
Interprocedural Control Flow Analysis of First-Order Programs

with Tail Call Optimization

�

Saumya K. Debray and Todd A. Proebsting

Department of Computer Science

The University of Arizona

Tucson, AZ 85721, USA.

Email: fdebray, toddg@cs.arizona.edu

Technical Report 96-20

December 2, 1996

Abstract

The analysis of control ow

Involves �guring out where returns will go.

How this may be done

With items LR-0 and -1

Is what in this paper we show.

�

The work of S. Debray was supported in part by the National Science Foundation under grant number CCR-9502826. The

work of T. Proebsting was supported in part by NSF Grants CCR-9415932, CCR-9502397, ARPA Grant DABT63-95-C-0075,

and IBM Corporation.

1 Introduction

Most code optimizations depend on control ow analysis, typically expressed in the form of a control ow

graph [1]. Traditional algorithms construct intraprocedural ow graphs, which do not account for control

ow between procedures. Optimizations that depend on this limited information cannot consider the be-

havior of other procedures. Interprocedural versions of these optimizations must capture the ow of control

across procedure boundaries. Determining interprocedural control ow (for �rst-order programs) is relatively

straightforward in the absence of tail call optimization, since procedures return control to the point imme-

diately after the call. Tail call optimization complicates the analysis because returns may transfer control

to a procedure other than the active procedure's caller.

The problem can be illustrated by the following simple program that takes a list of values and prints, in

their original order, all the values that satisfy some property, e.g., exceed 100. To take advantage of tail-call

optimization, it uses an accumulator to collect these values as it traverses the input list. However, this causes

the order of the values in the accumulator to be reversed, so the accumulated list is reversed|again using

an accumulator|before it is returned.

(1) main(L) = print extract(L, [])

(2) extract(xs, acc) =

(3) if xs = [] then reverse(acc, [])

(4) else if hd(xs) > 100 then extract(tl(xs), cons(hd(xs),acc))

(5) else extract(tl(xs), acc)

(6) reverse(xs, acc) =

(7) if xs = [] then acc

(8) else reverse(tl(xs), cons(hd(xs),acc))

Suppose that, for code optimization purposes, we want to construct a ow graph for this entire program.

The return from the function reverse in line 7 corresponds to some basic block, and in order to construct

the ow graph we need to determine the successors of this block. The call graph of the program indicates

that reverse can be called either from extract, in line 3, or from reverse, in line 8. However, because

of tail call optimization, it turns out that reverse does not return to either of these call sites. Instead, it

returns to a di�erent procedure entirely, namely, to the procedure main in line 1: the successor block to the

return in line 7 is the basic block that calls print. Clearly, some nontrivial control ow analysis is necessary

to determine this.

Most of the work to date on control ow analysis has focused on higher-order languages: Shivers [17, 18]

and Jagannathan and Weeks [7] use abstract interpretation for this purpose, while Heintze [4] and Tang

and Jouvelot [19, 20] use type-based analyses. These analyses are very general, but very complex. Many

widely used languages, such as Sisal and Prolog, are �rst-order languages. Furthermore, even for higher-order

languages, speci�c programs often use only �rst-order constructs, or can have most higher-order constructs

removed via transformations such as inlining and uncurrying [21]. As a pragmatic issue, therefore, we are

interested in \ordinary" �rst-order programs: our aim is to account for interprocedural control ow in such

programs in the presence of tail call optimization. To our knowledge, the only other work addressing this

issue is that of Lindgren [9], who uses set-based analysis for control ow analysis of Prolog. Unlike Lindgren's

work, our analyses can maintain context information (see Section 6).

The main contribution of this paper is to show how control ow analysis of �rst-order programs with tail

call optimization can be formulated in terms of simple and well-understood concepts from parsing theory. In

particular, we show that context-insensitive, or zeroth-order, control ow analysis corresponds to the notion

of FOLLOW sets in context free grammars, while context-sensitive, or �rst-order, control ow analysis

corresponds to the notion of LR(1) items. This is useful, because it allows the immediate application of

well-understood technology without, for example, having to construct complex abstract domains. It is also

esthetically pleasing, in that it provides an application of concepts such as FOLLOW sets and LR(1) items,

which were originally developed purely in the context of parsing, to a very di�erent application.

The remainder of the paper is organized as follows. Section 2 introduces de�nitions and notation. Section

3 de�nes an abstract model for control ow, and Section 4 shows how this model can be described using

1

context free grammars. Section 5 discusses control ow analysis that maintain no context information, and

Section 6 discusses how context information can be maintained to produce more precise analyses. Section

7 illustrates these ideas with a nontrivial example. Section 8 discusses tradeo�s between e�ciency and

precision.

In order to maintain continuity, the proofs of theorems have been relegated to the appendix.

2 De�nitions and Notation

We assume that a program consists of a set of procedure de�nitions, together with an entry point procedure.

(It is straightforward to extend these ideas to accommodate multiple entry points.) Since we assume a

�rst-order language, the intraprocedural control ow can be modelled by a control ow graph [1]. This is a

directed graph where each node corresponds to a basic block, i.e., a (maximal) sequence of executable code

that has a single entry point and a single exit point, and where there is an edge from a node A to a node B

if and only if it is possible for execution to leave node A and immediately enter node B. If there is an edge

from a node A to a node B, then A is said to be a predecessor of B and B is a successor of A. Because of the

e�ects of tail call optimization, interprocedural control ow information cannot be assumed to be available.

Therefore, we assume that the input to our analysis consists of one control ow graph for each procedure

de�ned in the program.

For simplicity of exposition, we assume that each ow graph has a single entry node. Each ow graph

consists of a set of vertices, which correspond to basic blocks, and a set of edges, which capture control ow

between basic blocks. If a basic block contains a procedure call, the call is assumed to terminate the block;

if a basic block B ends in a call to a procedure p, we say that B calls p.

If the last action along an execution path in a procedure p is a call to some procedure q|i.e., if the

only action that would be performed on return from q would be to return to the caller of p|the call to q

is termed a tail call. A tail call can be optimized: in particular, any environment allocated for the caller p

can be deallocated, and control transfer e�ected via a direct jump to the callee q; this is usually referred to

as \tail call optimization," and is crucial for e�cient implementations of functional and logic languages. If

a basic block B ends in a tail call, we say that it is a tail call block; if B ends in a procedure call that is

not a tail call, we say B is a call block. In the latter case, B must set a return address L before making the

call: L is said to be a return label. If a basic block B ends in a return from a procedure, it is said to be a

return block. As is standard in the program analysis literature, we assume that either branch of a conditional

can be executed at runtime. The ideas described here are applicable to programs that do not satisfy this

assumption; in that case, the analysis results will be sound but possibly conservative.

The set of basic blocks and labels appearing in a program P are denoted by Blocks

P

and Labels

P

respectively. The set of procedures de�ned in it is denoted by Procs

P

. Finally, the Kleene closure of a set

S, i.e., the set of all �nite sequences of elements of S, is written S

�

. The reexive transitive closure of a

relation R is written R

?

.

3 Abstracting Control Flow

Before we can analyze the control ow behavior of such programs, it is necessary to specify this behavior

carefully. First, consider the actual runtime behavior of a program:

{ Code not involving procedure calls or returns is executed as expected: each instruction in a basic block

is executed in turn, after which control moves to a successor block, and so on.

{ Procedure calls are executed as follows.

{ A non-tail call loads arguments into the appropriate locations, saves the return address (for

simplicity, we can assume that it is pushed on a control stack), and branches to the callee.

{ A tail call loads arguments, reclaims any space allocated for the caller's environment, and transfers

control to the callee.

2

{ A procedure return simply pops the topmost return address from the control stack and transfers control

to this address.

We can ignore any aspect of a program's runtime behavior that is not concerned directly with ow of control.

Conceptually, therefore, control moves from one basic block to another, pushing a return address on a stack

when making a non-tail procedure call, and popping an address from it when returning from a procedure.

This can be formalized using a very simple pushdown automaton: the automaton M

P

corresponding to a

program P is called its control ow automaton. Given a program P , the set of states Q of M

P

is given by

Q = Blocks

P

[Procs

P

; its input alphabet is Labels

P

; the initial state of M

P

is p, where p is the entry point

of P ; and its stack alphabet � = Labels

P

[Blocks

P

[f$g, where $ is a special bottom-of-stack marker that

is the initial stack symbol.

The general idea is that the state of M

P

at any point corresponds to the basic block being executed by

P , while the return labels on its stack correspond to the stack of procedure calls in P . The input string does

not play a direct role in determining the behavior of M

P

, but it turns out to be technically very convenient

to match up symbols read from the input with labels popped from the stack. The language accepted byM

P

is then the set of sequences of labels that control can jump to on procedure returns during an execution of

the program P .

Let the transitions of a pushdown automaton be denoted as follows [6]: if, from a con�guration where it

is in state q and has w in its input and � on its stack, it can make a transition to state q

0

with input string

w

0

and with � on its stack, we write (q; w; �) ` (q

0

; w

0

; �). The stack contents � are written such that the

top of the stack is to the left: if � � a

1

: : :a

n

then a

1

is assumed to be at the top of the stack. The moves

of M

P

are de�ned as follows:

1. If basic block B is a predecessor of basic block B

0

, and B does not make a call or tail call, then M

P

can make an "-move from B to B

0

:

(B;w; �) ` (B

0

; w; �)

2. If basic block B makes a call to procedure p with return label `, where the basic block with label ` is

B

0

, then M

P

can push two symbols `B

0

on its stack and make an "-move to state p:

(B;w; �) ` (p; w; `B

0

�)

3. If basic block B makes a tail call to procedure p, then M

P

can make an "-move to state p:

(B;w; �) ` (p; w; �)

4. If the entry node of the ow graph of a procedure p is B, then M

P

can make an "-move from state p

to state B:

(p; w; �) ` (B;w; �)

5. If B is a return block, then if ` appears on M

P

's input and the label ` and block B

0

appear on the top

of its stack, then M

P

can read ` from the input, pop ` and B

0

o� its stack, and go to state B

0

:

(B; `w; `B

0

�) ` (B

0

; w; �)

6. Finally,M

P

accepts by empty stack: for each state q, there is the move

(q; "; $) ` (q; "; ").

We refer to the label appearing on the top of M

P

's stack as the current return label, since this is the label

of the program point to which control returns from a return block.

3

call reverse

reverse:

B1

call extract ret addr=L2

main:

B2

call print

L2:

extract:
B3

B4 B5

B6 B7

B8

B9 B10

call reversereturn

call extract call extract

Figure 1: A (Partial) Flow Graph for the main/extract/reverse Program

4 Control Flow Grammars

Given a set of control ow graphs for the procedures in a program, we can construct a context free grammar

that describes its control ow behavior. We call such a grammar a control ow grammar.

De�nition 4.1 A control ow grammar for a program P is a context free grammar G

P

= (V; T; P; S)

where the set of terminals T is the set Labels

P

of return labels of P ; the set of variables V is given by

V = Blocks

P

[Procs

P

; the start symbol of the grammar is the entry procedure p of the program; and the

productions of the grammar are given by the following:

1. if B is a basic block that is a predecessor of a basic block B

0

, then there is a production B ! B

0

;

2. if B is a call block with return label `, where the basic block labelled ` is B

0

, and the called procedure

is p, there is a production B ! p ` B

0

;

3. if B is a tail call block and the called procedure is p, then there is a production B ! p;

4. if p is a procedure de�ned in P , and the control ow graph of p has entry node B, then there is a

production p! B.

5. If B is a return block, then there is a production B ! ".

Example 4.1 Consider the main/extract/reverse program from Section 1. A (partial) ow graph for

this program is shown in Figure 1, with ordinary control transfers shown using solid lines and calls to

procedures using dashed lines. Because control transfers at procedure returns have not yet been determined,

the predecessors of basic block B2 and the successors of block B9 are not yet known. The control ow

grammar for this program has as its terminals the set of labels fL2g, nonterminals fmain, extract, reverse,

B1, . . . , B10g, and the following productions:

4

main ! B1 B5 ! B7

B1 ! extract L2 B2 B6 ! extract

B2 ! print B7 ! extract

extract ! B3 reverse ! B8

B3 ! B4 B8 ! B9

B3 ! B5 B8 ! B10

B4 ! reverse B9 ! "

B5 ! B6 B10 ! reverse

The start symbol of the grammar is main 2

The productions of the control ow grammarG

P

closely resemble the moves of the control ow automaton

M

P

, and it comes as no surprise that they behave very similarly. Let)

lm

denote the leftmost derivation

relation in G

P

. The following theorem, whose proof closely resembles the standard proof of the equivalence

between pushdown automata and context-free languages [6], expresses the intuition that the control ow

grammar of a program mirrors the behavior of its control ow automaton:

Theorem 4.1 Given a program P with entry point S, control ow grammar G

P

and control ow automaton

M

P

,

S)

?

lm

xA� if and only if (S; xw; $) `

?

(A;w; �)

where x;w 2 Labels

�

P

and A 2 Blocks

P

[Procs

P

.

5 Zeroth-Order Control Flow Analysis

Zeroth-order control ow analysis, also referred to as 0-CFA, involves determining, for each procedure p in a

program, the set of labels RetLbl(p) to which control can return after some call to p. Consider a call block

B in a program P . If B is not a tail-call block, it pushes its return address onto the top of the stack before

transferring control to the called procedure. On the other hand, if B is a tail call block, it leaves the control

stack untouched and transfers control directly to the callee. Eventually, when executing a return, control

branches to the label appearing on the top of the stack. Thus, in either case, the set of labels to which

a procedure p can return is the set of current return labels when control enters p, in some con�guration

reachable from the initial con�guration of M

P

.

RetLbl(p) = f` j (q

0

; w; $) `

?

(p; w

0

; `�)g

It is a direct consequence of Theorem 4.1 that this set is precisely the FOLLOW set of p in the control ow

grammar of the program (see [1] for the de�nition of FOLLOW sets):

Theorem 5.1 For any procedure p in a program P , RetLbl(p) = FOLLOW(p).

Proof Suppose the program P has entry point S. From the de�nition of RetLbl(p), ` 2 RetLbl(p) if and

only if there is a call block A that calls p, such that (S; xw; $) `

?

(A;w; �) ` (p; w; `B�). From Theorem 4.1,

this is true if and only if S)

?

xA�) xp`B�, i.e., S)

?

xp`�

0

. But this is true if only if ` 2 FOLLOW(p).

It follows that RetLbl(p) = FOLLOW(p). 2

Example 5.1 FOLLOW sets for some of the variables in the grammar of Example 4.1 are:

X FOLLOW(X)

main $

extract L2

reverse L2

Here, a `$' refers to the \external caller," e.g., the user. It is immediately apparent from this that control

returns from reverse to the basic block in main that calls print. 2

5

Input: A program P .

Output: The interprocedural 0-CFA control ow graph for P .

Method:

1. Construct the control ow grammar G

P

for P .

2. Compute FOLLOW sets for the nonterminals of G

P

.

3. Construct a partial control ow graph for P , without accounting for control transfers due to pro-

cedure returns. This is done by adding edges corresponding to intra-procedural control transfers,

as in [1], together with an edge from each call block and tail-call block to the entry node of the

corresponding called function.

4. For each ` 2 Labels

P

and each nonterminal X of G

P

do:

if ` 2 FOLLOW(X) and the basic block corresponding toX contains a return instruction

then add an edge from X to B

`

, where B

`

is the basic block labelled by `;

Figure 2: An algorithm for constructing the interprocedural 0-CFA control ow graph of a program

There is one remaining subtlety in constructing the interprocedural control ow graph of a program

once the set of return labels for each function have been computed. If we consider the FOLLOW sets the

grammar of Example 4.1, we �nd that L2 occurs in FOLLOW(extract), and it is correct to infer from this

that control is transferred to the basic block B2, labelled by L2, after completion of the call to extract.

However, we cannot conclude that each block that has L2 in its FOLLOW set has the block B2 as a successor:

while L2 occurs in the FOLLOW sets of B3, B4, B5, B6, B7, B8, B9 and B10, it is not di�cult to see that

only B9|which actually contains a return instruction|should have B2 as a successor. The algorithm for

constructing the control ow graph of a program, taking this into account, is given in Figure 2.

5.1 Applications of 0-CFA

An example application of 0-CFA is interprocedural unboxing optimization in languages that are either

dynamically typed, or that support polymorphic typing. In implementations of such languages, the compiler

cannot always predict the exact type of a variable at a program point, and as a result it becomes necessary

to ensure that values of di�erent types \look the same," which is achieved by \boxing." Unfortunately,

manipulating boxed values is expensive.

The issue of maintaining untagged values has received considerable attention in recent years in the

context of strongly typed polymorphic languages [5, 10, 13]. Using explicit \representation types," this

work relies on the type system to propagate data representation information through the program. While

theoretically elegant, the type system cannot be aware of low-level pragmatic concerns such as the costs

of various representation conversion operations and the execution frequencies of di�erent code fragments.

As a result, it is di�cult to guarantee that the \optimized" program is, in fact, more e�cient than the

unoptimized version. Also, the idea does not extend readily to dynamically typed languages.

Peterson [11] takes a procedure's control ow graph, and determines the optimal placement of represen-

tation conversion operations, based on basic block execution frequencies and conversion operation costs. As

given, this is an intraprocedural optimization. For many programs, unboxing across procedure calls yields

signi�cant performance improvements. As an example, we tested a program that computes

R

1

0

e

x

dx using

trapezoidal numerical integration with adaptive quadrature. For this program, intra-procedural unboxing

optimization yields a performance improvement of about 30.3% (with a tail call from a function to itself being

recognized and implemented as a loop). With inter-procedural unboxing, however, performance improves by

about 52.9%.

1

To apply Peterson's algorithm interprocedurally, we need to construct the control ow graph

1

We did not implement Peterson's algorithm, because the control ow analysis described here had not been developed when

6

for the entire program. The presence of tail call optimization makes computing the set of successors of a

return block di�cult with just the call graph of the program. Fortunately, 0-CFA provides precisely what

is needed to determine the successors of return blocks, and thereby to construct the control ow graph for

a program.

Another application of 0-CFA is interprocedural basic block fusion. The basic idea of this optimization

is straightforward: if we have two basic blocks B

0

and B

1

where B

0

is the only predecessor of B

1

and B

1

is the only successor of B

0

, then they can be combined into a single basic block; in the interprocedural

case, the blocks being fused may belong to di�erent procedures. The bene�ts of this optimization include a

reduction in the number of jump instructions executed, with a concomitant decrease in pipeline \bubbles,"

as well as potentially improved opportunities for better instruction scheduling in the enlarged basic block

resulting from the optimization. Our experience with �lter fusion [14] indicates that this optimization can be

of fundamental importance for performance in applications involving automatically generated source code.

Consider the main/extract/reverse program from Section 1. A partial ow graph for this program is

given in Figure 1. It is not di�cult to see that the 0-CFA algorithm of Figure 2 would determine that basic

block B2 is the only successor of block B9, and B9 is the only predecessor of B2, thereby allowing these two

blocks to be fused. Note that a naive analysis that handles tail calls as if they were calls that returned to an

empty basic block immediately following the call site would infer that basic block B2 had three predecessors,

blocks B4, B6 and B7, thereby preventing the application of the optimization in this case.

6 First-Order Control Flow Analysis

While 0-CFA tells us the possible return addresses for each basic block and procedure, it leaves out all

information about the \context" in which a call occurs (i.e., who called whom to get to this call site). This

may render 0-CFA inadequate in some situations. Information about where control \came from" could

provide more precise liveness or aliasing information at a particular program point, allowing a compiler to

generate better code.

At any point during a program P 's execution, the return addresses on its control stack (which correspond

to the contents of the stack in some execution of the control ow automatonM

P

) give us a complete history

of the interprocedural control ow behavior of the program upto that point. Since, the set of all possible

(�nite) sequences of labels is in�nite, we seek �nitely computable approximations to this information. An

obvious possibility is to keep track of the top k labels on the stack of M

P

, for some �xed k � 0. 0-CFA,

where we keep track of no context information at all, corresponds to choosing k = 0. A control ow analysis

that keeps track of the top k return addresses on the stack ofM

P

is called a k-th.-order control ow analysis,

or k-CFA (this corresponds to the \call-strings approach" of Sharir and Pnueli [16]). In this section, we

focus our attention on �rst-order control ow analysis, or 1-CFA.

In the previous section, we showed that the FOLLOW sets of the control ow grammar give 0-CFA

information. How might we incorporate additional context information into such analyses? In parsing

theory, FOLLOW sets are used to construct SLR(1) parsers, which are based on LR(0) items. Because

SLR(1) parsers do not maintainmuch context information, they are unable to handle many simple grammars.

Introducing additional context information into the items using lookahead tokens �xes this problem: this

leads to the use of LR(1) items.

This analogy carries over to control ow analysis. LR(1) items for the control ow grammarG

P

are closely

related to the information manipulated during 1-CFA. Basically, an LR(1) item [A! � � �; a] conveys the

information that control can reach A with current return label a. In an item [A ! � � �; a] we will often

focus on the nonterminal A on the left hand side of the production and the lookahead token a, but not in the

details of the structure of � � �: in such cases, to reduce visual clutter we will write the item as [A! � � � ; a].

In the context of this discussion we are not concerned with whether or not the control ow grammar G

P

is

LR(1)-parsable.

We know, from parsing theory, that given a control ow grammar G

P

with variables V and terminals T ,

there is a nondeterministic �nite automaton (NFA) (Q;�; �; q

0

; Q) that recognizes viable pre�xes of G [6].

we implemented the unboxing optimization. Instead, our compiler uses a heuristic that produces good, but not necessarily

optimal, representation conversion placements. These performance improvements can therefore be seen as lower bounds on

what can be attained using an optimal algorithm.

7

This NFA, which we will refer to as the viable pre�x NFA, is de�ned as follows: its set of states Q consists

of the set of LR(1) items for G

P

, together with a state q

0

that is not an item; its alphabet � = V [T ; the

initial state is q

0

; every state is a �nal state; and the transition function � is de�ned as follows:

(i) Given a program P with entry point p, �(q

0

; ") = f[S ! � p; $]g.

(ii) �([A! � � B�; a]; ") = f[B ! � ; b] j B ! is a production; b 2 FIRST(�a)g.

(iii) �([A! � � B�; a]; B) = f[A! �B � �; a]g (B 6= ").

An item I is said to be reachable if q

0

;

?

I, i.e., if there is a path from the the initial state q

0

of the viable

pre�x NFA to I. The following result makes explicit the correspondence between LR(1) items in G

P

and

return addresses on top of the stack of M

P

:

Theorem 6.1 Given a program with entry point p, (p; x; $) `

?

(A; y; a�) if and only if there is a reachable

item [A! � � � ; a].

The set of current return labels, i.e., labels at the top of M

P

's stack, when control enters a basic block or

procedure is now easy to determine:

Corollary 6.2 Let A be any basic block or procedure in a program P . The set of current return labels when

control enters A is given by f` j there is a reachable LR(1) item [A! � � � ; `]g.

An LR(1) item [A! � � � ; a] tells us about the return labels that can appear on top of the control stack,

i.e., about addresses that control can go to. Fortunately, it turns out that we can use the reachability relation

; in the viable pre�x NFA to trace the origins of a call. Consider a program P with a call block A that

calls a procedure p: in the control ow grammar G

P

, this corresponds to a production

A! p ` C

where ` is the return label and C is the block with label `. This production gives rise to LR(1) items of the

form [A! � p ` C; b]. Let B

p

be the entry node of the ow graph for p, then G

P

contains the production

p! B

p

, so in the viable pre�x NFA there is a "-transition from each of these items to the item [p! � B

p

; `].

Suppose the block B

p

has successors C

1

; : : : ; C

k

, then G

P

has productions B

p

! C

1

; � � �B

p

! C

k

, and

the viable pre�x NFA will therefore have "-transitions from the item [p! � B

p

; `] to each of the items

[B

p

! � C

1

; `], . . . , [B

p

! � C

k

; `]. Suppose one of these blocks, say C

j

, makes a tail call to a procedure

q, whose ow graph has entry node B

q

, then G

P

contains the productions C

j

! q and q ! B

q

, and this

gives rise to "-transitions from [B

p

! � C

j

; `] to [C

j

! � q; `] and thence to [q! � B

q

; `]. We can follow

"-transitions in this way to trace a sequence of control transfers that does not involve any procedure returns.

Conversely, we can follow "-transitions backwards from a call to work out where it could have come from.

Intuitively, we want to be able to characterize a collection of successive basic blocks and procedures

control can go through|i.e., a sequence of states of the control ow automaton|without any procedure

returns, except perhaps at the very end. Since the set of sequences of blocks is in�nite, we need a �nite

approximation: as before, one simple way to do this is to consider sets of blocks (there are only �nitely

many), together with the current return label when control reaches each block. These ideas can be made

more precise using the notion of a forward chain:

De�nition 6.1 A forward chain in a program P is a set f(B

0

; `

0

) : : : ; (B

n

; `

n

)g where each B

i

is either a

procedure in P or a basic block in P , `

i

2 Labels

P

for 0 � i � n, and where for each i, 0 � i < n, the following

hold: (i) B

i

is not a return block; and (ii) in the control ow automaton M

P

, (B

i

; x; `

i

�) ` (B

i+1

; y; `

i+1

�)

for some x; y; �; �.

Reasoning as above, it is easy to show the following result:

Theorem 6.3 f(B

0

; `

0

); : : : ; (B

n

; `

n

)g is a forward chain in a program P if and only if there is a sequence

of "-transitions in the viable pre�x NFA for G

P

of the form

[B

0

! � � B

1

�

0

; `

0

] ; [B

1

! � B

2

�

1

; `

1

]

; � � �

; [B

n�1

! � B

n

�

n�1

; `

n�1

]

; [B

n

! � �

n

; `

n

]

8

where `

i+1

2 FIRST(�

i

`

i

), for some �

0

; : : : ; �

n

.

Now consider the process of applying the subset construction to the viable pre�x NFA to construct an

equivalent DFA. Each state of the DFA consists of a set of NFA states|that is, a set of LR(1) items|

obtained by starting with a set of NFA states and then adding all the states reachable using only "-transitions.

The DFA construction is useful because the set of NFA states comprising each state of the DFA corresponds

to the largest set of NFA states reachable from some initial set using only "-transitions, i.e., to a set of

maximal-length forward chains. In other words, if a forward chain occurs in a state of the ciable pre�x DFA,

it is entirely contained in that state: it can can never spill over into another state, thereby simplifying the

search for forward chains. This is expressed by the following result:

Corollary 6.4 f(B

0

; `

0

); : : : ; (B

n

; `

n

)g is a forward chain in a program if and only if there is a

state in the viable pre�x DFA for G

P

containing items [B

0

! � � B

1

�

0

; `

0

], [B

1

! � B

2

�

1

; `

1

], � � �,

[B

n�1

! � B

n

�

n�1

; `

n�1

], [B

n

! �

n

; `

n

] where `

i+1

2 FIRST(�

i

`

i

), for some �

0

; : : : ; �

n

.

Intuitively, control can \come from" a call A to a pointB if there is a forward chain fromA to B that contains

no intervening calls|i.e., A is the most recent call preceding B. The following result is now immediate:

Corollary 6.5 Let A be a call block or a tail call block in a program P , and B a basic block or a procedure

in P . Then, control can come from A to B if and only if there is a state in the viable pre�x DFA of G

P

containing items [B

0

! � � B

1

�

0

; `

0

], [B

1

! � B

2

�

1

; `

1

], � � �, [B

n�1

! � B

n

�

n�1

; `

n�1

], [B

n

! �

n

; `

n

]

where `

i+1

2 FIRST(�

i

`

i

), for some �

0

; : : : ; �

n

, such that B

0

� A, B

n

� B, and B

i

is not a call block or

tail call block for 0 < i < n.

We conjecture that the analogy between control ow analysis and LR items continues to hold when more

context information is maintained. In particular, we conjecture that just as �rst-order control ow analysis

(1-CFA) corresponds to LR(1) items, k-th.-order control ow analysis (k-CFA) corresponds to LR(k) items.

6.1 Applications of 1-CFA

An example application of 1-CFA is in context-sensitive interprocedural dataow analysis. Much of the

recent work on interprocedural dataow analysis has focused on languages such as C and Fortran, whose

implementations usually do not support tail call optimization. These analyses determine, for each call, the

behavior of the called procedure, then propagate this information to the program point to which that call

returns. For the languages considered, the determination of the return points for the calls is straightforward.

Because the point to which a call returns is not obvious in the presence of tail call optimization, it is not

obvious how to apply these analyses to systems with tail call optimization. While 0-CFA can be used to

determine the set of successors for each return block, this does not maintain enough context information to

determine where control came from. As a result, the analysis can infer spurious pointer aliases by propagating

information from one call site back to a di�erent call site. Using context-sensitive interprocedural analyses

avoids this by maintaining information about where a call came from [2, 8, 22], which is precisely the

information provided by 1-CFA.

As a speci�c example of the utility of context-sensitive ow information, our experiments with dead

code elimination based on interprocedural liveness analysis, in the context of the alto link-time optimizer

[3] applied to a number of SPEC benchmarks, indicate that compared to the number of register loads and

stores that can be deleted based on context-insensitive liveness information, an additional 5%{8% can be

deleted using context-sensitive liveness information.

Whether or not a context-sensitive version of an interprocedural analysis is useful depends, to a great ex-

tent, on the analysis and the application under consideration. Our experiments with interprocedural liveness

analysis indicate that there are situations when such analyses can lead to a noticeable improvement in the

code generated. On the other hand, in comparing context-sensitive and context-insensitive alias analyses due

to indirect memory references through pointers, Ruf observes [15] that \. . . the context-sensitive analysis does

compute more precise alias relationships at some program points. However, when we restrict our attention

to the locations accessed by or modi�ed by indirect memory references, no additional precision is measured."

However, if a context-sensitive dataow analysis is deemed necessary for a language implementation with

tail call optimization, the control ow analysis described here can be used to provide the necessary support.

9

return

return

call taut call pos

return call neg

return

return call pos

call pos

return

return

ret addr=L20

call neg

call neg

pos: neg:taut:

call mem return call mem

mem:

return

B1

B0

B2

B3

B4

B5

B6

B7

B8 B9

B10 B11

B12

B13

B14

B15 B16

B17 B18

B19

B20

B21

B22 B23

return

B24

B25 B26

B27

B28

B29 B30

B31

B32 B33

L5:

L4:

L6:

L12:

L13:

L19:

L20:

L24:

L27:

ret addr=L1

ret addr=L24

ret addr=L27

L2:

app:

call app call app

call app

int:

call int

call int call int

ret addr=L5

ret addr=L4

ret addr=L6

ret addr=L12

ret addr=L13

ret addr=L19

Figure 3: A (Partial) Flow Graph for the Tautology Checker Program

10

taut ! B0 B12 ! pos L13 B13 B16 ! B18

B0 ! B1 B13 ! app B25 ! int

B0 ! B3 neg ! B14 B26 ! int L27 B27

B1 ! taut L2 B2 B14 ! B15 B27 ! "

B2 ! " B14 ! B16 mem ! B28

B3 ! pos, L4 B4 B15 ! " B28 ! B29

B4 ! neg L5 B5 B16 ! B17 B28 ! B30

B5 ! int L6 B6 B17 ! " B29 ! "

B6 ! " B18 ! neg L19 B19 B30 ! mem

pos ! B7 B19 ! neg L20 B20 app ! B31

B7 ! B8 B20 ! app B31 ! B32

B7 ! B9 int ! B21 B31 ! B33

B8 ! " B21 ! B22 B32 ! "

B9 ! B10 B21 ! B23 B33 ! append

B9 ! B11 B22 ! " B23 ! mem L24 B24

B10 ! " B24 ! B25 B24 ! B26

B11 ! pos L12 B12

Figure 4: Productions for the control ow grammar of the program in Section 7

7 A Larger Example

Consider the following program, adapted from Section 4.17 of [12], to determine whether a propositional

formula in conjunctive normal form is a tautology:

fun taut(Conj(p,q)) = taut(p) andalso taut(q)

| taut(p) = ([] <> int(pos(p), neg(p)));

fun pos(Atom(a)) = [a]

| pos(Neg(Atom(a))) = []

| pos(Disj(p,q)) = app(pos(p), pos(q));

fun neg(Atom(a)) = []

| neg(Neg(Atom(a))) = [a]

| neg(Disj(p,q)) = app(neg(p), neg(q));

fun int([], ys) = []

| int(x::xs, ys) = if mem(x, ys) then x :: int(xs, ys) else int(xs, ys);

fun mem(x, []) = false

| mem(x, y::ys) = (x=y) orelse mem(x, ys);

fun app([], ys) = ys

| app(x::xs, ys) = x::app(xs, ys);

The partial ow graph for this program is shown in Figure 3. To reduce clutter, we have not explicitly

shown control transfers due to procedure calls; moreover, to aid the reader in understanding the control

ow behavior of this program, each non-tail call is connected to the basic block corresponding to its return

address with a dashed arc. The control ow grammar G = (V; T; P; S) for this program is given by the

following: V = ftaut, pos, neg, int, mem, app, B0, . . . , B33g; T = fL2, L4, L5, L6, L12, L13, L19, L20, L24,

L27g; S = taut; and the set of productions P as shown in Figure 4. The set of possible return addresses for

each function, as obtained using 0-CFA, is as follows:

taut : L2, $

pos : L4, L12, L13

neg : L5, L19, L20

int : L6, L27

mem : L24

app : L4, L12, L13, L5, L19, L20

11

Due to space constraints, we do not reproduce all the sets of LR(1) items for this grammar. The di�erence

between 0-CFA and 1-CFA can be illustrated by examining the behavior of the function app. On examining

the viable pre�x DFA, we �nd four states that are relevant to this function. One of these states consists of

the following two groups of LR(1) items:

[B12! pos L13 � B13; L4] [B12! pos L13 � B13; L12]

[B13! � app; L4] [B13! � app; L12]

[app! � B31; L4] [app! � B31; L12]

[B31! � B32; L4] [B31! � B32; L12]

[B31! � B33; L4] [B31! � B33; L12]

[B32! � ; L4] [B32! � ; L12]

[B33! � app; L4] [B33! � app; L12]

From the forward chains in the �rst group, we can determine that app can be called from basic block B13

of the function pos, with return label L4 (note that this refers to a block that|because of the control ow

e�ects of tail-call optimization|does not belong to the calling function), and this can then recursively call

itself with the same return label. In this case, the return label indicates that the calling function pos was

itself called from taut. The second group of LR(1) items shows a similar call sequence to app from basic

block B13, except that in this case the calling function pos is being called recursively from basic block B11

in the body of pos. The remaining three states relevant to the function app provide similar information: one

of these contains two groups of items, the �rst of which is identical to the �rst group above, and the second

of which is similar to the second group above except that it refers to a recursive call to pos from basic block

B12; the remaining two states provide similar information for calls to app from the function neg.

8 Trading Precision for E�ciency

One of the biggest advantages we see for a grammatical formulation of control ow analysis is that grammars

and parsing have been studied extensively and are generally well understood. Because of this, a wide variety

of techniques and tools originally devised for syntax analysis are applicable to control ow analysis.

As an example of this, consider the fact that the e�ciency of compile time analyses can be improved by

reducing the amount of information maintained and manipulated, i.e., by decreasing precision. In the case

of control ow analysis, determining where control came from involves examining the states of the viable

pre�x DFA of the control ow grammar, constructed using LR(1) items. It is well-known that the number

of states in such a DFA can become very large, but that by judiciously merging certain states (those with a

common \kernel", see [1]) the number of states can be reduced considerably without signi�cantly sacri�cing

the information contained in the DFA. Parsers that are constructed in this way are known as LALR(1)

parsers, which can be built e�ciently (without initially building the LR(1) DFA).

It does not come as a surprise that the same idea can be applied to 1-CFA as well. The resulting analysis

is more precise than 0-CFA and potentially somewhat less precise than 1-CFA: with tongue �rmly in cheek,

we call such an analysis

1

2

-CFA. It is usually considerably more e�cient than 1-CFA. As an example, for

the tautology checker program of Section 7, the viable pre�x DFA constructed from LR(1) items contains

97 states, while that constructed from LALR(1) items contains 55 states; if we consider the entire tautology

checker from [12], which works for arbitrary propositional formulae, the LR(1) viable pre�x DFA has 304

states while the LALR(1) DFA has 112 states. If we focus on calls to the function app, as in Section 7, we

�nd that with LALR(1) items it su�ces to examine a single state of the DFA, in contrast to four states for

the LR(1) case. Moreover, there is no loss of information regarding the calling contexts in this case.

9 Conclusions

Knowledge of low-level control ow is essential for many compiler optimizations. In systems with tail call

optimization, the determination of interprocedural control ow is complicated by the fact that because of

tail call optimization, control ow at procedure returns is not readily evident from the call graph of the

program. In this paper, we show how interprocedural control ow analysis of �rst-order programs can be

12

carried out using well-known concepts from parsing theory. In particular, we show that 0-CFA corresponds

to the notion of FOLLOW sets in context free grammars, and 1-CFA corresponds to the analysis of LR(1)

items. The control ow information so obtained can be used to improve the precision of interprocedural

dataow analyses as well as to extend certain low-level code optimizations across procedure boundaries.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Principles, Techniques and Tools, Addison-Wesley,

1986.

[2] J.-D. Choi, M. Burke, and P. Carini, \E�cient Flow-Sensitive Interprocedural Computation of Pointer-

Induced Aliases and Side E�ects", Proc. 20th. ACM Symposium on Principles of Programming Lan-

guages, Jan. 1993, pp. 232{245.

[3] K. De Bosschere and S. K. Debray, \alto : A Link-Time Optimizer for the DEC Alpha", Technical

Report 96-15, Dept. of Computer Science, The University of Arizona, Tucson, June 1996.

[4] N. Heintze, \Control Flow Analysis and Type Systems", Technical Report CMU-CS-94-227, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA, Dec. 1994.

[5] F. Henglein and J. J�rgensen, \Formally Optimal Boxing", Proc. 21st. ACM Symp. on Principles of

Programming Languages, Portland, OR, Jan. 1994, pp. 213{226.

[6] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,

Addison Wesley, 1979.

[7] S. Jagannathan and S. Weeks, \A Uni�ed Treatment of Flow Analysis in Higher-Order Languages",

Proc. 22nd. ACM Symp. on Principles of Programming Languages, San Francisco, Jan. 1995, pp. 393{

407.

[8] W. Landi and B. G. Ryder, \A Safe Approximate Algorithm for Interprocedural Pointer Aliasing",

Proc. ACM SIGPLAN '92 Conference on Programming Language Design and Implementation, June

1992, pp. 235{248.

[9] T. Lindgren, \Control Flow Analysis of Prolog", Proc. 1995 International Symposium on Logic Pro-

gramming, Dec. 1995, pp. 432{446. MIT Press.

[10] X. Leroy, \Unboxed objects and polymorphic typing", Proc. 19th. ACM Symp. on Principles of Pro-

gramming Languages, Albuquerque, NM, Jan. 1992, pp. 177{188.

[11] J. C. Peterson, \Untagged Data in Tagged Environments: Choosing OptimalRepresentations at Compile

Time", Proc. Functional Programming Languages and Computer Architecture, London, Sept. 1989, pp.

89{99.

[12] L. C. Paulson, ML for the Working Programmer, Cambridge University Press, 1991.

[13] S. Peyton Jones and J. Launchbury, \Unboxed values as �rst class citizens in a non-strict functional

language", Proc. Functional Programming Languages and Computer Architecture 1991, pp. 636{666.

[14] T. A. Proebsting and S. A. Watterson, \Filter Fusion", Proc. 23rd. ACM Symposium on Principles of

Programming Languages, Jan. 1996, pp. 119{129.

[15] E. Ruf, \Context-Insensitive Alias Analysis Reconsidered", Proc. SIGPLAN '95 Conference on Pro-

gramming Language Design and Implementation, June 1995, pp. 13{22.

[16] M. Sharir and A. Pnueli, \Two Approaches to Interprocedural Dataow Analysis", in Program Flow

Analysis: Theory and Applications, eds. S. S. Muchnick and N. D. Jones, Prentice-Hall, 1981, pp. 189{

233.

13

[17] O. Shivers, \Control Flow Analysis in Scheme", Proc. SIGPLAN '88 Conference on Programming Lan-

guage Design and Implementation, June 1988, pp. 164{174.

[18] O. Shivers, Control Flow Analysis of Higher-Order Languages, PhD. Dissertation, Carnegie Mellon

University, May 1991. Also available as Technical Report CMU-CS-91-145, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA, May 1991.

[19] Y. Tang and P. Jouvelot, \Control-Flow E�ects for Escape Analysis", Proc. WSA 92, Bordeaux, France,

1992.

[20] Y. Tang and P. Jouvelot, \Separate Abstract Interpretation for Control Flow Analysis", Proc. TACS-94,

1994.

[21] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee, \TIL: A Type-Directed Op-

timizing Compiler for ML", Proc. SIGPLAN '96 Conference on Programming Language Design and

Implementation, June 1996, pp. 181{192.

[22] R. P. Wilson and M. S. Lam, \E�cient Context-Sensitive Pointer Analysis for C Programs", Proc.

SIGPLAN '95 Conference on Programming Language Design and Implementation, June 1995, pp. 1{12.

14

A Proofs of Main Theorems

Theorem 4.1 Given a program P with entry point S, control ow grammar G

P

and control ow automaton

M

P

,

S)

?

lm

xA� if and only if (S; xw; $) `

?

(A;w; �)

where x;w 2 Labels

�

P

and A 2 Blocks

P

[Procs

P

.

Proof: We prove a slightly stronger result, namely, that for all i � 0, S)

i

lm

xA� if and only if (S; xw; $) `

i

(A;w; �). The proof is by induction on i. The base case, with i = 0, is trivial, with S = A, x = " and

� = ". For the inductive case, assume that the theorem holds for derivations of length upto i, and consider

a derivation of length i+ 1. This must have the form

S)

i

lm

yB�) xA�

where x; y 2 Labels

�

P

. Since S)

i

lm

yB�, from the induction hypothesis we have (S; yw; $) `

i

(B;w; �).

Consider the last step in the leftmost derivation in G

P

shown above. Depending on the production used in

this step, we have the following cases:

Case 1 : This covers the cases where either B is not a call block, and has basic block A as a successor; or

B is a tail call block that calls procedure A; or B is a procedure whose ow graph entry node is A. In

each case, the production used has the form B ! A where A is a nonterminal, and the de�nition of

M

P

indicates that the only move M

P

can make is to change its state from B to A, leaving its input

and stack untouched. Thus, y = x and � = �, and we have (S; xw; $) `

i

(B;w; �) ` (A;w; �). It

follows from this that S)

i+1

lm

xA� i� (S; xw; $) `

i+1

(A;w; �).

Case 2 : B is a call block. In this case, A must be the called procedure. Let ` be the return label and B

0

the basic block with label `. The production used in the derivation of G

P

must be

B ! A ` B

0

which yields the derivation S)

i

lm

yB�) xA`B

0

� i.e., � = `B

0

�. The corresponding move of M

P

must be

(B;w; �) ` (A;w; `B

0

�) = (A;w; �).

Thus, we have S)

i+1

lm

xA� i� (S; xw; $) `

i+1

(A;w; �).

Case 3 : B is a return block. The production used in the derivation of G

P

is B ! ", and the resulting

derivation is

S)

i

lm

yB�) x�.

It is straightforward to show, by induction on the length of derivations, that � must be of the form

`

1

B

1

`

2

B

2

� � �`

n

B

n

, where `

1

is a terminal and B

1

is a nonterminal. Thus, x = y`

1

, A = B

1

, and

� = `

2

B

2

� � �`

n

B

n

. So � = `

1

A�. The corresponding move of M

P

is

(B;w; �) = (B;w; `

1

A�) ` (A;w; �).

Thus, we have S)

i+1

lm

xA� i� (S; xw; $) `

i+1

(A;w; �).

These cases exhaust all the possibilities. The theorem follows. 2

Theorem 6.1 Given a program with entry point p, (p; x; $) `

?

(A; y; a�) if and only if there is a reachable

item [A! � � � ; a].

Proof: [)] We show, by induction on i, that if (p; x; $) `

i

(A; y; a�) then q

0

;

?

[A! � � � ; a]. The base

case is for i = 0: in this case, p � A, x � y, a � $ and � � ". There is a production p ! B in the control

ow grammar G

P

, where B is the entry node of the ow graph of p. It follows that there is a transition

from q

0

to [p! � B; $] in the viable pre�x NFA.

Assume that (p; x; $) `

j

(A; y; a�) implies q

0

;

?

[A! � � � ; a] for all j � i, and consider a sequence of

moves

15

(p; x; $) `

i

(B; y; b�) ` (A; z; a�).

Consider the last move, (B; y; b�) ` (A; z; a�). We have the following cases, depending on the nature of B:

Case 1 : B is a call block where the called procedure is A, the return label is a, and the block with label a

is C. In this case, y � z, and the last move becomes

(B; y; b�) ` (A; y; aCb�).

In other words, (B; y; b�) ` (A; y; a�), where � � Cb�. In the control ow grammar G

P

, there is a

production

B ! AaC.

Now we have, from the induction hypothesis, that q

0

;

?

[B ! � � � ; b]. This can happen if and only if

there is some item I of the form [X ! � � B�; c] such that q

0

;

?

I. Since B ! AaC is a production,

this means that we can have the transition sequence

q

0

;

?

[X ! � � B�; c]

; [B ! � AaC; d]; d 2 FIRST(�c)

; [A! � � � ; a]

Thus, (p; x; $) `

i+1

(A; y; a�) implies q

0

;

?

[A! � � � ; a].

Case 2 : B is a return block. The moves of M

P

must be of the form

(p; x; $) `

i

(B; `z; `A�) ` (A; z; �).

Now consider how `A came to be on M

P

's stack: there must have been a call block C that called a

procedure p with return label `, where the basic block with label ` is A. This means that there is a

sequence of moves

(p; x; $) `

j

(C; u; a) ` (p; u; `Aa)

where j < i. Since C is not a tail-call block, our assumption of well-behavedness of programs implies

that control returns to the return address ` (i.e., the block A) when the execution of the call has

completed, and that the stack at that point is a. From the induction hypothesis,

q

0

;

?

[C ! � p`A; a]

; [C ! p � `A; a]

; [C ! p` � A; a]

; [A! � � � ; a]:

Thus, (p; x; $) `

i+1

(A; z; a) implies q

0

;

?

[A! � � � ; a].

Case 3 : B is not a call block, or B is a procedure and A is the entry node in the ow graph of B, or B is

a tail call block and A the tail-called procedure. The corresponding production in G

P

is B ! A. This

case corresponds to a simple transfer of control that does not a�ect the stack. So the moves of M

P

are

(p; x; $) `

i

(B; z; a�) ` (A; z; a�).

As in Case 1, q

0

;

?

[B ! � � � ; b] implies that there is an item I of the form [X ! � � B�; c] such

that q

0

;

?

I. Since B ! A is a production, it follows from the induction hypothesis that q

0

;

?

I ;

[B ! � A; a]; [A! � � � ; a].

This establishes that for all i � 0, (p; x; $) `

i

(A; z; a�) implies q

0

;

?

[A! � � � ; a].

[(] We use the notation A;

k

B to denote that there is a path of length k from state A to state B of a

viable pre�x NFA. We show, by induction on i, that q

0

;

i

[A! � � � ; a] implies (p; x; $) `

?

(A; z; a�). The

base case, with i = 1, is straightforward: in this case A � p is the entry point of the program and z � $.

2

2

The reason the base case is for i = 1 is that the viable pre�x NFA contains an initial state q

0

that does not correspond to

any item: thus, it requires a single "-transition to reach an item.

16

There is a transition from q

0

to the item [A! � B; $] where B is the entry node of the owgraph of A, and

(A; x; $) is the initial con�guration of M

P

.

Assume that q

0

;

j

[A! � � � ; a] implies (p; x; $) `

?

(A; y; a�) for all j � i, and consider a transition

sequence

q

0

;

i

I

0

: [B ! � � � ; b]; I

1

: [A! � � � ; a].

Consider the last transition of the viable pre�x NFA: either it is an "-transition, or it is not. If it is an "-

transition, B cannot be a return block, since a return blockX corresponds to an item of the form [X ! � ; a],

and the corresponding state in the viable pre�x NFA has no outgoing transitions. We therefore have the

following cases, depending on the nature of B:

Case 1 : B is a call block. In this case, given the de�nition of G

P

, the item I

0

must be of the form

[B ! � AaC; b], where a is the return label for this call and C is the basic block with label a. This

yields the transition sequence

q

0

;

i

I

0

: [B ! � AaC; b]; I

1

: [A! � � � ; a].

The lookahead symbol of I

1

is obtained from FIRST(aCb) = fag. From the induction hypothesis,

(p; x; $) `

?

(B; z; b�), and since B is a call block, the next move of M

P

is (B; z; b�) ` (A; z; aCb�).

Thus, we have

(p; x; $) `

?

(B; z; b�) ` (A; z; a�); where � = Cb�.

Case 2 : B is not a call block, i.e., it has no e�ect on the stack. The corresponding grammar productions

are of the form B ! A, and we have

q

0

;

i

[B ! � A; a]; [A! � � � ; a].

From the induction hypothesis, (p; x; $) `

?

(B; z; a�), and from the de�nition of M

P

, (B; z; a�) `

(A; z; a�). Thus, M

P

makes the moves

(p; x; $) `

?

(B; z; a�) ` (A; z; a�).

Thus, q

0

;

i+1

[A! � � � ; a] implies (p; x; $) `

?

(A; z; a�).

On the other hand, if the last transition is not an "-transition, the items I

0

and I

1

must have the form

I

0

= [A! �X ; a] and I

1

= [A! X � ; a], for some ; 2 (V [T)

�

. In this case, the transitions of

the viable pre�x NFA must be of the form

q

0

;

i

I

0

: [A! �X ; a]; I

1

: [A! X � ; a].

Then, since q

0

;

i

I

0

: [A! �X ; a], the induction hypothesis implies that (p; x; $) `

?

(A; z; a�). This

establishes that for all i � 0, q

0

;

i

[A! � � � ; a] implies (p; x; $) `

?

(A; z; a�).

We have shown that (p; x; $) `

i

(A; z; a�) implies q

0

;

?

[A! � � � ; a] for all i � 0; and q

0

;

i

[A! � � � ; a]

implies (p; x; $) `

?

(A; z; a�) for all i � 0. It follows that (p; x; $) `

?

(A; y; a�) if and only if q

0

;

?

[A! � � � ; a]. 2

17

