear sequence of

bytes (the Scout kernel uses a more general tree of linear byte sequences instead).

Table 3.2 presents a summary of the two classifiers. The row labelled Expressiveness

shows that the Scout classifier is universal. This is because the partial demux functions are

written in ordinary C and because an exhaustive tree search can be performed if necessary.

In contrast, DPF version 2 filters can make use of only two kinds of operators. The first

kind supports testing a bitfield in the message contents for equality with either a constant

or another bitfield in the message. The second kind of operators support dropping bytes

from the front of the message. Both dropping by a constant or a variable number of

bytes is supported. A filter can achieve the latter by specifying a bitfield in the message

97

Scout DPF v2.0

Expressiveness universal limited

Trust assumed yes no

Static size of code and data [byte] 4,901 122,311

Lookup active path [µs] 0.75 0.56

Lookup passive path [µs] 1.45 0.65

Insert passive path [µs] 3.70 24.2

Remove passive path [µs] 1.02 3.78

Bytes per filter 56 8,440

Table 3.2: Summary of Scout Classifier and DPF Comparison

contents that determines the possibly scaled number of bytes to drop. Unfortunately, this

feature did not work properly for the Alpha architecture in the beta version of DPF v2.0

that was available at the time of this writing. For this reason, the TCP/IP filters used in

the measurements assumed fixed size headers (which is not realistic, as both TCP and IP

support header options).

The row labelled Trust assumed shows that the Scout classifier assumes the partial de-

mux functions are trusted. To supported untrusted demux functions, Scout would have to

employ software fault-isolation [109] to sandbox the possibly malicious code. In contrast,

the simple DPF filter are provably safe and hence can be supplied by untrusted users.

The third row, labelled Static size of code and data compares the static size of the

code and data sections required by the two classifiers. This was measured by counting

the number of bytes by which the size of test program increases when linking in one or

the other classifier. In the DPF case, this includes the size of the vcode dynamic code

generator, which accounts for about 74KB of the reported size [31].

The next four rows lists various performance aspects. The row labelled Lookup active

path lists the time required to classify a TCP/IP packet. To provide for a realistic envi-

ronment, the classification was performed with three filters installed: one for the TCP/IP

packets being looked up and one each for ARP and ICMP packets [79, 81]. The table

shows that DPF is about 25% faster than the Scout classifier. This may sound like a

large difference, but it corresponds to 62 CPU cycles which is marginal compared to the

98

cost of fielding an interrupt, which can easily be several hundred cycles. The next row,

labelled Lookup passive path, shows the 2N behavior of the Scout classifier discussed

earlier. The data show that classifying a packet for a passive path is almost twice as ex-

pensive as for an active path. In contrast, DPF classification overhead increases by 16%

only. Since passive paths are typically used to initiate path creation, the slower Scout time

is not expected to significantly affect overall performance. It is also interesting to study

classification performance as a function of the number of active TCP/IP filters in the clas-

sifier. This is illustrated in Figure 3.12. It shows that the Scout classification time remains

largely unaffected by the number of active filters. The slightly larger time when two fil-

ters are active is a cache effect. DPF optimizes the case where just one filter is active, but

uses a hash table for all other cases. Hence, classification time is slightly better with just

one filter in place and remains largely constant when two or more filters are active. In

Table 3.2, the rows labelled Insert passive path and Remove passive path show the time

it takes to insert and remove a filter for a passive TCP/IP path. Insertion is more than six

times slower for DPF than for Scout, which is due to the fact that DPF has to perform

fairly sophisticated analysis of the newly inserted filter and because it requires dynamic

code generation. It should be noted, however, that filter insertion/removal is typically less

frequent than packet classification.

The last row, labelled Bytes per filter, shows the average size of the memory allocated

dynamically per TCP/IP filter. In the Scout case, adding a TCP/IP filter requires just one

demux node of 56 bytes if other TCP/IP filters are already installed. In the worst case,

adding a TCP/IP filter to an empty classifier requires four demux nodes or 224 bytes. In

contrast, DPF requires about 6-8KB per filter. This is because DPF uses a large, statically

sized array to represent filters. Simple filters leave most of this array unused but, on the

other hand, using a large array keeps the number of dynamic memory allocation requests

to a minimum.

In summary, the comparison shows that the Scout classification approach is perfor-

mance competitive with other classifiers and at the same time completely general. How-

ever, the above measurements should be considered optimistic, since the user-level test

program makes some simplifying assumptions and since it assumes warm caches. For

99

0

1e-07

2e-07

3e-07

4e-07

5e-07

6e-07

7e-07

8e-07

9e-07

1e-06

1 2 3 4 5

C
la

ss
ifi

ca
tio

n
tim

e
[s

ec
]

Number of active filters

Scout
DPF

Figure 3.12: Classification Performance as a Function of Number of Filters

example, measurements with an actual Scout kernel indicate that, on an older 21064A

Alpha clocked at 300MHz, classifying a TCP packet takes about 3.5µ when the instruc-

tion cache is warm, and about 7.2µs when the instruction cache is cold. In the warm-cache

case, 0.8µs are spent on initializing and destroying the message data structure that Scout

uses for the classification process, so the actual classification process takes 2.7µs. On

the same machine, the test program reports a time of 1.14µs. This difference is most

likely caused by three factors. First, the kernel implementation uses the normal Scout

message abstraction instead of a simple linear byte sequence. Second, the kernel uses a

more general and therefore more heavy-weight hash-table implementation and, third, the

partial demultiplex functions are more widely scattered in the address space than in the

test program. There is no reason these issues could not be addressed, but it is not clear

whether doing so would result in an overall performance improvement that would make

this worthwhile.

100

3.5 Execution Model

Scout paths are passive entities. In a sense, they provide lanes within a modular system

through which data flows. The entities that move the data through these lanes are threads.

Threads are orthogonal to paths, meaning that at any time there may be zero, one, or sev-

eral threads executing in a path. Each thread is scheduled independently, though threads

normally inherit scheduling parameters from the path that they are currently executing in.

An alternative to independent threads would be to constrain each thread to a particular

path. Such threads could be viewed as server threads that are responsible for moving

(processing) the data enqueued at the path’s input queues. However, such an approach

would force a context switch every time a message needs to be moved from one path

to another. With independent threads, such context switches can be typically avoided.

Moreover, when a thread moves from one path to another, it is also often possible to

bypass the output and input queues of the paths involved. This makes moving from one

path to another highly efficient—the only overhead is due to the dynamic routing decision

that the module at the end of the path needs to make to find the next path on which

to continue, and possibly an adjustment of scheduling priority when the thread enters

the new path. Note that the dynamic routing decision is necessary in a purely modular

system as well, so, strictly speaking, it would be more appropriate to consider it a part of

the data processing cost, rather than a part of the overhead. Owing to the efficiency with

which threads can typically move from one path on to another, even a system with many

short paths is likely to perform comparably to or better than traditional systems that avoid

per-layer context switching, such as the x-kernel or UNIX [49, 89].

Furthermore, an approach using independent threads does not prevent building a sys-

tem in which threads have path affinity. Whether a thread enqueues a message when

reaching the end of a path or whether it continues processing the message by moving on

to the next path is under control of code provided by the module at the end of the path,

so ultimately, it is up to the modules to implement one or the other policy. Path affinity

might, for example, make sense in an environment where the cost of bringing a path’s

code into the caches is high relative to the cost of bringing the data into the caches [10].

101

If the costs are reversed, then letting a thread move a message as far as possible is likely

to result in better performance [16]. Rather than based on cache costs, the decision of

whether a thread should continue executing in the old path or should move on to the next

path may depend on path priority. It seems advisable that a new path is entered only if

it has a priority that is at least as high as the priority of the current path. The issue be-

comes quite interesting when there are sequences of three or more paths. In that case,

two high-priority paths may be connected by a low-priority path. This might require a

form of priority inheritance to ensure correct scheduling decisions. In any case, the point

is that, depending on circumstances, one or another policy may be more appropriate for

a given path. With independent threads, this policy choice is left to the individual mod-

ules in a path. If necessary, these modules can coordinate their efforts by establishing

well-known path attributes, such as the execution priority, but Scout does not dictate a

particular choice.

3.5.1 Thread Scheduling

In Scout, threads are scheduled non-preemptively according to a scheduling policy and

priority. Two scheduling policies are supported and a higher-level round-robin scheduler

allocates percentages of CPU time to each.4 The minimum CPU share that each pol-

icy gets is determined by a compile-time parameter. The two policies supported are (1)

fixed-priority round-robin and (2) earliest-deadline first (EDF) [58]. The reason for im-

plementing the EDF policy is that for many soft realtime applications, it is most natural

to express a path’s priority in terms of a deadline. This will be discussed in more de-

tail in Chapter 5. The current scheduling system is sufficient for experimentation with

various aspects of paths, but is suboptimal for several reasons. Finding a more appropri-

ate appliance-oriented scheduling system remains a subject of future research, as will be

discussed in Chapter 6.

The choice of a non-preemptive scheduler may seem unusual. However, for informa-

tion appliances there is likely to be little reason to introduce the complexity of preemptive

4The exact algorithm is to give each scheduling policy a fixed percentage of scheduling opportunities,

which is equivalent to CPU percentages if each thread uses up its alloted time slice.

102

scheduling. In contrast to general purpose machines, where preemption has to be dealt

with anyway due to the true concurrency present in shared-memory multi-processors,

many appliances are expected to be uniprocessors (at least for the near- to medium-range

future). Not having to worry about pre-emption has the advantage of greatly reducing and

often eliminating locking overhead, providing a simpler programming model, and allow-

ing for more efficient context switching. For example, on the Alpha architecture, only

nine integer registers need to be saved and restored in a synchronous context switch. In

contrast, an asynchronous switch requires preserving all 31 integer registers. On the other

hand, a non-preemptive scheduler does require a certain amount of cooperation among

different tasks. For example, in Scout it is expected that no thread executes longer than

one time-slice without giving the scheduler the opportunity to reschedule the CPU. Thus,

long-running processing loops have to explicitly call a thread yield primitive at least once

per time-slice. While this partly offsets the performance advantage of the synchronous

context switching, the yield primitive can be implemented as a single memory read access

and a conditional branch for the common case where the CPU does not have to be yielded.

The bigger disadvantage of explicit yielding may be that it complicates the programming

model somewhat. This can be avoided by moving the responsibility of placing yield calls

to the compiler. While this would essentially guarantee correct use of the yield primitive,

it is likely that a compiler would place such calls conservatively, causing more overhead

than strictly necessary. Thus, there is a choice between a safe solution (using compiler

placed yields) and a solution that, at least theoretically, provides the most efficient solu-

tion (manually placed yield calls). Scout currently employs the latter approach.

As mentioned in the introduction to this section, threads inherit the scheduling param-

eters (policy and priority) from the path they are executing in. Once a thread is executing

inside a path, it can adjust its own scheduling parameters by calling the appropriate thread

primitive. But the scheduling parameters also need to be set when waking up a thread to

execute on behalf of a path. For this purpose, the path object provides the realtime and

prio members (see Section 3.3.3). If realtime evaluates to true, then a thread enter-

ing the path should be scheduled as a realtime task with the deadline set to the value given

by prio. This value is interpreted as a deadline in micro-seconds. With a thirty-two bit

103

integer, this accommodates task execution times of up to slightly more than thirty min-

utes. If realtime is false, then the thread should be scheduled using the round-robin

scheduler and using prio as its fixed priority.

Code inside a path can and may modify these two scheduling parameters at any time.

The only restriction is that a non-realtime constraint set may not replace a realtime dead-

line unless that deadline has already expired. Similarly, a path’s realtime deadline may

be replaced only with an earlier deadline unless the existing deadline has been met or has

already expired. These rules ensure that threads in a path are scheduled according to the

most stringent constraints that exist inside the path. Note that this inheritance scheme does

not permit differentiation between multiple threads that may be entering a path. However,

once inside a path, a thread is able to adjust its own priority as necessary.

3.5.2 Thread Creation

A final question related to the execution model is when threads are created and destroyed.

Since they are first-class objects, threads can be created by any existing thread as neces-

sary and a thread can terminate itself whenever its task is complete. In addition to this,

device drivers create and schedule new threads as messages arrive at the input queues of

paths. Logically, Scout implements a thread-per-message model, i.e., every message has

its own thread, called a shepherd, that takes care of moving it through the path.

The thread-per-message model is a convenient abstraction, but when a system oper-

ates under overload conditions, the input queues can quickly build up and as a result the

number of threads may become so large that they overwhelm the system. To ameliorate

this problem, Scout keeps the number of shepherds executing in a path as small as pos-

sible. This optimization is based on the observation that a path can notice a violation of

the thread-per-message model only if it were to deadlock due to an insufficient number

of threads. Thus, Scout strives to maintain the invariant that there is exactly one runnable

shepherd per path whenever one of the path’s input queues is non-empty. This is realized

as follows: when a message is enqueued on a path with formerly empty input queues,

Scout assigns a new shepherd to the path. As long as that shepherd continues to exe-

cute inside the path, there is no danger of deadlock and hence Scout does not assign any

104

additional shepherds, even if the input queues continue to grow. However, should the

shepherd block while inside the path, there is a danger of deadlock. In this case, Scout

assigns a new shepherd to the path as soon as its input queues grow non-empty. Note

that this simple scheme does not guarantee exactly one runnable shepherd per path since,

eventually, the blocked shepherd will resume execution and, at that point, two or more

shepherds may be runnable inside the path. But having multiple threads execute in the

same path is consistent with the thread-per-message model, so this is not a problem.

The real issue is that while this scheme minimizes the number of threads in the system

to the degree possible, it does not bound it. This is because each time a shepherd blocks,

a new message may arrive and thus a new shepherd may get assigned which may then

block as well. Since this process can repeat itself indefinitely, an unbounded number of

shepherds may accumulate inside a path. Unfortunately, putting an arbitrary limit on the

number of shepherds per path introduces the risk of deadlock. It is easy to determine the

number of points inside a path that may block, but determining the maximum number of

times shepherds may block at those points is undecidable, in general. For this reason,

the Scout infrastructure does not prevent paths from indefinitely accumulating shepherds

(and therefore from unbounded resource consumption). Instead, it leaves it up to higher-

level mechanisms to ensure that the overall system does not suffer from such problems.

In essence, each module individually or in combination with others must take the nec-

essary precautions to avoid creating situations where shepherds may accumulate without

bound. This is typically achieved either through a feedback mechanism (such as TCP

flow-control) or a load shedding mechanism (such as dropping messages).

3.6 Related Work

Several aspects of Scout bear similarities to the x-kernel and indeed often are refinements

that derive from experiences gained with it [49]. An interesting question is whether it

would have been possible to add the path abstraction to the x-kernel. The CORDS sys-

tem effectively did that with a limited form of paths [105]. In this sense, it is possible.

However, a problem with adding paths to existing systems is that oftentimes existing

105

abstractions conflict, or at least interfere, with paths. For example, in the case of the x-

kernel, there are session objects that serve the role of communication end-points. This

is very similar to the view paths present to the programmer of a module, so this raises

the question of how sessions are related to paths. In essence, adding paths to existing

systems is likely to significantly complicate the programming model. This is true not

just for networking subsystems such as the x-kernel. For example, UNIX has the notion

of file- and socket-descriptors, or X11 has the notion of window-handles, all of which

would cause similar conflicts. It is also the case that modules typically need to be aware

of path construction to ensure paths can grow as long as desired and also to ensure proper

semantics should a path not be able to grow as long as desired. Suppose a path is created

for communicating data via TCP/IP. If, for some reason, IP cannot make a fixed routing

decision at path creation time, then the path would have to terminate at the IP module.

To maintain the semantics of the TCP/IP path, this might force IP to create small paths

between IP and each network adapter, for example. In general, the path abstraction often

significantly affects the logic with which objects are created and destroyed, meaning that

cleanly integrating such changes in a system not designed for paths is likely to be difficult.

UNIX STREAMS [42] are superficially similar to Scout paths. A STREAM essen-

tially consists of a sequence of modules that is terminated by a STREAM head at the top

(beneath the user/kernel boundary) and by a STREAM end at the bottom (device-driver

level). The sequence of modules in a STREAM is dictated by the user-level application,

meaning that the modules cannot affect these routing decisions. The interface between

STREAM modules is limited to a message-oriented, bidirectional interface. This limits

applicability of STREAMS to relatively simple applications as more complicated inter-

faces, such as those required for the disk subsystem or window management, cannot be

accommodated. STREAMS also do not appear to support packet classification. For this

reason, STREAMS are typically very wide in the Scout sense. For example, a STREAM

may represent a stack of networking protocols, but it could not (easily) represent an indi-

vidual TCP connection.

Like Scout, the work presented by Kay supports the construction of optimized code

paths [56]. Its approach is to introduce the notion of PathIDs, which are integer numbers

106

stored in the lowest-layer header of a networking subsystem. These identifiers are allo-

cated on a per-path basis and therefore allow to quickly identify the code-path that should

be used to process an incoming packet. In Scout, this would be equivalent to short-

circuiting the packet classification process presented in Section 3.4.1. In some cases it

may be possible to implement PathIDs using existing networking protocols. For example,

ATM has a field containing a virtual circuit identifier (VCI). If VCIs can be allocated on a

per-path basis, then they can be used in lieu of an additional PathID field [26]. However,

PathIDs are not a general path-abstraction like the one defined by Scout. For example,

they do not provide a means to generate optimized code paths automatically [56]. Man-

ually written code is likely to result in good performance, but it is also time consuming

to generate and difficult to maintain such vertically integrated code. In fact, Kay suggests

that the use of PathIDs should be limited to the rare occasions where having to maintain

two parallel branches of source code is justifiable.

In academia, much of the current OS research focuses on run-time extensibility of

operating system kernels. Examples in this area include the Exokernel [32], FLUX [36],

SPIN [7], and VINO [92]. In contrast, Scout is targeted at communication-oriented in-

formation appliances where the need for dynamic extensibility of kernel software is less

of an issue. This is because many appliances are expected to be of relatively static na-

ture. Rather than through fine-grained extension of a running system, appliances are

more likely to be upgraded either through complete replacement of the system software

or through virtual machine environments as discussed in the next paragraph. This is not to

say that dynamic extensibility could not have a place in information appliances. Indeed,

the techniques developed by these research projects are applicable to Scout insofar that

they are orthogonal to the modular structure and path abstraction around which Scout is

centered. For example, Scout and its path abstraction could readily be implemented in a

type safe language such as Modula-3 [13] or it could employ sandboxing [109] to ensure

the safe execution of dynamically loaded native-code modules.

In industry, there is a wealth of operating systems that are increasingly targeted at

network computers (NCs) which could be considered a form of information appliances.

There is no universal agreement on what precisely an NC is, though the term typically

107

implies a machine that is primarily used for communication. There appear to be three

major approaches to supporting NCs:

1. virtual machine based,

2. pared-down general purpose OS, and

3. Internet-extended embedded OS.

JavaOS and Inferno use the first approach [59, 25]. Both emphasize on the ability to

download platform-independent virtual machine code over the network and execute it

safely. The issue of supporting virtual machine code is orthogonal to the path abstraction

defined by Scout. It is not difficult to add modules to Scout that support such virtual

machines. This would make it possible to employ paths inside the virtual machine and

the associated runtime environment. However, the more interesting issue is whether it

would be useful to support paths in the virtual machine environment itself. Whether

this would make sense depends on two factors: what fraction of the system is expected

to be implemented in the form of virtual machine code and how performance sensitive

the virtual machine code programs are. If a large fraction of the system is written in

virtual machine code and that code needs to satisfy certain performance or quality-of-

service issues, then it is likely that making available the path abstraction inside the virtual

machine environment would be beneficial.

The second approach is followed by systems such as Oracle’s NCI and Windows CE.

The former uses a NetBSD kernel as its foundation with a trimmed down X Window-

ing System as its user interface. Similarly, Windows CE is essentially a trimmed down

version of the Win32 API. For these systems, it seems questionable whether they are flex-

ible enough to support the wide range that information appliances are expected to cover

(e.g., both depend on the presence of virtual memory hardware). It is also unclear how

effectively these systems could meet the predictability requirements that may be present

in many appliances. In essence, this approach attempts to leverage existing application

software, whereas Scout attempts to define a new paradigm that is inherently well-suited

for the needs of communication-oriented devices.

108

The third approach involves adapting existing embedded operating systems to support

communication through the addition of Internet protocols such as HTTP [35], TCP, and

IP. Examples in this class include OS-9, pSOS+, QNX, and VxWorks [48]. Such sys-

tems often have hard realtime support and are relatively small and modular. They also are

compute-focused, so support for path-like abstractions is missing. In essence, this means

that realtime support is limited to the process abstraction and does not extend to the I/O

subsystems. As a result, they cannot provide the level of control for resource management

from the source- to the sink-device the way Scout paths can. It is also the case that hard

realtime support is not necessarily sufficient or appropriate for information appliances.

As will be described in some more detail in Section 6.3.1, soft realtime scheduling is in

many ways more challenging than hard realtime scheduling. This is primarily because

soft realtime scheduling needs to be able to deal with overload in a graceful manner,

whereas hard realtime systems are typically designed to guarantee the absence of over-

load. Such a conservative design may not be appropriate for information appliances since

it would mean that resources may remain underutilized most of the time, making the ap-

pliance more expensive than strictly necessary. Another important difference is that most

embedded operating systems approach the question of modularity by providing the most

general type of interface, such as a POSIX.1 interface or a micro-kernel like messaging

interface. In contrast, Scout modularity is aimed at providing the least number of minimal

interfaces, which makes it possible to connect modules in many useful ways and some-

times in ways not anticipated by the developer of a module. This is also facilitated by

the filter-like modules of Scout and the fact that modules are connected by low-overhead

procedure calls.

Aside from the path abstraction and modular architecture, Scout uses a novel classifi-

cation scheme that is both efficient and powerful. The scheme is also unique in that it can

be explained independently of the networking context in which it is usually employed.

This makes it possible to elevate the classification problem to a general mechanism. As

a consequence, Scout uses classifiers not just at the network driver level, but wherever

an appropriate path needs to be found based on the contents of a message. Of the many

packet classifiers and packet filters that have been proposed in the past, none fit the re-

109

quirements of Scout perfectly. For example, interpreted packet filters are generally not

fast enough [113, 61]. The performance of DPF, a classifier that uses runtime code gener-

ation [30] has been reported to be impressive, but unfortunately makes it relatively slow

to insert and remove existing filters or, as is the case for version 2.0, provides a language

with limited expressiveness. The PathFinder classifier [5] also has competitive perfor-

mance, but it is a rather complex engine which would make it less suitable for appliances

with stringent memory requirements. A practical problem common to all but the Scout

classifier is that they require writing the classifier predicates in a special language. In

contrast, the partial classifiers of Scout can be implemented in C. This is advantageous

since it means that the data structures used by the module’s packet processing code can

also be used by the classifier. This greatly reduces problems due to inconsistencies in

the packet descriptions, for example. Finally, the Scout classifier is powerful since the

partial classifiers are implemented in a universal language. The only constraints on their

complexity are due to performance and the desire to keep them side-effect free so that

they can be short-circuited when an explicit PathID is present in a packet.

110

CHAPTER 4

USING PATHS TO OPTIMIZE CODE

Poetry: the best words in the best order.

– Samuel Taylor Coleridge

This chapter presents a case study for using paths to improve execution speed in a

networking subsystem. Specifically, it is targeted at reducing protocol processing latency.

The reason for choosing this problem is that optimizing for latency is often considered

hard since, in contrast to throughput-oriented optimizations, there is rarely a single dom-

inant latency bottleneck [55, 112]. Instead, to improve latency it is typically necessary

to improve protocol processing along the entire path of execution [18, 51]. In this sense,

the problem is ideally suited to demonstrate some of the potential benefits of Scout paths.

It is important, however, to keep in mind that the approach taken in this case study is by

no means the only way paths can be exploited to improve execution speed of a system.

Dynamic code generation [60], manually crafted vertically integrated code-paths [56, 23],

or a language-based approach [14] represent a few other possibilities in this spectrum.

The case study proposes and analyzes four techniques targeted at improving proto-

col processing. Of these techniques, the first three are path-based and the last one is a

compiler-based technique that addresses the overhead due to the deep call chains that

are commonly encountered during path execution (and in systems code in general). The

path-based techniques optimize for a particular sequence of partial processing functions.

This means that different code is needed for each possible sequence that is performance

critical, but not necessarily for each path, since paths traversing the same sequence of

modules may be able to share the same optimized code. This also means that a Scout

realization is straight-forward: the function sequences can, for example, be pre-generated

at system build time. At runtime, the only additional processing required is to match

111

the processing function sequence present in a newly created path with the sequences for

which optimized code was pre-generated. If there is a match, the function pointers in the

interfaces of the path’s stages can be redirected to this optimized code.

4.1 Preliminaries

This section sets the context in which this study was performed. It first describes the

experimental testbed and provides evidence that the base case used in later sections is

sound, i.e., that it is representative of the behavior of production-quality TCP/IP imple-

mentations.

4.1.1 Experimental Testbed

The hardware used for all tests consists of two DEC 3000/600 workstations connected

over an isolated 10Mbps Ethernet. These workstations use a first-generation 21064 Alpha

CPU running at 175MHz [93]. The CPU is a 64-bit wide, super-scalar design that can

issue up to two instructions per cycle. Though the peak issue rate is two, there are few

dual-issue opportunities in the pure integer code that is typical for systems code. Thus,

as far as the networking subsystem is concerned, it is more accurate to view the CPU as a

single-issue processor.

The workstation’s memory system features split primary i- and d-caches of 8KB each,

a unified 2MB second-level cache (backup-cache, or b-cache), and 64MB of main mem-

ory. All caches are direct-mapped and use 32-byte cache blocks. The d-cache is write-

through, read-allocate. CPU writes to the b-cache are aggregated through a write-buffer

that is four entries deep, with each entry holding a full cache-line. Writes to the write-

buffer are merged, if possible. Since Alpha instructions have a fixed length of four bytes,

an i-cache block size of 32 bytes implies that each block can hold eight instructions.

Memory read accesses are non-blocking meaning that there is not necessarily a direct

relationship between the number of misses and the number of CPU stall cycles induced

by these misses. This is because non-blocking loads enable overlapping (hiding) memory

accesses with useful computation. The memory system interface is 128 bits wide and the

lmbench [63] suite reports a memory access latency of 2, 10, and 48 cycles for a d-cache,

112

b-cache, and main-memory access, respectively. When executing code sequentially from

the b-cache, the CPU can sustain an execution rate of 8 instructions per 13 cycles [34].

Unless noted otherwise, all software was implemented in a prototype version of Scout

that was derived from the x-kernel [49]. The module graph consists of the networking

subsystem and measurement code only. The resulting Scout system is so small that it fits

entirely into the b-cache and, unless forced (as in some of the tests), there are no b-cache

conflicts. All code was compiled using a version of gcc 2.6.0 [99] that was modified as

necessary to support some of the techniques.

4.1.2 Test Cases

As the goal of this study is to test a set of latency improving techniques on protocol

stacks that are representative of networking code in general, two protocol stacks are ana-

lyzed that differ greatly in design and implementation: a conventional TCP/IP stack and a

generic RPC stack. TCP/IP was chosen primarily because its ubiquitous nature facilitates

comparison with other work on latency-oriented optimizations. Due to their roots in BSD

UNIX, the TCP/IP modules are relatively coarse-grained. In contrast, the RPC stack ex-

emplifies the x-kernel paradigm that encourages decomposing networking functionality

into many small modules [72].

The module configurations for the two protocol stacks are shown in Figure 4.1. The

left hand side shows the TCP/IP stack. At the top is TCPTEST, a simple, ping-pong style

test program. Below are TCP and IP which are the Scout modules for of the correspond-

ing Internet protocols [83, 82]. The TCP implementation is based on BSD UNIX source

code so, apart from interface changes and differences in connection setup and tear-down,

they are identical. Module VNET routes outgoing messages to the appropriate network

adapter. In BSD-like networking subsystems, the functionality of VNET is implemented

as part of the IP protocol. Module ETH implements the device-independent Ethernet

protocol processing and module LANCE implements the driver for the Ethernet adapter

present in the DEC 3000 machine.

The right hand side of Figure 4.1 shows the RPC stack. It implements a remote pro-

cedure call facility similar to Sprite RPC [110]. As the figure shows, the RPC stack is

113

TCPTEST

TCP

IP

VNET

ETH

LANCE

VNET

ETH

XRPCTEST

MSELECT

VCHAN

CHAN

BID

BLAST

IP

LANCE

Figure 4.1: Test Protocol Stacks

considerably taller than the one for TCP/IP. At the top is module XRPCTEST, which is

the RPC-equivalent of the ping-pong test implemented by TCPTEST. Modules MSEL-

ECT, VCHAN, CHAN, BID and BLAST in combination provide the RPC semantics.

A detailed description of the protocols these modules implement can be found in [72].

The modules below BLAST are identical to the modules of the same name in the TCP/IP

stack.

4.1.3 Base Case

To determine whether the base case is sound, the Scout prototype version of the TCP/IP

stack is compared with the version implemented by DEC UNIX v3.2c. The latter is gen-

erally considered to be a well-optimized implementation and runs on the same platform

as the Scout system. Because of large structural differences between the two, it is, how-

ever, not meaningful to directly compare end-to-end performance. For example, in DEC

UNIX, network communication involves crossing the user/kernel boundary, whereas in

the Scout prototype, all execution is in kernel mode. For this reason, the performance

114

comparison concentrates on TCP/IP input processing. Functionality-wise, the two ver-

sions are essentially identical for this part of the network processing, so a direct compari-

son is meaningful. Since the interest is in processing latency, the case measured involves

sending a one byte TCP segment between a pair of hosts.

The necessary data was collected by instrumenting both kernels with a tracing facility

that can acquire instruction traces of pristine, working code.1 Execution times were mea-

sured separately using the cycle counter register provided by the Alpha architecture [93].

This register allows measuring time intervals on the order of a few seconds in duration

with a resolution of a single CPU cycle (approximately 5.7ns for the 175MHz CPU that

was used in the tests). In combination, the traces and execution times enable a detailed

comparison of processing overhead.

UNIX Scout

v3.2c: v0.0:

of instruction executed: : :

: : : from IP to TCP input: 262 437

: : : from TCP to socket input: 1188 1004

CPI: 4.3 3.3

Table 4.1: Comparison of TCP/IP Implementations

Table 4.1 lists the instruction counts for TCP and IP input processing as well as the

average number of cycles per instruction (CPI) achieved for the entire input processing.

The first row in the table gives the number of instructions executed as part of IP pro-

cessing, and the second row gives the number of instructions executed as part of TCP

processing. For UNIX, IP processing includes all instructions executed between enter-

ing ipintr and entering tcp input and for Scout this includes everything between

ipDemux and tcpDemux. Similarly, for TCP processing under UNIX, everything be-

tween tcp input and sowakeup is counted and for Scout everything between tcp-

Demux and clientStreamDemux is counted. The third row gives the average CPI for

the entire TCP/IP input processing. It is the quotient of the execution times (in cycles)

and the total instruction count.

1The traces are available at http://www.cs.arizona.edu/scout/tcpip/.

115

As the first and second rows in Table 4.1 illustrate, DEC UNIX has a shorter IP pro-

cessing while the Scout implementation has a shorter TCP processing. Overall, the two

traces have almost the same length: 1450 instructions for DEC UNIX versus 1441 in-

structions for Scout. As the last row shows, the average number of cycles required to

execute each instruction (CPI) is 3.3 for Scout and 4.3 for UNIX, so in terms of actual

execution time, Scout is more than 20% faster. The important point, however, is that the

similarity in code-path length suggests that the Scout TCP/IP is indeed comparable to

production-quality implementations.

4.2 Latency Reducing Techniques

This section describes four techniques to reduce protocol-processing latency. Unlike other

optimizations that improve execution speed by reducing the number of instructions exe-

cuted, these techniques are primarily targeted at reducing the average cost of each instruc-

tion. That is, they attempt to reduce the average CPI. The first three techniques rely on

the path abstraction, whereas the fourth technique is a purely compiler-based technique

that is also aimed at improving predictability of execution time.

4.2.1 Outlining

As the name suggests, outlining is the opposite of inlining. It exploits the fact that not all

basic blocks in a subroutine (function) are executed with equal frequency. For example,

error handling in the form of a kernel panic is clearly expected to be a low-frequency

event. Unfortunately, it is rarely possible for a compiler to detect such cases based only

on compile-time information. In general, basic blocks are generated simply in the order

of the corresponding source code lines. For example, the sample C source code shown on

the left is often translated to machine code of the form shown on the right:

:
: load r0,(bad case)

if (bad case) f jump if 0 r0,good day
panic ("bad day"); load addr a0,"bad day"

g call panic
printf ("good day"); good day:

: load addr a0,"good day"

116

call printf
:

The machine code on the right hand side is suboptimal for two reasons: (1) it requires a

jump to skip the error handling code, and (2) it introduces a gap in the i-cache if the block

size is larger than one instruction. A taken jump often results in pipeline stalls and i-cache

gaps waste memory bandwidth because useless instructions are loaded into the cache.

This can be avoided by moving error handling code out of the main line of execution, that

is, by outlining error handling code. Such outlined code could, for example, be moved to

the end of the function or to the end of the program where it does not interfere with any

frequently executed code.

Outlining is sometimes used with profile-based optimizers [47, 77]. With profile in-

formation, outlining can be automated relatively easily. However, for the purpose of

experimentation, it is more appropriate to use a language based approach that gives full

and direct control to the programmer. Thus, we modified the GNU C compiler such that

if-statements can be annotated with a static prediction as to whether the if-conditional will

mostly evaluate to true or false. If-statements with annotations will have the machine code

for the unlikely branch generated at the end of the function. Un-annotated if-statements

are translated as usual. With this compiler-extension, the code on the left is translated into

the machine code on the right:

:
: load r0,(bad case)

if (bad case @ 0) f jump if not 0 r0,bad day
panic("bad day"); load addr a0,"good day"

g call printf
printf("good day"); continue:

: :
return from function

bad day:
load addr a0,"bad day"
call panic
jump continue

Note that the if-conditional is followed by an @0 annotation. This tells the modified

compiler that the expression is expected to evaluate to false most of the time. In contrast,

117

the annotation @1 would mark a mostly-true expression. For portability and readability,

such annotations are normally hidden in C pre-processor macros called PREDICT FAL-

SE and PREDICT TRUE.

The above machine code avoids the taken jump and the i-cache gap at the cost of an

additional jump in the infrequent case. Corresponding code is generated for if-statements

with an else-branch. In that case, the static number of jumps remains the same, however.

It is also possible to use such annotations to direct the compiler’s optimizer. For example,

it would be reasonable to give outlined code lower priority during register allocation. The

present implementation does not exploit this option.

Outlining should not be applied overly aggressively as otherwise the reduced locality

and the additional jumps caused by the execution of outlined basic blocks will negate all

potential for performance improvement. In practice, the following three cases appear to

be good candidates for outlining:

1. Error handling. Any kind of expensive error handling can be safely outlined. Error

handling is expensive, for example, if it requires a reboot of the machine, console

I/O, or similar actions.

2. Initialization code. Any code along the critical path of execution that is executed

only once (e.g., at system startup) can be outlined.

3. Conditionally infrequent code. Some code is frequently executed only under certain

circumstances. If those circumstances are not met in a given path, the relevant code

can be outlined.

Note that the first and second cases involve predictions that are independent of any dy-

namic aspects of the way the code is used. In contrast, the third case critically depends

on having dynamic information available. For example, a path used in a latency sensitive

path might outline all unrolled loops, whereas a throughput sensitive path might leave

them inlined. The former makes sense because the latency sensitive case usually involves

so little data processing that unrolled loops are never entered.

The performance results reported in Section 4.3 will show that outlining alone does

not make a tremendous difference in end-to-end processing latency. However, the dy-

118

namic code density improvements that it can achieve is essential to the effectiveness of

the next two techniques: cloning and path-inlining.

4.2.2 Cloning

Cloning involves creating a copy of a function. The cloned copy can be relocated to a

more appropriate address and/or optimized for a particular use. For frequently executed

paths, it is generally desirable to pack the involved functions as tightly as possible since

the resulting increase in code-density can improve i-cache, TLB, and paging behavior.

The later cloning is applied in the lifetime of a system, the more information is available

to specialize the cloned functions. For example, if cloning is delayed until a TCP/IP path

is established, most connection state will remain constant and can be used to partially

evaluate the cloned function. This achieves similar benefits as code synthesis [60].

Just like inlining, cloning is at odds with locality of reference. Cloning at connection

creation time will lead to one cloned copy per connection, while cloning at module graph

creation time requires only one copy per protocol stack. By choosing the point at which

cloning is performed, it is possible to tradeoff locality of reference with the amount of

specialization that can be applied.

Cloning can be considered the next logical step following outlining—the latter im-

proves (dynamic) instruction density within a function, while the former achieves the

same across functions. Figure 4.2 summarizes the effects that outlining and cloning have

on the i-cache footprint. The leftmost column shows many small i-cache gaps due to infre-

quently executed code. As shown in the middle column, outlining compresses frequently

executed code and moves everything else to the end of the function. The rightmost col-

umn shows that cloning leads to a contiguous layout for clone A and clone B. Note that

this particular example assumes that the clones and the original functions can share the

outlined code. Whether this is possible depends on architectural details. For the Alpha,

sharing is normally possible. Where sharing is not possible, cloning places a copy of the

outlined code behind all frequently executed code.

Cloning has been implemented as a means to allow flexible experimentation with var-

ious function positioning algorithms. For this purpose, it is most adequate to perform

119

clone B

function A

infrequently executed instructions

frequently executed instructions

Standard Layout: After Outlining: After Cloning:

copy & relocate
frequently executed code

function A

function B function B

function A

function B

clone A

Figure 4.2: Effects of Outlining and Cloning

cloning at system boot time instead of at build time and to limit specialization to sim-

ple code improvements. The supported code specializations are specific to the Alpha

architecture and targeted at reducing function call overhead. In particular, under certain

circumstances, the Alpha calling convention allows skipping the first few instructions in

the function prologue. Similarly, if a caller and callee are spatially close, it is possible to

replace a jump to an absolute address with a PC-relative branch. This typically avoids the

load instruction required to load the address of the callee’s entry point and also improves

branch-prediction accuracy.

Extensive experiments were performed with different layout strategies for cloned

code. The idea was that, ideally, it should be possible to avoid all i-cache conflicts along

a critical path of execution. With a direct-mapped i-cache, the starting address of a func-

tion determines exactly which i-cache blocks it is going to occupy [62]. Consequently,

by choosing appropriate addresses, it is possible to optimize i-cache behavior for the se-

120

quence of functions in a given path. The cost is that this fine-grained control of function-

placement occasionally makes it necessary to introduce gaps between two consecutive

functions. Gaps have the obvious cost of occupying main memory without being of any

direct use. More subtly, if i-cache blocks are larger than one instruction, fetching the last

instructions in a function frequently results in part of a gap being loaded into the i-cache

as well, thereby wasting memory bandwidth.

A tool employing simple heuristics was devised that, based on a trace-file, com-

putes a layout that minimizes replacement misses without introducing too many addi-

tional gaps. This approach can be called micro-positioning because function placement is

controlled down to the size of an individual instruction. I-cache simulation results were

encouraging—the tool made it possible to reduce replacement misses for the TCP/IP path

by an order of magnitude (from 40, down to 4), while introducing only four or five new

cold misses due to gaps.

However, when performing end-to-end measurements, a much simpler layout strategy

consistently outperformed the micro-positioning approach. The simpler layout strategy

achieves a bipartite layout. Cloned functions are divided into two classes: path functions

that are executed once and library functions that are executed multiple times per path

invocation. There is very little benefit in keeping path functions in the cache after they

executed, as there is no temporal locality unless the entire path fits into the i-cache. In

contrast, library functions should be kept cached between the first and and last invocation

from a path. Based on these considerations it makes sense to partition the i-cache into

a path partition and a library partition. Within a partition, functions are placed in the

order in which they are called. Such a sequential layout maximizes the effectiveness of

prefetching hardware that may be present. This layout strategy is so simple that it can be

computed easily at runtime—the only dynamic information required is the order in which

the functions are invoked. In essence, computing a bipartite layout consists of applying

the well-known closest-is-best strategy to the library and path partition individually [77].

Establishing the performance advantage of the bipartite layout relative to the micro-

positioning approach is difficult since small changes to the heuristics of the latter ap-

proach resulted in large performance variations. The micro-positioning approach usually

121

performed somewhat worse than a bipartite layout and sometimes almost equally well,

but never better. It is not entirely obvious why this is so and it is impossible to make

any definite conclusions without even more fine-grained simulations, but we have three

hypotheses. First, micro-positioning leads to a non-sequential memory access pattern

because a cloned function is positioned wherever it fits best, that is, where it incurs the

minimum number of replacement misses. It may be this nearly random access pattern

that causes the overall slowdown. Second, the gaps introduced by the micro-positioning

approach do cost extra memory bandwidth. This hypothesis is corroborated by the fact

that we have not found a single instance where aligning function entry-points or similar

gap-introducing techniques would have improved end-to-end latency. Note that this is in

stark contrast with the findings published in [43], where i-cache optimization focused on

functions with a very high degree of locality. So it may be that micro-positioning suffers

because of the memory bandwidth wasted on loading gaps. Third, the DEC 3000/600

workstations used in the experiments employ a large second-level cache. It may be the

case that the initial i-cache misses also missed in the second-level cache. On the other

hand, i-cache replacement misses are almost guaranteed to result in a second-level cache

hit. Thus, it is quite possible that 36 replacement misses were cheaper than four or five

additional cold misses introduced by micro-positioning.

Despite the unexpected outcome, the above result is encouraging. It is not necessary

to compute an optimal layout to improve i-cache performance—a simple layout-strategy

such as the bipartite layout appears to be just as good (or even better) at a fraction of the

cost. It must be emphasized that the bipartite layout strategy may not be appropriate if all

the path and library functions fit into the i-cache. If it is likely that the path will remain

cached between subsequent path-invocations, it is better to use a simple linear allocation

scheme that allocates functions strictly in the order of invocation, that is, without making

any distinction between library and path functions. This is a recurrent theme for cache-

oriented optimizations: the best approach for a problem that fits into the cache is often

radically different from the best one for a problem that exceeds the cache size.

122

4.2.3 Path-Inlining

The third latency reducing technique is path-inlining. This is an aggressive form of inlin-

ing where the entire latency-sensitive path of execution is inlined to form a single func-

tion. Consider that a path consists of a sequence of stages. The interfaces in the stages

imply the entire processing that a message undergoes as it traverses a path. If it were pos-

sible to know the sequence of stages in a path at system build time, it would be possible

to prepare optimized code for that path simply by compiling the functions encountered in

the interfaces as a single function. One way to achieve this is to let the system designer

choose what sequences of modules are important, pre-generate code for those important

sequences, and then, at runtime, replace the modular code of a path with the optimized

code. This can be realized using a path transformation rule (see Section 2.2.3.3) whose

guard checks whether or not the sequence of modules in a path matches the sequence of

modules for which a path-inlined function was generated. If so, the function pointers in

the interfaces can be replaced with pointers to the path-inlined version.

Since path-inlining results in code that is specific to a particular sequence of modules,

it is warranted only if the resulting code-path is executed frequently. It is also important to

avoid inlining library-functions: by definition, library-functions are called multiple times

during a single path execution, so it is better to preserve the locality of reference that they

afford. In addition, inlining library-functions would likely lead to an excessive growth in

code size.

The advantage of path-inlining is that it removes almost all call overhead and greatly

increases the amount of context available to the compiler for optimization. For example,

in the VNET module, output processing consists of simply calling the next lower layer’s

output function. With path-inlining, the compiler can trivially detect and eliminate such

useless call overhead.

While path-inlining is simple in principle, the practical problem is quite difficult.

None of the commonly available C compilers are able to inline code across module bound-

aries (object files) and through indirect function calls. Note that inlining through indirect

function calls is made possible by information available from the path that is being opti-

123

mized for. In essence, this is how routing decisions are frozen into the code-path. There

are tools available that assist in cross-module inlining, but the ones that were available

were not reliable enough to be of much use. While it should not be difficult to add path-

information assisted cross-module inlining to an existing C compiler, the path-inlined

versions for the TCP/IP and RPC paths were obtained by manually combining code from

different modules and then using gcc’s normal inlining facility to produce the final code.

For TCP/IP, path-inlining resulted in two large functions: one for input processing and

one for output processing. Roughly the same applies for the RPC stack, although the split

is slightly different: one function takes care of all the processing in protocols XRPCTEST,

MSELECT, VCHAN as well as the output processing in CHAN and the protocols below

it, whereas the other function handles all input processing up to the CHAN protocol.

4.2.4 Last Call Optimization

The fourth and final technique is called last call optimization. It does not exploit paths

but instead addresses an issue that frequently arises during path execution, namely deeply

nested call chains. Often, the last action of a partial processing function in a path stage is

to call the processing function of the next stage in the path. This means that each stage

in a path requires additional stack space to store the call frame for the stage’s processing

function. This is often wasteful since, if the call frame of a stage is not accessible to more

deeply nested call frames, it could have been deallocated before calling the next stage.

The last call optimization recognizes such opportunities and avoids wasting stack

space by deallocating stack frames as early as possible. Ideally, in a calling sequence

that is nested N deep, the amount of stack space used would be just the maximum frame

size among the active functions instead of the sum of the frame sizes. This last call op-

timization is an old technique (e.g., [33]) that is popular with compilers for functional

languages, but not for imperative languages such as C. The main problem with imper-

ative languages is that it is difficult to decide whether or not a callee has access to a

caller’s stack frame. A simple solution is to apply the last call optimization only if none

of the local (automatic) variables have had their addresses taken. This is conservative but

sufficiently accurate to uncover many last call opportunities.

124

A trial-implementation of the last call optimization in gcc showed improvements of up

to 30% for heavily recursive functions. Unfortunately, for the TCP/IP and RPC stacks, it

did not achieve a measurable improvement. There are several likely reasons for this. First,

about half the available last call opportunities were destroyed by the reference counting

scheme that was present in the Scout prototype. Specifically, there were several occasions

where the optimization could have been applied had it not been for the few instructions

required to decrement a reference count after returning from a deeply nested function

call.2 Second, the test programs did not stress stack usage because the tests did not involve

any concurrency. This means that the entire system essentially operated on a single stack

that remained cached across multiple path executions. Third, Section 4.3.3.3 will show

that the TCP/IP and RPC stacks have such poor i-cache behavior on the test system that

the difference due to the last call optimization is not noticeable. On a system with larger

i-caches or with smaller networking stacks, the last call optimization likely would make

a noticeable difference.

4.3 Evaluation

This section evaluates the three path-based techniques presented in the previous section.

It first describes the specific test cases and then follows with a presentation of end-to-end

latency results and a detailed, trace-based analysis of processing behavior. Throughput

measurements are not presented since they would simply confirm that none of the tech-

niques had a measurably negative effect on throughput. In fact, as is commonly the case,

the latency improvements also resulted in a slightly higher throughput.

4.3.1 Test Cases

All measurements are for the environment described in Section 4.1.1. Both TCP/IP and

RPC are measured in several configurations that enable gauging the effect of each tech-

nique. An exhaustive measurement of all possible combinations would have been imprac-

tical, so we focus on the following six version and supply additional data as necessary.

2The current version of Scout implements reference counting at the path level instead of the module

level, so this problem has become less of an issue.

125

� STD: This is the Scout prototype base case described in Section 4.1.3. It uses none

of the latency-reducing optimizations described in Section 4.2.

� OUT: Like STD, but uses outlining to eliminate error handling and other basic

blocks that are infrequently executed on the latency-sensitive path.

� CLO: Like OUT, but uses cloning in addition to outlining to achieve a dense i-cache

footprint. A bipartite layout is used to ensure that path-functions do not collide with

library functions.

� BAD: Like CLO, but cloning has been used to artificially worsen the i-cache be-

havior. While not strictly a worst-case scenario, this version is used to establish

the potential of i-cache effects to influence processing latency. Specifically, for the

TCP stack, version BAD results in 217 additional i-cache and 110 additional b-

cache misses (relative to CLO, which has 483 i-cache and 678 b-cache misses). For

the RPC stack, it results in 233 additional i-cache and 14 additional b-cache misses

(relative to CLO with 488 i-cache and 845 b-cache misses).

� PIN: Like OUT, but also uses path-inlining.

� ALL: Like PIN, but cloning with a bipartite layout has been used to improve i-

cache behavior. That is, this version uses all techniques, and is expected to achieve

the best performance.

Note that all versions except STD use path specific code. Thus, it is necessary to lookup

the appropriate path for incoming packets either by using PathIDs [56] or a packet clas-

sifier (such as the one presented in Section 3.4.1). To keep this study independent of

the quality of the classifier, which may well be assisted by hardware, and independent of

whether PathIDs are used, the path lookup costs are excluded from the results presented

in the remainder of this chapter.

4.3.2 End-to-End Results

TCP and RPC latency was measured by ping-ponging packets with no payload between a

server and a client machine. Since TCP is stream-oriented, it does not send any network

126

packets unless there is data to be sent. Thus, the no payload case is approximated by

sending 1B of data per message. For both protocol stacks, the tests result in 64-byte

frames on the wire since that is the minimum frame size for Ethernet. The reported end-

to-end latency is the average time it took to complete one roundtrip in a test involving

100,000 roundtrips. Time was measured with a clock running at 1024Hz, thus yielding

roughly a 1ms resolution.

For the TCP/IP stack, the optimizations were applied to both the server and client side.

Since the processing on the server and client side is almost identical, the improvement on

each side is simply half of the end-to-end improvement. For the RPC stack, the optimiza-

tions were restricted to the client side. On the server side, the configuration yielding the

best performance was used in all measurements (which happened to be the ALL version).

Always running the same RPC server ensures that the reference point remains fixed and

allows a meaningful analysis of client performance.

TCP/IP RPC

Version Te [µs] ∆ [%] Te [µs] ∆ [%]

BAD 498.8�0.29 +60.5 457.1�0.20 +25.1

STD 351.0�0.28 +12.9 399.2�0.29 +9.2

OUT 336.1�0.37 +8.1 394.6�0.10 +8.0

CLO 325.5�0.07 +4.7 383.1�0.20 +4.8

PIN 317.1�0.03 +2.0 367.3�0.19 +0.5

ALL 310.8�0.27 +0.0 365.5�0.26 +0.0

Table 4.2: Roundtrip Latency

Table 4.2 shows the end-to-end results. The rows are sorted according to decreas-

ing latency, with each row giving the performance of one version of the TCP/IP and

RPC stacks. The performance is reported in absolute terms as the mean roundtrip time

plus/minus one standard deviation, and in relative terms as the per cent slow-down com-

pared to the fastest version (ALL). For TCP/IP, the mean and standard deviation were

computed based on ten samples; five samples were collected for RPC.

As the table shows, the BAD version of the TCP/IP stack performs by far the worst.

With almost 500µs per roundtrip, it is over 173µs slower than version CLO, which cor-

127

responds to a slowdown of more than 53%. As explained above, the code in the two

versions is essentially identical. The only significant difference is the layout of that code.

This clearly shows that i-cache effects can have a profound effect on end-to-end latency.

Row STD shows that the regular Scout prototype version of the protocol stacks has a

much better cache behavior than BAD. Compared to the best case, that version is slower

by about 12.9% for TCP/IP and 9.2% for RPC. There are two reasons why STD performs

relatively well. First, earlier experiences with direct-mapped caches led to attempts to

improve cache performance by manually changing the order in which functions appear

within the object files and by changing the link order. Because of such manual tuning, the

STD version has a reasonably good cache behavior to begin with. Second, it also appears

to be the case that the function usage pattern in the Scout prototype is such that laying out

the functions in the address space in what basically amounts to a random manner, yields

an average performance that is closer to the best case than to the worst case. This is es-

pecially true since in the latency sensitive case, there are few loops that have the potential

for pathological cache-behavior. Keep in mind, however, that case BAD is possible in

practice unless the cache layout is controlled explicitly. The techniques proposed in this

chapter provide sufficient control to avoid such a bad layout.

Row OUT indicates that outlining works quite well for TCP/IP—it reduces roundtrip

time by about 15µs compared to STD. Since both the client and the server use outlining,

the reduction on the client side is roughly half of the end-to-end reduction, or 7.5µs. Out-

lining works less well for RPC but is still able to achieve a 4.6µs reduction. This behavior

can be explained by the fact that TCP consists of a few large functions that handle most

of the protocol processing (including connection establishment, tear-down, and packet

retransmission), whereas RPC consists of many small functions that often handle excep-

tional events through separate functions. In this sense, the RPC code is already structured

in a way that handles exceptional events outside the performance critical code path. Nev-

ertheless, outlining does result in significantly improved performance for both protocol

stacks.

In contrast, row CLO indicates that cloning works better for RPC than for TCP. In the

former case, the reduction on the client side is about 11.5µs whereas in the latter case the

128

client-side reduction is roughly 5.3µs. This makes sense since TCP/IP absorbs most of its

instruction locality in a few, big functions, meaning that there are few opportunities for

self-interference. The many-small-functions structure of the RPC stack makes it likely

that the uncontrolled layout present in version OUT leads to unnecessary replacement

misses. Conversely, this means that there are good opportunities for cloning to improve

cache effectiveness.

Path-inlining also appears to work well for the RPC stack. Since PIN is the same

as version OUT with path-inlining enabled, it is more meaningful to compare it to the

outlined version (OUT), rather than the next best version (CLO). If we do so, we find

that the TCP/IP client side latency is about 9.5µs and the RPC client side about 27.3µs

below the corresponding value in row OUT. Again, this is consistent with the fact that the

RPC stack contains many more—and typically much smaller—functions than TCP. Just

eliminating call-overhead through inlining improves the performance of the RPC stack

significantly.

Finally, row ALL shows the roundtrip latency of the version with all optimizations

applied. As expected, it is indeed the fastest version. However, the client-side reduction

for TCP/IP compared to PIN is only about 3.1µs and the improvement in the RPC case

is a meager 1.8µs. That is, with path-inlined code, partitioning library and path functions

does not increase performance much further.

While end-to-end latency improvements are certainly respectable, they are neverthe-

less fractional on the given test system. It is important to keep in mind, however, that

modern high-performance network adapters have much lower latency than the LANCE

Ethernet adapter present in the DEC 3000 system [3]. To put this into perspective, con-

sider that a minimum-sized Ethernet packet is 64 bytes long, to which an 8 byte long

preamble is added. At the speed of a 10Mbps Ethernet, transmitting the frame takes

57.6µs. This is compounded by the relative tardiness of the LANCE controller itself: we

measured 105µs between the point where a frame is passed to the controller and the point

where the transmission complete interrupt handler is invoked. The LANCE overhead of

47.4µs is consistent with the 51µs figure reported elsewhere for the same controller in an

older generation workstation [104]. Since the latency between sending the frame and the

129

receive interrupt on the destination system is likely to be higher, and since each roundtrip

involves two message transmissions, we can safely subtract 105µs� 2 = 210µs from the

end-to-end latency to get an estimate of the actual processing time involved. For example,

if we apply this correction to the TCP/IP stack, we find that version BAD is actually 186%

slower than the fastest version. Even version STD is still 40% slower than version ALL.

Table 4.3 revisits the end-to-end latency numbers, adjusted to factor out the overhead

imposed by the controller and Ethernet. While there will obviously be some additional

latency, one should expect roundtrip times on the order of 50µs rather than the 210µs

measured on our experimental platform.3

TCP/IP RPC

Version Te [µs] ∆ [%] Te [µs] ∆ [%]

BAD 288.8 +186.5 247.1 +59.0

STD 141.0 +40.2 189.2 +21.7

OUT 126.1 +25.1 184.6 +18.7

CLO 115.5 +14.6 173.1 +11.3

PIN 107.1 +6.3 157.3 +1.2

ALL 100.8 +0.0 155.5 +0.0

Table 4.3: Roundtrip Latency Adjusted for Network and Controller

4.3.3 Detailed Analysis

The end-to-end results are interesting to establish global performance effects, but since

some of the protocol processing can be overlapped with network I/O, they are not directly

related to CPU utilization. Also, it is impossible to control all performance parameters

simultaneously. For example, the tests did not explicitly control data-cache performance.

Similarly, there are other sources of variability. For example, the memory free-list is

likely to vary from test case to test case (e.g., due to different memory allocation patterns

at boot time). While not all of these effects can be controlled, most can be measured.

Towards this end, we collected two additional data sets. The first is a set of instruction

traces that cover most of the protocol processing. The second is a set of fine-grained

3Numbers is this range have been reported in the literature for FDDI and ATM controllers [23].

130

measurements of the execution time of the traced code. The instruction traces do not

cover all of the processing since the tracing facility did not allow the tracing of interrupt

handling, but other than that, the traces are complete.

4.3.3.1 Cache Statistics

Using the execution traces and a simulator of the DEC 3000/600 memory hierarchy it

is possible to compute the cache statistics presented in Table 4.4. It lists the i-cache,

d-cache, and b-cache performance as the number of misses to the cache (column Miss),

the total number of accesses to the cache (column Acc), and the number of replacement

misses (column Repl). Note that the middle three columns represents a combination of

the d-cache and write-buffer performance since the d-cache is used only on the read path

and the write-buffer is used only on the write path. The write-buffer in the 21064 CPU

performs write-merging, so a merged write is counted like a cache-hit whereas a write

that results in a write to the b-cache is counted like a cache-miss.

The rightmost column in the table shows that, except for the BAD versions, none of

the tests cause replacement misses in the b-cache. Since the entire kernel is small enough

to fit into the b-cache, this means that all code executes out of the b-cache unless there are

conflicts with data accesses performed outside of the traced code.

A more important observation is that the cache simulations confirm that cloning with

a bipartite layout does indeed help avoid i-cache replacement misses. For example, ap-

plying cloning to version OUT reduces the number of i-cache replacement misses in the

TCP/IP stack from 69 to 27. Interestingly, path-inlining alone does not get rid of many re-

placement misses. The table shows that the PIN version still suffers from 66 such misses.

This is because, for PIN, there is nothing that prevents library code from clashing with

path code.

The RPC case is analogous to TCP/IP except that the reductions in replacement misses

are even larger: compared to version OUT, cloning alone causes a reduction by a factor

of 3.7 and, together with path-inlining, not a single replacement miss remains.

131

i-cache d-cache/wr-buffer b-cache

Miss Acc. Repl Miss Acc Repl Miss Acc Repl

BAD 700 4718 224 459 1862 31 863 1390 110

STD 586 4750 72 492 1845 56 800 1286 0

OUT 547 4728 69 462 1841 40 731 1183 0

TCP/IP CLO 483 4684 27 455 1862 34 678 1074 0

PIN 484 4245 66 406 1668 27 630 1015 0

ALL 414 4215 10 401 1682 28 596 913 0

BAD 721 4253 176 556 1663 19 995 1544 14

STD 590 4291 31 547 1635 14 1004 1379 0

OUT 542 4257 26 556 1629 19 951 1313 0

RPC CLO 488 4227 7 547 1664 13 845 1213 0

PIN 402 3471 14 453 1310 19 694 972 0

ALL 374 3468 0 450 1330 13 662 931 0

Table 4.4: Cache Performance. Miss: number of accesses that missed in the cache. Acc:

Total number of cache accesses. Repl: Number of replacement misses.

4.3.3.2 Processing Time Measurements

Given the execution traces and timings, it is possible to derive a number of interesting

quantities: protocol processing time, CPI, and the memory CPI (mCPI)—the average

number of cycles that each instruction was stalled due to a memory access. Protocol

processing time can be measured using the CPU cycle counter. From this, the CPI can

be derived from this by dividing it with the length of the trace (in instructions). The

memory CPI can then be calculated by subtracting the instruction CPI (iCPI). The iCPI

is the average number of cycles spent on each instruction assuming a perfect memory

system, which means that the relationship CPI = iCPI+mCPI holds. The iCPI can be

derived from the instruction trace by feeding it into a CPU simulator that assumes a perfect

memory system. The simulator used for this study is somewhat crude with respect to

branches as it simply adds a fixed penalty for each taken branch, but other than that, it has

almost perfect accuracy.

The results obtained when applying these derivations are shown in Table 4.5. The Tp

columns show measured processing time in micro-seconds. Like before, this is shown

132

TCP/IP RPC

Tp [µs] Length iCPI mCPI Tp [µs] Length iCPI mCPI

BAD 167.0�1.75 4718 1.61 4.58 154.2�0.47 4253 1.69 4.66

STD 89.6�0.34 4750 1.72 1.58 85.1�0.53 4291 1.78 1.69

OUT 84.1�0.12 4728 1.61 1.50 81.0�0.16 4257 1.68 1.65

CLO 77.2�0.36 4684 1.61 1.28 71.0�0.29 4227 1.69 1.25

PIN 69.9�0.48 4245 1.57 1.31 57.7�0.18 3471 1.66 1.25

ALL 66.1�0.48 4215 1.57 1.17 49.2�0.12 3468 1.67 0.81

Table 4.5: Protocol Processing Costs

as the sample mean plus/minus the sample standard deviation. The columns labelled

Length give the trace length in instructions. Columns mCPI and iCPI are the memory and

instruction CPI values, respectively.

Looking at the iCPI columns, we find that both the TCP/IP and RPC stack break down

into three classes: the standard version has the largest iCPI, the versions using outlining

(BAD, OUT, CLO) have the second largest value, and the path-inlined versions have the

smallest value. This is expected since the code within each class is largely identical.

Since the CPU simulator adds a fixed penalty for each taken branch, the decrease in iCPI

when going from the standard version to the outlined versions corresponds directly to

the reduction in taken branches. Interestingly, outlining improves iCPI by almost exactly

0.1 cycles for both protocol stacks. This is a surprisingly large reduction considering

that path-inlining achieves a reduction of 0.04 cycles at the most. We expected that the

increased context available in the inlined versions would allow the compiler to improve

instruction scheduling more. Since this does not seem to be the case, the performance

improvement due to path-inlining stems mostly from a reduction in the critical-path code

size. Note that even in the best case, the iCPI value is still above 1.5. While some of

this can be attributed to suboptimal code generation on the part of gcc 2.6.0, a more

fundamental reason for this large value is the structure of systems code: the traces show

that there is very little actual computation, but much interpretation and branching.

The mCPI columns in the table show that, except for the RPC case of ALL, the CPU

spends well above 1 cycle per instruction waiting for memory (on average). Comparing

133

the mCPI values for the various versions, we find that the proposed techniques are rather

effective. Both protocol stacks achieve a reduction by a factor of more than 3.9 when

going from version BAD to version ALL. Even when comparing version ALL to STD we

find that the latter has an mCPI that is more than 35% larger. In terms of mCPI reduction,

cloning with a bipartite layout and path-inlining are about equally effective. The former is

slightly more effective for the TCP/IP stack, but in the RPC case, both achieve a reduction

of 0.4 cycles per instruction. Combining the two techniques does have some synergistic

effects for TCP/IP. The additional reduction compared to outlining or path-inlining alone

is small though, on the order of 0.11 to 0.14 cycles per instruction. Of all the mCPI

values, the value 0.81 for the ALL version of the RPC stack clearly stands out. Additional

measurements that are not reported here lead us to believe that the value is an anomaly:

just small changes to the code resulted in mCPI values more in line with the other results.

This serves as a reminder that while the proposed techniques improve cache behavior, it

is nearly impossible to achieve perfect control for any reasonably complex system.

4.3.3.3 Performance Improvement Comparison

It is now possible to compare the end-to-end results with the processing execution times

and the trace-based cache simulation results. First, we would like to verify that the out-

lining and cloning improvements are really primarily due to i-cache rather than due to

(uncontrolled) d-cache effects. The fact that the mCPI values are much bigger than zero

indicates that the memory system is the bottleneck. As all versions run out of the b-cache

(except for the BAD versions), the processing time improvement is dominated by changes

in the number of b-cache accesses (column ∆Nb in Table 4.6). Thus, we would like to

know the percentage I of b-cache access reduction due to the i-cache, as opposed to the

d-cache/write-buffer.4 If the number of b-cache accesses is reduced purely due to the i-

cache, the percentage would be 100%. If the reduction is purely due to the d-cache/write-

buffer, it would be 0%. A value greater than 100% indicates that d-cache/write-buffer

4In computing this percentage, it is important to keep in mind that the number of b-cache accesses due

to the i-cache is given by the number of b-cache accesses minus the number d-cache/write-buffer misses.

This is typically greater than the number of i-cache misses since a miss may lead to another i-cache block

being prefetched, thus resulting in two b-cache accesses.

134

performance got worse, but that the i-cache was able to compensate for the losses so that,

overall, the number of b-cache access was still reduced.

TCP/IP RPC

I ∆Te ∆Tp ∆Nb ∆Nm I ∆Te ∆Tp ∆Nb ∆Nm
[%] [µs] [µs] [1] [1] [%] [µs] [µs] [1] [1]

BAD!CLO 97 86.7 89.8 316 110 99 74.0 83.2 331 14

STD!OUT 114 7.4 5.5 103 0 71 4.6 4.1 66 0

OUT!CLO 91 5.3 6.9 109 0 94 11.5 10.0 100 0

OUT! PIN 70 9.5 14.2 168 0 67 27.3 23.3 341 0

PIN!ALL 93 3.2 3.8 102 0 95 1.8 8.5 41 0

Table 4.6: Comparison of Latency Improvement

Table 4.6 lists this percentage for both the TCP/IP and RPC protocol stack in the

respective columns labelled I. Note that in all but one case more than 90% of the b-

cache access reductions obtained through outlining and cloning are due to the i-cache.

The exception is where outlining is applied to the standard Scout prototype version of the

RPC stack. As shown in row STD!OUT, the i-cache can take credit for only 71% of

the reduction in b-cache accesses, but in all other cases, d-cache effects did not lead to

significantly overestimating the benefit of a technique.

It is also interesting to compare the end-to-end latency improvements (∆Te) with the

improvements in processing time (∆Tp) as reported in Table 4.6. The data shows that the

improvements are generally consistent with each other. The end-to-end improvement may

be bigger than the processing time improvement if portions of the untraced code executed

faster as well. The converse can occur if, for example, most of the improvement occurs in

a section of the code whose execution overlaps network communication. The only place

where these figures deviate significantly from each other is in the RPC case, when going

from the path-inlined version (PIN) to the version that was also cloned (ALL). In this case,

the processing time improvement is 8.5µs, but the observed end-to-end improvement is

only 1.8µs. This is the same case that caused the 0.81 mCPI reported in Table 4.5 and, as

explained previously, is most likely an anomaly.

Finally, it is possible to cross check whether the time improvements are consistent

135

with the reductions in the number of b-cache accesses. If we divide the processing time

improvements (∆Tp) in the second through fifth row by the difference in the number of

b-cache accesses (∆Nb) we get an average b-cache latency in the range from 5.6 to to 17.5

cycles.5 These values appear reasonable considering that a b-cache access takes 10 cycles

to complete. It would be unrealistic to expect exactly 10 cycles per miss since this simple

model ignores many of the finer aspects of the DEC 3000’s memory system. Also, the

same reasoning cannot be applied to the BAD!CLO improvements since the number of

b-cache blocks that remained cached across multiple path invocations was not measured.

Nevertheless, the table includes the data for the sake of completeness. Note that the

PIN!ALL change in the RPC stack yields an 8.5µs processing time improvement, but the

difference in the number of b-cache accesses is only 41. This confirms that the anomalous

improvement cannot be due to the decrease in the number of b-cache accesses since,

otherwise, that would imply that each access cost on the order of 36 cycles—almost four

times the theoretical latency.

4.3.3.4 Outlining Effectiveness

The results presented so far are somewhat misleading in that they underestimate the ben-

efits of outlining. While it does achieve performance improvements in and of itself, it is

also important as an enabling technology for path-inlining and cloning. Thanks to outlin-

ing, the amount of code replication due to path-inlining and cloning is greatly reduced.

Together with this size reduction goes an increase in dynamic instruction density, that is,

less memory bandwidth is wasted loading useless instructions. This can be demonstrated

quantitatively with the results presented in Table 4.7. It shows that without outlining (STD

version), around 20% of the instructions loaded into the cache never get executed. For

both protocol stacks, outlining reduces this by roughly a factor of 1.4. It is illustrative to

consider that a waste of 20% corresponds to 1.8 unused instructions per eight instructions

(one cache block). Outlining reduces this to about 1.3 unused instructions. This is a re-

spectable improvement, especially considering that outlining was applied conservatively.

The table also shows that outlining results in impressive critical-path code-size re-

5Ignoring the anomalous RPC case PIN!ALL and using a conversion factor of 175 cycles/µs.

136

Without Outlining With Outlining

i-cache i-cache
unused Size unused Size

TCP/IP 21% 5841 15% 3856

RPC 22% 5085 16% 3641

Table 4.7: Outlining Effectiveness

ductions. The Size columns show the static code size (in number of instructions) of the

latency critical path before and after outlining. In the TCP/IP stack, about 1985 instruc-

tions could be outlined, corresponding to 34% of the code. Note that this is almost a

full primary i-cache worth of instructions (8KB). Similarly, in the RPC stack 28% of the

5085 instructions could be outlined. This reinforces the claim that outlining is a useful

technique not only because of its direct benefits, but also as a means to greatly improve

cloning and path-inlining effectiveness. Minimizing the size of the path code improves

cloning flexibility and increases the likelihood that the entire path will fit into the cache.

4.4 Concluding Remarks

This chapter introduced four latency-reducing techniques: one can take advantage of

paths (outlining), two critically depend on paths (cloning and path-inlining), and the

fourth (last call optimization) is targeted at reducing overhead due to the deep call-chains

that are common to path execution. The fourth technique failed to measurably improve

performance in the test environment, but is likely to be beneficial under different circum-

stances, as discussed in Section 4.2.4. The three path-based techniques achieve two kinds

of benefits: first, they improve execution speed by reducing protocol processing latency

and, second, they improve predictability of path execution time by providing explicit con-

trol over critical-path code layout.

The path-based techniques reduce processing latency by improving the memory sys-

tem behavior of the code path, i.e., by reducing the mCPI. Fundamentally, this can be

achieved by (a) increasing the dynamic instruction stream density, (b) reducing the num-

ber of cache conflicts, and (c) reducing the critical-path code size. Each of these com-

137

ponents is addressed by one or more of the techniques presented. Since the gap between

processor and memory speed continues to widen, the techniques are likely to become

even more important in the future. For example, this study was conducted on a machine

with a 175MHz dual-issue Alpha processor and a 100MB/s memory system. Now, sys-

tems with 600MHz quadruple-issue processors and 200MB/s memory systems are readily

available—in other words, the peak execution rate increased by almost a factor of seven,

yet the memory bandwidth increased by only a factor of two.

Predictability is often just as important as raw performance. The proposed techniques

address this issue by enabling reducing fluctuations in execution speed. The BAD case

reported in Section 4.3 demonstrates that an uncontrolled i-cache layout can have a pro-

found effect. Even though this case was constructed artificially, suboptimal configurations

are possible and not are uncommon in practice. For example, the measured mCPI for the

DEC UNIX v3.2c TCP/IP stack is 2.3, which is significantly worse than the 1.58 mCPI

measured for the standard Scout prototype version. The proposed techniques, though not

guaranteeing perfect behavior, avoid such bad i-cache behavior.

138

CHAPTER 5

USING PATHS FOR RESOURCE MANAGEMENT

The greatest of all gifts is the power to

estimate things at their true worth.

– La Rochefoucauld

This chapter serves two purposes. First, it provides a concrete example for building

a simple, yet fully functional Scout appliance. The appliance presented is a network-

attached TV that can display MPEG encoded video [54, 67].

Second, this chapter demonstrates path-derived resource management benefits. To

emphasize resource management—as opposed to the path-code related benefits described

in the previous chapter—it is best to choose an appliance that spends most of its CPU

time in just one or a few modules. To this end, MPEG decoding is ideal. This compres-

sion algorithm is capable of reducing the size of a video by a factor of 10 to 100 and

with this high compression ratio comes a relatively expensive decompression algorithm.

Workstations have only recently become fast enough to perform MPEG decoding in real-

time. For example, on a first generation Alpha, it is not atypical that displaying a single

video uses up all available CPU time—ninety percent or more of which is spent in the

MPEG decoder. This means that code-path overhead such as cross-module call overhead

or extraneous operations due to abstraction boundaries are irrelevant for all practical pur-

poses. On the other hand, proper resource management, such as CPU scheduling or buffer

management, is crucial when multiple loads are put on the system simultaneously.

5.1 Building NetTV

This section describes the structure and modules of the NetTV appliance, how paths are

created, and what attributes are involved in path creation. It also provides evidence that

the performance of NetTV is reasonable given the hardware that it is running on.

139

5.1.1 Module Graph

The complete Scout module graph of NetTV is shown in Figure 5.1. A brief explanation

of the modules appearing in this graph is given in Table 5.1. In the figure, each arc is

labelled by the pair of interfaces that are used to communicate along the arc. If this

label contains just a single name, it means that the interface by that name is used to

communicate in both directions (up and down). If the label contains two names separated

by a slash (/), the first name refers to the interface used when communicating from the

module above to the one below, and the second refers to the interface used in the reverse

direction. For example, the label framebuf/hnulli near the arc between WiMP and TGA

indicates that TGA provides a framebuf interface to WiMP and that WiMP does not

provide an interface to TGA. A description of interfaces appearing in the graph is given

in Table 5.2.

The operation of most modules is readily understood from the descriptions given in

Table 5.1. The MPEG decoder deserves additional attention, however. MPEG expects the

compressed video messages to contain an integral number of MPEG macroblocks. The

number of macroblocks per message is expected to be small enough so that the message

size does not exceed the maximum transmission unit (MTU) of the network link. This

kind of application-level framing (ALF) [16] ensures that the MPEG decoder does not

reach the end of the message in the middle of a complex operation. This simplifies the

MPEG decoder, reduces queuing inside video paths, minimizes the number of context

switches required to process a message, enables integrated layer processing [16], and

enables early load shedding, as will be explained later.

Another aspect of the module graph that may not be entirely obvious is that STDIO

is connected to TERM by three separate arcs. The former module implements C standard

I/O library functions such as fopen and printf in terms of Scout paths. These func-

tions can be called by any other module in the graph and are provided as a convenience

and to facilitate porting existing software to Scout. To implement these services, STDIO

has one service access point that it expects to have at least three connections. The first

connection is used for standard input (stdin), the second for standard output (stdout),

140

aio

framebuf/<null>

aio

ns/<null>

aio

aio

aio

aio

aio

aio

aio

aio

aio

aiowinmgr/<null> winmgr/<null>

TGA TULIP

ETH

ARP

IP

UDP

MFLOW

ICMP

SHELL

MPEGTERM

STDIO

MOUSE

KBD

WiMP

Figure 5.1: Module Graph For MPEG Example

and the third for standard error output (stderr). In the NetTV example, these are con-

nected to TERM, so all standard I/O occurs through a terminal emulator window. If more

than three connections are made, then paths through those additional connections can be

created by calling fopen with a path name that starts with the module name to which

which the connection leads (if multiple connections lead to the same module name, the

first one is used).

5.1.2 Paths

Given the module graph, how are paths used in the NetTV appliance? As discussed in

Chapter 2, an initial set of paths is created at system boot time. The initial paths for

NetTV are shown in Figure 5.2. As the figure shows, module STDIO creates three paths

141

Module: Description:

TULIP Device driver for DECchip 21040 Ethernet chip.

ETH Device-independent part of Ethernet protocol processing [65].

ARP The Ethernet Address Resolution Protocol [79].

IP The Internet Protocol [82].

ICMP The Internet Control Message Protocol [81].

UDP The User Datagram Protocol [80].

SHELL The command shell. It receives commands such as requests to display

a new video and creates appropriate paths in response.

MFLOW Multimedia-oriented flowcontrol protocol.

MPEG Implements the MPEG video decompression algorithm.

TGA Device driver for DECchip 21030 based frame buffers.

KBD Device driver for IBM PC-AT keyboard interface.

MOUSE Implements IBM PS/2 mouse protocol.

WiMP Window manager with paths: MGR [106] derived window manager that

supports paths.

TERM Terminal emulator.

STDIO Translates between C-style stdio streams and Scout paths. This is used

for tasks that are not performance critical, such as error logging.

Table 5.1: Description of NetTV Modules

Interface: Description:

aio Asynchronous I/O. Supports sending of messages (sequence of data bytes).

framebuf Frame buffer. Provides access to the raw frame buffer and allows registering

callbacks that are invoked at the beginning of every vertical synchronization

blanking period.

winmgr Window manager. Supports bitblt [78], text rendering, and similar graphics

primitives.

ns Naming-service. Supports lookup and reverse-lookup of arbitrary fixed-size

name/value pairs.

Table 5.2: Description of NetTV Interfaces

142

to TERM—one each for stdin, stdout, and stderr. These paths are created so error

logging and keyboard I/O can be performed through the windowing system (by default,

standard I/O is connected to the boot console, if there is one). Module TERM realizes

this I/O by creating a path to WiMP. This path provides a window on the output side

and provides access to keyboard and mouse events on the input side. WiMP itself creates

paths to TGA, KBD and MOUSE so it can access the graphics frame buffer and receive

raw keyboard and mouse data, respectively. In the networking subsystem, ICMP creates

a path through IP to handle ICMP requests. Module IP creates a path to ARP so it can

translate IP addresses into link-level (Ethernet) addresses. ARP creates a path for its own

use through ETH to be able to receive and respond to ARP messages and, finally, module

SHELL creates a path through UDP so it can receive commands from the network.

WiMP

TERM

STDIO

KBD

MOUSE

MPEG

MFLOW

UDP

IP

TULIP

ARP

ICMP

SHELL

ETH

TGA

Figure 5.2: Paths Created at Boot Time

143

5.1.2.1 Shell Commands

Once the shell module has created its path through UDP, it simply waits for command

messages to arrive. When such a message arrives, it interprets the command and executes

it. In Scout, interpretation involves translating the command and optional parameters

into appropriate attribute sets, and execution corresponds to making pathCreate and

pathExtend calls as necessary. Note that in this configuration, shell commands come

in from the network, not from a user typing at the keyboard.

The syntax of shell command messages is similar to UNIX-style command lines. Each

message simply contains a text string that is interpreted as a command with a list of

associated parameters:

command-name (option-name[=option-value]): : :

The command name is used to lookup the recipe of how to translate the arguments into

path creation attributes and how to use those attributes to create the paths necessary to

achieve the desired semantics. For example, the mpeg decode command would be

translated into a pathCreate call on router MPEG with an attribute set that contains

an indication of the maximum message size (this is possible since MPEG uses ALF)

and an attribute that specifies the remote address of the video source (which is implied

by the source address in the command message). Then the shell would have to invoke

pathExtend at the MPEG end of the newly created path, specifying an attribute that

forces the path through WiMP and from there on to TGA. A description of the most

important attributes used during path creation in NetTV is given in Table 5.3.

Note that the shell needs to have explicit instructions on how to translate each com-

mand into one or more appropriate paths. In a sense, these instructions most closely

resemble what is traditionally regarded as the application—the modules in the paths that

are providing the desired semantics are generally unaware of, and do not have to know

about, how they are being used. That is, the majority of modules are expected to resemble

simple filters.

144

Name: Value type: Description:

WINDOW ID long Informs WiMP (or some other window manager) of the id

of the window that should be used for the path. If this at-

tribute is not specified, a new window is created. This en-

ables embedding performance critical paths in a graphical

user interface (e.g., a VCR-like interface for NetTV).

PATHNAME char * Forces the route a path must follow. The value is a string

consisting of a sequence of module names, separated by

slash characters. With the example graph shown in Fig-

ure 5.1, setting this to "WiMP/TGA"when creating a path

at module MPEG, forces the path through WiMP to TGA
(or fails, if such a path is not possible). Support for some

form of wildcards may be useful but is not currently sup-

ported.

MAX SIZE int Specifies maximum message size. This, for example, is

used by IP to determine whether datagram reassembly may

be needed.

MIN SIZE int Specifies minimum message size.

PARTICIPANTS Part * Specifies the remote and/or the local network address that

should be used for communication along the path. In

NetTV, an mpeg decode command causes this attribute

to be set to the remote network address of of the peer that

originated the command.

PASSIVE OPEN bool Used to create paths through the network subsystem that

can receive data from any peer. For passively opened paths,

the local network address must be specified in PARTICI-
PANTS, for active paths the remote network address must

be specified.

PROT ID long Used between modules that implement networking proto-

cols to communicate demultiplexing information. Specifi-

cally, the value of this attribute is the number that uniquely

identifies the next higher layer module to the module that

is interpreting this attribute. For example, in Scout, UDP

is identified by number five, which IP can use to translate

into the IP-relative protocol number 0x11. Unlike other

attributes, this one is reset by each networking protocol and

is passed through unmodified by non-networking protocol

modules.

Table 5.3: Description of a Commonly-used Path Attributes

145

5.1.2.2 Video Paths

Figure 5.3 shows a typical NetTV video path. One such path is created for each video

to be displayed on the appliance. Each video path starts at the Ethernet device driver

(TULIP), goes through the network subsystem, the flow-control protocol (MFLOW) and

the MPEG decoder, and then through the window manager (WiMP) to the graphics frame

buffer (TGA). For simplicity, only the main queues are shown: the input queue in module

TULIP and the output queue in TGA. Both queues are serviced by interrupt handlers. In

the Ethernet device driver, the queue is filled in response to receive interrupts, and in the

frame buffer module, the output queue is drained in response to interrupts that indicate

the beginning of a vertical synchronization period. Output to the display is synchronized

to this signal because there is no benefit to updating the display at a higher frequency.

There are three points worth emphasizing about these path. First, there are no queues

other than the ones in the device-drivers. As mentioned above, this is due to MPEG’s use

of ALF. Second, ALF—along with explicit paths—enables integrated layer processing.

Since MPEG reads the network messages in units of 32 bits, it would be straight-forward

to integrate the (optional) UDP checksum with the reading of the MPEG data, for exam-

ple. This would require a path-transformation rule that matches MPEG being run over

UDP. If this pattern were to match, the path could be transformed by replacing the UDP

and MPEG receive processing functions with functions that implement the UDP check-

sum computation as part of MPEG’s reading of the packet data. Third, without queuing

in the middle of the path, scheduling is simplified—if the output queue is already full,

there is little point in scheduling a thread to process a packet in the input queue. This

implication would not hold in the presence of additional queues.

5.1.3 Base Performance

It is interesting to compare the base performance of Scout NetTV to a general purpose

operating system running on the same hardware. To this end, Table 5.4 shows the maxi-

mum frame rate that Scout and a Linux-based video decoder can achieve for various short

videos. Along with the maximum frame rates, it also lists the length of the video in num-

146

TERM

STDIO

KBD

MOUSE

MPEG

MFLOW

UDP

IP

TULIP

ARP

ICMP

SHELL

ETH

TGA

WiMP

Figure 5.3: Example Video Paths

ber of frames. All measurements were performed on a first-generation 21064A Alpha

running at 300MHz. The Scout and Linux MPEG-decoder were derived from the same

code base [74], so the only significant difference between the two systems is that Linux

requires a context switch to move a video frame from the MPEG decoder process to the

windowing system (X11). Since almost no time is spent in the networking subsystem,

the performance of that subsystem does not significantly influence overall performance

(in fact, separate measurements yielded roughly the same maximum frame rates when

sourcing the video from the local disk, or more precisely, the disk cache).

As the table shows, the Scout appliance consistently outperforms the Linux based sys-

tem by 20-34%. Of course, this is to be expected given that Linux is a general purpose

system and the Scout appliance is relatively custom built for the purpose. For this reason,

it would not be fair to say Linux is slow (indeed, it performs quite well), but the compar-

ison does show that Scout achieves a performance level that is at least consistent with the

machine it is running on.

147

of max. rate [fps]

Video frames Scout Linux

Flower 150 44.7 37.1

Neptune 1345 49.9 39.2

RedsNightmare 1210 67.1 55.5

Canyon 1758 245.9 183.3

Table 5.4: Coarse Grain Comparison of Scout and Linux

The comparison also illustrates that if the goal is to build an information appliance

that displays MPEG encoded video, and nothing else, then a configurable system like

Scout might indeed be the better choice. A simple application like this one results in a

Scout kernel that is both small (roughly seven times smaller than the Linux kernel) and

fast (20-30% faster than Linux for the benchmark videos).

5.2 Resource Management

This section discusses how Scout paths assist in three different resource management

tasks: proper sizing of I/O-queues, proper scheduling of the CPU, and admission control.

5.2.1 Queues

As Figure 5.3 shows, the two queues of primary interest in a video path are the input queue

in module TULIP and the output queue in module TGA. Both queues are unavoidable:

fundamentally, the input queue is necessary because, for high-latency networks, multiple

network packets may have to be in transit at any given time to be able to sustain the

throughput needed by the video. If multiple packets are in transit, then, due to network

jitter, these packets may all arrive clustered together and since the peak arrival rate at

the Ethernet is much higher than the typical MPEG processing rate, the queue is needed

to buffer such bursts. The output queue is also used to absorb jitter, but it does so at a

more global level. First, decompression itself introduces significant jitter. Depending on

the spatial and temporal complexity of a video scene, the encoded size of any particular

video frame may be orders of magnitudes different from the size of the average frame

148

in that stream. Second, the network itself may suffer from significant jitter, e.g., due to

temporary congestion of a network link. The third jitter component is due to the sender

of the MPEG stream. For example, the sender may read the video from a disk drive that

may be accessed concurrently by other tasks.

Since there are queues in each path, an important resource management question is

how big these queues should be. To conserve memory, it is clearly desirable to keep

them as small as possible. This is particularly true for the output queue since each queue

element consists of a complete video frame, which may be quite sizeable (225KB for a

320�240 RGB image). But on the other hand, the queues need to be big enough so that

they can absorb most, if not all jitter normally encountered.

First, consider the input queue. If processing a single packet requires more time than

it takes to request a new packet from the source, then an input queue that can hold two

packets is sufficient: one slot is occupied by the packet currently being processed, and the

second slot is advertised as free to the source. By the time the processing of the current

packet has completed, the next packet will have arrived, and thus, the processor is never

kept idle. On the other hand, if the roundtrip time (RTT) is greater than the time to process

a packet, then the input queue needs to be two times the RTT�bandwidth product of the

network. This relationship is easy to derive, but the intuition behind it is that several

packets need to be grouped together so that the processing time of the packet group is at

least as big as the roundtrip time. Then two slots for such packet groups are required to

keep the network pipe full. This discussion implies that in order to properly size the input

queue, it is necessary to know the relationship between the average roundtrip time and the

average processing time per packet. The roundtrip time can be estimated, for example,

with the algorithm typically used for TCP [50]. For example, in the protocol stack of

NetTV, MFLOW could implement this by putting a timestamp in its packet header and

making available this measured roundtrip time by maintaining a well-known path attribute

(e.g., AVG RTT), giving the measured average roundtrip time in micro-seconds. Keeping

track of the path execution time is straight-forward as well, especially if the scheduler

maintains a path attribute that specifies the total CPU time accumulated so far. If such

is the case, the average packet processing time can be approximated by the amount by

149

which the accumulated CPU time increases while processing a packet. With this setup, the

Ethernet driver (TULIP) can simply test whether both the average roundtrip time attribute

and the accumulated CPU time attribute are present in the path’s attribute set. If so, it

can use their values to compute the proper queue sizes and resize the queues accordingly.

Note that the path plays two central roles in this application: first, it provides the means to

communicate information (the roundtrip time from MFLOW to TULIP and the processing

time from the scheduler to TULIP) and second, it enables accurate measuring of the per

packet processing time (since the path extends all the way from the source device to the

sink device).

In the case of the output queue, the factors influencing queue size are more varied

and complex. In theory, it might be possible to compute an appropriate queue size based

on recent observed history. However, the time-scales involved easily reach a range that

is readily noticeable by a human user. Hence, a feedback based algorithm is likely too

slow to be practical. In effect, this means that automatic control of this parameter requires

either distributed paths or a network resource reservation protocol such as RSVP [11] (or

a combination of both). For these reasons, Scout currently leaves this parameter under

user control.

5.2.2 Scheduling

To guarantee proper scheduling, two properties must be satisfied. First, the system must

always execute the highest-priority runnable path. In other words, priority inversion must

be avoided. Second, the scheduling parameters (policy and priority) must computed prop-

erly for each path. Fortunately, paths assist in solving both problems.

5.2.2.1 Avoiding Priority Inversion

In traditional systems, a frequent source of priority inversion is due to queues that are

shared by distinct dataflows. For example, UNIX commonly uses a single queue for all

IP packets. This can cause priority inversion since low-priority IP packets may have to

be processed before a high-priority packet can be discovered and processed. Note that

this problem cannot be solved simply by replacing the shared IP queue with a priority

150

queue. This is because IP itself does not necessarily have sufficient information available

to judge the priority of a packet. The Scout NetTV appliance can easily avoid this problem

because each video path has its own input queue. With this setup, newly arriving packets

are classified at interrupt time and then placed on the correct path queue.

Avoiding priority inversion is one of the more significant advantages of paths and can

readily be demonstrated. Consider the case where a video is being played back on a re-

mote machine. A malicious or negligent user could start sending ICMP ECHO requests at

a high rate to the target system. Since each ICMP ECHO request triggers a corresponding

reply, this can lead to a significant CPU load on the target system. In traditional systems

such as Linux, where all arriving network packets have to go through a shared queue, this

leads to priority inversion. Specifically, low-priority ICMP ECHO requests may appear

in the shared IP input queue ahead of high-priority video packets. This causes traditional

systems to spend too much time processing ICMP packets and too little time processing

video packets. In contrast, no such priority inversion occurs in Scout since separate paths

are used for handling video and ICMP packets.

The effect of priority-inversion is illustrated in Table 5.5, which shows how the max-

imum decoding frame rate for the Neptune video (see Table 5.4) drops when the ICMP

load is added to the Scout and Linux systems, respectively. The additional load consists

of a flood of ICMP ECHO requests. This load is generated using the UNIX ping -f

command. This command either sends ECHO requests as fast as it receives replies or at

a minimum rate of 100 packets per second. In other words, rather than a truly malicious

user, it represents a user that attempts to send packets as quickly as possible as long as the

target system can keep up with the stream of requests, but limits the sending rate to 100

packets per second if the system appears overloaded.

Frame-rate [fps]

unloaded loaded ∆
Scout 49.9 49.8 -0.2%

Linux 39.2 22.7 -42.1%

Table 5.5: Frame Rate Under Load

151

In the Scout case, the video path is run at the default round-robin priority, whereas the

path handling ICMP requests is run at the next lower priority.1 In contrast, Linux handles

ICMP and video packets identically up to the point where IP demultiplexes them into

UDP and ICMP packets. As the table shows, adding the ICMP load has little effect on the

frame rate for Scout, while the maximum frame-rate for Linux drops by more than 42%.

Clearly, avoiding priority inversion can have significant benefits. Nevertheless, this is not

to say that paths are the only way to solve this particular problem. For example, both lazy

receiver processing [28] and avoiding receive livelock [68] can have similar benefits. The

point is, however, that the per-path queues in Scout avoid priority inversion naturally and

without requiring any special effort on the part of the system programmer.

5.2.2.2 Scheduling According to Bottleneck Queue

Paths also help ensuring that the right scheduling policy and priority is used to process

video packets. The default Scout scheduler is a fixed-priority, round-robin scheduler.

Since video is periodic, it seems reasonable to use rate-monotonic (RM) scheduling for

MPEG paths [58]. With this approach, priorities are assigned in increasing order of frame

rate and non-realtime paths are given priorities below those of any realtime path. How-

ever, for video, there are several reasons why earliest-deadline-first (EDF) scheduling

more practical:

� The frame-rate should be user-controllable to support slow-motion play and fast for-

warding. This implies that a large and indeed variable number of RM priority-levels

may be necessary. Otherwise, two MPEG paths that have similar, but not identical,

frame-rates could not be distinguished and therefore could not be scheduled prop-

erly. Unfortunately, with a large number of priority levels, RM scheduling is less

efficient than EDF scheduling because for typical implementations, RM scheduling

has a time-complexity that is linear in the number of priority-levels whereas EDF

has a time-complexity that is linear only in the number of runnable threads.

1Round-robin instead of realtime scheduling is used for the video path since the current Scout scheduler

cannot automatically determine the correct CPU percentage to allocate to the realtime policy. Using a

higher round-robin priority compared to the ICMP path has this effect and is sufficient for the purpose of

this demonstration.

152

� MPEG decoding is periodic, but not perfectly so. Consider playing a movie at 31Hz

on a machine with a display update frequency of 30Hz. Given that only 30 images

can be displayed every second, it will be necessary to drop one image during each

one second interval. When the drop occurs, there is no need to schedule that path,

so a fixed priority would be suboptimal.

� While not a quantitative argument, probably the strongest case for EDF scheduling

is that it is the natural choice for a soft realtime thread that moves data from an

input queue to an output queue. For example, if the output queue drains at 30

frames/second and the queue is half full, it is trivial to compute the deadline by

which the next frame has to be produced.

For these reasons, Scout supports EDF scheduling for videos considered important by

the user. As alluded to previously, RM scheduling could work well in a system where the

workload is static (known at system build time). However, in a dynamic system such as

Scout, RM would most likely have to be approximated with a single or just a few priorities

for realtime tasks. If so, it is easy to demonstrate the advantages of EDF scheduling.

For example, using EDF scheduling, Scout can display 8 Canyon movies at a rate of 10

frames per second and a Neptune movie playing at 30 frames per second without missing

any deadlines. The same load performs poorly when using a single round-robin priority

for the realtime tasks: with an output queue size of 128 frames per video path, on the

order of 850 out of 1345 deadlines are missed by the path displaying the Neptune movie.

The reason for this is that the round-robin scheduler keeps allocating CPU time to the

8 Canyon movies as long as their output queues are not full, even though the Neptune

movie may need the CPU more urgently. Of course, this particular example could be

accommodated trivially by using two realtime priorities, but the point is that it is always

possible to construct equivalent examples as long as the number of round-robin priorities

is fixed.

The interesting part of EDF scheduling is how the deadline of video paths is computed.

If path execution is the bottleneck, then the goal should be to keep the output queue as

full as possible. This increases the chance that a video can be displayed without missed

153

deadlines even if some frames transiently overload the CPU. On the other hand, if network

latency is the bottleneck, then the deadline should be based on the state of the input queue.

Since at any given time some number of packets (n) should be in the transit to keep the

network pipe full, the flow control protocol implemented by MFLOW must be able to

advertise an open window of size n. This means that the deadline is the time at which the

input queue would have less than n free slots. This time can be estimated based on the

current length of the queue and the average packet arrival rate.

Since the path provides direct access to both queues, the effective deadline can simply

be computed as the minimum of the deadlines associated with each queue. Alternatively,

the path could use the path execution time and network roundtrip time to decide which

queue is the bottleneck queue, and then schedule according to the bottleneck queue only.

The latter approach is slightly more efficient, but would require a clear separation between

path execution time and network roundtrip time.

Would scheduling based on the input queue ever make a difference compared to

scheduling according to the output queue? Since the two queues are connected by a

path, whether a scheduling decision can take effect depends on the state of the other, non-

bottleneck queue—output cannot be produced unless input is available and input cannot

be processed unless there is space in the output queue. However, despite this dependency,

scheduling according to the bottleneck queue would make a difference for video paths.

This is because there is not a simple one-to-one correspondence between input packets

and output frames. The MPEG module effectively processes and then buffers incoming

packets until a full output frame has been reassembled. Thus, scheduling according to the

input queue would tend to process packets as soon as they arrive, which would help to

keep the network pipe full. In contrast, scheduling according to the output queue would

tend to cluster packet processing since incoming packets would be queued up until an out-

put slot becomes available. This clustering (batching) would improve the effectiveness of

the memory system and therefore effectiveness of the CPU at a time when CPU cycles

are at a premium—certainly a desirable property.

154

5.2.3 Admission Control

Paths are also useful to decide whether or not a new video path should be admitted to the

system. Admission control involves testing whether sufficient resources are available for a

new path. The primary resources of concern are memory, CPU cycles, and I/O bandwidth.

Since each path has a unique id, it is trivial to account for memory consumption on a per-

path basis. While, in general, it is difficult to predict memory requirements a priori, it is

easy to create a path and let it execute as long as it remains within the memory constraints

set by the admission policy. This is particularly practical since experience indicates that

many paths require little or no dynamic memory allocation once they are fully established.

Thus, should a path exceed its memory limits, this fact will typically be discovered during

path creation time.

Deciding admissibility with respect to CPU load is more difficult since by the time

CPU overload is detected it may be too late for corrective actions. MPEG encoded videos

make the problem especially difficult since the decoding time per frame is highly variable.

Fortunately, there appears to be a fairly good correlation between the average frame size

in a video and the average decoding time per video frame. For example, the correlation

for a selection of fourteen video clips is shown in Figure 5.4. The selection includes

commercials, cartoons, and scenes from feature-length movies. The frame type sequences

and graphical resolution also varies widely. The graph shows the average decoding time

in seconds per frame as a function of the average frame size of each clip. Each data point

is represented by a small diamond shaped marker and the sample points are connected by

a solid line. In addition to this raw data, a linear regression curve is shown as a dashed

line. The R2 coefficient of the linear regression through the fourteen sample points is only

0.78 and the graph shows that there certainly is quite some variability. On the other hand,

it appears that the correlation is good enough to be useful for making at least a rough

estimate as to whether a new video path could be accommodated or not.

The parameters of the linear regression depend on the CPU type, clock rate, cache

sizes, graphics card, and so on, and are therefore highly system dependent. Rather than

laboriously deriving the parameters for each platform, it would seem more appropriate to

155

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

5000 10000 15000 20000 25000 30000 35000 40000 45000

D
ec

o
d
in

g
 t

im
e

[s
ec

]

Framesize [bits]

dithertime/pixel=1.02e-07, intercept=0.000173404, slope=3.11173e-07, R^2=0.775904

line 1
line 2

Figure 5.4: Correlation Between MPEG Frame Size and Decoding Time

compute the parameters online as videos are being played back. This, again, is made easy

by the fact that it is straight-forward to keep track of the per-path execution time.

Yet another path application comes into play when the admission control determines

that a given video cannot be accommodated. At that point, a user may choose to view

the video with degraded quality. For example, the user may request that only every third

image be displayed. Thanks to ALF and early demultiplexing, this could be realized by

a special classification filter that drops all packets except for those whose frame number

is an integer multiple of three. In other words, paths make it possible to shed load at the

earliest possible point within the system. Dropping the frames directly at the source may

be an even better solution, but this is possible only if the video is transmitted point-to-

point, not via multicast.

Admission control of the final resource of interest—I/O bandwidth—benefits from

paths since device-to-device paths such as the video paths identify which devices are

156

used. For video paths, the necessary network bandwidth and graphics adapter bandwidth

can be computed relatively easily based on the geometric size of the video, its frame rate,

and the average size of an encoded frame. Hence, to decide whether a newly created path

should be admitted, the admission control policy would simply have to check whether

enough bandwidth is remaining both for the source and the sink device of the path.

157

CHAPTER 6

CONCLUSIONS

Si finis bonus est, totum bonum erit.

(If the end be well, all is well.)

– Gesta Romanorum (Tale LXVII)

6.1 Summary

This dissertation presents the Scout operating system architecture, which is oriented to-

wards communication-oriented systems in general, and information appliances in partic-

ular. A cornerstone of this architecture is a new abstraction called the path, which can

be viewed as a vertical slice through a modular system. Paths are complementary to, and

just as fundamental as, modular system design. They are modeled after virtual circuits

in communication networks, and hence, can be viewed as bidirectional dataflows. Since

data processing inside a system is considerably richer than the processing that occurs

along a virtual circuit in a traditional (passive) communication network, paths are signif-

icantly more complex and versatile. Owing to this necessary flexibility, it just as natural

to view paths as processing pipe-lines, paths of execution, resource accounts, or loci of

identity. No one view is technically more correct than the others, but depending on the

context in which paths are applied, choosing the right view often simplifies developing an

appropriate mental model.

The path abstraction enables building efficient communication-oriented systems be-

cause it encapsulates performance critical dataflows and the processing along those flows

across multiple module boundaries. By crossing multiple modules, a path enables global

optimizations that are typically difficult or impossible to realize in strictly modular sys-

tems. The same encapsulation also enables using paths as the building blocks to re-

158

alize systems that provide quality-of-service guarantees that are difficult to realize in

purely modular systems. In essence, paths make it easy to distinguish between differ-

ent dataflows in the system and to monitor and control their behavior.

Scout is a modular architecture that employs paths as the primary means to com-

municate data through a system. Using just a single communication abstraction greatly

simplifies the programming model as it relieves system designers from having to choose

from similar yet sometimes conflicting abstractions. Paths are passive entities (data-lanes)

through which data is shepherded by threads. Scout defines a simple but flexible execution

model that avoids deadlock and depends on higher-level mechanisms to bound resource

consumption due to threads. Most of the time, the path that should be used to transmit or

receive data is known from context. To accommodate the other case, where the appropri-

ate path is implied by the contents of the data itself, Scout supports a packet classification

scheme that is both modular and efficient. Systems that employ classifiers without paths

typically cause a duplication of all demultiplexing decisions, since the classifier has to

make the decisions to find the right place to deliver the message to, but then the same

classification decisions have to be repeated as part of the regular data processing. Scout is

able to avoid such duplication since the demultiplexing decisions are represented explic-

itly in the path as a sequence of stages.

To validate the basic architecture, this dissertation studies two of the potential appli-

cations of paths. The first study investigates paths as a mechanism to improve networking

subsystem performance and the second study investigates paths as a mechanism to im-

prove resource management in a networked television appliance (NetTV). The NetTV

study also provides a concrete example for building a simple yet useful information ap-

pliance with Scout.

The networking subsystem study tests three path-based optimization techniques—

outlining, cloning, and path-inlining—on both a TCP/IP and an RPC protocol stack.

The techniques are primarily targeted at improving the memory system behavior of the

latency-sensitive paths that occur when processing small packets. The techniques are

able to achieve significant improvements in latency and dramatic reductions in the aver-

age number of cycles that a CPU is stalled due to the memory system.

159

In contrast, the structure of the NetTV appliance is such that the overhead due to

module boundaries is not an overriding concern. However, since displaying video is a

complex and computationally expensive soft realtime task, proper resource management

is essential to providing appropriate quality-of-service. The study shows that paths can

assist in solving such resource management problems in an efficient and easy manner.

6.2 Contributions

This dissertation supports the claim that information appliances and communication-

oriented systems in general require and benefit from novel operating system concepts.

The path abstraction and Scout’s demultiplexing scheme are just two examples discussed

in this dissertation that are novel concepts designed specifically with the needs of infor-

mation appliances in mind. This is not to say that these concepts are necessarily limited to

appliances, or that they would not have been conceived without appliances, but the needs

of appliances at least fostered their invention. The ultimate truth of the claim can only be

evaluated as a function of the success or failure that information appliances experience in

the long term.

The dissertation establishes that paths can be evolved into a fundamental abstraction.

In Scout, paths are the only means to communicate, in a controlled fashion, data between

an arbitrary module pair. Paths also have been shown to be efficient, general, and useful.

The generality of paths derives from the fact that they can be so short that a Scout system

can degenerate into a traditional modular system. Such a degenerate system is certainly

not optimal with respect to performance or resource management, but it ensures that any

modular system can be built with Scout. The two validation studies presented in this

dissertation suggest that paths are useful both to optimizing the processing along a path,

as well as to ensure proper resource management on a per path basis. Micro- and macro-

benchmarks show that paths do not incur undue space or time overhead and often help

improving system performance. In other words, Scout paths are efficient and light-weight.

160

6.3 Future Directions

As discussed earlier, this dissertation establishes the basic Scout and path architecture and

provides initial evidence that the architecture is indeed appropriate for communication-

oriented appliances. At the same time, it leaves many questions unanswered. For ex-

ample, exactly what kinds of path invariants are meaningful and exploitable in different

subsystems, and what tools can be used to exploit these invariants certainly warrants fur-

ther research. Similarly, the usefulness of quasi-invariants likely deserves more attention.

For the networking subsystem, there are cases where quasi-invariants could be beneficial,

and the same is expected to be true for other parts of the system as well. For example, IP

routing information changes infrequently relative to the life time of paths, but since that

information is not guaranteed to remain constant, the current Scout system does not permit

paths that depend on IP routing information to extend beyond IP. With quasi-invariants,

it would be trivial to avoid this limitation. However, whether or not the advantages due

to quasi-invariants would outweigh the additional complexity they introduce is not obvi-

ous. To answer such questions, it is necessary to collect more experience in designing,

building, and studying actual appliances that span a wide range of applications. A few

examples are discussed next.

� IP router: An IP router supporting different quality-of-service on a per-flow basis

can exploit paths to ensure proper resource management for each flow.

� Active network node: Using Scout to implement nodes in an active network [103]

allows efficient forwarding of passive packets, yet flexible processing of active

packets. The modularity of Scout should also make it easy to quickly adapt to

different hardware and facility experimentation with different processing engines.

� Scalable storage server node: A variety of path-based benefits are imaginable for

the disk subsystem. For example, it might be useful to associate one of the data

access patterns identified by Cao et al. [12] with each path that traverses the disk

subsystem. The access pattern of a path could be used by the modules in the disk

subsystem to select an appropriate caching policy. Also, code-optimization tech-

161

niques could be used to improve the performance of small reads or writes [85]. As

a final example, paths through the disk subsystem could prove useful in schedul-

ing disk accesses in a manner that will ensure a certain level of quality-of-service

for the path. Employing Scout to build the nodes in a scalable storage server or

network-attached disks would provide an ideal target to study such path applica-

tions.

� Web server: Building a web server with Scout is interesting for two reasons. First,

Scout paths should make it possible to build powerful web servers based on com-

modity hardware and adequate web servers based on minimum cost appliances

(such as network-attached thermometers). Second, paths should also enable pro-

viding differentiated service to the various classes of customers.

� Network firewall: Building a firewall based on general purpose operating system

makes guaranteeing correctness and safety a difficult problem. A Scout system

could facilitate this task because its modular structure enables solving the problem

with the smallest possible number of modules, which minimizes the amount of code

that would have to be proven secure. Similar to the IP router example, paths could

be used to separate dataflows with distinct security requirements.

� Network camera: Combining NetTV with a remote network camera makes it pos-

sible to study and exploit paths in a truly end-to-end environment. This is partic-

ularly interesting in a setting that involves intermediate routers that either support

active computation or at least distinct levels of quality-of-service.

� Mobility: Appliances such as personal information managers will be used in a

roaming mode and will therefore be connected a communication network on an in-

termittent basis only. Handling intermittent connectivity typically requires support

from higher-level and often application-specific software [75], but studying such

appliances should also provide interesting insights on the path architecture. For ex-

ample, the role of quasi-invariants could be significantly more important on mobile

appliances than on stationary ones.

162

6.3.1 CPU Scheduling

Scout focuses on information appliances which implies that both soft realtime and non-

realtime tasks need to be accommodated, that tasks are created dynamically at runtime,

and that the CPU scheduler should be able to operate well in a mostly autonomous fashion.

The requirement of autonomous operation is due to the fact that appliances should not rely

on a sophisticated user that ensures a given task mix is reasonable. This is because either

the user is not sophisticated, does not want to worry about such menial tasks, or does not

exist at all (e.g., in case of a remote operated appliances).

Finding an appropriate soft realtime scheduler is difficult because, unlike many hard

realtime schedulers, it must be fairly general. For example, it cannot assume that syn-

chronization constraints within a task are trivial or negligible. Non-trivial synchronization

makes it difficult to employ planning-based approaches, such as the one presented in [53].

On the other hand, if a user is committed to a certain realtime task, then it probably would

not be acceptable if starting another unrelated task, which may not even be a realtime

task, would cause the realtime task to start to misbehave. The desire to support at least

a certain level of fate isolation makes it difficult to use fair share based schedulers such

as the one presented in [70]. At the same time, hierarchical schedulers such as the ones

presented in [36, 41] are not of much help since realtime scheduling by its very nature is

not hierarchical (time is absolute).

On the positive side, it should be possible to exploit the relatively simple linear struc-

ture of paths to improve scheduling decisions. For example, for I/O bound tasks the size

of the input and output queues convey important information. Similarly, average path

execution time and related quantities should help in solving the scheduling problem.

Aside from finding an appropriate scheduling mechanism, the question of finding a

useful, easy to understand policy is crucial in its own right. Many sophisticated schedul-

ing mechanism make use of priorities, deadlines, latency tolerances, and various other pa-

rameters. In an appliance-like environment, a policy would be required that could derive

these parameters either fully automatically, based on observing (remote) user behavior, or

based on simple hints by the user.

163

6.3.2 Distributed Paths

At present Scout paths do not extend beyond the boundary of a single system. Extend-

ing paths to cover end-to-end data flows even when distributed across multiple systems

is both a logical and useful step. For example, distributed paths are necessary to provide

truly end-to-end quality-of-service assurances. Distributed paths are particularly impor-

tant when operating in a wide-area network where network bandwidth and latency are

often the limiting factors to overall performance.

Distributed paths are likely to be realizable on top of existing Scout paths and cor-

responding network concepts, such as flows [11]. The more interesting questions relate

to how path creation should be controlled in a distributed environment. For example,

the source and destination machines may want to coordinate the values for certain path

invariants (e.g., maximum packet size or throughput may depend on the network connec-

tion being used). Thus, new networking protocols may be needed to support exchanging

such meta-path information.

An interesting observation is that Scout paths and the virtual circuits they are mod-

eled after appear to be on a course of convergence. Research in active networks [103]

effectively makes it, at least theoretically, possible to build network routers that perform

processing as complex as that in Scout modules. It is therefore fully expected that Scout

distributed paths will be able to leverage off of research in active networks and vice versa.

6.3.3 Secure Paths

Scout paths encapsulate dataflows. Since the task of a secure system is often to safe-guard

dataflows, it appears that Scout paths could provide a natural foundation for building se-

cure systems. Securing data flows could occur at two levels: in a distributed environment

where each individual Scout machine executes code that is trusted or within a single Scout

machine where there is a certain level of internal mistrust. The latter would require adding

mechanisms to Scout to enforce the safety of paths, such as hardware protection domains

or sand-boxing [95].

164

REFERENCES

[1] Mark B. Abbott and Larry L. Peterson. Increasing network throughput by inte-

grating protocol layers. IEEE Transactions on Networking, 1(5):600–610, Octo-

ber 1993.

[2] Mark Bert Abbott. A Language-Based Approach to Protocol Implementation.

PhD thesis, Department of Computer Science, University of Arizona, Tucson, AZ

85721, 1993.

[3] AMD. Am7990: Local Area Network Controller for Ethernet.

[4] Ken Arnold and James Gosling. The Java Programming Language. Addison-

Wesley, Reading, MA, 1996. ISBN 0-201-63455-4.

[5] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L. Peterson, and Prasenjit

Sarkar. PathFinder: A pattern-based packet classifier. In Proceedings of the

First Symposium on Operating Systems Design and Implementation, pages 115–

123, Monterey, CA, 1994. ACM/USENIX.

ftp://ftp.cs.arizona.edu/xkernel/Papers/pathfinder.ps.

[6] David Banks and Mike Prudence. A high performance network architecture for

a PA-RISC workstation. IEEE Journal on Selected Areas in Communication,

11(2):191–202, February 1993.

[7] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E.

Fiuczynski, David Becker, Craig Chambers, and Susan J. Eggers. Extensibility,

safety and performance in the SPIN operating system. In Proceedings of the Fif-

teenth ACM Symposium on Operating System Principles, pages 267–284, Copper

Mountain Resort, CO, December 1995. ACM.

[8] Edoardo Biagioni. A structured TCP in standard ML. In Proceedings of SIG-

COMM ’94 Symposium, pages 36–45, London, England, August 31st–September

2nd 1994. ACM.

http://www-cgi.cs.cmu.edu/afs/cs/project/fox/mosaic/papers/sigcomm94.ps.

[9] Joel Birnbaum. How the coming digital utility may reshape computing and

telecommunications, October 1996.

http://www.hpl.hp.com/management/speeches/ieee.htm.

165

[10] Trevor Blackwell. Speeding up protocols for small messages. In Proceedings

of SIGCOMM ’96 Symposium, pages 85–95, Stanford, CA, August 1996. ACM.

http://www.acm.org/sigcomm/sigcomm96/papers/blackwell.html.

[11] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architec-

ture: an Overview. DARPA, June 1994.

http://ds.internic.net/rfc/rfc1633.txt.

[12] Pei Cao, Edward W. Felten, and Kai Li. Implementation and performance of

application-controlled file caching. In Proceedings of the First Symposium on

Operating Systems Design and Implementation, pages 165–177, Monterey, CA,

1994. ACM/USENIX.

ftp://ftp.cs.princeton.edu/pub/people/pc/OSDI94/paper.ps.Z.

[13] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson.

Modula-3 language definition. SIGPLAN Notices, 27(8):15–42, August 1992.

[14] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient protocol

code from an abstract specification. In Proceedings of SIGCOMM ’96 Sympo-

sium, pages 60–71, Stanford, CA, August 1996.

http://www.acm.org/sigcomm/sigcomm96/papers/castelluccia.html.

[15] Chran-Ham Chang, Richard Flower, John Forecast, Heather Gray, William R.

Hawe, K. K. Ramakrishnan, Ashok P. Nadkarni, Uttam N. Shikarpur, and Kath-

leen M. Wilde. High-performance TCP/IP and UDP/IP networking in DEC

OSF/1 for Alpha AXP. Digital Technical Journal, 5(1):44–61, Winter 1993.

[16] David Clark and David Tennenhouse. Architectural considerations for a new gen-

eration of protocols. In Proceedings of SIGCOMM ’90 Symposium, pages 200–

208, Philadelphia, PA, September 1990. ACM.

[17] David D. Clark. The design philosophy of the DARPA Internet protocols. In

Proceedings of SIGCOMM ’88 Symposium, pages 106–114, Stanford, CA, August

1988. ACM.

[18] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An analysis

of TCP processing overheads. IEEE Communications Magazine, 27(6):23–29,

June 1989.

[19] Raymond K. Clark, E. Douglas Jensen, and Franklin Reynolds. An architec-

tural overview of the Alpha real-time distributed kernel. In Proceedings of the

USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 127–

146, Seattle, WA, April 1992.

166

[20] Doug Cooper. Standard Pascal User Reference Manual. W. W. Norton & Com-

pany, New York, NY, 1983. ISBN 0-393-30121-4.

[21] Fernando J. Corbató, M. Merwin-Daggett, and Robert C. Daley. An experimental

time-sharing system. In Proceedings of the AFIPS Spring Joint Computer Con-

ference, pages 335–344, May 1962.

[22] Robert C. Daley and Jack B. Dennis. Virtual memory, processes, and sharing in

MULTICS. Communications of the ACM, 11(5):306–312, May 1968.

[23] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled Edwards, and

John Lumley. Afterburner. IEEE Network, 7(4):35–43, July 1993.

[24] Martin D. Davis and Elaine J. Weyuker. Computability, Complexity, and Lan-

guages. Academic Press, London, England, 1983. ISBN 0-122-06380-5.

[25] Sean Dorward, Rob Pike, Dave Presotto, Dennis Ritchie, Howard Trickey, and

Phil Winterbottom. The Inferno operating system. In Forty-Second IEEE Com-

puter Society International Conference Proceedings, pages 241–244, San Jose,

CA, February 1997.

http://inferno.lucent.com/inferno/.

[26] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences with a high-speed net-

work adaptor: A software perspective. In Proceedings of SIGCOMM ’94 Sympo-

sium, pages 2–13, London, England, August 31st–September 2nd 1994. ACM.

[27] Peter Druschel, Mark B. Abbott, Michael A. Pagels, and Larry L. Peterson. Net-

work subsystem design. IEEE Network, 7(4):8–17, July 1993.

[28] Peter Druschel and Gaurav Banga. Lazy receiver processing (LRP): A network

subsystem architecture for server systems. In Proceedings of the Second Sympo-

sium on Operating Systems Design and Implementation, pages 261–275, Seattle,

WA, October 1996. ACM/USENIX.

http://www.cs.rice.edu/CS/Systems/LRP/osdi96.ps.

[29] Peter Druschel and Larry L. Peterson. Fbufs: A high-bandwidth cross-domain

transfer facility. In Proceedings of the Fourteenth ACM Symposium on Operating

System Principles, pages 189–202, Asheville, NC, December 1993. ACM.

[30] Dawson Engler and M. Frans Kaashoek. DPF: Fast, flexible message demulti-

plexing using dynamic code generation. In Proceedings of SIGCOMM ’96 Sym-

posium, pages 53–59, Stanford, CA, August 1996. ACM.

http://www.acm.org/sigcomm/sigcomm96/papers/engler.html.

167

[31] Dawson R. Engler. VCODE: a retargetable, extensible, very fast dynamic code

generation system. In Proceedings of SIGPLAN ’96 Conference on Program-

ming Language Design and Implementation, pages 160–170, Philadelphia, PA,

May 1996. ACM.

http://www.pdos.lcs.mit.edu/˜engler/pldi96-abstract.html.

[32] Dawson R. Engler, Frans Kaashoek, and James O’Toole Jr. Exokernel: An op-

erating system architecture for application-level resource management. In Pro-

ceedings of the Fifteenth ACM Symposium on Operating System Principles, pages

251–266, Copper Mountain Resort, CO, December 1995. ACM.

[33] M. C. Er. Optimizing procedure calls and returns. Software—Practice and Ex-

perience, 13(10):921–939, October 1983.

[34] Alan Eustace. Personal communication, October 1994.

[35] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext

Transfer Protocol—HTTP/1.1. Network Working Group, January 1997.

http://ds.internic.net/rfc/rfc2068.txt.

[36] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and

Stephen Clawson. Microkernels meet recursive virtual machines. In Proceed-

ings of the Second Symposium on Operating Systems Design and Implementation,

pages 137–151, Seattle, WA, October 1996. ACM/USENIX.

ftp://mancos.cs.utah.edu/papers/fluke-rvm-abs.html.

[37] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to a migrating thread model.

In 1994 Winter USENIX Conference Proceedings, pages 97–114, San Francisco,

CA, January 1994.

[38] Adele Goldberg and Alan Kay. Smalltalk-72 instruction manual. Technical Re-

port SSL 76-6, Learning Research Group, Xerox Palo Alto Research Center, 1976.

[39] James Gosling, Frank Yellin, and the Java Team. The Java Application Program-

ming Interface. Addison-Wesley, Reading, MA, 1996. ISBN 0-201-63455-4.

[40] Andreas Gotti. The Da CaPo communication system. Technical report, Swiss

Federal Institute of Technology, Zürich, Switzerland, June 1994.

http://www.tik.ee.ethz.ch/˜dacapo/.

[41] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A hierarchical CPU scheduler

for multimedia operating systems. In Proceedings of the Second Symposium on

Operating Systems Design and Implementation, pages 107–121, Seattle, WA, Oc-

tober 1996. ACM/USENIX.

http://www.cs.utexas.edu/users/pawang/Postscript/cpu.camera.ps.

168

[42] The Open Group. The Single UNIX Specification. Witney, England, second

edition, February 1997.

http://www.rdg.opengroup.org/pubs/catalog/t912.htm.

[43] Rajiv Gupta and Chi-Hung Chi. Improving instruction cache behavior by re-

ducing cache pollution. In Proceedings Supercomputing ’90, pages 82–91, New

York, NY, November 1990. IEEE.

[44] A. N. Habermann, Lawrence Flon, and Lee Cooprider. Modularization and hier-

archy in a family of operating systems. Communications of the ACM, 19(5):266–

272, May 1976.

[45] Graham Hamilton and Panos Kougiouris. The Spring nucleus: a microkernel

for objects. In 1993 Summer USENIX Conference Proceedings, pages 147–159,

Cincinnati, OH, June 1993.

[46] John S. Heidemann and Gerald J. Popek. File-system development with stackable

layers. ACM Transactions on Computer Systems, 12(1):58–89, February 1994.

[47] R. R. Heisch. Trace-directed program restructuring for AIX executables. IBM

Journal of Research and Development, 38(9):595–603, September 1994.

[48] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the

USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 113–

126, Seattle, WA, April 1992.

[49] Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An architecture for

implementing network protocols. IEEE Transactions on Software Engineering,

17(1):64–76, January 1991.

[50] Van Jacobson. Congestion avoidance and control. In Proceedings of SIG-

COMM ’88 Symposium, pages 314–329, Stanford, CA, August 1988. ACM.

[51] Van Jacobson. A high performance TCP/IP implementation. Presentation at the

NRI Gigabit TCP Workshop, March 18th–19th 1993.

[52] M. Jones, P. Leach, R. Draves, and J. Barrera. Support for user-centric modular

real-time resource management in the Rialto operating system. In Proceedings

of the 5th International Workshop on Network and Operating System Support for

Digital Audio and Video, pages 55–66, Durham, NH, April 1995. ACM.

http://hulk.bu.edu/nossdav95/papers/Michael Jones.ps.

[53] Michael Jones, Daniela Rosu, and Marcel-Catalin Rosu. CPU reservations &

time constraints: Efficient, predictable scheduling of independent activities. In

Proceedings of the Sixteenth ACM Symposium on Operating System Principles,

Saint Malo, France, October 1997. ACM. To appear.

169

[54] JTC1/SC29. MPEG II Video. Number CD 13818-2 in Information Technology

— Generic Coding of moving pictures and associated audio information — Part 2:

Video. ISO/IEC, 1996.

[55] Jonathan Kay and Joseph Pasquale. The importance of non-data touching pro-

cessing overheads in TCP/IP. In Proceedings of SIGCOMM ’93 Symposium,

pages 259–268, San Fransico, CA, October 1993. ACM.

[56] Jonathan Simon Kay. Path IDs: A Mechanism for Reducing Network Software

Latency. PhD thesis, University of California, San Diego, 1995.

http://www-csl.ucsd.edu/CSL/pubs/phd/jkay.thesis.ps.

[57] Brian W. Kernighan and Dennis M. Ritchie. Programmieren in C. Carl Hanser

Verlag, München, Germany, german edition, 1983. ISBN 3-446-13878-1.

[58] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the ACM, 1(20):46–61, January 1973.

[59] Peter Madany, Susan Keohan, Douglas Kramer, and Tom Saulpaugh. JavaOS: A

standalone Java environment.

http://www.javasoft.com/products/javaos/javaos.white.html.

[60] Henry Massalin. Synthesis: An Efficient Implementation of Fundamental Oper-

ating System Services. PhD thesis, Columbia University, New York, NY 10027,

September 1992.

[61] Steven McCanne and Van Jacobson. The BSD packet filter: A new architecture

for user-level packet capture. In 1993 Winter USENIX Conference Proceedings,

pages 259–269, San Diego, CA, January 1993.

ftp://ftp.ee.lbl.gov/papers/bpf-usenix93.ps.Z.

[62] Scott McFarling. Program optimization for instruction caches. In Third Sym-

posium on Architectural Support for Programming Languages and Operating Sys-

tems, pages 183–191, Boston, MA, April 1989. ACM.

[63] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance analysis.

In Proceedings of the USENIX 1996 Annual Technical Conference, pages 120–133,

San Diego, CA, January 1996.

[64] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves: An ab-

straction for managing processor usage. In Proceedings of the Fourth Workshop

on Workstation Operating Systems (WWOS-IV), pages 129–134, Napa, CA, Octo-

ber 1993. IEEE.

[65] R. Metcalf and D. Boggs. Ethernet: Distributed packet switching for local com-

puter networks. Communications of the ACM, 19(7):395–403, July 1976.

170

[66] Bertrand Meyer. Introduction to the Theory of Programming Languages. Pren-

tice-Hall, Inc., Hertfordshire, England, 1990. ISBN 0-13-498510-9.

[67] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, and Didier J. Legall.

MPEG Video Compression Standard. Chapman Hall, New York, NY, 1996.

ISBN 0-412-08771-5.

[68] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an

interrupt-driven kernel. In 1996 Winter USENIX Conference Proceedings, pages

99–112, San Diego, CA, January 1996.

http://www.usenix.org/publications/library/proceedings/sd96/mogul.html.

[69] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics Magazine, 38(8):114–117, April 1965.

[70] Jason Nieh and Monica S. Lam. The design, implementation & evaluation of

SMART: A scheduler for multimedia applications. In Proceedings of the Six-

teenth ACM Symposium on Operating System Principles, Saint Malo, France, Oc-

tober 1997. ACM. To appear.

[71] NIST. Research and Development for the National Information Infrastructure:

Technical Challenges. NIST, Gaithersburg, MD, March 1994.

[72] Sean W. O’Malley and Larry L. Peterson. A dynamic network architecture.

ACM Transactions on Computer Systems, 10(2):110–143, May 1992.

[73] Hilarie Orman, Sean O’Malley, Edwin Menze, Larry Peterson, and Richard

Schroeppel. A fast and general implementation of Mach IPC in a network. In

Proceedings of the Third Mach Symposium, pages 75–88, Santa Fe, NM, April

1993. USENIX.

[74] Ketan Patel, Brian C. Smith, and Lawrence A. Rowe. Performance of a software

MPEG video decoder. In Proceedings of the Multimedia ’93 Conference, pages

75–82, Anaheim, CA, June 1993. ACM.

ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/mpeg/play/.

[75] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and

Alan J. Demers. Flexible update propagation for weakly consistent replication.

In Proceedings of the Sixteenth ACM Symposium on Operating System Principles,

Saint Malo, France, October 1997. ACM. To appear.

[76] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.

Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996. ISBN 1-55860-

368-9.

171

[77] K. Pettis and R. C. Hansen. Profile guided code positioning. In Proceedings of

SIGPLAN ’90 Conference on Programming Language Design and Implementation,

pages 16–27, White Plains, NY, June 1990. ACM.

[78] Rob Pike, Bart Locanthi, and John Reiser. Hardware/software trade-offs for

bitmap graphics on the Blit. Software—Practice and Experience, 15(2):131–151,

February 1985.

[79] D. Plummer. Ethernet Address Resolution Protocol—or—converting network

protocol addresses to 48-bit Ethernet address for transmission on Ethernet hard-

ware. DARPA, November 1982.

http://ds.internic.net/rfc/rfc826.txt.

[80] Jon Postel. User Datagram Protocol. DARPA, August 1980.

http://ds.internic.net/rfc/rfc768.txt.

[81] Jon Postel. Internet Control Message Protocol. DARPA, September 1981.

http://ds.internic.net/rfc/rfc792.txt.

[82] Jon Postel. Internet Protocol. DARPA, September 1981.

http://ds.internic.net/rfc/rfc791.txt.

[83] Jon Postel. Transmission Control Protocol. DARPA, September 1981.

http://ds.internic.net/rfc/rfc793.txt.

[84] Todd A. Proebsting and Scott A. Watterson. Filter fusion. In Proceedings of

the 23rd Symposium on Principles of Programming Languages, pages 119–130,

St. Petersburg Beach, FL, January 1996. ACM.

[85] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon In-

ouye, Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic incremen-

tal specialization: Streamlining a commercial operating system. In Proceedings

of the Fifteenth ACM Symposium on Operating System Principles, pages 314–324,

Copper Mountain Resort, CO, December 1995. ACM.

[86] Calton Pu, Henry Massalin, and John Ioannidis. The Synthesis kernel. Comput-

ing Systems, 1(1):11–32, Winter 1988.

[87] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C.

Lynch, Paul R. McJones, Hal G. Murray, and Stephen C. Purcell. Pilot: an oper-

ating system for a personal computer. Communications of the ACM, 23(2):81–92,

February 1980.

[88] D. M. Ritchie. A stream input-output system. AT&T Bell Laboratories Techni-

cal Journal, 63(8):311–324, October 1984.

172

[89] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Communica-

tions of the ACM, 17(7):365–375, July 1974.

[90] Robert R. Schaller. Moore’s law: past, present, and future. IEEE SPECTRUM,

pages 53–59, June 1997.

[91] Robert Sedgewick. Algorithms. Addison-Wesley, Reading, MA, second edi-

tion, 1988. ISBN 0-201-06673-4.

[92] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disaster: Surviving

misbehaved kernel extensions. In Proceedings of the Second Symposium on Op-

erating Systems Design and Implementation, pages 213–227, Seattle, WA, October

1996. ACM/USENIX.

http://www.eecs.harvard.edu/˜vino/vino/osdi-96/.

[93] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital Press,

Burlington, Massachusetts, 1996.

ftp://ftp.digital.com/pub/Digital/info/semiconductor/literature/alphahb2.pdf.

[94] IEEE Computer Society. IEEE Guide to the POSIX Open System Environment.

IEEE Press, November 1995. ISBN 1-55937-531-0.

[95] Oliver Spatschek and Larry Peterson. Escort: Securing Scout paths. In Pro-

ceedings of the 1997 IEEE Symposium on Security and Privacy, page 206, Oak-

land, CA, May 1997.

[96] SPEC. SPEC newsletter. Manassas, VA.

http://www.specbench.org/osg/cpu95/results/cpu95.html.

[97] SPEC. SPEC newsletter. Manassas, VA, June 1995.

http://www.specbench.org/osg/sfs93/results/res9506/.

[98] SPEC. SPEC newsletter. Manassas, VA, Second Quarter 1996.

http://www.specbench.org/osg/sfs93/results/res96q2/.

[99] Richard M. Stallman. Using and Porting GNU CC, 1992.

http://www.delorie.com/gnu/docs/gcc-2.7.2.2/gcc toc.html.

[100] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., Eaglewood

Cliffs, NJ, second edition, 1988. ISBN 0-13-166836-6.

[101] The Scout Team. Scout Programmer’s Manual. Department of Computer Sci-

ence, University of Arizona, Tucson, AZ, 1996.

[102] Lucent Technologies. The Limbo programming language, 1997.

http://inferno.lucent.com/inferno/limbo.html.

173

[103] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network architecture.

Computer Communication Review, 26(2), 1996.

http://www.tns.lcs.mit.edu/publications/ccr96.html.

[104] Chandramohan A. Thekkath and Henry M. Levy. Limits to low-latency com-

munication on high-speed networks. ACM Transactions on Computer Systems,

11(2):179–203, May 1993.

[105] F. Travostino, E. Menze, and F. Reynolds. Paths: Programming with system re-

sources in support of real-time distributed applications. In Proceedings of the

1996 IEEE Workshop on Object-Oriented Real-Time Dependable Systems, pages

36–45, Laguna Beach, CA, February 1996. IEEE.

http://www.osf.org/˜travos/WORDS96/words96.frame.ps.

[106] Stephen A. Uhler. MGR—a window system for UNIX. In Proceedings of the

Fourth Computer Graphics Workshop, page 106, Cambridge, MA, October 1987.

USENIX. Abstract only.

[107] Robbert van Renesse. Masking the overhead of protocol layering. In Proceed-

ings of SIGCOMM ’96 Symposium, pages 96–104, Stanford, CA, August 1996.

ACM.

http://www.acm.org/sigcomm/sigcomm96/papers/vanrenesse.html.

[108] Robbert van Renesse, Ken Birman, Roy Friedman, Mark Hayden, and David Karr.

A framework for protocol composition in Horus. In Proceedings of the Four-

teenth ACM Symposium on Principles of Distributed Computing, pages 80–89, Ot-

tawa, Canada, August 1995.

[109] Robert Wahbe, Steven Lucco, Tom Anderson, and Susan Graham. Efficient

software-based fault isolation. In Proceedings of the Fourteenth ACM Sympo-

sium on Operating System Principles, pages 203–216, Asheville, NC, December

1993. ACM.

[110] Brent B. Welch. The Sprite remote procedure call system. Technical Report

UCB/CSD 86/302, Computer Science Division, EECS Department, University of

California, Berkeley, June 1986.

http://sunsite.Berkeley.EDU/NCSTRL/.

[111] Mark Wittle and Bruce E. Keith. LADDIS: The next generation in NFS file server

benchmarking. In 1993 Summer USENIX Conference Proceedings, pages 111–

128, Cincinnati, OH, 1993.

http://www.specbench.org/osg/sfs93/doc/WhitePaper.ps.

174

[112] Alec Wolman, Geoff Voelker, and Chandramohan A. Thekkath. Latency analysis

of TCP on an ATM network. In 1994 Winter USENIX Conference Proceedings,

pages 167–179, San Fransisco, CA, 1994.

[113] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Effi-

cient packet demultiplexing for multiple endpoints and large messages. In 1994

Winter USENIX Conference Proceedings, pages 153–165, San Fransico, CA, 1994.

[114] Hubert Zimmermann. OSI reference model—the ISO model of architecture for

open systems interconnection. IEEE Transactions on Communications, COM-

28(4):425–432, April 1980.

