
A SYSTEM FOR CONSTRUCTING

CONFIGURABLE HIGH-LEVEL

PROTOCOLS

(Ph.D. Dissertation)

Nina Trappe Bhatti

TR 96-22

December 4, 1996

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This research was supported in part by the O�ce of Naval Research under grants N00014-91-J-1015,

N00014-94-1-0015, N00014-96-0207 and National Science Foundation grant CCR-9003161.

A SYSTEM FOR CONSTRUCTING CONFIGURABLE

HIGH-LEVEL PROTOCOLS

by

Nina Trappe Bhatti

Copyright
c

 Nina Trappe Bhatti 1996

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Ful�llment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 6

A SYSTEM FOR CONSTRUCTING CONFIGURABLE

HIGH-LEVEL PROTOCOLS

Nina Trappe Bhatti, Ph.D.

The University of Arizona, 1996

Director: Richard D. Schlichting

Distributed applications often require sophisticated communication services such as

multicast, membership, group RPC (GRPC), transactions, or support for mobility. These

services form a large portion of the supporting software for distributed applications, yet

the speci�c requirements of the service vary from application to application. Constructing

communication services that are useful for multiple diverse applications while still being

manageable and e�cient is a major challenge.

This dissertation focuses on improving the construction of complex communication

services. The contributions of the dissertation are a new model for the construction of

such services and the design and implementation of a supporting network subsystem. In

this model, a communication service is decomposed into distinct micro-protocols, each

implementing a speci�c semantic property. Micro-protocols have well-de�ned interfaces

that use events to coordinate actions and communicate state changes, which results in a

highly modular and con�gurable implementation.

This model augments, rather than replaces, the conventional hierarchical protocol

model. In this implementation, a conventional x-kernel protocol is replaced with a com-

posite protocol in which micro-protocol objects are linked with a standard runtime system

that externally presents the standard x-kernel interface. Internally, the runtime system

provides common message services, enforces a uniform interface between micro-protocols,

detects and generates events, and synchronously or asynchronously executes event han-

dlers.

The viability of the approach is demonstrated by performance tests for several di�erent

con�gurations of a suite of micro-protocols for a group RPC service. The micro-protocols

in this suite implement multiple semantic properties of procedure call termination, message

ordering, reliability, collation of responses, call semantics, membership, and failure. The

tests were conducted while running within the x-kernel as a user level task on the Mach

operating system.

Additional micro-protocols for mobile computing applications validate the generality

of the model. We designed micro-protocols for quality of service (QoS), transmitting

and renegotiating QoS parameters during hando�s, as well as for mobility management,

covering cell detection, hando�, and disconnection. This suite of micro-protocols can be

con�gured to accommodate a range of di�erent service requirements or even to mimic

existing mobile architectures such as those found in the Crosspoint, PARC TAB, InfoPad,

or DataMan projects.

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial ful�llment of requirements for an ad-

vanced degree at The University of Arizona and is deposited in the University Library to

be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgment of source is made. Requests for permission for ex-

tended quotation from or reproduction of the manuscript in whole or in part may be

granted by the copyright holder.

SIGNED:

4

5

ACKNOWLEDGMENTS

My greatest thanks go to my husband, Scott Trappe, whose endless patience and

encouragement I will always be grateful for. He gave me faith when I had none and

constantly reassured me that one day I would �nish. His unfailing love and support made

all that I have accomplished possible.

The inspiration to pursue doctoral studies came from Gene Lawler, late professor of

computer science at the University of California, Berkeley. I credit him for seeing my

potential and encouraging me to pursue a research career in computer science. I cherished

his love and support, and miss him dearly since his death. His belief that computer

scientists must look beyond their research and understand its e�ect on society have forever

shaped my ideals.

Richard Schlichting, my advisor, exhibited steadfast patience, endlessly reviewed chap-

ters, and provided constant guidance while writing the dissertation. He fostered my pro-

fessional development by encouraging me to attend and present at conferences and work-

shops and to intern at Xerox PARC. I will always appreciate his support for my interests,

especially his defense of my choice to minor in marketing. Larry Peterson introduced

me to networking and continues to provide invaluable technical advice. Greg Andrews

encouraged and supported my e�orts throughout my graduate study.

Chris Puto and Susan Heckler, my minor committee members, taught me how to reason

about end-user's needs and identify opportunities. Chris discovered that this \gear-head"

has other talents and consistently encouraged me to develop them. He is a teacher in the

fullest sense of that word, and a wonderful mentor.

The entire Computer Science Department community made me feel very much at

home. I will always be grateful to those cheerful miracle workers known as the lab sta�,

the o�ce sta�, and especially Wendy Swartz for leading me through the maze of university

paperwork and regulations. I am indebted to the entire faculty, whose excellent instruction

gave me an education I will always cherish and rely upon.

Many, many students | too many for me to name them all | have enriched my life

both professionally and personally by sharing their knowledge, friendship and support. I

thank Matti Hiltunen for many conversations about fault-tolerance and the event-driven

model, and Wanda Chiu for insightful comments and for implementing the GRPC suite.

Two groups deserve special mention: the \473 survivors club": Susie, Nisha, Bill, John,

Jordan and Craig; and the \poker and B5 gang": Robert, Nick, Nevin, Sanford, Rich and

Denise. My heartfelt thanks to all of you.

Finally, my thanks to the National Science Foundation (grant CCR-9003161) and the

o�ce of Naval Research (grants N00014-91-J-1015, N00014-94-1-0015, N00014-96-0207)

for funding my studies.

6

7

TABLE OF CONTENTS

LIST OF FIGURES : 11

ABSTRACT : 13

CHAPTER 1: INTRODUCTION : 15

1.1 Distributed Systems : 16

1.2 Dependability and Fault-Tolerance : 18

1.3 Mobile Computing : 19

1.3.1 Mobility : 20

1.3.2 Quality of Service : 21

1.4 Communication Support : 21

1.5 Composite Protocol Approach : 22

1.6 Dissertation Outline : 23

CHAPTER 2: COMMUNICATION SERVICES AND CONSTRUCTION TECH-

NIQUES : 25

2.1 Multicast and Membership : 25

2.1.1 Overview : 25

2.1.2 Consul : 27

2.1.3 ISIS : 27

2.1.4 Transis : 28

2.1.5 Totem : 28

2.2 Remote Procedure Call : 28

2.2.1 Overview : 28

2.2.2 Sun RPC : 29

2.2.3 Group RPC Systems : 30

2.3 Mobile Computing : 30

2.3.1 Overview : 30

2.3.2 Mobile IP : 33

2.3.3 InfoPad : 34

2.3.4 PARC TAB : 35

2.3.5 Dataman : 36

2.3.6 Crosspoint : 36

2.4 Modular Protocols : 37

2.4.1 Overview : 37

2.4.2 The x-kernel : 37

2.4.3 Horus : 37

2.4.4 ADAPTIVE : 38

2.4.5 Object-Oriented Framework : 38

8

2.4.6 Streams : 39

2.4.7 Parallel Protocol Execution : 39

2.4.8 Parallel versions of the x-kernel : 40

2.4.9 Parallel Protocol Framework : 40

2.5 Con�gurable Operating Systems : 40

2.5.1 Spin : 40

2.5.2 Exokernel : 41

2.5.3 Scout : 41

2.5.4 Application Controlled File Caching : : : : : : : : : : : : : : : : : 42

2.6 Summary : 42

CHAPTER 3: COMPOSITE PROTOCOL MODEL : : : : : : : : : : : : : : : : : : 43

3.1 Motivation and Goals : 43

3.2 A Two-Level Model of Protocol Composition : : : : : : : : : : : : : : : : : 45

3.3 Micro-Protocols : 47

3.4 Events and Handler Execution : 48

3.5 Timer Events : 49

3.6 Framework : 50

3.7 Message Sending and Garbage Collection : : : : : : : : : : : : : : : : : : : 51

3.8 Examples : 52

3.8.1 Membership Micro-Protocol : 52

3.8.2 Acknowledgment Micro-Protocol : : : : : : : : : : : : : : : : : : : 53

3.9 Summary : 55

CHAPTER 4: IMPLEMENTATION : 57

4.1 Framework : 57

4.1.1 Uniform Interfaces. : 57

4.1.2 Thread Management : 57

4.1.3 Messages : 58

4.1.4 Implementation Portability. : 60

4.2 Events : 60

4.2.1 Event Operations : 61

4.2.2 Event Structures : 62

4.2.3 Timer Event Structures : 63

4.2.4 Call Depth : 66

4.3 Measurements of Event Implementation Performance : : : : : : : : : : : : : 67

4.4 Creating a Composite Protocol : 67

4.5 Possible Optimizations : 69

4.6 Summary : 69

CHAPTER 5: GROUP RPC PERFORMANCE : 71

5.1 Group RPC Micro-protocols : 71

5.1.1 Termination Semantics : 71

5.1.2 Ordering semantics : 71

5.1.3 Communication Semantics : 72

9

5.1.4 Collation Semantics : 73

5.1.5 Call Semantics : 73

5.1.6 Membership Semantics : 73

5.1.7 Failure Semantics : 74

5.1.8 Driver Protocol : 74

5.2 Combining Micro-Protocols : 75

5.3 Measurements of Group RPC Con�gurations : : : : : : : : : : : : : : : : : 76

5.4 Detailed Analysis : 77

5.5 Summary : 80

CHAPTER 6: PROTOCOLS FOR MOBILE COMPUTING : : : : : : : : : : : : : 81

6.1 Communication Requirements : 81

6.2 Hando� Related Variations : 82

6.2.1 Hando� Detection : 83

6.2.2 Hando� : 84

6.2.3 Oscillation Prevention : 85

6.2.4 Disconnection : 85

6.3 Example Mobility Micro-Protocols : 86

6.3.1 Detection Micro-Protocols : 87

6.3.2 Hando� Protocols : 93

6.3.3 Disconnection : 101

6.4 Variations of Quality of Service : 102

6.5 Example QoS Micro-Protocols : 104

6.6 Supporting Micro-Protocols : 107

6.7 Example Con�gurations : 108

6.8 Conclusions : 108

CHAPTER 7: EVALUATION : 109

7.1 General Assessment : 109

7.1.1 Overview : 109

7.1.2 E�ciency : 110

7.1.3 Resuability : 110

7.1.4 Ease of Debugging and Maintenance : : : : : : : : : : : : : : : : : 110

7.1.5 Explicit Dependencies : 111

7.2 Programming Issues : 111

7.2.1 Synchronous and Asynchronous Event Execution : : : : : : : : : : 111

7.2.2 Call Depth : 112

7.2.3 Ordering Handler Execution : 113

7.2.4 Event Scheduling : 114

7.2.5 Programming Language Support : : : : : : : : : : : : : : : : : : : 114

7.3 Experimentation Issues : 115

7.3.1 Performance Pro�ling : 115

7.3.2 Testing : 115

7.3.3 Use of the x-kernel : 116

7.4 Mobility and Real-Time : 117

10

7.5 Related Work : 117

7.6 Summary of Contributions : 119

REFERENCES : 121

11

LIST OF FIGURES

2.1 Hardware components of a typical mobile distributed system. : : : : : : : 31

2.2 Software components of a mobile distributed systems. : : : : : : : : : : : : 32

2.3 Agent-based mobile system. : 33

3.1 Composite protocol within an x-kernel protocol graph. : : : : : : : : : : : : 46

3.2 Micro-protocol schema : 47

3.3 Simple membership micro-protocol : 53

3.4 Simple acknowledgment micro-protocol : 54

4.1 Event description structure. : 62

4.2 Event invocation structure with event description structure. : : : : : : : : 64

4.3 Timer event information structure for repeating event with two event han-

dlers. : 65

4.4 Possible event handler executions with and without call depth bounding. : 66

4.5 Experimental con�guration : 68

5.1 Process and message architecture. : 72

5.2 Group RPC con�guration selections. : 75

6.1 Mobile host in range of two base stations. : : : : : : : : : : : : : : : : : : : 86

6.2 Overall micro-protocol structure. : 87

6.3 ICMP based detection for mobile hosts : 88

6.4 ICMP based detection for base stations : 89

6.5 Beacon based detection for mobile hosts : 90

6.6 Beacon based detection for Base stations : 91

6.7 Simple detection micro-protocol for mobile hosts : : : : : : : : : : : : : : : 92

6.8 Simple detection with oscillation prevention for mobile hosts : : : : : : : : 93

6.9 Lazy detection for mobile hosts : 94

6.10 Autonomous mobile host hando� for mobile hosts : : : : : : : : : : : : : : : 96

6.11 Request/reply hando� for base stations : 97

6.12 NACK hando� micro-protocol for base stations : : : : : : : : : : : : : : : : 98

6.13 Agent Coordinated hando� for base stations : : : : : : : : : : : : : : : : : : 99

6.14 Translate messages into events for base stations : : : : : : : : : : : : : : : : 100

6.15 Drop packet disconnection scheme for base stations : : : : : : : : : : : : : : 101

6.16 Drain disconnection scheme for base stations : : : : : : : : : : : : : : : : : 102

6.17 Forward packets disconnection schemes for base stations : : : : : : : : : : : 103

6.18 Quality of service management : 106

6.19 QoS information provided by base stations : : : : : : : : : : : : : : : : : : : 107

6.20 QoS information provided by a mobile host : : : : : : : : : : : : : : : : : : 107

12

7.1 Possible combinations. : 112

13

ABSTRACT

Distributed applications often require sophisticated communication services such as

multicast, membership, group RPC (GRPC), transactions, or support for mobility. These

services form a large portion of the supporting software for distributed applications, yet

the speci�c requirements of the service vary from application to application. Constructing

communication services that are useful for multiple diverse applications while still being

manageable and e�cient is a major challenge.

This dissertation focuses on improving the construction of complex communication

services. The contributions of the dissertation are a new model for the construction of

such services and the design and implementation of a supporting network subsystem. In

this model, a communication service is decomposed into distinct micro-protocols, each

implementing a speci�c semantic property. Micro-protocols have well-de�ned interfaces

that use events to coordinate actions and communicate state changes, which results in a

highly modular and con�gurable implementation.

This model augments, rather than replaces, the conventional hierarchical protocol

model. In this implementation, a conventional x-kernel protocol is replaced with a com-

posite protocol in which micro-protocol objects are linked with a standard runtime system

that externally presents the standard x-kernel interface. Internally, the runtime system

provides common message services, enforces a uniform interface between micro-protocols,

detects and generates events, and synchronously or asynchronously executes event han-

dlers.

The viability of the approach is demonstrated by performance tests for several di�erent

con�gurations of a suite of micro-protocols for a group RPC service. The micro-protocols

in this suite implement multiple semantic properties of procedure call termination, message

ordering, reliability, collation of responses, call semantics, membership, and failure. The

tests were conducted while running within the x-kernel as a user level task on the Mach

operating system.

Additional micro-protocols for mobile computing applications validate the generality

of the model. We designed micro-protocols for quality of service (QoS), transmitting

and renegotiating QoS parameters during hando�s, as well as for mobility management,

covering cell detection, hando�, and disconnection. This suite of micro-protocols can be

con�gured to accommodate a range of di�erent service requirements or even to mimic

existing mobile architectures such as those found in the Crosspoint, PARC TAB, InfoPad,

or DataMan projects.

14

15

CHAPTER 1

INTRODUCTION

Current computing applications often have sophisticated communication requirements.

Users of an automatic teller machine (ATM) withdraw cash without realizing the complex

communication performed to verify the transaction and correctly record it at the appro-

priate bank anywhere in the world. Regardless of location, users trust that the transaction

will be performed correctly, reliably, and quickly. This type of functionality is realized by

an underlying communication service, which governs how messages are exchanged between

hosts and what delivery guarantees are associated with them. For example, in this case,

an appropriate communication service might provide guaranteed delivery of the trans-

action and make permanent changes to an account only if the transaction is completed

successfully. A large portion of the supporting software of distributed applications|that is,

applications constructed on collections of machines connected by a network|is composed

of communication services.

While communication services are universal for distributed applications, the speci�c

requirements vary depending on the type of application. For example, robust, reliable

communication may be required for an ATM application, but less strict requirements

are acceptable for sending mail since maximum delivery delays and ordering of messages

are typically not guaranteed. Another example is video, which requires predictable de-

lays between frames and ordered delivery, but which can accept occasional frame losses.

Hence, video applications can be well supported by a communication service that provides

timely, ordered, but unreliable communication. This large variety of possible semantics

are di�cult to realize in a single service.

A major challenge is constructing communication services that are useful for multi-

ple diverse applications while still being manageable and e�cient. One approach is to

use customization and con�gurability. Currently, communication systems provide only

simple mechanisms, so applications build more complex services from scratch based on

basic guarantees such as best-e�ort delivery. An alternative is to provide more complex

semantics by customizing a general communication service to match the exact needs of

the application. To implement this customization, users con�gure a service from a col-

lection of software modules, each of which implements a speci�c behavior. In addition to

facilitating an exact semantic match, this approach allows many applications with similar

communication needs to use the same basic service instead of requiring the creation of

another similar service.

This dissertation addresses the construction of customized communication services by

proposing a new approach in which �ne-grain software modules called micro-protocols

encapsulating a function or property are combined to form a communication service. The

selection of a micro-protocol enforcing a particular property such as reliability allows the

user to create a service with exactly the desired behavior. In addition, micro-protocols

16

that implement variants of the same behavior can be exchanged; for example, di�erent

types of delivery orderings such as FIFO, unordered, causal, and total ordering can be

selected. Micro-protocols communicate with other micro-protocols using events, which

makes all data sharing and dependencies between micro-protocol explicit. The approach

has been realized in a prototype implementation based on the x-kernel [HP91].

1.1 Distributed Systems

Communication services with powerful semantics are an important building block for dis-

tributed applications. However, as noted above, the speci�c functionality can vary greatly

depending on the type of application. Here, we outline common reasons for writing dis-

tributed applications | improved performance, increased dependability, accommodation

of physical requirements, and convenient resource sharing | and then discuss their com-

munication requirements.

Performance

For many applications, performance can be improved by exploiting parallelism, that is,

by distributing parts of the computation among hosts within a distributed system and

executing them concurrently. In some cases, the parts can be executed to completion, with

the results then being combined to produce the �nal overall result. In other cases, the

process is iterative, with processes periodically exchanging intermediate values. Still other

applications may be be parallelized by assigning computation resources to speci�c stages

of the solution; in this scenario, resources are organized as a pipeline, with each resource

producing results that are passed to the next stage in the pipeline. While not all problems

can be parallelized, parallelism is widely used to obtain performance improvements for

scienti�c computations.

Performance can also be improved using distributed systems by migrating processes

to idle hosts to spread the computation load and to make use of idle processing power

[Dou89, Dou87, OCD

+

88]. However, since process migration incurs overhead, a perfor-

mance improvement is realized only if the target host is underutilized, and if the remaining

computation time is greater than the time required to do the migration. This makes this

technique useful only in limited circumstances where idle hosts are commonly available,

such as o�ces where large numbers of hosts are unused after business hours.

Dependability

Another reason for building an application using a distributed system is to increase de-

pendability, which is a measure of the reliance that can be placed on the service a system

delivers [Car82]. The service delivered by a system is its behavior as perceived by users,

whether they be humans or other systems [Lap92]. Dependability encompasses a number

of di�erent attributes. A dependable ATM system, for example, services transactions 24

hours a day (availability), functions correctly under heavy loads (reliability), does not dis-

pense money without a valid ATM card (safe), and protects the ATM PIN number during

transmission (secure).

17

A distributed system may incorporate redundant components that can be used to mask

failures. As a result, when a component fails (does not execute according to its speci�ca-

tion) one of the correctly functioning components may be able to take over and provide

the same service. For example, a dependable �le system can be created by maintaining

a mirror image on a second storage device and applying each state-modifying operation

to the mirror image as well. Then, if the original storage device fails (e.g., crashes), the

mirror �le system can be used. In addition to increasing availability, redundancy can be

used to verify correct operation by executing computations on multiple CPUs and then

comparing results.

Physical Requirements

The physical nature of an application may force separation of computational resources,

which naturally then leads to its construction as a distributed system. For example, an au-

tomated manufacturing plant where multiple processors control the manufacturing process

is a distributed system because the processors are physically separated and communicate

using a network. A similar example is a system composed of medical patient monitoring

equipment, in which a specialized computer system is located physically near each patient.

To control patient monitors, consolidate patient information, and prepare patient status

reports requires using a distributed system.

Distributed systems based on physical separation of processors do not require that

those processors remain stationary. In particular, the processors may be embedded in

small devices intended to be carried by the user, such as the Apple Newton or Hewlett-

Packard 95LX. Mobile computing systems have the same basic elements as other dis-

tributed systems, but with the additional requirements of coping with changing location

information and potentially slower and more error-prone communication links based on

radio or infrared technology.

Resource Sharing

Distributed systems can also be used to provide resources to a group of clients. Perhaps

the most ubiquitous example of this type of resource sharing is a printer attached to a

network. In this case, the printer is a server that provides printing services to several hosts

(clients) connected to the network. The same idea can be applied to other peripherals,

such as a network �le system where services are provided to multiple clients by a single

shared server. Programs can also be shared in a similar way. For example, a common

license agreement is to allow the program to run on any of multiple hosts, but with only

a limited number active at a time.

Resource sharing is also an e�cient way to use expensive resources. For example, an

expensive supercomputer can be cost-e�ectively shared by using a network to submit jobs,

potentially over great distances. This strategy avoids the expense of purchasing multiple

specialized machines while still providing access to a large community of users.

18

Communication Services

The di�ering characteristics of applications in each of these four categories|performance,

dependability, physical requirements, and resource sharing|has motivated the develop-

ment of a variety of communication services. For example, parallel applications can be

simpli�ed using a multicast primitive to disseminate the results of a subproblem or coordi-

nate execution. Similarly, many dependable applications rely on communication services

that automatically detect failures and maintain consistent views of which machines are

functioning. Communication systems intended for mobile computing applications must

maintain communication between physically separate hosts that change location, so a

connection and delivery mechanism that tolerates mobility is an essential tool. Finally,

resource sharing is facilitated if clients can reliably transmit requests to a group of servers

using a single address; using this, any server can respond.

In this dissertation, we focus on two speci�c types of distributed systems: highly

dependable and mobile computing systems. The next two sections elaborate on these

areas and the types of communication services that are most useful.

1.2 Dependability and Fault-Tolerance

Several paradigms have been developed to reduce the complexity of fault-tolerant software

[MS92]. The paradigms are based on network-oriented abstractions that are often realized

as communication services with a wide range of behaviors. This section describes several

paradigms, their application structure, and their communication services.

The object/action paradigm structures an application as a collection of objects that are

located across multiple machines in a distributed system. Objects are passive entities that

encapsulate state and export operations that modify state; actions invoke these operations

and are serializable, atomic, and permanent. An action is serializable if its concurrent

execution with other actions always has the same e�ect as some serial execution order.

An action is atomic if intermediate states are never visible despite failures; if a failure

occurs, the action is aborted and any state changes are undone. Finally, an action is

permanent if once the action commits, the results of the action cannot be undone by

subsequent failures.

The object/action paradigm is often implemented using processes for objects and

threads for actions. In this scheme, invocation of an operation on a remote object is

realized using Remote Procedure Call (RPC), which is similar to standard procedure calls

except that the procedure is executed by a di�erent process [Nel81, BN84]. The caller is

known as the client and the process executing the procedure is known as the server. Also,

multiple variants of RPC may be needed depending on the speci�cs of the approach. For

example, additional fault tolerance can be provided by replicating server processes. In

this case, group RPC is used by the client to transmit the call to the entire group instead

of just a single process. Some implementations may also need group RPC services that

guarantee that each call is unique or that all servers receive each call. Other abstractions

that are useful for supporting the object/action model include stable storage for perma-

nence of actions, atomic actions for atomicity, and resilient processes for failure recovery

[MS92].

19

The conversation paradigm uses processes and messages as its main components. An

application is structured as a collection of concurrent processes executing on di�erent hosts

and communicating by exchanging messages. Processes periodically save an image of their

process state, called a checkpoint. A programming construct called a conversation is used

to ensure that these checkpoints are consistent, where a consistent set of checkpoints is

one in which every message receive event is matched by a corresponding send event. If a

process fails, a replacement process is created and started from the last checkpoint. The

other non-failing processes also roll back their state to the corresponding checkpoint so

that all processes return to the same point in the computation.

Di�erent variants of RPC are again useful as supporting communication services for the

conversation paradigm. For example, depending on the speci�c semantics, di�erent types

of message ordering may be desirable, such as causal or total ordering [CASD85, Cri89,

BCG91, BSS91a, BSS91b, Coo90, GMS89, GMS91, GMK88, VM90]. Stable storage is

also a useful abstraction for storing checkpoints [Lam81].

The state machine approach structures an application as a collection of interacting

state machines [Sch90]. Commands received as messages from other machines or the

environment change the values of state variables. The execution of each command is

deterministic and atomic with respect to other commands to provide fault tolerance. State

machines can be replicated, in which case each command is received and executed by all

replicas. Assuming that all replicas execute the commands in the same order, the states

of the replicas will remain consistent. As a result, the failure of some number of replicas

can be tolerated without a�ecting operation of the whole group.

A number of communication services are useful building blocks for the state machine

approach. Since all state machines must receive the same commands in the same order,

atomic ordered multicast [CM84]|which guarantees atomicity and consistent ordering of

messages|is a valuable abstraction. Membership is also an important service; it maintains

consistent information about which machines are functioning and which have failed.

The goal of the work presented in this dissertation is to simplify the design and imple-

mentation of communication services such as the ones described above for fault-tolerant

software. We concentrate primarily on group RPC and, to a lesser extent, membership.

Our approach allows these services to be implemented as a con�gurable collection of �ne-

grained modules that can be used to meet a variety of fault-tolerance requirements. The

mechanism for building these services are protocols, which specify the format and mean-

ing of messages that are exchanged by instances of a communication service executing

on di�erent machines. The term is also often used to refer to the actual software that

implements the agreed-upon behavior. Examples of well-known protocols are the Trans-

mission Control Protocol and Internet Protocol (TCP/IP) [Pos81a, Pos81b] and the User

Datagram Protocol (UDP) [Pos80].

1.3 Mobile Computing

Mobile computing systems are composed of mobile and stationary hosts that exchange

messages through wireless and wired communication links. These systems are a direct

consequence of the availability of new devices that are inexpensive and light enough to

20

be truly portable. The two key problems in mobile computing are hiding the details of

mobility and managing quality of service. Ideally, mobile systems would behave exactly

as any other distributed system with respect to addressing and sending messages. How-

ever, while �xed addresses for mobile devices are now the norm, systems vary greatly in

how location information is gathered and propagated. The next two sections elaborate

on mobility and quality of service to illustrate the multitude of possible communication

services.

1.3.1 Mobility

Mobility presents two challenges: routing and disconnected operation. The �rst concerns

how messages can be delivered to hosts that change their location and how host location

information is propagated and cached. Making routing transparent to the application is

valuable because resources can then be accessed without regard to location. For example,

instead of sending a print job to a printer by name, the job can be dispatched to the

nearest printer resource. File system caching can be done similarly, with mobile hosts

caching �les in �le servers that are nearby. Knowledge of host location can also provide

additional capabilities, such as answering certain queries (e.g., nearest restaurant) using

location-speci�c information [AIB].

A number of solutions have been proposed to the mobile routing problem. Some so-

lutions assign mobile hosts Internet addresses and route messages transparently as hosts

roam between di�erent domains in the Internet [IDJ91]. Other solutions deal only with

routing messages to mobile hosts in a local area. For example, in the area of main-

taining location information, some approaches only maintain data on hosts that are ac-

tive [AGSW93], while others require hosts to respond explicitly to identi�cation requests

[CLR95]. Similarly, some routing protocols propagate information about active hosts in

the area to the rest of the system immediately [CLR95], while others send information

only to a central manager [KMS

+

93]. A single con�gurable system that allows any of

these multiple solutions to be easily constructed would be useful for matching the routing

to the particular application.

The second challenge concerns complications resulting from failures of a mobile host

or disconnection due to failed communication links. Such events occur more frequently

in mobile than stationary systems because of the lossy wireless transmission medium, the

possibility of mobile hosts roaming out of range, or the unavailability of a host due to

battery power loss. Except for the last case, the mobile host may be able to continue

functioning, in which case some type of state synchronization will be required when the

mobile host reconnects to the network. Disconnected operation of this type is only of con-

cern for mobile hosts that have su�cient resources to function standalone; hosts without

such resources simply cease to function if disconnected.

There are a variety of approaches for dealing with disconnection Many ideas can be

borrowed from fault-tolerance, such as replication of the mobile host state and atomic

multicast to ensure that multiple hosts receive messages [VKP93, PKV96]. However, since

failures are more common, any technique must be inexpensive, as well as not interfere with

the rest of the system. Other solutions are speci�c to mobile computing, such as cases

where routing protocols redirect messages destined for a disconnected host to a proxy that

21

can save messages until the mobile host reconnects. Multiple techniques exist to deal with

state synchronization after disconnected operation [Kis90, KS91, HH93, SKM

+

93, NK93,

MBM95]. Thus, like routing, it would be advantageous if the communication service could

be altered to provide this variety of options without modifying the rest of the system.

1.3.2 Quality of Service

Quality of service refers to the performance guarantees provided to an application by

the underlying system, often after negotiation between the two entities. Determinants of

quality of service are bandwidth, latency, and jitter. In mobile communication, bandwidth

means throughput, latency is the delay before receiving the �rst bit of data from the

sender, and jitter means the variation in delay between messages. An additional criterion is

connectivity latency due to movement between the areas serviced by distinct transmission

devices cells. Moreover, since each cell is a di�erent transmission domain, bandwidth,

latency, and jitter can change after entering a new cell. As a result, the agreed-upon

quality of service characteristics may have to be re-negotiated with the new cell. Hence,

not only must resources be shared as is the case with any system, but frequent host arrivals

and departures must also be accommodated.

Quality of service is, almost by de�nition, associated with di�erent policies, so it is

not surprising that a variety of approaches have been de�ned. For example, bandwidth

and mobility are inherently linked. When an application starts a communication stream

to a mobile host, it negotiates the required resources. If a host moves into an area where

there is already a lot of tra�c, some policies ignore the needs of the new host, while

others modify existing connections or use priorities. It would be advantageous for a single

communication service to support all these variants of system behavior.

1.4 Communication Support

In previous sections we have outlined how di�erent communication services can be used to

simplify distributed applications such as those associated with fault-tolerant systems and

mobile computing. By providing rich functionality and a high degree of abstraction, such

services make it easier to handle the uncertainties inherent in distributed systems, includ-

ing those associated with network communication, distributed synchronization, mobility,

and processor crashes. Often the protocols that implement these services are described

as middleware since they form a software layer between the application and the operating

system. From a networking perspective, they are considered high-level protocols because

they provide enhanced functionality relative to simple message delivery.

Unfortunately, while such high-level protocols are useful, their construction poses a

number of challenges. These protocols are di�cult to design, debug, and modify, largely

due to the same complex functionality that makes them so useful. Another reason is

that they are often built speci�cally for a given application rather than as a separate

layer that can be reused. As a result, the application software is much more complex,

and it becomes di�cult to update should the communication guarantees required by the

application change.

22

To address these and other challenges, an approach for building communication services

would ideally exhibit a number of characteristics. It should facilitate services that are

highly con�gurable to realize multiple semantic variations. It should also aid the protocol

writer in designing and implementing these variations, and be simple for users of the service

to con�gure. Finally, con�gurability should not come at the expense of performance.

An option that approaches this ideal mix is to implement the functionality as a collec-

tion of smaller protocol objects (a protocol suite) and then use a system like ADAPTIVE

[SBS93], Horus [vRHB94], or the x-kernel [HP91] to combine the objects into a network

subsystem. However, despite their advantages over monolithic realizations, these systems

still have a number of de�ciencies when it comes to implementing high-level protocols.

These include inadequate support for �ne-grained modules with complex interaction pat-

terns, limited facilities for data sharing, and an orientation towards hierarchical protocol

composition at the expense of more
exible combinations. Experience suggests that these

limitations increase the di�culty of implementing high-level protocols using these sys-

tems. For example, problems of this type have been encountered with the x-kernel, both

in Consul, a protocol suite implementing atomic multicast [MPS93a, PBS89], and xAMP,

a real-time atomic multicast protocol [VRB89].

The ability to build con�gurable communication systems is also consistent with the

general trend of applications requiring more control over their support services. For ex-

ample, operating systems are increasingly being designed to allow customized approaches

to services, such as scheduling, �le systems, and caching [BCE

+

95, HPM93, MMO

+

94].

Our research is concerned with providing enhanced control over communication services,

with a focus on supporting modular implementations and �ne-grain semantic-based con-

�guration.

1.5 Composite Protocol Approach

This dissertation describes a new structuring approach that supports highly modular im-

plementations of communication services. With our approach, a high-level protocol is

constructed from a collection of micro-protocol objects (or just micro-protocols) that im-

plement individual semantic properties of the target system. For example, with atomic

multicast, one micro-protocol might implement the consistent ordering requirements, while

another might implement reliable transmission. Micro-protocols can also be used to im-

plement di�erent semantic variants of the same property. For example, with RPC, there

may be several micro-protocols implementing distinct policies for how a request is han-

dled if the server fails, such as exactly once, at least once, or at most once semantics

[PS88]. A system is then con�gured based on the particular properties needed for the

given application.

This micro-protocol approach is realized by augmenting the x-kernel's standard hierar-

chical object composition model with the ability to internally structure protocol objects.

The result is a two-level model in which selected micro-protocols are �rst combined with

a standard runtime system or framework to form a composite protocol. This composite

protocol, whose external interface is indistinguishable from a standard x-kernel protocol,

is then composed with other x-kernel protocols in the normal hierarchical way to realize

23

the overall functionality required of the network subsystem. Internally, the framework

implements an event-driven execution paradigm, in which micro-protocols are executed

whenever events for which they are registered occur |for example, message arrival or a

timeout. Thus, when compared with standard x-kernel protocol objects, micro-protocols

are typically �ner-grain objects that interact more closely and do so using mechanisms

provided by the framework rather than the x-kernel Uniform Protocol Interface (UPI).

Our approach has a number of bene�ts. For example, the
exibility of the two-level

model is useful for dealing with dependencies among the properties implemented by com-

plex protocols. It also o�ers the development bene�ts associated with modular implemen-

tations, as well as an enhanced ability to tailor the system to the speci�c characteristics of

a given application or architecture. In contrast with similar systems for constructing con-

�gurable protocols, our approach provides �ner granularity and more
exible inter-object

communication, which is especially useful for con�guring closely-related service variants

of the same general type of high-level protocol (e.g., variants of atomic multicast).

The contributions of this dissertation are:

� A new approach to constructing con�gurable high-level protocols with properties

customized to the needs to the application or the speci�cs of the architecture.

� An x-kernel based system for realizing this approach.

� The use of �ne-grain micro-protocols that have limited, well-de�ned interfaces and

are executed according to an event-driven paradigm.

� Examples of designs and implementations based on our approach for two families of

communication services, group RPC and mobile computing, as well as a description

of the resulting lessons substantiating the viability of the approach.

� An assessment of the execution costs involved with the approach and insights into the

incremental execution cost of properties in certain common group communication

paradigms.

1.6 Dissertation Outline

This dissertation is organized as follows. Chapter 2 describes related work in the areas

of communication support for fault tolerance and mobile computing, approaches for con-

structing services using modular protocols, parallel execution of protocols and con�gurable

operating systems. Chapter 3 then describes how our composite protocol approach can

be used to create micro-protocol suites. Implementation details and basic performance

results are given in Chapter 4.

Chapter 5 illustrates the use of the composite protocol approach to build a highly

con�gurable version of group remote procedure call, which is often used in fault-tolerant

applications. We also give performance results from a number of experiments involving

the x-kernel prototype and multiple di�erent con�gurations. Similarly, Chapter 6 provides

an in-depth look at a con�gurable composite protocol for mobile computing.

24

The composite protocol model and the x-kernel implementation are evaluated in Chap-

ter 7. Finally, Chapter 8 makes some concluding remarks and presents future research

ideas.

25

CHAPTER 2

COMMUNICATION SERVICES AND

CONSTRUCTION TECHNIQUES

Software for distributed systems is complex and di�cult to write. To simplify this

task, communication services are used to provide an abstraction that is easier to pro-

gram. In this chapter, we describe communication abstractions and protocols useful for

fault-tolerant systems and mobile computing, including multicast, membership, RPC, and

various systems that support mobility. Then, the current state of technology for develop-

ing these services is described. In particular, several projects are presented that explore

the use of modularization or system customization. Finally, we present recent work on new

generation operating systems that emphasize similar customization goals, but in a more

general context. The con�gurability provided by these systems is typically coarse-grained

and allows freedom only in selected areas.

2.1 Multicast and Membership

2.1.1 Overview

In fault-tolerant systems, providing consistent information to multiple processes is neces-

sary for constructing many types of distributed applications. One way to provide this is

to use multicast, which sends messages to a collection of processes organized as a multi-

cast group. Thus, there is one sender and multiple receivers. Multicast groups typically

have a multicast group address, membership rules, and possible restrictions on addressing

messages to the group.

Multicast sending of messages may or may not be done with hardware support. With-

out hardware support, conventional point-to-point messages are used. With hardware

support in local area networks, messages can be delivered more e�ciently since a single

destination address can be used to refer to all group members.

Multicast services in wide-area networks are concerned with managing group member-

ship and e�cient delivery of messages [DC90, Dee94, DEF

+

94, Hug88, WPD88, ALB88,

Wal80]. For example, one scheme for multicasting messages in the Internet uses IP routers

to disseminate packets. The routers recognize the destination address as a multicast ad-

dress and forward packets to links if there are group members reachable through the links;

otherwise the message need not be propagated. Several spanning tree algorithms have

been developed to manage routing topologies, and minimize the number of routers and

networks involved in forwarding multicast packets.

While there are many variations of multicast for fault-tolerant systems, reliability

and similar guarantees are often more important than e�cient packet routing. In fact,

multicast services designed for this purpose can be broken into �ve orthogonal properties

[MS92]:

26

Dissemination. The message is disseminated to all processes in a group. As noted, in

local-area networks such as Ethernets or Token rings that provide a multicast primitive,

the dissemination can be done e�ciently with a single lower-level operation.

Atomicity. Messages are delivered to all operational processes in the group or to none.

This property ensures that all processes see the identical set of messages.

Reliability. Message are delivered to every process in the group. If a member of the group

has failed, then the message will be provided to the failed process during its recovery.

Order. Messages are delivered in some consistent order to all group members. Especially

in wide-area networks, multicast messages can potentially arrive in di�erent order at

each of the members, which complicates higher-level software. There are several possible

consistent orderings, including:

� Partial order or causal order: Messages are delivered in an order that preserves the

happened before relationship (causality) [Lam78]. Messages are only delivered after

all the messages that precede it have been delivered. Messages for which no happened

before relationship exists are considered to be concurrent and can be delivered in

any order.

� Semantic dependent order: Messages are delivered in an order that depends on the

semantics of the information in the message. For example, messages that contain

commutative operations can be delivered in di�erent order, while messages with

non-commutative operations must be delivered in the same order to all processes.

� Total order: Messages are delivered in the same order to all processes. There is no

restriction on the ordering, other than it must be exactly the same for each process.

� Total order preserving causality: Messages are delivered in the same order to all pro-

cesses, and the order preserves the happened before relationship between messages.

This is the most expensive ordering property to implement.

Termination. The communication protocol is synchronous if every message is delivered

to all correct processes within a �xed time interval.

A problem that is closely related to multicast is membership, which involves maintain-

ing information about which processes belong to the group. Membership can be completely

static but more interesting groups have dynamic membership. In this case, members are

added when they explicitly request to join and removed when they request it or, in the

case of fault-tolerant systems, when they fail. Membership of the group may be open, al-

lowing any process to join, or closed, in which case admission may or may not be granted

when requested. While only group members can receive messages addressed to the group,

sending may either be restricted to members or unrestricted. Unrestricted sending is im-

portant for a group of processes that o�er a service and advertise the multicast address

for general use.

27

Since membership change information does not instantaneously disseminate across the

network, not all members have the same membership information at the same time. This

can make a common view of the group di�cult to achieve and therefore, make multi-

cast guarantees di�cult to provide if they depend on accurate membership information.

As a result, membership services typically provide guarantees about the consistency of

information at di�erent members and how this relates to message delivery.

Many papers have been written on multicast and membership. Multicast variations

that guarantee atomicity with respect to all functioning group members and ordering are

described in [GL92, Spa91, AGKK91, GMK88, GMS89, GMS91, BM89, BSS91a, CM84,

CASD85, KTHB89, NCN88, PBS89, VRB89, MPS89]. Other multicast research e�orts are

concerned with fast multicasting [RS92], low-cost multicasting [BA89], language support

for group multicast [Coo90], and multicast communication for mobile hosts [AB93]. As

described, membership also has many variations, which are summarized in [HS95b].

2.1.2 Consul

The Consul system provides multicast services for group communication, including causally

ordered atomic message delivery and membership [MPS93a]. Causal message ordering is

managed by a dependency graph called the context graph, which is implemented by the

Psync protocol [MPS92]. Each process in the group builds a context graph and only

messages for which all predecessors have been received are committed to the application.

Messages that have no dependency relationship with respect to each other can be delivered

in any order. Consul also provides totally ordered communication in which messages with

no ordering relationship have an imposed consistent ordering at each process. Consul man-

ages dynamic closed group membership, requiring all processes to execute join and leave

operations. It detects processes that are no longer functioning and removes them from

the group after agreement is reached with the other correctly functioning members. Con-

sul has been successfully implemented as a modular system using the x-kernel [MPS93b,

MPS93c]. However, as mentioned in Chapter 1, this implementation e�ort revealed that

more support for modularity was needed for complex protocols that can be subdivided

into many communicating submodules.

2.1.3 ISIS

The ISIS distributed programming toolkit has been used to develop many commercial

applications and is perhaps the best known reliable multicast service [BSS91b, BC91,

BSS91a, Bir85]. It provides failure atomicity, delivery ordering guarantees, and group ad-

dressing. Delivery ordering guarantees are atomic delivery of messages in either total order

(ABCAST) or causal order (CBCAST). CBCAST is similar to the partial order delivery

of Psync, but extends causality to multiple overlapping groups as well. ABCAST provides

total ordering by layering another protocol on top of the casual ordering protocol, giving

a total ordering that is causality preserving. In addition to message ordering guarantees,

ISIS provides group membership facilities. ISIS has been constructed as a large monolithic

implementation that is available on a number of platforms. The Horus system, described

in Section 2.4.3.below, is a new modular implementation framework where services are

28

created from protocol objects that can be stacked in a variety of ways. The multicast and

membership services of ISIS have also been built using this new modular framework.

2.1.4 Transis

The Transis communication sub-system is a transport layer that supports multicast and

automatic maintenance of dynamic membership over arbitrary network topologies [ADKM92].

The network is divided into broadcast domains that disseminate messages using hardware-

supported broadcast, with point-to-point messages being used between domains. Transis

provides immediate reliable delivery of messages to all active sites, as well as causal, totally

ordered, and safe multicast. In the last, messages are only delivered after being acknowl-

edged by all active sites. The membership service supports detection of failed hosts, group

partitions, and joins. Partitions can be uni�ed through join operations that add multiple

hosts to the group.

2.1.5 Totem

The Totem system provides totally ordered delivery of messages for single local-area net-

works or multiple local-area networks connected by gateways [MMSA

+

95]. Totem aims

to achieve good performance by using hardware broadcast in local-area networks and a

scheme based on a logical circulating token. The token is also used as the basis for reliable

delivery of messages, total ordering, and failure detection. Local area ordering is provided

using sequence numbers associated with the token, with global ordering across multiple

networks being handled by timestamps. In particular, gateways that connect two local-

area networks receive messages from neighboring rings and order the messages with new

sequence numbers based on the timestamp value in the message. Totem also provides a

membership service that handles processor failure and recovery, and network partitions.

2.2 Remote Procedure Call

2.2.1 Overview

A well known and commonly used IPC mechanism is Remote Procedure Call (RPC). To

the caller, RPC appears to be an ordinary procedure call except that the procedure is

executed by a separate process that may be executing on a separate host. RPC is con-

venient for programming distributed applications, because it provides a well-understood

procedural interface and automatic marshaling of arguments for network transmission.

The calling process is referred to as the client, and the callee process is the server.

When all processes are functioning correctly, RPC gives results indistinguishable from

a local procedure call except for timing. However, failure is an inherent problem given the

uncertainties associated with a distributed system; a host can be unresponsive because it

has crashed, messages were lost, or the network has become partitioned. Therefore, RPC

semantics also describe what can be inferred after a failure of this type. In addition to

failures, RPC request messages may arrive out of order, or be lost or duplicated. If RPC

is to provide a good abstraction for building distributed applications with fault-tolerant

29

requirements, there must be clear semantics de�ned for the case when processes are not

behaving correctly.

Non-group RPC services can be di�erentiated based on what can be inferred by the

client process about the number of times a remote procedure has been executed when

a server is unresponsive and the call terminates abnormally. Below are listed common

execution semantics, from the weakest to the strongest guarantees:

� At Least Once. If the invocation terminates normally the remote procedure has been

executed one or more times. If abnormal termination occurs, then no conclusion can

be drawn; it may have executed one or more times, not at all, or partially.

� Exactly Once. If the invocation terminates normally the remote procedure has been

executed exactly one time. If abnormal termination occurs, then it has been executed

only once, not at all, or partially.

� At Most Once. If the invocation terminates normally then the procedure has been

executed exactly once. Otherwise, if the termination was abnormal, then the proce-

dure was executed once or not all; execution is atomic even if a failure occurs.

Group RPC (GRPC) is similar to conventional point-to-point RPC, but instead of

sending a request to a server, the request is sent to a server group [Che86, Coo90, CGR88,

SS90]. This is especially useful for constructing fault-tolerant services using replicated

servers. It is also possible to have a group of clients interacting with a group of servers.

GRPC has several semantic aspects in addition to those found in point-to-point RPC

[HS95a]. These include:

� Ordering. FIFO order guarantees that all calls issued by a single client are executed

by each server in the same order. Total order guarantees that all calls by all clients

are executed in the same order by each server. Causal ordering of client requests

preserves the causal relationship of client requests.

� Collation. Collation semantics governs how responses from a server group are com-

bined and returned to the client. Speci�cally, it governs how many responses are

needed to complete the call and if these responses need to be the same.

� Failure. Failure semantics characterize what can be said about execution of a client

request during a failure of the server, speci�cally unique execution and atomic ex-

ecution [LG85]. Unique execution of requests guarantees that the request will be

executed no more than once. Atomic execution guarantees that the request will

either have been completely executed or not at all; there is no visible intermediate

state.

2.2.2 Sun RPC

Sun RPC is perhaps the most common RPC protocol and can be con�gured with two

di�erent transport protocols, UDP and TCP. When using TCP, requests are received at

most once and in order; if the server crashes then the client is guaranteed exactly once

30

semantics. When using UDP, only at least once semantics are guaranteed. Sun RPC has

broadcast capability to send a client request to a group of servers, but no server responses

are allowed and there are no ordering guarantees. If responses are required, the servers

use separate RPC calls that are manually collated by the client. Other RPC services are

provided by [SB90, BALL90, Cou81, BN84, ATK91, PS88].

2.2.3 Group RPC Systems

Sun RPC has been used as a basis for a fault-tolerant group RPC service in [YJT88]. In

this system, the servers are organized as a linearly ordered group, with the �rst process in

the group |the primary| receiving all RPC calls and sending all replies. The primary

forwards calls to the next server, which is one of the secondary processes, and each forwards

the request to its successor. Each server is deterministic and calculates a reply and sends it

to its predecessor; thus all servers will calculate a response before the client's RPC request

returns. Failures are detected by the server group and, if the primary is unresponsive, by

the client. When a failure is detected, the successor of the primary becomes the new

primary. Note that no state recovery is necessary since all secondary servers execute all

calls. At most once execution is provided, as well as FIFO ordering. All servers responses

are identical, but only one response is returned to the client process.

Another Sun RPC-based group service o�ers three variations of semantics to support

common classes of applications [WZZ93]. A lookup style of GRPC dispatches an RPC

call to a group of servers and if any of them respond, the call completes. No ordering or

execution guarantees are provided, so this is ideal for servers that are stateless and just

respond to lookup requests from clients. The functional-convergence GRPC style provides

no ordering, but all server responses are collected before the call returns. The strongest

guarantees are provided by the update GRPC style, which guarantees total ordering of

requests. In this case, all servers must successfully respond before a call can be completed.

As a result, if any server declares a failure, the call will return abnormally.

Circus is a group RPC service that is distinguished by the fact that the troupe of servers

do not communicate with one another [Coo85]. This simpli�es the system since the lack of

interaction means that servers do not have to manage membership. Instead, clients detect

server crashes and remove the failed server from the server troupe. Circus supports exactly

once execution and FIFO ordering. Collation of results can be unanimous, majority, or

�rst result.

Fault-Tolerant Concurrent C is a parallel programming extension of the C language

that provides group RPC to support active replication of deterministic identical server

processes [CGR88]. The collation semantics is �rst result; all other replies are discarded.

All calls are executed in FIFO order by all servers.

2.3 Mobile Computing

2.3.1 Overview

Mobile computing is an emerging area of distributed systems, so unifying concepts and

themes have yet to be de�ned. The current state of research is a multitude of systems

with di�erent hardware con�gurations and di�erent wireless communication technologies,

31

Mobile host

Wired Network

Wireless Link

Base Station

Cell

Figure 2.1: Hardware components of a typical mobile distributed system.

all attempting to provide connectivity for roaming users. The mobile devices can roam

small o�ce-size areas, campus-wide areas, or even across the country.

Despite this variety, all systems have a number of common core elements, as shown in

Figure 2.1. These include:

Mobile Hosts. A roaming device equipped with a wireless communication link. May

range in power from a dumb terminal to a powerful stand-alone machine.

Base Station. A stationary computer with a wireless communication link and a connec-

tion to a conventional wired network. Base stations can receive and transmit wireless

signals within a small local area called a cell. Coverage for large areas are provided by

distributing base stations so signals can be received from any location a host may occupy

in the region. In general, complete coverage creates overlapping cells.

Wireless Link. Communication to the mobile host from a given base station is provided

through wireless transmissions, using either radio or infrared technology. These links can

be very lossy and range from 9600 kbps to 1-2 Mbps.

Wired Network. The conventional network that connects wireless hosts to greater re-

sources provided by stationary hosts and peripherals. Wired links are much faster and

more reliable than wireless links.

The software components of a mobile system execute on the mobile hosts, stationary

hosts, and base stations. The most common components are:

32

Application

Mobile Host

Wired transmission

Cell
Manager 3

Cell

Cell
Manager 1

Manager 2

Wireless Transmission

Figure 2.2: Software components of a mobile distributed systems.

Cell Manager. Executes on the base station or on a stationary host controlling the base

station. Manages the wireless communication within the cell, forwards routing information

to other cell managers, and controls tra�c between wired and wireless networks (Figure

2.2).

Application. Executes on stationary hosts and communicates with mobile hosts through

cell managers and perhaps agents.

Agent. Some architectures maintain an agent process that controls application connec-

tions to a mobile host and provides an indirect address for mobile hosts (Figure 2.3).

The proxy or agent for a given mobile host is a stationery process that is responsible

for delivering messages to mobile hosts and caching information about the mobile host's

movements received from base stations.

What follows are examples of representative systems and how they solve routing and

cell hando�, that is, switching a mobile host between two base stations. These systems

were custom built and designed for their speci�c hardware infrastructure. The variety of

systems is due to architectural accommodation and semantics. Architectural accommo-

dation is necessary because mobile hosts have di�erent capabilities, so di�erent systems

have emerged for hosts that are dumb terminals versus hosts that can function as au-

tonomous entities. Protocol requirements such as TCP or IP, and �xed infrastructure

such as wireless communication protocols or base station requirements also necessitate

accommodation. Semantic variations exist to provide support for di�erent mobile host

applications, such as Web browsers, multimedia viewers, or portable patient monitor. The

systems presented here are intended to illustrate the many directions of mobile computing

33

Application

Mobile Host

Mobile Host Agent

Wireless Transmssion

Manager 3
Cell

Cell

Cell
Manager 2

Manager 1

Wired Transmissions

Figure 2.3: Agent-based mobile system.

research, with a special focus on cell hando� and quality of service.

2.3.2 Mobile IP

Several mobile computing protocols focus on routing messages to a mobile host anywhere

in the Internet. Mobile IP is one such set of IP based protocols [IDJ91, Per96, IJ93] that

handles routing and addressing of packets at the network layer. The architecture covers

Intranet as well as Internet routing and delivery, and has the bene�t of not a�ecting

routers that do not wish to participate.

Mobile IP works by modifying the way IP addresses are assigned and implemented.

Usually an address describes the network and subnet of the host, which is related to its

physical network connection. In this approach, each mobile host is given an IP address

that is in the mobile name space of a virtual network, which is made up of cells that are

administered by Mobile Support Routers (MSRs). An MSR is a gateway to the rest of the

wired network and a cell manager for one or more cells in the local area. Each cell has the

same subnet number resulting in a mobile subnet that is comprised of many unconnected

cells. Each MSR caches the current mobile hosts in the cell and MSRs for other hosts.

Thus, when a stationary host wishes to send to a mobile host, it simply forwards the

packet to the nearest MSR and the MSRs handle the delivery from there. Speci�cally, the

following is done when an MSR receives a packet for delivery:

1. If the MH is present in the area managed by the MSR, forward the message to the

appropriate base station.

2. If there is a forward pointer for the mobile host, forward the message to the other

referenced MSR since the host has migrated.

34

3. If there is no MSR to which to forward the message, broadcast a request to all other

MSRs asking that they attempt to locate the mobile host in their areas.

For this scheme to work, each mobile host must execute a handshake protocol with

the MSR of any new cell it enters. To facilitate this, each MSR periodically transmits

a beacon in its cell and every new mobile host responds with a greeting message that

indicates its last MSR. The new MSR sends a forward pointer to the previous MSR so

packets can be forwarded. Each MSR expires its entry for a mobile host if the host does

not communicate again within a speci�ed time interval, which is communicated to the

mobile host as part of the handshake process. Forwarding the packet to the nearest MSR

is handled by the normal Internet addresses advertised in the ordinary way with RIP,

Hello, or IGRI [Hed88, Mil83].

Mobile IP also supports routing to mobile hosts that temporarily relocate to another

part of the Internet that has Mobile IP support. When the host arrives at a network in a

di�erent mobile domain | i.e., a di�erent subnet | it is referred to as a pop-up and it is

assigned a temporary address known as a Nonce. The mobile host, with assistance from

local MSRs, informs an MSR in its old domain of its new location and Nonce address.

The old MSRs now forward packets for the mobile host through the Internet to the Nonce

address to be delivered by local MSRs. Routing proceeds the same as before, except that

MSRs in the mobile host's permanent subnet forward messages with the Nonce destination

address.

Other IP protocols have been developed that provide similar functionality [Car92,

CPR92, IDJ91, PB94, Rek93, TYT91, WYOT93].

2.3.3 InfoPad

The InfoPad is a mobile computing system speci�cally designed to support multimedia

applications, including video, audio, pen, text and graphics [KMS

+

93, MSK

+

93, LSBR94,

LBSR95, ABSK95]. The collection of mobile devices, called InfoPads, along with an

indoor radio cellular network and wired backbone network form the InfoNet. The InfoPad

has no general purpose computation resources so it serves only as a multimedia display

and I/O device, with actual computation being performed by machines on the backbone.

Communication to InfoPads is over a dedicated contention-free radio channel running at a

data rate of 700 kbps. Communication originating from an InfoPad uses a contention-based

control channel running at 244 kbps. It is typical to use the InfoPad as a multimedia data

sink, therefore the asymmetry of the design supports large data streams to the InfoPad

and not from the InfoPad to the backbone. Because of the multimedia requirements,

quality of service is a primary consideration of this design. The InfoPad must control

jitter for sound data and provide good throughput for video.

The software components that comprise the InfoNet can execute on many workstations

and are similar to the generic system outlined above:

PadServer. For each InfoPad, a PadServer acts as the agent and runs on a workstation

attached to the backbone. It is responsible for managing applications connected to the

35

InfoPad, controlling access to the InfoPad, and allocating InfoPad resources such as mi-

crophone, display, and speaker. It also negotiates quality of services requests on behalf of

applications. This negotiation may occur several times as the pad moves from location to

location crossing cell control boundaries. The InfoPad is unaware of location changes and

does not participate in mobility and connection maintenance.

CellServer. The CellServer is the cell manager and controls the allocation of resources

among the InfoPads in the cell. When a new InfoPad comes into the cell, the CellServer

negotiates its quality of service parameters. CellServers can also negotiate with geograph-

ically neighboring cells to hand o� InfoPads whose transmission quality has degraded and

can be improved with a di�erent cell connection.

Gateway. The Gateway is responsible for converting messages between the wired and

wireless networks. It receives wireless messages and routes them to the stationery des-

tination; it also receives messages from the wired network and transmits them through

wireless transmissions to the InfoPad.

Network Controller. The Network Controller is a generalized name service that provides

all parties in the InfoNet with name and address mapping information for InfoPads, Pad-

Servers, CellServers and Gateways. There is one Network Controller for the entire InfoNet.

Applications. Applications run on stationary workstations and are created with knowl-

edge about their quality of service requirements, which can be characterized by the latency,

jitter, and bandwidth characteristics of the data streams. The application must be able

to adapt when all of the quality of service requirements cannot be met, e.g., by sending

fewer video frames. The application communicates with PadServers and in some cases

directly with the Gateway.

2.3.4 PARC TAB

The PARC TAB is an infrared-based communications network designed to operate in

o�ce building sized areas [STW93, AGSW93]. Named for the palm sized mobile host,

the system is constructed as a collection of Unix processes providing reliable connections

from applications to mobile hosts. The PARC TAB has very limited storage and compute

power, and therefore is treated as a mobile terminal rather than a standalone machine. As

a result, most of the actual computation is done by application processes that execute on

stationary resource-rich Unix workstations. Routing is agent-based, so applications send

messages to agents of mobile hosts and the agent routes the message to the current base

station in contact with the mobile host. Each base station is controlled by a Unix process

and forwards detection of a mobile host to the host's agent. Agents use this information

to forward messages destined for the mobile host. Tra�c originating at the mobile host

is easier to route since it is all directed to the stationary agent. The agent then forwards

the message to the appropriate application process. In general, the agent sends PARC

TAB responses to the application, while the application sends screen updates and receives

touch pad and button press events from the PARC TAB. Thus, the user perceives the

36

PARC TAB as running applications when in fact the application is really executing on a

workstation somewhere in the building.

2.3.5 Dataman

Dataman is a mobile Web browser designed to be used while roaming a campus [BB95,

IBar, IB93, AB93, ABI93, BAI93a, BAI93b, BBIM93]. Although the Web is its targeted

application, the architecture is general and supports a range of applications. The main goal

of the Dataman architecture is to allow applications that are TCP/IP based to function

with mobile hosts; the application cannot detect whether the TCP/IP connection is with a

stationary or mobile host. The Dataman architecture also supports location independence

so the host can move and transparently access resources from the local area. For example,

a Web browser can get the next page (hyper-link) from the nearest server.

The architecture uses Mobile IP for addressing mobile hosts and modi�es TCP/IP so

the mobile side of the connection appears stationery by using a stationary intermediate

host. The modi�ed version of TCP/IP is Indirect-TCP/IP (I-TCP/IP). Mobile IP is used

to make connections from the stationary machine to the stationary MSR (Mobile Support

Router), which administers a cell with a base station (Section 2.3.2). The MSR then

runs an I-TCP connection to the mobile host. The MSR \fakes" the mobile host side

of the TCP/IP connection so that it appears stable and non-mobile. I-TCP/IP requires

applications to check that all packets are delivered, unlike TCP/IP; hence, it depends on

end-to-end application layer reliability guarantees. Other changes to TCP/IP are that,

when a connection migrates during cell hando�s, the slow start timer is reset so that the

new MSR has time to establish a connection before other packets are sent. Other versions

of modi�ed TCP for mobile computing are described in [BSAK95, ABSK95, BKPV95].

When the mobile hosts moves in Dataman, the mobile host requests that the new

MSR ask the previous MSR to migrate its I-TCP connection. The migration includes the

TCP/IP connection, sockets, protocol numbers, and any bu�ers to be received or sent.

2.3.6 Crosspoint

Crosspoint is a campus-wide wireless mobile network designed to enable students to main-

tain connectivity while roaming freely within a campus [CR94, CLR95]. The system's

primary goal is to have enough aggregate bandwidth to handle massive synchronized

movements of hosts as students change classes. In addition to handling huge volumes of

mobility information, a secondary goal is that the architecture not require any modi�-

cation to network software within routers. The Crosspoint architecture has a fast ATM

switching fabric for fast interconnect between base stations and routers connected to the

regular campus internet. The ATM switching network provides two virtual circuits be-

tween each base station: a high priority control channel and a lower priority data channel.

The communication between routers and base stations is unique but the rest of the archi-

tecture is typical; base stations transmit and receive packets transmitted over the wireless

medium and then route those packets by an ATM switching network to their destination.

Each base station informs all others about what hosts are in its area. Mobile hosts com-

municate with each other by the base station picking up the wireless signals and routing

37

to another base station that transmits to the other mobile hosts. A packet headed for

the wired network is routed through the ATM switching fabric to the routers controlling

access to the campus internet.

2.4 Modular Protocols

2.4.1 Overview

Most networking protocols have traditionally been large complex software systems, which

has made them di�cult to debug, extend, and modify. Originally, these systems were

monolithic implementations for performance reasons, but now there is increasing recog-

nition that modular implementations can be competitive in this area. One way to create

a modular implementation with good performance is to implement services as software

modules, which are then optimized into a monolithic executable using compiler technol-

ogy [AP93]. This section presents systems for constructing protocols that are implemented

and executed as modular code structures. We also discuss modular systems that regard

modularity as an opportunity to improve runtime performance. In particular, such sys-

tems execute protocol modules in parallel using the modular structure as a framework for

parallelization.

2.4.2 The x-kernel

The x-kernel is a system for composing protocol modules that facilitates experimentation

with communications systems. It provides a \protocol backplane" for protocol compati-

bility and interoperability. Each protocol supports a common set of operations that form

a uniform protocol interface (UPI): push, pop, and demux of messages between protocols.

The UPI supports the construction of protocols that can be hierarchically composed in a

protocol graph. The x-kernel has a thread per message architecture. That is, a thread is

created for each message to shepherd the message through the protocol graph, executing

the code at each layer. Most common protocols are available from an extensive library of

implemented protocols.

Messages are the main mechanism for communication and information sharing between

protocols. There are also limited control operations that allow execution of an arbitrary

operation by another protocol. The x-kernel provides e�cient services for typical network-

ing protocol operations, such as message assembly, fragmentation, and header additions

and deletions. Mapping utilities are also provided for associating keys with data and

looking them up.

2.4.3 Horus

Horus provides applications with con�gurable communication support by allowing users

to combine individual layers in a protocol stack to achieve some desired overall function-

ality [vRBF

+

95, vRBG

+

95, vRHB94, RBM96]. Horus is designed primarily for building

communication services for fault-tolerant systems. For example, a con�gurable implemen-

tation of the ISIS system described in Section 2.1.3 has been built using Horus. Protocol

38

objects in Horus are assembled into a stack at runtime. First, complex services are de-

composed into simple protocols, where each is written using a common set of upcalls and

downcalls termed the Horus Common Protocol Interface (HCPI). This interface supports

the same operations as the x-kernel UPI plus additional calls, for example, to join a group,

merge views, and send a message to a subset of members. Each layer is normally written

in ML, but can also be written in C to improve performance. There is a library of 20

common protocols, each one providing a particular communication feature.

To facilitate implementation, Horus provides a standard set of objects for protocol

writers, including endpoints, groups, messages and threads. An endpoint represents a

communicating entity and has an address used for membership. Endpoints can send

and receive messages, although messages are not addressed to endpoints but rather to

group objects. A process can have multiple endpoints and each stack of protocols has

an endpoint. Group objects maintain the local protocol state of an endpoint and a view

of the group membership. The Horus message tool supports pushing and popping of

headers, similar to the x-kernel. Threads perform computation and are not bound to any

particular endpoint, group, or message. A process can contain multiple threads, which are

created when a message arrives by another thread or by a timer. Threads are executed

concurrently and run preemptively. Protocols are designed for multiprocessing so they are

asynchronous and re-entrant.

2.4.4 ADAPTIVE

ADAPTIVE (A Dynamically Assembled Protocol Transformation, Integration, and eValu-

ation Environment) is a
exible transport environment for developing protocols of diverse

quality of service requirements running on high-performance networks [SBS93, SS94]. The

main bene�ts of ADAPTIVE are customized lightweight sessions and alternative process

architectures for parallel processing. Sessions are the state of a connection and contain

roundtrip timers, local and remote addresses, sequence numbers, and
ow control window

advertisements. Instead of incorporating complete functionality in a single protocol, the

transport layer is created from several smaller protocols that are customized for the ap-

plication's needs. To facilitate this process ADAPTIVE provides lightweight sessions that

can automatically be con�gured to create a system on shared-memory or message passing

multiprocessors. Con�guration can be done either at compile time or at runtime; in the

latter case intermediate switching nodes are used to determine if the application's quality

of service requirements can be met [SS94]. The system also has performance monitoring

and data collection to analyze the performance of di�erent con�gurations. The data col-

lection can also be used to adjust the system behavior dynamically, which makes it ideal

as a platform for adaptive systems.

2.4.5 Object-Oriented Framework

An approach to creating middleware protocols to support application-speci�c con�gu-

rations has been described in [Gol92, GL93]. This approach is based on a framework,

which is an object-oriented description of the components of a system. The framework

is speci�cally built as an environment for group communication such as would be needed

39

for coordination of replicated objects in a distributed system. The system has compo-

nent objects that can be included or left out depending on the guarantees required. The

various components can also have di�erent implementations for similar services, such as

di�erent ordering implementations or di�erent membership support. The framework in-

cludes a number of prede�ned data structures, including a message log, message summary

information, and a group view.

2.4.6 Streams

System V Streams supports modularization of protocols using a hierarchical composition

model [Rit84]. In this system, an I/O stream consists of several modules linearly linked

together, where each module has an identical read/write interface to facilitate interchange-

ability. A module includes queues of incoming and outgoing message blocks, a put routine

for queuing, and a service routine to perform the module's operation. The runtime sys-

tem manages queue
ow control by managing the scheduling of the service routine. The

modules only communicate by sending message blocks, either data or control.

The pipeline of modules can be extended by pushing a module on or popping a module

o�. This facility was originally envisioned for terminal I/O, where a module can be pushed

on for one type of terminal driver or network device. System V Streams has also been used

to provide interprocess communication by using PT (Pseudo Terminals) to link Streams

on two hosts.

2.4.7 Parallel Protocol Execution

The emphasis of this project is on developing modular implementations of protocols to

improve performance and con�gurability of communication support for gigabit/second

networks [MS93, LAKS93]. Faster performance is achieved by executing the individual

modules on the individual processing units of a parallel machine. In addition to speed

requirements, these protocols send voice and video transmissions with image and data en-

cryption, which presents even further protocol processing requirements. The �ne-grained

modularity of these protocols allows communication services to be con�gured to match

the transmission, encryption, and compression requirements of the application.

A protocol is created from a collection of �ne-grained protocol objects that perform

isolated processing tasks. By dividing the tasks to be performed, a processor can be

assigned to each task to gain the advantages of parallel execution; protocols can process

incoming and outgoing packets concurrently. Protocol objects communicate by sending

messages and can coordinate their actions in a more
exible manner than traditional

protocol architectures. In addition to protocols sharing information using asynchronous

messages, synchronous communication is also possible by executing a method in another

protocol object.

The contributions of this project are parallelism applied to protocols and the ability

to con�gure the protocol objects to match application requirements. To achieve this

performance, the layered protocol model of communication services is violated to increase

parallelism by adopting a more free-form layered model.

40

2.4.8 Parallel versions of the x-kernel

A parallel implementation of the x-kernel that runs on Silicon Graphics shared memory

multiprocessors is described in [NYKT94]. In this system, packet-level parallelism is used

in which packets can be processed on any processor. To make the x-kernel multiprocessor

safe, locks were added to routines that access x-kernel data structures. The basic x-

kernel structuring of protocols objects remains the same, but each object now needs to

be concerned about protecting its data structures from concurrently executing threads.

The system was built and measured using a TCP/IP stack, which shows performance

improvements and good scalability A separate and similar parallel implementation of the

x-kernel is described in [Bjo93].

2.4.9 Parallel Protocol Framework

The Parallel Protocol Framework (PPF) de�nes a hierarchical implementation and parallel

execution environment for protocols [GNI92]. The PPF provides many e�cient primitives

so the protocols can be written more consistently and easily. Events are used for com-

munication between layers; in particular, protocols communicate by posting events to

another protocol. The receiving protocol is explicitly identi�ed when the event is gen-

erated and only one receiver is permitted. Protocols may also communicate with other

protocols in the same layer using events. The events can be ordered by sequence numbers

to prevent messages from being delivered out of order in a particular connection due to

parallel execution. For non-connection oriented protocols, events can be executed with no

ordering restrictions. This event interface between protocols supports some interchange

of protocols, although protocols must have the same interface and expect identical argu-

ments. Like the x-kernel, the PPF supports a hierarchical graph of protocols. Also like the

x-kernel, each message is shepherded through the protocol graph, executing each protocol.

2.5 Con�gurable Operating Systems

A recent trend in operating systems (OS) is towards con�gurable systems that place

traditional OS functionality under application control to improve performance. Many

studies have shown that when OS policies are not well matched to the application, poor

performance can result. For example, the �le system requirements of Web applications,

compilers, and scienti�c computations are very di�erent so it is unlikely that one �le

caching policy will give peak performance for all three. This section describes several

operating systems that give control over many policies of this type to applications.

2.5.1 Spin

The Spin operating system allows OS services to be tailored to speci�c applications. The

focus of Spin is on extensibility, safety, and e�ciency [BCE

+

95]:

� Extensibility. The system provides �ne-grained access to system resources and func-

tions. Extensions are dynamically linked into the kernel virtual address space and

41

protection domain. Using this mechanism, users can augment the memory man-

agement system, scheduling, and network subsystems. For example, the system

can be con�gured with a di�erent page replacement algorithm specially tuned for a

particular database application.

� Safety. Applications can install new policies, but these should not a�ect other

applications. The extension mechanism contains the e�ects of di�erent extensions

by using language features to enforce type safety and logical protection domains to

manage processes' control over resources. These protection domains can be disjoint

or overlapping to provide sharing between processes.

� E�ciency. The system is extensible, but not at the cost of performance. To provide

an e�cient system, events are used for structuring. In particular, applications pro-

vide handlers for events triggered by the system, which allows user code to extend

OS behavior. To reduce event overhead, handlers are invoked using procedure calls;

since handler code is executed in the kernel address space and protection domain,

no user/kernel boundary crossings are needed.

2.5.2 Exokernel

The Exokernel is a customizable operating system that provides opportunities for domain-

speci�c optimization through extending, specializing, or even replacing object-oriented

libraries [EKO95]. The Exokernel is a micro-kernel that allows untrusted software running

in user space to implement normal OS functions, such as virtual memory and interprocess

communication. Most applications use one of a handful of available library OS with

popular interfaces, e.g. POSIX, but they can also create their own customized versions.

Like Spin, the Exokernel is concerned with performance, so it allows the OS libraries

to access the hardware directly. User processes can directly access hardware in secure

ways through capabilities granted by the kernel, with access being revoked if a process

misbehaves. The system implements secure bindings for capabilities that cannot be forged

by another process so the kernel does not have to check every access. The OS library code

is downloaded into the kernel for execution to avoid the cost of crossing the user/kernel

boundary.

2.5.3 Scout

Scout is a con�gurable communications-oriented operating system targeted to supporting

\information appliances" rather than just computation [MMO

+

94, MP96]. The specialized

tasks performed by such systems are implemented as customized software, which allows

the use of inexpensive commodity components. To facilitate development, Scout provides

a toolkit for con�guring modules required by the application. Scout employs specialized

compiler techniques to optimize predictable execution of OS code to increase instruction

cache hits.

Quality of service is also a concern in this type of OS, so Scout is organized around

the idea of a path. A path is an extension of a network connection into the host operating

system from data source to data sink. Resources (CPU, memory bu�ers, I/O Bus, cache,

42

TLB) are allocated based on the quality of service requirements of a particular path.

Scheduling in the OS is based on the path and not on threads. Scout does not enforce

a particular quality of service model but rather provides the mechanisms to support a

variety of policies.

2.5.4 Application Controlled File Caching

Application controlled �le caching is designed to improve performance through customized

caching policies [CFL94b, CFL94a]. The goals of the approach are never to perform

worse than LRU and to prevent misbehaving processes from negatively impacting the

performance of other processes sharing the �le cache. The approach is as follows. First,

when a cache miss occurs, the OS selects a process to give up a block. The process

can select any block but if its decisions result in increased cache misses relative to what

the kernel would have provided, the kernel re-assumes control. An application can also

rely on any one of several replacement policies already implemented by the system (e.g.,

MRT, LRU) based on the usage pattern of �les. Even with the extra overhead of extra

crossings of the user/kernel boundary to consult the user process for block replacement,

the improvements to �le caching result in a reduction of block I/Os by as much as 80%.

For applications that select a replacement policy already implemented by the kernel, no

extra user/kernel boundary crossing are incurred.

2.6 Summary

Software for distributed systems can be simpli�ed using communication services and ab-

stractions such as multicast, membership, RPC, and various systems that support mobility.

While all services of a particular type have the same basic functionality and structure,

a variety of speci�c systems have been de�ned that specialize the semantics to match

the needs of particular applications. A number of projects have developed modular ap-

proaches that allow a degree of customization, but the modules are relatively coarse grain

and composition is constrained to be hierarchical.

43

CHAPTER 3

COMPOSITE PROTOCOL MODEL

3.1 Motivation and Goals

Early protocol systems were designed as monolithic entities, and their implementations

re
ected this. Even as the layered model gained acceptance as a conceptual tool to view

protocol composition, implementations still tended to be ad hoc, re
ecting a concern that

implementing each protocol as a distinct entity would result in signi�cant performance

penalties. It is only recently, in fact, that software support for protocol composition has

reached a level where hierarchical collections of protocol objects can be combined into a

system whose performance is competitive with monolithic implementations.

Constructing a communication service from collections of protocol objects has a num-

ber of advantages. Perhaps the most important is that it allows, at least in theory, reuse

to construct new services. In other words, a new service can be constructed by writing

a new object that implements just the new aspect of the service, and then combining

it with existing, well-tested objects that provide the other necessary functionality. Over

time, a comprehensive library of objects can be developed, thereby simplifying the devel-

opment e�ort, facilitating performance comparisons between protocol implementations,

and allowing experimentation with new protocol concepts.

While hierarchical composition has worked well for a large class of protocols, a per-

suasive case can be made that it lacks the
exibility needed to implement certain types

of protocols. For example, in designing and implementing Consul using the x-kernel, a

number of inherent problems with the model were discovered [MPS93b]. These problems

can be summarized brie
y as follows:

� Provisions for communicating between protocol objects on the same machine are

insu�cient to implement the necessary complex interactions. In the x-kernel, the

speci�c problem is that the Uniform Protocol Interface (UPI) lacks su�cient
exi-

bility, thus requiring the programmer to use control operations as a workaround.

� Lack of communication support leads to implicit dependencies between objects,

where one object \expects" another to realize some functionality. When compared

to an explicit dependency caused by an invocation, implicit dependencies make the

software di�cult to debug and modify.

� A protocol object may need to store and examine multiple messages at a time to

implement, for example, message ordering properties. Such a processing paradigm

di�ers from traditional protocol objects, which typically deal with a single message

at a time.

� Multiple protocol objects may need to coordinate their actions or synchronize relative

44

to a given message or set of messages. Such coordination is di�cult in the current

model.

A remarkably similar experience has been reported independently by the developers of

xAMP [Fon94].

While these limitations are directly relevant only to atomic multicast protocols like

Consul and xAMP, there are several reasons to believe the lessons are applicable to other

types of protocols as well. First, increasingly sophisticated services are being implemented

as network protocols, in part because of the advent of protocol-oriented kernels such as

the x-kernel. These services, like atomic multicast, are the type most likely to stretch or

break the hierarchical model. Second, as distributed applications become more common,

the demand for new types of specialized protocols very di�erent from current protocols

will increase. Doing such specialization in a hierarchical model|especially �ne-grained

specialization|is likely to be di�cult. Finally, applications are demanding more con-

trol over their execution environment, including the communication substrate, in order

to achieve the best possible performance. Such con�gurability will further increase the

complexity and variety of protocols that must be supported.

This research is based on the premise that the construction of network services through

the composition of protocol objects is the appropriate paradigm. Our objective, however,

is to relax the restrictions on intra-machine inter-object communication imposed by the

hierarchical approach. In our approach, protocol objects performing unrelated tasks are

located in di�erent layers and communicate normally using the standard UPI of the x-

kernel. However, protocol objects that need to communicate more often or cooperate

more fully|our micro-protocols|are co-located within a structure that provides richer

facilities for this type of interaction. Micro-protocols have no direct knowledge of each

other; communication is achieved indirectly through an event mechanism. This structure,

described in detail in the next section, has a number of bene�ts, including:

� Expressibility. The micro-protocol execution environment provides a new, more

general model for structuring protocol objects. Micro-protocols can communicate

with an arbitrary number of other micro-protocols, can synchronize when necessary,

and can operate on collections of messages. The environment also supports multiple

threads of execution.

� Con�gurability. A network service is constructed out of modular micro-protocols,

each of which implements a speci�c semantic property. The result is an approach

that supports a high degree of con�gurability and the construction of services that

are customized to the needs of the application.

� E�ciency. Since a network service can be customized, the application avoids exe-

cution overhead that can result from the inclusion of unnecessary properties. For

example, it is easy to build an atomic multicast that includes no consistent ordering

of messages, thereby avoiding the delay inherent in doing such ordering.

� Resuability. Micro-protocols implementing various semantics can be used in multiple

services. For example, a liveness micro-protocol that checks that all processes have

45

sent a message within some given time interval can be used in a variety of protocol

suites.

� Ease of debugging and maintenance. Since a service is constructed from small micro-

protocols, each can be debugged and maintained independently. This process is also

simpli�ed since interactions between micro-protocols are largely explicit.

� Explicit dependencies. Dependencies between micro-protocols are explicit

since \back door" communication channels are unnecessary. This makes understand-

ing the micro-protocols easier and the interactions obvious.

� Future opportunities for optimization. Explicit dependencies create the potential

for code optimization. For example, it may be possible to in-line code using tech-

niques similar to [AP93] to yield a system with e�ciency competitive to monolithic

implementations.

� Availability of x-kernel protocols. Since our system is incorporated in the x-kernel,

all existing and future x-kernel protocols can be used without modi�cation.

In summary, then, our goal is to extend current technology to encompass more �ne-

grained composition of protocol objects, both to simplify development and to increase the

con�gurability of the network subsystem. Note that a second prototype implementation

of the model has been constructed in C++ [Hil96].

3.2 A Two-Level Model of Protocol Composition

In the standard x-kernel model, a hierarchical graph of protocol objects is used to realize a

communication service. A thread shepherds each message along a path through the graph

executing the x-kernel operations call, push, pop, and demux to route the message on the

correct path from the application to the network or vice versa. Messages can be modi�ed,

destroyed or created as they traverse the graph.

In addition to processing application messages, a protocol object uses messages to

communicate with other protocol objects to which it is connected in the graph. Since this

graph is hierarchical, however, communication
exibility is limited, especially with regard

to allowing communication among protocol objects at the same level of the graph. Thus,

our scheme augments this model by adding composite protocols, which essentially create

new ways for protocol objects at the same level to communicate. In addition, we have

extended the one-thread-per-message model to multiple-threads-per-message model and

provided an event-driven mechanism for protocol communication.

In our model, the standard x-kernel hierarchical model is augmented with the ability

to include composite protocols in the protocol graph in conjunction with simple x-kernel

protocols. Unlike simple protocols, each composite protocol has an internal structure

formed of a collection of micro-protocols executed in an event-driven manner. The major

components of a composite protocol are:

� Micro-protocols: A section of code that implements a single well-de�ned property or

provides some speci�c functionality. Consists of header information, private data,

46

UDP

IP

Ethernet

Arp

Appl

CP

Event Handlers

C

C

R F

CR F

Composite Protocol (CP)

Micro Protocols

Membership [M]

Failure Detection [F]

Causal Order [C]

Reliability [R]

Messages

Event Manager

Msg popped to CP

Msg popped from CP

Membership change

Msg pushed to CP

Figure 3.1: Composite protocol within an x-kernel protocol graph.

initialization code, and a collection of event handlers. May export data for use by

other micro-protocols.

� Events: An occurrence that causes one or more micro-protocols to be invoked. Event

handlers are invoked (logically) in parallel. Event types specify whether the trig-

gering micro-protocol is blocked until completion or not. Some events of interest

are prede�ned and generated by the framework (e.g., message arrival); others are

de�ned by micro-protocols (e.g., change in group membership).

� Framework: A runtime system that implements the event registration and triggering

mechanism, and contains shared data (e.g., messages) that can be accessed by more

than one micro-protocol.

An example of this model is shown in Figure 3.1. To the left is an x-kernel protocol graph

that contains a composite protocol CP implementing atomic multicast. To the right is

an expanded view of CP illustrating the components of the model. In the middle of CP

is the runtime framework, which contains a shared data structure|in this case a bag of

messages|and some event de�nitions. The boxes to the left represent micro-protocols,

while to the right are some common events with the list of micro-protocols that are to be

invoked when the event occurs.

47

micro-protocol name f

... Decl of exported events, message attributes,

data inspection, modi�cation routines ...

... Decl of imported events, global variables ...

... Decl of private events, message attributes, variables ...

... Initialization code ...

... Event handlers ...

... Local procedures ...

g end micro-protocol name

Figure 3.2: Micro-protocol schema

3.3 Micro-Protocols

A micro-protocol is structured as a collection of export, import, and private declarations,

and code for event handlers and local procedures, as shown in Figure 3.2. The export

section lists procedures and events implemented and declared in this micro-protocol, but

available for use elsewhere. The import section lists procedures and events that are pro-

vided by other micro-protocols. For brevity, events that are provided by the framework

are not included in the import list since as they can be freely imported by any micro-

protocol. Events and data that should not be accessed by another micro-protocol are

listed in the private section. Micro-protocols use private events for internal communi-

cation. The initialization section contains statements that are executed at system start

time to, for example, initialize private micro-protocol data. The next section contains the

event handlers that make up the majority of micro-protocol code. Finally, the last section

contains local procedures.

The general form of an event handler is:

event name [&& boolean-expr]* ! handler

Each handler is preceded by an event name and an optional boolean expression to make

the handler execution conditional. This boolean expression or guard may reference event

parameters, message attributes, and micro-protocol variables. When the event is raised,

the guard is evaluated and the handler code executed if the result is true.

1

For example,

a micro-protocol that resets timeout timers when an acknowledgment messages arrives

might have a guard that checks that the message type is \acknowledgment".

Micro-protocols often manage data that can be exported by public data inspection

routines. For example, a membership micro-protocol might export a routine that returns

the current membership list. In these situations, only the micro-protocol declaring the

data can alter it, so that changes by other micro-protocols must be requested by raising

an event or calling an exported routine that modi�es the data. When a micro-protocol

modi�es its data, it will often raise an event to notify other micro-protocols about the state

change. For example, the membership micro-protocol might react to a \timeout" event

1

Guarded events are not implemented in the prototype. Each event guard is translated by the protocol

writer to an if statement at the beginning of the event handler.

48

by suspecting that a process has failed. If after further checking|for example, by running

an agreement protocol with the other processes|it determines that a failure has indeed

occurred, it would update the membership list and raise an event declaring a change to

that list.

We express micro-protocols in an informal Protocol Description Language (PDL) that

supports the structure of micro-protocol programming described above, and enforces vis-

ibility and modularity rules. Micro-protocols written in PDL are currently translated by

hand into C �les that are compiled using the standard C compiler. The intent of the

language is to provide a common syntax for expressing micro-protocols that can then be

translated into source code that is linked with the framework code to create composite

protocols.

Other aspects of micro-protocols shown in Figure 3.2 (e.g., message attributes) are

described below.

3.4 Events and Handler Execution

Events are a general communication mechanism used to inform micro-protocols that some-

thing of interest has happened. A micro-protocol requests noti�cation from the runtime

system for a given event by declaring a handler as shown above. Each event may have mul-

tiple handlers, and the handlers are not necessarily known to the micro-protocol raising

the event. The latter property helps decouple micro-protocols from one another, thereby

simplifying the task of writing micro-protocols that can be combined in a
exible fashion

with other micro-protocols. For example, one micro-protocol can be responsible for de-

tecting a situation, with another implementing the policy for resolving it. This type of

structure allows the policies for each to be realized orthogonally based on the needs of the

application and the speci�c collection of micro-protocols con�gured into the framework.

Events can also have parameters. For example, when an event corresponding to the

expiration of an acknowledgment timer occurs, we might also want to communicate which

message is lacking the acknowledgment. Such functionality can be realized by passing that

information as an argument to the registered event handlers. All parameters are passed

by value.

Events can either be user-de�ned or prede�ned by the runtime system. A user-de�ned

event, such as the one related to timer expiration above, is exported (declared) by a given

micro-protocol and explicitly raised by invoking a routine implemented by the framework.

Prede�ned events, on the other hand, are exported by the runtime framework and implic-

itly raised when the framework detects that the event has occurred. In both cases, the

event can be imported (handled) by any number of other micro-protocols.

The following list gives the prede�ned events currently supported; here, xMsg refers

to an x-kernel message and CPMsg refers to a composite protocol message, both of which

are described in more detail in Section 4.1:

� Message Popped To CP(xMsg): An x-kernel message from a lower-level x-kernel pro-

tocol has been popped to the composite protocol.

� Message Popped From CP(CPMsg): A message has been popped from the composite

protocol to the x-kernel higher-level protocol.

49

� Message Pushed To CP(xMsg): An x-kernel message from a higher-level x-kernel

protocol has been pushed to the composite protocol.

� Message Pushed From CP(CPMsg): A message has been pushed from the composite

protocol to the x-kernel lower-level protocol.

� Message Inserted Into Bag(CPMsg): A message has been constructed and inserted

into the shared bag of messages.

� Message Deleted From Bag(CPMsg): A message has been deleted from the shared

bag of messages.

� Message Ready To Be Sent(CPMsg): All micro-protocols are satis�ed that the mes-

sage can leave the composite protocol, either to be popped or pushed.

Handlers are scheduled for execution when an event is raised. If there are multiple

handlers registered for that event, the order in which they are executed is indeterminate.

In fact, they may be executed in parallel given the appropriate hardware. Dependencies

between handlers are programmed explicitly using the event mechanism.

Execution of a micro-protocol that raises an event can either block until all handlers

have completed (synchronous) or proceed without blocking (asynchronous). The choice

of semantics is speci�ed as an argument in the system call that raises an event, implying

that it can vary on a per-invocation basis. These semantics extend as expected through

multiple levels of recursively raised events.

3.5 Timer Events

Support is also provided for timer events that are generated after a speci�ed amount of time

has passed, rather than by any particular action of a micro-protocol or framework. Timer

events are essential for detecting timeouts and performing periodic protocol functions.

There are no prede�ned timer events, so all timer events are user-de�ned, and, like other

events, value parameters can be passed to handlers. When a timer event is set, the user

speci�es the timer interval and if the event will repeat or be a single occurrence. When

the speci�ed timer interval expires, the framework asynchronously executes all handlers

in parallel.

Unlike other events, timer events can be canceled. Cancellation is atomic with respect

to handler execution; even if handlers have started to execute when the cancellation occurs,

they are allowed to run to completion. When a single occurrence timer event is canceled,

there are three possible event states: the event has not yet been triggered, the event has

completed, or event handlers are currently running. If the event has not been triggered,

then cancellation ensures that the event will never be raised. If all handlers for the event

have completed execution, then cancellation has no e�ect. If the event has been triggered

and handlers have started to execute, then all handlers are allowed to complete.

Cancellation of repeating events is similar to single occurrence events, but also prohibits

any further occurrences of the event. As with single occurrence events, if the event has

not been triggered, cancellation ensures that it will never trigger. If the event has already

50

occurred but no handlers are currently executing, then no further occurrence will be

triggered. If cancellation occurs during execution of the handlers associated with the

event, then all handlers are allowed to terminate and further occurrences are prohibited.

For both single occurrence and repeating events, a return value from the cancel function

indicates if the timer event was successfully cancelled.

3.6 Framework

The framework is a runtime system that implements the event mechanism and provides a

shared bag of messages on which micro-protocols operate. It also implements an x-kernel

compliant interface for the composite protocol, which enables it to inter-operate with other

x-kernel protocols in the standard way.

The framework accepts messages from the x-kernel and transfers control to micro-

protocols by raising the appropriate events and executing the appropriate event handlers.

As already noted, in the x-kernel, one thread shepherds any given message through the

entire protocol graph, executing code in various protocol objects on behalf of the message.

To handle the execution of potentially many event handlers, however, we extend this

model to allow multiple threads to execute on behalf of the message during its residence

in the composite protocol. This model provides more
exibility than the one thread per

message in the context of composite protocols, and also allows the possibility of true

parallel execution, as noted above. The one thread per message model is restored when a

message leaves a composite protocol and is handed over to a standard x-kernel protocol

object.

Messages that arrive at a composite protocol are placed in an unordered bag of mes-

sages maintained by the framework that functions as a global pool accessible to all micro-

protocols. This feature is intended to support two aspects of programming that are com-

mon in the type of high-level protocols for which this approach is intended. First, it

allows micro-protocols to make state changes based on information in an entire collection

of messages, rather than just a single message as is typical in a hierarchical system. This

can be important, for example, in an atomic multicast protocol that requires waiting for

a collection of messages to arrive and then deterministically sorting the collection before

presenting messages to higher levels [PBS89, MPS93a]. Second, a shared bag of messages

allows multiple micro-protocols to access messages concurrently. This can be important,

for example, in a situation where a message is acknowledged by one micro-protocol while

concurrently being ordered relative to other messages by a second micro-protocol.

Prior to being placed in the bag, a verify micro-protocol is executed to determine if the

message is acceptable. For instance, a message might be rejected if corruption is detected

or if it is destined for a process that no longer exists. If the message is acceptable, the

verifying micro-protocol places the message in the bag using a routine provided by the

framework. The verify micro-protocol is written by the user, so that message screening

and bag insertion are under program control; deletion from the bag is similarly done by

the user. Commonly-used variants of verify can be supplied from a library, if desired.

Each message in the bag has a collection of attributes that encode certain types of

per-message information. Prede�ned attributes are supplied by the framework. For ex-

51

ample, one such attribute is direction, which indicates whether the message is being sent

up or down the x-kernel graph. Micro-protocol attributes contain micro-protocol-speci�c

information about the message. For example, a reliability protocol may keep private state

information about the message indicating whether it was acknowledged or is being re-

transmitted and by which hosts. Such attributes can be declared either private or public;

a private attribute is visible only to the micro-protocol that de�nes it, while a public

attribute can be read by all micro-protocols. In addition, attributes are used to build

headers for messages that are pushed from the framework. This is done by an attribute-

to-header routine provided by the user and invoked by the framework as a message is

exiting the composite protocol. Similarly, when a message is popped to the framework, a

header-to-attribute mapping routine is invoked that unpacks the header and creates at-

tributes using this information. Both of these mapping routines are currently supplied by

the user, although it is easy to imagine generating them automatically from appropriate

speci�cations.

As already noted, data de�ned within a micro-protocol can also be shared by exporting

appropriate inspection routines. Any necessary synchronization within these routines is

done explicitly using semaphores. With our prototype implementation, such synchroniza-

tion is only necessary if the data is not written atomically and either a message push or

an explicit event triggering is done in the middle of the code e�ecting the change.

3.7 Message Sending and Garbage Collection

In many cases, when to send a message up to the application or down to a lower-level

protocol is a decision that cannot be made by one protocol alone, so coordinated sending

is needed. For example, consider a message that has arrived from the network via a

lower-level protocol. The acknowledgment protocol has dispatched a reply message to

acknowledge receipt of the message, so it is completely satis�ed that the message can

be sent up to the application layer. However, an ordering protocol that places strict

requirements on message ordering may wish to force the message to stay in the composite

protocol. Realizing such coordination is especially di�cult since it must function correctly

for any combination of micro-protocols.

Determining when a message is \ready to send", then, can be a complex process

involving multiple micro-protocols. The framework supports such coordination with the

use of send bits associated with a message. There is one bit per micro-protocol, and when

all send bits have been set, the framework automatically sends the message. If a micro-

protocol does not need to restrict when a message can be sent, it sets its send bit by default.

Often, this is done in the handler bound to the Message Inserted Into Bag(CPMsg)

event, which is always one of the �rst executed when a message arrives. Usually, the last

send bit is set by the micro-protocol with the most restrictive conditions.

Similar to send bits are deallocate bits, which function to coordinate message deallo-

cation. Again, each micro-protocol has a unique deallocate bit for each message. When

all deallocate bits are set, the framework raises the Message Ready To Be Deallocat-

ed(CPMsg) event. The micro-protocols can then free any information related to the mes-

sage. Note that if there are any outstanding send operations with references to the mes-

52

sage, then deallocation is deferred until all such operations have completed. This is done

to avoid pending send operations with references to deallocated memory.

An alternative to coordinated deallocation is a more centralized scheme that employs

a micro-protocol that knows when it is safe to free messages based on other events. Some

composite protocols naturally lend themselves to this approach. For example, once a

message is sent or written to stable storage it can often be deallocated safely. Conversely,

other micro-protocol suites may need to keep messages for retransmissions and hence, mul-

tiple micro-protocols could be involved. To provide a
exible environment, the framework

accommodates both styles of garbage collection.

In addition to coordinated sending of messages, micro-protocols can also send messages

without any other micro-protocol being informed. This is referred to as an out of band

message because it is sent directly without using send bits or being inserted into the shared

bag. Similarly, no events are triggered. Micro-protocols use out of band communication for

sending control messages to peers without notifying other micro protocols in the composite

protocol. Out of band messages are only supported for messages sent to the network via

a lower-level protocol and not messages sent to the application. Sending of the message

is synchronous and no Message Pushed From CP(CPMsg) event is raised after the send

operation is complete.

3.8 Examples

To illustrate the structure of micro-protocols and the event-driven programming paradigm,

we present two short examples of micro-protocols that might be part of a suite used to

implement an group communication service. The �rst is a simple membership micro-

protocol that updates a membership list whenever a host is suspected of having failed.

The second is an acknowledgment micro-protocol that sends an ACK message for each

reply message received, sends a \still working" message to a client if the reply from the

local server is slow, and raises the Suspect Host Dead event if a server is suspected to

have failed. Both are written in PDL pseudo-code.

3.8.1 Membership Micro-Protocol

Figure 3.3 shows the code for the membership micro-protocol. At the top is an exports

section that speci�es inspection routines, events, and attributes that are exported for

use by other micro-protocols. Here, an event for membership change and a routine for

accessing the current group membership are provided. Note that the event speci�cation

includes a parameter to indicate whether the event of interest is the failure or recovery of a

host. The exports are followed by an imports section, in this case an event corresponding

to a suspected failure. This particular event is raised by the acknowledgment micro-

protocol below and �elded by an event handler in MEMBERSHIP. Note that this speci�cation

also includes a parameter, speci�cally, an indication of which host is suspected to have

failed. Next, the micro-protocol includes declarations for any private data, attributes,

and events. In this case, the only private data is the membership list maintained by the

micro-protocol.

53

micro-protocol MEMBERSHIP f

exportsf

event Membership Change(ch t type);

proc memList t GetGroup();

g

importsf

event Suspect Host Dead(mem t host);

g

privatef

memList t MemberList;

g

initializef

initMembershipList();

g

actionsf

Suspect Host Dead(mem t host) !

if (find(host, MemberList)) f

deleteMember(MemberList, host)

raiseEvent(Membership Change, DELETION, ASYNC)

g

g

... code for deleteMember, GetGroup, and initMembershipList ...

g end micro-protocol MEMBERSHIP

Figure 3.3: Simple membership micro-protocol

The declarations are followed by the procedures that make up the body of the micro-

protocol. The �rst is an initialization routine, which initializes the membership list from

some external source; for example, it may be read from a �le. This routine is executed, in

x-kernel terms, at initialization time prior to execution of the standard open or openenable

routines.

After the initialization code is the actions section, which contains the event-handling

code. In MEMBERSHIP, there is one handler that deletes a member from the list when the

Suspect Host Dead event is triggered. The parameters to the event are available to the

handler, as is any private data declared within the micro-protocol.

The remainder of the micro-protocol contains inspection routines for export, local

procedures, etc. In this micro-protocol, there are three such routines: deleteMember,

GetGroup, and initMembershipList. Their code is omitted here for simplicity.

3.8.2 Acknowledgment Micro-Protocol

Figure 3.4 shows the code for a simple acknowledgment micro-protocol ACK that generates

the Suspect Host Dead event when a message has not been acknowledged after some

interval of time. This interval can be adjusted by a call to the setInterval routine. The

timer is started at the time the message is pushed from the composite protocol. The timer

is set by the setTimerEvent call, which gives the interval to wait and an indication that

this event is to be generated only once rather than periodically. This Timeout event is

declared in the private section of the protocol and is therefore raised and handled only by

54

micro-protocol ACK f

exports f

event Suspect Host Dead(mem t host);

proc SetInterval(int millisec);

g

imports f

boolean client, server;

g

private f

event Timeout(CP Msg t msg);

attribute serverList t servers ;

int interval;

g

initializef

InitTimerVal();

g

actions f

/� Set timer event for each message sent to detect loss.�/

Message Pushed From CP(CP Msg t msg) && client &&

msg.attr.type == REQUEST !

setTimerEvent(Timeout, CP msg, interval, ONCE);

/� Set timer event for request received so we reply in time.�/

Message Inserted Into Bag(CP Msg t msg) && server &&

msg.attr.type == REQUEST !

setTimerEvent(Timeout, CP msg, interval, ONCE);

/� Send an ACK message for each reply message received.�/

Message Inserted Into Bag(CP Msg t msg) &&

msg.attr.type == REPLY !

sendAckToSender(msg,REPLY RECEIVED);

/� Send a "still working" message if server slow.�/

Timeout(CP Msg t msg) && Server !

sendAckToSender(msg, STILL WORKING);

/� Some server has not responded in time. �/

Timeout(CP Msg t msg, host) && Client !

if (hostNotResponding(msg, host)) f

RaiseEvent(Suspect Host Dead, host, ASYNC);

g

g

... code for SetInterval, InitTimerVal, sendAckToSender, and

hostNotResponding ...

g end micro-protocol ACK

Figure 3.4: Simple acknowledgment micro-protocol

55

ACK.

The second set of tasks done by ACK involve acknowledging any messages that are

received. It accomplishes this by handling the Message Inserted Into Bag event for

messages of type REPLY. The event is quali�ed so that only reply messages are acknowl-

edged. Request messages are only acknowledged if the server is slow in responding, which

is also handled using the Timeout event. The server and client sides of the communication

are handled by the same micro-protocol, with the imported state variables server and

client being used in the code to distinguish between the two.

3.9 Summary

Our approach to constructing con�gurable communication services is realized using the

two-level protocol composition model. The �rst level is the x-kernel protocol graph, which

de�nes the basic characteristics of the network subsystem using both composite and simple

protocols. The second is the composite protocol, which de�nes the speci�c semantics of the

relevant communication service using micro-protocols. The framework encapsulates the

micro-protocols and supports event-driven micro-protocol interaction. Since the composite

protocol exports the x-kernel UPI, it can be combined with existing x-kernel protocols,

thereby making it easier to build new communication services on top of simpler existing

networking protocols.

The micro-protocol structure and composite protocol model allow a protocol designer

to create modular implementations of communication services. Each micro-protocol in the

composite protocol implements a speci�c property or functionality, so the speci�c micro-

protocols included govern the behavior of the resulting service. This approach allows

applications to have �ne-grained control over their communication support. The event-

driven model also provides a novel execution paradigm and structured communication

between micro-protocols.

56

57

CHAPTER 4

IMPLEMENTATION

Our prototype implementation of the framework is based on x-kernel version 3.2, which

runs as a user-level task on Mach version MK82. Written in C, the prototype is structured

as a collection of library routines that are linked with the user-written micro-protocols to

create a composite protocol. The x-kernel, framework, and micro-protocols are compiled

with gcc version 2.1. The composite protocol is then included in the x-kernel protocol

graph in the normal way. The x-kernel was selected as the implementation environment

because of its e�cient message handling, novel thread execution architecture, ease of

con�guration and modi�cation, and portability.

The primary test platform consists of DecStation 5000/240s connected by a 10 Mb

Ethernet. These systems are based on MIPS R3000 micro-processor running at 40 MHz

with a separate o�-chip 64 KB instruction and data caches, and 16 MB of memory.

Here, we focus on describing the implementation details of the runtime framework

since much of the system's functionality is implemented there. Initial performance results

from a group RPC micro-protocol suite are given in Chapter 5.

4.1 Framework

4.1.1 Uniform Interfaces.

The framework encapsulates micro-protocols and delivers messages to and from other

x-kernel protocols. Externally, the framework provides the standard x-kernel interface

operations such as call, push, pop, and demux. This allows composite protocols to be

added to an existing x-kernel protocol graph without requiring changes to the existing

protocols. The framework can be con�gured to provide a synchronous call interface or

an asynchronous push interface to accommodate both styles of x-kernel protocols. A call-

style protocol is blocked when doing a call operation and is unblocked only after the reply

message can be returned. If the push style is used, the caller is not blocked and the reply

message (if any) is returned asynchronously.

4.1.2 Thread Management

As described in Chapter 3, multiple threads of control may be spawned in the course of

executing event handlers. In the prototype, the x-kernel thread facility based on Mach

C-threads is used as the underlying mechanism. The choice to use this facility rather

than spawning C-threads directly was made for two reasons. The �rst is that this makes

the threads visible to the x-kernel, which permits the programmer to use the built-in

x-kernel features for doing execution monitoring and debugging, simplifying the program-

ming process. The second is that it allows us to exploit the x-kernel's optimized thread

management. In particular, the x-kernel preallocates a pool of C-threads at initialization

58

time and manages them directly, which avoids the overhead of thread creation when an

event is raised.

When an event is raised, a thread is allocated from this pool to execute each associated

handler. The execution model is logically multi-threaded, so that multiple handlers|

either associated with the same or di�erent event occurrences|may in general be executed

concurrently. No new threads are allocated for events that are executed synchronously;

rather, the same thread that triggered the event will execute all handlers for the event

one by one in the order speci�ed in the event de�nition. Such semantics can simplify

micro-protocol code in certain cases when execution order is important, such as when a

subsequent event handler depends on a side e�ect caused by an event handler. However,

this can lead to implicit dependencies between handlers so caution should be used. Section

7.2.3 contains further discussion of handler dependencies.

The protocol writer can choose to have event handler invocations be implemented

by procedure calls rather than threads even in the case when the event is raised asyn-

chronously. This optimization is targeted for sequential machines where a procedure call

is typically more e�cient than spawning a thread. No changes are required in the code for

the micro-protocols. In fact, which version of the runtime is used is transparent to both

the x-kernel and the protocol writer.

We also alter the x-kernel thread behavior by assuming control over a thread that

enters the composite protocol. In general, it will execute some sequence of event handlers

and then a push or pop to exit the composite protocol. Alternatively, it can simply

terminate within the protocol after the last event has been handled. The thread behavior

is naturally di�erent depending on whether handler execution is implemented by threads

or procedure calls. In the thread implementation, the thread that enters the composite

protocol returns to the caller after raising the �rst event. Once the event is raised, other

threads are activated to execute the handlers. On the other hand, with the procedure-

based implementation, the entering thread executes each event handler until all handlers

are executed (recursively) and then returns to the caller. Timing events are necessarily

implemented as threads and are based on x-kernel timer events.

4.1.3 Messages

The composite protocol exists to receive, process, and send messages so it is unsurprising

that the bag of messages is a centralized structure available to all micro-protocols. As

described in Chapter 3, messages in the bag, referred to as CP Messages, are network

messages augmented with additional attributes that micro-protocols use to share per-

message data with each other. Since micro-protocols collectively process messages, the

coordination of when a message is \�nished" | ready to send or discard | is more

complex than the layered model where only one protocol is in control of the message at

any time. The framework provides for coordinated control of message attributes, creation

of headers and attributes, sending, and deallocation.

CP Messages. CP messages are based on x-kernel messages, which optimize manipu-

lations such as header pushes and pops, fragmentation, and assembly. The usual x-kernel

message operations are supported, but we add additional information in the form of at-

59

tributes that are e�ciently accessed. The scope of private attribute names is limited to

the micro-protocol in which they are declared, but public attributes must have globally

unique names.

Bag of Messages. A CP message is a structure that contains an x-kernel message, at-

tributes, and send bits. The attributes are created by combining the attribute declarations

from all micro-protocols into a \super structure" of attributes.

The following operations are provided for manipulating the shared bag of messages:

� CPMsg = newItem(xMsg, direction): Allocates and initializes a new CP message;

returning a pointer to the appropriate structure. direction indicates if the message

is traveling up or down through the x-kernel protocol graph when it enters the

composite protocol.

� insertItem(CPMsg): Inserts CPMsg into the bag. Automatically triggers the

Message Inserted Into Bag event.

� deleteItem(CPMsg): Removes CPMsg from the bag, but does not deallocate storage

for the item. Deallocation is done under micro-protocol control, although a message

is usually deallocated as soon as it is deleted unless needed for retransmissions, etc.

Automatically triggers the Message Deleted From Bag event.

� empty(): Removes all messages in the bag.

� n = count(): Returns a count of the number of messages in the bag.

� setSendBit(ProtocolID, CPMsg): When all micro-protocols have called setSend-

Bit (i.e., all send bits are set) the Message Ready To Be Sent event is triggered.

� setDeallocateBit(ProtocolID, CPMsg): Sets the deallocation bit for micro-proto-

col ProtocolID. When all bits are set (i.e., all micro-protocols have called setDe-

allocateBit), the Message Deallocate event is triggered.

� sprintItem(string, CPMsg): The current state of CPMsg (including attribute val-

ues) is placed into string. Used for debugging.

� printBag(): Prints the current contents of the bag to stdout. Useful for debugging.

Attributes and Headers. CP message attribute values are often derived from infor-

mation contained in message headers, such as the sender id, destination id, and mes-

sage type. To aid this function, all protocol suites are required to include a single

header to attribute procedure that sets attributes based on header values and local-

izes header format knowledge to one procedure. Typically, this procedure is called by

a veri�cation micro-protocol after the incoming message has been validated. The CPMsg

attributes are initialized and the message is inserted into the shared bag of messages so

that other protocols can access message header information without knowledge of mes-

sage header formats. Similarly, when a message is about to be sent, the message header is

normally constructed from the attributes. The attribute to header procedure is called

by the framework during a send message operation for this purpose.

60

Coordinated Sending of Messages. When a message is created with newItem, all the

send bits are cleared. A micro-protocol sets its corresponding bit with the setSendBit(CP-

Msg, ProtocolID) procedure. Protocols distinguish their send bit by their unique pro-

tocol id that is assigned at initialization. When all send bits are set, the CP Message is

ready to be sent and the Message Ready To Be Sent event is raised by the framework.

The send bits restrict sending of messages both in the upward direction (to applications)

and downward direction (to the network). If a micro-protocol is not directly involved in

the decision when to sent a message, it normally would set its send bit when the message is

inserted into the bag (i.e., when handling the Message Inserted Into Bag(CPMsg) event).

Typically, the last protocol to set its send bit has the strongest restrictions about when

a message can be sent. For example, an ordering micro-protocol will not mark a message

for sending until all predecessors of the message have been delivered to the application.

Sending Out of Band. Although coordinated sending is the expected norm, there are

occasions when a particular micro-protocol might wish to send a message without another

micro-protocol's interference or knowledge. This is accomplished with sendMessageOutOf-

Band(CPMsg), which sends the message without raising any events.

Coordinated Deallocation of Messages. As described in Chapter 3, garbage collec-

tion in the composite protocol can be realized in one of two ways: either centralized into

one micro-protocol or distributed among many protocols through the use of deallocation

bits. Deallocation bits are very similar to send bits: for each CP message, there is one

bit for each micro-protocol. In the distributed deallocation style, an unset deallocation

bit indicates that a message is still in use by a micro-protocol. When all the deallo-

cate bits have been set, the Message Ready To Be Deallocate Message(CPMsg) event is

raised. The handlers for this event perform the actual mechanics of message deallocation

and deletion from the bag (i.e., calling deleteItem() and then freeing memory). The

user chooses the style of deallocation support that is desired by setting a C preprocessor

variable that activates the deallocation-based events and bits.

4.1.4 Implementation Portability.

The runtime framework relies almost entirely on facilities provided by the x-kernel. As a re-

sult, it is nearly automatically portable to another environment that has a working x-kernel

implementation. The only non-x-kernel facilities that are used beyond normal C language

library routines are three Mach functions for C-thread management: cthread yield for

assistance in cthread scheduling, cthread set data for associating data with a thread,

and cthread data for event execution management.

4.2 Events

This section describes the C structures and execution architecture used to implement

events. Prede�ned events and user de�ned events, whether timer or regular, have the same

structure and scheduling. All have a common event description structure that is initialized

once with the handler functions, handler names, and the number of event parameters. This

61

structure is passed as the event descriptor for every raiseEvent call. The structure is

never modi�ed after the event handlers are initialized. A second structure is allocated

when the the event is raised that contains the parameter values for the current invocation.

One invocation structure is created for each event handler of the triggered event. The

structures remain the same for asynchronous and synchronous execution but the execution

is performed di�erently. Timer events require additional structures to record the state of

timer event and the current execution status to support cancellation and repetition.

4.2.1 Event Operations

The following operations are provided for manipulating events:

� event = createEvent(eventName, numParams): Allocates and initializes a new

event t structure and returns a handle to the event that is used for later operations.

eventName is a descriptive string naming the event, and numParams is the number of

parameters that will be passed to handlers when the event is raised. Used for both

regular and timer events.

� addEventHandler(event, handler, handlerName): Appends a

handler function pointer to the list of handlers for the event. The ordering of the

add operations determines the execution order for sequential events. handlerName

is a descriptive name for the handler, used for debugging and execution tracing.

� deleteEventHandler(event, handler): Removes handler from the list of han-

dlers for event.

� raiseEvent(event, type, numParams, param1, param2, param3,

param4, param5): Used by micro-protocols for triggering user-de�ned events, and

by the framework for prede�ned events. An instance of the event is triggered and

numParams are passed to handlers (maximum of �ve). All unused parameters values

should be set to NULL. type is SYNC if the event is to be executed synchronously

(blocking and sequentially executed), or ASYNC if executed asynchronously (non-

blocking and handlers execute in any order). Note that the raiseEvent call deter-

mines how the event will be handled rather than the event de�nition.

� event invoke = setTimerEvent(event, type, interval, numParams,

param1, param2, param3, param4, param5): Sets a timer event to execute af-

ter interval microseconds have elapsed. type determines if this timer event will

schedule itself to repeat or execute once only. Handlers are executed concurrently

for asynchronous execution. numParams indicates how many parameters are passed.

The event invoke is a timer event handle that is needed for the cancel and detach

functions.

� outcome = cancelTimerEvent(event invoke): Cancels a timer event. Return

value of outcome indicates:

{ unknown: No such event is known (bad handle value); the request is ignored.

62

...

...

3
4

"Membership Change"

{
{

char *name

"Third Handler"

"First Handler"
"Second Handler"

PFV = pointer to function returning void

int numParameters

int numHandlers

PFV handler[]

char *handlerName[]

event_t

Handler 1

Handler 3
Handler 2

Figure 4.1: Event description structure.

{ started: The event has already started to execute so if it was a once-only

event, the timer event will run to completion; cancelling will have no e�ect.

A repeating event will not reschedule itself but the current execution will be

allowed to terminate normally.

{ completed: The event has completed and so there is no instance to cancel.

This can occur only for once-only events.

{ cancelled: The event has already been cancelled. This cancel request will

have no e�ect.

{ successful: The event has successfully been cancelled.

� detachTimerEvent(event invoke): Since timer event handles are returned from

the setTimerEvent function, the micro-protocol must indicate when the event invoke

structure can be deallocated. A detach call on an event will cause the timer event

to deallocate structures when the event completes. If a timer event will never be

cancelled, then the timer can be set and immediately detached. Otherwise, the event

should be detached after cancellation or completion.

4.2.2 Event Structures

Prede�ned events are declared and raised by the framework, while user-de�ned events

are created with createEvent(eventName, numParams), which returns an allocated and

initialized event structure of type event t (Figure 4.1). Micro-protocols create events and

assign handlers to events during their initialization. Handlers are registered for events

through the addEventHandler(event, handler, handlerName) procedure. The order

in which handlers are added to the event speci�es the execution order for sequential events.

Figure 4.1 shows an example event named \membership change" with three handlers and

63

four parameters. The event t structure is static since it is a description of the event and

does not change. Note that the parameters are not stored within this structure; they are

stored in the invoke t structure, which is automatically created for an individual occur-

rence of an event. This structure is shown in Figure 4.2. Each invoke t structure has a

reference to the event structure, which is essential for timing events and debugging sup-

port. The invocation structure is automatically deallocated when the framework detects

that all event handlers have terminated.

The x-kernel does not provide general purpose thread support, so the framework creates

threads by scheduling x-kernel timing events to execute with 0 seconds delay. These x-

kernel events are, in turn implemented with C-threads. This is the only place where the

implementation of the x-kernel is explicitly used by the framework. The x-kernel timing

event implementation makes the composite protocol threads visible to x-kernel debugging

tools, and also reduces the context switch time since the threads are allocated from a

pool created at initialization time. Speci�cally, when a raiseEvent procedure triggers an

event, the timing event is scheduled, which upon expiration places the allocated thread

on the ready list to be scheduled with other C-threads.

The x-kernel timer events accept a function pointer and one parameter. Since frame-

work events can have multiple handlers and parameters, the invoke t structure containing

the handler function pointer and parameters is passed as the single x-kernel timer event

parameter. The x-kernel event is passed a \super handler" procedure to execute when

the timer expires. The super handler unpacks parameters from the invoke t structure

and passes them individually to the handler. Thus, the super handler acts as a proce-

dural wrapper around handler executions, recording the start and termination of handler

execution.

To maintain uniformity, synchronous event execution uses the same invoke t structure

to pass parameters. However, no x-kernel event is used to schedule execution in this case.

Instead, the super handler is invoked directly as a procedure, which provides a synchronous

call style with blocking semantics. The super handler is the same as in the asynchronous

case, and, in fact, is unaware whether it was called from an x-kernel event or directly as a

procedure. As mentioned earlier, the framework allows for asynchronous execution to be

optimized as procedure calls. When the user de�nes the PROC CALLS ONLY C preprocessor

variable, asynchronous event triggers are also executed with procedure calls.

4.2.3 Timer Event Structures

Timer events, since they can be repeating or cancelled, have an information structure

that contains the state of the execution. This structure is created by the setTimerEvent

function and passed back as the timer event handle that is used in cancellation. It has

information about whether the handlers for the event are waiting to execute, started to

execute, or completed execution.

Timing events are handled as asynchronous invocations that are scheduled to execute

with a delay. The same event description structure, event invocation structure, and super

handler is used. A repeating event will schedule itself again after the last handler has

�nished executing. However, since timing events can be cancelled, an additional structure

is needed to cancel the underlying x-kernel events. Also, timing event cancellation must

64

event_t *event

PFV handler

void * parameters

Type
null

ASYNC

member name
change type{ ...

2

1
timer_info_t *timerStatus

...

...

3

"Membership Change"

{
{

char *handlerName

char *name

PFV handler

"Third Handler"

"First Handler"
"Second Handler"

int numHandlers

int numParameters

int numParam

int Index

(SYNC, ASYNC, REPEAT, ONCE)

(only used for timer events)

(handler index)

event_t

2

invoke_t

Handler 1

Handler 1

Handler 3
Handler 2

Figure 4.2: Event invocation structure with event description structure.

65

...

...

2
2

event_t

...{

...{

...{

identifier

interval

finished

started

TIMER_ID

FALSE

FALSE

2

0
0

125

WAITING
WAITING

invoke_t

invoke_t

Handler1

Handler 2

...

REPEATING

2

1

...

REPEATING

2

2

x-kernel event for handler 2
x-kernel event for handler 1

(RUNNING,
DONE,
WAITING)

numHanders

cancelRequested

detachRequested

timer_info_t

xevents[]

invoke[]

state[] =

Figure 4.3: Timer event information structure for repeating event with two event handlers.

be atomic with respect to handler execution, so the structure must contain information

about the status of handler execution. A unique handle is returned for each set timer event

call, since the same timer event may have several concurrently executing instances. This

handle is known is a timer info t structure and is given in Figure 4.3. timer info t

contains pointers to the same type of invoke t structures used for regular events, including

a pointer to the event description structure event t.

When the timer handler handle is passed to the cancel routine, the identi�er is validated

and then the timer can be cancelled. If execution has not started for this period execution

(as recorded in the started count �eld), then all the x-kernel events (saved in the xevents

array) can be cancelled. Otherwise, the cancel requested boolean is marked as true and

a repeating event will not reschedule itself for the next period. The status (running, done,

waiting) of each handler is recorded in the state �eld.

66

4.2.4 Call Depth

A1

B1

C1

A2

B1

C1

A3

B1

C1
A3

B1

C1

B1

C1

B1

A1

B1

C1

A2

A1

B1

C1

A2

A3

B1

C1

B1

C1

B1

OR

procedures only

two possible execution orderings

 = thread

procedures with call depth = 4

Figure 4.4: Possible event handler executions with and without call depth bounding.

Nesting of events executing as procedure calls can cause stack over
ow and unfair schedul-

ing. Recall that synchronous event execution is implemented as procedure calls and asyn-

chronous execution can be optimized in this way. It is typical for events to raise other

events, creating nested events. If this nesting goes very deep, stack over
ow can occur. In

addition, we found during experimentation that asynchronous event execution was some-

times necessary to make progress in certain protocols. If all asynchronous execution is

implemented as procedure calls, then a call chain will continue to execute event handlers

while other events not raised by the call chain go unserviced, which results in starvation

of other events. In other words, procedure calls favor the current call chain leaving asyn-

chronous events unserviced. Section 7.2.2 provides additional discussion of the need for

asynchronous thread execution.

To eliminate this problem, call depth bounding can be enabled. This creates a hybrid

execution structure that will continue to execute handlers as procedure calls until a speci�c

nesting depth has been reached. At that point, the next asynchronous trigger will be

executed by a new thread and the current thread will be allowed to terminate, thereby

completing the call chain. The current call depth is recorded by associating a call depth

count with each C-thread that executes events. When another event handler is executed

67

as a procedure call, the call depth is incremented.

As an example, consider an event A with three handlers A1, A2, A3. Each of these

handlers raise event B, which has one handler B1. B1 in turn raises event C with one

handler C1. All events are raised as \ASYNC" events and the framework is con�gured to

execute events with procedure calls. The execution order of the procedure-based events

will be A1 B1 C1 A2 B1 C1 A3 B1 C1, as shown in the left panel of Figure 4.4. If

the framework is con�gured with a call depth of 4, then A1 B1 C1 A2 would execute as

procedure calls by a single thread. Having reached the maximum call depth, this thread

would terminate, and B1 and A3 and would be scheduled asynchronously to execute in

random order. If B1 were to execute �rst then the rest of the execution order would be B1

C1 A3 B1 C1. Both instances of C1 and the second B1 would be executed as procedure

calls. The situation is analogous if A3 were to execute �rst. Figure 4.4 shows the execution

structure of procedure call based events with and without call depth bounding.

4.3 Measurements of Event Implementation Performance

Event invocation and handler execution are the heart of the composite protocol, and

therefore, the e�ciency of events are central to the performance of the system. As discussed

above, there are two implementation of events that can be used: light-weight user-level

threads or procedure calls. We considered both styles and compared the performance and

runtime behavior of each implementation.

The relative cost of using procedure calls versus a thread-based implementation was

assessed using a null composite protocol designed to measure event execution times. Each

test measured the round trip message transmission time based on 1000 round trips for

two processes. The �rst is a normal x-kernel implementation of UDP without composite

protocols; this provides a baseline. In the second, a composite protocol using the procedure

call event implementation (CP-P) is inserted between the UDP protocol and user program

on both the client and server sides. On the client side, CP-P simply passes messages and

acknowledgments to the UDP protocol and user program, respectively, with no changes.

On the server side, CP-P generates an acknowledgment for each message, as well as passing

it through to the user program. 19 events are generated for each message round trip, and

19 handlers are invoked. The third test is identical, except that a runtime framework with

the thread-based event mechanism is used. This composite protocol is called CP-T. Figure

4.5 illustrates the structure and message
ow of the second and third con�gurations.

The results are shown in Table 4.1. Although these numbers clearly indicate some

overhead, the results are encouraging. Based on the one byte test, each event handler

activation costs no more than 33.7 microseconds for procedure-based event dispatching

and 206 microseconds for thread based. Note that this �gure includes amortizing all

execution costs associated with a composite protocol over the handler activations, not

just the cost of the invocation itself. The variance was observed to be low.

4.4 Creating a Composite Protocol

Source �les are used to structure the components of a composite protocol. There are three

categories of �les: user supplied, user modi�able, and read only.

68

CP

UDP

ARP ARP

CP

ETH ETH

UDP

Client Server

Figure 4.5: Experimental con�guration

Packet Size x-kernel UDP +CP-P +CP-T

1 byte 1.57 2.2 5.48

1 K 4.18 4.84 8.19

2 K 7.39 7.89 11.38

4 K 12.65 12.93 16.96

8 K 23.77 23.78 27.63

Table 4.1: Roundtrip time for null CP (in msec)

� User supplied �les contain micro-protocol code and required routines such as attribute-

to-header, header-to-attribute, attribute printing, and the initialization micro-protocol.

The majority of the user's e�orts are in creating this code.

� User modi�able �les exist but can be modi�ed to further customize the service. For

example, push and pop procedures can be customized for multicast or other sending

styles. The user can also modify de�nes to con�gure the composite protocol for

call style interface or push style, enable procedure based execution of asynchronous

event execution, bound call depth, and enable deallocation bit support. Some of the

possible modi�cations require x-kernel speci�c knowledge, such as changing active

and passive keys used to lookup sessions. However, the user only needs to make

modi�cations if di�erent behavior is needed, so for most protocol suites the minimal

setup should be su�cient.

� Read only �les contain only framework-speci�c code and are not alterable. These

�les include standard functions, such as bag of messages routines, event support,

and the x-kernel encapsulation protocol. The user links these �les with the rest of

the composite protocol.

69

One user modi�able �le concerns the lower-level protocol used. By default, a compos-

ite protocol uses UDP, which is su�cient for any composite protocol that only requires

unreliable datagram service. However, the user has the option of changing the lower-level

protocol to any x-kernel protocol, perhaps even another composite protocol. To do this, a

support �le must be created that contains procedures to create participant addresses and

manage communication channels built on the new lower-level protocol sessions.

While many protocol suites can be build using UDP, the selection of the lower-level

protocol naturally a�ects the selection of micro-protocols in the composite protocol. For

example, if the lower-level protocol is an unreliable multicast protocol, then the send

routine in the composite protocol can be much simpler since the lower-level protocol can

issue a message to each group member automatically.

4.5 Possible Optimizations

Two additional optimizations that we have considered for reducing event overhead are in-

lining of event handlers and evaluation of event guards. The simplest way to reduce event

invocation overhead is to remove invocation entirely and in-line all event handlers. With

complier support, the framework raiseEvent() procedure could be replaced with the

micro-protocol code. The compiler would enforce all visibility rules and rename variables

in the handler code that clash with variables in the surrounding micro-protocol code.

Implementation of event guards can greatly reduce the number of event invocations

that terminate quickly after checking that the event guard is unsatis�ed. Currently, event

guards used in the PDL descriptions of micro-protocols are unimplemented, so the micro-

protocol evaluates the guard explicitly after the handler has been invoked. While this is

semantically equivalent to evaluation of guards before event handler execution, it results

in greater overhead. If the guard could be evaluated by the raiseEvent() procedure

in the framework instead, handlers with unsatis�ed guards | i.e., guards that evaluate

to false | could be discarded. For example, almost all micro-protocols register for the

Message Inserted Into Bag event, but most handlers are concerned with only a speci�c

message type. In the current implementation, all the handlers are invoked and each

handler executes an a conditional statement that succeeds in only the few handlers that

go on to execute the rest of the handler. The other handlers simply exit, having added

cost to the event execution time. Event guard evaluation could reduce the number of

handler invocations substantially.

4.6 Summary

We have presented the implementation of the composite protocol approach based on the

x-kernel. The implementation supports event execution using both threads and procedure

calls, a shared bag of messages, coordinated sending of messages and deallocation, and

message attributes. Primary event data structures and the organization of timer as well

as regular events was discussed.

70

71

CHAPTER 5

GROUP RPC PERFORMANCE

In this chapter, we present performance measurements of multiple communication

services con�gured from a collection of micro-protocols implementing di�erent variants of

regular and group RPC (GRPC). Micro-protocols are con�gured together into a composite

protocol called Group RPC. As described in Chapter 3, once constructed, Group RPC gets

included in an x-kernel protocol graph with UDP as its lower-level supporting protocol

(see Figure 3.1). Measuring the performance of Group RPC therefore yields the relative

cost of the di�erent con�gurations and their underlying semantic properties.

Our version of GRPC is based on point-to-point messages, so clients send individual

requests to each server group member. Figure 5.1 shows the process level architecture and

message
ow between clients and servers. Request messages, Req(x), are sent from clients,

while servers send reply messages, Rep(x), back to the client. Once reply messages are

received, the client creates a return value according to its collation semantics. If total order

is included, then one server acts as a coordinator that determines the ordering of requests.

Thus, for each request, the coordinator sends an ordering message, Order(Req(x)), to all

other servers.

5.1 Group RPC Micro-protocols

The micro-protocol suite is based on the semantic variations of GRPC described in

[HS95a]; the categories that follow represent semantic variations of termination, order-

ing, communication, collation, call style, membership, and failure.

5.1.1 Termination Semantics

Termination semantics specify the guarantees that are given about the termination of a

call. Included in the client composite protocol (CP).

� BOUNDED (BND). Provides for bounded termination of client requests, i.e., either the

request is executed within some interval or an exception is returned. When a request

is sent, a timer event is set to generate a timeout.

� UNBOUNDED(UBND). No a priori bound is set on a client request, so the client may

wait inde�nitely for a response.

5.1.2 Ordering semantics

Ordering semantics determine what guarantees are given about the execution order of

requests by servers. If none of the micro-protocols are included, any ordering is possible.

72

Rep(x)

Req(x)

Order(Req(x))

Client

Server*

Server

Server

* Coordinator

Figure 5.1: Process and message architecture.

� FIFO. Forces FIFO ordering of client requests at a server; if not included, the server

may receive requests from a given client in any order. Servers order client requests

using sequence numbers that are assigned by clients. Requests from multi-threaded

clients are serialized before transmission. Included in both clients and servers.

� TOTAL. Forces total ordering of all client requests at all servers; if not included, the

servers may not execute clients request in the same global order. The ordering of

client requests is determined by a designated server process that acts as a coordi-

nator. All non-coordinator servers receive requests but do not execute them until

an ordering message is received from the coordinator. The coordinator processes

requests only after at least one other server process has acknowledged receipt of

the ordering message, which ensures a correct ordering even if the coordinator fails.

Included only in servers.

� FIFO and TOTAL. Total order that preserves FIFO ordering. Requires inclusion of

both FIFO and TOTAL micro-protocols.

5.1.3 Communication Semantics

Communication semantics specify guarantees about the communication between the client

and server. Reliable transmissions are guaranteed if acknowledgment and retransmission

micro-protocols are both included.

73

� ACK. Acknowledges request and response messages, and handles timeouts. If an

acknowledgment message is not received in time, an event is raised notifying other

protocols for possible retransmission. Included in clients and servers.

� RETRANSMIT (RET). Sends retransmission requests for missing messages and re-

sponds to retransmission requests. Included in clients and servers.

� CONTROL RETRANSMISSION(CRET). Only used with totally ordered communication.

Sends acknowledgments and waits for acknowledgment of control messages between

servers. Included in servers only.

5.1.4 Collation Semantics

Collation semantics specify how responses from the server group are combined and the

result returned to the client. All protocols included only in clients.

� ONE ACCEPT (1ACC). Implements a policy of accepting the �rst reply from any server

as satisfying the client's request. Other responses are ignored.

� ALL ACCEPT (AAC). Implements a policy of collecting replies from all functioning

servers before the RPC call is completed. If a server is no longer functioning, the

new membership is used to prevent waiting forever for a response from a failed server.

5.1.5 Call Semantics

Call semantics specify whether the call thread in the client is blocked for synchronous call

style or if it returns immediately for an asynchronous style. All protocols are included

only in clients.

� SYNC. Provides synchronous request/reply call-style interface. The call thread is

blocked until the call completes.

� ASYNC. Provides asynchronous push-style interface. The result of the call is returned

by an upcall.

5.1.6 Membership Semantics

Membership semantics specify how information is collected about failed and functioning

processes, and what can be guaranteed about the correctness of this information. Since

point-to-point messages are used, clients must maintain information about server group

membership to send requests and for collation of responses.

When total ordering of messages is used, server groups must also maintain their own

membership to determine if all messages are received by all hosts and to ensure that

requests are executed by all hosts. A single failure of any server member is tolerated,

including the coordinator. When membership does change, the change event is ordered at

each server so servers agree when the change occurred. The virtual synchrony property

ensures that the membership change event occurs in the same place in the message stream.

74

� CLIENT SERVER MEMBERSHIP (CSMEM). Manages the server membership for a client.

Using the ACK protocol, a client times out unresponsive servers and removes them

from the server list. This membership list is used by the ALL ACCEPT micro-protocol

to determine when all responses are received and for sending point-to-point messages

to all servers. CSMEM is required for all con�gurations and is included in clients.

� SERVER MEMBERSHIP (SMEM). Manages the server membership list for members of

a server group. Membership is initialized at boot time from a static list and later,

when dead servers are detected, they are removed from the membership list. Note

that the server with the largest host address is the coordinator. No negotiation is

required to determine the coordinator. Included in servers.

� LIVE. Servers send liveness messages to each other in a ring topology to detect when

a server fails. If no liveness message is received within the interval, then the member

is suspected to have failed and the \suspect host dead event" is raised. This triggers

the membership micro-protocol to determine if the server is really dead. Included

in servers only.

� SIMPLE AGREEMENT(SIM). Simple agreement will send \server is dead" messages to

other servers if a \suspect host dead" event is triggered. All other servers simply

accept this declaration of a defunct server even if they have information to the

contrary. Included in servers only.

� VIRTUAL SYNCHRONY(VS). Virtual synchrony insures that membership change mes-

sages appear in the same order relative to data messages for all hosts. When a

failure occurs, non-failing servers exchange information about the highest ordering

message that has been received before the failure occurred. This allows servers to

synchronize on what messages should have been received before the membership

change occurred. Included in servers only.

5.1.7 Failure Semantics

Failure semantics specify what guarantees are given to the client about the execution of

requests by the server.

� UNIQUE. Eliminates duplicate request or reply messages using sequence numbers.

Ensures that a request is never executed more than once even if the call returns

unsuccessfully. Included in servers only

5.1.8 Driver Protocol

The suite requires a driver protocol, GRPC, for all combinations of micro-protocols. Veri�es

incoming messages and maintains client and server state information. Required for clients

and servers.

75

UNIQUE

 or or or

BND

UBND

1AC

AAC

no order, unreliable

no order, reliable

no order, unreliable, unique

no order, reliable, unique

FIFO, reliable, unique

FIFO, reliable

total, reliable, unique

total, fifo, reliable, unique

(no protocols)

TOTAL SMEM

ACK RET

RET

ACK RETFIFO

FIFO ACK RET

CRET SIM

ACKRETLIVEVS

TOTAL SMEM CRET

VS LIVE RET

FIFO

SYNC

ASYNC

UNIQUE

UNIQUE

UNIQUE

ACK

ACK

SIM

select one of
8 ORDERINGS

UNIQUE

Figure 5.2: Group RPC con�guration selections.

5.2 Combining Micro-Protocols

There are 64 possible GRPC con�gurations given the above collection of micro-protocols.

The composite protocol may have synchronous or asynchronous call style, bounded or

unbounded calls, one accept or all accept collation, and 8 selections of orderings. Figure

5.2 illustrates the possible selections of micro-protocols. All con�gurations require the

GRPC and CSMEM micro-protocols.

The selection of call style, bounding of calls, and acceptance policies are independent

choices and each only requires the inclusion of one micro-protocol implementing that prop-

erty. Unique execution and FIFO ordering are each achieved through the inclusion of one

micro-protocol. Reliable transmission of messages is accomplished through acknowledg-

ment and retransmissions of messages, which requires the ACK and RET micro-protocols.

Total ordering is complex and requires several micro-protocols, because the servers

76

must maintain there own membership to ensure totally ordered execution of client re-

quests. As already noted, all servers receive request messages and one server acts as the

coordinator, generating ordering messages that guide all servers to complete the requests

in total order. All servers must receive all the request messages, so servers maintain their

membership through the use of a liveness micro-protocol, LIVE. When a server is sus-

pected of having failed, a simple agreement micro-protocol, SIM, is executed, which causes

all servers to delete failed servers from membership lists. Virtual synchrony, VS, is used

to ensure that the membership change occurs in the same point with respect to the re-

quest/reply message stream. Servers must communicate reliably or communication would

halt if an ordering message was lost. This functionality is provided by CRET.

5.3 Measurements of Group RPC Con�gurations

Tests consisted of one or more clients sending a 4-byte integer to one or more servers,

which respond with an integer. Each test makes 1000 RPC calls and was run 10 times.

The round trip times are the average of the 10 test runs. To provide a baseline, a version

of Sun RPC implemented using the standard x-kernel was also tested. Note, however, that

Sun RPC is a peer-to-peer rather than group protocol, and, as a result, implements less

functionality than Group RPC.

All measurements were done on the experimental platform described in Chapter 4.

In addition, tests requiring three or less hosts execute server and client processes on

DecStation 5000/240s. For tests requiring more than three hosts, all server processes

execute on DecStation 5000/240s and client processes execute on DecStation 5000/200s.

Like the DecStation 2000/240s, DecStation 5000/200s are MIPS R3000 micro-processor

based systems with separate o�-chip 64 KB instruction and data caches, and 16 MB of

memory. However, the DecStation 5000/200's processor clock rate is 25 MHz instead of

40 MHz.

The average roundtrip times for the various con�gurations are given in Table 5.1. All

communication between hosts are point-to-point network messages. The relative ordering

is what one would expect: normal Sun RPC using the x-kernel (BL) is fastest, and for the

same micro-protocol con�gurations, increasing the number of servers and clients results in

increased execution time. As noted, the x-kernel Sun RPC is included only for comparison.

Such a protocol would naturally be used for simple client/server communication, but

does not provide the multiple acceptance policies, group membership, multiple servers, or

message ordering options needed for more complex applications.

In general, increasing the guarantees the communication service provides results in

a slower roundtrip execution time. This is as expected, since the more guarantees that

are given, the more expensive the algorithms required to implement the communication

service. However, micro-protocols that increase message tra�c degrade performance more

than micro-protocols that only add computation time to clients or servers. For example,

adding FIFO to con�guration C8 (measured in con�guration C9) results in a small increase

in timing (0.02 msec) because it only adds sequence numbers to requests. On the other

hand, the di�erence between con�guration C7 and C8 is the addition of server membership

and total ordering. The timing di�erence between these tests is appreciable (1.71 msec),

77

System Con�guration Clients Servers avg var

BL x-kernel Sun RPC one one 4.38 0.00035

C1 GRPC,SYNC,1AC,CSMEM,UBND one one 6.30 0.018

one two 8.82 0.032

C2 GRPC,SYNC,AAC,CSMEM,UBND one two 8.85 0.052

C3 GRPC,ASYNC,FIFO,1AC,CSMEM,UBND one one 5.68 0.024

C4 GRPC,ASYNC,FIFO,1AC,CSMEM,BND one one 6.12 0.019

C5 GRPC,ASYNC,1AC,CSMEM,BND one one 5.58 0.012

C6 GRPC,ASYNC,AAC,CSMEM,BND, one one 8.49 0.026

RET,ACK

two two 16.59 0.849

two three 22.71 0.008

C7 GRPC,ASYNC,FIFO,AAC,CSMEM,BND, one one 8.91 0.043

UNIQUE,RET,ACK

two two 19.68 0.018

two three 23.76 0.003

C8 GRPC,ASYNC,AAC,CSMEM,BND, one one 10.62 0.077

UNIQUE,RET,ACK,SMEM,LIVE,SIM

CRET,TOTAL,VS

two two 35.22 0.230

two three 48.47 0.224

C9 GRPC,ASYNC,FIFO,AAC,CSMEM,BND, one one 10.64 0.219

UNIQUE,RET,ACK,SMEM,LIVE,SIM

CRET,TOTAL,VS

two two 44.19 2.40

two three 50.66 0.83

Table 5.1: Time for Group RPC call (in msec)

because con�guration C8 increases message tra�c between servers. Similarly, the increase

in the number of servers for con�gurations using total order results in big increases in

running time, because the message tra�c grows quadratically with the number of servers.

For con�gurations C8 and C9, we can also see large increases (10 msec) with the addition

of another server.

5.4 Detailed Analysis

Each con�guration and its performance results are discussed below.

Con�guration BL. x-kernel implementation of Sun RPC. Only supports a single client

and server. Given as a baseline for comparison.

Con�guration C1. Implements a group RPC service that provides a synchronous call

interface and returns when the �rst response is received (i.e., a one accept policy). This

variation could be used for applications that need to execute a request on any server before

continuing but do not require that server responses be identical. The �rst performance

�gure is for one client and one server, which makes this con�guration closest to BL.

78

However, this test runs slower than BL due to extra code that could handle multiple

clients and servers. The second test uses two servers with the single client. As expected,

two servers execute slower than one server. Even though only one server response is needed

to complete the call, both servers generate responses, which means message tra�c is at

least double compared to the test of one server. As a result, network contention slows

down the test.

Con�guration C2. Identical to C1 but with an all accept policy, which causes the client

to wait until responses from all servers are received. Hence, the call does not complete

until the request has been executed on all servers. Such a con�guration might be used,

for example, in a simple replicated database, where the application must know that each

group member has completed the request before continuing. The execution time for two

servers is almost exactly the same time as C1 because both con�gurations generate the

same amount of message tra�c; although C1 only needs one reply, two replies are always

generated. Network contention is the limiting factor in both con�guration tests.

Con�guration C3. Implements an asynchronous call style with FIFO ordering. The

FIFO ordering micro-protocol ensures that the server executes all calls from a given client

in FIFO order. Since the client executes with the asynchronous call style, multiple concur-

rent RPC requests can be issued, and may arrive at the server in any order. Multithreaded

clients that need their actions serially executed in the server �nd this a useful con�gura-

tion. The test of one client and server shows that the concurrent requests result in faster

performance for clients. C3 executes faster than C1 even though both achieve serial exe-

cution of client requests. Speci�cally, C3 achieves this by the FIFO micro-protocol, while

C1 achieves this by only requesting the next RPC call after the �rst call has completed.

Con�guration C4. Adds bounded termination to C3, which makes this appropriate for

applications that need to raise an exception when servers are not responding, so that the

client will not appear \frozen" waiting for the RPC call to terminate. The addition of the

bounded termination micro-protocol requires starting and resetting timers, which slightly

increases the execution time over the unbounded con�guration, C3.

Con�guration C5. Same as C4 without FIFO ordering of client requests, which makes

this suitable for applications that require detecting that servers are not responding but

can execute client requests in any order. Runs slightly faster than the same one client,

one server test of C4, since requests can be executed in any order. Servers can execute

requests as soon as they are received and no FIFO micro-protocol code is executed.

Con�guration C6. Reliable communication between clients and servers. All request

and reply messages are acknowledged and if no acknowledgment is received, the message

will be retransmitted. Such a con�guration is suitable for reliable unordered communica-

tion between clients and servers, such as might be used by a reliable name service providing

information about host utilization and resource availability. No requests or responses are

lost but they may be executed in any order by all servers.

The �rst performance number is for execution with one client and one server. This

runs slower than all previous con�gurations because it provides reliable communication,

which adds more micro-protocol code and more message tra�c for acknowledgments and

retransmissions. The second test is executed with two clients and two servers, which

essentially doubles the message tra�c and execution time. The third test is executed with

79

two clients and three servers, resulting in an expected proportional increase in message

tra�c.

Con�guration C7. Adds unique execution to reliable communication. This is useful

for applications that require no ordering of reliably delivery requests, but can only allow

servers to execute the request only once. Such a facility is essential for non-idempotent

operations, such as incrementing a value. The test of one client and one server of C7 com-

pared with C6 reveals the cost of adding unique execution. To implement this, the server

must record the identity of all client requests with the response message. If an identical

request is received, the saved response message is retransmitted. The extra execution time

results from checking every request to see if it is unique and saving messages. The test

executed with two clients and two servers slightly more than doubles the message tra�c

and the execution time. The test executed with two clients and three servers result in a

proportional increase in message tra�c.

Con�guration C8. Provides totally ordered execution of reliably transmitted request.

Ordering is accomplished using a server that acts as the coordinator, sending ordering

information about each request. Each non-coordinator server must receive the request

message and an ordering message before it may execute the request. The servers maintain

common membership by detecting server failures and then informing the rest of the group

about the failure.

The execution time of C8 for one client and one server is 1.71 msec greater than

the one server, one client test of C7, which provides an idea of the extra execution time

resulting from the addition of �ve micro-protocols. The next test, executed with two

clients and two servers, more than triples the execution time because message tra�c

increases quadratically with the number of servers and all servers must wait for total

ordering messages before executing any requests. The �nal test was executed with two

clients and three servers. Message tra�c increases signi�cantly, again resulting in much

slower execution.

Con�guration C9. Same as C8 but adds FIFO ordering of client requests, which

results in total order that preserves FIFO ordering. These semantics are ideal for banking

transactions that are executed on a cluster of servers for fault-tolerance. Each client

transaction must be executed in the order that the client made the request, and all servers

should execute all transactions in the same order for consistency.

The addition of FIFO increases the time only modestly from C8 for the single client,

single server test, since no additional message tra�c is introduced. When executed with

two clients and two servers, the timing is quite a bit higher than the analogous con�gura-

tion of C8, which was unexpected. We think this is due to the increased message tra�c

causing more messages to arrive out of order, and therefore, the servers having to wait to

order the messages. The increase in variance is also large, which may indicate sensitivity

to network tra�c arrival rates. The �nal con�guration is executed with two clients and

three servers. Timing is close to C8, which indicates that performance is probably limited

by the network.

80

5.5 Summary

In this chapter, a con�gurable group RPC service is described in which selected micro-

protocols are combined to form a composite protocol that executes in the x-kernel. A

variety of semantics are supported that cover the requirements of many di�erent group

communications applications. We also demonstrate that the services have reasonable per-

formance, especially considering the preliminary nature of the prototype implementation.

This chapter demonstrates the feasibility of our approach to designing and implementing

modular communication protocols.

81

CHAPTER 6

PROTOCOLS FOR MOBILE COMPUTING

Mobile computing systems can bene�t from con�gurable communication services in

much the same way that fault-tolerant systems can bene�t from the GRPC services de-

scribed in the previous chapter. Here, we present the design of a micro-protocol suite

intended for a range of mobile computing architectures and applications to illustrate the

suitability of our approach for another type of distributed system. While the discus-

sion of fault-tolerant systems centered around abstractions useful for supporting common

structuring paradigms, our approach to mobile computing is based on supporting multi-

ple hardware architectures, routing policies and qualities of service. Our speci�c focus is

on building con�gurable services for base stations, mobile hosts and agents. Recall from

Chapter 2 that base stations are gateways that connect the wired and wireless networks,

where each base station administers connections to mobile hosts within its cell. An agent

is a stationery process that acts as a proxy for a mobile host by maintaining connections

to the applications.

6.1 Communication Requirements

The ability to vary the communication services for mobile computing is useful for several

reasons, including to match the architecture, to allow di�erent semantics, and for experi-

mentation. Architecturally motivated variations are necessary because mobile hosts have

a wide range of hardware capabilities. Some, such as the Apple Powerbook, have compute

power that rivals desk top machines and are useful in a stand-alone capacity. These au-

tonomous machines may be active participants in hando�s between base stations and are

aware of their current connections. At the other end of the spectrum are machines such

as the Xerox PARC TAB [AGSW93] that have very little storage capacity or processing

power, which means that storage and processing are provided by resource rich machines in

the stationary infrastructure. Such machines are often unaware of hando�s and therefore

are passive participants. In addition, a communication service for mobile systems may

have to accommodate an existing software architecture, including wireless protocols, pro-

tocols used to communicate between base stations, and routing software such as mobile

IP.

A second reason communication requirements can di�er is semantics, especially those

related to quality of service. These guarantees may be given on a per connection basis or

renegotiated when the host moves. The former guarantees a given quality of service even

when the host moves to another cell, so that for example, a host with a high bandwidth

connection retains that guarantee no matter what its location. If connection characteristics

must be renegotiated, the negotiation may involve several rounds of messages to relevant

applications. Renegotiated connections may only a�ect the mobile host that is moving or

82

may also a�ect other preexisting connections. Yet another approach is to monitor band-

width utilization of a mobile host, with unused allocation being given to other mobile

hosts. Variations of such semantics can be customized to the application. For example, to

facilitate multimedia display applications, a communication service can be selected that

guarantees no changes to bandwidth allocations. However, mail reading applications can

function with less strict guarantees, and a patient monitor application requires high reli-

ability but less throughput. Some applications are tolerant of lossy transmissions during

crossover into a new cell, making immediate hando�s less critical.

Finally, the ability to easily prototype experimental communication services is impor-

tant in the �eld of mobile computing and is essential for rapid development of new dis-

tributed systems. Hardware, protocols for base station and host communication, hando�,

and routing are all active areas of experimental system design. Sometimes this experi-

mentation is to accommodate di�erent hardware or protocols, but more often it is to test

di�erent ideas and philosophies of system design. For example, some designs promote

the notion that mobile hosts should be unaware of their location; consequently, mobile

hosts are not involved in hando�s in such systems. Another philosophy is to preserve the

state of a mobile host in an agent process that mirrors the mobile host state, and to have

this agent manage all interaction between the mobile host and applications. A system of

protocols that make it easy to con�gure and implement di�erent behaviors can only help

facilitate this experimentation.

In this chapter, a micro-protocol suite that supports multiple variants of communi-

cation services for mobile computing is described. We focus our attention speci�cally on

micro-protocols for base stations, mobile hosts, and agents. The base station and mobile

host software is where control of mobility and cell boundary crossings resides; if these

components are con�gurable, core mobility behavior can be changed to account for di�er-

ences in architecture and semantics, or for experimental prototyping. Thus, core behavior

can be divided further into two broad categories: hando� and quality of service. Hand-

o�s are composed of three separate stages: detecting hando�s, hando� negotiation, and

disconnection from the current base station. Variations of each stage are implemented

by di�erent micro-protocols that can be combined to create a complete hando� protocol.

Quality of service micro-protocols are optional and can be included if desired.

6.2 Hando� Related Variations

Micro-protocols related to hando� are divided into orthogonal behaviors governing detec-

tion of when a hando� is needed or desirable, the actual hando� procedure, and discon-

nection. Micro-protocols can be combined to achieve di�erent behaviors. For example,

several detection mechanisms can be used with the same hando� protocol. To enhance

con�gurability, we decouple behaviors; one set of micro-protocols make the hando� deci-

sion, while a di�erent set governs how to execute the hando� and disconnect from the old

base station. Each is addressed in turn below.

83

6.2.1 Hando� Detection

Hando� detection determines that a cell hando� is either desirable or necessary. There are

two classes of approaches depending on whether the detection is done by the base station

or mobile host. In addition, detection can be either performed with the assistance of a

lower-level protocol that monitors the signal strength of base stations or solely by higher-

level protocols. Finally, there are di�erent strategies for preventing oscillation between

the same two cells or doing hando�s between two equally reachable cells. Next, we outline

several di�erent detection approaches.

Using ICMP Messages

In this approach, base stations periodically transmit an ICMP (Internet Control Message

Protocol) message requesting that mobile hosts in the area identify themselves by trans-

mitting a response message. Mobile hosts then respond with their unique identi�cations,

which enables the base station to detect the arrival of a new host. When such a host is

detected, it becomes a candidate for a hando� from the old base station. Also, the lack

of response allows detection of inactive hosts that have presumably left the cell, which is

important for maintaining a correct list of active hosts for use in hando� requests. That

is, if one cell has an inactive host and receives a hando� request there is little question

that the host has moved from the area and can be released. Detecting an inactive host

can also trigger an event that causes a message to be sent to applications or an agent

indicating that no active connection is being maintained.

Using Host Beacons

Mobile hosts facilitate detection in this strategy by periodically transmitting a beacon

message that informs base stations that the host is in the area. Except that the message

is automatically generated by the mobile host rather than being sent in response to a

query, this protocol is very similar to the ICMP protocol. Mobile hosts that are actively

communicating and have sent a message within the beacon period do not need to send a

separate message.

Monitor Based Detection

A lower-level protocol implemented in either hardware or software detects another base

station that has better transmission and reception quality. When this happens, the de-

tection protocol signals higher-level protocols to initiate a possible hando�. This is the

simplest approach, although it requires lower-level support.

Lazy Detection

As an optimization, hando�s of inactive hosts can be implemented using a lazy strategy.

In this case, a hando� is not performed if there has not been activity within some speci�ed

period, even if the host has moved. This can save communication overhead since connec-

tivity is not maintained to hosts that are not transmitting. However, applications may

not be able to initiate contact since current host location is not continually maintained.

84

Therefore, this micro-protocol would not be a good choice for those kinds of applications

that require mobile hosts to be contacted at any time. An example of a good application

for this kind of micro-protocol is a portable Web browser where activity is generally in-

stigated by the mobile host. In this case, if there is activity then the host would perform

hando�s; otherwise no hando�s are needed.

6.2.2 Hando�

The hando� micro-protocol governs the addition of a mobile host to di�erent cells, and

the update of location information within the rest of the system. In a hando�, a new base

station attempts to \acquire" a mobile host by requesting a \release" from the old base

station. Di�erences between hando� schemes include whether the mobile host is aware of

the hando�, if the old base station participates in the negotiation, and if hando�s can be

refused. It is also important that a single base station manage the sending and receiving

of data for each mobile host at all times during the hando� process. Hando� schemes

involve code in the base station, as well as in the mobile hosts and possibly agents.

The behavior for hando�s often starts with the new base station sending a request to

the old base station to release the mobile host. The rest of the process determines under

what conditions the old base station removes the mobile host from its active members

list and releases the host. Some schemes always let the new base station have the new

host, while others will not release the mobile host if the candidate host has communicated

successfully within some speci�ed time interval. In some schemes, the old base station is

not known, so the agent for the mobile host must be contacted to coordinate the hando�,

or the coordination is done by broadcasting the new connection to all base stations. In

still other protocols, the new base station just assumes that the acquisition of the mobile

host is successful unless some other base station responds otherwise. This is a negative

acknowledgment style. Below, several speci�c schemes are described.

Negative Acknowledgment (NACK)

In the negative acknowledgment (NACK) approach, a host is acquired by a new base sta-

tion only after a broadcast is made to all base stations and none responds with a \request

denied" messages within the allowed time interval. After the hando� is completed, the

base station broadcasts a noti�cation message so all base stations are aware of the host's

new base station. This type of broadcast-based protocol is typical of architectures that

have fast control message transmission capability, such as the ATM Crosspoint system

described in Chapter 2. Base stations that receive a hando� request will generally comply

if they have had no activity from the host within a speci�ed interval. Otherwise, it will

contest the hando� by transmitting a \hando� request denied" message. Note that, un-

like some hando� schemes, this protocol does not require any knowledge about the speci�c

identity of the old base station.

It is possible for two base stations to attempt to add the same mobile host to their cells

concurrently. To avoid this race condition, a random number is used to break ties. When

the \hando� request" message is broadcast to all base stations, a newly generated random

number is included in the message. If a base station receives a request that contains a

85

higher number than it generated, it gives up its attempt to acquire the host and allows

the other base station to win. Typically, startup communication is done this same way.

Mobile Host Initiated

The previous detection styles are all base station initiated. Hando�s can also be initiated

by a mobile host when it crosses cell boundaries. This style is appropriate for mobile

hosts that use a lower-level protocol to do detection, as discussed in the previous section.

In this case, a mobile host can address a join message directly to the new base station,

usually including the identi�er of its current base station in the message. This results

in negotiation between the old and new base stations about the hando�. For example,

the old base station can choose to deny the request because it believes it has an on-going

active connection with the mobile host. Another variation is to always grant control to

the new base station and only notify the old one, in which case no negotiation is needed.

This strategy is only appropriate for mobile hosts that have enough capability to store the

state of current connections.

Agent Coordinated

In this approach, a mobile host's agent process functions as the �nal arbiter of which base

station acquires the mobile host. A base station sends a message to the agent to request a

hando�. If the agent has an active connection with the mobile host, it denies the hando�

request; otherwise it allows the hando� to proceed. Base stations locate agent processes

using a name service that maps mobile host identi�ers to agent process addresses. Note

that agent-coordinated hando� does not require that base stations communicate with each

other.

6.2.3 Oscillation Prevention

In mobile systems, overlap of base station cells is needed to provide complete coverage

for a geographic area. As a result, two base stations can simultaneously decide to add

a host to their respective cell. This may even continue inde�nitely if the host remains

in this crossover area, shown in Figure 6.1. Oscillation prevention prevents a host from

undergoing such constant hando�s. Most architectures do not address this issue, probably

because current test situations do not involve large numbers of mobile hosts.

An oscillation prevention protocol can be included with any of the hando� protocols to

prevent the algorithm from attempting to acquire the same mobile host repeatedly. This

protocol counts the number of unsuccessful hando� attempts and if it passes a threshold,

the hando� is not run again until a time interval has passed. While not preventing the

problem entirely, this strategy will reduce extra hando�s and prevent a base station from

constantly making unsuccessful hando� attempts. Oscillation protocol is installed in the

mobile host if hando�s are initiated there or in the base station otherwise.

6.2.4 Disconnection

Disconnection covers how the old base station disposes of packets and state from a mobile

host that has been handed o�. Packets from a mobile host that are addressed to an

86

mobile host

BS 1 BS2

Figure 6.1: Mobile host in range of two base stations.

application are simple to deal with, since they can be sent to an application or agent using

the stationary wired network. The di�cult question is how to dispose of the undelivered

packets at the old base station that are bound for the mobile hosts.

There are three approaches to handling leftover packets from a connection: drop them,

forward them to the new base station for delivery, or quickly deliver as many as possible

(i.e., to \drain" packets). Certainly, the simplest is to drop them, in which case, an end to

end protocol must handle the retransmission of these packets if reliability is needed. While

seemingly wasteful, it can be argued that the wired links are much faster than wireless

medium so the retransmission delay of these packets is negligible. The second approach,

forwarding the packets to the new base station, saves retransmission of the packets by

the application. In this case, the new base station receives forwarded packets and delivers

them in order, making the forwarding transparent to the mobile host. The �nal approach,

to drain packets, is based on the argument that when a hando� is occurring, the mobile

host is still reachable and the old base station should delivery the enqueued messages

as soon as possible. Of course, this assumes that the old base station can still maintain

contact with the mobile host, perhaps at degraded transmission quality. If a drain is

unsuccessful and packets are undeliverable, then the behavior can revert to dumping or

forwarding packets.

6.3 Example Mobility Micro-Protocols

This section contains micro-protocols for detecting hando� conditions, performing hand-

o�s, and disconnecting. The particulars of each micro-protocol are explained, as is their

relationship and compatibility with other micro-protocols. In Section 6.5 we show how to

augment these protocols by adding micro-protocols implementing quality of service guar-

antees. Then in Section 6.7 we describe some sample communication services using the

micro-protocols that have been presented.

Figure 6.2 summarizes the micro-protocols for detection, hando�, and disconnection,

as well as illustrates the micro-protocol combinations that can be selected for a commu-

87

FORWARD

DROP

DRAIN

REQ/REPL

NACK

AGENT

ICMP

BEACON

TRANSLATE

AUTONMOUS

Handoff

Disconnection

SIMPLE W/OSC

SIMPLE

LAZY

BS Initiated DetectionMH Initiated Detection

Figure 6.2: Overall micro-protocol structure.

nication service. The brackets indicate a choice and can be nested, as in the selection of

detection micro-protocols where either a mobile host or base station initiated detection

scheme can be used. An arrow indicates that events or messages are sent between two

micro-protocols, so both micro-protocols must be included if either is selected. For exam-

ple, if any micro-protocol from the set fSIMPLE, SIMPLE W/OSC, LAZYg is selected,

then TRANSLATE and AUTONOMOUS must also be included since there are message

and event arrows between these micro-protocols. However, if either ICMP or BEACON

are selected, then TRANSLATE and AUTONOMOUS are not needed since there is no

event or message communication.

6.3.1 Detection Micro-Protocols

This section presents �ve micro-protocols for detection of hando� conditions. As noted

above, there are two classes of detection micro-protocols, those initiated by base stations

88

and those initiated by mobile hosts. The former will be presented �rst (ICMP and BEA-

CON), followed by the latter (SIMPLE, SIMPLE W/OSC, LAZY). Each micro-protocol

is given a descriptive name followed by either \MOBILE HOST" or \BASE STATION"

depending on whether the micro-protocol is to be executed in a composite protocol for

mobile hosts or base stations.

micro-protocol ICMP MOBILE HOSTf

actionsf

Message Inserted Into Bag(CP Msg t Msg)

& Msg->type == ICMP ID REQUEST !

sendMsg(ICMP RESPONSE, myId);

g

g end micro-protocol ICMP MOBILE HOST

Figure 6.3: ICMP based detection for mobile hosts

The ICMP MOBILE HOST micro-protocol (Figure 6.3) responds to ICMP requests

that are broadcast by base stations to detect which hosts are in their cell. When such a

ICMP ID REQUEST message arrives, a corresponding ICMP RESPONSE message is sent with

the host identi�cation.

The ICMP BASE STATION micro-protocol (Figure 6.4) sends out the required ICMP

requests once every detection interval. A repeating timer event is started when the micro-

protocol is initialized and will continue to repeat until the micro-protocol has terminated.

This timer causes a private event to be raised every interval that invokes a handler to

send the request messages. Mobile hosts in the area are stored in a table of active hosts

and marked with the timestamp for each interval that it responds to a request. A new

host is detected when a response is received from a host not in the table; this triggers the

Join New MH event. Hosts that have not responded within a certain interval are removed

from the table, and the MH Inactive event is triggered. When a host has been successfully

acquired, the Host Joined(MH) event is generated by a hando� micro-protocol. In this

case, the host is added to the active table. This micro-protocol also provides access to the

last activity timestamp of hosts, which can be used by quality of service micro-protocols.

89

micro-protocol ICMP BASE STATIONf

exportsf

proc SetICMPInterval(int val);

proc int GetICMPInterval();

proc timestamp t MemberLastTimestamp(member t MH);

event Join New MH(member t MH);

event MH Inactive(member t MH);

g

importsf

proc boolean LookupMemList(member t MH);

g

privatef

event ICMP Timer();

int ICMPIntervalDEFAULT ICMP INTERVAL BS;

table t timestampMembers;

timestamp t curTimestamp;

g

initializef

setTimerEvent(ICMPTimer, REPEATING, ICMPInterval);

curTimestamp = INIT;

g

actionsf

Message Inserted Into Bag(CP Msg t Msg) & type == ICMP RESPONSE !

if (LookupMemList(Msg->MH) == FALSE) f

raiseEvent(Join New MH, ASYNC, Msg->MH);

g

else f

entry = lookup(timestampMembers, MH) ;

entry->timestamp = curTimestamp;

g

ICMP Timer() !

for each entry(timestampMembers)) f

if ((curTimestamp - entry->timestamp) > INACTIVE THRESH)f

raiseEvent(MH Inactive, SYNC, entry->MH);

deleteEntry(entry, timestampMembers);

g

g

increment(curTimestamp);

Host Joined(MH) !

entry = tableInsert(timestampMembers, MH);

entry->timestamp = curTimestamp;

g

... code for SetICMPInterval, GetICMPInterval, MemberLastTimestamp...

g end micro-protocol ICMP BASE STATION

Figure 6.4: ICMP based detection for base stations

90

micro-protocol BEACON MOBILE HOSTf

exportsf

proc SetBeaconInterval(int val);

proc int GetBeaconInterval();

g

importsf

g

privatef

event Beacon Timer();

boolean msgSent=FALSE;

Msg t beacon;

int beaconInterval=DEFAULT BEACON INTERVAL MH;

g

initializef

setTimerEvent(beaconTimer, REPEATING, beaconInterval);

g

actionsf

Message Pushed From CP(CP Msg t Msg) !

msgSent = TRUE;

Beacon Timer() !

if (!msgSent) f

sendMsg(beacon);

g

g

... code for SetBeaconInterval, GetBeaconInterval...

g end micro-protocol BEACON MOBILE HOST

Figure 6.5: Beacon based detection for mobile hosts

The BEACON micro-protocols are similar to those using ICMP except that the mes-

sages are periodically generated automatically by a mobile host rather than in response to

a query. BEACON MOBILE HOST (Figure 6.5) sets a timer event to trigger the sending

of a beacon packet with the appropriate host identi�er. Data messages are su�cient for

informing the base station of the mobile host's presence, which means that the beacon is

piggybacked on every outgoing message.

BEACON BASE STATION (Figure 6.6) has an interval timer and table of active hosts

that is used to detect mobile hosts that have recently entered the cell. The base station

adds and removes hosts from this table in the same manner as the ICMP BASE STATION

micro-protocol. It also triggers the same Join New MH and MH Inactive events.

91

micro-protocol BEACON BASE STATIONf

exportsf

proc SetBeaconInterval(int val);

proc int GetBeaconInterval();

proc timestamp t MemberLastTimestamp(member t MH);

event Join New MH(member t MH);

event MH Inactive(member t MH);

g

importsf

proc boolean LookupMemList(member t MH);

g

privatef

event Beacon Timer();

int beaconIntervalDEFAULT BEACON INTERVAL BS;

table t timestampMembers;

timestamp t curTimestamp;

g

initializef

setTimerEvent(beaconTimer, REPEATING, beaconInterval);

curTimestamp = INIT;

g

actionsf

Message Inserted Into Bag(CP Msg t Msg) !

if (LookupMemList(Msg->MH) == FALSE) f

raiseEvent(Join New MH, ASYNC, Msg->MH);

g

else f

entry = lookup(timestampMembers, MH) ;

entry->timestamp = curTimestamp;

f

Beacon Timer() !

for each entry(timestampMembers)) f

if ((curTimestamp - entry->timestamp) > INACTIVE THRESH)f

raiseEvent(MH Inactive, SYNC, entry->MH);

deleteEntry(entry, timestampMembers);

g

g

increment(curTimestamp);

Host Joined(MH) !

entry = tableInsert(timestampMembers, MH);

entry->timestamp = curTimestamp;

g

... code for SetBeaconInterval, GetBeaconInterval, MemberLastTimestamp...

g end micro-protocol BEACON BASE STATION

Figure 6.6: Beacon based detection for Base stations

92

micro-protocol SIMPLE MOBILE HOSTf

exportsf

event Join New BS(bs t oldBS, newBs);

g

importsf

bs t curBS /* global variable */

g

privatef

g

initializef

g

actionsf

Message Popped To CP(CP Msg t Msg) & Msg->type == BETTER BS !

/* Message from lower-level protocol */

raiseEvent(joinNewBS, ASYNC, MH, curBS, Msg->newBS);

g

g end micro-protocol SIMPLE MOBILE HOST

Figure 6.7: Simple detection micro-protocol for mobile hosts

SIMPLE MOBILE HOST is the �rst of the mobile host initiated detection micro-

protocols that rely on a lower-level protocol to determine if there is a base station in the

area with better signal quality. For all these micro-protocols, only the mobile mobile host

micro-protocol is described. The base station component is trivial; either it does nothing

because a lower-level protocol transmits the identi�cation packets as part of its wireless

channel management or it just transmits identi�cation packets periodically. When any of

the mobile host initiated micro-protocols are used, the AUTONOMOUS MOBILE HOST

micro-protocol must also be included.

The code for SIMPLE MOBILE HOST (Figure 6.7) relies on a lower-level protocol

to send up a message indicating that a better or new base station has been detected. In

response, the micro-protocol sends a wireless message to the new base station to request

a hando� (join) to the cell.

93

SIMPLE W/OSC PREVENTION MOBILE HOST in Figure 6.8 is similar to SIMPLE

MOBILE HOST but with the addition of oscillation prevention. The micro-protocol keeps

a timestamp of the last cell change and the base stations involved to prevent an attempt

to immediately switch back to the previous base station.

micro-protocol SIMPLE W/ OSC MOBILE HOST f

exportsf

event Join New BS(bs t oldBS, newBs);

g

importsf

event Join Complete(bs t newBS);

bs t curBS; /* global variable */

boolean handoffEnabled; /* global variable set by QoS */

g

privatef

timestamp t lastChangeTimestamp;

g

initializef

lastChangeTimestamp = INIT;

g

actionsf

Message Popped To CP(CP Msg t Msg) & Msg->type == BETTER BS !

/* Message from lower-level protocol */

if (Msg->newBS == lastBS)

if (((currentTimestamp() - lastChangeTimestamp) > TRESH) &&

handoffenabled) f

raiseEvent(joinNewBS, ASYNC, MH, curBS, Msg->newBS);

g

Join Complete(bs t newBS) !

setTimestamp(lastChangeTimestamp);

g

g end micro-protocol SIMPLE W/ OSC MOBILE HOST

Figure 6.8: Simple detection with oscillation prevention for mobile hosts

LAZY MOBILE HOST (Figure 6.9) is similar to SIMPLE MOBILE HOST but does

not request a hando� unless there has been activity in the last ACTIVITY THRESH time

period. Note that the activity threshold interval records both sending and receiving, so

even if the host is just receiving a stream of data, hando�s will still be performed.

6.3.2 Hando� Protocols

Hando� micro-protocols govern how the hando� is negotiated after it has been detected by

a detection micro-protocol. The �rst micro-protocol, AUTONOMOUS MOBILE HOST

(Figure 6.10), is required for mobile hosts that are using any of the mobile host initiated

detection micro-protocols. In this strategy, the event of hando� detection in the mobile

host is translated into a message that is sent to the new base station. The response is then

translated into a Join Complete event, or the join may time out. The micro-protocol also

controls the sending of data to base stations by enabling or disabling uplink capability with

the mode variable. Since many architectures prohibit data transmissions when a hando�

94

micro-protocol LAZY MOBILE HOSTf

exportsf

event Join New BS(bs t oldBS, newBs);

g

importsf

event Join Complete(bs t newBS);

bs t curBS; /* global variable */

boolean handoffEnabled; /* global variable set by QoS */

g

privatef

timestamp t activityTimestamp;

g

initializef

activityTimestamp = INIT;

g

actionsf

Message Popped To CP(CP Msg t Msg) & Msg->type == BETTER BS !

/* Message from lower-level protocol */

if ((curTimestamp() - activityTimer) > ACTIVITY THRESH) f

raiseEvent(joinNewBS, ASYNC, MH, curBS, Msg->newBS);

g

Message Popped To CP(CP Msg t Msg) & Msg->type != BETTER BS !

setTimestamp(activityTimestamp);

Message Pushed From CP(CP Msg t Msg) & Msg->type != BETTER BS !

setTimestamp(activityTimestamp);

g

g end micro-protocol LAZY MOBILE HOST

Figure 6.9: Lazy detection for mobile hosts

is in progress, the mode variable is monitored by the send micro-protocol and used as a

signal that sending should be disabled. This could also have been implemented using an

event, with the send module changing the transmission mode when the event is triggered.

REQUEST/REPLY BASE STATION (Figure 6.11) is executed by the new base station

during a hando�. The base station responds to the Join New MH event by checking if the

host is already in the active list, which would indicate that it had recently been in the cell

and no hando� is needed. Otherwise, a message is sent to the old base station to request

a release of this host. If granted, the old base station informs applications interacting

with the host that it has moved and the identity of the new base station. Then the old

base station initiates a disconnect micro-protocol, which disposes of packets that were

addressed to the host. When disconnection is complete, a RELEASE GRANTED message is

sent to the new base station. A table named MHRequestingJoin is used to match up

RELEASE GRANTED messages with mobile hosts that have started the hando� procedure.

An alternative strategy is implemented by NACK BASE STATION (Figure 6.12),

which broadcasts a hando� request to all base stations. The micro-protocol responds to

the Join New MH message by setting a timer and then broadcasting a RELEASE REQUESTED

message to all base stations. If a RELEASE DENIED message is received before the timer

event is triggered, the hando� is aborted. Otherwise, the hando� is completed and a

HANDOFF message is sent to all base stations. If the RELEASE DENIED message is also

95

broadcast, then the HANDOFF message can be omitted since all base stations can infer the

result of the request.

96

micro-protocol AUTONOMOUS MOBILE HOSTf

exportsf

event Join Complete(bs t newBS);

g

importsf

event Join New BS(bs t oldBS, newBs);

event QOS Handoff(QoS t *QoS);

mode t mode; /* controlling sending */

g

privatef

timer t requestJoinTimerHandle;

bs t joiningBS; /* global variable */

g

initializef

g

actionsf

Join New BS(bs t newBS) !

/* do not transmit any messages while join in progress */

mode = NO UPLINK;

raiseEvent(QOS Handoff, SYNC, QoS);

sendMsg(JOIN REQUEST, newBS, curBS, *QoS);

requestJoinTimerHandle =

setTimerEvent(requestJoinTimer, ONCE, JOIN INTERVAL, newBS);

joiningBS = newBS;

requestJoinTimer !

/* Abort joining attempt */

mode = UPLINK;

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = JOIN REPLY YES !

/* Joining accepted */

if (Msg->BS == joiningBS) f

cancelTimer(requestJoinTimerHandle);

prevBS = curBS;

curBS = Msg->BS;

raiseEvent(Join Complete, ASYNC, Msg->BS);

g

Message Inserted Into Bag(CP Msg t Msg) &

Msg->type = JOIN REPLY DENIED !

/* Joining denied! */

cancelTimer(requestJoinTimerHandle);

mode = UPLINK;

g

g end micro-protocol AUTONOMOUS MOBILE HOST

Figure 6.10: Autonomous mobile host hando� for mobile hosts

97

micro-protocol REQUEST/REPLY BASE STATION f

exportsf

event Start Disconnect(member t MH, bs t oldBS);

event Host Joined(member t MH);

event Host Released(member t MH);

event QOS Handoff(member t MH, QoS t *QoS);

event QOS Info Request(Member t MH, QoS t *QoS);

g

importsf

event End Disconnect(member t MH, bs t oldBS);

event Join New MH(member t MH, bs t oldBS);

g

privatef

table t MHRequestingJoin;

g

initializef

initTable(MHRequestingJoin);

g

actionsf

Join New MH(member t MH, bs t oldBS) !

if (LookupMemList(MH) == TRUE) f

/* already in list of active hosts */

sendMsg(JOIN REPLY YES, MyID);

g

else f

tableInsert(MHRequestingJoin, MH, oldBS);

sendControlMsg(RELEASE REQUESTED, MH, oldBS);

g

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = RELEASE GRANTED !

if ((entry = tableLookup(MHRequestingJoin, Msg->MH))) f

tableDelete(MHRequestingJoin, entry);

raiseEvent(Host Joined, SYNC, entry->MH, Msg->QoS);

g

else f

sendControlMsg(ERROR, Msg->BS, Msg);

g

Message Inserted Into Bag(CP Msg t Msg)

& Msg->type = RELEASE REQUESTED !

for all server connected f

sendControlMsg(HANDOFF, myId, Msg->BS);

g

raiseEvent(Start Disconnect, ASYNC, Msg->MH, Msg->newBS);

End Disconnect(member t MH, bs t newBS) !

raiseEvent(QOS Handoff, SYNC, MH, QoS);

sendControlMsg(RELEASE GRANTED, newBS, *QoS);

raiseEvent(Host Released, ASYNC, MH);

g

g end micro-protocol REQUEST/REPLY BASE STATION

Figure 6.11: Request/reply hando� for base stations

98

micro-protocol NACK BASE STATION f

exportsf

event Start Disconnect(member t MH, bs t oldBS);

event Host Joined(member t MH);

event Host Released(member t MH);

g

importsf

event Join New MH(member t MH);

proc timestamp t MemberLastTimestamp(member t MH);

g

privatef

table t MHRequestingJoin;

timer t joinTimerHandle;

event joinTimer(member t MH);

g

initializef

initTable(MHRequestingJoin);

g

actionsf

Join New MH(member t MH) !

entry = tableInsert(MHRequestingJoin, MH);

joinTimerHandle = setTimerEvent(JoinTimer, ONCE, JOIN TIME, MH);

addToEntry(entry, joinTimerHandle);

/* message is broadcast to all base stations */

sendControlMsg(RELEASE REQUESTED, item->MH, item->oldBS);

Join Timer(member t MH) !

/* if no BS responds can add the host to my cell */

if ((entry = tableLookup(MHRequestingJoin, MH)) f

raiseEvent(host Joined, SYNC, MH);

tableDelete(MHRequestingJoin, MH);

/* all base stations and routers informed */

sendControlMsg(HANDOFF, MH, myId);

g

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = RELEASE DENIED !

if ((entry = tableLookup(MHRequestingJoin, Msg->MH))) f

cancelTimer(entry->joinTimerHandle);

tableDelete(MHRequestingJoin, entry);

raiseEvent(Host Denied, entry->MH);

g

else f

sendControlMsg(ERROR, Msg->BS, Msg);

g

Message Inserted Into Bag(CP Msg t Msg) &

Msg->type = RELEASE REQUESTED !

if (LookupMemList(Msg->MH)) f

if ((curTimestamp - MemberLastTimestamp(Msg->MH)) >

INACTIVE THRESH) f

raiseEvent(Host Released, ASYNC, Msg->MH);

raiseEvent(Start Disconnect, AYNC, Msg->MH, Msg->oldBS);

g

else f

sendControlMsg(RELEASE DENIED, Msg->MH, myId);

g

g

g end micro-protocol NACK BASE STATION

Figure 6.12: NACK hando� micro-protocol for base stations

99

micro-protocol AGENT COORDINATED BASE STATION f

exportsf

event Start Disconnect(member t MH, bs t oldBS);

event Host Joined(member t MH);

event Host Released(member t MH);

event QOS Handoff(Member t MH, QoS t *QoS);

event QOS Info Request(Member t MH, QoS t *QoS);

g

importsf

event Join New MH(member t MH);

proc getHostAgent(member t MH);

g

actionsf

Join New MH(member t MH) !

agent = getHostAgent(MH);

/* Inform MH agent, it forward request to old base station */

sendControlMsg(RELEASE REQUESTED, agent, MH, MyID);

Message Inserted Into Bag(CP Msg t Msg) &

Msg->type = RELEASE REQUESTED !

/* Release is always OK send back QoS response */

raiseEvent(QOS Handoff, SYNC, Msg->MH, QoS);

sendControlMsg(RELEASE GRANTED, Msg->BS, MyId, *QoS);

raiseEvent(Host Released, ASYNC, MH);

raiseEvent(Start Disconnect, ASYNC, Msg->MH, Msg->newBS);

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = RELEASE GRANTED !

raiseEvent(Host Joined, ASYNC, MH, Msg->QoS);

g end micro-protocol AGENT COORDINATED BASE STATION

Figure 6.13: Agent Coordinated hando� for base stations

The �nal hando� style, implemented in the AGENT COORDINATED BASE STA-

TION (Figure 6.13), allows agents to coordinate hando� requests. Since agents already

coordinate the data going to the host, this simply involves informing the base stations,

so it knows where to forward new packets. The old base station cannot refuse in this

approach, so the agent just sends it noti�cation to allow it to deal with extra packets and

update its active table.

100

micro-protocol TRANSLATE BASE STATION f

exportsf

event Join New NM(bs t oldBS, newBs);

g

importsf

event Host Joined(member t MH);

event Host Denied(member t MH);

g

actionsf

Message Popped To CP(CP Msg t Msg) & Msg->type == JOIN REQUEST !

/* Set timer and if not response in time then denied */

raiseEvent(Join New MH, ASYNC, Msg->MH, Msg->curBS, Msg->newBS,

Msg->QoS);

Host Joined(member t MH) !

sendMsg(JOIN REPLY YES, MH, MyId);

Host Denied(member t MH) !

sendMsg(JOIN REPLY YES, MH, MyId);

g

g end micro-protocol TRANSLATE BASE STATION

Figure 6.14: Translate messages into events for base stations

All the base station hando� micro-protocols described above execute handlers when

the Join New NM event is triggered. However, some of the detection micro-protocols | in

particular SIMPLE, SIMPLE W/ OSC, and LAZY | all send a message when a hando�

is triggered since the detection is done on the mobile host rather than the base station.

Hence, to use the same hando� micro-protocols, this message must be translated into an

event. The TRANSLATE micro-protocol (Figure 6.14) performs this function. It also

translates the completion of the hando� micro-protocol from an event into a message that

is sent to the mobile host.

101

6.3.3 Disconnection

Separate and orthogonal from hando� is the decision about what to do with packets left

in the old base station during and after a hando�. This section contains three micro-

protocols for disconnection: DROP, DRAIN, and FORWARD. All three are executed on

the old base station and start to process packets of the mobile host to be handed o� when

the Start Disconnect event is triggered. The End Disconnect event is raised when the

disconnection has completed. The disconnection micro-protocol is intimately connected

with the send micro-protocol that controls the sending of packets and manages queues of

outgoing messages. We omit the details of send, but essential features are mentioned.

micro-protocol DROP BASE STATION f

exportsf

event End Disconnect(member t MH, bs t newBS);

g

importsf

event Start Disconnect(member t MH, bs t newBS);

proc DropPackets(member t MH);

g

actionsf

Start Disconnect(member t MH, bs t newBS) !

/* Throw away packets that can not be delivered */

DropPackets(MH);

raiseEvent(End Disconnect, MH, newBS);

g

g end micro-protocol DROP BASE STATION

Figure 6.15: Drop packet disconnection scheme for base stations

DROP BASE STATION (Figure 6.15) discards packets of a host that has left the cell.

The DropPackets procedure is imported from the send micro-protocol and deletes the

host's packets from all queues. As noted above, if reliable transmission is needed then a

higher-level protocol must be providing the guarantees.

DRAIN BASE STATION (Figure 6.16) takes the view that the host may still be

reachable even if a hando� is occurring. The micro-protocol takes advantage of this by

adjusting the priority of any remaining host packets and quickly transmitting them as the

hando� occurs. The Top Priority And Send All event prompts the send micro-protocol

to set the packets for quick delivery and if they are not acknowledged, to discard them.

The event is raised synchronously, so that the micro-protocol will block until the send of

the packets is completed or the packets are dumped.

FORWARD BASE STATION (Figure 6.17) removes packets from a departed host from

the sending queues of the old base station and forwards them to the new one. The new

base station then inserts them in the correct sending order, and adds them to the queues

of outgoing messages for the mobile host. When all the packets have been forwarded, the

End Disconnect event is raised.

102

micro-protocol DRAIN BASE STATION f

exportsf

event End Disconnect(member t MH, bs t newBS);

event Top Priority And Send ALL(member t MH);

g

importsf

event Start Disconnect(member t MH, bs t newBS);

g

actionsf

Start Disconnect(member t MH, bs t newBS) !

/* Throw away packets that can not be delivered */

raiseEvent(Top Priority And Send All, SYNC,MH);

raiseEvent(End Disconnect, SYNC, MH, newBS);

g

g end micro-protocol DRAIN BASE STATION

Figure 6.16: Drain disconnection scheme for base stations

6.4 Variations of Quality of Service

Quality of service (QoS) micro-protocols can be separated from mobility micro-protocols

since they are not directly involved in hando�s and other mechanics of routing. This sep-

aration is important for creating communication services with di�ering quality of service

policies, but the same basic system architecture for routing and hando�s. Recall from

Chapter 2 that InfoPad is the only current system that speci�cally addresses quality of

service, largely because it is speci�cally designed for multimedia applications.

QoS for mobile systems is complicated because the negotiation between applications,

mobile hosts, and base stations cannot necessarily be done once, as in stationary dis-

tributed systems. Mobile hosts move, of course, which means that a new base station

must provide these resources when a hando� occurs. If the cell is already being heavily

used, the new arrival with its connections may be be too much for the new base station to

guarantee. The overall result is that quality of service must be dynamically renegotiated

many times over the lifetime of a connection.

To aid the negotiation, QoS attributes are part of the connection parameters between

a mobile host and an application, and migrate with the connection as the host moves.

The connection contains a description of performance parameters, such as throughput,

jitter, latency, packet retransmission limits and requirements, and perhaps transmission

priority. These descriptions are passed during a hando� to the new base station along

with the mobile host's connections to applications. Agent-based architectures cache the

connection parameters in the agent, so in this case base stations contact the agent directly

for performance parameters. These parameters are modi�ed by QoS algorithms to realize

di�erent qualities of service.

We have identi�ed four classes of properties related to QoS in mobile systems: scope,

authority, locality of scheduling, and information types. Each constitutes an individual

orthogonal aspect independent of other selections.

103

micro-protocol FORWARD BASE STATION f

exportsf

event End Disconnect(member t MH, bs t newBS);

g

importsf

event Start Disconnect(member t MH, bs t newBS);

proc getPacketFromQueues(member t MH);

g

actionsf

Start Disconnect(member t MH, bs t newBS) !

/* Forward packets to new base station for delivery */

while (packet = getPacketFromQueues(MH)) f

msg = createForwardPacket(packet, newBS);

sendMsg(FORWARD, newBS, msg);

g

raiseEvent(End Disconnect, MH, newBS);

g

g end micro-protocol FORWARD BASE STATION

Figure 6.17: Forward packets disconnection schemes for base stations

Scope. An algorithm that governs QoS can either use information from one cell or infor-

mation from neighboring cells. An algorithm of single cell scope would adjust priorities

and allocations only in a single base station. However, an algorithm of multiple cell scope

could use information from neighboring cells to do, for example, load balancing. That is,

if a host is reachable by two di�erent base stations, the algorithm could assign the mobile

host to the more lightly loaded cell. This idea can be generalized to multiple overlapping

cells.

Authority. QoS parameters are maintained by the QoS authority. Depending on the

architecture and the algorithm, there are several choices of QoS authority. A common

choice is the current base station, which caches all connection data for hosts in its cell.

When using the base station authority, QoS information is either passed automatically

as part of the hando� or requested from the old base station, as described above. Note

that this information may only be a re
ection of what the base station allocated to the

connection, not necessarily what the host originally requested. A second option for mobile

hosts that are autonomous is for the mobile host itself to be the authority. In this scheme,

when a mobile host establishes a connection, it passes this information along to the new

base station. A third possibility is the applications, in which case new base stations request

QoS information from the application for each connection associated with a mobile host

that enters its cell. In general for all three options, applications participate in allocation

decisions, because they are knowledgeable about what parameters they require and how

requirements can be adjusted. For example, video applications could respond to a reduced

throughput allocation by slowing the frame rate or reducing the resolution.

104

Locality of Scheduling. The scheduling of resources (allocation) within a single cell by a

base station can be local or global depending on whether the algorithm a�ects only one

host or all hosts. Local scheduling allocates a share of resources to a mobile host and

its applications that may be adjusted as requirements change or more resources become

available. However, using local scheduling, an increase in the allocation of one host does

not a�ect another host, i.e., regardless of later mobile host activity or arrivals, a host

would be assured its allocation. Local scheduling also implies that late comers may not

be able to acquire enough resources if all have already been allocated. On the other hand,

global scheduling considers all the resources within the cell when making decisions, and

can make adjustments to existing allocations. Thus, global scheduling algorithms may

reduce the resources allocated to a mobile host to accommodate a new arriving host or a

current host that starts running additional applications that require additional resources.

Information Types. Two types of information can be used for resource scheduling: re-

quest and usage. Request-based scheduling uses only requirements stated by applications

and mobile hosts. In contrast, usage-based monitors actual use instead of or in addition to

request-based information, which can result in better overall service to all hosts in the cell.

If a guarantee of service to accommodate bursty tra�c has been made, then the allocation

must be request-based, and an application may end up acquiring larger allocations than

actual usage patterns would dictate.

6.5 Example QoS Micro-Protocols

In this section, we describe generic high-level micro-protocols for QoS. Instead of a speci�c

algorithm, the micro-protocols that are presented provide structure for adding QoS into a

communication service for mobile systems. In this sense, the QoS micro-protocol is treated

as a \black box", and we concentrate on describing the connections and relationships to

other modules in the micro-protocol suite. The speci�c micro-protocols presented are to

manage base station QoS and transmission QoS attributes by a base station or a mobile

host during hando�s. The micro-protocols for managing sending of messages and usage

monitoring are essential to QoS, and are described in Section 6.6.

The most complex QoS management occurs in the base station micro-protocol that

allocates resources to mobile hosts and applications, negotiates QoS attributes, and dy-

namically adjusts QoS allocations. A generic micro-protocol, QOS BASE STATION, is

given in Figure 6.18. It covers mobile hosts joining a cell, hosts leaving the cell, negoti-

ating with applications for QoS attributes, and handling performance panics when QoS

attributes are not being met.

In this micro-protocol, a number of situations are handled. When a host is released

from the cell, the Host Released(MH) event is raised and all allocations associated with

the host can be given to other hosts as needed. The micro-protocol stores QoS attribute

information of unmet requests to use in this situation. When hosts join a cell, the ini-

tial QoS attributes are assigned after negotiation and possible adjustments are made to

allocations of other hosts. The negotiation may involve the monitor micro-protocol. The

LookupQoS procedure determines what attribute values have been assigned to a host, so

105

that this information can be passed along with the hando� if the QoS authority is the

current base station. After QoS attributes are established, the QoS authority is informed.

When a host joins a cell, its QoS requirements may be passed as part of the hando�

information; for example, the HANDOFF QoS BASE STATION micro-protocol (Figure

6.19) sends QoS attributes during a hando�. Other schemes where the QoS authority

is the mobile host would use the HANDOFF QoS MOBILE HOST (Figure 6.20), which

looks up QoS information when a hando� is occurring. In this case, the information would

be included in the hando� message to the new base station. If the QoS authority is the

application or agent, then the base station directly requests this information from the

authority.

The QoS attributes received by the base station during a hando� are a temporary

resource allocation that is used until the base station can negotiate. If these attributes

acceptable | i.e., they can be met | then they are used permanently; otherwise, the base

station negotiates to obtain achievable values. This negotiation can involve applications,

modifying allocations for current mobile hosts, modifying other connections for the same

mobile host, or use of monitor information to downgrade connections allocated but not

being used. After the attributes are established, the QoS authority is informed of the new

parameter values.

Anytime during the lifetime of a connection, an application can signal a desire for

an adjustment to the QoS attributes by sending a QOS New Request message to the base

station. The message can come directly from an application or from an agent on behalf of

an application. This request will be met if possible, and a response sent back along with

a message to the QoS authority about the change in parameters.

In certain situations, the monitor or send micro-protocols may alert the QoS micro-

protocol that certain QoS attributes are not being maintained. This can occur either

because a mobile host or application is not adhering to the negotiated values or because

the resources have been over-scheduled. When this occurs, the QoS micro-protocol can

modify QoS parameters and start a new negotiation phase or ignore the panic.

106

micro-protocol QOS BASE STATION f

exportsf

proc LookupQoS(member t MH, QoS t *QoS);

event QoS Modified(member t MH, QoS t *QoS);

event QoS Added(member t MH, QoS t *QoS);

g

importsf

event Host Joined(member t MH, QoS t *QoS);

event Host Released(member t MH);

event QoS Panic(Panic Status t status);

proc UsageMonitorData(member t MH, use t *Usage);

g

privatef

table t TableOfAllocations;

g

initializef

ClearTableOfAllocations();

g

actionsf

Host Released(MH) !

Remove mobile host from TableOfAllocations, cleanup allocations given to host,

perhaps increase other connection allocations

Host Joined(MH,QoS) !

if (QoS == NULL) f

/* no QoS information with the handoff, start with default */

InsertTable(TableOfAlloactions, DEFAULT QOS) ;

Other schemes can request QoS information from QoS Authority

for initial allocation

g

else f

If the initial QoS can be accommodated then insert into table.

Otherwise apply negotiation algorithm to attain new QoS attributes

employing any of the following methods.

1. Negotiate with application to reduce requirements

2. Change the allocation of other MH's and inform hosts and applications

3. Change allocation of the other connections of this MH

4. Use monitor information to downgrade connection not used to allocation

Inform QoS Authority of �nal QoS parameters

raiseEvent(QoS Added, ASYNC, MH, QoS);

g

Message Popped To CP(CP Msg t Msg) & Msg->type == QOS New Request !

/* Application wants to request different QoS requirements */

Apply above algorithm with new QoS from Msg->QoS

Send �nal QoS parameter message back to application

Inform QoS Authority of �nal QoS parameters

raiseEvent(QoS Modified, ASYNC, MH, QoS);

QoS Panic(status) !

Send unable to meet QoS requirements, missed deadlines, etc.

Consult with monitor to isolate di�culty and modify QoS attributes

Possibly send additional QoS messages to applications

g

... code for lookupQoS, calculateQoS

g end micro-protocol QOS BASE STATION

Figure 6.18: Quality of service management

107

micro-protocol HANDOFF QOS BASE STATION f

importsf

event QOS Handoff(member t MH, QoS t *QoS);

proc LookupQoS(member t MH, QoS t *QoS);

g

actionsf

QOS Handoff(member t MH, QoS t *QoS) !

LookupQoS(MH, QoS);

Message Popped To CP(CP Msg t Msg) & Msg->type == QOS Info Request !

LookupQoS(MH, QoS); /* get current QoS characteristics */

sendControlMsg(QOS Info, Msg->sender, QoS);

g

g end micro-protocol HANDOFF QOS BASE STATION

Figure 6.19: QoS information provided by base stations

micro-protocol HANDOFF QOS MOBILE HOST f

importsf

event QOS Handoff(QoS t *QoS);

proc LookupQoS(QoS t *QoS);

g

actionsf

QOS Handoff(QoS t *QoS) !

/* Fill in QoS structure */

LookupQoS(QoS);

g

g end micro-protocol HANDOFF QOS MOBILE HOST

Figure 6.20: QoS information provided by a mobile host

6.6 Supporting Micro-Protocols

The QoS micro-protocols are intimately connected to the send and monitor micro-protocols.

The �rst is responsible for translating the QoS information to priorities for scheduling

transmission of messages to mobile hosts. In particular, it multiplexes the shared resource

of wireless bandwidth among all the mobile hosts in the cell. Some wireless transmission

protocols assign each mobile host separate channels that can simplify scheduling, but even

then, multiple applications using the same channel must be scheduled.

The monitor micro-protocol is essential for implementing usage-based QoS policies, as

noted above. Unlike the send micro-protocol, monitor is a passive observer. It collects

information about the aggregate allocation of resources in the cell, the usage patterns for

each mobile host, and whether real-time deadlines for jitter and throughput are being

met. The monitoring also determines which hosts are not using their allocated resources,

so the QoS module can reassign them to other connections or adjust sending priorities.

The monitor module supports global scheduling by answering queries from its peers in

108

Inspiration Detect Hando� Disconnect

Crosspoint ICMP NACK FORWARD

PARC TAB BEACON AGENT DROP

InfoPad SIMPLE, TRANSLATE, AUTONOMOUS REQ/REP DRAIN

DataMan LAZY, TRANSLATE, AUTONOMOUS REQ/REP FORWARD

Table 6.1: Existing mobile system inspired con�gurations.

neighboring cells to implement load balancing.

For all micro-protocol suites, a membership micro-protocol is needed to add and remove

hosts from the active table. In addition, veri�cation micro-protocols are included to check

the format of a message prior to being added to the shared bag of messages. Some

veri�cation micro-protocols also drop messages from hosts not in the table unless it is a

control message requesting addition to the cell.

6.7 Example Con�gurations

Combining the micro-protocols described in this chapter together can result in a variety of

communication services for mobile systems. All together there are 5 choices for detection,

3 choices for hando�s and 3 choices for disconnection, resulting in 45 possible composite

protocols. The selection of QoS micro-protocols is orthogonal and adds another dimension

of behavior that can be added to any of the 45 combinations. As an example of some of

the possible choices, several con�gurations inspired by systems described in Chapter 2

are shown in Table 6.1. The table lists the detection, hando�, and disconnection micro-

protocols that would be combined to create a system with mobility behavior similar to

the named systems. In addition, a system such as InfoPad that includes QoS guarantees

would include some variation of the QoS and supporting micro-protocols.

6.8 Conclusions

In this chapter, we have seen how mobile systems can bene�t from con�gurable commu-

nication services. Micro-protocols for detection of hando�s, hando�s, and disconnection

can be selected and con�gured to match a variety of di�erences in the architecture and

semantics, or to facilitate rapid protocol development. In addition, the micro-protocol ap-

proach allows for incremental system construction, which is essential in an experimental

�eld. We also showed several di�erent con�gurations using this one collection of micro-

protocols that result in semantics similar to existing systems. Finally, quality of service

issues and policies are separated from those concerned directly with mobility in this ap-

proach, thereby simplifying system design and construction.

109

CHAPTER 7

EVALUATION

The goals of this research as stated in Section 3.1 are broad both in scope and in

character, which makes conclusive statements and quantitative measurements against ob-

jective standards di�cult. Furthermore, limitations in the programming and execution

environments constrained experimentation in several important areas. Nevertheless, our

experience allows us to reach several tentative conclusions about the e�ectiveness of our

programming model for constructing communication services, and the viability of the

prototype implementation.

The next section presents our overall assessment of this research. Following is an

explanation of the limitations imposed by the current implementation and programming

environment, and how they might be overcome. We conclude by discussing additional

issues that arise when supporting mobile systems with real-time requirements and evalu-

ating related work.

7.1 General Assessment

7.1.1 Overview

Our x-kernel-based prototype implementation is an e�ective realization of the composite

protocol model and achieved the majority of the objectives described in Section 3.1. The

model has been used to design four widely-di�ering communications services | group

RPC, membership, atomic multicast [GBB

+

95], and mobile communication | with the

�rst three implemented by three di�erent people. Based on these experiences, we have

reached several conclusions. First, the system is indeed con�gurable, with construction

of a new service being no more complicated than re-linking the framework with di�erent

micro-protocol object �les. Second, our performance measurements suggest that the event-

driven, data-centered approach is not only a useful design tool, but a viable implementation

technique as well. Third, the prototype successfully interfaced with existing x-kernel

protocols without modi�cation, which makes it possible to use in a variety of settings and

for a variety of applications.

Finally, and perhaps most importantly, the composite protocol model, like the x-kernel

itself, simpli�es development and debugging by encouraging protocol designers to decom-

pose protocols into more manageable pieces. In order to implement and test each com-

ponent separately, designers are forced to minimize the amount of external state and

interaction required between components, which helps identify more precisely the distinct

semantic categories contained in their protocol speci�cations. As a result, communications

services built from micro-protocol suites really do seem to encapsulate speci�c semantic

properties much better than existing alternative implementation forms.

We now examine in greater detail how well the goals of e�ciency, reusability, ease of

110

debugging and maintenance, and explicit dependencies have been achieved.

7.1.2 E�ciency

E�ciency can be measured in many di�erent ways. In Chapter 5, we presented mea-

surements of protocol performance for the group RPC micro-protocol suite. Given the

limitation of the environment | a relatively old and slow hardware platform, and execu-

tion as a user-level task on top of Mach MK82 | the execution times were encouraging

and lead us to believe that micro-protocol suites constructed using the event-driven model

can be competitive with other system architectures.

Another approach to ascertaining performance would be to make comparisons with

similar existing systems. However, this introduces a number of problems. For example,

we must �rst determine which metrics would be appropriate to compare. In addition, for

the results to be fair, the other systems must have similar design goals. Unfortunately,

as discussed in Chapter 2, there are few systems that provide similar functionality, and

those that do run on hardware or OS platforms that are su�ciently di�erent to prevent

meaningful comparisons.

Finally, if further experimentation convinces us that performance of the existing pro-

totype is inadequate, we are aware of several areas where enhancements and optimizations

are possible. These are discussed in Section 7.2.

7.1.3 Resuability

Our initial experimentation has focused on demonstrating the wide range of communica-

tions services that can be constructed using the composite protocol model. Consequently,

we have had little opportunity to experiment with reusing micro-protocols in di�erent

protocol suites. However, from studying the structure of the group RPC suite (Section

5.1), we believe that many of these micro-protocols could be used in other suites, partic-

ularly multicast. Alternatively, by providing additional semantic choices using additional

micro-protocols, the group RPC suite could be generalized to create a reliable group com-

munication suite.

7.1.4 Ease of Debugging and Maintenance

Building a high-level communication service is a di�cult task. One of the greatest bene�ts

of the prototype has been the opportunity to build and test elements of the communication

service individually. Each semantic behavior, coded as a separate micro-protocol, can be

tested either stand-alone or in peer-to-peer communication using the existing x-kernel

protocol graph. Because each micro-protocol is relatively small, tracking down bugs is

comparatively easy.

In addition, the framework provides a number of built-in debugging aids. One of the

most useful is an event-level tracing facility that reports all event triggers along with their

arguments, and the sequence of event handler execution. This service is entirely provided

by the framework, so no special code is required in the micro-protocol. Similarly, message

creation and destruction, and changes to message attribute values can be tracked. It is

also possible to trace thread execution using debugging facilities in the x-kernel.

111

The composite protocol model, with its clearly expressed dependencies, also aids in

program maintenance. First, changes are generally con�ned to one micro-protocol at a

time, greatly reducing the amount of code that must be examined to �nd an error. Second,

if the error is due to an unexpected interaction with other micro-protocols, it can easily

be checked by tracing event execution and message attribute values. Contrast this to

the normal protocol construction and debugging procedures, where no such corresponding

high-level interactions can be identi�ed, much less traced.

7.1.5 Explicit Dependencies

The micro-protocol structure makes dependencies explicit and clearly visible. Events and

message attributes | the external interface to a micro-protocol | are de�ned at the

beginning of the code. When a micro-protocol imports an event, it clearly indicates that

it is relying on some other micro-protocol to generate that event.

By making these elements part of the language de�nition, it is straightforward for a

language translator (or smart linker) to verify that these expectations are in fact being met.

Unfortunately, in our prototype implementation micro-protocols must be hand-translated

into the implementation language (C), so only limited checks are performed. Section 7.2

discusses this in more detail.

One important semantic aspect not captured by the interface de�nition is event or-

dering, i.e., that event A must be processed before events B or C. Also not expressed is

the relationship between events and changes to message attributes. Concisely express-

ing these constraints in the interface would make it easier to understand the behavior of

the micro-protocol, and potentially permit some level of automated veri�cation, either at

translation time or at runtime.

7.2 Programming Issues

7.2.1 Synchronous and Asynchronous Event Execution

The framework implementation has combined two orthogonal characteristics, call seman-

tics and execution semantics, into synchronous or asynchronous styles of event execution.

Recall that call semantics can either be blocking (i.e., calls do not terminate until all han-

dlers terminate) or non-blocking (i.e., calls return immediately). Similarly, event handlers

can execute either sequentially or in parallel. In the framework, raising an event with the

synchronous parameter results in a blocking call and sequential execution, while raising

an event with the asynchronous parameter results in a non-blocking call and parallel ex-

ecution. Figure 7.1 shows the four possible combinations and the two choices that are

supported by the framework, labeled ASYNC and SYNC.

Given that only two combinations are supported, the natural question is whether the

other two might be useful. Blocking call style with parallel execution would be useful

for a micro-protocol that can only proceed when all handlers complete execution but

the handlers do not have to execute sequentially. For example, the framework event

Message Ready To Be Sentmust be handled by all micro-protocols before actually sending

the message, but the micro-protocols need not execute sequentially. The last combination,

112

Blocking

Non-Blocking

Parallel
Call Style

Sequential

SYNC

ASYNC

Handler Execution

Figure 7.1: Possible combinations.

non-blocking sequential style, could be used when there are dependencies between micro-

protocols, but no need for noti�cation when the handlers complete. To allow variation

conveniently, perhaps call and execution semantics should be speci�ed independently.

7.2.2 Call Depth

In the course of constructing and experimenting with the prototype, we learned some sur-

prising lessons about the interactions of events and handler execution with the procedure

call optimization. In particular, when a single thread is used in this way, asynchronous

event execution is sometimes required to make computational progress, and repeated syn-

chronous event execution can cause stack over
ow. The basic problem is that event han-

dlers can raise other events that cause nested event handlers to execute, which results in

the thread executing to a great depth without returning. In other words, the execution

takes on a depth-�rst execution style, executing all nested events �rst before completing

the execution of handlers in the outermost events. Favoring nested events in this way can

prevent handlers associated with other triggered events from running.

Stack over
ow is a straightforward problem that results from long execution chains of

nested events handlers. For example, consider the following scenario. A message arrives

from the network, which causes all event handlers registered for the message arrival event

to be scheduled for execution. One of these handlers reacts to this arrival by delivering

messages to the user, for instance, if the message was the missing predecessor in a context

graph. This in turn may cause a cascade of new messages from the user and more han-

dlers being scheduled. Since all these activities are executed with the same thread, stack

over
ow may result.

The need for asynchronous event execution to make progress is more subtle but arises

from the same depth-�rst execution scenario. Speci�cally, if the triggering of an event

results only in a hander being added to the ready queue (to be executed later using fair

scheduling), then all handlers will eventually execute. However, with the procedure call

optimization, handlers that appear later in the list may be inde�nitely postponed. Also,

since the single call thread can continue to execute nested events and their corresponding

113

handlers, new messages that arrive may not even be processed in a timely manner. Our

experimentation with the group RPC micro-protocol suite demonstrated this problem;

often a message was sent requesting a retransmission because no thread had run to retrieve

arriving messages. In other words, message retransmissions were requested for messages

the composite protocol possessed but was unaware of! The use of true asynchronous event

execution with multiple threads solves these problems by servicing event handlers fairly,

thereby allowing handlers associated with incoming messages to execute.

The call depth optimization discussed in Section 4.2.4 was introduced as a way to,

in essence, force asynchrony. Recall that when using this optimization, a new thread is

created when the call depth exceeds a threshold set by the user. After implementing call

depth control, we noticed that GRPC made many fewer retransmission requests. Changing

the call depth threshold signi�cantly a�ected the running time, and in fact, we tuned this

value to achieve the best results from our micro-protocol suite. If the call depth was set

fairly shallow, 5 to 10, event execution caused more C-thread context switches, but fewer

extra retransmission requests were sent. When the call depth was set fairly deep, 50 to

100, event execution was more rapid, but far more control message tra�c was generated,

which resulted in signi�cant performance degradation as the network became severely

overloaded. The best results for GRPC were achieved with a call depth setting around

30, which achieved the best tradeo� between the number of retransmissions requests and

C-thread context switches.

Call depth monitoring is a simple �x that solved the immediate problem, but perhaps

a priority scheduling scheme is a better long-term solution. The need for this type of

scheduling control is discussed in Section 7.4.

7.2.3 Ordering Handler Execution

The current way in which synchronous event execution is realized allows the programmer

to assume a given ordering for its associated handlers. Speci�cally, execution order is the

order in which the handlers were installed. Knowing the execution order can be used to

advantage, for example, when a second handler depends on data modi�ed by the �rst. If

ordered execution is not guaranteed, then the �rst event handler would have to explicitly

trigger the second using an intermediate event. This issue is irrelevant for asynchronous

event execution since in this case, handlers are executed concurrently with no guaranteed

order.

The primary advantage of ordering handler execution is that the micro-protocol code

can be simpli�ed since intermediate events do not have to be used. Without the need

to include minor events that capture only small state changes in the micro-protocols,

the protocol writer can concentrate on structuring the code to support cleanly the major

events that drive execution of the communication service. Also, the intermediate events

introduce an extra layer of indirection that could potentially degrade performance.

On the other hand, ordering handler execution in this way has the major disadvantage

of violating the modularity of micro-protocols. That is, ordering adds hidden dependencies

that are not captured clearly in the speci�cation of the micro-protocol as captured in the

list of imported and exported events. This makes it di�cult to recon�gure micro-protocol

suites, since when a new micro-protocol is added or replaced, the execution order must

114

be adjusted to accommodate this change. As the number of micro-protocols increases,

this situation worsens due to all the possible con�gurations and corresponding orderings.

In addition, using a micro-protocol from one suite in another becomes almost impossi-

ble. Since intermediate events can always be used to force handler dependencies, ordered

handler execution adds no additional functionality, so its use is primarily a question of

programming style.

While ordering of synchronous event execution is supported in the framework to en-

hance
exibility, on balance, our feeling is that its use should be avoided. By doing so, the

protocol writer preserves the explicitness of dependencies, thereby enhancing the overall

con�gurability of the communication service. We note that the RPC micro-protocol suite

was written without relying on implicit ordering, and as a result, uses a more concurrent

style of programming.

7.2.4 Event Scheduling

Another problem that was encountered during experimentation was the lack of control over

event scheduling. For example, when two messages arrive and the corresponding events are

raised, it would be useful to have a mechanism to control which is handled �rst. This could

be used to ensure that the messages are processed in sequence number order (transmis-

sion order), thereby avoiding unnecessary retransmission requests. However, such control

requires scheduling support from the underlying system, which is unfortunately lacking in

our version of Mach.

Scheduling control is also essential for correctness in a multiprocessor environment. If

two threads are popping up ordered messages to an application, it is essential that they

execute in the order that these pops were issued. Otherwise, the messages could have

been ordered by the composite protocol and the pops executed in correct order, but the

messages actually arrive at the application in the wrong order. This kind of scenario is

again di�cult to prevent without support from the underlying system.

7.2.5 Programming Language Support

As mentioned in Chapter 3, there is currently no translator for the Protocol Description

Language (PDL) used for examples in this dissertation. This leads to several limitations

in our prototype, which can be grouped into three categories: obscuring the model, no

static checking of PDL language rules, and no opportunity for optimizations.

The �rst is perhaps the most serious, since the key elements to our paradigm | events,

handlers, messages, and message attributes | disappear when a protocol is coded in C,

becoming ordinary function calls and de�nitions. This makes the essential elements of a

micro-protocol's interface and behavior much less visible and complicates debugging.

The second problem is that language checks cannot be done without a translator. For

example, we had to rely on C visibility rules that make functions and global variables

public by default, where the opposite is true in PDL. Similarly, there are no shared global

variables in PDL since this would create implicit dependencies between micro-protocols,

while C's �le-level scoping makes it impossible to enforce this restriction if a micro-protocol

is split into multiple source �les. It is also impossible to perform a number of module-

speci�c checks, which could have facilitated adding a new micro-protocol and con�guring

115

new communication services. For example, a translator could issue a warning when events

are raised but not handled, or when handlers are declared but no micro-protocol generates

the corresponding event. This type of feedback can simplify the process of detecting

incompatibilities between micro-protocols, and therefore, make con�guration of micro-

protocol suites more automatic.

Finally, a translator would provide an opportunity to optimize event execution with ef-

�cient evaluation of guards on handlers. Without this feature, each handler must evaluate

the guard itself and exit if it evaluates to false. This would be better done before handlers

are invoked to eliminate the need to process the event and execute the handler in all cases.

Guard evaluation also provides other opportunities for optimization, such as evaluating

a guard only once if several handlers have identical conditions. Event execution can also

be optimized using techniques such as in-lining code to remove event handler execution

overhead completely.

On a related issue, micro-protocols are actually objects, so an implementation in an

object-oriented language would naturally provide bene�ts. As noted in Section 3.1, a

C++ prototype using a simulated network has been developed in which micro-protocol,

events, and messages are classes. Further explorations in this direction would be useful.

For example, micro-protocols could be structured into specialized classes, such as ordering

micro-protocols that represent orthogonal behaviors. This may help the user identify

which micro-protocols may be substituted for one another.

7.3 Experimentation Issues

7.3.1 Performance Pro�ling

Performance pro�ling posed a number of challenges given the experimentation environ-

ment. Round trip message tests are the typical way to measure performance of network

protocols. However, since our composite protocol is a mix of framework and user-supplied

micro-protocol code, we would also like to measure the cost of di�erent framework func-

tions. Unfortunately, due to the lack of pro�ling tools on Mach, we developed only vague

ideas of what percentage of execution time is involved in framework procedures versus

micro-protocol speci�c code. This hampered our ability to improve runtime performance,

which naturally should be based on reliable pro�les of individual routines.

Also, as noted in Section 7.1.2, we would like to compare our performance with other

comparable protocol suites. However, this is di�cult because other suites are not based

on the same hardware or operating system. Moreover, the DecStations used for testing

are processors that run at 40 MHz and 25 MHz, which is very slow by modern standards.

More modern hardware and operating systems platform would be desirable, and might

provide a common basis for comparison with other approaches.

7.3.2 Testing

Running tests of composite protocols to gather data is the same as running any other

x-kernel protocol suite, although testing all the di�erent combinations of micro-protocols

clearly involves more e�ort. For testing of individual modules, the con�gurability of

the approach makes things easier because each can be tested incrementally. Tests are

116

started with a weaker set of semantics requiring fewer micro-protocols, and once those are

completed, stronger semantics and additional micro-protocols can be added. For example,

acknowledgment and retransmission micro-protocols are very easily veri�ed individually so

these might be tested �rst. Then ordering micro-protocols might be added. This also has

the additional bene�t that the composite protocol provides a working system throughout

and thus can serve as a testbed for the new micro-protocols.

Another advantage of our composite protocol approach is that the framework provides

a convenient place to implement facilities needed for event-based testing. In particular, the

framework can report all event trigger occurrences and handler executions, which provides

valuable information for debugging micro-protocol suites. In addition, the framework

allows speci�cation of what level of debugging messages are printed, or if only events

speci�c to one micro-protocol are reported. The framework also has a command line

interface to a test program that can trigger events to simulate event generation. This is

useful for testing individual micro-protocols.

7.3.3 Use of the x-kernel

Using the x-kernel had both positive and negative aspects. On the positive side, the

x-kernel is speci�cally designed for network programming and experimentation with pro-

tocols, which allowed us to focus on our model and not deal with such details as integration

with network device drivers. We were also able to exploit its other facilities such as the

e�cient message tool and novel thread architecture, both of which simpli�ed our imple-

mentation e�ort.

Another advantage was that the standardized protocol interface simpli�ed the integra-

tion of the composite protocol with the x-kernel protocol graph. Speci�cally, the composite

protocol only needed to support a few operations that make up the x-kernel uniform pro-

tocol interface. Moreover, when a message is brought into the composite protocol via a

pop or push operation, the framework can control further execution, which allows the

composite protocol to enforce its own execution model within the composite protocol.

That is, once the composite protocol handles messages that cross protocol boundaries,

the framework can completely control the form of messages and handling of these mes-

sages by micro-protocols. We were also able to augment the x-kernel messages easily with

attributes to create CP messages.

On the negative side, it was sometimes di�cult to isolate the micro-protocol program-

mer from all the details associated with writing protocols for the x-kernel. For example,

one of the goals of the implementation was to create a composite protocol that could

be completely independent of the protocol immediately below it in the protocol stack.

However, in our prototype this is only partially true; we have managed to localize the

layer-dependent code to one user-modi�able �le, but not eliminate it completely. Most of

the di�culties are associated with specifying the participant addresses used to open up

x-kernel sessions for the lower-level protocol. Perhaps a better environment would have

provided a generalized mechanism for specifying the participant addresses in a protocol-

independent fashion.

Another shortcoming of using the x-kernel is the lack of a multiprocessor implemen-

tation. While there are two multiprocessor versions of the x-kernel [NYKT94, Bjo93],

117

they are not widely available and are not the standard distribution. In addition, few

existing x-kernel protocols are written for multiprocessors, so for compatibility, the frame-

work is restricted to sequential execution. However, our model is speci�cally designed to

allow micro-protocols to execute in parallel when asynchronous event execution is used.

Thus, the availability of a multiprocessor version of the x-kernel and appropriate hardware

would have allowed for optimization and an assessment of parallel asynchronous handler

execution.

7.4 Mobility and Real-Time

An issue that arose in the context of mobile computing concerns support for real-time

deadlines and control of real-time aspects of scheduling. For example, the Crosspoint

architecture uses a negative acknowledgment scheme to add new mobile hosts to a base

station; if the new base station does not receive a NACK message, then it will add the

host to its cell. There are two potential problems: for timeouts to work, timer events

on the sender and receiver side need to execute fairly close to real time, and incoming

messages must be serviced shortly after their arrival. The second problem arises because,

as discussed in Section 7.2.4 above, the message may be held by a thread that is suspended

and destined not to execute within the required time. A similar problem is that occurences

of repeating events are not guaranteed to execute in the order they were triggered.

Another useful facility would be some mechanism for informing micro-protocols when

tasks are not executed on time and deadlines are missed. For example, generating an

exception for missed deadlines would allow micro-protocols to take some corrective action,

such as increasing the period between task execution or adapting its behavior to a more

loaded system. Since no information about missed deadlines is available, the system

currently has no opportunity to correct behavior. A similar opportunity is to discard

execution instances of repeating timer events that have missed their deadline, since such

events are often of no use.

7.5 Related Work

A number of other papers have addressed areas related to this work. Several are in the

area of fault-tolerance, where researchers have explored use of modularization or system

customization. Examples include the ANSA system [OOW91] and the work on multicast

reported in [Gol92]. In contrast to these, our approach is more general and provides more

exibility for the protocol designer. Also in the area of fault-tolerance, [Bla91] explores

orthogonal properties of transactions. Such characterizations are complementary to our

work since they suggest applications that might be suitable for implementation using our

model.

Another area of related work concerns development of system support for constructing

modular protocols. The x-kernel itself is, of course, one such system. Our work is an ex-

tension of the x-kernel model, with the goal of supporting �ner-grain protocol objects that

require richer facilities for communication and data sharing, while retaining the program-

ming and con�gurability advantages of the x-kernel. Many of our goals related to system

customization, code reuse, and protocol con�gurability are adopted from the x-kernel.

118

Other x-kernel related work has explored the use of �ner-grain protocol objects [OP92],

but the emphasis there is on syntactic decomposition of higher-level protocols within a

hierarchical framework. This work, however, does lend credence to the claim that such �ne-

grain modularity can be introduced without sacri�cing performance. System V Streams

[Rit84] also supports modularization of protocols, but its model is also hierarchical and

relatively coarse-grained. Horus [vRHB94] supports stack-line con�gurations of coarse-

grained protocols.

Somewhat closer to our work is the ADAPTIVE system [SBS93], which is also de-

signed to support
exible combinations of protocol objects. The goal of the system is

to support e�cient construction of transport services with di�erent QoS characteristics,

especially for multimedia applications using high-performance networks. In contrast with

our work, the designers of ADAPTIVE emphasize runtime recon�guration, automatic

generation of sessions|i.e., instances of protocol objects|from high-level speci�cations,

and support for alternative process architectures and parallel execution. Moreover, the

type of protocol objects supported appear relatively coarse-grained when compared to our

objects|multicast rather than individual properties of multicast, for instance|and more

oriented toward hierarchical composition and limited data sharing.

Several other e�orts have also concentrated on supporting parallel execution of mod-

ular protocols, including [GNI92, LAKS93]. While similar to our work in the sense of

decomposing protocols along semantic lines, these e�orts di�er in their emphasis on using

parallel execution to improve throughput and latency for high-performance scienti�c ap-

plications. They also retain a single-level composition model, which we believe does not

o�er enough
exibility for high-level protocols.

Protocol languages can be used to specify and validate protocols. The Language of

Temporal Ordering Speci�cations (LOTOS) is based on the Calculus of Communicating

Systems (CCS) [Bri87]. Lotos provides a high-level abstraction through the use of speci�-

cation algebras that allow a designer to reason formally about protocol behavior. Estelle

is another formal description language designed to program reactive systems [BD87]. The

language execution model is based on an extended �nite state machine, where protocols

are described as a set of modules that contains responses to events and a�ect the en-

vironment through output events. In contrast to our work, these e�orts concentrate on

automatic validation of protocols.

Finally, as noted in Chapter 2, recent work on new generation operating systems has

emphasized similar customization goals, but in a more general context [BCE

+

95, HPM93,

MMO

+

94]. These projects attempt to increase the ability of users to con�gure di�erent

types of services, but for many aspects of operating system functionality rather than just

network protocols. However, the con�gurability they provide is typically more coarse-

grained than our approach, which emphasizes choice among speci�c semantic properties

of high-level protocols.

119

7.6 Summary of Contributions

This dissertation makes a number of contributions to the study of communication ser-

vices for distributed systems. The primary contribution is a new model for constructing

con�gurable communication services that can be customized to meet the speci�c require-

ments of a distributed application. The approach is novel because communication services

are decomposed into distinct semantic properties, each implemented by a �ne-grained

micro-protocol. Micro-protocols have well-de�ned interfaces and interact according to an

event-driven paradigm.

Another signi�cant contribution is an x-kernel based implementation that supports our

model. The implementation extends the standard hierarchical model of the x-kernel with a

composite protocol in which micro-protocol objects are composed with a standard runtime

system. Using this implementation, we constructed a GRPC micro-protocol suite that can

be con�gured to provide many customized variations of a group RPC service. The GRPC

suite also provides a measure of the implementation cost of the event-driven model and

an assessment of the incremental costs of communication properties for common group

communication paradigms.

Finally, we demonstrated the widespread applicability of the approach by designing a

suite of micro-protocols for mobile computing. We discovered general semantic properties

for mobile computing, and designed micro-protocols for negotiation of quality of service,

and detection, hando�, and disconnection, These can be combined to accommodate a

variety of mobile computing architectures and applications.

120

121

REFERENCES

[AB93] A. Acharya and B. R. Badrinath. Delivering multicast messages in networks

with mobile hosts. In Proceedings of the 13th IEEE Symp. on Distributed

Computing Systems, pages 292{299. IEEE, May 1993.

[ABI93] A. Acharya, B. R. Badrinath, and T. Imielinski. Checkpointing distributed

applications on mobile computers. Technical report, Department of Com-

puter Science, Rutgers University, New Brunswick, NJ 08903, 1993.

[ABSK95] E. Amir, H. Balakrishnan, S. Seshan, and R. Katz. E�cient TCP over

networks with wireless links. In Proceedings of the HotOS-V Workshop,

Orcus Island, May 1995.

[ADKM92] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication

sub-system for high availability. In Proceedings of the 22nd IEEE Symp. on

Fault-Tolerant Computing, pages 76{84, Boston, July 1992.

[AGKK91] J. Auerbach, M. Gopal, M. Kaplan, and S. Kutten. Multicast group mem-

bership management in high speed wide area networks. In Proceedings of

the 11th IEEE Symp. on Distributed Computing Systems, page 231, Arling-

ton, TX, May 20-24 1991.

[AGSW93] N. Adams, R. Gold, B. Schilit, and R. Want. An infrared network for

mobile computers. In Proceedings of the 1st USENIX Mobile and Location-

Independent Computing Symp., pages 41{51, August 1993.

[AIB] A. Acharya, T. Imielinski, and B. R. Badrinath. DATAMAN project: To-

wards a Mosaic-like location-dependent information service for mobile clients.

Technical Report DCS-TR-320, Department of Computer Science, Rutgers

University, New Brunswick, NJ 08903.

[ALB88] E. Arthurs, T.T. Lee, and R. Boorstyn. The architecture of a multi-

cast broadband packet switch. Technical report, Bell Communications Re-

search, Morristown, NJ 07960, 1988.

[AP93] M. B. Abbott and L. L. Peterson. Increasing network throughput by inte-

grating protocol layers. IEEE/ACM Trans. on Networking, 1(5), October

1993.

[ATK91] A. L. Ananda, B. H. Tay, and E.K. Koh. ASTRA | An asynchronous

remote procedure call facility. In Proceedings of the 8th IEEE Symp. on

Distributed Computing Systems, pages 172{179, Arlington, Texas, May 1991.

122

[BA89] N. E. Belkeir and M. Ahamad. Low cost algorithms for message delivery

in dynamic multicast groups. In Proceedings of the 9th IEEE Symp. on

Distributed Computing Systems, pages 110{119, Newport Beach, June 1989.

IEEE.

[BAI93a] B. R. Badrinath, A. Acharya, and T. Imielinski. Impact of mobility on

distributed computations. ACM Op. Syst. Review, 27(2):15{20, April 1993.

[BAI93b] B. R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed

algorithms for mobile hosts. Technical Report DCS{TR{298, Department

of Computer Science, Rutgers University, New Brunswick, NJ 08903, 1993.

[BALL90] B. Bershad, T. Anderson, E. Lazokska, and H. Levy. Lightweight remote

procedure call. ACM Trans. Comput. Syst., 6(1):37{55, February 1990.

[BB95] A. Bakre and B. R. Bandrinath. Hando� and system support for Indi-

rect TCP/IP. In Proceedings of the 2nd USENIX Mobile and Location-

Independent Computing Symp., pages 11{24, April 1995.

[BBIM93] B. R. Badrinath, A. Bakre, T. Imielinski, and R. Marantz. Handling mo-

bile clients: A case for indirect interaction. In Proceedings of the Fourth

Workshop on Workstation Operating Systems. IEEE, October 1993.

[BC91] K. Birman and R. Cooper. The ISIS project: Real experience with a fault-

tolerant programming system. ACM Op. Syst. Review, 25(2):103|107,

April 1991.

[BCE

+

95] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak,

S. Savage, and E. Sirer. SPIN - an extensible microkernel for application-

speci�c operating system services. ACM Op. Syst. Review, 29(1):74|77,

January 1995.

[BCG91] K. Birman, R. Cooper, and B. Gleeson. Programming with process groups:

Group and multicast semantics. Technical Report 91-1185, Department of

Computer Science, Cornell University, January 1991.

[BD87] S. Budkowski and P. Dembinski. An introduction to Estelle: a spec�cation

language for distributed systems. Computer Networks and ISDN Systems,

14:3{23, 1987.

[Bir85] K. Birman. Replication and fault-tolerance in the ISIS system. In Pro-

ceedings of the Tenth ACM Symp. on Operating System Principles, pages

79{86, Orcas Island, WA, December 1985.

[Bjo93] M. Bjorkman. The xx-kernel: An execution environment for parallel exe-

cution of communication protocols. Technical report, Uppsala University,

June 1993.

123

[BKPV95] B. Bakshi, P. Krishna, D. K. Pradhan, and N. H. Vaiyda. Performance

of TCP over wireless. Technical Report 95-049, Department of Computer

Science, Texas A&M University, December 1995.

[Bla91] A. Black. Understanding transations in an operating system context.

ACM Op. Syst. Review, 20(1):73{76, January 1991.

[BM89] K. Birman and K. Marzullo. The role of order in distributed programs.

Technical Report 89-1001, Department of Computer Science, Cornell Uni-

versity, 1989.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.

ACM Trans. Comput. Syst., 2(1):39{59, February 1984.

[Bri87] E. Brinksman. An introduction to Lotos. In Proceedings of 7th IFIP WG

6.1 International Workshop on Protocol Speci�cation, Testing, and Veri�ca-

tion, 1987.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving TCP/IP

performance over wireless networks. In Proceedings of the 1st ACM Con-

ference on Mobile Computing and Networking, November 1995.

[BSS91a] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic

group multicast. Technical Report 91-1192, Department of Computer Sci-

ence, Cornell University, February 1991.

[BSS91b] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic

group multicast. ACM Trans. Comput. Syst., 9(3):272{314, August 1991.

[Car82] W. C. Carter. A time for re
ection. In Proceedings of the 12th IEEE

Symp. on Fault-Tolerant Computing, 1982.

[Car92] K. G. Carlberg. A routing architecture that supports mobile end system.

In Proceedings of IEEE MILCOM 1992, October 1992.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From

simple message di�usion to Byzantine agreement. In Proceedings of the 15th

IEEE Symp. on Fault-Tolerant Computing, pages 200{206, Ann Arbor, MI,

June 1985.

[CFL94a] P. Cao, E. W. Felten, and K. Li. Application-controlled �le caching policies.

In Proceedings of USENIX Summer 1994 Technical Conference, 1994.

[CFL94b] P. Cao, E. W. Felten, and K. Li. Implementation and performance of

application-controlled �le cache. In Proceedings of the First Operating Sys-

tems Design and Implementation Symp., 1994.

[CGR88] R. F. Cmelik, N. H. Gehani, and W. D. Roome. Fault Tolerant Concurrent

C: A tool for writing fault tolerant distributed programs. In Proceedings

124

of the 18th IEEE Symp. on Fault-Tolerant Computing, pages 55{61, Tokyo,

June 1988.

[Che86] D. R. Cheriton. VMTP: A transport protocol for the next generation of

communication systems. In Proceedings of SIGCOMM'86, pages 406{415,

August 1986.

[CLR95] D. E. Comer, J. C. Lin, and V. F. Russo. An architecture for a campus-

scale wireless mobile internet. Technical Report CSD-TR95-058, Purdue

University, Department of Computer Science, 1995.

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Trans.

Comput. Syst., 2(3):251{273, August 1984.

[Coo85] E. C. Cooper. Replicated distributed programs. In Proceedings of the

Tenth ACM Symp. on Operating Systems Principles, pages 63{78, Orcas

Island, WA, 1985.

[Coo90] E. C. Cooper. Programming language support for multicast communica-

tion in distributed systems. In Proceedings of the 10th IEEE Symp. on

Distributed Computing Systems, pages 450{457, Paris, France, 1990.

[Cou81] Courier. Courier: The remote procedure call protocol. Technical Report

XSIS 038112, Xerox System Integration Standard, Stamford, CT, December

1981.

[CPR92] D. Cohen, J. Postel, and R. Rom. IP address and routing in a local wireless

network. IEEE INFOCOM, 1992.

[CR94] D. E. Comer and V. F. Russo. Using ATM for a campus-wide wireless inter-

network. In Proceedings of the 1994 IEEE Workshop on Mobile Computing,

1994.

[Cri89] F. Cristian. Synchronous atomic broadcast for redundant broadcast chan-

nels. Technical Report Research Report RJ 7203, IBM Almaden Research

Center, December 1989.

[DC90] S. E. Deering and D. R. Cheriton. Multicast routing in datagram inter-

networks and extended LANs. ACM Trans. Comput. Syst., 8(2):85, May

1990.

[Dee94] S. Deering. Internet multicasting. In ARPA HPCC 94 Symp. Advanced

Research Projects Agency Computing Systems Technology O�ce, March

1994.

[DEF

+

94] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei.

An architecture for wide-area multicast routing. In Proceedings, 1994 SIG-

COMM Conference, pages 126{135, London, UK, August 31st - September

2nd 1994.

125

[Dou87] F. Douglis. Process migration in the Sprite operating system. Report No

UCB/CSD 87/343, [2] 1987.

[Dou89] F. Douglis. Experience with process migration in Sprite. In Workshop on

Experiences with Distributed and Multiprocessor Systems, pages 59{72, Fort

Lauderdale, Florida, October 5-6 1989.

[EKO95] D. Engler, M. Kaashoek, and J. O'Toole. Exokernel: An operating sys-

tem architecture for application-level resource management. In Proceedings

of the 15th ACM Symp. on Operating Systems Principles, pages 251{266,

Copper Mountain Resort, Colorado, December 1995.

[Fon94] H. J. F. Fonseca. Support environments for the modularization, implemen-

tation and execution of communication protocols. Master's thesis, Instituto

Superior T�ecnico, Lisboa, Portugal, June 1994. In Portuguese.

[GBB

+

95] D. Guedes, D. Bakken, N. Bhatti, M. Hiltunen, and R. D. Schlichting. A

customized communication subsystem for FT-Linda. In Proceedings of the

13th Brazilian Symposium on Computer Networks, pages 319{338, Belo Hor-

izonte, MG, Brazil, May 1995.

[GL92] R. A. Golding and D. D. E. Long. Quorum-oriented multicast protocols for

data replication. In Proceedings of the IEEE International Conference on

Data Engineering, page 490, Tempe, AZ, February 1992.

[GL93] R. A. Golding and D. D. E. Long. Using an object-oriented framework to

construct wide-area group communication mechanisms. Technical Report

UCSC-CLR-93-11, University of California, Santa Cruz, March 1993.

[GMK88] H. Garcia-Molina and B. Kogan. An implementation of reliable broadcast

using an unreliable broadcast facility. In Proceedings of the Seventh Symp.

on Reliable Distributed Systems, pages 101{111, Columbus, OH, October

1988.

[GMS89] H. Garcia-Molina and A. Spauster. Message ordering in a multicast envi-

ronment. In Proceedings of the 9th IEEE Symp. on Distributed Computing

Systems, pages 354{361, Newport Beach, CA, June 1989.

[GMS91] H. Garcia-Molina and A. Spauster. Ordered and reliable multicast commu-

nication. ACM Trans. Comput. Syst., 9(3):242{271, August 1991.

[GNI92] M. Goldberg, G. Neufeld, and M. Ito. The parallel protocol framework.

Technical Report 92-16, Dept. of Computer Science, University of British

Columbia, Vancouver, British Columbia, August 1992.

[Gol92] R. A. Golding. Weak-Consistency Group Communication and Membership.

PhD thesis, Dept of Computer Science, University of California, Santa Cruz,

Santa Cruz, CA, 1992.

126

[Hed88] C. Hedrick. Routing information protocol; RFC 1058. Internet Request

for Comments, June 1988.

[HH93] L. B. Huston and P. Honeyman. Disconnected operation for AFS. In

Proceedings of the 1st USENIX Mobile and Location-Independent Computing

Symp., pages 1{10, Cambridge, MA, August 2-3 1993. USENIX.

[Hil96] M. A. Hiltunen. Con�gurable Distributed Fault-Tolerant Services. PhD

thesis, Dept of Computer Science, University of Arizona, Tucson, AZ, July

1996.

[HP91] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for

implementing network protocols. IEEE Trans. on Software Engineering,

17(1):64{76, January 1991.

[HPM93] G. Hamilton, M. Powell, and J. Mitchell. Subcontract: A
exible base

for distributed programming. In Proceedings of the 14th ACM Symp. on

Operating System Principles, pages 69{79, Asheville, NC, December 1993.

[HS95a] M. Hiltunen and R. D. Schlichting. Constructing a con�gurable group RPC

service. In Proceedings of the 15th IEEE Symp. on Distributed Computing

Systems, Vancouver, BC, May 1995.

[HS95b] M. Hiltunen and R. D. Schlichting. Properties of membership services. In

Proceedings of the Second IEEE Symp. on Autonomous Decentralized Sys-

tems, pages 200{207, Phoenix, AZ, April 1995.

[Hug88] L. Hughes. LAN gateway designs for multicast communication. In Pro-

ceedings of the 13th Conference on Local Computer Networks, pages 82{91,

Minneapolis, Minn., October 10-12 1988. IEEE Computer Society.

[IB93] T. Imielinksi and B. R. Badrinath. Data management for mobile comput-

ing. SIGMOD Record, 22(1):34, 1993.

[IBar] T. Imielinski and B. R. Badrinath. Mobile wireless computing challenges

in data management. Communications of the ACM, To appear.

[IDJ91] J. Ioannidis, D. Duchamp, and G. Q. Maguire Jr. IP-based protocols for

mobile internetworking. In Proceedings of ACM SIGCOMM 1991, Septem-

ber 1991.

[IJ93] J. Ioannidis and G. Q. Maguire Jr. The design and implementation of a mo-

bile internetworking architecture. In Proceedings of 1993 Winter USENIX,

pages 489{500, January 1993.

[Kis90] J. J. Kistler. Transparent disconnected operation for fault-tolerance. In

IEEE-CS/TC-OS Workshop on the Management of Replicated Data, Hous-

ton, TX, November 1990.

127

[KMS

+

93] K. Keeton, B. A. Mah, S. Seshan, R. H. Katz, and D. Ferrari. Providing

connection-oriented network services to mobile hosts. In Proceedings of the

1st USENIX Mobile and Location-Independent Computing Symp., pages 83{

102, Cambridge, MA, August 2-3 1993. USENIX.

[KS91] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda

File System. In Proceedings Thirteenth ACM Symp. on Operating System

Principles, page 213, Paci�c Grove, CA, October 1991.

[KTHB89] M. F. Kaashoek, A. Tanenbaum, S. F. Hummel, and H. Bal. An e�cient

reliable broadcast protocol. ACM Op. Syst. Review, 23(4):5{19, October

1989.

[LAKS93] B. Lindgren, M. Ammar, B. Krupczak, and K. Schwan. Parallel and con�g-

urable protocols: Experiences with a prototype and an architectural frame-

work. In Proceedings of International Conference on Network Protocols,

March 1993.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed sys-

tem. Communications of the ACM, 21(7):558{565, July 1978.

[Lam81] B. Lampson. Atomic transactions. In Distributed Systems|Architecture

and Implementation, pages 246{265. Springer-Verlag, Berlin, 1981.

[Lap92] J. C. Laprie, editor. Dependability: Basic Concepts and Terminology.

Springer-Verlag, Vienna, 1992.

[LBSR95] M. T. Le, F. Burghardt, S. Seshan, and J. Rabaey. InfoNet: The networking

infrastructure of InfoPad. In Proceedings of COMPCON, San Francisco,

California, March 1995.

[LG85] K. J. Lin and J. D. Gannon. Atomic remote procedure call. IEEE Trans.

on Software Engineering, SE-11(10):1126{1135, October 1985.

[LSBR94] M. T. Le, S. Seshan, F. Burghardt, and J. Rabaey. Software architecture of

the InfoPad system. In Proceedings of the Mobidata Workshop on Mobile

and Wirelsss Information Systems, Rutgers, New Jersey, November 1994.

[MBM95] S. Ma�eis, W. Bischofberger, and K. M�atzel. A generic multicast trans-

port service to support disconnected operation. In Proceedings of the 2nd

USENIX Mobile and Location-Independent Computing Symp., Ann Arbor

Michigan (USA), April 1995.

[Mil83] D. L. Mills. DCN local-network protocols; RFC 891. Internet Request for

Comments, pages 1{26, December 1983.

[MMO

+

94] A. B. Montz, D. Mosberger, S. W. O'Malley, L. L. Peterson, T. A. Proeb-

sting, and J. H. Hartman. Scout: A communications-oriented operating

system. Technical Report 94-20, Dept. of Comp. Sci., Univ. of Arizona,

June 1994.

128

[MMSA

+

95] L. Moser, P. Melliar-Smith, D. Agrawak, R. Budhia, C. Lingley-

Papadopoulos, and T. Archambault. The Totem system. In Proceedings of

the 25th IEEE Symp. on Fault-Tolerant Computing, pages 61{66, Pasadena,

CA, June 1995.

[MP96] D. Mosberger and L. L. Peterson. Making paths explicit in the Scout op-

erating system. Technical Report 96-05, Department of Computer Science,

University of Arizona, Tucson, AZ, May 1996.

[MPS89] S. Mishra, L. L. Peterson, and R. D. Schlichting. Implementing replicated

objects using Psync. In Proceedings of the Eighth Symp. on Reliable Dis-

tributed Systems, pages 42{52, Seattle, Washington, October 1989.

[MPS92] S. Mishra, L. L. Peterson, and R. D. Schlichting. A membership proto-

col based on partial order. In J. F. Meyer and R. D. Schlichting, editors,

Dependable Computing for Critical Applications 2, pages 309{331. Springer-

Verlag, Vienna, 1992.

[MPS93a] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communica-

tion substrate for fault-tolerant distributed programs. Distributed Systems

Engineering, 1(3):87{103, December 1993.

[MPS93b] S. Mishra, L. L. Peterson, and R. D. Schlichting. Experience with modular-

ity in Consul. Software{Practice & Experience, 23(10):1059{1075, October

1993.

[MPS93c] S. Mishra, L. L. Peterson, and R. D. Schlichting. Modularity in the design

and implementation of Consul. In Proceedings of the First IEEE Symp. on

Autonomous Decentralized Systems, pages 376{382, Kawasaki, Japan, March

1993.

[MS92] S. Mishra and R. D. Schlichting. Abstractions for constructing dependable

distributed systems. Technical Report 92-19, Dept of Computer Science,

University of Arizona, Tucson, AZ, 1992.

[MS93] B. Mukherjee and K. Schwan. Experimentation with a recon�gurable

micro-kernel. In Microkernels and Other Kernel Archtitectures Symp. II,

pages 45{60. USENIX, September 1993.

[MSK

+

93] B. A. Mah, S. Seshan, K. Keeton, R. H. Katz, and D. Ferrari. Provid-

ing network video service to mobile clients. In Proceedings of the Fourth

Workshop on Workstation Operating Systems. IEEE, October 1993.

[NCN88] S. Navaratnam, S. Chanson, and G. Neufeld. Reliable group communi-

cation in distributed systems. In Proceedings of the 8th IEEE Symp. on

Distributed Computing Systems, pages 439{446, San Jose, California, June

1988.

129

[Nel81] B.J. Nelson. Remote Procedure Call. PhD thesis, Dept of Computer Sci-

ence, Carnegie-Mellon University, Pittsburgh, PA, 1981.

[NK93] M. Nelson and Y. Khalidi. Generic support for caching and disconnected

operation. In 4th Workshop on Workstation Operating Systems (WWOS-

IV), pages 61{65, Napa, CA, 1993.

[NYKT94] E. Nahum, D. Yates, J. Kurose, and D. Towsley. Performance issues in par-

allelized network protocols. In Proceedings of the First Symp. on Operating

Systems Design and Implementation, November 1994.

[OCD

+

88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B.

Welch. The Sprite network operating system. IEEE Computer, 21(2):23,

February 1988.

[OOW91] M. Olsen, E. Oskiewicz, and J. Warne. A model for interface groups. In

Proceedings of the 10th IEEE Symp. on Reliable Distributed Systems, pages

98{107, Pisa, Italy, September 1991.

[OP92] S. W. O'Malley and L. L. Peterson. A dynamic network architecture.

ACM Trans. Comput. Syst., 10(2):110{143, May 1992.

[PB94] C. Perkins and O. Bhagwat. A mobile networking system based on Internet

Protocol. IEEE Personal Communications, 1994.

[PBS89] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using

context information in interprocess communication. ACM Trans. Comput.

Syst., 7(3):217{246, August 1989.

[Per96] C. Perkins. IP mobility support; rfc 2002. Internet Request for Com-

ments, October 1996.

[PKV96] D. K. Pradhan, P. Krishna, and N. H. Vaidya. Recoverable distributed

mobile environments: Design and tradeo� issues. In Proceedings of the

26nd IEEE Symp. on Fault-Tolerant Computing, June 1996.

[Pos80] J. Postel. User Datagram Protocol; RFC 768. Internet Request for Com-

ments, pages 1{3, August 1980.

[Pos81a] J. Postel. Internet Protocol; RFC 791. Internet Request for Comments,

pages 1{45, September 1981.

[Pos81b] J. Postel. Transmission Control Protocol; RFC 793. Internet Request for

Comments, pages 1{85, September 1981.

[PS88] F. Panzieri and S. K. Shrivastava. Rajdoot: A remote procedure call mech-

anism supporting orphan detection and killing. IEEE Trans. on Software

Engineering, SE-14(1):30{37, January 1988.

130

[RBM96] R. van Renesse, K. Birman, and S Ma�eis. Horus, a
exible group commu-

nication system. Communications of the ACM, 39(4):76{83, Apr 1996.

[Rek93] Y. Rekhter. An architecture for transport layer transparent support for

mobility. Journal of Internetworking: Research and Experience, 4, 1993.

[Rit84] D. M. Ritchie. A stream input-output system. AT&T Bell Laboratories

Technical Journal, 63(8):311{324, October 1984.

[RS92] K. Ravindran and M. Sankhla. Multicast models and routing algorithms for

high speed multi-service networks. In Proceedings of the 12th IEEE Symp.

on Distributed Computing Systems, page 194, Yokohama, Japan, June 9-12

1992.

[SB90] M. Schroeder and M. Burrows. Performance of Fire
y RPC. ACM Trans.

Comput. Syst., 6(1):1{17, February 1990.

[SBS93] D. Schmidt, D. Box, and T. Suda. ADAPTIVE: A dynamically as-

sembled protocol transformation, integration, and evaluation environment.

Concurrency{Practice & Experience, 5(4):269{286, June 1993.

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys, 22(4):299{319, December

1990.

[SKM

+

93] M. Satyanarayanan, J. J. Kistler, L. B. Mummert, M. R. Ebling, P. Kumar,

and Q. Lu. Experience with disconnected operation in a mobile environ-

ment. In Proceedings of the 1st USENIX Mobile and Location-Independent

Computing Symp., pages 11{28, Cambridge, MA, August 2-3 1993. USENIX.

[Spa91] A. Spauster. Ordered and reliable multicast communication. Techni-

cal Report CS-TR-312-91, Princeton UNIV, DEPT of CS, 1991. Thesis

(Ph.D.).

[SS90] M. Satyanarayanan and E. H. Siegel. Parallel communication in a large

distributed environment. IEEE Trans. on Computers, March 1990.

[SS94] D. Schmidt and T. Suda. The service con�gurator framework: An ex-

tensible architecture for dynamically con�guring concurrent, multi-service

network deamons. In Proceedings of the Second International Workshop on

Con�gurable Distributed Systems, pages 190{201, Pittsburgh, PE, 1994.

[STW93] B. Schilit, M. Theimer, and B. Welch. Customizing mobile applications.

In Proceedings of the 1st USENIX Mobile and Location-Independent Com-

puting Symp., pages 129{138, August 1993.

[TYT91] F. Teraoka, Y. Yokote, and M. Tokoro. A network archtitecture providing

host migration transparency. In Proceedings of AXM SIGCOMM 91, pages

209{220, 1991.

131

[VKP93] N. H. Vaidya, P. Krishna, and D. K. Pradhan. Recovery in distributed

mobile environments. In Proceedings of IEEE Workshop on Advances in

Parallel and Distributed Systems, pages 83{88. IEEE, October 1993.

[VM90] P. Verissimo and J. Marques. Reliable broadcast for fault-tolerance on lo-

cal computer networks. In Proceedings of the Ninth Symp. on Reliable Dis-

tributed Systems, pages 54{63, Huntsville, AL, October 1990.

[VRB89] P. Verissimo, L. Rodrigues, and M. Baptista. Amp: A highly parallel

atomic multicast protocol. In Proceedings of SIGCOMM'89, pages 83{93,

Austin, TX, September 1989.

[vRBF

+

95] R. van Renesse, K. Birman, R. Friedman, M. Hayden, and D. Karr. A

framework for protocol composition in Horus. In Proceedings of the ACM

Symp. on Principles of Distributed Computing, pages 89{102, Vancouver,

Canada, August 1995.

[vRBG

+

95] R. van Renesse, K. Birman, B. Galde, K. Guo, M. Hayden, T. Hickey,

D. Malki, A. Vaysburd, and W. Vogels. Horus: A
exible group com-

munications system. Technical Report 95-1500, Cornell University, Dept.

of Computer Science, March 1995.

[vRHB94] R. van Renesse, T. M. Hickey, and K. P. Birman. Design and performance

of Horus: A lightweight group communications system. Technical Report

94-1442, Cornell University, Dept. of Computer Science, August 1994.

[Wal80] D. W. Wall. Mechanisms for Broadcast and Selective Broadcast. PhD

thesis, Department of Computer Science, Stanford University, Palo Alto,

CA, 1980.

[WPD88] D. Waitzman, C. Partridge, and S. Deering. Distance vector multicast rout-

ing protocol; RFC 1075. Internet Request for Comments, November 1988.

[WYOT93] H. Wada, T. Yozawa, T. Ohnishi, and Y. Tanaka. Mobile computing en-

vironment based on packet forwarding. In Proceedings of USENIX Winter

'93 Conference, pages 503{517, January 1993.

[WZZ93] X. Wang, H. Zhao, and J. Zhu. GRPC: A communication cooperation

mechanism in distributed systems. ACM Op. Syst. Review, 27(3):75{86,

July 1993.

[YJT88] K. Yap, P. Jalote, and S. Tripathi. Fault tolerant remote procedure call.

In Proceedings of the 8th IEEE Symp. on Distributed Computing Systems,

pages 48{54, June 1988.

