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ABSTRACT

Fault tolerance—that is, the ability of a system to continue providing its specified service

despite failures—is becoming more important as computers are increasingly used in

application areas such as process control, air-traffic control, and banking. Distributed

systems, consisting of computers connected by a network, are an important platform

for many fault-tolerant systems. Unfortunately, it is difficult to construct fault-tolerant

distributed software, so communication services such as multicast, RPC, membership, and

transactions have been proposed as simplifying abstractions. However, although numerous

versions of these services have been defined, no single implementation provides a perfect

match for all applications and all execution environments.

This dissertation presents an approach to constructing highly configurable fault-

tolerant services. A new model is proposed where a service is composed out of micro-

protocol objects, each of which implements an individual semantic property of the overall

service. This makes it easy to construct different customized versions of a service with

properties tailored to the specifics of an application. The model allows micro-protocols

to cooperate using user-definable events and shared variables, making the model more

flexible than existing approaches. Three prototype implementations of the model are also

described.

In addition, a new approach is introduced for specifying abstract properties of services

using temporal logic over message ordering graphs, which are abstract representations of

collections of messages on each site. Furthermore, the problem of which combinations of

properties or corresponding micro-protocols are feasible is addressed by defining relations

that identify those combinations that result in a functioning service. Dependency and

configuration graphs are presented as tools for constructing operational configurations.

This new approach is used to develop configurable membership and group RPC ser-

vices. Furthermore, the system diagnosis problem is contrasted with membership, and

new membership and system diagnosis algorithms are derived based on the observations.

Finally, the dissertation presents an application of the event-driven model to adaptive

systems that dynamically change their behavior as a result of changes in the execution

environment or user requirements.
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CHAPTER 1

INTRODUCTION

Computers and computer networks are playing an increasingly important role in society.

For example, embedded processors control electronic household appliances, personal

computers are used for work and entertainment, and supercomputers are used for weather

forecasting. Computers are also increasingly connected by computer networks; these

range from local-area networks connecting personal computers within a company to wide-

area networks, such as the Internet, that connect large parts of the world. Such networks are

the foundation for distributed systems, which are collections of computers that cooperate

to provide a service. The worldwide telephone system is an example of such a system.

Distributed systems are also used in process control applications to control manufacturing

plants, power stations, and airplanes. In these cases, each physical component in the

application is controlled by one computer, and the collection of computers is connected

by a network to support cooperative control over the whole system.

Using computer systems to control airplanes and power stations requires high levels of

dependability, which means that reliance can justifiably be placed on the service it delivers

[Lap92]. One important aspect of dependability is fault tolerance, which means the ability

of the system to continue providing its specified service despite component failures. The

relative importance of fault tolerance varies among application domains, largely because

the consequences of failures can range from simple inconvenience to significant financial

hardship or potential loss of life. Moreover, fault tolerance is important in distributed

systems. For one thing, because of the large number of computers in some of these

systems, the probability of at least one failing becomes large; therefore, fault-tolerance

techniques are often required to ensure that these failures do not stop the entire system. On

the other hand, the autonomy of computers in such systems means that failures are often

independent; hence, a fault-tolerant service can be constructed on a distributed system by

replicating the service on more than one computer so that it remains available as long as

at least one machine is functioning.

The goal of this research is to simplify the difficult task of writing fault-tolerant

distributed applications by providing powerful underlying communication services. A

number of these services, such as atomic multicast [CASD85], have been proposed and

implemented. Although such services are useful, each provides a fixed set of guarantees

even though different applications often have different requirements. A way to solve this

mismatch is customization, that is, the construction of specialized versions of a service

that match the requirements of each application. Customization is not feasible unless

the construction of specialized versions is easy and the resulting service efficient. Our
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solution to easy customization is configurability, that is, the construction of the customized

version from prefabricated modules, each of which implements a portion of the service

guarantees. A configurable service, then, is a service that can be customized in this

manner. In this dissertation, we present a new approach to constructing configurable

fault-tolerant distributed services in which fine-grained modules called micro-protocols

can be configured together to give different variants of the desired service.

1.1 Fault Tolerance and Distributed Systems

Fault, failure, and error are the fundamental concepts of fault tolerance [Lap92]:

� A failure occurs when the delivered service of a system or a component deviates

from its specification.

� An error is the part of the system state that is liable to lead to a failure.

� A fault is the hypothesized cause of an error.

An error is thus the manifestation of a fault in the system, while a failure is the effect of

an error on the service. Therefore, a fault-tolerant system is one that continues to provide

service without failures in spite of faults. A fault here can be, for example, a bug in the

software, a hardware problem, a user error, or a power failure. Note that the failure of

one component can be the cause—that is, the fault—that results in the failure of another

component. For example, a failure in the electrical supply from the power company can

be the fault that causes a computer to fail.

Fault tolerance is based on redundancy, which is the use of extra resources to detect,

correct, or mask effects of faults. Error detecting codes are an example of redundancy

where additional bits of information are added to data, such as memory, disks, or messages

transmitted over a network, to detect errors [BM86, Toh86]. Redundancy can be divided

into time and space redundancy. Time redundancy is based on using extra execution

time, whereas space redundancy is based on using extra physical resources, such as extra

memory, processors, disks, or communication links.

Fault-tolerance techniques implemented in software are often divided into fault-

tolerant software and software fault tolerance based on which faults the techniques attempt

to tolerate. Fault-tolerant software is designed to tolerate failures in the underlying layers,

such as the underlying hardware platform or lower level operating system and network

services. In contrast, software fault tolerance is designed to tolerate software bugs in the

implementation of a service or application itself. The emphasis in this dissertation is on

fault-tolerant software. Note, however, that these techniques are not disjoint. For exam-

ple, software fault tolerance can sometimes tolerate failures in underlying layers, while

fault-tolerant software can sometimes tolerate effects of software bugs. Both techniques

apply both time and space redundancy to achieve their goals.
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1.1.1 Measures of Dependability

Important measures of system dependability are availability and reliability, which are

defined as follows [Kec91]:

� Availability, in particular instantaneous availability, is the probability that a system

will be available for use at any random time t after the start of operation.

� Reliability is the probability that parts, components, products, or systems will

perform their designed-for functions without failure in specified environments for

desired periods at a given confidence level.

For example, for phone service availability is the probability that a phone call can be

connected at any given time, and reliability the probability that the connection can be

maintained until the caller terminates the call. For an airplane, reliability is the probability

that a flight reaches its destination without an accident, while for a nuclear power station,

reliability is the probability that the station provides power at a given level for a specified

number of years without releasing more than a specified level of radioactivity. The

reliability of a system is the product of the reliabilities of all the elements in the system.

This includes not only the computer systems, but also the people working with the

system and other mechanical components. This dissertation naturally concentrates on the

computer aspect of the problem.

Providing 100% reliability and availability would be ideal for all systems and services,

but unfortunately this goal is unattainable because it is impossible to tolerate all possible

failures. Furthermore, increasing the reliability and availability of a system typically

increases the cost of the system. Therefore, goals are usually set for reliability and

availability that depend on the purpose of a system. For example, for the design of the AAS

(Advanced Automation System) air-traffic control system, the availability goal of critical

components was established at no more than 3 seconds of down-time a year [CDD90]. For

telephone switching systems, the availability goal is 99.4%, which translates to 3 minutes

of system down-time a year, and the reliability goal is to sustain at least 99.9875% of all

established calls, which translates to inadvertently disconnecting no more than 1.25 calls

out of 10,000 [Kec91]. In the manufacturing industry, information about the reliability

of a product is used, for example, to determine the optimal guarantee periods. Finally,

reliability and availability are even beginning to be used to advertise consumer goods and

services. For example, long distance phone companies now advertise how quickly 1-800

service can be restored after link failures.

1.1.2 Failure Models

In a distributed computing system, it is impossible to tolerate all failures, because given N

machines, there is always a nonzero probability that all will fail, either independently or

due to a common cause. Therefore, the goal of fault tolerance is to improve the reliability
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and availability of a system to a specified level by tolerating a specified number of selected

types of failures. Failure models have been developed to describe abstractly the effects

of failures. The use of such a model simplifies the programmer’s task by allowing the

program to be designed to cope with this abstract model rather than trying to cope with

the different individual causes of failures. Note, however, that the failure model used

while writing a program is just an assumption about how components can fail. A part of

the system reliability evaluation, then, is to determine if the failure model covers a large

enough percentage of the expected failures for the system to satisfy its reliability goals.

A hierarchy of failure models has been developed for use in different application areas.

The broadest failure model is the Byzantine or arbitrary failure model where components

fail in arbitrary way [LSM82]. This model accommodates all possible causes of failures,

including malicious failures where a machine actively tries to interfere with the progress

of a computation. Naturally, the algorithms based on this failure model are extremely

complicated and expensive to execute. The Byzantine with authentication failure model

allows the same type of failure, but with the added assumption that a method is available

to identify reliably the sender of any message. This assumption substantially simplifies

the problem. The incorrect computation failure model is one where a component, given

a correct input, produces an incorrect output [LMJ91]. The timing or performance failure

model assumes a component will respond with the correct value, but not necessarily

within a given time specification [CASD85]. The omission failure model assumes a

component may never respond to an input [CASD85]. The crash or fail-silent failure

model assumes that the only way a component can fail is by ceasing to operate without

making any incorrect state transitions [PSB+88]. Finally, the fail-stop failure model adds

to the crash model the assumption that the component fails in a way that is detectable

by other components [SS83]. A more thorough classification of failure models and their

relations can be found in [Pow92]; numerous other classifications based on factors such

as duration and cause have also been proposed [Lap92]. In general, the more inclusive

the failure model, the higher the probability that it covers all failures that are encountered,

but at a cost of increased processing time and communication.

1.1.3 Distributed Systems

As already noted, distributed systems and fault tolerance are inherently linked. For

one thing, the potentially large number of machines in a distributed system makes the

probability of at least one component failing large, which could lead to unavailability

of the service. Consider a system of n machines where the failure probability for each

machine during a system execution of T time units is p. Assuming independence of

failures, the probability that none of the machines fail in time T is (1� p)

n. For example,

if n = 70 and p = 0.01, the probability that the system can operate without a single failure

for time T is only 0.49, i.e., on the average more than half of the executions of time T will

fail. Although the reliability of modern computers is high, a distributed or parallel system



23

may consist of hundreds or thousands of machines, making the probability of at least one

failure large enough that the reliability is not satisfactory for many applications.

On the other hand, distributed systems possess inherent potential for fault tolerance,

because the failure of some number of machines need not lead to unavailability of the ser-

vice. Although the probability of at least one machine failing can be high, the probability

of all the machines failing can be remarkably small. In particular, the probability that

all components fail is pn, which even in the case of moderately reliable components and

moderate number of computers, can be extremely small. For example, given p = 0.1 and

n = 4, the probability of all components failing is only 0.0001. This makes distributed

architectures attractive for building applications that are required to provide highly reliable

and available services. A distributed architecture by itself is, of course, only a starting

point; fault-tolerance techniques need to be applied so that the application can continue

operating despite the failures. An example of the use of distributed architecture for fault

tolerance is the previously mentioned AAS air-traffic control system [CDD90]; the high

availability goals are to be met by replicating critical applications on 3 or 4 computers

structured as a distributed system.

1.2 Building Fault-Tolerant Distributed Software

Although fault tolerance is important, constructing distributed fault-tolerant software

is hard. For one thing, programmers have to deal with the typical complications of

concurrency, such as coordinating the use of shared data and other shared resources.

Furthermore, the execution environment can be dynamic, often requiring the software to

adapt its behavior; for example, response times or throughput of the underlying network

may fluctuate due to congestion or changes in the load. Finally, various types of faults

ranging from benign ones, such as a message getting lost in the network, to more severe

ones, such as computer crashes, may occur. Since the faults may occur at arbitrary times

during the execution of the software, designing the software so that it behaves correctly

at all times is a significant challenge.

Different approaches have been proposed to simplify the development of this type of

software. This section describes two of the most significant: use of a layered software

structure and use of simplifying service abstractions. It also discusses the wide range of

execution properties guaranteed by such service abstractions and the implications of this

variety on applications.

1.2.1 Layers of Abstraction

The construction of complicated computing systems is often simplified by describing

or implementing them as a hierarchy of separate layers. This approach has been used

frequently in operating systems, where the layers range from hardware to the user interface.

For example, the THE operating system was designed with six layers: hardware, CPU

scheduling, memory management, operator console device driver, buffering for I/O, and
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user programs [Dij68]. This approach also has a traditional role in communication

systems. For example, the seven layer ISO OSI model consists of physical, data link,

network, transport, session, presentation, and application layers [DZ83].

In the layered approach, each layer provides a service to the layer above it using

one or more protocols to implement the service. A service is defined by the set of

operations that the layer supports, while a protocol defines one implementation of the

service. For example, in the case of communication protocols, the protocol defines the

rules governing the format and meaning of the messages that are exchanged by peer layers

residing on different machines to implement the service [Tan88]. Naturally, a service may

be implemented using a number of different protocols as long as each can guarantee the

specified service. The term service is also often used to denote the software that provides

the particular service. For example, by “membership service”, we also mean the software

that provides this service.

Although the service provided by a layer is defined in terms of concrete operations,

each layer can also be seen as providing an abstraction of the system on which the higher

layers are built. For example, the memory management layer in an operating system often

provides the abstraction of virtual memory, which allows higher layers to assume the ex-

istence of a homogeneous segment of memory of arbitrary size. Similarly, in networking,

the network layer of the OSI model provides the abstraction of a communication link

between sender and receiver that in actuality may not be connected by one physical link.

Thus, a system can be viewed as consisting of layers of abstractions.

1.2.2 Service Abstractions

A number of useful services and abstractions for distributed computing have evolved over

the years. One of the most widely used is the TCP/IP protocol [Jac88], which provides

the abstraction of a reliable pipe between two computers where bytes are delivered in

the same order as they were sent. To implement reliable pipes, TCP/IP has to deal with

messages that are corrupted, lost, or reordered by the underlying network, as well as issues

such as congestion and resource control related to multiplexing the physical network. The

abstraction of reliable communication hides events that designers would otherwise have

to deal with, thereby simplifying development.

Although reliable communication is essential for building fault-tolerant distributed ap-

plications, more powerful services, often called middleware [Ber96], can further simplify

the task. For example, an atomic ordered multicast or broadcast service with atomic-

ity and message ordering guarantees makes it easy to send messages to a collection of

processes [CM84, CZ85, CASD85, VM90, BSS91]. Similarly, a membership service

provides consistent information about which computers are functioning and which have

failed at any given time in a distributed system, thereby simplifying the problems asso-

ciated with failures [Cri91, Bir85a, EL90, KGR91, MPS92]. A time service provides

consistent information about time in a distributed system, either in the form of logical or

virtual time that can be used to reason about the relative order of events [Lam78, Sch82,
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Mat89] or real time from synchronized clocks [KO87, WL88, RSB90, VR92]. Other

important service abstractions are atomic actions, a collection of operations whose exe-

cution is indivisible despite concurrency and failures [Lam81, Lis85, SDP89]; and stable

storage, storage whose contents is guaranteed to survive failures [Lam81, BY87].

Paradigms for structuring fault-tolerant software further simplify developing applica-

tions. The replicated state machine approach is a paradigm for building fault-tolerant

services using replication [Sch90]. A service is constructed using a collection of identical

deterministic state machines, with client requests being sent to all replicas for execution

using atomic ordered multicast. This approach is an example of active replication, where

every replica executes the same operations. In the primary/backup paradigm, only one of

the replicas actively executes client requests [AD76, BJRA85, BMST92], with the state

of the other backup replicas being updated periodically. This approach is an example of

passive replication. In the object/action paradigm, the system is constructed of passive

objects that export actions, i.e., operations, that modify the state of objects [Gra86]. Ap-

plications of this approach to reliable computing are discussed in [Whe89]. In all these

paradigms, communication-oriented services such as multicast and membership are key

components of the supporting infrastructure.

1.2.3 Properties of Services

Existing services can be characterized by the execution guarantees, or properties, they

provide to their users. Properties can be defined in terms of constraints on the service, that

is, if a service satisfies the constraints of property p, then we say that it has property p.

Properties can be illustrated using the atomic ordered multicast service in [CASD85]

as an example. This service has the following properties:

� Termination: Every message broadcast by a correct sender is delivered to all correct

receivers after some known time interval.

� Atomicity: Every message whose broadcast is initiated by a sender is either delivered

to all correct receivers or to none of them.

� Total order: All messages delivered from all senders are delivered in the same order

at all correct receiving nodes.

Consider a distributed application that builds on this service. The application consists of

software components, here called nodes, executing on different computers in a distributed

system. Let one node transmit a message to the others using an atomic multicast service.

Due to the properties of the service, a node receiving this message has significant infor-

mation about the distributed state of the application, independent of the message contents.

For one, because of the atomicity property, it knows that all other correct nodes have

already received or will receive the same message. Thus, if this message causes a state
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change in the node, it knows that this change will occur at all other nodes as well. Fur-

thermore, because of the termination property, it knows that this change will occur within

a known time bound. Finally, if two or more nodes send a multicast at approximately the

same time, these messages will be delivered in the same order on all nodes. Therefore,

the corresponding state changes occur in the same order.

Other multicast or broadcast services provide different sets of properties. The V-

system [CZ85] provides only unreliable multicast. Consul [MPS93a, MPS93b], Isis

[BSS91], and Transis [ADKM92b, DM96] provide multicast with the atomicity property

and various ordering properties, but no timeliness properties. The Mars system [KO87,

KDK+89] provides atomicity, ordering, and timeliness properties. The existing multicast

implementations cover only a small subset of all possible combinations of multicast

properties, however. We can easily identify half a dozen different ordering properties and

a few different variants of reliability, atomicity, and timeliness properties, which could be

combined in dozens of different ways.

The properties defined for transactions are another example of abstract properties of

a service. A transaction is a collection of operations that is executed as a unit despite

concurrency and potential failures during the execution. Typically, transactions have the

following four, so-called ACID, properties [HR83, Bla91]:

� Atomicity or All-or-nothing: Either the transaction completes or it has no effect,

despite failures of some of the components involved in the transaction.

� Consistency: A transaction takes the database from one consistent state to another.

� Isolation: The intermediate states of the data manipulated by a transaction are not

visible outside the transaction.

� Durability or Permanence: The effect of a transaction that has completed will not

be undone by failure.

In essence, the ACID properties guarantee that each transaction is executed on what

appears to be a dedicated system, even though in reality a number of other transactions

may be executing concurrently. The ACID properties are a good example of abstract

properties expressed in terms of their effect on the application, instead of how they are

implemented.

In contrast with multicast, the ACID properties are relatively standard for transactions

in most database systems. Naturally, different systems use different protocols to realize

the properties, mostly for performance reasons. However, when database systems are used

in certain specific application areas, such as CAD, engineering, and artificial intelligence,

some of the ACID properties have been found to be too restrictive [BBG+88]. Similarly,

subsets of the ACID properties have been found to be useful for transactions in an

operating system context [SMK+94]. Extensible database systems, where the properties

or their implementations can be adjusted to specific application requirements and execution
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environments, have been developed to address some of these needs [SR86, SCF+86, CD87,

BBG+88].

1.2.4 Meeting Application Requirements

Different fault-tolerant distributed applications have different requirements for the under-

lying services, so they should be able to select which properties are enforced. Unfortu-

nately, a given service implementation typically provides only a fixed set of guarantees,

which may or may not be appropriate for the application. For example, consider building

a distributed application using atomic ordered multicast. First, if the order in which mes-

sages are received is commutative—that is, processing messages in any order leads to the

same result—the ordering property is not required. Second, if the application has no time-

liness requirements, the time bound guarantee is not necessary. Finally, if the application

can tolerate missing a message occasionally, as is often the case with video and sound,

the atomicity and termination properties are not required either. Similar observations can

be made with regard to transactions, as already noted above.

Building a service that incorporates all possible properties, and therefore satisfies all

applications, is not viable for two reasons. The first is the execution cost associated with

each property. Implementing a property typically requires some combination of processor

time, extra messages, and synchronization time, thereby slowing down the progress of the

application. This cost can be large, even orders of magnitude. As an example, consider

a token-based total-ordered multicast in a distributed system consisting of N computers

connected by an Ethernet. Provided that the network is not congested, an unordered

multicast takes O(1) time, whereas an ordered multicast may take up to O(N) time since

the sending site has to wait for the token. As a result, if a distributed application that does

not require the ordering property has to use this service, its response time can be severely

affected.

The second reason is the tradeoff between properties. Sometimes, particularly in the

presence of failures, there are properties such that it is only possible to guarantee any one

them but not all at the same time. For example, with transactions operating on distributed

replicated data in a partitioned network, it is impossible to guarantee simultaneously the

progress of transactions on all sites and consistency of the data. Furthermore, some-

times guaranteeing one property has a negative influence on another. For example, the

implementation of a timeliness property typically requires preparing for the worst case

and therefore often introduces extra waiting, affecting properties such as response time.

Both these cases again illustrate the fundamental difficulties in attempting to enforce all

properties with a single all-encompassing service.

Without a universal service, the user is forced to try and choose the best combination of

properties from among existing implementations. Unfortunately, this is not a viable option

either. First, because services are implemented on a unique combination of hardware,

operating systems, and communication software, porting them to the platform where the

application will be executing can be very difficult. Second, even if porting is possible,
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a service built for one particular environment may have bad performance when used in

another. For example, an atomic multicast protocol may be fine for a local-area network

where the failure rate is low and transmission latency short, but unsuitable in a wide-

area setting where the failure rate and latency are much higher. Finally, if the failure

model assumed for an implementation turns out to be unsatisfactory for the application’s

real execution environment, it is often virtually impossible to change without a complete

rewrite.

1.2.5 Customization and Configurability

A way to solve the mismatch between application requirements and service guarantees

is customization using configurable or extensible services. A configurable service is one

that allows different versions of the service to be easily constructed to match application

requirements. The configuration process may take the form of constructing an instance of

a service from a set of chosen modules, or it may be based on simply setting compilation

or runtime flags that cause the service to choose a certain operating mode. An extensible

service is one where the functionality of the service can be augmented with either prepro-

grammed or user-provided modules. The terms configurable and extensible can in most

cases be used interchangeably, because configurable services are typically extensible and

extensible services are by definition configurable. The customization of a service can

occur at compile or link time or dynamically during execution. In the latter case, we call

it an adaptive service.

Extensibility has been explored in the database community since the early 1980s, and

has recently started to gain interest in the operating systems and networking communities.

In databases, well-known examples include Genesis [BBG+88] and Raid [BFHR90]. In

operating systems, examples of configurable or extensible systems are Synthesis [PMI88],

SPIN [BCE+94], Scout [MMO+94a], and V++ [CD94]. Also, in file systems, configura-

bility has been used to enable new application types, such as databases and multimedia,

to make use of file systems efficiently for their storage needs [HP94, KN93, Maf94].

In networking, the x-kernel [HP91] and Adaptive [SBS93] are examples of systems that

support construction of customized communication protocols out of modules. All these

systems are described further in chapter 2.

Although numerous projects have investigated issues related to communication ser-

vices for fault-tolerant distributed computing, only a few have explored modularity and

configurability. The most notable of these are the Consul and Horus systems. Consul is

a collection of protocols developed for implementing fault-tolerant distributed programs

based on the state-machine approach [MPS93a, MPS93b]. It provides support for ordered

multicast, membership, and recovery, where the different services are implemented as

modules using the x-kernel. Although configurable, the different choices available for

the application builder are limited to different message-ordering properties. The Horus

system provides similar services for distributed applications but with a higher degree of
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configurability than Consul [RBG+95, RB95, RBM96]. Both systems are oriented around

hierarchical composition of code modules.

1.3 A New Model for Configurable Fault-Tolerant Services

This dissertation presents a new approach to constructing configurable fault-tolerant ser-

vices. In this approach, a service is constructed of fine-grained modules called micro-

protocols that implement the abstract properties of the service. Micro-protocols are

executed using an event-driven execution model, which provides a sophisticated and flex-

ible means of interaction between micro-protocols. In this model, each micro-protocol

consists of a set of event handlers, which are bound to events such as arrival of a certain

type of message from the network. Then, when a given event occurs, all handlers bound

to that event are executed. In addition to providing predefined events that are raised by

a runtime system, our approach provides user-definable events that are raised by micro-

protocols, thereby providing for interaction between modules. Micro-protocols can also

interact through shared data structures.

Given customized services built using micro-protocols, a system is constructed by

combining these services hierarchically. This results in a two-level view of system

construction, where services are constructed from micro-protocols and systems are con-

structed from services. For example, in a prototype implementation based on the x-kernel,

micro-protocols are used to construct services, which are then combined with normal

x-kernel protocol modules using the facilities of the x-kernel for hierarchical composition.

The combination of fine-grained modules and flexible interaction mechanisms make

it possible to build configurable services that it would be difficult to build using traditional

hierarchical models such as those used in Consul or Horus. Moreover, the model does not

restrict how events and shared data are used and in particular, does not enforce a standard

fixed interface between modules. As a result, the model supports various types of rela-

tionships between modules, ranging from hierarchical relationships to peer relationships

to any combinations of these. This enables the logical relationship between modules to

be preserved in the implementation, which facilitates the design and implementation of

fault-tolerant services.

To design a configurable service using our approach, a necessary first step is to identify

the individual abstract properties of the service. Unfortunately, forming a consistent set

of abstract properties for a given service is a nontrivial task despite the large number of

existing implementations. One problem is that the properties are often described in terms

of a particular implementation strategy and may be difficult to translate into more abstract

properties. Another is that different researchers use different methods and terminology

for describing properties. As a part of our work, we have identified and defined sets of

properties for group remote procedure call (RPC) and membership services.

Although the main emphasis of our work is on matching service guarantees to ap-

plication requirements, configurability has two other applications that are addressed in
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this dissertation. First, it can be used to improve service performance by choosing the

implementation of a property that best fits the conditions in the current execution environ-

ment, including issues such as network failure rates and communication latency. Second,

configurability can be used to match the reliability guarantees of a service to the reliability

requirements of an application by adjusting the failure model of a service. Configurability

provides an elegant solution for both these problems.

The major contributions of this dissertation are:

� A two-level approach to system construction, where a system is constructed from

services and each service is constructed from a collection of modules corresponding

to abstract properties.

� A new and more flexible model for constructing highly configurable fault-tolerant

distributed services and prototype implementations of this model.

� The design and prototype implementations of membership and group RPC services

that offer high levels of configurability.

� Identifying, defining, and illustrating the abstract properties of fault-tolerant dis-

tributed services, such as membership and group RPC, and identifying of the rela-

tions between these properties.

Other contributions include a general model for adaptive systems and a corresponding

implementation based on the event-driven approach. This work on adaptive systems

provides an example of using configurability to improve the performance and reliability

of a service by adjusting the implementation to the characteristics of the environment.

We have also identified the relationship between the membership and system diagnosis

problems, and utilized this relationship to develop new algorithms for both.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes related

work in the areas of fault tolerance and configurable systems. It provides information

about approaches that have been used to construct configurable services and serves as a

foundation for comparing our approach to others.

Chapter 3 presents our approach to constructing configurable services. We first iden-

tify and define the properties of a service and then present a configurable implementation

using the event-driven execution model. We also examine issues that affect which combi-

nations of properties and micro-protocols result in operational services. Finally, we briefly

describe three prototype implementations of the model: one using the SR programming

language [AO93, AOC+88], a second using the x-kernel, and a third using C++.

Chapter 4 identifies and formally specifies the abstract properties of membership

services, as well as identifies and proves the relations between these properties that dictate
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which combinations of the properties are feasible in any implementation of a membership

service. A number of well-known membership services are then characterized based on

the set of abstract properties.

Chapter 5 describes a configurable implementation of membership. We outline the

implementation strategy, the events and shared data structures, and the design of the

micro-protocols. The set of 25 micro-protocols presented allows over 1000 different

membership services to be configured. We also discuss the prototype implementation of

the service.

Chapter 6 introduces the system diagnosis problem, a problem closely related to

membership but traditionally treated separately. We contrast these two and conclude that

they are closely related with the main differences being in the failure model assumed.

Based on these observations, we derive new membership algorithms by changing the

failure model of typical distributed system diagnosis algorithms.

Chapter 7 describes the application of our approach to another service, namely group

RPC. We identify the abstract properties of this service and outline a highly configurable

implementation.

Chapter 8 describes another application of the event-driven model: implementing

adaptive systems that change their behavior during execution based on changes in the

execution environment. We introduce a general model for adaptive systems, apply the

model to a number of examples, and then outline how the event-driven execution model

can be used as an implementation tool.

Chapter 9 summarizes the dissertation and offers future research directions.
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CHAPTER 2

RELATED WORK

A number of other projects have investigated topics related to our work, including aspects

of fault tolerance and configurability. First, we review distributed fault-tolerant systems

that provide platforms or tools for building highly dependable applications. We introduce

systems ranging from non-configurable, or static for short, to configurable. The prior

work on fault-tolerant systems has served as the inspiration and the starting point for our

work, while the work on configurable systems provides a measuring stick for success.

Second, we describe work on configurability in other areas, such as networking, operating

systems, file systems, and database systems. These systems provide more background on

approaches that have been applied to configurability elsewhere. Finally, we summarize

work in this area by characterizing the different approaches to configurability based on

the structuring techniques used.

2.1 Fault-Tolerant Systems

A number of systems have been developed that facilitate the construction of fault-tolerant

applications by providing useful services such as reliable multicast, membership, or

transactions. Here, we examine the basic outline of some of these systems, without

addressing in detail any of the particular services provided. Since the emphasis is on

configurable systems, only two static systems are described: Isis [Bir85a, BJ87, BC91,

BSS91, BR94] and Mars [KM85, KDK+89, KG94]. The configurable systems presented

illustrate different approaches taken towards customization in fault-tolerant computing.

A large number of other projects are not addressed in detail here, including ADS [IM84],

Amoeba [RST89, KT91], AMp and xAMp [VRB89, RV91, RV92], Argus [Lis85, Lis88],

Avalon [DHW88], Chorus [BFG+85], Clouds [DLA88, DLAR91], Delta-4 [PSB+88,

BHV+90, Pow91], Saturne [DFF+90], Totem [AMMS+93, AMMS+95, MMSA+96],

Transis and Lansis [ADKM92b, ADKM92a], and the V kernel [CZ85].

2.1.1 Static Systems

2.1.1.1 Isis

The Isis system is a toolkit developed to support construction of distributed applications,

including those that have fault-tolerance requirements [Bir85a, BJ87, BC91, BSS91,

BR94]. The toolkit is structured around the concepts of a process group, a group of

processes cooperating to implement a service, and virtual synchrony, an abstraction that
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enables the writing of applications as if the execution of the system was synchronous. Es-

sentially, virtual synchrony guarantees that events, such as message arrivals or membership

changes, are received in a consistent order by all group members.

Isis provides a set of services that simplify the construction of distributed applications.

The multicast services in Isis range from unreliable to totally ordered reliable multicast.

The membership service of Isis provides information about the current membership of the

group, including a ranking of the processes in the group based on how long they have been

group members. This ranking can be used, for example, to choose a leader to execute

certain tasks for the group. Processes are allowed to join and leave groups at will, and

a process can create new processes, for example, to take the place of a failed process.

When a new process joins a group, the current state of an existing group member is

typically transferred to the joining process. To do this, the programmer provides routines

for packing the state into messages and subsequently unpacking it at the joining process.

Isis guarantees that the state transfer is atomic with respect to application messages sent

concurrently with the transfer.

Process groups in Isis can be used in many ways. First, groups can be used to increase

the fault tolerance of an application. This can be done either by structuring the group as

an actively replicated process group, where every process executes and responds to every

request sent to the group, or by structuring it as a passively replicated process group,

where only a primary process responds to every request. Second, the group can be used

to improve the performance of a computation by dividing the work associated with a

request among the group members. Finally, various combinations of these approaches

are possible. For example, each process can maintain the replicated state of the server

group (fault tolerance), but when a computationally intensive request is received, the task

can be divided among the group members (performance) as long as state changes are

distributed to all members after the computation is finished. The services provided by

Isis are not configurable, but the system includes a collection of multicast services with

different ordering and reliability semantics.

2.1.1.2 Mars

Mars is a system for building fault-tolerant distributed real-time applications [KM85,

KDK+89, KG94]. Mars is targeted for hard real-time applications, where missing a

deadline can be catastrophic. Therefore, Mars places extremely strict requirements on the

timeliness of communication and task execution, as well as the overall reliability of the

system. Mars provides various services such as synchronized clocks, atomic multicast,

and membership services. An application design system has also been developed based on

Mars. This system provides tools for designing applications, and for doing performance,

dependability, and timing analysis.

Mars is built using a physical ring architecture in which the communication medium

is accessed using a time division multiplexing access (TDMA) strategy based on synchro-

nized local clocks. That is, access to the physical medium is divided into dedicated time
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slots that are allocated a priori to sites in a round-robin fashion. A TDMA cycle is defined

as N consecutive slots, where N is the number of sites in the system.

Mars uses a wide array of techniques to increase the fault tolerance of applications to

desired levels. Communication failures are masked by transmitting each message k times,

either in parallel over k redundant rings or sequentially over a single ring. The exact

value of k depends on the assumptions about the underlying network and the reliability

requirements of the application. Computation failures such as crashes are tolerated by

executing each task on redundant computers and/or executing each task more than once

on a single machine [Kea90]. Configurability in Mars is limited to adjusting the degree

of communication and computation redundancy to reach the dependability goals.

2.1.2 Configurable Systems

2.1.2.1 Consul

Consul is a collection of communication services developed for implementing fault-

tolerant distributed programs based on the state machine approach [MPS93a, MPS93b]. To

support the replicated processing implied by the state machine approach, Consul contains

protocol objects (i.e., software modules) that allow user operations to be multicast to a set

of replica processes reliably and in some consistent order, to reach agreement on failures

and recoveries, and to facilitate replica recovery.

Figure 2.1 illustrates the specific protocols in the system and how they are configured

using the x-kernel (see section 2.2.1 for more on the x-kernel). Psync [PBS89] realizes the

functionality of a partially (or causally) ordered reliable multicast, while Order transforms

that into either a total or semantic-dependent order. A membership service is implemented

by the combination of Failure Detection, which monitors the message flow and triggers an

alarm if it suspects that another machine has failed, and Membership, which implements

an agreement algorithm to decide if a failure has indeed occurred. Recovery implements

replica recovery using a combination of checkpoint and message replay.

Part of the motivation for building Consul was to determine whether it was possible

to build a fault-tolerant system in a modular manner using traditional network protocol

composition techniques. As can be seen from the figure, the system is indeed constructed

from well-defined modules, each of which implements a specific function. Consul is also

configurable, although the choice is limited to different message ordering properties. In

particular, causal order is provided by Psync, while total and semantics-based orders are

provided by additional protocols.

The Consul project was successful in demonstrating the feasibility of modular con-

struction of fault-tolerant services and provided configurability features beyond most

similar systems at that time. Another important contribution, however, was in identifying

the limitations of the x-kernel for construction of communication services for fault-tolerant

systems [MPS93b]. First, the x-kernel defines a simple interface between protocols that in-

cludes only operations for opening and closing connections, and for sending and receiving
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Figure 2.1: Consul Protocol Graph

messages; additional operations, if needed, must be encapsulated as control operations.

Such an interface is reasonable for traditional network protocols, which have limited in-

teractions with one another, but overly restrictive for protocols for fault tolerance, which

interact much more closely. As a result, control operations are overloaded in Consul,

making the system correspondingly more complicated and difficult to understand.

Second, the x-kernel is designed primarily to support hierarchical composition of

protocols, where each protocol only interacts with protocols that are immediately above

it or immediately below it in the protocol graph. In Consul, however, several protocols

at the same logical level of the system must cooperate to implement services. For

example, Membership, Order, and Failure Detection all cooperate, but without being

related hierarchically. To find a way around this limitation in the x-kernel model, Consul

has two additional protocols, (Re)Start and Divider, whose only function is to coordinate

such interactions. Psync also serves a function in this regard by reflecting messages

originating within protocols and destined for the network up to the other protocols. For

example, the Failure Detection protocol notifies Membership about suspected membership

change by multicasting a special message using Psync to all sites where it will be received

by, among others, the Membership protocol objects. Similar problems were encountered

in a project attempting a modular implementation of the xAMP atomic broadcast protocol

suite in the x-kernel [RV92, Fon94].

2.1.2.2 Horus

Horus [RHB95, RBG+95, RB95, RBM96] is a successor to the Isis system [Bir85a]. It

is generally targeted for the same type of applications as Isis, but adds extensibility and
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configurability. The composition model in Horus is linear, that is, a system is constructed

as a stack of protocols.

STABLE

FC

XFER

MERGE

MBRSHIP

FRAG

FAST

TOTAL

COM

NAK

Figure 2.2: Horus Protocol Stack

Figure 2.2 gives an example of a Horus protocol stack. Conceptually, Horus protocols

can be stacked at runtime like Legotm blocks. In this figure, the functions of the protocols

are the following. COM provides unreliable communication over a low-level network of

choice, such as ATM or Ethernet. NAK provides FIFO ordering using sequence numbers,

FRAG provides fragmentation and reassembly of large messages, and MBRSHIP handles

membership changes in a manner that guarantees virtual synchrony. FAST optimizes

the transportation of messages from the application to the network by allowing these

messages to bypass some of the underlying layers, both on the way from the application to

the network and from the network to the application. This facility is used to improve the

performance of communication during normal operation when no membership changes

are occurring. TOTAL guarantees total order for messages sent within a group. STABLE

provides information about message stability, where a message is stable if it has been

received by every group member. FC implements flow control. MERGE locates group

members by periodically sending a broadcast message in each partition. XFER implements

state transfer for a process joining a group and the state merge that occurs when two

partitions of the same group are joined. A large number of other protocols exist, including

ones that implement clock synchronization, remote procedure call, message logging, and

encryption.

The composition model is strongly motivated by that of x-kernel [RB95], with the

issue of the limited interface between protocols being addressed by expanding the standard

interface to 16 downcalls and 14 upcalls. Examples of downcalls are cast for multicasting

a message, send for sending a message to a subset of group members, view for installing

a new group view, merge for merging two views, and join for requesting addition to a

specified group. Examples of upcalls are CAST for receiving a multicast message, SEND

for receiving a message sent to a subset of members, LEAVE for leaving a group, VIEW

for installing a new view, and JOIN REQUEST for requesting to join a group. Note that,

although all these calls are not of interest to all protocols, every protocol must support them
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since the operations are part of the standard interface. Also, while the standard interface

syntactically allows protocols to be stacked in any order, most protocols require certain

semantics from protocols below, imposing a partial order on the possible configurations

[RHB95].

2.1.2.3 ANSA

ANSA (Advanced Networked Systems Architecture) is a software architecture for building

distributed systems [Her89, Tea91, Her94]. ANSA provides a general computational

model that defines how objects in a distributed system are specified and how objects

interact. It also defines a set of services, such as communication, transaction, and security

services, that an implementation of the ANSA model has to provide to the application

designers. The ANSA model simplifies the construction of fault-tolerant applications by

providing replicated servers and transactional techniques. ANSA supports customization

of services by defining a collection of transparency services that hide different aspects of

the distributed execution environment from the application, thereby making it easier to

write applications. The transparency services defined by ANSA are the following:

� Access transparency hides the difference between accessing a local server and a

remote server.

� Location transparency hides the physical location of clients and servers, enabling

their physical location to change between invocations.

� Migration transparency hides the effect of servers moving between machines while

interacting with clients.

� Concurrency transparency hides the effects of concurrent calls from several clients

being processed at a server at the same time.

� Failure transparency hides the effects of partially completed interactions that fail,

i.e., provides failure atomicity; builds on mechanisms that guarantee all-or-nothing

semantics for interactions and replication.

� Replication transparency hides the difference between replicated and nonreplicated

clients and servers.

The transparency services in ANSA are not standalone building blocks such as the

modules in some of the configurable services discussed so far. However, a given trans-

parency can be added to an application level service by replacing the original service by a

new service that includes the chosen transparency [Tea91]. Some mechanisms provided

by ANSA, such as replication and transactions, make it easier to construct services en-

hanced with the chosen transparencies, but in general, the transparencies are not provided

as configurable modules that could be combined with any arbitrary service. An approach
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resembling the ANSA approach is described in [Bec94]. Here, a separate software layer

completely hides the fault-tolerance aspects from applications.

2.1.2.4 Adaptive Parallel Real-time System

Configurability and adaptability are explored in the context of reliable parallel and dis-

tributed real-time systems in [BS91, SBB87]. The goal is to build systems that change

their structure, both offline and during operation, to maintain good performance in re-

sponse to such events as failures and changes in request latencies and utilization. A

prototype implementation of the system has been constructed that places special empha-

sis of parallel execution of the underlying communication protocols [LAKS93]. In this

model, a protocol consists of a set of protocol objects, each of which performs an isolated

protocol processing task. Objects communicate with each other by asynchronous invoca-

tions implemented as messages delivered via shared memory mailboxes. Protocol objects

cooperate in the processing of protocol packets. Due to parallelism, several operations

may be in progress at the same time. For instance, an outgoing user packet may be in the

process of being encrypted by the encryption object, while the sequence numbers for the

packet are being computed by the reliability object. Any object can communicate with

any other object, so the model does not restrict the relationship of the objects in any sense.

In the following, we refer to this model as the object/message model.

Several extensions to the prototype have been proposed. In particular, to accommodate

adaptability, the connections between objects may be changed at runtime. For example,

a new object, say C, may be placed between two existing communicating objects, say A

and B. After this addition, messages sent by A will go to C instead of B. Also, to improve

efficiency, a synchronous form of object invocation is proposed, where the caller thread

actually executes the called method of another object, instead of using asynchronous

invocations that are implemented using mailboxes. However, the system still has certain

limitations. First, because the objects do not share state, some operations, such as clearing

all information concerning a particular message, becomes complicated. Furthermore, for

the same reason, if one object holds information useful for some other object, the only

way to acquire this information is by means of message passing, which is slower than

if data was shared. Second, if the number of processors is smaller than the number of

simultaneously active objects, the cost of context changes reduces system performance.

Finally, although the communication between objects is reconfigurable, only existing

communication can be redirected and it can only be directed to one object unless extra

“multicast” type objects are added.

2.1.2.5 Group Communication Framework

A modular framework for group communication systems is proposed in [Gol92]. The

framework has four fixed components: application, message delivery, message ordering,
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and group membership. Each component may have different implementations. For exam-

ple, different ordering components can implement different variations, such as unordered,

FIFO, causal, and total order. In this framework, the four components communicate

though three predefined shared data structures: a message log, a timestamp summary, and

a group view. The message delivery component implements a multicast communication

service that exchanges messages with other group members. It writes incoming messages

to the message log and maintains summary information of messages sent and received

(timestamp summary) that can be used by the message ordering component. The group

membership component maintains the set of group members in the group view data struc-

ture. When membership changes, this component communicates with the membership

components of other group members. The message ordering component ensures that

messages are presented to the application according to some ordering. This component

also processes outgoing messages so that the matching components of other members

have enough information to order messages properly. The framework components and

their interactions are illustrated in Figure 2.3.
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Figure 2.3: Group Communication Framework

Two applications of the framework are also presented in [Gol92]: a bibliographic

database (Refdbms) and a distributed host reliability monitor (Tattler). These applications

have different requirements for reliability and ordering of communication. All elements

of the general framework are not explicitly present in all implementations. For example,

in Tattler, no explicit message log is implemented because the message delivery and

ordering components can work directly from the database that maintains the host reliability

information. Therefore, it appears that the group communication framework is more of a

conceptual framework than an actual implementation framework.
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2.1.2.6 Arjuna

The Arjuna system provides tools for constructing reliable distributed object-oriented

applications [SDP91]. Arjuna is based on the object/action paradigm [Gra86], where

applications are structured as atomic actions operating on persistent objects, i.e., objects

that survive site crashes. Arjuna is implemented using C++, and uses the inheritance

mechanism provided by the language extensively. The distribution and replication of

objects is hidden from applications by having a stub generator generate communication

code. This code performs operations on remote objects through a remote procedure

call (RPC) protocol. The protocol employs multicast, thereby allowing the invocation of

operations on replicated remote objects. The layer that provides multicast also implements

multicast groups, including operations that permit processes to join and leave groups.

AtomicAction LockManager Lock AbstractRecord

StateManager

User defined
Classes

User defined
Locks

LockRecord RecoveryRecord

Figure 2.4: Arjuna Class Hierarchy

Mechanisms needed for constructing reliable distributed applications are presented to

users of Arjuna as objects. A predefined class hierarchy, shown in Figure 2.4, specifies sys-

tem services such as atomic actions and locks, which can be manipulated using operations

like any other object [Whe89]. New classes can be defined as derived classes of existing

ones, thereby inheriting the properties of the parent class. Arjuna provides a service,

called the ObjectStore, for storing objects persistently. The StateManager class provides

the interface to the ObjectStore, which means that objects from all classes derived from

StateManager can be stored in the ObjectStore. If a new derived class of StateManager

is created, the only additions required to make the class persistent or recoverable are to

implement operations for saving and restoring the object state. Concurrency control for a

new class can be provided simply by deriving the new class from the LockManager class.

Operations on a class can be made atomic by using the operations of the AtomicAction

class.

Arjuna is configurable in the sense that it provides a set of services out of which

different application classes can choose the required ones. Furthermore, customized

versions of services, for example locks, can be defined as derived classes of the existing

service classes.
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2.2 Other Configurable Systems and Services

In this section, we examine configurability in areas other than fault-tolerant distributed

computing, including networking, operating systems, file systems, and database systems.

Naturally, configurability has been addressed in other areas as well, but these are most

closely related to our own work.

2.2.1 Networking

Extensibility and configurability have a traditional role in the computer networking field.

Communication software has typically been viewed as consisting of logical layers, each

of which builds on the layers below and adds functionality or properties to the service. An

example of this view is the ISO OSI model [DZ83], which, although just a specification,

is a good example of modular design of such services. In this model, lower levels

are typically implemented in hardware, while higher levels are implemented in one or

more software modules. The main emphasis of the OSI model is interoperability and

configurability is mostly limited to choosing some execution parameters. Other projects

in the communication field have taken more interest in configurability in addition to

modularity.

The x-kernel is a system for constructing networking subsystems [HP91, OP92]. As

discussed in the context of Consul (section 2.1.2.1), the x-kernel supports hierarchical

composition of communication protocols, such as the standard Internet protocols IP,

TCP, and UDP, where each protocol is implemented as an independent module. A

communication service is constructed at compile time based on a specification in the form

of a directed acyclic graph called a protocol graph. The nodes of the graph correspond to

protocols and the edges represent communication paths between protocols. That is, if a

protocol A sends a message to its peers using protocol B, then there is an edge from A to

B. All x-kernel protocols implement a standard x-kernel uniform protocol interface (UPI).

The UPI means that any combination of protocols is possible syntactically, but semantic

requirements of the protocols restrict the configurability considerably. The x-kernel makes

modular implementations efficient through the use of techniques such as having one thread

carry a message through the protocol stack to avoid context switching and optimized data

structures for message headers to avoid copying. The x-kernel work has demonstrated

that modular implementation can be efficient. For example, user-to-user communication

latency in the x-kernel has been shown to be much less, often less than half, than that of

Unix on identical hardware [HP91].

The Adaptive system [SBS93] proposes a configurable and adaptive framework for

building communication protocols for applications like multi-media that have special

requirements for quality of service. The model used by Adaptive is based on dividing

the communication service into functions, with each function being implemented by a

chosen protocol. A logical communication connection between application level entities, a

session, is divided into four functions: connection handling, remote context management,
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error protection, and transmission control as illustrated in Figure 2.5. Each of these

functions has a slot in the communication service that can be filled with a number of

different protocols for each logical session. For example, transmission control can be

implemented using a sliding window, stop and wait, or rate-based control protocol. A

function slot can also be filled with so-called composite components, which are a structure

for binding more than one modules together to execute the function in question. In the

figure, the error protection function is implemented with a composite component that has

slots for protocols for error detection, error recovery, and error reporting. Configuration is

based on automatic selection of library modules that satisfy user requirements—expressed

either at compile time or during execution—and the status of the underlying network. The

work has also been extended to support construction of configurable network daemons

[SS94].
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Figure 2.5: Session Configuration in Adaptive

2.2.2 Operating Systems

Several research projects in the area of operating systems are based on the premise that tra-

ditional operating system structuring limits the performance, flexibility, and functionality

of applications. For example, [CFL94] demonstrates that application-level control of file

cashing reduces application running time by 45%. Similarly, application-specific virtual

memory policies increase application performance [HC92, KLVA93], while exception

handling is an order of magnitude faster if the signal handling is deferred to applications

[TL94]. Therefore, configurability and extensibility of both the abstractions provided by

the operating systems and their implementations have recently been the targets of active

research efforts.



44

The Synthesis system [PMI88] was one of the first projects to explore configurability

and extensibility in the context of operating systems. Perhaps the key contribution of

Synthesis is its use of optimization techniques from the area of dynamic code generation

in its kernel design. Such techniques can produce efficient executable code since they

can take advantage of the extra information in the runtime execution context. For exam-

ple, frequently executed kernel calls can be regenerated at runtime using compiler code

optimization ideas such as constant folding and macro expansion. Synthesis, therefore,

is an example of adjusting or configuring the implementation to improve performance

without modifications to the high-level operating system abstractions provided for the

applications.

Recently, the work on configurable operating systems has concentrated on adjusting

the operating system abstractions to fit the specific needs of application [CL95]. In the

following, we take a closer look at a number of these projects. Numerous others, such as

Choices [CJK+87, CIM92], the Kernel Tool Kit (KTK) [GMSS94, MS96], Kea [VH96],

and Apertos [Yok92, Yok93, TYT92, IY94], are not addressed here.

The SPIN operating system is based on an extensible microkernel [BCE+94, BSS+95].

The microkernel exports interfaces that offer applications fine-grained control over a few

fundamental system abstractions, such as threads and virtual address spaces. SPIN is

extensible in that application programs can install code sequences called spindles that

execute in the kernel in response to hardware and software events, such as exceptions,

interrupts, and context switches. Thus, the microkernel only provides the mechanisms for

managing the system resources, not the policies. Spindles define the application-specific

management policies, and also enable each application to define the precise interface and

implementation for kernel services they require. Installing spindles at the kernel level

allows for flexible and rapid response to system software and hardware events. Flexibility

is achieved in large part because spindles have direct access to kernel data structures,

a feature that is made safe by automatically verifying spindles before installation. The

verification is based on the spindle programming language being type-safe and object-

oriented. Thus, traditional type checking can ensure that spindles only invoke legal

operations. Additionally, kernel operations made available to spindles can be guarded

with a predicate expression that must be true for access to be legal. Rapid response time

is achieved because spindles are part of the kernel and therefore do not require switching

between kernel and user modes.

The Exokernel operating system architecture takes the approach of moving the physical

resource management to the application level, thereby making it easy for each application

to modify the resource management to best satisfy its requirements [EKO94a, EKO94b,

EKO95]. The design of Exokernel is based on the argument that abstraction overhead

is the root of inefficiency in most modern operating systems. Therefore, its goal is to

eliminate all abstractions from an operating system and allow applications to craft their

own. A minimal operating system kernel, called an exokernel, securely multiplexes

available hardware resources. In particular, it provides operations only for secure binding

of resources to the application, visible resource revocation, and an abort protocol that can
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be used by the exokernel to break secure bindings of uncooperative applications by force.

The traditional operating system services are provided in an application-level library.

The V++ operating system is based on the abstraction of a cache [CD94]. Unlike con-

ventional operating systems, where a cache is used to store memory data, the abstraction

is extended in V++ to store operating system objects, such as threads and address spaces.

The Cache Kernel is the kernel of the V++ operating system, and acts as the cache that

stores these objects. For example, a thread is made available for execution by loading it,

along with the associated address space objects, into the Cache Kernel, which will execute

it. Unlike conventional operating systems, the Cache Kernel does not fully implement all

the functionality associated with address spaces and threads. User-level application ker-

nels provide the management functions required for a complete implementation, including

the loading and writeback of these objects to and from the Cache Kernel. Therefore, the

application kernels implement application-specific versions of typical operating system

services, such as scheduling, exception handling, and memory management. Scheduling

can be implemented by choosing which threads to load and unload from the Cache Kernel,

and by setting the execution priorities of threads. A page fault, an example of exception

handling, is handled by the application kernel associated with the faulting thread load-

ing a new page mapping descriptor into the Cache Kernel as a part of a cached address

space object. The application kernels also provide backing store for the object when it

is unloaded. As a result, an application kernel has total freedom in selecting memory

management policies, such as which pages are written to disk and which are kept in the

application kernel memory. A number of standard application kernels are provided for

different types of applications, but a customized kernel can be constructed if desired.

Scout, a communication oriented operating system, is based on the concept of a

path, which is the extension of a network connection into the host operating system

[MMO+94a, MMO+94b, MP96]. Scout makes the path its primary abstraction, with

resource allocation, scheduling, and fault isolation done on a per-path basis. Thus, an

application using Scout can associate with a given path all the resources—CPU, memory,

bus, and cache—necessary to provide the same quality of service as provided by the

network connection to which it is attached. Although the primary goal of Scout is good

performance, configurability is also an important aspect, for two reasons. First, Scout must

be able to support various forms of communication devices, such as network cameras,

portable devices, and multicomputers. Second, Scout must be able to support different

communication requirements, such as varying degrees of reliability, security, mobility,

and real time. Scout is the successor of the x-kernel and, as such, preserves its hierarchical

composition model.

2.2.3 File Systems

Traditional file systems have been found limiting in many application areas, a problem that

configurability or extensibility could greatly alleviate. For example, the poor performance

of traditional file systems for database applications has forced many database systems to



46

bypass the file system and implement their own storage system directly on the physical

devices [Sto81, Mos86]. Traditional file systems are also less than ideal for multimedia

applications. In particular, multimedia requires high I/O throughput rates and quality of

service guarantees such as constant minimum data rates not typically provided by file

systems [AOG92]. Typical file systems also do not support easy addition of new services,

such as compression or encryption [HP94]. Many of these problems have been addressed

in research projects that study configurable or extensible file systems.

The stackable file system described in [HP94, HP95] allows the system to be aug-

mented with new properties by adding layers to an existing file system. Examples of

new layers might be encryption, compression, selective file replication, extended direc-

tory services, remote access, undo, undelete, or better support for transactions. Although

the approach is called stackable, often the layers are organized in a hierarchical, but not

necessarily linear, manner. The two major goals of the project are ease of configurability

and extensibility. Configurability is easy if the interface between all layers is standard,

meaning that there are no syntactic restrictions to how layers are configured. However, to

support extensibility, a layer must have the ability to define new operations. For example,

the layer implementing the undo operation must be able to make this operation available

to the application and to have it pass unchanged through all other layers. The approach

chosen is to have an extensible standard interface, where a layer typically just passes

through operations that it does not support.

The extensible file system described in [KN93] addresses the same issues but takes a

slightly different approach. This file system is designed for the Spring operating system,

which is a distributed, multi-threaded operating system built using objects and interface

inheritance. The file system is an object in Spring and its interface specifies the operations

that the file system supports. The Spring file system stacking architecture enables new

file systems to be added that extend the functionality of and build on existing file system

implementations. This is achieved by adding new layers to the system, where each layer

inherits the file system interface, and therefore presents the standard file system functions

to the user. The implementation of each layer is written using the underlying file system.

Unlike the stackable file system, all layers have an identical interface, and therefore, it is

not possible to add new file operations.

The configurable mixed-media file system described in [Maf94] is another approach

to configurability in file systems. This system is configurable in two different aspects.

First, features such as the file replacement and space-allocation policies can be changed.

Second, a variety of storage organization forms—for example, replicated storage, storage

hierarchies, and striped storage—can be configured using a command language. The

attribute mixed-media describes the file system’s ability to integrate different media types,

such as RAM, hard disks, and CD ROMs, into a virtual storage. This file system is not

based on augmenting existing file systems with additional layers, but on defining storage

devices using an object-oriented class hierarchy. The base class Storage implements the

common core functionality of a storage device, so that any device-specific file system can

be implemented as a derived class of Storage. Thus, implementing a new file system only
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requires defining three device-dependent methods: one to compact a storage region, and

two to read and write data. Furthermore, the default policies provided by the Storage

class, such as the replacement policy for determining when a unit of data will be moved

to a secondary, slower, storage device, can be replaced by writing a new policy within the

derived class.

2.2.4 Database Systems

Many important database applications, such as statistical databases, CAD and engineering

databases, textual databases, and databases for artificial intelligence, are not well served

by traditional database technology [BBG+88]. Although specialized databases have been

developed for these different application areas, exploiting configurability is an appealing

alternative. Here, we outline two different configurable or extensible database systems.

Numerous others, including Postgres [SR86], Starburst [SCF+86], Exodus [CD87], Gral

[Gut89], Ream [KNKH89], and P2 [TB95], are not addressed here.

The RAID system [BFHR90] has been used to study adaptive concurrency control.

RAID is configurable in the sense that six components—the user interface, action driver,

access manager, atomicity controller, concurrency controller, and replication controller—

provide a choice of algorithms for implementing their functionality. For example, the con-

currency control component implements timestamp ordering, two-phase locking, generic

timestamp ordering, generic locking, and a generic optimistic algorithm as options for

concurrency control.

Genesis [BBG+88] supports fast construction of complex and customized database

systems from prefabricated components in libraries. New components can be added to

the libraries, making the system extensible. A system is constructed as a hierarchical

composition of components in predefined realms [BO92]. These realms range from those

that define access methods and physical record allocation to those that define data models

and their data access languages and query processing components. Realms are typed, with

the type system restricting how components can be combined, as follows. Notation “t:T”

means that component t belongs to realm T and “x[y: T1, z: T2]:T” means that component

x (of realm T) takes two parameters, y of realm T1 and z of realm T2. This notation can

also be seen as denoting a hierarchical composition, where component x is built using

components y and z. Note that if a component has a parameter of the same realm as the

component itself, any number of these components can be combined in any order. For

example, x[y:T]:T and a[b:T]:T can be combined as x[a] or a[x[a]]. A component in this

hierarchy can be replaced by any component of the same realm.

2.3 Characterizing the Approaches to Configurability

In the configurable systems described above, we can identify two major approaches to

how a system is divided into configurable modules and how the modules are combined:
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� Hierarchical: A system is constructed as a stack or a directed graph of protocols or

other modules.

� Function-based: A fixed number of system functions are identified and different

variations of these are implemented as configurable modules; a system is constructed

by choosing a module for each function.

In the hierarchical approach, different variants of a service are constructed by stacking

chosen protocols in a given way. The constraints that restrict how different protocols

can be combined are based primarily on what a protocol assumes about the underlying

protocols. Often, new protocols may be inserted between two protocols in the stack

without any change in the existing protocols, or the order of two protocols may even be

exchanged. Examples of this approach are the x-kernel, Consul, Horus, Genesis, and the

stackable file systems.

In the function-based approach, a configurable service consists conceptually of a

service backplane with openings, or slots, for the system functions, and a set of modules for

each function. Construction of a service instance is strictly constrained by the backplane:

each module can typically only be used for one slot and all the slots in the backplane

must typically be filled. The interactions between functions, including who interacts with

whom and the type of the interaction, are typically hardwired in the backplane. Examples

of this approach are Adaptive, RAID, the group communication framework [Gol92],

and most of the configurable operating systems. A good example of this approach is

the concurrency control function in RAID, which can be implemented using different

predefined or user-implemented modules.

The object/message model [LAKS93] and class-hierarchy based models like Arjuna

and the configurable mixed-media file system [Maf94] can be viewed as somewhat gener-

alized versions of the function-based approach. In the object/message model, the operation

of the system is divided into functions, each of which is implemented by an object that

interacts with other objects using messages. Unlike in the basic function-based approach,

it is possible to install new objects between two communicating objects and redirect

communication between objects. In class-hierarchy based models, different parts of the

system operation are encapsulated in object classes, with variants being implemented as

derived classes. A system or service is then constructed by choosing the right variants of

the required objects. If the existing set of classes is not satisfactory, new classes can be

implemented as derived classes of existing ones.

Another classification of configurable systems can be based on the type of interface

between modules, that is, whether modules are required to support the same standard

interface or whether each module type has an individual interface. If all the modules

export identical standard interfaces, it is possible to combine syntactically any set of

modules. This approach is taken in Consul, Horus, and the x-kernel. Alternatively, each

module can export an individual interface that reflects the semantics of the module. An

example of this approach is Genesis, where the interface of modules in each realm is
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identical but may differ between realms. Other examples are the function-based systems,

since each module typically has a function-specific interface and can therefore only be

used in one slot. A few systems, such as the stackable file system [HP94], support

an extensible standard interface, which would fall somewhere between the two general

approaches.

2.4 Conclusions

The different configurable services discussed in this chapter illustrate the different ap-

proaches taken to configurability. Most of these approaches can be characterized as being

hierarchical or function-based. Both of these general approaches have their limitations.

Hierarchical composition restricts the interactions between modules, thereby limiting

configurability and making it more difficult to design and implement highly configurable

services. Furthermore, hierarchical composition tends to impose a performance penalty

because a message must typically traverse each protocol, even if it does not process the

message. In the function-based approach, it is often impossible to divide the operation

into functions so that the functions correspond to individual properties, and it is often

difficult to add new functions. Furthermore, a fine grained system division, which allows

good configurability, may lead to many of these functions being filled with null modules

that can cause overhead.

Although there has been a considerable amount of work on configurability in different

areas of computing, the use of configurability in fault-tolerant distributed systems has

been limited. The most notable exceptions are Consul and Horus, both of which have the

general limitations of hierarchical models. This dissertation introduces a new approach

to constructing configurable services that is particularly appropriate for distributed fault-

tolerant services. This approach, which is based on a two-level system view combined

with event-driven execution of fine-grained micro-protocols, is hierarchical only on the

system level, where a system is constructed from services. On the service level, where

a service is built from modules implementing abstract properties, the model is neither

hierarchical nor function-based. In the following chapters, we describe our approach in

detail and apply it to different distributed fault-tolerant services.
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CHAPTER 3

CONSTRUCTING CONFIGURABLE DISTRIBUTED SERVICES

This chapter describes in detail our approach to constructing configurable distributed

services. As outlined in chapter 1, the approach is based on a two-level view: a system

is constructed of services, with each service being composed of modules that implement

the abstract properties of the service. Since services can be combined using traditional

hierarchical methods, this aspect is not addressed here. Instead, the emphasis is on

constructing the individual services out of fine-grained modules using the event-driven

execution model.

Existing Services

Service Abstraction

Properties of Service

Service Abstraction

Micro-protocols

Configurable Service

ImplementationIdentify

Properties

Figure 3.1: Construction of Configurable Services

Our approach starts with identifying the abstract properties or execution guarantees of

a service and ends with a configurable implementation as illustrated in Figure 3.1. This

chapter is structured around this process. First, we present an approach to specifying

service properties based on message ordering graphs and identify relations between prop-

erties that dictate which combinations are feasible. Second, we describe the event-driven

execution model, including the basic concepts of events and micro-protocols. Third, we

outline the use of the event-driven model for constructing a configurable service, including

the design steps involved in implementing properties as micro-protocols and the relations

between micro-protocols that affect configurability. Fourth, to demonstrate the feasibility

of the approach, we discuss the requirements for implementing the event-driven model and

briefly describe three prototype implementations that have been used to experiment with

different configurable services. Finally, we compare our approach to other approaches

for constructing configurable fault-tolerant services and mention some related work on

event-based systems.
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3.1 Properties of Services

The first step in building a configurable service is to identify service properties that might

be of interest to the users of the service. The goal is to divide the abstract service—that

is, the union of all variants of the service that have been defined—into abstract properties.

Forming a consistent set of such properties from existing service implementations is a

nontrivial task, for several reasons. One problem is that properties are often described in

terms of a particular implementation strategy and may be difficult to translate into more

abstract properties. In essence, an algorithm is often designed first, and then the exact

properties of the algorithm are determined. Another problem is that numerous different

methods and terminology are used for describing properties. In the following, we introduce

an implementation-independent technique for defining properties of services. In chapter 4,

properties of existing membership services that have been defined using various notations

are uniformly specified using this technique.

3.1.1 Specifying Properties using Message Ordering Graphs

The following notation is used in the rest of this dissertation unless otherwise stated.

Capital letters A, B, C, : : : are used to denote sites. Small letters with a subscript, for

example a
i

, are used to indicate the ith message sent by site A. S denotes the set of all

sites and M the set of all messages.

In our model, an application (or a higher level service) interacts with the underlying

services only through messages that are passed in either direction across the interface.

This is illustrated in Figure 3.2, where the underlying service on each site is seen as a

black box from the application’s point of view, and the only interface to this black box

are messages sent and received. As a result, the only way to define properties for the

underlying services is in terms of what messages are delivered to the application, in which

order they are delivered, when they are delivered, how the messages and their order relate

to events such as failures and recoveries in the system, and how the set of messages,

their order, and delivery time relate to one another on different sites. For example, a

requirement that messages be ordered FIFO between two sites means that the messages

sent by a site A are constrained to be delivered to the application at any other site B in

the same order as they were sent. This property sets a constraint on the order in which

messages are delivered to the application at the receiving site based on the order in which

they were sent by the originating site. Similarly, a requirement that messages be delivered

in total order at all sites in a group constrains the delivery order on A to be identical to the

delivery order on any other site B. Finally, a requirement that message transmission time

be bounded by some � constrains the delivery of a message sent at some global time t
1

to occur at some global time t
2

such that t
2

� t

1

< �.

Let P be a set of properties implemented by a given service. As noted above, P can be

stated in terms of constraints that must be true for the sequence of messages delivered to

the application at the various sites involved in the computation. These properties can be
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Figure 3.2: System Model

conveniently defined and illustrated using temporal logic formulas over message ordering

graphs. Informally, the message ordering graph for a site A at time t is an abstract

representation of all messages that have been received at A by time t and the ordering

constraints between these messages. In essence, the graph represents all possible orders

in which messages can be delivered to the application on A and still satisfy P .

Formally, a message ordering graph is a directed acyclic graph, G = (N;E), where

the set of nodes, N , is a set of messages and the set of edges, E = f(m

i

; n

j

)jm

i

; n

j

2 Ng,

is the set of ordering constraints between messages. If O is an ordering graph, N(O)

denotes the set of nodes and E(O) denotes the set of edges. If (m

i

; n

j

) 2 E, then m

i

is

called an immediate predecessor of n
j

, pred(n
j

) for short, and n
j

is called an immediate

successor of m
i

, succ(m
i

) for short. If there is a directed path of edges connectingm
i

and

n

j

, denoted by m

i

! n

j

, we say m

i

is a predecessor of n
j

and n

j

is a successor of m
i

,

PRED(n
j

) and SUCC(m
i

) for short, respectively. The meaning of the edges is that in order

for P to be satisfied, any message m
i

can only be delivered to the application after all its

predecessors have been delivered.

O

A

denotes the ordering graph at site A, while the set of ordering graphs from all

sites at any given point of an execution is denoted by �. Essentially, � is a forest of the

ordering graphs of the individual sites. The state of O
A

at real time t is denoted by O
A

(t).

Similarly, � at time t is denoted by �(t).

The basic ordering graph only reflects the set of messages and their possible delivery

orders. In some cases, the actual order in which messages are delivered to the application

or the actual time when the delivery occurs is of interest. For this purpose, define event

del

A

(m) to denote the event of messagem being delivered at siteA. Symmetrically, define

send

A

(a

i

), or send(a
i

) for short, to be the event of the application on A sending message

a

i

. Furthermore, define time(event

i

) to be a function that returns the time t at which

event

i

occurs. Note that t is not a timestamp generated by the system—i.e., the result of

reading some real time clock—but rather a time as seen by an external observer that is

used only for specification purposes. If an event has not occurred, time is undefined.

Given these definitions, properties can be defined in terms of how they affect ordering
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graphs. Formally, a property is defined by a set of constraints on nodes and edges in

a collection of ordering graphs, and how those nodes and edges relate to other system

events. For example, a FIFO ordering property for a reliable multicast where every site is

assumed to receive every message can be expressed as:

8 A;B : i 2 [1;1[ : (b

i

; b

i+1

2 N(O

A

))) ((b

i

; b

i+1

) 2 E(O

A

))

This property specifies an ordering constraint for the graphs in� that must hold at all times

across all executions. While the FIFO property can be stated in terms of a single ordering

graph, most other properties relate ordering graphs from multiple sites. Let a
i

! b

j

2 O

A

indicate that there is a path of length� 1 from message a
i

to message b
j

in ordering graph

O

A

. Then, for example, a consistent total order in a reliable multicast system can be stated

as:

8 A;m

i

; n

j

: (m

i

; n

j

2 N(O

A

))) (((m

i

! n

j

) 2 O

A

) _ ((n

j

! m

i

) 2 O

A

))

and

8 A;B;m

i

; n

j

: ((m

i

! n

j

) 2 O

A

)) 2((n

j

! m

i

) 62 O

B

)

where 2 is the temporal operator denoting “henceforth”. Again, these formula must hold

for � across all executions.

Given the formal definitions, we can reason about the properties. For example, it may

be possible to show for some properties p
i

; p

j

; and p

k

that p
i

= p

j

^ p

k

or that p
i

) p

j

.

These propositions can sometimes be proven based on rules of temporal logic, but in

general we use reasoning over executions. Let s be a system, e
s

be an execution of s, and

SYS be the set of all systems. Let sat(e; p
i

) be true if property p
i

is satisfied for execution

e and false otherwise. Then, in term of executions, we can state p
i

) p

j

as

8 s 2 SYS 8 e

s

: sat(e

s

; p

i

)) sat(e

s

; p

j

).

ix

x i

x i

x i jy

Potential i    message from site X
th

th
i    message from site X

jy Edge between messages

Path between messages

Figure 3.3: Ordering Graph Notation



55

Message ordering graphs are also used to illustrate graphically the various properties

based on the notation outlined in Figure 3.3. Figure 3.4 illustrates FIFO and total order

properties using this notation. In the figure, we assume an underlying reliable multicast

mechanism, so the ordering graphs are identical at each site. Note, however, that although

the ordering graphs are identical for FIFO, the order in which messages are actually

delivered to the application at sites A and B may differ while still satisfying the ordering

constraints. For example, A may deliver the messages in order a
1

, a
2

, a
3

, b
1

, b
2

, b
3

, while

B delivers them in order a
1

, b
1

, a
2

, b
2

, a
3

, b
3

. The only requirement is that a message

be delivered after its predecessor(s), so messages between which there is no ordering

constraint can be delivered in any order.

b
1

b
2

b
3

a1

a2

a3

b
1

b
2

b
3

a1

a2

a3

a1

b
1

a2

a3

a1

b
1

a2

a3

Site A       Site B Site A Site B

Figure 3.4: FIFO and Consistent Total Order Multicasts

Note that ordering graphs are only one method for defining, describing, or illustrating

properties of distributed systems. Another approach, used for example in [RB91], is

based on describing system behavior by process histories, where the history for process

p is a sequence of events including send events, receive events, and internal events. A

system run is a set of process histories, one for each process in the set of processes.

Properties are defined in terms of temporal logic formulas over these histories. It would

be possible to define the properties of services in this manner but we choose to use

ordering graphs due to their more illustrative nature. Also, in contrast to process histories,

ordering graphs model more closely the execution of the system and allow the expression

of all legal orderings of message receptions in one graph instead of stating them as

properties of linear histories. Numerous other methods are also possible. For example, in

[RFJ93] membership properties are stated in terms of membership runs, which are defined

as sequences of global membership states consisting of each site’s view of the global

membership. Transitions from one global membership state to the next occur whenever

a site changes its view of the global membership. This approach is less comprehensive

than ordering graphs, since it does not address the ordering of membership changes with
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respect to sending and receiving of application messages.

Finally, note that the concept of a graph of messages is very appealing as an im-

plementation tool as well. For example, this technique is closely related to the causality

graphs used in Psync [PBS89] and Transis [ADKM92b], which capture the causal ordering

relation between messages.

3.1.2 Relations between Properties

Examining existing implementations of a service results in a set of properties for each

implementation. That is, the properties of the implementations I
1

, : : :, I
n

can be stated as

conjuncts of properties, as follows:

I

1

= p

1

1

^ p

2

1

^ p

3

1

^ : : :

I

2

= p

1

2

^ p

2

2

^ p

3

2

^ : : :

: : :

I

n

= p

1

n

^ p

2

n

^ p

3

n

^ : : :

Let P = fp

1

; p

2

; : : : ; p

m

g be the set of all the different properties guaranteed by I
1

, I
2

,

: : :, and I
n

. This set of properties can be normalized by eliminating redundant properties

p

i

such that p
i

= p

j

^ p

k

. The set can also be expanded if desired by introducing new

properties relative to those in existing implementations. For example, it is often possible

to find some new property p

0 such that for p
i

, p
j

2 P : p

i

) p

0

) p

j

. Of course,

the inclusion of a new property should be determined by its practical value for realistic

applications.

Relations between properties dictate which combinations of the properties in P are

possible. We identify three basic relations:

� Conflict: con(p
i

; p

j

), 8 s 2 SYS 9 e
s

: :sat(e

s

; p

i

) _ :sat(e

s

; p

j

)

That is, two properties conflict when no system can guarantee both p
i

and p
j

for all

executions.

� Dependency: dep(p
i

; p

j

), 8 s 2 SYS 8 e
s

: sat(e

s

; p

i

)) sat(e

s

; p

j

)

That is, one property p

i

depends on another p
j

when satisfying p

i

requires that p
j

also be satisfied; in other words, there is no way to satisfy p
i

without p
j

.

� Independence: ind(p
i

; p

j

), :con(p

i

; p

j

) ^ :dep(p

i

; p

j

) ^ :dep(p

j

; p

i

)

That is, two properties are independent if they do not conflict and neither one

depends on the other.

The dependency relation is transitive and asymmetric, whereas conflict and independence

relations are symmetric but not transitive.
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These relations determine, in essence, the set of feasible combinations, C, of any two

properties p
i

and p
j

:

� ind(p

i

; p

j

): C = fp

i

; p

j

; p

i

^ p

j

g.

� dep(p

i

; p

j

): C = fp

i

^ p

j

; p

j

g.

� con(p

i

; p

j

): C = fp

i

; p

j

g.

Naturally these rules generalize to any number of properties.

Independence is the key to maximizing configurability of the resulting service. Of-

ten, two properties are naturally independent or they can be redefined so that they are

independent. For example, in an atomic broadcast service, timeliness and the ordering

properties are by nature independent. On the other hand, the ordering properties of atomic

multicasts—for example, FIFO, causal, and total—are not naturally independent of atom-

icity, but can be made so by allowing gaps in the orders. Whether this redefinition has any

practical justification depends, of course, on the projected applications of the service.

3.1.3 Dependency Graphs

Dependency graphs are a graphical method for recording and expressing the preceding

relations between properties. A dependency graph is a directed, not necessarily acyclic,

graph where each basic node represents a property and each edge a dependency. In

addition, unlabeled choice nodes that encapsulate two or more nodes are provided to

represent choice of properties. Specifically, the basic relations are graphically represented

as follows:

� dep(p

i

; p

j

): an edge from p

i

to p
j

.

� con(p

i

; p

j

): p
i

and p
j

are included in a choice node.

� ind(p

i

; p

j

): p
i

and p
j

are not included in the same choice node, and no path connects

p

i

and p
j

.

Dependency graphs are simplified by omitting transitive dependencies. For example, if p
i

depends on p
j

and p
j

depends on p
k

, then the transitive edge from p

i

to p
k

is omitted.

A dependency graph represents relations between properties, and therefore all possible

legitimate combinations of properties. Figure 3.5 shows a simple dependency graph

and lists all possible combinations of the properties. In the figure, nodes P1, : : : , P7

represent properties, with P5, P6, and P7 being in a choice node because they conflict.

For a simple graph such as this one, it is straightforward to enumerate the possible

combinations manually; for larger graphs, the process is easily automated. Here, there

are 16 possible combinations even though the properties in the figure have a reasonable

number of constraints. Obviously, for 7 different properties, the maximum number of

different combinations would be 27 = 128.
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P4

P3
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P1

P1

P1 P2

P1 P3

P1 P4

none P1 P2 P3

P1 P4 P6

P1 P2 P4

P1 P2 P7

P1 P2 P3 P5

P1 P2 P4 P5

P1 P2 P3 P7

Legal combinations:

P1 P3 P5

P1 P4 P5

P1 P2 P4 P7

P1 P2 P4 P6

Figure 3.5: Dependency Graph

3.2 Event-Driven Execution Model

Analyzing services gives property definitions and a dependency graph that summarizes

the relations between properties. In this section, we introduce an event-driven execution

model that can be used to implement these properties as configurable modules.

3.2.1 Overview

In our model, each service is implemented by a software module called a composite pro-

tocol, which is composed of fine-grained modules called micro-protocols that implement

abstract properties of the service. The composite protocol provides an event mechanism

and shared data structures that enable micro-protocols to co-operate. A micro-protocol

consists of local data structures and a collection of event handlers, where an event handler

is a procedure that implements an action upon the occurrence of an event. An event can

be any status change in the system, such as the arrival of a message from the underly-

ing network. Some events, such as message arrivals, are predefined meaning that every

composite protocol supports these events. Others are defined by the designer to best fit

the service in question and the interaction requirements of its micro-protocols. Figure 3.6

summarizes this two-level view of system composition.

The components of the model can be defined more precisely as follows. The syntactic

elements of a micro-protocol are defined as a tuple

Mp = (Eh;MpInit; Ld;MpArgs);

where Eh is a set of event handlers, MpInit the initialization code that is executed when

an instance of the micro-protocol is created, Ld the set the local variables accessible only

from the event handlers and the initialization code of this micro-protocol, and MpArgs the

arguments the micro-protocol is passed when created. Similarly, a composite protocol is

defined as a tuple
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Figure 3.6: Two-Level View of System Composition

Cp = (Mp;Gd;Ev; Inter; CpInit; CpArgs);

where Mp is the set of micro-protocols, Gd the set of global data structures accessible

from all micro-protocols, Ev the set of events defined for this composite protocol, Inter the

service interface of the composite protocol, CpInit the initialization code of the composite

protocol that, for example, creates chosen micro-protocols and initializes global data

structures, and CpArgs the arguments that the composite protocol is passed when created.

The interface Inter defines and implements the operations that the service exports. A

customized composite protocol for a given service is created by defining the Gd, Ev,

CpInit, Inter, and CpArgs elements.

Event handlers are bound to events by a registration operation that specifies that the

handler is to be executed when the event occurs. The binding can also be deleted, in

which case the handler is not invoked upon subsequent occurrences of the specified event.

Furthermore, a handler can be bound to none, one, or several different events. Therefore,

the state of a micro-protocol or a composite protocol at any given time t can be defined as

a tuple that include the bindings at that time:

Mp(t) = (Eh;Ld;MpInit;MpArgs;MpBind(t));

Cp(t) = (Mp;Gd;Ev; Inter; CpInit; CpArgs;CpBind(t));

where MpBind(t) specifies the mapping from the event handlers of a micro-protocol to

events at time t and CpBind(t) specifies the mapping from each event to the handlers

registered for the event at time t.

This approach is depicted in Figure 3.7. It illustrates a composite protocol, which

contains a shared data structure—in this case, a graph of messages. The boxes to the
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Figure 3.7: A Composite Protocol

left represent micro-protocols, while to the right are some common events with the list of

micro-protocols that are to be invoked when the event occurs.

Given their importance in the model, we now describe events and event-related oper-

ations in more detail.

3.2.2 Events

An event is defined by a call to the runtime system specifying its name, event handler

arguments, and optional event attributes. An event can be defined with two types of

attributes. First, execution attributes are used to specify that the execution of the handlers

associated with the event is to be sequential or concurrent. In the sequential case,

handlers are executed one by one in specified order. In the concurrent case, handlers

are executed logically in parallel so that each handler can make independent progress.

Second, invocation attributes are used to specify that handler invocations associated with

the event are to be blocking or non-blocking. In the blocking case, the invoker blocks until

all handlers registered for the event have completed execution. In the non-blocking case,

the invoker continues execution without waiting for execution of the handlers to complete.

In particular, the invoker can continue execution even if a handler blocks, and the handlers

can begin execution even if the invoker blocks.

Figure 3.8 illustrates the logical flow of control at the time an event is invoked using

different combinations of event attributes. In the figure, the thicker line represents execu-

tion of the code that invokes the event, dots the invocation time, thinner lines the execution

of event handlers bound to the event, and dotted lines execution being blocked.

Event attributes support different programming situations that arise when writing

micro-protocols. For example, sequential execution allows an event handler to be written

knowing that some other handler has already been executed. Concurrent execution is

useful if a handler can block to ensure that other handlers are able to make progress.
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Sequential blocking Sequential non-blocking Concurrent blocking Concurrent non-blocking

Figure 3.8: Effects of Event Attributes

Blocking invocation provides a convenient method for the invoker of an event to know

when all the handlers registered for the event have been executed. Conversely, a non-

blocking invocation ensures that the invoker is able to continue execution in spite of a

handler blocking.

If an event attribute is left unspecified, the implementation of the event-driven model

can choose the way invocations are handled and handlers executed. In particular, handlers

may be executed sequentially in any order, logically in parallel by separate threads, or

physically in parallel on a multiprocessor. In most systems, implementing events as

blocking and sequential has the lowest overhead and therefore is the default.

Events are invoked either by the runtime system or by micro-protocols. The predefined

events indicating, for example, the message arrival from a service above or below, are

typically invoked by the runtime system. Other, user-defined events, are invoked by the

micro-protocols.

The execution model is multi-threaded, i.e., several events may occur concurrently

and several event handlers may be executing at the same time. If two or more events

are invoked at approximately the same time, the relative execution order of handlers is

unspecified. We do assume, however, that execution is fair in the sense that a handler that

is eligible for execution is eventually executed. Note that execution of an event handler is

not assumed to be atomic, that is, the scheduler may switch from one handler to another

in the middle of execution.

3.2.3 Operations

We define five operations for handling events; these are used throughout the rest of

the dissertation. An actual implementation of the event-driven model may define these

operations slightly differently or only use a subset of the operations:

� define(event name, arg types, ev attr). Defines an event event name and the types

of the arguments arg types passed to the event handlers upon occurrence of the

event. The optional event attributes ev attr can be used to specify the event as
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concurrent or sequential, and blocking or non-blocking, using keywords CONC,

SEQ, BLOCK, and NON-BLOCK, respectively.

� trigger(event name,arguments). Notifies the runtime system that event name has

occurred. The runtime system then executes the appropriate handlers, passing

arguments as invocation parameters.

� register(event name, event handler name, priority). Notifies the runtime system

that event handler name is to be executed when event name is triggered. If the

event is sequential, the handlers are executed in order according to the optional

priority parameter.

� cancel event(). Instructs the runtime system to cancel further event handler invo-

cations associated with the same event occurrence that caused the operation to be

invoked. This operation is useful mostly for sequential events.

� deregister(event name,event handler name). Notifies the runtime system to re-

move the association between event name and event handler name.

The last two operations, cancel event and deregister, are useful for dynamically altering

handler execution. For example, assume that one micro-protocol m
1

has a handler

registered for the event corresponding to message arrival from the network, and that

another micro-protocol m
2

filters out corrupted messages, messages send by unknown

senders, or replicated messages. Now, if m
2

has an event handler registered for the same

event but with a higher priority than m
1

, m
2

can filter out chosen messages by executing

the cancel event operation. In this manner, different filtering micro-protocols can be

configured into the composite protocol without the knowledge of m
1

or any changes to its

code.

Similarly, the deregister operation is a very convenient and efficient way of handling

state changes in a micro-protocol. For example, micro-protocols typically have different

behaviors for different phases of system execution, such as startup, recovery from a failure,

normal operation, and shutdown. During these different phases the micro-protocol might

want to be notified of different events. This can be accomplished by registering the

appropriate handlers at the beginning of a phase and then using deregister when these

events are no longer of interest or when the handler must be changed. This potential

to register and deregister handlers dynamically makes it possible for the minimal set to

be registered at any given time and often allows code that tests whether this event is of

interest in the current phase to be omitted. This feature is elaborated upon in chapter 8,

where it is exploited to implement adaptive systems.

Finally, the model supports also a TIMEOUT event that is triggered by the passage

of time. In this case, the priority parameter in the register operation is used to denote

the time interval after which the specified handler is to be executed. Event handlers are

usually persistent in the sense that they are invoked every time the specified event occurs
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until they are explicitly deregistered. The one exception is that handlers registered for

TIMEOUT are executed only once and then implicitly deregistered.

Figure 3.9 gives a pseudo-code outline of a micro-protocol illustrating its main com-

ponents.

define(EVENT A,Type1,BLOCK);
define(EVENT B,Type2,SEQ);
: : :

micro-protocol Protocol1(args: Type3) f
var : : : local data structures : : :

event handler HandleA(args: Type1) f
: : :code of event handler : : :

g

event handler HandleB(args: Type2) f
var par: Type1;
: : :

trigger(EVENT A,par);
: : :

g

initial f
register(EVENT A,HandleA)
register(EVENT B,HandleB,1)
: : : rest of initialization code : : :

g

g

Figure 3.9: Micro-Protocol Outline

3.3 Constructing a Configurable Service

The analysis of service properties and the resulting dependency graph give the starting

point for the design of a configurable service, while the event-driven execution model

provides the necessary tools. Actual design and implementation is still difficult, however,

and certain design decisions can affect the configurability and performance of the resulting

service. In this section, we review the design goals and describe steps in a design process

that allow properties and their dependency graph to be transformed into events, shared

data structures, and micro-protocols. In a manner analogous to properties, we define

relations between micro-protocols that affect which combinations of micro-protocols

result in a properly functioning service. A configuration graph is used to describe these

relations, and as such, serves as a tool to facilitate the construction of properly working

configurations.
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3.3.1 Design Goals

The design of a configurable service has two major goals, to minimize execution overhead

and to maximize the degree of configurability. The execution overhead is the performance

difference between a monolithic implementation of a service and a configurable implemen-

tation that provides equivalent guarantees. The degree of configurability is the number of

different functional configurations of a service given a set of micro-protocols. As already

noted, the maximum degree of configurability is defined by all possible combinations of

properties in the dependency graph.

The design of the micro-protocols comprising a service can impact the performance

overhead of a service considerably. Although the goal is to implement each property as

an individual micro-protocol, for efficiency reasons micro-protocols cannot be designed

in isolation from one another. For example, if the implementation of property p
i

requires

a site to send a message to every other site and the implementation of property p

j

has

the same requirement, the implementations should only send one message, possibly with

separate fields for p
i

and p

j

. Furthermore, redundant work in different micro-protocols

should be avoided by having only one do the work, with the others utilizing those results.

This can be accomplished, for example, by making the result available as global data and

using events to notify other micro-protocols about its availability.

Note that, in principle, the maximum degree of configurability can be achieved by

implementing each combination of properties as a separate monolithic program. Although

this approach may result in more efficient implementations, the work associated with

writing all these possibly hundreds of combinations is impractical. Our approach is to

minimize the amount of code to be written by reusing modules in different configurations

while aiming for a high degree of configurability.

3.3.2 Design Process

Typically, three different steps can be identified in the design of a configurable service:

selection of a general implementation strategy, algorithm design, and micro-protocol

design. These steps, outlined below, will be illustrated further in chapter 5 for membership

and in chapter 7 for remote procedure calls. Note that sometimes services traditionally

considered separately, such as reliable ordered multicast and membership services, may

be so interrelated that it is more convenient to implement them together in one composite

protocol. Typically, this is the case if some properties in each of the services have

dependencies to properties in the other service.

Existing implementations of the service often provide good alternatives for the general

implementation strategy. For example, many problems in distributed computing have

coordinator-based and decentralized solutions. Issues to be considered in the selection

include ease of implementation, efficiency in terms of number of messages or execution

time, and applicability of the strategy to the underlying computing environment. For

example, a broadcast based strategy may not be the best choice if the underlying network

does not provide hardware broadcast facilities.
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Given a general strategy, the second step provides the algorithms used to guarantee

the various properties. At this point, algorithms can be designed in isolation, except that

knowledge about relations between properties can be used to simplify the design. For

example, if property p

1

depends on property p

2

, the implementation of p
1

may assume

that p
2

is guaranteed. Small details of the algorithms may be omitted here, since the

important information are the general steps in the algorithm execution, the messages used,

and required data structures.

Micro-protocol design translates the algorithms into co-operating micro-protocols

that preserve configurability, while maximizing efficiency by reducing redundant work

and messages. Often, some of the work required by a large number of micro-protocols

can be encapsulated in so-called base micro-protocols that do not directly implement an

abstract property, but rather make it easier to implement the property micro-protocols.

Events and shared data structures for the composite protocol are also chosen here.

3.3.3 Configuring a Custom Service

Like their underlying properties, micro-protocols cannot be combined in arbitrary ways.

Here, we identify relations between micro-protocols that affect configurability and in-

troduce configuration graphs to describe these relations and aid in the construction of

operational service configurations. Such graphs are similar to dependency graphs, but are

based on physical software implementations rather than abstract properties.

Relations between Micro-Protocols

We can identify four relations between micro-protocols. Let imp(m; p) denote that

micro-protocol m implements property p, where p may be a combination of properties,

e.g., p = p

i

^p

j

. Similarly, letm
1

+m

2

denote a service configured from micro-protocols

m

1

and m

2

. As was the case with properties, conflict and independence are two of the

relations between micro-protocols, with definitions as follows:

� Micro-protocols m
1

and m

2

conflict if they cannot be configured into the same

system, which may be the result of the corresponding properties conflicting or

design decisions made during the implementation.

� Micro-protocolsm
1

and m
2

are independent if m
1

can be used without m
2

, m
2

can

be used without m
1

, and m

1

and m

2

can be used together, where the combination

guarantees both the properties implemented by m
1

and m
2

.

The third relation between properties, dependency, is divided when considering micro-

protocols into separate relations called dependency and inclusion. To motivate this,

consider two properties p

1

and p

2

such that dep(p
1

; p

2

). Based on the definition of

dependency between properties, any system that guarantees p
1

must also guarantee p
2

.

While sufficient for abstract properties, in an implementation it is useful to identify two

possible ways in which this can be achieved. First, we could implement m
2

such that
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it realizes p
2

, imp(m

2

; p

2

), and then implement p
1

as micro-protocol m
1

that builds on

the guarantees made by m

2

. This means that for m
1

to operate correctly, m
2

must

also be present in the system, i.e., only the combination of micro-protocols m
1

and m

2

implements p
1

, imp(m

1

+ m

2

; p

1

). This approach preserves the dependency that exists

between properties as a dependency between micro-protocols. The second alternative is

to implementm
1

such that it implements both properties directly, imp(m

1

; p

1

^p

2

), while

m

2

is implemented to only realize p
2

. This approach creates micro-protocols m
1

and m
2

where m
1

is strictly stronger than m
2

. In this case, we say that m
2

includes m
1

.

The choice of implementation approach and the resulting relation between the micro-

protocols is based primarily on convenience. Often, the implementation of property p

1

cannot take advantage of property p

2

being satisfied, even though the properties have a

logical dependency relationship. In this case, it is usually simpler to implement p
1

so

that p
2

is satisfied directly, independent of the implementation of p
2

. A good example

is causal message ordering, a property that depends on the FIFO ordering property. In

this case, the knowledge that messages are already FIFO ordered does not simplify the

implementation of causal order, so it is easier to implement causal order independent of

FIFO. As a result, the relation between the respective micro-protocols is an inclusion

relation. In other situations, the implementation of a property can take advantage of the

guarantees provided by some other micro-protocol. For example, the implementation

of message ordering properties can exploit an atomicity micro-protocol that ensures that

all sites will eventually receive every message. This leads to the dependency between

properties being preserved as a dependency between micro-protocols.

The definitions and practical implications of dependency and inclusion relations for

micro-protocols are as follows:

� Micro-protocol m
1

depends on micro-protocol m
2

if m
2

must be present in the

configuration of a service and operate correctly in order for m
1

to provide its

specified service. In practice, this means that if m
1

is to be configured into a

service, m
2

must be configured in as well.

� Micro-protocolm
1

includes micro-protocolm
2

ifm
1

implements a property strictly

stronger than that implemented bym
2

without relying onm
2

being configured in the

service. In practice, this means that m
1

and m

2

would be redundant if configured

together into a service.

Configuration Graphs

Configuration graphs are a graphical method of representing configuration constraints

caused by relations between micro-protocols in much the same way that dependency

graphs represent relations between properties. In this graph, nodes represent micro-

protocols, directed edges the dependency relation, node inclusion the inclusion relation,

and unlabeled choice nodes the conflict relations. The configuration graph should also

identify the minimal set of micro-protocols required to implement the service. This can be
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Figure 3.10: Configuration Graphs

done either by grouping together the minimal set of micro-protocols or by having a virtual

User micro-protocol with dependency edges to those micro-protocols that are required to

implement a minimal service.

Figure 3.10 illustrates these different concepts, where nodes labeled M1 to M11

represent micro-protocols. Figure 3.10(a) illustrates that micro-protocol M1 depends on

M2. In 3.10(b), M3 is included in M4, with both depending on M5. In 3.10(c), M6

depends on M8, which is included in M7; since M7 includes M8, M8 can be replaced by

M7 without affecting M6. Finally, in 3.10(d), M9 depends on a choice of two conflicting

micro-protocols, M10 and M11. All these structures can be generalized to any number of

micro-protocols.

USER

M5 M6

M4

M3

M2

M1

M7 Legal combinations:

M1  M2  M3

M1  M2  M4

M1  M2  M3  M5

M1  M2  M4  M5

M1  M2  M4  M6

M1  M2  M3  M7

M1  M2  M4  M7

Figure 3.11: Example Configuration Graph

A configuration graph can be used as a tool for configuring customized services.

The designer of a service first decides which properties are required and identifies the

micro-protocols that implement those properties in the configuration graph. These micro-

protocols are then included in the configuration, along with all micro-protocols on which

the chosen ones depend. Any micro-protocol may be replaced by one that includes the

original one. Only one micro-protocol from each choice node may be chosen and no

micro-protocol m
1

, such that micro-protocol m
2

is in the configuration and m

2

includes
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m

1

, may be chosen. The configuration graph can be used to generate and enumerate all

possible different combinations of the micro-protocols.

Figure 3.11 illustrates an example configuration graph. In this graph, every configu-

ration has to have micro-protocols M1 and M2, and M3 or M4. Other micro-protocols,

M5, M6, and M7, are optional additions. In spite of the large number of conflicts and

dependencies, the total number of operational configurations is 7.

3.4 Implementing the Event-Driven Model

3.4.1 Overview

The event-driven execution model can be implemented relatively easily as a collection

of library routines in most multi-tasking systems using any programming language with

function pointers and light-weight threads. For example, C or C++ on a Unix platform

with a lightweight thread package is quite adequate. If the chosen programming language

supports function pointers, event handlers can simply be implemented as functions and

the event operations, such as register and deregister, reduce to keeping track of pointers

to these functions. Light-weight processes, threads, or co-routines that share an address

space make it easy to implement the full event semantics. For example, concurrent

events can be implemented by creating a separate thread for each handler to be executed.

Naturally, limited forms of the model can be implemented without concurrent threads. For

example, sequential blocking events can be implemented using only ordinary procedure

calls. Here, we provide an overview of three prototype systems that support this model.

3.4.2 SR Prototype

Initial experimentation was done using the SR concurrent programming language [AO93,

AOC+88] in the context of a reliable ordered group oriented multicast service [HS93]. In

this prototype, each logical site hosting members of the multicast group is implemented

as an SR virtual machine. A composite protocol is implemented as an SR resource, an

object that contains local variables, procedures, and processes, and exports operations for

use by other resources. The multicast composite protocol resource exports operations to

the protocols above and below for transmitting messages up and down the protocol stack.

In our experiments, each simulated site consists of three composite protocols: one that

implements the multicast service, one that simulates the underlying unreliable network,

and one that simulates the application. The latter two were degenerate composite protocols

and did not implement full event handling.

An event handler in the prototype is simply a regular SR procedure. Association of an

event handler with a named event is done by invoking a register operation with a capability

(i.e., pointer) to the procedure as argument. The composite protocol resource maintains

a table containing this event/handler association. Event handlers are triggered using the

normal SR invocation mechanism; as a versatile concurrent programming language, SR

supports operations for concurrent and sequential function calls, as well as blocking and
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nonblocking calls. In fact, these SR facilities served as inspiration for the different event

attributes in the event-driven model.

The SR prototype does not provide explicit syntactic constructs for implementing

micro-protocols. Rather, all micro-protocols, their event handlers, local data structures,

and initialization sections, are simply placed together within the composite protocol

resource. This means, of course, that all variables are shared and all names, including those

of event handlers, are global. Problems such as name conflicts could be avoided by keeping

the set of names used by different micro-protocols distinct. Different configurations of

the service are created by copying the required micro-protocol sections into the composite

protocol resource code.

Message transmission failures and machine failures are only simulated in the prototype.

The network protocol simulates message transmission failures. Specifically, a multicast

to N receivers is implemented by N point-to-point messages, so the program uses a

probability distribution to decide if a particular point-to-point message will be transmitted

or not. Simulating transmission failures turns out to be useful because with very large

failure probabilities (0.2–0.5/transmission), short simulations are often sufficient to bring

up interesting failure scenarios. Since SR does not allow virtual machines to be deleted,

site failures have to be simulated in a more subtle way. In particular, such failures are

simulated by having a shared variable, named status, indicate the status of the site as

operational or failed. A failure is then simulated by the application protocol setting the

variable to failed. When this occurs, the network and multicast protocols on that logical

site cease forwarding messages, and are terminated along with the application protocol.

To simulate recovery, the protocols are recreated following some specified time interval.

The SR prototype does not include all the features of the event-driven model as

presented in this dissertation. In particular, the prototype does not support the deregister

and cancel event operations and does not allow the execution of event handlers to be

ordered based on priorities. In particular, event handlers can only be ordered by changing

the order in which the register operations occur. This proved tedious and provided the

inspiration for including provisions to order the event handlers explicitly. Not having a

language construct for micro-protocols is also a drawback and led to unintended name

conflicts. Despite these shortcoming, the prototype was sufficient to suggest that this

approach could be successfully used to build highly configurable services.

3.4.3 The x-kernel Prototype

The event-driven model has also been implemented as an extension of the x-kernel. This

implementation augments the x-kernel’s standard hierarchical object composition model

with the ability to internally structure protocol objects. The result is a two-level model

in which selected micro-protocols are first combined with a standard runtime system,

or framework, to form a composite protocol. This composite protocol, whose external

interface is indistinguishable from a standard x-kernel protocol, is then composed with

other x-kernel protocols in the normal hierarchical way to realize the overall functionality
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required of the system. An initial prototype of the runtime framework has been completed,

with a number of micro-protocol suites currently under development. Initial experiments

with a group RPC micro-protocol suite show modest execution overhead [BS95]. The

prototype executes on DecStation 5000/240s connected by a 10 Mbit Ethernet network

running the Mach operating system. Details of this implementation can be found in [BS95,

Bha96].

3.4.4 C++ Prototype

A prototype of the event-driven execution model has also been implemented using C++.

The implementation of the model itself consists of approximately 1000 lines of code and

uses the Sun Solaris operating system’s thread package to implement event handling and

other control aspects of the runtime system. Currently, the multiple sites of a distributed

architecture are simulated within a single address space, although the code for all the

micro-protocols and much of the runtime system would carry over unchanged to a true

distributed implementation using C++. Using a simulated environment as an initial step

has, of course, numerous advantages. For example, it facilitates rapid prototyping of

micro-protocols since it is easier to execute test runs and collect results. It also makes it

possible to control execution parameters to a degree not possible in a real system, including

the number of sites, the message transmission times, and failure rates.

The prototyping environment is divided into three major portions that implement the

application, network, and service layers, respectively. The application is simulated by

class User, which generates application messages and receives messages from lower

layers. In most of our experiments the User class is very simple—a few hundred lines of

code—but could be of arbitrary size depending on the complexity of the application. One

object of this class is created for each site in the simulated system.

The network is simulated by class Network, which implements the abstraction of

an unreliable point-to-point and multicast communication medium. Network simulates

the concurrency of a real distributed system by creating for each simulated site a separate

thread that carries a copy of a message from the network to the service layer. Furthermore,

Network implements a short transmission delay and generates communication failures by

deciding for each message and destination whether or not to deliver the message based on

random number generation. Network partitions are simulated by maintaining a table that

specifies the partition for each site, so that a message from a given site is only delivered

to a destination if it resides in the same partition. This table can be altered at runtime to

simulate the creation and joining of partitions. The Network class is relatively simple,

consisting of approximately 350 lines of code. A single Network object is created for

each simulation.

The bulk of the prototype code is concentrated in the service layer. This layer includes

the implementations of composite protocols and micro-protocols as C++ classes Com-
positeProtocol and MicroProtocol, respectively, and the service-specific micro-

protocols and composite protocols. CompositeProtocol contains the runtime system



71

of composite protocols, implementing the event-driven execution model and providing

such operations as the registering and deregistering of events. It also implements the

interactions with the layers above and below, such as providing operations for those layers

to transfer messages to this layer. This class also contains the code that triggers predefined

events. MicroProtocol is the base class from which the micro-protocols implementing

the properties of the specified services are derived. This allows micro-protocols to be dealt

with as uniform objects whenever possible. Appendix A gives a more detailed review of

these base classes.

Each service such as RPC or membership is implemented as a derived class of Com-
positeProtocol by defining the service-specific events, shared data structures, and

initialization. Typically, a service-specific composite protocol can be defined in a few

hundred lines of code. The bulk of the code in each service is in the micro-protocols,

each of which is typically from 50 to a few hundred lines of code. For example, in the

membership service implementation described in chapter 5, the micro-protocols and their

data structures make up about 7000 lines of code. In the experiments run so far, the service

layer consists of one service-specific composite protocol class, an instance of which is

created for each simulated site.

The system model provided by this prototyping environment is an asynchronous

system where sites experience crash failures. The prototyping environment uses time

provided by the system clock to model the progress of time, which is required, for

example, for TIMEOUT events. This makes communication and computation in the system

asynchronous since there is no guarantee with respect to the system clock time as to when

a message will reach its destination or when an enabled event handler will be executed.

The prototype could be made synchronous or even real-time by simulating the progress

of time instead of using the system clock. Site crash failures are simulated by shutting

down all micro-protocols in a controlled manner and zeroing out appropriate global data

structures. Recoveries are simulated by recreating the micro-protocols objects. System

startup is distinguished from recovery by the runtime triggering events STARTUP EV and

RECOVERY EV, respectively, after the micro-protocol objects have been created.

The prototype has been used to implement the membership, system diagnosis, and

group RPC services described in chapters 5, 6, and 7, respectively.

3.5 Conclusions

This chapter has outlined our approach to constructing configurable services and described

the tools: the event-driven model, and message ordering, dependency and configuration

graphs. We also discussed implementing the event-driven model and briefly described

three prototype implementations. The rest of the dissertation is devoted to applications

of this model and examples that further illustrate how the approach and the tools can be

applied.

Our approach is different from the existing approaches to customization described

in chapter 2, with the main differences being the flexibility of the event-driven model
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and the emphasis on customization based on abstract properties. Compared to hierar-

chical approaches such as Consul and Horus, our approach simplifies the design and

implementation by preserving the natural, often non-hierarchical, interaction patterns be-

tween micro-protocols. Moreover, it distinguishes between services and micro-protocols,

thereby allowing the service interfaces to be small and service-specific, while providing

maximal configurability within a service. Hierarchical approaches can also suffer perfor-

mance penalties caused by the large number of layers, leading into ad hoc solutions, such

as the FAST protocol in Horus that by-passes portions of the protocol stack. Compared to

function-based approaches such as Adaptive and Raid, our approach is more flexible and

more extensible. In function-based approaches, dividing the operation of a service into

specific functions makes it difficult to make configurable modules correspond to abstract

properties and, in particular, the addition of new properties may require changing the di-

vision. Furthermore, a fine-grained, highly configurable, functional division may result in

most configurations needing “null” modules that are only required to fill the function-slots

but do not do any useful work. Finally, although a monolithic implementation can provide

different variants of a service based on compile or runtime flags, a modular approach such

as ours typically results in a more compact executable and an implementation that is easier

to understand, to debug, and to extend with new properties.

Finally, it should be pointed out that event-based approaches have been used exten-

sively to describe protocols and, to some extent, implement them. For example, an x-kernel

protocol can be seen as an event-driven entity with handlers for events such as push, pop,

open, and close. Recent work also includes event services [GJS92, SB95, MSS96],

event-based programming [Ous96], and an event-based structuring approach where an ap-

plication is constructed by customizing a standard framework with user-supplied handlers

[Lew96]. Examples of this approach are Java AWT [Yu96], Taligent’s CommonPoint

[Tal96], and NeXT’s OpenStep [Ne94].



73

CHAPTER 4

PROPERTIES OF MEMBERSHIP SERVICES

It is vital to maintain information about which computers are functioning and which have

failed at any given time to build dependable distributed applications. This is often called

the membership problem. A distributed service that maintains consistent information at

all sites about the membership of a group of machines or, equivalently, processes is called

a membership service, while the algorithm or implementation that realizes the service

is called a membership protocol. Different variants of membership services are utilized

for various purposes in computing, such as monitoring processors on a multiprocessor,

sites in a token ring or bus, computers in a distributed computing system, processes in a

distributed application level process group, or any other object or entity.

Membership services have proven to be fundamental for constructing systems and

applications. The existing work can be classified based on the assumptions about the

system model. In particular, some membership services assume a synchronous system

where bounds are placed on network transmission time [Cri91, KGR91, KG94, EL90,

LE90, SCA94], whereas other assume an asynchronous system where no such assumption

is made [MSMA94, MAMSA94, DMS94, DMS95, EL95, AMMS+93, MPS93a, RB91,

SR93, ADKM92a, GT92, RFJ93, Bir85a, SM94, BDM95, CS95]. Distinctions can also

be made based on the failure model. A majority of the work is based on the assumption

that only crash failures will occur, while [Rei96] is based on the Byzantine failure model.

Furthermore, system diagnosis [PMC67], which deals with the problem of detecting faulty

processors, is closely related to membership. System diagnosis assumes a failure model

where faulty processors can be detected by executing a test program on the processor

[BMD93, BP90a, BGN90, BB91, BP90b, BB93, LYS93, Pel93, WHS95].

The different membership services provide a wide variety of different properties,

ranging from ones that offer weak properties [RFJ93, GT92, Hil95] to others that guarantee

strong properties [BSS91, AMMS+95, DMS95]. The tradeoff is the strength of the

guarantee versus the execution cost. For example, the property called virtual synchrony

[BJ87] guarantees that messages reflecting membership change events are delivered to

the application by the membership layer at every site at precisely the same point in the

message stream. While making it easier to program many applications, virtual synchrony

has an implementation cost in terms of extra messages and execution time, and also

restricts the degree of concurrency between processes. As a result, other services have

been implemented that offer properties that have smaller implementation cost and allow

more concurrency, but at the expense of providing weaker guarantees for the application

programmer. As might be expected, the semantics of the application has a strong influence



74

on the type of membership protocol needed: some require strong properties, while others

will execute correctly with something weaker.

Despite the above efforts, little has been done to examine the abstract properties im-

portant to membership independent of a given implementation. In this chapter, we attempt

to rectify this shortcoming. We identify and specify these properties, and characterize

relations between them using the message ordering graphs and dependency graphs that

were introduced in chapter 3.

The advantages of developing an understanding of membership’s constituent prop-

erties are numerous. For example, it helps clarify the structure and semantics of such

services, which by their very nature are one of the most complicated, but also one of

the most important, services in a distributed system. It also helps differentiate existing

services, thereby assisting the distributed system developer in the choice of which is most

appropriate for a given situation. Perhaps most importantly, it also facilitates the design

of new services in which only those properties actually required by an application are

included. Finally, it also forms the basis for constructing a configurable membership

service, which will be outlined in chapter 5.

4.1 System Model and Notation

A membership service can be viewed as a protocol layer that generates membership

change messages indicating changes in membership and forwards them to higher levels.

Membership can be characterized in terms of any entity in a distributed system for which

current status information is required, such as processes in a process group, processors, or

larger entities such as entire computing systems. Here, sites are assumed to be the entity

of interest, so that membership change messages refer to such events as site failures and

recoveries within a specified group of interest. We use the term group member to refer to

an unspecified site within this group.

An application can use the information in membership change messages in many ways.

For example, it can be used to direct multicast messages to the current membership as seen

by the application, to choose a leader of the group, or to make various decisions about the

global state of the computation. Given this view, the properties of a membership service

can be defined in terms of what membership change messages it generates and when they

are delivered to the application with respect to other messages and real time [HS95].

Figure 4.1 illustrates the logical system structure. The communication and mem-

bership services add application and membership change messages, respectively, to the

ordering graph. Although we separate them here logically, in practice the two compo-

nents are often tightly interrelated, with dependencies between them. The communication

component is responsible for realizing the required properties of the application level

communication between group members. Some properties of membership services can

be implemented without considering the form of the communication service, but most—

especially properties involving ordering membership change messages with respect to



75

Application

(Unreliable) Point-to-point or Multicast Communication 
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Communication

Service

Figure 4.1: System Structure

application messages—require that application communication be based on reliable or-

dered multicasts that guarantee that every message is delivered by all functioning sites

in some consistent order. The responsibility of the membership service is to guarantee

that membership change messages appear in the ordering graph when and where they are

supposed to according to the properties specified.

Given this structure, we specify a number of properties of membership services based

on how these properties are reflected in message ordering graphs as defined in chapter

3. In our model, each site’s lifetime consists of initial startup, followed by any number

of alternating failures and recoveries. Each period during which a site is operational is

identified by an incarnation number, which is assumed to be unique over the lifetime of

a site. When required, the incarnation r of site A is denoted by A

r

. Special membership

change messages F (A
i

) and R(A

j

) are used to denote the failure (of incarnation i) and

recovery (of incarnation j) of site A, respectively.

We augment the definitions of ordering graphs in chapter 3 by defining the concepts

of view and membership. Define the view of the ordering graph at site A, view
A

, to be

the set of messages that have been delivered to the application on A. Thus, the relation

between message delivery event del
A

(m), defined in chapter 3, and a view is:

8 m 2 M : del

A

(m), m 2 view

A

Note that in the above, del
A

(m) is used as a predicate. Such a predicate evaluates to

false until the event occurs and to true afterwards. The view at some real time t, denoted

view

A

(t), is defined to be the set of messages delivered on that site by time t.

We define the membership seen on site A, mem

A

, to be a set of sites (including the

incarnation numbers) that site A considers to be members in the group at the time. This

set can be formally defined using the del
A

(m) event:

(del

A

(R(B

i

)) ^ :del

A

(F (B

i

))), B

i

2 mem

A

Figure 4.2 illustrates the additional graphical notation used in this chapter.
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F(A) Failure of site A. R(A) Recovery of site A.

M(A) Status change (failure or recovery) of site A

I
Subgraph I of messages, internal structure undefined.

Figure 4.2: Ordering Graph Notation for Membership Service

4.2 Properties

In the following, we specify a number of properties of membership services based on how

these properties are reflected in the ordering graphs on different sites. First, we address

accuracy, liveness, and confidence properties, followed by agreement, ordering, startup

and recovery, and partition handling properties.

4.2.1 Accuracy, Liveness, and Confidence Properties

Accuracy and liveness deal with reporting a change in status of a group member, either

from functioning to non-functioning (failure), or from non-functioning to functioning

(recovery). An accurate membership service is one that reports a change only if the

change has indeed occurred (i.e., no false detections), while a live membership service is

one that is guaranteed to report all changes eventually [BG93]. A special case of liveness

is bounded liveness, where the failure or recovery is reported within a known bounded

time.

Accuracy and liveness can be defined more formally in terms of ordering graphs. Let A

andB be arbitrary sites and letFailure(B
i

) andRecovery(B
i

) signify events corresponding

to incarnation i of site B failing or recovering, respectively. Then, a membership service

is live if it guarantees that

Failure(B

i

)) 3(F (B

i

) 2 N(O

A

)) ^ Recovery(B

i

)) 3(R(B

i

) 2 N(O

A

))

where 3 is the temporal operator denoting “eventually”. Note that in order for the

definition to be satisfied, site A has to either not fail before receiving the membership

change message or recover and upon recovery be notified of the change. The case of

bounded liveness can be defined similarly, except that the membership change message

for a change occurring at time t
1

must be delivered by some time t
2

such that t
2

� t

1

< �,

where � is a known constant. Likewise, a membership service is accurate if it guarantees

that

Failure(B

i

) _ (F (B

i

) 62 N(O

A

)) ^ Recovery(B

j

) _ (R(B

j

) 62 N(O

A

))
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The liveness and/or accuracy of a membership service depends on the characteristics

of the two steps involved in the process. That is, for a membership service to be live or

accurate, it must first be able to detect a change in a live or accurate manner, and then be

able to report the change on every site in a live or accurate manner. The change detection

provides a local suspicion of a change, whereas the reporting of the change typically

requires that some type of agreement is reached on the suspected change.

The change detection phase can be live, accurate, or both depending on the system

model and the algorithm used. In asynchronous systems, it is impossible to have change

detection that is both live and accurate [CT91, FLP85]. An example of an accurate

detection that is not live is that of Mach, where the failed site notifies others about

its own failure upon recovery [OIOP93]. Most membership services for asynchronous

systems have chosen live but not accurate detection, for example, Isis [BSS91] and Consul

[MPS93a]. The lack of accuracy in such systems comes from the use of timeouts to suspect

the failure of a site, a technique that may trigger false suspicions. To deal with potentially

inaccurate decisions, suspected sites that have in fact not failed are often isolated from the

group and forced to fail and then recover before continuing execution. In synchronous

systems, change detection based on timeouts is both accurate and live. Note, however,

that a synchronous system is an abstraction that is maintained only as long as the bounded

delivery time assumption is not violated. As a result, if this assumption is violated, a

change detection algorithm that is intended to be live and accurate will lose its accuracy

characteristics. This scenario is acknowledged and handled, for example, in the design of

Mars [KGR91]. Although, in principle, it would be possible to have a change detection

that is neither accurate nor live, in this chapter we only consider change detection that is

at least live or accurate.

Typically, given an accurate detection, membership services do not generate spurious

membership changes during the agreement phase, so accuracy is preserved. However,

live detection is necessary but not sufficient to guarantee live service. For example, the

membership protocol in Isis [RB91] that uses live detection based on timeouts has been

shown not to be live in all situations [ACBMT95]. In synchronous systems, membership

services are typically accurate and live [Cri91, KGR91].

In membership services in which change detection is inaccurate, the level of confidence

indicates how certain it is that the suspected change has actually occurred. The typical

way to increase confidence is to compare information from different sites before making

a final decision. Thus, different levels of confidence can be defined by specifying how

many sites must agree that a suspected change has occurred before a change indication

is forwarded to the application. The possibilities range from a single site [RB91, RFJ93,

SM94] to all functioning sites [MPS92]. In the following, single site suspicion is used

to denote the former and consensus the latter. Any option between these two extremes

is referred to as a voted decision. In general, the use of voted decisions has not been

explored widely in the context of membership services. One exception is [Rei96], where

voting is used to handle Byzantine failures.
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Note that detecting failure can be dealt with separately from detecting recovery. A

typical solution in asynchronous systems is to have failure detection be live but not

accurate, with recovery detection being accurate but not live. This approach is natural

since the most practical approach for detecting recovery is the receipt of a message sent

by the recovered site.

4.2.2 Agreement Properties

The agreement property requires that any membership change message delivered to the

application at one site eventually be delivered at all other sites. Figure 4.3 illustrates

this concept. The property can be stated in terms of the ordering graph as follows: if

a membership change message M(C) appears in the ordering graph of one site, it will

eventually appear in the ordering graph of all other sites. More formally, let A and B be

arbitrary sites and M(C) an arbitrary membership change message. For agreement to be

satisfied, the following must hold for O
A

and O
B

:

M(C) 2 N(O

A

)) 3(M(C) 2 N(O

B

))

Note that there are no ordering requirements between membership change messages, or

between membership change messages and application messages.

M(C)

M(D)

M(C)

M(D)

Site A Site B

Figure 4.3: Agreement

If the underlying network can partition and the group memberships diverge in the

different partitions, the above definition does not apply to sites in different partitions. In

this case, the definition of agreement becomes the following:

8 B 2 mem

A

:M(C) 2 N(O

A

)) 3(M(C) 2 N(O

B

) _ F (B) 2 N(O

A

))

This rule states that for two sites in the same partition, if one site observes a membership

change, then any other site in partition will either observe the same membership change

or be removed from the membership view.

Agreement specifies that the same membership change messages are delivered on all

sites in the same partition. A weaker variant, eventual agreement on views, only ensures

that all sites eventually reach the same membership set (or view), assuming no additional

failures occur for a long enough period of time. Unlike regular agreement, with this

property, the actual changes made by different sites may vary—for example, a site A may
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be considered to have failed and recovered on one site and not failed at all on a second—as

long as the end result is the same. This property, although implemented by certain weak

protocols such as [RFJ93], is insufficient for implementing message ordering properties.

Hence, for the remaining properties, we assume that regular agreement is guaranteed.

Furthermore, all the properties except the partition handling properties only apply to sites

in the same partition.

4.2.3 Ordering Properties

Ordering properties specify constraints on the order in which membership change and

application messages are inserted into the ordering graph and hence, the order in which

they are delivered to the application.

4.2.3.1 FIFO Ordering of Membership Messages

The FIFO ordering property requires that membership change messages concerning any

given single site be delivered to the application at every site in the same partition in the

same order (Figure 4.4). In the ordering graph, this property requires that the membership

changes of each individual site form a chain that is identical at every site. More formally,

let A, B, and C be arbitrary sites in the same partition and M(C

i

) and M(C

j

) be arbitrary

membership change messages indicating a status change of site C. Then, for FIFO order

to be satisfied, the following two properties must hold:

M(C

i

);M(C

j

) 2 N(O

A

)) ((M(C

i

)!M(C

j

)) 2 O

A

) _ ((M(C

j

)!M(C

i

)) 2 O

A

)

and

(M(C

i

)!M(C

j

)) 2 O

A

) 3((M(C

i

)!M(C

j

)) 2 O

B

)

M(C)

M(C)

M(D)
M(C)

M(C)

M(D)

Site A Site B

Figure 4.4: FIFO Order

FIFO order guarantees that when all membership change messages have been deliv-

ered, the membership at every site converges to the same view.
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4.2.3.2 Total Ordering of Membership Messages

Total ordering requires that membership change messages be delivered to the application

at every site in the same total order (Figure 4.5). In the ordering graph, total order requires

that membership change messages form a single chain that is identical at all sites in the

same partition. More formally, let A and B be arbitrary sites in the same partition, and

M(C) and M(D) be arbitrary membership change messages. Then, for total order to be

satisfied, the following two properties must hold:

M(C);M(D) 2 N(O

A

)) ((M(C)!M(D)) 2 O

A

) _ ((M(D)!M(C)) 2 O

A

)

and

(M(C)!M(D)) 2 O

A

) 3((M(C)!M(D)) 2 O

B

)

Note that total order here only applies to membership change messages and hence, makes

no statement about the relative ordering of membership and applications messages at the

different sites.

M(C)

M(D)

M(C)

M(D)

Site A Site B

Figure 4.5: Total Order

Total order is a useful property for applications that rank processes or sites based

on age, i.e., how long they have been members of the group, and then use that rank to

reassign roles or tasks upon membership change. For example, an algorithm requiring a

central coordinator could assign that role to the process with highest rank, with the second

ranked taking over in case of failure. In order for the ranking seen on different sites to be

identical, membership change messages must be processed in the same total order at each

site.

The remaining ordering properties all order delivery of membership change messages

with respect to application messages as well as other membership messages. As noted

above, to establish such an ordering, application messages must be transmitted using an

ordered reliable multicast service. Such a service guarantees that messages are delivered

at all sites that remain functioning for the duration of the multicast and that are also within

the same partition as the sending site. Sites that are in the process of joining the group

may or may not receive the message. Furthermore, to simplify the presentation, we also

assume that application messages are at least FIFO ordered.
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4.2.3.3 Agreement on Last Message

The agreement on last message property requires that an agreed upon “final” message

sent by a failed site be delivered to the application on each site prior to the membership

change message announcing its failure (Figure 4.6). In the ordering graph, this property

means that the membership change message indicating the failure of a site, say C, is a

successor of the message c
i

that all remaining sites agree is the last one to be delivered

from the failed site. The notion that this is the last agreed upon message is important.

There may, in fact, be a subsequent message, c
i+1

, that was in transit when the agreement

process was underway. Such a message will appear in the graph as a successor to the

membership change message and be delivered to the application in the normal fashion.

However, applications may choose to disregard this message as coming from a site that is

no longer a valid member of the group.

More formally, for agreement on last message to be satisfied, there exists agreed last

message c
i

such that the following holds:

9 c

i

8 A : (F (C) 2 N(O

A

))) ((c

i

! F (C)) 2 O

A

^ 8j > i : (F (C)! c

j

) 2 O

A

)

If C did not send any messages before it failed, the agreed last message will be the

membership change message R(C).

This property is useful in applications where a consistent distributed state needs to be

maintained. In such situations, the final message may cause a state change, so agreement

ensures that the change is applied either at all sites or at no site.

c
i

c i+1

F(C)

c
i

c i+1

F(C)

Site A Site B

Figure 4.6: Agreement on Last Message

4.2.3.4 Agreement on First Message

The agreement on first message property requires that all sites start delivering messages

from a new or recovering process to the application starting from the same first message

(Figure 4.7). In the ordering graph, this property is represented by the appropriate

membership change message being a predecessor of the agreed upon first message. More
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formally, for agreement on first message to be satisfied there exists agreed first message

c

i

such that the following holds:

9 c

i

8 A 2 S : (c

i

2 N(O

A

))) ((R(C)! c

i

) 2 O

A

^ 8j < i : (R(C)! c

j

) 62 O

A

)

If C does not send any messages before it fails, the agreed first message will be the

membership change message F (C).

R(C) R(C)

c i c i

Site A Site B

Figure 4.7: Agreement on First Message

Agreement on the first and last message is important if the communication subsystem

is required to guarantee validity, defined as the property that only messages from group

members are delivered to the application. If valid messages are defined to be those

succeeding the membership change message indicating the recovery of a site and preceding

the message indicating the failure of a site, the set of valid messages on different sites

will be exactly the same. Validity is primarily a property of the multicast layer rather than

membership, and so is not considered further in this chapter.

4.2.3.5 Agreement on Successors

The agreement on successors property requires that all sites deliver a membership change

message before any message in an agreed upon successor set is delivered (Figure 4.8). For

example, if site C is recovering, then the successor set might be the set of messages that

will be received after the recovery message R(C) on all sites. Unlike previous properties,

agreement on successors requires ordering the membership change message with respect

to application messages sent by all sites, not just the site that failed or recovered.

Formally, first define cut, CUT (O
A

), to be a set of nodes S 2 N(O

A

) such that, for any

node m 62 S, either 9s 2 S : m ! s or 9s 2 S : s ! m, but not both. Let IsCut(S;O
A

)

be a predicate that evaluates to true if the set of nodes S is a cut in ordering graph O

A

,

and false otherwise. Finally, let succ
A

(m) be the set of immediate successors of message

m in the ordering graph of site A. Then, for agreement on successors to be satisfied, the

following must hold for A and B in the same partition:

succ

A

(M(C)) = succ

B

(M(C)) ^ IsCut(succ

A

(M(C)); O

A

) ^ IsCut(succ

B

(M(C)); O

B

)

Among other things, this property is useful for determining message stability, where

a message is stable at the sending site once it has been acknowledged by every other

operational site [PBS89]. If m is an agreed successor of R(C), every site knows that m

will have to be acknowledged by site C to be considered stable.
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a i b j
c k

M(C) M(C)

Figure 4.8: Agreement on Successors

4.2.3.6 Agreement on Predecessors

The agreement on predecessors property requires that a set of predecessor messages sent

from every site be agreed upon and delivered to the application prior to the membership

change message (Figure 4.9). Note that there may be some messages that are not ordered

with respect to the membership change message.

Now, let A, B, C and M(C) be defined as usual. For agreement on predecessors to be

satisfied, the following must hold for A and B in the same partition:

pred

A

(M(C)) = pred

B

(M(C)) ^ IsCut(pred

A

(M(C)); O

A

) ^ IsCut(pred

B

(M(C)); O

B

)

a

F(C)

i b j c k
a

F(C)

i b j c k

Site A Site B

Figure 4.9: Agreement on Predecessors

This property is valuable because it can be used to represent the uncertainty that occurs

when sites fail. Consider the case where a site C fails and the agreed-upon predecessor set

consists of exactly those messages known to have been received by the communication

layer at C prior to the failure. Messages not known to have been received at C—because no

acknowledgment message has been received, for example—are not ordered with respect

to the membership change message and so, are excluded from this set.

This information can be exploited to construct a variant of atomic multicast similar

to those described in [KGR91, VM90] in which a message is only delivered to the

application if it can be guaranteed to have been received at all sites to which it was

addressed. Suppose that some site C in the destination set of multicast message m
i

fails.
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If m
i

is in the predecessor set of the membership change message indicating the failure

of C, then C received m

i

and so m

i

can be delivered at all sites. If, on the other hand,

m

i

is not ordered with respect to the membership message, then it is unknown whether

C received m

i

before failing or not. In this case, m
i

is dropped at every site, thereby

preserving the semantics of atomic multicast.

The specifications of agreement on successors and agreement on predecessors prop-

erties do not specify which messages constitute the agreed predecessor and successor

sets. A family of these properties could be defined by specifying exactly which messages

constitute these sets. For example, in the case of agreement on predecessors, the agreed

predecessor set of a failure message could be defined as any of the following:

� Messages that were guaranteed to have been received by the failed site before it

failed (for example, messages that were acknowledged by the failed site).

� Messages that were potentially received by the failed site before it failed (for

example, messages that were sent before the failure was reported.)

An atomic multicast algorithm such as described above would, in most cases, prefer

the first definition of predecessor set, whereas for some other applications the second

definition may be more appropriate.

4.2.3.7 Virtual Synchrony

Virtual synchrony restricts the delivery order of application and membership change

messages in such a way that it appears to the application as if events are occurring

synchronously even though they are actually occurring on different sites at different times

[BSS91]. Virtual synchrony is easy to explain in the ordering graph, as illustrated in Figure

4.10. Relative to membership, this property requires agreement among all operational

sites on a division of the message stream such that each message is either in an agreed

predecessor set to the membership change message or in an agreed successor set. In other

words, virtual synchrony essentially creates an agreed cut in the message flow.

Let \ denote the intersection of two ordering graphs, i.e., the sets of vertices and edges

that are common to both ordering graphs, and let O
A\B

denote an ordering graph that is

the result of such an intersection. Then, for virtual synchrony to be satisfied, the following

must hold for arbitrary A and B in the same partition:

8m

i

: 3((M(C)! m

i

) 2 O

A\B

) _ ((m

i

!M(C)) 2 O

A\B

)

As extensively discussed in the Isis literature, virtual synchrony makes it easy to write

distributed applications. This is especially true for applications that can be viewed as

replicated state machines that change their state when they receive application messages

and membership changes [Sch90].
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Site A Site B
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a i+1 b j+1
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Figure 4.10: Virtual Synchrony

Note that, although virtual synchrony is closely related to agreement on successors and

predecessors, it is not identical to combining these two properties. This follows because

the combination does not require that every message be in one set or the other, whereas

virtual synchrony does. Note also that, in contrast to the common definition of virtual

synchrony, we choose here to define it without requiring that it also guarantee a total order

of membership change messages.

4.2.3.8 Extended Virtual Synchrony

One drawback of virtual synchrony is that it does not necessarily relate the view of

membership at the time a message is sent to the collection of sites that actually receive the

message. For example, site A may multicast a message a
i

when the membership is fA,

B, Cg, but before the message is received, another site D joins the group. Under virtual

synchrony, the membership change message could be delivered to the application before

a

i

, thereby resulting in the delivery of the message to the application at D as well as A,

B, and C. This is acceptable in cases where the actual membership of the destination

group is not important, but stronger guarantees are useful in some cases. Extended virtual

synchrony extends virtual synchrony by guaranteeing that all messages sent under the old

membership are also delivered before the membership change message [AMMS+93].

Extended virtual synchrony can be defined more formally as follows. Let ev
1

< ev

2

denote event ev
1

happening before event ev
2

at the application on the same site. (Note that

< is a total ordering, assuming that the application is single threaded.) Then, for extended

virtual synchrony to be satisfied, the following must hold in A and B in the same partition:

8a

i

: (send(a

i

) < del

A

(M(C)))) 3((a

i

!M(C)) 2 O

B

)

and

8a

i

: (del

A

(M(C)) < send(a

i

))) 3((M(C)! a

i

) 2 O

B

)

Note that the second rule is implicitly implemented by the communication subsystem

provided that the communication is at least causally ordered. Figure 4.11 illustrates this

property; the shaded circles represent messages that were sent before the sender received

the membership change message M(C).
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M(C)
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Site A Site B

Figure 4.11: Extended Virtual Synchrony

Extended virtual synchrony has been explored in a number of papers, especially

[AMMS+93] and [MAMSA94]. Our definition only addresses the ordering aspects of the

property as they relate to membership change messages, and as such, does not include the

full functionality of extended virtual synchrony as defined in those papers.

4.2.4 Bounded Change Properties

Ordering properties constrain the order in which state changes related to membership

occur at different sites, but leave unspecified any notion of when a site makes a change

relative to the other sites. Bounded change properties extends ordering by adding bounds

on when such changes must be applied.

4.2.4.1 External Synchrony

External synchrony guarantees that if a site delivers a given membership change message,

all other sites have either already delivered the message or are in a transition state in

which delivery is imminent [RFJ93]. Having this property ensures that sites move into a

new membership state with some degree of coordination, and that all sites have consistent

membership information, modulo sites undergoing a transition. The idea is, in fact, related

to the concept of barrier synchronization in parallel programs, in which execution at all sites

must reach the barrier—i.e., move into the transition state—before any site can proceed—

i.e., make the membership change. Following [RFJ93], we denote this transition state

as state 0. Since underlying layers interact with the application only through messages,

any protocol implementing external synchrony requires an extra message to generate a

transition into state 0. We call this the transition message for membership change M(C)

and denote it as Tr(M(C)).

External synchrony can now be defined more formally for arbitrary sites A and B in

the same partition as follows:

8M(C) : del

A

(M(C))) 2(Tr(M(C)) 2 view

B

)
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This definition specifies that once a membership change message M(C) is delivered on

an arbitrary site A, the corresponding transition message Tr(M(C)) has already been

delivered on all sites, i.e., is in the view on all sites. Therefore, all sites have either

delivered M(C) or are in the transition state prior to delivering M(C).

t

M(C)

M(C)Pre( )

M(C)

Pre( )M(C)

Time Site A Site B

Figure 4.12: External Synchrony

Figure 4.12 illustrates this property. Based on the definition, there is some global time

t such that all sites deliver the prepare message prior to t and the membership change

message after t. Note, however, that although this definition references t, implementation

of this property does not require access to a global time source. For example, the barrier

could be implemented by having each site multicast a message to the group after receiving

the transition message, and waiting until there is a message from all other sites before

delivering the actual membership change message.

External synchrony is useful in a number of situations, especially in cases where an

application must access an external device or send a message to a process outside the

group. As an example, consider an application where a group leader is expected to take

some action at a given time, where the action must be executed exactly once. Suppose

further that a membership change that results in a leadership change happens to occur close

to this time. Without external synchrony, there may be moments in real time when two

different group members are designated as the leader on different sites, thereby potentially

resulting in the external operation being executed more than once. External synchrony

prevents this by guaranteeing that all sites share the same view of the membership or are

knowingly in a transition state.

4.2.4.2 Timebound Synchrony

Timebound synchrony is a property of membership services in synchronous systems in

which every site delivers a given membership change message within some known interval

of real time [KGR91, Cri91]. The property has the same general applicability as external

synchrony, but reduces the synchronization overhead by shrinking the window during

which the membership is not identical on all sites. Also, it is important to have this
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property in most real-time systems, so that the system can respond in a predictable and

timely manner to external events.

Timebound synchrony can be defined formally for arbitrary sites A and B in the same

partition as follows:

8M(C) : (time(del

A

(M(C))) = t

i

^ time(del

B

(M(C))) = t

j

)) jt

i

� t

j

j < �

where � is a known fixed constant. Figure 4.13 illustrates this concept. In the figure,

dashed lines are used to represent the point in real time where the membership change

message is delivered to the application.

M(C)

M(C)

t i

t j

<

Site A

Time
Site B

Figure 4.13: Timebound Synchrony

4.2.5 Startup and Recovery Properties

4.2.5.1 Startup

Two general approaches have be identified for coordinating the startup of a group: collec-

tive startup and individual startup. In the first case, the initial membership of the group is

assumed to be known in advance, with all sites starting at approximately the same time.

In the second case, each site starts with a membership consisting only of itself and sites

merge membership views as they learn of one another. Collective startup is generally

easier to handle since sites are known a priori, and can have implementation advantages

if the initial membership is also assumed to be the maximum set of sites that might be

group members [MPS93a]. Individual startup is more general, but also more complex.

For example, this approach requires some known external mechanism for locating other

sites, such as a shared name server.

To ensure that the root of the ordering graph on each site is well-defined, a startup

message Su must be generated and delivered to the application before the application

is allowed to send or receive other messages. This message carries with it the initial

membership, which in the case of collective startup is a list of sites and in the case of

individual startup is the identity of the site itself. More formally, if A is an arbitrary site,

the following property is guaranteed for all messages in O
A

:
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8 m 2 N(O

A

) : (Su! m) 2 O

A

Startup is closely related to the way in which network partitions are handled, so further

details on execution options are deferred until section 4.2.6 below.

4.2.5.2 Recovery

Recovery involves restarting a site and reintegrating it back into the group. The problem

includes recovering the application process, of course, but here we focus exclusively on

aspects of recovery that impact the membership layer and the properties that it guarantees

to the application.

The basic recovery requirement for membership is that the membership information

of the recovering site C be re-initialized to a valid state, where the details depend on the

properties being guaranteed. For example, if no agreement or ordering properties are

guaranteed, the recovering site can use the last membership view it had before failing

or a view consisting only of itself. On the other hand, if agreement or any ordering

properties are being enforced, the membership information as well as the ordering graph

at the recovering site has to be brought up to date.

We assume the recovering site will receive a special Rec(C) message that includes

all the necessary information to reestablish the state of the membership service. In

particular, in addition to the information in the corresponding R(C) message, Rec(C)

contains information about the current membership in the group. Other sites consider

the recovering site C to be a group member after the R(C) message has been delivered

to the application. If the membership service guarantees some ordering with respect to

application messages, any message that is agreed to be after R(C) must be delivered at

C after Rec(C), while messages before R(C) must not be delivered at C. Figure 4.14

illustrates these ordering graphs. Note that the shaded messages in the figure are not

ordered with respect to R(C) or Rec(C), which means that they may or may not be

delivered to the application on C.

More formally, letA andB be arbitrary sites in the same partition andm be an arbitrary

(application or membership) message. For recovery, the following must be guaranteed in

the ordering graph O

C

for the membership state on site C to be consistent with the other

sites in the group:

((m! R(C)) 2 O

A

)) 2(m 62 N(O

C

))

and

(R(C)! m) 2 O

A\B

) 3((Rec(C)! m) 2 O

C

)

Note, in particular, that there will be ordering guarantees at C only if similar ordering

guarantees are being enforced on every other site as well.
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Figure 4.14: Ordering Guarantees at Recovery

4.2.6 Partition Handling Properties

4.2.6.1 Overview

Partition handling properties specify how the system behaves when a network partition

occurs and when it is subsequently corrected. A network partition occurs when a subset of

sites in a group is unable to communicate with the remainder of the sites. Partitions may

be caused by disconnection of the underlying network or by problems such as network

congestion or an overloaded gateway processor.

A number of different approaches are used in membership services to deal with

partitions. One common approach is simply to assume they will not occur [Cri91, KGR91,

MPS92]. This can be justified by increasing the connectivity of the network or by using

other architectural assumptions. If this assumption is not valid, there are a number of

ways to deal with multiple partitions [AMMS+95, DMS94, DMS95, MAMSA94, RFJ93,

RB91, SM94]. We divide the policies for dealing with multiple partitions into three

classes: the policy used at the time the partition occurs (partition time), how operation

proceeds while the sites are partitioned (partitioned operation), and how sites in separate

partitions are merged when communication is reestablished (partition join).

The operation of the membership layer is independent of issues regarding application

state, so here we concentrate on describing guarantees or services that membership pro-

vides to the application. Specifically, the focus in this section is on describing properties

that are enforced when the partition occurs and when separated sites are subsequently

rejoined to reform the original group. The properties discussed in previous sections (e.g.,

agreement, message ordering) remain relevant even when partitions occur, although each

is now enforced separately within each partition. We assume that membership operates

continuously in all partitions, maintaining its own view of the membership and imple-

menting the properties required by the application. It also forwards membership change

messages to the application level on each site as usual, independent of policy choices

made at that level.
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4.2.6.2 Partition Time

A partition is impossible to distinguish from a site failure in a distributed system. There-

fore, when a partition occurs, a basic membership protocol would forward a stream of

membership change messages to the application, each indicating the failure of one of the

sites in the other partition. We call this the individual notification property. Collective

notification expands this notion by grouping together failure notifications for all the sites

in a partition and forwarding them to the application in a single message. This message

is ordered according to whatever criteria is being used to order individual membership

change messages.

Collective notification is useful from the application’s perspective, since it can be used

to avoid a lengthy transition period in which the failures of multiple sites must be processed

in succession. It is also straightforward to implement if the membership service already

provides properties that require consensus of all sites, such as ordering with respect to

application messages. In such cases, sites in the other partition will fail to participate in

the required protocol and can therefore be collectively identified. This property allows

agreement on the entire group of sites to be performed at once and forwarded to the

application in a single message.

To realize the functionality of collective notification, we augment the failure noti-

fication message to indicate the failure of multiple sites A, B, : : :, using the notation

F (A;B; : : :). The analogous process occurs in both (or, in general, in all) partitions. Note

that the group membership in the two partitions are non-overlapping after the failure

notification messages are delivered.

Collective notification can be defined more formally as follows. Without loss of

generality, assume that the partition results in the sites being divided into two sets of sites

P and Q whose intersection is empty. Let A;B 2 P , C 2 Q, and D be an arbitrary site

in either partition. Furthermore, let F
P

and F

Q

be the respective collective notification

messages delivered to the sites in P and Q; S 2 F

P

is used to denote that site S is

included in the failure notification message F
P

, and similarly for S 2 F

Q

. Then, collective

notification can be characterized as ensuring the following for the ordering graphs of A,

B, and C:

F

P

2 N(O

A

)) 3(F

P

2 N(O

B

))

and

(M(D)! F

P

) 2 O

A

) 3((M(D)! F

P

) 2 O

B

)

and

(F

P

!M(D)) 2 O

A

) 3((F

P

!M(D)) 2 O

B

)

and

8D 2 S : (D 2 P ) D 2 F

Q

) ^ (D 2 Q) D 2 F

P

)
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The first rule states that agreement is reached within each partition on collective notification

messages, while the second and third guarantee that any message ordering constraints that

apply are enforced within each partition. Since P \ Q = ;, the fourth rule ensures that

the membership views in P and Q are non-overlapping after the failure notifications have

been delivered.

Figure 4.15 illustrates this property, where shaded nodes represent membership change

messages reporting changes that happened prior to the partition, the dashed line represents

the time when the partition occurred, and F

P

and F

Q

are as above.

FP
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Q
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P

K

Site A Site B Site C
I

I

J J L

Site B in partition PSite A in partition P Site C in partition Q

Figure 4.15: Collective Notification

4.2.6.3 Partitioned Operation

A number of different policies are available for the partitioned operation. If no special

measures are taken after a network partition occurs, the computation will continue inde-

pendently in each partition. We call this the continued operation policy. Sometimes this

option is not appropriate because it will lead into inconsistency of the application state in

the different partitions. The inconsistency can be avoided by requiring that computation

continue only in one partition, such as the one with the majority of sites. We call this the

majority operation policy. This approach has been chosen, for example, in [RB91, SM94].

The drawback of this approach, of course, is that it halts the application’s execution in

the rest of the system, thereby potentially affecting the progress or availability of the

application. Alternatively, the computation may be allowed to continue in a limited form

that does not lead into inconsistent state or only result in inconsistencies that are easy to

resolve after the partitions are rejoined.

The specific policy for partitioned operation does not directly affect operation of

the membership layer. However, membership can provide support for the application

layer in certain cases. For example, a majority predicate of the type needed to realize

majority operation is easy to implement in the membership layer, assuming that the service

guarantees agreement and total order, and has knowledge about the maximum size of the
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group. To notify the application when a site is no longer a member of the majority group,

a failure notification message F (C) is augmented with an extra field indicating whether

the (presumed) failure of C has caused the group size to shrink to the point that a majority

can no longer be guaranteed. Note that such an indication only implies the possibility of

a partition, not its actual existence; for example, so many sites may have actually failed

that only a minority of the sites remain functioning. Similarly, a recovery message R(C)

is augmented to indicate whether the recovery of a site C has brought the group size back

over the majority threshold. We call this the consistent minority/majority status property

of membership services, or majority status for short.

4.2.6.4 Partition Join

When a partition is repaired, a basic membership algorithm would integrate each site from

the other partition into its group membership individually. This will result in membership

views being gradually merged. This type of partition join is only appropriate for a

very limited set of applications. In particular, since during this gradual merging, the

membership views on different sites will be inconsistent and overlapping, properties such

as agreement or ordering are not well-defined while this merging is in progress. To be

able to define properties such as agreement for joining partitions, the join operation must

be atomic. In the following, we introduce two different policies for partition join that both

allow properties such as agreement be defined. The first is a collective join policy, where

partitions merge their memberships as one atomic membership change that is consistently

ordered with respect to other membership change messages. The second is an asymmetric

join policy, where partition join is reduced to sites in the minority partition simulating

failure and joining the majority partition as individual recovering sites.

Collective Join

A special merge message is used to implement the collective join. This message includes

a list of the members of the new group and is totally ordered with respect to other

membership change messages. Figure 4.16 illustrates this property, where the shaded

nodes represent membership change messages in the new membership after the merge and

the larger circle in the middle is the merge message.

Collective join can be defined more formally as follows. As above, let P and Q be

the set of sites in each partition, A 2 P , B 2 Q, and C be an arbitrary site in either

partition. Furthermore, let Me(P;Q) be the merge message indicating the merging of

P and Q. Then, collective join can be characterized as ensuring the following for the

ordering graphs of A and B:

8M(C) : (M(C)!Me(P;Q)) 2 O

A

)M(C) 62 N(O

B

)

and

8M(C) : (Me(P;Q)! M(C)) 2 O

A

) 3((Me(P;Q)! M(C)) 2 O

B

)
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Site A in partition P Site B in partition Q

Site A in partition P + Q Site B in partition P + Q

Me(P,Q)Me(P,Q)

Figure 4.16: Collective Join

Asymmetric Join

The basic idea of asymmetrically joining multiple partitions is to reduce partition join

to simple site recovery by forcing the sites in one of the partitions to fail and join the

remaining partition as individual sites. This approach is adequate for some applications

that cannot afford to enforce a single active partition. For this approach, we define a

domination predicate that is evaluated by each site to decide if the site must fail and join

the other partition. Domination can be defined in any number of ways, as long as the

computation is deterministic and for any two partitions, one always dominates the other.

Examples of possible predicates are “partition with more new updates since partitioning

dominates”, “larger partition dominates smaller”, or a combination of the two. Figure 4.17

illustrates the membership change messages seen at the dominating and the dominated

partition.

F(B)

R(B)
R(B)

Site A in dominant partition Site B in dominated partition

I
J

K K

Figure 4.17: Asymmetric Join of Partitions

Asymmetric join can be defined more formally as follows. Let P be the set of sites

in the dominated partition and A an arbitrary site in P . Then, asymmetric join can be

characterized as ensuring the following for the ordering graph of A:

8A 2 P : (F (A)! Rec(A)) 2 O

A
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Agreement and total ordering of membership change messages are required for the dom-

ination predicate to work in the general case.

4.2.6.5 Ordering Partition Handling Messages

When a partition occurs, the ordering graphs of the sites in the two separated subgroups

will generally evolve differently. Subsequent membership changes in one partition will

result in a membership change message being issued in one subgroup but not the other,

while application messages will also appear in the ordering graphs of only one set of

sites. As a result, when collective notification is used, the relevant failure notification

and join messages—the F (:::) and Me(:::) messages from above—delineate boundaries

in the ordering graph at which the graphs at different sites diverge and then reconverge,

respectively. In some sense, then, a failure notification message can be viewed as creating

two independent streams of messages to be delivered, one in each partition, while a merge

message can be viewed as merging the two streams back into one. This property dis-

tinguishes such partition handling messages from normal membership change messages,

which are delivered as part of a single stream.

An implication of the differences between the two types of membership change mes-

sages is that the ordering properties discussed above in section 4.2.3 cannot be used

directly to argue about ordering properties of partition handling messages. For example,

although messages sent after receiving a merge message can easily be ordered after that

message, it is less clear how to order messages that were sent by members of the separate

partitions before receiving the merge message, or even to which sites they should be

delivered. Perhaps the simplest solution is to deliver such messages only to sites that

were in the partition in which they were sent. This strategy is, however, contrary to the

semantics implemented by systems such as Psync [PBS89], which automatically prop-

agates messages of this type to all sites for recovery purposes by virtue of its negative

acknowledgment scheme for retransmitting lost messages.

Extended virtual synchrony is an example of a stronger property that can be augmented

to include partition handling messages. This extended virtual synchrony with partitions

property requires that messages sent before receiving the merge message be delivered

before that message, and analogously, that all messages sent before receiving the failure

notification message be delivered before that message. Note, of course, that this guarantee

only applies within each partition. Figure 4.18 illustrates this property for partition join.

This property can be defined more formally as follows. As above, let P and Q be

the set of sites in the partitions; F
P

and F

Q

be the failure notification messages delivered

to sites in P and Q, respectively; and Me(P;Q) be the merge message joining P and Q.

Furthermore, assume A, B, and C are arbitrary sites such that A;B 2 P and C 2 Q. Then,

extended virtual synchrony with partitions can be characterized as ensuring the following

for the ordering graphs of A and B at the time of partition:
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Figure 4.18: Extended Virtual Synchrony with Partitions
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An analogous property holds for sites in partition Q with respect to F

Q

. Similarly, the

following holds at the time of partition join:
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Among other things, this property simplifies the problems associated with merging

application states after a partition. In particular, since all application messages are either

before or after the merge message, a consistent cut is created in the ordering graphs of

all sites. To implement a merge of the application states, then, messages carrying the

respective states can be sent from each site immediately after the merge message, with the

assurance that they will be delivered after the merge and before any subsequent application

messages. Of course, the difficult semantic problems associated with merging application

states remain.

Our extended virtual synchrony with partitions property is derived from extended

virtual synchrony as described in [MAMSA94]. The algorithm described in that paper

provides the guarantees outlined above, plus additional ordering properties for messages

that are sent around the time that the partition occurs.

4.3 Relations between Properties

Arbitrary combinations of the membership properties are not feasible because of relations

between the properties that affect configurability as described in chapter 3. For example,

totally ordering membership messages is impossible unless all membership messages are



97

Agreement

Bounded Live Detection

Live Detection

Accurate

Detection

Voted

Decision

Consensus

Total Order

FIFO Order

Eventual

Agreement

Notification

Augmented

Extended Virtual

Synchrony with

Partitions

Asymmetric

Join

Collective

Join

Virtual Synchrony

Extended Virtual Synchrony

Agreement on 

Predecessors

Agreement on 

Last Message

Agreement on Successors

Agreement on First Message

Time-bound

Synchrony

Notification
Collective

Synchrony

External

Figure 4.19: Membership Dependency Graph

in the ordering graphs of all sites, so total order depends on agreement. Also, some

properties are weaker or stronger than others. For example, extended virtual synchrony is

stronger than virtual synchrony in the sense that it satisfies virtual synchrony, but virtual

synchrony in general does not necessarily satisfy extended virtual synchrony. Formally,

relations such as these reduce to dependency, i.e, extended virtual synchrony depends on

virtual synchrony.

Figure 4.19 gives the dependency graph containing the properties discussed in this

chapter. To simplify the figure, dependencies between membership and multicast prop-

erties have been omitted. In particular, all ordering properties with respect to application

messages depend on at least FIFO ordered reliable multicast. The graph is based on

certain assumptions. First, we assume an asynchronous computing environment, making

it impossible for change detection to be both accurate and live. Second, we assume that

membership service has to be able to handle multiple partitions and, in particular, be able

to join two partitions. If no partitions are expected or if the partitions are not required to

join, the dependency from agreement to asymmetric or collective join is not required.
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The dependency graph represents the relations between properties, and therefore all

possible legitimate combinations of properties. The simplest possible membership ser-

vices base the local view of the membership only on local live or accurate detection.

More advanced services provide agreement augmented with various ordering and other

properties.

Most of the relations in the dependency graph are relatively obvious. In the following,

we provide proofs to some of the less obvious ones to illustrate the proof techniques. First

consider the dependency relations, where dependency is formally defined as in section

3.1.2:

dep(p

i

; p

j

) : 8 s 2 SYS 8 e
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)) sat(e
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j

).

Some dependencies are easy to prove directly based on this definition, that is, by showing

that if property p
i

is satisfied for any execution (of any system), then p

j

is also satisfied

for this execution. Theorem 1 below is an example of this type of proof. Alternatively,

the definition can be expressed equivalently as:

dep(p
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j
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This form is convenient for proving certain dependencies by showing that for any execu-

tion, if p
j

is not satisfied, then for this execution, p
i

also cannot be satisfied. Theorem 2

below is an example of this type of proof.

Theorem: 1 Total order depends on FIFO order.

Proof: Assume an arbitrary execution of an arbitrary system, such that total order is

satisfied for this execution. This means that any two membership change messages M(C)

and M(D) are ordered the same on all sites. In particular, this is true also if C = D, that is,

if the messages address the membership change of the same site. This means that FIFO

order is satisfied. Therefore, total order depends on FIFO order. 2

Similar arguments can be used to prove the dependencies between the properties that

order membership change messages with respect to application messages.

Theorem: 2 Total order depends on agreement.

Proof: Assume an arbitrary execution of an arbitrary system, such that agreement is not

true for this execution. This means that there is a membership change message M(C) that

is received by site A, but not by site B. Assume also some M(D) that is received by both

A and B. Now, based on the definition of total order, on site A messages M(C) and M(D)

must be ordered, say M(C)!M(D). Now, however, this sequence of messages can never

exist on B since B never receives M(C). Therefore, total order cannot be satisfied. Thus,

total order depends on agreement. 2
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Note that, although there is no edge from total order to agreement in the dependency

graph, total order depends on agreement because of the transitivity of the dependency

relation. Similar arguments can be used to prove that any ordering property depends on

agreement, that collective join depends on agreement, and that the ordering properties

with respect to application messages depend on atomic multicast of application messages.

Theorem: 3 Majority status depends on total order.

Proof: Majority status provides indication about whether the partition in which the site

resides is guaranteed to be a majority partition after each membership change. In section

4.2.6.3, majority status is described as being built using total order. Assume now that

such is not the case, i.e., that total order is not guaranteed. To argue that majority status

is impossible to implement without total order, we do a case analysis based on the two

possible approaches to implementing the property: (1) based on local information, (2)

based on global information.

In the first alternative, the majority status is calculated based on how many sites will

be in the local application level membership view after the membership change message

has been delivered to the application. Assume that two membership changes—reporting

the failure of site C and the recovery of site D, respectively—occur approximately at the

same time. Assume some site A delivers the messages in order F(C) ! R(D), and some

site B in order R(D) ! F(C). Now, if delivering F(C) reduces the membership on A to a

potential minority, an inconsistency may occur since B will not see the potential minority

status. Obviously, this violates the majority status property.

In the second alternative, assume that global agreement on the minority/majority status

of each membership change message is reached before it is delivered to the application.

For example, in the above scenario, agreement may be on messages (F(C),minority) and

(R(D),majority). Now, even though the information in the messages is consistent at all

sites, if these messages are not delivered in total order—for instance, the orders in the

above example—the membership on A has a majority status while on B the membership

has a minority status. Obviously, this violates the majority status property. Thus, majority

status depends on total order. 2

Similar arguments can be used to prove that asymmetric join requires total order to

make a consistent decision about which of the two joining partitions is dominant.

Theorem: 4 Voted decision depends on FIFO order.

Proof: Voted decision guarantees that a site failure is only reported to the application layer

if a required fraction of the group members first suspects that the failure has occurred. To

do this, each site maintains a list of sites that it suspects may have failed that is used in the

voting process. Without loss of generality, consider the case where the required fraction

is a majority of the group membership. Now, consider a system execution where FIFO

order is not satisfied. This implies that the membership views seen by different sites may
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be different, even after all the agreed membership change messages have been delivered.

Therefore, it is possible that more than half the sites consider some site A to have failed,

i.e., not part of the group membership, while the remainder consider A to be operational

and a member of the group. Assume now that one of the sites that considers A to be

operational suspects the failure of A and starts the voting process. By definition, the sites

that consider A be have failed cannot have A in their suspect lists and so vote “no” on

the suspicion. Since the majority of sites consider A to have failed, the vote will fail to

get the required number of “yes” votes. As a result, even if all the sites that have A in

their membership suspect it to have failed, A will never be removed from the membership.

Thus, for voted decision to work correctly, FIFO order must be satisfied. 2

Theorem: 5 Agreement depends on collective join (CJ) or asymmetric join (AJ).

Proof: For agreement to be satisfied, every site in the same partition must deliver the

same set of membership change messages. However, if partitions can overlap during the

partition join step, agreement may be violated. To see this, consider a situation with two

partitions, one with site fAg and the other with sites fB, Cg. Furthermore, assume that

partition join is not atomic and that A and B add one another to their membership views

first, giving membership views mem

A

= fA, Bg and mem

B

= fA, B, Cg. Now, assume

C fails and B detects that and delivers membership change message F(C). Now, since A

2 mem

B

, A must deliver the same membership change message based on the definition

of agreement. However, the delivery of this message results in an attempt to remove C

from mem

A

even though C 62 mem

A

. Therefore, agreement does not guarantee correct

behavior if partitions are allowed to overlap during partition join.

The properties collective join and asymmetric join solve this problem by eliminating

overlapping partitions during partition join. Collective join does so by making the partition

join atomic, while asymmetric join transforms partition join into recovery of individual

site. Of course, if we assume no partitions occur or partitions are never allowed to join,

this problem does not exist. 2

Finally, note that the dependency graph states that agreement depends on detection.

This dependency exists to eliminate trivial solutions; agreement could exist without de-

tection, but if no failures or recoveries are ever detected, agreement becomes unnecessary.

Next, property conflicts are proven. As mentioned in section 3.1.2, the formal defini-

tion of conflict is

con(p
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Unfortunately, this definition does not directly suggest a proof technique, since the defi-

nition requires proving for all systems that there is an execution that does not satisfy p

i

and p
j

. In some cases, like Theorem 6 below, it is possible to take advantage of a known

impossibility result.
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Theorem: 6 Accurate detection and live detection conflict in asynchronous systems.

Proof: Assume a failure detection algorithm that is both accurate and live in an asyn-

chronous system. This means that it does not give false failure reports and it eventually

reports every failure. Assume a set of sites wish to reach consensus. That is, each site has

a binary value and wishes to reach an agreed value such that every participant decides on

the same value and this value is the original value of at least one site. Assume furthermore

that communication is asynchronous and unreliable, but that every message has a non-zero

probability of reaching its destination.

Given these assumptions, we can construct a consensus algorithm that is guaranteed

to terminate eventually despite the asynchrony of the system. The two steps are.

Step 1. Every site sends its binary value to every other site repeatedly until it receives an

acknowledgment or the failure of the target site is detected. When a site detects a

failure, it ignores all further messages from that site. Each site maintains a vector

for values from other sites that is initialized with NULL values. When a site receives

a value, it updates the vector. Step 1 is completed when every other site has either

acknowledged the reception of the transmitted value or has been detected to have

failed, and when a value has been received from every non-failed site.

Step 1 will terminate at each site since failure detection is live and repeated retrans-

mission guarantees that every message is received and acknowledged, provided that the

sender and the receiver remain operational. Note, however, that the value vectors may

differ at this point, since some sites may have received the 0 or 1 value from a site before

it failed, whereas others did not and still have the initial NULL value for the site. Step 2

is required to reach agreement on these messages.

Step 2. After Step 1 terminates, each site repeatedly sends its value vector to every other

operational site until it receives an acknowledgment. When a site receives a value

vector, it is combined with the existing value vector, as follows.

i) If the values are both 0 or 1, the result is 0 or 1, respectively.

ii) If one of the values is NULL, then the result is NULL.

Note that, if present, the binary values must agree since we assume that sites

experience only crash failures and that the communication service does not corrupt

messages in an undetectable manner.

If a site, say A, detects the failure of another site, say B, during this step, it stops

accepting messages from B and sends out its updated value vector in a message

indicating that the new vector was sent as a reaction to the failure of B. Then A

waits until it receives both an acknowledgment to this message and a similarly

updated vector from every other operational site. A site can terminate Step 2 when

it has received the vector from every site, or it has detected the failure of a site and

has received the subsequent updated vector from every other operational site.
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Step 2 is guaranteed to terminate because of live failure detection and repeated message

transmission. Since failure detection is also accurate, a site cannot be falsely considered

failed by others, a scenario that would allow it to reach a different consensus value. As

a result, Step 2 guarantees that all operational sites have the same values in their value

vectors. Thus, if all sites use the same deterministic function to calculate the result,

consensus will be reached. However, reaching consensus conflicts with the impossibility

result presented in [FLP85], which implies that the original assumption about having

failure detection that is both live and accurate must be false. 2

Theorem: 7 Collective join and asymmetric join conflict.

Proof: In this case, the conflict is due to having mutually contradictory choices for dealing

with a situation. In particular, consider a site A in the minority partition at the time two

partitions are to merge. If the underlying membership service guarantees collective join,

it must eventually generate a merge message and deliver it to the application on site A.

However, if it guarantees asymmetric join, it must generate and deliver to the application

on A message F(A) followed by Rec(A). Obviously, both of these event sequences cannot

be true at the same time. 2

Finally, we prove independence relations between properties. The formal definition

of independence,
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suggests a general proof strategy. In particular, independence can be proven by showing

that neither of the properties depends on the other and that the properties do not conflict.

The lack of conflict can be demonstrated by showing that there is an implementation that

always satisfies both properties. In the following, we prove some of the more interesting

cases from Figure 4.19.

Theorem: 8 Agreement (AG) and eventual agreement (EA) are independent.

Proof: AG and EA are independent because neither depends on the other, and they can

be satisfied at the same time. First, recall that EA allows different sites to deliver different

sets of membership changes. In particular, under EA, one site can deliver membership

change messages F(C) and R(C), while another site does not. This means that AG is not

satisfied. Therefore, EA does not depend on AG. Second, AG only requires that the same

set of membership change messages is delivered on all sites, but does not restrict the order.

In particular, A might deliver two messages in order F(C)! R(C), while B delivers them

in order R(C) ! F(C), resulting in different final membership views. Therefore, EA is

not satisfied and AG does not depend on EA. Three, a system that implements AG and

FIFO order guarantees that the membership views on different sites are identical after

all membership change messages have been delivered, thus ensuring EA, which implies

that AG and EA do not conflict. Combining these three facts means that agreement and

eventual agreement are independent. 2
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Theorem: 9 Agreement on last message (ALM) is independent from agreement on prede-

cessors (AP).

Proof: It is obvious that ALM cannot depend on AP since ALM only deals with messages

from a site that is suspected to have failed, whereas AP deals with messages from all

sites. We can also easily see that AP does not depend on ALM as follows. Let c
i

and

c

i+1

be successive messages sent by a failed site C. Let c
i

be in the agreed predecessor

set of a membership change message F(C). In case of AP, the only restriction is that c
i

must be delivered before F(C). However, since c
i+1

is not in the agreed predecessor set,

it is not ordered with respect to F(C) and may be delivered before F(C) on some sites

and after F(C) on some other sites. Thus, there is no such agreed last message from C

that is delivered on all sites before F(C). So, ALM is not satisfied and therefore AP does

not depend on ALM. Finally, it is easy to construct a system that always satisfies AP and

ALM. In particular, a system that guarantees virtual synchrony also always guarantees AP

and ALM. Therefore, ALM and AP do not conflict, and the properties are independent. 2

Theorem: 10 Timebound synchrony (TBS) and external synchrony (ES) are independent.

Proof: Obviously, neither TBS nor ES depend on the other because ES does not refer to

global time bounds and TBS does not have the concept of a transition state used in ES

before a new membership view is installed. Furthermore, in synchronous systems where

TBS can be guaranteed, it is also possible to implement ES. Therefore, TBS and ES are

independent. 2

Similar arguments can be used to show that timebound synchrony and any of the other

ordering properties are independent.

Theorem: 11 Collective failure notification (CFN) and agreement on last message (ALM)

are independent.

Proof: CFN does not depend on ALM since it is not concerned with ordering of mem-

bership messages with respect to application messages. ALM does not depend on CFN

since it is defined only for single membership change messages. Finally, CFN and ALM

can easily be implemented together by simply having the agreed last messages of the sites

in the collective failure notification message be the predecessors of the CFN message. 2

Similar argument can be used to show that collective failure notification and any of

the ordering properties are independent.

Theorem: 12 Extended virtual synchrony (EVS) and extended virtual synchrony with

partitions (EVSP) are independent.
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Proof: EVS and EVSP do not depend on one another since both can be satisfied separately

from the other. First, EVSP can be satisfied without EVS being satisfied since EVSP is

orthogonal to how application messages are ordered in the various partitions before the

merge message. Second, EVS can be satisfied without EVSP being satisfied. Consider

a membership change message R(A) and a merge message Me(P,Q). Now, assume an

application message m
i

is sent before the sender receives R(A) and therefore, is delivered

on all sites before R(A), but before Me(P,Q) on one site and after Me(P,Q) on some

other site. In this case, EVS is satisfied but not EVSP. Therefore, EVS does not depend

on EVSP. Finally, it is easy to see from the definitions that EVS and EVSP do not

conflict. In particular, EVSP only addresses ordering with respect to merge messages,

while EVS addresses ordering with respect to membership change messages other than

merge messages. Thus, the properties are independent. 2

Note that, although these two properties are independent based on their formal defi-

nitions, in most practical situations EVS would be used with EVSP in conjunction with

collective join. This is because the combination of these three properties ensures that a

message is only delivered to those sites that were in the sender’s membership view at the

time the message was sent, independent of whether the membership change in question is

the recovery of a single site or a partition join.

4.4 Characterizing Existing Services

4.4.1 Overview

The properties defined in previous sections can be used to characterize existing member-

ship services. Doing so carries with it a number of caveats, however. For example, service

properties defined in the literature are often properties of specific implementations that are

difficult to relate to abstract properties as seen by the application. Furthermore, member-

ship services are not uniform in how they interact with the application. In our approach,

a service signals membership changes by forwarding membership change messages to

the application in the regular message stream. We call services that follow this ap-

proach, including ISIS [BSS91], Consul [MPS92], and Transis [ADKM92a, ADKM92b],

delta-based services since they deliver the changes (“deltas”) to the application. Another

approach is for the service to deliver the entire current membership set whenever a (pos-

sible) membership change occurs. We call services that follow this approach, including

[Cri91, AMMS+93, RFJ93, SR93], set-based services. Although properties for the two

types of services are typically stated differently, mappings between them can usually be

constructed in a straightforward manner.

This section gives an overview of several existing membership services and charac-

terizes their properties using the terminology defined in this chapter. These services are

then summarized in tabular form in section 4.4.8.
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4.4.2 Consul

The membership service of the Consul system [MPS92, MPS93a] assumes asynchronous

communication and sites that experience crash failures. The service is built using Psync

[PBS89, MPS89], a multicast service that preserves the causal ordering of messages using

a context graph abstraction. Psync guarantees reliable multicast communication, so that

context graphs on various sites are identical except for transmission delays.

Failures are detected at each site by monitoring the message stream from all other sites

in the group. If no message is received from some site within a specified interval, the

site is suspected to have failed. When a site suspects the failure of another site, say A, it

initiates an agreement process by multicasting an “A is down” message. Upon receiving

such a message, a site decides based on the state of its context graph whether or not

it agrees with the suspicion. If it agrees, it multicasts “Ack, A is down”; otherwise, it

multicasts “Nack, A is down”. Since messages are multicast using Psync, each message

will eventually be received by every other site, including those that may fail and later

recover. If all responses are Acks, A is removed from the membership set at all sites.

Consul deals with simultaneous failures—i.e., the failure of one or more sites during

the execution of the agreement protocol for an initial suspicion—by means of simultaneous

failure groups (sf–groups). The sites in an sf–group are removed from the membership

simultaneously. However, sf–groups may vary from site to site, so the ordering prop-

erty guaranteed is weaker than the total order of membership changes property defined

above. sf–groups are transparent to the application, and are used primarily as a means of

optimizing the agreement process.

Consul’s failure detection and reporting are live, with a level of confidence in failure

detection that can be characterized as consensus. Recovery detection and reporting are

accurate, based on receiving a message from a site considered failed. Although the system

does not generate a singular membership change message in the sense used in this chapter,

it can be shown that it guarantees agreement and FIFO ordering of membership change

messages. The service also guarantees agreement on first and last messages, as well as

agreement on successors.

4.4.3 Isis

The membership service of Isis described in [BJ87] consists of a distributed site view

management component and an ordered multicast primitive (GBCAST) that is used to

multicast and order membership change messages to ensure virtual synchrony. Site

failures are detected by sending “Hello” messages between sites. If an Hello message

from a site is not received within a specified period, it is assumed to have failed.

Each site maintains a site view, which is the set of sites it deems to be operational.

The view management algorithm ensures that each operational site goes through the same

sequence of site views. The sites in a view are ordered uniquely according to the view

in which they first became operational, with ties broken by site identifier. The “oldest
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site” in this ordering is called the view manager and is responsible for initiating the view

management protocol when it detects a site failure or recovery. If a site detects that all

sites older than itself have failed, it takes over as the new view manager.

View changes are done using a two-phase commit protocol. First, the manager

multicasts the proposed site view. If this view is new—i.e., a newer site view transmitted

by some other manager has not been received—a site sends a positive acknowledgment.

Otherwise, it replies with a negative acknowledgment and the more recent view. If all

acknowledgments are positive, the manager multicasts a commit message. If a negative

acknowledgment is received, or if new site failures or recoveries occur, the protocol is

restarted. This protocol guarantees that the view managers on all operational sites process

site views in the same order.

GBCAST is used to multicast membership change messages among the sites comprising

the group. GBCAST guarantees total ordering with respect to all messages; that is, no

message is delivered before a message sent using GBCAST on one site and after it on

another site. Furthermore, membership change messages sent by GBCAST are delivered

after every message from the failed site. Because of these properties, informing the

application about a membership change is just a matter of multicasting the appropriate

message using GBCAST.

The Isis membership service has live failure detection based on single site suspicion.

Although the service was assumed to be live [RB91], it has later shown not to be live in all

cases [ACBMT95]. Since GBCAST messages are totally ordered, the service realizes both

total ordering of membership changes and virtual synchrony. Isis deals with partitions by

allowing computation to continue in at most one partition, an approach supported by the

majority status property described in section 4.2.6.3.

4.4.4 Cristian’s Synchronous Membership Protocols

In [Cri91], Cristian presents three group membership protocols built on the assumption

that the underlying system provides synchronous reliable atomic broadcast primitives.

The protocols handle faulty sites leaving the membership and fault-free or repaired pro-

cessors joining. All three protocols provide the same service abstraction, but make slightly

different tradeoffs in the implementation. For example, in the periodic group creation

protocol, each site multicasts “Present” messages at agreed times, which allows a consis-

tent membership set to be calculated at all sites based on the assumption of synchronous

reliable communication. Another protocol, the attendance list protocol, reduces message

overhead in the absence of joins and failures by circulating an attendance list through all

sites once per period instead of using Present messages.

The protocols proposed by Cristian guarantee a number of properties. In the termi-

nology of [Cri91], these include the following:

� Agreement on group membership: Any two sites in the same group have identical

membership views.
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� Reflexivity: A site that has joined the group belongs to the membership (excludes

the trivial solution of an empty membership list).

� Bounded join delay: The time for a site to join a group is bounded by a constant.

� Bounded departure detection delay: The time to detect the departure of a site (e.g.,

because of a failure) is bounded by a constant.

� Bounded group formation delay: The time between the point when the first and last

sites join the group during initial group formation is bounded by a constant.

� Bounded group change delay: The time elapsed between a site leaving one group

and joining a new group is bounded by a constant.

Mapped into our abstract properties, the bounded join and departure detection delay

properties combined with the reliability and synchrony assumptions guarantee our liveness

and accuracy properties. Agreement on group membership corresponds to our agreement

property. Reflexivity is guaranteed by liveness. Bounded group formation delay is

equivalent to timebound synchrony. Bounded group change delay only makes sense in

the context of this particular algorithm, since in our framework, a membership view never

expires. Although not explicitly listed as a property, these protocols also guarantee total

order of membership views for sites within the same partition, which corresponds to our

total order of membership messages property. Note that these protocols do not attempt to

order membership changes with respect to application messages.

4.4.5 Mars

The membership service in the Mars system is another example of a synchronous protocol

[KGR91]. Mars builds on a physical ring architecture in which the network is accessed

using a time division multiple access (TDMA) strategy based on common global time, i.e.,

access to the physical medium is divided into dedicated time slots that are allocated a priori

to sites in a round-robin fashion. A TDMA cycle is defined as N consecutive slots, where

N is the number of sites in the system. Based on these assumptions, the Mars membership

protocol handles processor crash failures and sites failing to send or receive, under the

assumption that at most one failure occurs in each TDMA cycle. Failure detection exploits

the TDMA communication strategy: since each site is expected to send data in each of

its slots, the lack of transmission is interpreted as an indication of failure. To reduce

network failures, every message is transmitted twice in the same time slot. Agreement

on membership changes is reached by forwarding information in each message about all

messages received in the previous cycle. This essentially propagates the list of sites the

sending site knows to have been alive in the previous TDMA cycle.

Due to the way in which membership is integrated with the communication system, the

service realizes ordering with respect to application messages. Total order of membership

changes is trivially guaranteed given the assumption of no more than one failure per
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TDMA cycle and since each processor observes the same membership changes in each

cycle. Agreement on first and last messages is also guaranteed, since if one site receives

a message, every non-failed site also receives the message, while if no site receives the

message, the sending site is deemed to have failed. Although not guaranteed by the

basic algorithm, agreement on successors and predecessors is easy to implement given the

communication system and failure assumptions.

4.4.6 Totem

The Totem message ordering and membership protocol is described in [AMMS+93,

AMMS+95]. The protocol is based on a logical token passing scheme, where the token

is used for total ordering of messages, reliable message transmission, flow control, and

membership. All messages in Totem are totally ordered reliable multicasts.

Membership in Totem is based on reforming the group whenever a group membership

change is suspected, i.e., whenever a site failure or token loss is detected or a new message

from a site outside the group is received. The site that initiates the membership change

multicasts an “Attempt Join” message and then shifts to a “Gather” state while it waits

for Attempt Join messages from other sites. After a specified time period has elapsed, it

then multicasts a Join message that contains the identifiers of those sites from which it

received messages, and shifts into a “Commit” state. In this state, sites reach agreement

on the new membership, as follows. Each time a site receives a Join message containing

sites of which it was previously unaware, it transmits a new Join message with the updated

information. Once a site receives Join messages from all sites it included in its most recent

transmission and the membership in all these messages agree, the protocol on that site

terminates.

The Totem membership service has a live failure detection based on single site suspi-

cion; the agreement algorithm is not live, however. It also guarantees FIFO ordering of

membership messages, extended virtual synchrony, and extended virtual synchrony with

partitions.

4.4.7 Weak, Strong, and Hybrid Membership Protocols

A family of three membership protocols labeled as weak, strong, and hybrid is described in

[RFJ93]. All three deal only with ordering membership views and establishing agreement

between views on different sites, with no attempt made to order membership changes

with respect to application messages. The weak protocol simply guarantees that the views

of all sites converge to a single consistent view if there are no failures for some period

of time. More precisely, define V
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Then, the weak protocol ensures that
�

� is a partial ordering relation, i.e., it is irreflexive,

transitive, and asymmetric. In particular, asymmetry guarantees that if one site installs V
i

before V
j

, then no other site will install them in the opposite order. We have not defined

a property that corresponds to the partial ordering of membership views, but it would

be easy to define such a property within our framework. The protocol also guarantees

convergence: if site S has view V

i

and site T has a different view V

j

, then assuming no

failures, there is eventually a state in which both sites have the same membership view V

k

such that V
i

�

� V

k

and V

j

�

� V

k

. Translated into our properties, the weak protocol is live,

guarantees no agreement on membership changes but eventual agreement on membership

views, and ensures none of our ordering properties.

Informally, the strong membership protocol ensures that membership changes are seen

in the same order by all members. More precisely, it guarantees the properties of the weak

protocol plus the following:

P

1

: In any global state, if a site s has joined g locally, all other sites in g have either

joined g locally or are in a transition state (i.e., members of no group).

P

2

: In the presence of performance failures or network partitions, members of concur-

rently active groups are disjoint.

P

3

: In the absence of performance failures or partitions, all active members go through

the same sequence of groups (total order).

Based on the definitions in this chapter, the strong membership protocol guarantees

agreement and total order of membership changes. P
2

also implies that collective failure

notification and ordered collective join notification are satisfied when partitions occur.

Also, as discussed in section 4.2.4.1, P
1

is the source of our external synchrony property.

The hybrid membership protocol provides guarantees that are intermediate between

those of the weak and strong protocols. In particular, it ensures the properties of the

weak protocol, with the additional guarantee that there is a single leader for each group.

Thus, an algorithm similar to strong membership is executed when the leader of a group

changes; otherwise, an algorithm similar to weak membership is executed. Essentially,

the hybrid protocol guarantees that in any global state, if a site S decides locally that site

T is the leader of the group g, then all other sites in g either consider T the leader or are

in a transition state (i.e., have not decided a leader). This property would be equivalent to

having all membership changes that affect the leader have our external synchrony property.

4.4.8 Summary

Table 4.1 summarizes the properties guaranteed by each service discussed in this section.

The properties are abbreviated as follows:
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Lv Ac Co Ag Fo To Af Al As Ap Vs Ev Es Ts Np Ms Cn Oj Ep

Consul x All x x x x x x

Isis 1 x x x x x x x x x

Cristian x x 1 x x x x x

Mars x 2 x x x x x x* x* x x

Totem 1 x x x* x x x x x x x x x x

Weak x 1

Strong x All x x x x x x

Table 4.1: Properties Enforced by Existing Services

� Accuracy and Liveness: Liveness (Lv), accuracy (Ac), level of confidence (Co)

ranging from one site suspicion (1) to consensus (ALL). Note that in asynchronous

systems the liveness only applies to failure detection and reporting.

� Agreement: Agreement (Ag).

� Ordering Properties: FIFO ordering (Fo), total ordering (To), agreement on first

(Af), agreement on last (Al), agreement on successors (As), agreement on prede-

cessors (Ap), virtual synchrony (Vs), extended virtual synchrony (Ev).

� Bounded Change Properties: External synchrony (Es), timebound synchrony (Ts).

� Partition Handling: No partitions (Np), majority status (Ms), collective failure

notification (Cn), ordered collective join (Oj), extended virtual synchrony with

partitions (Ep).

In the table, “x*” denotes a property that is not guaranteed by the service, but could easily

be added. Recall also that a system that provides a given property P also provides all

properties that satisfy the inclusion relationship with P , as discussed in section 4.3.

4.5 Conclusions

In this chapter, we have specified abstract properties of membership services and described

how they relate to one another. Ordering graphs were used to define the properties by

illustrating their effect on the order in which messages are delivered to the application. For

example, the agreement property guarantees that every membership change message is

received at all sites, thereby providing the basis for consistent decision making. Ordering

properties extend this notion to ensure consistent message ordering information as well,



111

differing in the degree of consistent information provided. The tradeoff is that the stronger

properties require more expensive algorithms and more synchronization between sites,

which potentially results in less efficient execution. The way in which properties relate to

one another was illustrated using dependency graphs.

As noted in section 4.4, existing membership services can be characterized in terms of

these properties. With the exception of [SR93], however, membership papers concentrate

on describing the properties of a particular algorithm or system, rather than providing

a more global view. [SR93] gives a decomposition of membership services into three

components: Failure Suspector, Multicast Component, and View Component. The Failure

Suspector is responsible for detecting membership changes and propagating changes that

it has detected to other Failure Suspectors. In our framework, this corresponds to change

detection properties. The Multicast Component is responsible for implementing virtually

synchronous communication. Compared to our approach where multicast is separate

from membership, their Multicast Component combines these two functions. The View

Component ensures that all sites have the same view of the membership. As such, it

essentially implements our agreement property. However, our decomposition is much

more extensive and identifies a large number of properties in contrast to just identifying

more implementation oriented components of membership services.



112



113

CHAPTER 5

GROUP MEMBERSHIP SERVICE

Existing membership solutions typically provide only one fixed service, making it im-

possible to tailor the service to the specific needs of an application. In this chapter, we

describe a configurable membership service that addresses this problem. This service is

based on the abstract properties of membership described in chapter 4 and the event-driven

execution model described in chapter 3. The specific family of modules introduced is

based on a token-passing paradigm, and allows choices of whether the service is accurate

or live, what kind of agreement is performed, how membership messages are ordered with

respect to application messages, and how partitions are handled.

The design presented here is structured around the system model described in chapter

4. In particular, the key data structure is an implementation of the abstract ordering graph

used there to specify properties. Every site maintains an ordering graph consisting of

messages and their ordering constraints. Messages are added to the ordering graph at a

site when they arrive from the network or are generated by the membership service. Each

message is delivered to the application when all its predecessors in the graph have been

delivered. Furthermore, we separate the service into the same two logical components

used in chapter 4: a reliable communication component and a membership component.

The communication component implements reliable causally ordered communication

between application level processes and maintains the ordering graph. The membership

component implements the various membership properties. In this design, only the

membership component is configurable, so the remainder of this chapter concentrates

exclusively on that portion of the service.

The implementation is based on the assumption that the underlying communication

network is asynchronous with no a priori time bounds on message delivery. The failures

considered are site crash and performance failures, as well as typical network failures such

as lost messages and network partitions.

5.1 Design Overview

The basic components of a configurable membership service built using our model are

events, messages, shared data structures, and micro-protocols. This section gives an

overview of the first three; the micro-protocols implementing membership are described

in the following section. First, however, we overview the general implementation strategy,

which is based on token passing.



114

5.1.1 General Implementation Strategy

Perhaps the key requirement for implementing many of the properties of membership is

some means of information collection and dissemination. The various approaches for

accomplishing this can be classified into three major categories: (1) broadcast based (e.g.,

[MPS93a, ADKM92b]), (2) coordinator based (e.g., [RB91, RFJ93]), and (3) token based

(e.g., [RM89]). In examining each approach in light of our requirements, we selected the

third based on the resulting simplicity of the micro-protocols.

The basic idea behind this approach is to organize the group members into a (logical)

ring and then have a token that circulates around the ring. In contrast with other multicast

and membership protocols that use token passing, the token in our scheme is used only for

membership; regular communication need not be restricted to the ring or based on token

passing. The role of the token is to collect and distribute the information required to realize

the various properties. Specifically, the token has one record with multiple fields for each

membership change underway at any given time. We call such a record a membership

entry. Various micro-protocols exploit the information in the token in various ways.

Different properties of membership impose different requirements on how the token

is used. For example, properties that involve primarily information dissemination, such

as agreement, require that the token be rotated only once around the ring, while properties

that also involve information collection, such as virtual synchrony, require that the token

be rotated twice. The number of rotations actually used in a given configuration is the

maximum of the number required across all micro-protocols that are included. The

reliability of token passing is increased by requiring that the receiver acknowledge receipt

of the token. Among other things, this strategy enables some aspects of failure detection

to be integrated into the token passing mechanism.

To realize ordering-related properties, we use an ordering graph as described above,

i.e., membership change messages are inserted into a graph of messages that constrains

the delivery order to the application. We assume that actual delivery of messages from

the graph to the application is handled independently from the membership service by

the reliable communication component of the system, which is configured within the

same composite protocol. As already noted, we also assume that the underlying network

provides asynchronous unreliable point-to-point message delivery, and that sites may

suffer from crash or performance failures.

5.1.2 Events

As described in chapter 3, execution of code within micro-protocols is initiated when

events occur. In general, events are used in this model for a variety of purposes, including

to indicate a change of state in the composite protocol such as message arrival, to signal the

opportunity to update shared variables or message fields, or as a procedure call to transfer

control and data between two micro-protocols. Like signal variables in the monitor

construct found in some concurrent programming languages, an event is a no-op if no
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handler is bound to that event. This feature de-couples micro-protocols to a certain degree

and helps increase the configurability of the resulting system by removing the need to

explicitly reference other micro-protocols.

In the membership service design, events can be classified into four categories:

� Membership entry events. For managing membership entries that circulate in the

token.

� Failure and recovery events. For dealing with site failures, recoveries, and partitions.

� Token handling events. For dealing with token passing, regeneration, and merging

after a partition.

� Message handling events. For managing application and membership change mes-

sages within the composite protocol.

� Startup and restart events. Two events, STARTUP EV and RECOVERY EV, that are

generated at a site upon initial startup and recovery, respectively.

The first four are now described in more detail. For simplicity, all events are sequential

and blocking.

Membership Entry Events. Events FIRST ROUND and SECOND ROUND signal that

a membership entry has been seen at the site for the first or second time, respectively.

ADD ENTRY is generated once current entries have been processed to signal the oppor-

tunity to add another entry to the token prior to it being passed to the next site. Similarly,

NEW ENTRY is generated when a new entry is added to allow various micro-protocols the

opportunity to initialize fields of interest.

Failure and Recovery Events. Event SUSPECT NEXT DOWN is generated when the

conditions for failure suspicion are met for the next site in the ring. In the case of a

live membership service, this occurs when a certain number of token retransmissions are

attempted without success; with an accurate service, this occurs when a message with a

new incarnation number is received from a recovering site, indicating the earlier failure of

the old incarnation. SUSPECT CHANGE is a more general event indicating the suspected

failure or recovery of any site in the system. POTENTIAL ENTRY is generated to allow

an opportunity to increase confidence in a suspected change or deny it prior to reporting it

to the application. Finally, PARTITION is generated when a partition has been confirmed;

note that since a partition cannot be distinguished from individual site failures at partition

time, this event occurs after communication has been reestablished.

Token Handling Events. Event TOKEN RECEIVED is generated when the token arrives

at the site. FORWARDING FAILED indicates that a particular attempt to pass the token

to the next site in the ring has failed; this is also sometimes used as part of the failure
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detection process, as mentioned above. MERGE TOKENS is generated when two tokens

are merged into a single token, such as when partitions are merged.

Message Handling Events. Events are also used to manage application and membership

messages. MSG FROM NET is generated when a message arrives at the composite pro-

tocol from lower-level protocols, while MSG FROM USER is generated when upper-level

protocols pass along a message to be delivered to application processes on other sites.

Both are triggered automatically by the runtime system. The event MSG RECEIVED is

generated within the membership service after some initial processing has been performed

on every application message that arrives from lower-level protocols.

Events are also used to implement interactions between the membership and commu-

nication components of the composite protocol, as illustrated in Figure 5.1. Membership

MembershipReliable

Communication

User

Network

APPLICATION_SEND

MSG_FROM_USER

DELIVERED_TO_APPLICATION

APPLICATION_MSG

MSG_FROM_NET

Figure 5.1: Interaction between Components

signals that a membership change message is ready to be added to the ordering graph by

triggering APPLICATION MSG. The communication service indicates that an application

message is ready to be sent to lower-level protocols with event APPLICATION SEND, while

DELIVERED TO APPLICATION is generated when a message has been delivered upwards

towards the application. These latter two are often used by membership micro-protocols

involved with ordering messages.

Note that the semantics of events make their use for component interaction qualita-

tively different than function calls. In this case, for example, some reasonable system

configurations include no micro-protocols that field the event APPLICATION SEND. If

function calls were used, the communication code would have to be changed to avoid

making this call, while with events, no change is needed since it can safely be gener-

ated with no effect. More importantly, since more than one handler can be bound to a

single event, using this mechanism also makes it simple for multiple independent micro-

protocols to be notified when an event occurs. In this case, for example, it is quite likely

that multiple micro-protocols will field the APPLICATION MSG event.

Finally, the event MEMBER MSG is generated when a membership change message

has been created, thereby allowing micro-protocols an opportunity to set fields in the
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message.

5.1.3 Membership Change Messages

Messages transmitted from the composite protocol up to the application process on a given

site are either application data messages from other sites or membership change messages.

As noted in section 4.1, membership change messages are the mechanism by which the

membership service informs the application of site failures and recoveries so that it can,

for example, update a local membership list.

The membership change messages used in this design are the following:

� STARTUP indicates that the application can begin normal processing; includes a list

of initial group members.

� SHUTDOWN indicates that the application should stop.

� FAILURE reports the failure of one site; if the site is this site, the application should

stop.

� RECOVERY reports the recovery of one site; if the site is this site, the application can

resume normal operation using the current membership information in the message.

� MERGE reports the merging of two partitions; the message contains the identities

of the new group members.

� C FAILURE reports the collective failure of more than one site, possibly due to a

partition.

� PRE MERGE indicates that the merging of two partitions is in progress; used to

implement certain message ordering guarantees that require a site to stop sending

messages until the merge is complete.

� PRE CHANGE indicates that a change in membership is about to occur so that the

application can alter behavior if necessary; for example, with some message ordering

guarantees, the application must stop sending messages or change its membership

into a transition state.

Note that the specific messages that an application may receive depends on the particular

micro-protocols configured into the composite protocol. For example, a MERGE message

will only be received if the micro-protocol that implements partition merging is included.

Also, note that these are just the membership messages that are delivered to the application;

other messages, such as those that implement token passing, are used by the membership

service itself to communicate with peers on other sites.
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5.1.4 Shared Data Structures

One of the most important benefits of using composite protocols is that it allows micro-

protocols to share data as noted in chapter 3. services. In the configurable membership

service, the shared data structures are the following:

� MsgGraph. The ordering graph of messages.

� Token. The contents of the most recent token received at this site.

� Membership. An image of the application’s view of the current membership.

� ParList. The membership service’s current view of the group membership, i.e.,

the list of participants in the membership protocol; membership changes take effect

earlier in ParList than Membership.

� Delivered. A vector with the identifier of the most recent message delivered from

each site, which is used to determine when a message is eligible for delivery because

all of its predecessors have been delivered; shared since other micro-protocols such

as those concerned with recovery must be able to update it.

� SuspectList. All suspected membership changes that have not yet been reflected

in ParList.

5.2 Micro-Protocols

This section describes the various micro-protocols that comprise the membership service,

presenting the code for several. The goal is not to be exhaustive, but rather to give

an overall view of how the service operates and some examples of the algorithmic and

programming style used to write composite protocols. For expository purposes, we divide

the micro-protocols into five categories:

� Base micro-protocols. Provide the base functionality needed by other micro-

protocols, including message and token handling, and recovery.

� Accuracy, liveness, and confidence micro-protocols. Deal with detecting site failures

and recoveries.

� Agreement micro-protocols. Implement the agreement process required for most

variants of membership.

� Ordering and synchrony micro-protocols. Implement different varieties of message

ordering guarantees.

� Partition handling micro-protocols. Implement different partition handling policies.
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5.2.1 Base Micro-Protocols

The base micro-protocols are MessageDriver, TokenDriver, Recovery, and StartUp.

The subsequent paragraphs summarize their functionality.

MessageDriver. This micro-protocol coordinates the traversal of application messages

from the network to the application. It triggers MSG RECEIVED when an application

message arrives from the network and APPLICATION MSG when the message is ready

to be forwarded. Application messages sometimes have to be temporarily retained in

the membership layer, for example, to implement virtual synchrony. To do this, Mes-

sageDriver provides a mechanism for releasing a message when all micro-protocols have

finished operating on it. Specifically, two arrays are used: a global Hold array, which

specifies which micro-protocols must execute for each message, and a corresponding hold

array associated with each message, which specifies which micro-protocols have already

executed. Thus, when hold is equivalent to Hold, the message can be forwarded.

micro-protocol MessageDriver() f
export procedure forward up( var msg: ApplMessage, hold index: int) f

msg.hold[hold index] = true;
if for each i: Hold[i] = msg.hold[i] then trigger(APPLICATION MSG,msg);

g

event handler msg from net(var msg:NetMessage) f
if msg.type = DATA then f msg.amsg.hold[ ] = false;

trigger(MSG RECEIVED,msg.amsg); forward up(msg.amsg,DEFAULT); g
g

event handler delivered msg(var msg: ApplMessage) f
if msg.type = FAILURE then Membership –= msg.changed;
elseif msg.type = RECOVERY then Membership += msg.changed;
: : : similar for other message types : : :

g

initial f Hold[DEFAULT] = true; register(MSG FROM NET,msg from net);
register(DELIVERED TO APPLICATION,delivered msg); g

g

Figure 5.2: MessageDriver Micro-Protocol

The pseudo-code for MessageDriver is shown in Figure 5.2. Its general form is

similar to most micro-protocols: a few event handlers, initialization code, and possibly

some local variables and functions. As can be seen from the pseudo-code, messages

have a number of fields. These include its type (type), a unique identifier (mid), the

sender (sender), the hold array mentioned above (hold), the message to be passed to

the application (amsg), and, in the event of a membership change message, the identity

of the failed or recovered site (changed). Not shown here, but used below, is an array of

message identifiers (pred), which holds the predecessors of the message in the ordering

graph.
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TokenDriver. This micro-protocol’s task is to implement for each partition the abstraction

of an indestructible token that circulates among all functioning sites in the order dictated

by the logical ring. In addition to the actual message passing involved in sending the

token to the next site, much of the code in TokenDriver involves dealing with exceptional

conditions such as lost token regeneration, site failures during regeneration, and the

possibility of multiple tokens during the merging of partitions.

TokenDriver at a given site suspects that the token has been lost when it fails to

receive it again a specified amount of time after passing it on. When this occurs, the

micro-protocol first finds the most recent copy of the token that has been seen by any site

in the ring. To facilitate this, TokenDriver at each site maintains a copy of the most recent

token it has seen, together with its version number and circulation count; the former is

incremented every time the token is regenerated, while the latter is incremented every time

a site processes the token. The most recent copy of the token is discovered by circulating

a regeneration token, which at any time holds the most recent copy seen so far. Once the

regeneration token has circulated the entire ring once, it contains the most recent token,

which is then used to create a new token. Multiple sites can—and often will—issue a

regeneration token, but the algorithm ensures that only one site will have its regeneration

token make the complete circuit.

Site failures may, of course, occur while the regeneration token is circulating. If this

occurs, a membership entry will be added to the regeneration token and merged with the

entries from the most recent copy of the lost token. New entries will not, however, be

processed or any membership change messages forwarded to the application during the

regeneration process

Although the regeneration protocol guarantees that each partition recreates at most one

token, there are cases where a partition may temporarily have more than one. Consider

three sites A, B, and C, such that each follows the previous in the logical ring. Suppose

that failure detection is based on timeouts. Then, it is possible that A passes token to B, but

fails to receive any acknowledgment, and therefore declares B faulty and passes the token

to C. If B received the token and did not fail, both B and C have a token simultaneously.

TokenDriver handles this situation by ensuring that only one of the tokens is considered

valid within the current partition. In this particular situation we have two possible cases.

First, if C receives a token from A before it receives one from B, it will note that B has

failed and therefore will not accept the token from B. Second, if C receives a token from

B before receiving one from A, it ignores the one from A based on the circulation count

number.

The TokenDriver micro-protocol triggers the event TOKEN RECEIVED when a nor-

mal (i.e., not regeneration) token is received, MERGE TOKENS when two tokens are

merged as a part of token regeneration, and FORWARDING FAILED when the site to

which a token is passed fails to acknowledge the reception within a specified time bound.

Recovery. This micro-protocol handles recovery of a site after failure. Its execution is

initiated when the RECOVERY EV event is triggered automatically by the runtime system
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upon recovery. At this point, Recovery begins sending JOIN messages to other sites,

either using a previous membership list saved on stable storage or exploiting broadcast-

based network hardware, if available. When another site receives this message, it triggers

whichever recovery detection micro-protocol is configured into the composite protocol

(see section 5.2.2), which begins the process of reintegrating the site back into the member-

ship. The MembershipDriver micro-protocol (see section 5.2.3) manages the necessary

agreement protocol, which involves adding a recovery entry to the token. While the token

circulates, each site reads the recovery entry to obtain relevant information about the

recovery, and updates it as needed with information needed to reinitialize the membership

state of the recovering site. Based on what ordering properties are being enforced, the

token will circulate either once or twice. Once a site has received the token the required

number of times, it inserts a membership change message announcing the recovery into

its ordering graph, with the specific location depending on the ordering properties.

The site that originated the recovery entry is also responsible for updating the mem-

bership state of the new member and inserting it into the logical ring. To do this, it sends a

STATE message containing the relevant state of the membership service (e.g., the current

membership list) and the token to the recovering site. Upon receiving this message, the

Recovery micro-protocol updates its local data structures. It also uses information in the

recovery entry of the token to initialize the state of other components of the composite

protocol, such as the location in the ordering graph that the communication component

should use as the starting point for forwarding messages up to the application. Once this

has been done, the recovering site forwards the token to the next site and begins normal

operation.

As is the case with token handling, the recovery and reintegration process is designed

to tolerate site failures, additional recoveries, and similar exceptional conditions.

StartUp. This micro-protocol manages the startup process. When the STARTUP EV event

is generated by the runtime system, it sets the incarnation number, initializes the local

copy of the token, and forwards the STARTUP message with the initial membership to the

application.

5.2.2 Accuracy, Liveness, and Confidence Micro-Protocols

For detecting site failures, micro-protocols that implement both live and accurate algo-

rithms are provided as alternatives. Live detection is based on lack of response from a site,

i.e., timeouts. Accurate detection, on the other hand, cannot be based on communication

since the network is assumed to be asynchronous. As a result, our implementation, like that

described in [OIOP93] for Mach, detects a site failure only when the failed site recovers

and reestablishes communication. Similarly, accurate recovery detection—the only kind

possible in asynchronous systems—is implemented by the recovering site contacting other

sites upon recovery as described in the previous section. The following micro-protocols

implement these properties.
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micro-protocol LiveFailureDetection(LIMIT:int, check period: real) f
var SilentList: set of int; % list of sites not heard of lately

event handler handle failure(var site:int, attempts:int) f
if attempts < LIMIT and (site,FAILURE) 62 SuspectList then attempts++;
else f SuspectList += (site,FAILURE); attempts = 1;

trigger(SUSPECT NEXT DOWN,site); g
g

event handler handle msg from net(var msg: NetMessage) f
if msg.type != JOIN then f

if (msg.sender,FAILURE) 2 SuspectList then
SuspectList –= (msg.sender,FAILURE);

if msg.sender 2 SilentList then SilentList –= msg.sender; g
elseif msg.sender 2 Membership and (msg.sender,FAILURE) 62 SuspectList then f

SuspectList += (msg.sender,FAILURE);
trigger(SUSPECT CHANGE,msg.sender,FAILURE); g

g

event handler handle new membership msg(msg:ApplMessage) f
if msg.type == FAILURE then SuspectList –= (msg.changed,FAILURE);

g

event handler monitor() f
for each m:int 2 Membership do f

if m 2 SilentList and (m,FAILURE) 62 SuspectList then f
SuspectList += (m,FAILURE);
trigger(SUSPECT CHANGE,m,FAILURE); g

SilentList += m; g
register(TIMEOUT,monitor,check period);

g

initial f register(FORWARDING FAILED,handle failure);
register(MSG FROM NET,handle msg from net);
register(MEMBER MSG,handle new membership msg);
register(TIMEOUT,monitor,check period); g

g

Figure 5.3: LiveFailureDetection Micro-Protocol

LiveFailureDetection. Triggers event SUSPECT NEXT DOWN signaling a suspected

site failure if token retransmission fails a specified number of times. Triggers SUS-

PECT CHANGE instead if a site that is expected to communicate for some other reason

does not respond in a timely manner, or if a site that is already in the membership list

attempts to join. The pseudo-code for LiveFailureDetection is shown in Figure 5.3.

AccurateRecoveryDetection. Triggers SUSPECT CHANGE signaling a suspected site

recovery upon receiving a message from a site not currently in the membership. Used in

combination with LiveFailureDetection.

AccurateDetection. Implements accurate detection of both site failures and recoveries.

Triggers SUSPECT CHANGE signaling a suspected site failure and succeeding recovery
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when a message arrives with an incarnation number greater than the current incarnation

number for that site. Also inserts the current incarnation number in outgoing messages.

Our design supports two versions of the confidence property. The first is single

site suspicion, where no confirmation is needed from other sites. In this case, a sus-

pected membership change can simply be entered into the token and circulated among

all group members. The second is a voting-based process, which is implemented by the

micro-protocol VotedDecision. When the event POTENTIAL ENTRY is triggered, Voted-

Decision sends out a request for votes and sets a timer using the facilities for TIMEOUT

events provided by the runtime system. When the timer expires, all votes that have been

received are examined. If any site has responded “no”, the result in negative, that is, the

conclusion is that no membership change has occurred. Otherwise, the result is posi-

tive. Individual sites base their responses on whether or not the suspected site is in their

SuspectList. Many other variants of voting-based policies are, of course, possible.

5.2.3 Agreement Micro-Protocols

Implementing agreement on site failures and recoveries is straightforward given the ab-

straction of an indestructible token. In particular, since the token is guaranteed to be

received periodically by every operational site, all that is required is to enter the change

in the token and circulate it. Sites then read the entry when the token arrives and deliver

a membership change message to the application at the appropriate place in the message

stream.

The micro-protocol MembershipDriver implements agreement and coordinates the

overall execution of the membership protocol. Coordination is primarily based on events.

Figure 5.4 illustrates the event interactions between MembershipDriver and other micro-

protocols. In the figure, edges originating at MembershipDriver represent events trig-

gered by this micro-protocol and edges pointing towards MembershipDriver represent

events for which this micro-protocols has event handlers registered. MembershipDriver

also maintains information about the number of rotations needed for each membership

entry in the token. Special attention is paid to entries whose reporter—the site that origi-

nally added the entry to the token—fails during execution of the protocol. This situation

is handled by having such entries be “adopted” by other sites, which then behave as the

reporter for the remainder of the protocol.

A second membership driver micro-protocol called SimpleMembershipDriver is

provided as an option for applications not requiring agreement. Rather than circulate

information in the token, it simply translates local detection of failures and recoveries into

membership change messages that are delivered to the application. It also implements a

simple recovery facility for this type of application.

All remaining micro-protocols assume that MembershipDriver is configured into the

system.
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Figure 5.4: Event Interactions between MembershipDriver and Other Micro-Protocols.

5.2.4 Ordering and Synchrony Micro-Protocols

The MembershipDriver micro-protocol implements FIFO ordering of membership change

messages as a free side-effect of the agreement process. Other orderings are implemented

by separate micro-protocols, as follows.

Total order. Total ordering of membership change messages is implemented by simply

forwarding membership change messages to the application in the order the changes

are recorded in the token. Since every site sees the same token, every site delivers the

messages in the same total order using only one round of token rotation.

The TotalOrder micro-protocol (Figure 5.5) implements this property by translating

the ordering of entries in the token into a total order in the ordering graph using mes-

sage predecessor fields. Note that the strong guarantees provided by TokenDriver and

MembershipDriver greatly simplify this micro-protocol.

micro-protocol TotalOrder() f
var previous mid: int; % id of the previously processed msg in total order

event handler handle mship msg( var msg:ApplMessage,entry:EntryType) f
msg.pred[ ] += previous mid; previous mid = msg.mid; g

initial f previous mid = 0; register(MEMBER MSG,handle mship msg); g
g

Figure 5.5: TotalOrder Micro-Protocol

Agreement on Last Message. Properties such as agreement on last message that require

ordering membership change messages with respect to application messages are somewhat
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more complex. The AgreedLast micro-protocol implements this property by collecting

information in the token about the last message received from the failed site. This

information, which is stored in the membership entry, is updated at a site if that site has

received a message with a higher identifier than the one currently in the token. After one

rotation, then, the token holds the identifier of the most recent message that any site has

received from the failed site at the time it updated the entry. This message is taken to be the

agreed-upon last message, and the token rotated a second time to disseminate the result.

After receiving the token a second time, each site places the appropriate membership

change message in the ordering graph immediately after the agreed-upon last message.

Note that during this process, delivery of application messages from the suspected failed

site must be stopped. Figure 5.6 presents the pseudo-code for AgreedLast.

Virtual Synchrony. The VirtualSynchrony micro-protocol implements this property by

guaranteeing that the sets of application messages received before and after a membership

change message are identical on all sites, respectively. This is accomplished by first col-

lecting information on which messages have already been delivered and then constructing

an agreed predecessor set consisting of those messages that have been delivered on at least

one site. set. As was the case above, delivery of application messages is stopped during

the execution of the agreement.

Agreement on Successors. This property states that every site has an agreed view of

which messages are guaranteed to be delivered after the membership change message.

Note that causal ordering of messages creates an agreed successor set consisting of those

messages that are sent after the sender receives the membership change message. Different

options are available for creating agreed successor sets that are larger, i.e., include earlier

messages. The algorithm used for AgreedSucc is similar to VirtualSynchrony, where

information about the most recent messages that have not been delivered is collected and

used to form the agreed successor set. This approach requires stopping message delivery

while agreement is in progress. Another micro-protocol, LateAgreedSucc, is based on

an inexpensive solution where the successor set consists of those messages sent after the

agreement has started. This requires only one token rotation.

Agreement on Predecessors. This property states that every site has an agreed view of

which messages are guaranteed to have been delivered on all sites prior to a membership

change message. Note that there may be messages that are not in this set but are delivered

before the membership change message on some sites. This is not inconsistent with the

definition since the agreed set only specifies those messages delivered at every site. There

are several possible choices for what constitutes the agreed predecessor set. For example,

it could be those messages that every site has received by the time the agreement protocol

starts, those messages that at least one site has received by this time, or even all messages

that were sent by this time. The first alternative is the least restrictive and allows the

membership change message to be delivered as early as possible, so it is the alternative

implemented by AgreedPred. The protocol simply collects information about delivered
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micro-protocol AgreedLast() f
var LastSeen[ ], LastAllowed[ ]: int; mutex: semaphore;

event handler first round(var entry:EntryType) f
var s: int;
if entry.type == FAILURE then f P(mutex); s = entry.changed;

entry.pred[s] = max(LastSeen[s],entry.pred[s]);
LastAllowed[s] = entry.pred[s]; V(mutex); g

else if entry.type == C FAILURE then f P(mutex);
for each s 2 entry.members do f

entry.pred[s] = max(LastSeen[s],entry.pred[s]);
LastAllowed[s] = entry.pred[s]; g

V(mutex); g
g

event handler new membership msg( var entry:EntryType, msg: ApplMessage) f
var s: int;
if entry.type == FAILURE then f P(mutex); s = entry.changed;

msg.pred[s] = max(msg.pred[s],entry.pred[s]);
LastAllowed[s] = msg.pred[s]; V(mutex); g

else if entry.type == C FAILURE then f : : : similar to above : : : g
g

event handler handle delivered msg(var msg:ApplMessage) f
if msg.type == FAILURE then f P(mutex);

LastAllowed[msg.changed] = MAXINT; V(mutex); g
else if msg.type == C FAILURE then f : : : similar to above : : : g

g

event handler handle msg(var msg:ApplMessage) f P(mutex);
if LastAllowed[msg.sender] < msg.mid then f V(mutex); cancel event(); g
else f

LastSeen[msg.sender] = max(LastSeen[msg.sender],msg.mid);
V(mutex); g

g

initial f register(FIRST ROUND,first round);
register(MSG RECEIVED,handle msg);
register(DELIVERED TO APPLICATION,handle delivered msg);
register(MEMBER MSG,new membership msg);
LastSeen[ ] = 0; LastAllowed[ ] = MAXINT; g

g

Figure 5.6: AgreedLast Micro-Protocol

messages during the first round of token passing and this set forms the predecessor set on

the second.

External Synchrony. This property states that when a site updates its membership view,

all other sites either already have this new view or are in a transition state. The Exter-

nalSynchrony micro-protocol implements this property by using a a special membership

change message PRE CHANGE that is forwarded to the application on the first round.

Upon the reception of this message, the application changes its membership state to
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“Transition”. Once this occurs, the token is forwarded to the next site. Thus, by the sec-

ond rotation, each site is in a transition state and the normal membership change message

can be delivered to the application.

Extended Virtual Synchrony. This property states that application messages sent before

the sender receives a membership change message are delivered at their destinations before

the membership change. The ExtendedVirtualSynchrony micro-protocol implements

this property using a PRE CHANGE message similar to ExternalSynchrony. In this

case, however, upon receipt of this message, the application refrains from sending more

messages. In addition to forwarding the PRE CHANGE message on the first round, the

micro-protocolcollects informationabout the most recent messages sent by the application

prior to receiving the PRE CHANGE message. These messages are made the predecessors

of the membership change message on the second round, thereby guaranteeing that they

will be delivered to the application before the actual membership change message. Figure

5.7 presents the pseudo-code for ExtendedVirtualSynchrony. Note that special attention

must be paid to sites that have failed; such sites cannot participate in the algorithm, so

messages sent by these sites are not ordered with respect to the membership change

message. This is handled by every site keeping track of not only the latest message it sent,

but also the latest message from every site that it has received.

5.2.5 Partition Handling Micro-Protocols

As noted in chapter 4, the policies that dictate how a system operates in the presence

of partitions can be divided into three phases: partition time, partitioned operation, and

partition join. The micro-protocols relevant to each phase are described below.

Partition Time. By default, the membership service implements individual notification,

where the membership changes associated with a partition are treated as individual site

failures. The alternative collective notification policy is provided by the CollectiveNo-

tification micro-protocol, which reports the failure of all sites in other partitions in a

single membership change message.1 It does this by waiting for the NEW ENTRY or

MERGE TOKENS events, and then when they occur, combining all failure entries in the

token into a single entry. The entries are combined so that the ordering properties guaran-

teed for the combined entry are inherited from the first entry in the token. Once the entries

are combined, the token is circulated again to ensure that every site sees the combined en-

try. To guarantee that no site generates a membership change message for an entry before

CollectiveNotification has a chance to combine entries, each entry is circulated at least

once around the ring before a membership change message is delivered to the application.

This also guarantees that all sites in other partitions are included in the collective entry.

Partitioned Operation. The policy for what level of service a system should provide dur-

ing partitions is inherently an application decision, so the membership service generally

1Note that simultaneous true site failures will also be reported collectively since such situations

are impossible to distinguish from partitions in asynchronous systems.
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micro-protocol ExtendedVirtualSynchrony() f
var wait: semaphore; % wait for delivery of PRE CHANGE message to application

view[ ]: int; % latest message seen from every site;

event handler record view(var msg: ap msg type) f
if msg.mid > view[msg.sender] then view[msg.sender] = msg.mid;

g

event handler first round(var entry: entry type) f
var msg = new(ap msg type);
if entry.change != MERGE then f

msg.mid = e.entry id; msg.type = PRE CHANGE; msg.pred[ ] = 0;
trigger(APPLICATION MSG,msg); P(wait);
entry.view = max(entry.view,view); g

g

event handler handle delivered msg( var msg: ap msg type) f
if msg.type = PRE CHANGE then V(wait);

g

event handler new membership msg( var msg:ap msg type,entry:entry type) f
if msg.type 2 fFAILURE,RECOVERY,C FAILUREg then

if not(msg.type = RECOVERY and msg.changed = MyId) then
msg.pred += entry.view;

else msg.pred[ ] = 0;
g

initial f view[ ] = 0; wait = 0; register(MSG RECEIVED,record view);
register(APPLICATION SEND,record view);
register(FIRST ROUND,first round);
register(DELIVERED TO APPLICATION,handle delivered msg);
register(MEMBER MSG,new membership msg); g

g

Figure 5.7: ExtendedVirtualSynchrony Micro-Protocol

only provides supporting information. In our design, this is done by the Augmented-

Notification micro-protocol, which augments each membership change message with

majority/minority status information depending on whether the site is in the majority

partition or not. Note that the appropriate value is simple to calculate, assuming that the

maximum membership of the group is known and that membership change messages are

delivered in total order. The application can use this information, for example, to halt

processing or reduce the level of service in minority partitions.

Partition Join. The merging of partitions is initiated by the PartitionDetection micro-

protocol, which attempts to detect the existence of other partitions by periodically sending

“I am alive” messages containing the current membership to all sites that are currently

considered failed. Upon receipt of such a message at some site A, the event PARTITION

is triggered if the membership list in the message has no sites in common with the

membership list on A. If the lists do overlap—which might occur, for example, if the

partition was of such short duration that the process of removing sites from the list was
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micro-protocol AsymmetricJoin() f
var OtherPartition: set of int; % sites in the other partition

event handler handle partition(Members: set of int) f
if dominate(Members,ParList) then f

OtherPartition = Members; register(ADD ENTRY,enter shutdown); g
g

event handler enter shutdown(var token: TokenType) f
var entry: EntryType;
if SHUTDOWN 62 token.entries then f

entry.type = SHUTDOWN; entry.members = OtherPartition;
token.entries += entry; trigger(NEW ENTRY,entry); g

deregister(ADD ENTRY,enter shutdown);
register(DELIVERED TO APPLICATION,handle delivered msg);

g

event handler handle delivered msg(msg: ApplMessage) f
if msg.type == SHUTDOWN then f

deregister(DELIVERED TO APPLICATION,handle delivered msg);
status = DOWN; shutdown and restart(msg.members); g

g

initial f register(PARTITION,handle partition); g
g

Figure 5.8: AsymmetricJoin Micro-Protocol

incomplete in one or both partitions—then the sites in the intersection are removed from

the membership of A’s partition prior to beginning the merge process.

Two alternative micro-protocols are provided for implementing the partition merge

when PARTITION is triggered, CollectiveJoin and AsymmetricJoin. The first combines

two partitions into a single one, including merging the two logical rings used for commu-

nication. This is accomplished by one partition giving up its token to a site in the other

partition, which then combines the tokens into a single token as described in section 5.2.1.

A special membership change entry of type MERGE is then inserted into the token and

circulated to inform all sites in the combined membership of the new membership infor-

mation. AsymmetricJoin handles partition join by forcing sites in the minority partition

to fail prior to being allowed to rejoin the majority partition as individual recovering sites.

The shutdown is coordinated by adding a SHUTDOWN entry to the token in the minority

partition.

The pseudo-code for AsymmetricJoin is shown in Figure 5.8. Functions dominate and

shutdown and restart are defined elsewhere. The former defines the dominance of two

partitions based on group size and site identifiers, as discussed above. The latter, which

is executed only by sites in the non-dominant partition, takes the assumed membership of

the dominant partition as argument and simulates the failure and restart of the composite

protocol. It also triggers the event RECOVERY EV.

Finally, the ExtendedWithPartitionmicro-protocol implements extended virtual syn-
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chrony between application messages and membership change messages reporting parti-

tion merges, similar to that defined in [MAMSA94]. This micro-protocol is distinct from

ExtendedVirtualSynchrony since the predecessor sets of such messages are different in

the sites in the two merging partitions.

Other partition handling micro-protocols. In numerous membership services [Cri91,

HS95, KT91, KGR91, MSMA94, MPS93a, RB91], it is simply assumed that partitions

will not occur, or that only one partition will continue to operate. The OnePartitionmicro-

protocol implements a simple strategy that approximates this behavior. In particular,

when any message other than JOIN is received from a site outside the current membership,

OnePartition sends a STOP message that forces the offending site to halt. A simple

dominance relationship based on group size and maximum site identifier is used to ensure

that only one partition remains active.

5.3 Configuring a Custom Membership Service

The collection of micro-protocols outlined above provides the basis for building a mem-

bership service with properties customized to the needs of a given application. In principle,

those micro-protocols that provide the desired properties are combined at system config-

uration time to construct an instance of the service. However, as discussed in chapter 3,

relations between micro-protocols restrict which combinations are operational. Here, we

discuss the relations between membership micro-protocols and present the membership

configuration graph that summarizes the operational combinations.

5.3.1 Relations between Membership Micro-Protocols

Most relations between micro-protocols are inherited from the relations between the cor-

responding properties described in chapter 4. For example, totally ordering membership

change messages is impossible unless such messages are present on all sites, so the

property of total ordering depends on agreement. Thus, in our design, this means that

TotalOrder depends on MembershipDriver that implements the agreement property.

Sometimes a dependency relation between two properties changes naturally into an

inclusion relation between the corresponding micro-protocols, as outlined in chapter 3.

Examples of this are the ordering properties with respect to application messages. For

example, extended virtual synchrony depends on virtual synchrony, but it is easier to

implement the ExtendedVirtualSynchrony micro-protocol using MembershipDriver

instead of attempting to build it using VirtualSynchrony. Essentially, the knowledge

that virtual synchrony is guaranteed does not make the implementation of extended virtual

synchrony any easier in our implementation framework. On the contrary, from the point of

view of ExtendedVirtualSynchrony, VirtualSynchrony collects irrelevant information

and adds irrelevant edges to the ordering graph that ExtendedVirtualSynchrony would

have to change to guarantee the corresponding property.
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Other relations are results of design decisions, however. For example, in our design Ex-

ternalSynchrony is included in ExtendedVirtualSynchronyalthough the corresponding

properties are formally independent. This is because the behavior of ExternalSynchrony

is a subset of the behavior of ExtendedVirtualSynchrony. In particular, ExternalSyn-

chrony is unnecessary when ExtendedVirtualSynchrony is used, since the application

can change into transition state when it receives the PRE CHANGE message created by

ExtendedVirtualSynchrony.

Finally, all the real-time properties discussed in chapter 4 are naturally omitted since

this design and implementation are based on an asynchronous environment.

5.3.2 Membership Configuration Graph

Figure 5.9 presents the membership configuration graph for the micro-protocols presented

in this chapter. Using the graph we can, for example, configure a simple membership

service consisting of the micro-protocols MessageDriver, SimpleMembershipDriver,

AccurateDetection, and StartUp. This service provides accurate but uncoordinated

membership change indications to the higher level protocols. An example of a more

complicated membership service would be one that provides virtual synchrony, and han-

dles network partitions by allowing computation to continue in each partition and then

combines partitions by forcing sites in one to fail and rejoin as individual members.

Such a service consists of the micro-protocols AsymmetricJoin, PartitionDetection,

VirtualSynchrony, TotalOrder, MembershipDriver, TokenDriver, MessageDriver,

Recovery, StartUp, AccurateRecoveryDetection, and LiveFailureDetection. In this

manner, 1136 semantically distinct membership services can be configured from the

micro-protocols in this collection.

Although the number of possible combinations may appear excessive for any practical

purposes, one has to realize that it is a result of a small number of mostly independent

aspects of membership services. In particular, there are the two types of failure detec-

tion, three different approaches for dealing with partitions, a number of different ordering

properties, and a couple of extra features such as CollectivePartition and Augmented-

Notification that can be added to most combinations. The need for the different failure

detection methods can be justified by different systems taking the different approaches.

Similarly, different applications have different needs for dealing with partitions. For ex-

ample, the consistency and availability goals of the system dictates the behavior required

in the event of partitions. Finally, although one could always choose the strongest order-

ing property, ExtendedVirtualSynchrony, the cost of the different ordering properties

in terms of the number of messages required and the delay imposed on message deliv-

ery makes it appealing to choose the property providing the minimum required ordering

guarantee.
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Figure 5.9: Membership Configuration Graph

5.4 Prototype Implementation

The C++ prototype implementation of the event-driven execution model described in

chapter 3 was used to implement the configurable membership service. In the following,

we elaborate on how the C++ prototype was used and on our initial experience with the

implementation.

The membership prototype uses the User and Network object classes as described in

chapter 3, with the exception that the User class logs application and membership change

messages received for debugging purposes. The actual membership service and required

communication services are implemented as derived classes of base classes Compos-
iteProtocol and MicroProtocol. Class MembershipService, which is derived

from CompositeProtocol, is the membership composite protocol. This class defines

the events, shared data structures, and initialization for the service. All membership micro-

protocols described in this chapter are implemented as object classes derived from the

MicroProtocol class. Furthermore, an additional micro-protocol Communication-
Service implements the functionality of a reliable communication service not addressed

by the membership micro-protocol. In particular, it maintains the ordering graph and

controls delivery of messages to User so that all ordering constraints are satisfied. Fur-
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thermore, it implements reliable causally ordered multicast communication between the

User objects.

The prototype implementation of the membership service has been used to test a

variety of different membership services. Given the large number of micro-protocol com-

binations possible based on the configuration graph in figure 5.9, the services tested were

representative rather than exhaustive. First, all possible combinations that did not involve

any of the micro-protocols that implement ordering properties with respect to application

messages were tested. Then, to test these micro-protocols—AgreedLast, AgreedSucc,

LateAgreedSucc, AgreedPred, VirtualSynchrony, External Synchrony, and Extend-

edVirtual Synchrony—each was combined with five representative configurations of the

remaining micro-protocols, one with AccurateDetection and four with LiveFailureDe-

tection plus different ways of dealing with partitions. The test suite included scenarios

involving multiple failures and recoveries, network partitions, and token loss, as well as

normal processing.

Testing was performed as a black-box process in which various output results were

monitored for a given set of inputs. For a membership service, the primary determinants

of correctness are the messages received by the application level on each site and their

ordering, so message logs maintained inUser objects were the main source of information.

Token passing was also traced to validate TokenDriver, arguably the most complicated

micro-protocol. Execution of other individual micro-protocols could also be traced by

setting the appropriate bit in a tracing mask; this causes event handling code in the micro-

protocols to generate trace information every time one of its event handlers is invoked.

Building a version of the configurable membership service in this simulated environ-

ment has demonstrated several things, in our view. One is the overall viability of our

modularization approach, where properties are mapped directly to fine-grained software

modules to enhance configurability and customization. Another is the value of event-

driven execution for decoupling modules and thereby minimizing the software changes

needed to support configurability. The property-based modularity and configurability of

the service also turned out to be an asset during the testing process itself. For example,

during debugging, it was often easy to identify the property that was not being properly

enforced, which automatically identified the offending micro-protocol. The ability to

include or exclude micro-protocols easily also helped narrow the collection of modules

that had to be examined when other types of problems occurred.

5.5 Discussion

5.5.1 Micro-Protocol Execution Costs

This choice of which micro-protocols to include when building a customized membership

service is based primarily on the functional guarantees required by the application. How-

ever, another consideration is the incremental execution cost associated with guaranteeing

the associated property, such as the number of extra messages required and the additional
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delay that it imposes on the delivery of messages to the application. To examine these

costs relative to the micro-protocols discussed above, we first divide the functionality

implemented by the membership service into two phases:

1. Detection: Initial detection of suspected site failures and recoveries.

2. Coordination: Subsequent processing required for sites to coordinate decision and

deliver membership change message to the application.

Each phase incurs separate execution overhead based on the specific properties being

enforced.

For the detection phase, the metric of interest is detection delay, that is, the time it

takes from when a change occurs until the initial suspicion is signaled at some site. For

recovery detection, both AccurateRecoveryDetection and AccurateDetection are based

on receiving a JOIN message from the recovering site, so the detection delay depends on

how quickly this message is sent and received after the site restarts. For failure detec-

tion, the delay depends on whether AccurateDetection or LiveFailureDetection is used.

AccurateDetection only detects a failure once the failed site recovers, so the detection

delay may be arbitrarily long. On the other hand, as with most live failure detection

schemes, the delay associated with LiveFailureDetection depends on the frequency of

message exchange and the timeout interval used before a suspicion is signaled. In our

particular design, detection delay can be reduced either by circulating the token faster,

which increases the network load, or by altering the token passing protocol to reduce

the maximum number of retransmissions or shrink the timeout interval, both of which

increase the probability of false failure suspicions. VotedDecision reduces the probability

of false detections at the cost of increased detection delay.

For the coordination phase, the metrics of interest are agreement cost and delivery

delay. Agreement cost is the number of messages it takes to collect and distribute

information about a membership change to all sites so that the selected properties are

guaranteed. Given our token-based protocols, the agreement cost can most easily be

analyzed in terms of how many token rotations a specific property requires. For the

micro-protocols in our service, these costs are:

� One Rotation: TotalOrder, LateAgreedSucc, AugmentedNotification, Recov-

ery, and AsymmetricJoin.

� Two Rotations: All other ordering micro-protocols and CollectiveJoin.

� Between Two and Three Rotations. CollectiveNotification.

Delivery delay is the extra delay imposed by the membership service on the time it

takes a message to be delivered to the application. Although it is difficult to calculate such

delays in absolute terms, examining the relative delays between micro-protocols can be

instructive. The delays for the relevant micro-protocols are as follows:
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� AgreedPred. None, since algorithm will construct an agreed predecessor set con-

sisting of messages already delivered on every site.

� AgreedLast. Halts delivery of messages from suspected site during agreement,

and requires delay of membership change message until agreed last message is

delivered.

� AgreedSucc. Halts delivery of all messages during agreement, but does not delay

membership change message after agreement has been reached.

� VirtualSynchrony. Halts delivery of all messages during agreement, and requires

delay of membership change message until agreed predecessor set is delivered.

� ExternalSynchrony. No extra ordering delay, but requires each site to deliver

PRE CHANGE message during first token rotation prior to forwarding token to next

site.

� ExtendedVirtualSynchrony. Same as ExternalSynchrony for token passing and

VirtualSynchrony for membership change messages, except that extra delay may

be incurred since agreed predecessor set consists of all messages sent before the

initiation of agreement.

As would be expected, the delays are roughly proportional to the strength of the guarantees

provided.

5.5.2 Related Work

Membership services and protocols have been the subject of a large number of papers.

Some of the work has been based on a synchronous system model, where bounds are

placed on the network transmission time [Cri91, EL90, KGR91, LE90, SCA94]. Other

work assumes an asynchronous model similar to that used in this chapter [ADKM92a,

AMMS+95, DMS94, EL95, GT92, MPS92, MPS93a, MAMSA94, RB91, SM94]. Unlike

our configurable service, however, all these services guarantee only a single collection of

properties, or at most, offer a small number of choices.

Schemes based on logical rings or token passing are used by many multicast, mem-

bership, and system diagnosis protocols. For example, token passing is used as a means

of implementing reliable totally ordered multicast in the Reliable Broadcast Protocol

[CM84], Token-Passing Multicast (TPM) protocol [RM89], Multicasting Transport Pro-

tocol (MTP) [AFM92], Totem [AMMS+95], Pinwheel [CM95], and Reliable Multicast

Protocol (RMP) [WMK95]. In these protocols, the site possessing the token is either the

only site that is allowed to send a message or the site that assigns a global ordering to

messages sent by all sites. Most of these protocols deal with site failures and recoveries,

as well as the possibility of token loss. With the exception of TPM, however, all deal with

membership changes using broadcast-based schemes that are independent of the token
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passing used during normal processing; in these cases, the token is recreated only after

agreement has been reached on the new membership.

The algorithms used in TMP are perhaps closest to those used in our membership

service, especially its use of the token to recreate group membership after a failure. When

a site suspects that a token loss or site failure has occurred, it generates a recovery token

and circulates it to collect the identities of operational sites. Multiple recovery tokens are

eliminated by having each site only forward a token if it was created by a site with a larger

identifier. After agreement on the new membership has been reached, a clean-up token

is circulated to collect and disseminate information about the messages received on each

site so that missing messages can be requested. This token also collects the maximum

sequence number across all delivered messages as it circulates, which is then used to

initialize the new token during recovery.2

Although the TMP protocol employs a token to collect and disseminate information

in much the same way as we do, the underlying algorithms are quite different. For exam-

ple, unlike TPM, in our approach, information about concurrent membership changes—

including partitions—is collected and disseminated using a single token. This difference

changes many of the details of token handling, such as the steps taken to regenerate the

token when failures occur. Furthermore, our design emphasizes configurability and fa-

cilitates the construction of customized membership services, rather than implementing a

single set of properties as does TMP.

A number of membership and system diagnosis protocols organize sites into a logical

ring structure without using a token. For example, the protocols in [RFJ93] use a ring to

detect membership changes by having each site monitor its neighbor. Once a failure or

recovery is detected, however, a membership protocol that employs a coordinator process

is employed rather than using the ring. Some system diagnosis protocols, such as the

Adaptive DSD protocol [BB91], use a logical ring for failure monitoring and information

propagation. A simple membership protocol derived from Adaptive DSD that also uses a

ring organization but not a token is introduced in chapter 6.

5.6 Conclusions

The modular configurable membership service described in this chapter is an example

of the use of our techniques for constructing configurable fault-tolerant services. The

membership service facilitates the construction of a customized fault-tolerance support

layer that can provide the specific execution guarantees needed by a given application.

By supporting this type of customization and configuration, our approach reduces the

size and complexity of the system, thereby increasing the likelihood that it will operate

as intended. It also has the potential to improve application performance by giving the

designer explicit control over the tradeoff between the strength of the guarantees provided

and the performance; rather than having to accept guarantees stronger than needed and

2Totem uses a commit token for a similar purpose [AMMS+95].
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thereby incur extra execution costs, the designer can select—and pay for—only those

guarantees that are truly required. The approach is based on mapping abstract properties

to individual micro-protocols, which are then configured together with a standard runtime

system to form a composite protocol. The mapping of abstract properties to software

modules and the event-driven model supported by the runtime system both enhance the

overall configurability of the resulting system.
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CHAPTER 6

MEMBERSHIP AND SYSTEM DIAGNOSIS

System diagnosis is the problem of keeping track of which processing elements in a

computing system are functioning correctly and which have failed [PMC67]. That paper

stated that a system operating in a tightly or loosely coupled distributed environment

must avoid giving tasks to or using results from faulty processing elements. Therefore,

it is necessary for a central authority, or for every processing element, to be aware of the

condition of all the active processing elements. This ability to agree on the state of the

system allows the fault-free processors to make correct and consistent progress. A model

was presented where each subunit is able to test other subunits. Each test involves the

controlled application of stimuli and the observation of the corresponding response. On

the basis of the responses, the outcome of the test is classified as “pass” or “fail”. In either

case, the testing unit evaluates the tested unit as either fault-free or faulty. Numerous

papers on system diagnosis have followed [BMD93, BP90a, BGN90, BB91, BP90b,

BB93, LYS93, Pel93, WHS95].

Despite the close resemblance of the system diagnosis problem and the membership

problem discussed in chapters 4 and 5, little has been done to compare or contrast these

two fields. An important exception is [BMD93], which reviewed the field of system

diagnosis thoroughly and compared it to membership. Unfortunately the emphasis was

heavily on system diagnosis and the comparison brief. A number of other papers, for

example [EL95, KGR91], acknowledge the relationship between these problems but do

not explore it any further. In this chapter, we introduce system diagnosis, contrast it

with the membership problem, and show that they can be viewed as essentially the same

problem with slightly different assumptions. Given this observation, we conclude that

the choice of service to keep track of functional and faulty processes, processors, or

computers—whether called membership or system diagnosis—should be based only on

user requirements and assumptions made about the computing environment, especially

the failure models and synchrony assumptions. This means that system diagnosis and

membership can be viewed as customized instances of a general service to keep track of

faulty and functioning elements. Finally, the observations are applied by transforming

two typical distributed system diagnosis algorithms into new membership algorithms, and

by transforming a family of membership algorithms into system diagnosis algorithms that

provide a service stronger than any other of which we are aware. In the conclusions, we

outline how these observations could be utilized to construct a general configurable change

detection and reporting service that could be configured to provide service guarantees

similar to traditional membership and system diagnosis services.
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6.1 System Diagnosis

The so-called PMC model for system diagnosis was introduced in [PMC67]. The model

uses a graph G(V,E) to model the system’s testing convention. Subunits make up the set

V, and directed edges in E represent one subunit applying a test to another subunit, i.e.,

the directed edge (A,B) denotes that A tests B. Each edge is labeled with either 0 or 1 if

the corresponding test produces a passing (0) or failing (1) result. The set of results from

a given test sequence is known as a syndrome.

In the PMC model, a centralized arbiter interprets the syndrome after completion of

testing according to G and deems each subunit to be either faulty or fault free. Fairly strict

assumptions are made about the behavior of faulty subunits: all faults are permanent,

a fault-free subunit is always able to determine accurately the condition of a subunit it

is testing, and no more than t subunits may be faulty. As noted in [BMD93], these

assumptions are not necessarily valid or desired in a fault-tolerant distributed network,

and later work has dealt with removing these restrictions. The first problem is supervisor-

controlled diagnosis. The implication is that all test data must be gathered and analyzed

by a centralized supervisor and the result distributed back to the system. This is costly in

terms of time, messages, and system reliability, which is directly related to the reliability

of this supervisor. The assumption about permanent faults disallows intermittent and

transient faults. The assumption that tests are complete or have 100% fault coverage may

not be realistic. And finally, setting an upper bound for faulty subunits may not always be

practical.

Systems that allow unambiguous diagnosis in all cases under the assumptions of the

PMC model are said to be t-diagnosable. Based on the model, it was shown that if as

many as t members of the subunit population may be faulty, then it is necessary for the

system to contain n members, n � 2t+ 1, to be diagnosable in all cases. Moreover, each

subunit must be tested by at least t distinct other subunits. In the special case where no two

subunits test each other, these necessary conditions are also sufficient for t-diagnosability

[HA74].

In addition to the general model, [PMC67] gives a convenient testing subnetwork

formulation for t-diagnosable systems that is used widely in later papers. Given an

enumeration of the units u
1

, : : :, u
n

, a system S is said to belong to design D

�t

when a

testing link from u

i

to u

j

exists if and only if j � i = �m (modulo n) and m assumes

values 1; 2; : : : ; t. This formulation simply states that each unit u
i

tests t other units, and

that the other units are chosen so that they are a step of � away from one another. For

example, when � = 1, unit u
i

tests u
i+1

, u
i+2

, : : :, u
i+t

.

An interesting variant to the testing used by the PMC model is comparison testing

[Mal80]. In comparison testing, tests are based on comparing computation results of

productive tasks from different units in the system. In case the size of the result is too

large, a function of the result such as checksum can be used instead. In this approach,

a syndrome is created by units comparing results with those units that they are testing,

and edges in the testing graph are labeled with zero or one based on if the units agree or
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disagree similar to the PMC model. The resulting syndrome can be analyzed as in PMC

model.

More recently, work in the system diagnosis field has concentrated on distributed

diagnosis and probabilistic diagnosis. The concept of t
p

self-diagnosable systems was

introduced in [HKR84] for distributed systems where there is no central coordinator that

executes the diagnosis. A testing network is shown to be t
p

self-diagnosable if for any set

of faulty processors, V 0, with jV 0

j � t

p

, there exists a directed path of fault-free nodes

and links from each fault-free node to any other fault free node. It is shown that this

property requires that any node be tested by at least t
p

+ 1 nodes. For example, D
1t

is t
p

self-diagnosable if t = t

p

+1. More recent work on distributed diagnosis can be found in

[BGN90, BB91, BB93, SA89, WHS95].

The first attempt at probabilistic diagnosis is in [MH76], which proposes assigning a

reliability to each subunit in the network. This reliability measure is simply the probability

of a fault occurring in a given subunit. A probabilistically t-diagnosable (p-t-diagnosable)

system is defined as one having, for every allowable syndrome, a unique, consistent

fault set whose probability of occurrence is greater than p. Assigning a probability of

correctness to each test rather than to the subunits themselves is proposed in [Blo77].

Procedures are given for determining the probability of correct diagnosis for a particular

fault set, and for the entire system. The general problem is to diagnose a system that suffers

from intermittent failures and with tests that have imperfect coverage. The problem using

probabilistic diagnosis under the comparison approach is first studied in [DSK87]. This

system model avoids many of the pitfalls of the PMC model, including the need for the

complete tests, the permanent nature of faults, off-line testing, and an upper bound on the

number of simultaneously faulty subunits. More recent work on probabilistic diagnosis

can be found in [BP90a, BSM89, BP90b, LYS93, Pel93].

6.2 Comparison

We argue that the major differences between algorithms traditionally viewed as system

diagnosis or membership are in the failure model and the strength of the properties

provided by the service. Since membership algorithms typically are distributed by nature,

the comparison here is concentrated on distributed system diagnosis.

The failure model assumed by membership algorithms is in most cases either fail-stop,

crash, or performance failures, although recently some work has been done assuming

Byzantine failures [Rei96]. System diagnosis, on the other hand, seems, in most cases, to

deal with a somewhat obscure failure model, namely one that can be detected by whichever

test is employed by the system diagnosis algorithm. This failure model is strictly smaller

than Byzantine failures [LSM82], since faulty processors suffering from such a failure

could fool any test. The best characterization of this failure model is incorrect computation

failure, which occurs when a processor fails to produce the correct result in response to

the correct inputs [LMJ91]. Note, however, that if we define the test result to be “fail” in
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case no response arrives or the response arrives too late, the failure model employed by

most membership algorithms is a subset of that used in system diagnosis.

The assumed failure model affects the way testing is performed. In membership

services, testing is sometimes explicit by means of sending test messages, either to

indicate that the processor itself is functional or to probe the status of another processor,

or implicit, where the failure of another processor is suspected based on lack of messages

from that processor. In system diagnosis, the testing is always active and the test consists

of the tested computer executing a self-test or some task assigned to it by the tester and

returning the results to the tester who compares the result to an expected result. A good

test probes as many parts of a computer as possible, including the processor, memory, I/O

subsystem, etc. In the case of comparison testing, the two computers involved in the test

exchange results or checksums of results and the test result is achieved by comparing the

results.

Related to the failure model is also the question of how many failures can be tolerated

or diagnosed. Traditional system diagnosis algorithms have fixed testing assignments and

can therefore tolerate a fixed number of failures, whereas most membership algorithms

are prepared to tolerate any number of failures. However, lately this distinction appears

to be disappearing since some recent system diagnosis algorithms, for example [BB91],

can tolerate any number of failures.

In contrast with most system diagnosis algorithms, membership algorithms acknowl-

edge that the detection mechanism may give false detections—especially those designed

for asynchronous systems where it is impossible to tell the difference between a failed

processor and a slow communication link. Some membership algorithms include some

type of distributed vote that compares local information from different group members

about the status of a suspected processor before a failure is declared [HS94a, MPS92].

Even in this case, there is a possibility of false failure detection, so membership algorithms

are prepared to deal with this eventuality by forcing a member suspected to have failed to

fail before it is allowed to recover and rejoin the group.

One of the most important differences between membership and system diagnosis

algorithms may be the degree of integration with the application computation. In most

cases, system diagnosis algorithms are run independently from the application and the

results are used solely for system management. In some cases, this system management

may require stopping the application and restarting it from an uncorrupted state. In con-

trast, membership algorithms are in most cases very tightly integrated with the application,

providing it with a service that enables the programs themselves to deal with failures in the

distributed computing environment. Furthermore, to make it easier for the applications to

deal with the environment, a membership service may provide agreement, ordering, and

synchronization properties as discussed in chapter 4. Using the classification developed

there, system diagnosis algorithms usually only provide change detection and agreement

properties. Although often this difference is intentional, i.e., the required function of the

system is different, it is worth considering whether system diagnosis algorithms could be

augmented to provide some of the stronger properties found in membership services.
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Figure 6.1: Role of Membership/System Diagnosis

Figure 6.1 illustrates the similarities and differences between membership and system

diagnosis. To summarize, essentially they both serve the same purpose, i.e., to provide

the user or the application with information about correct and faulty processors so that the

requirements of the user/application can be met. These requirements could be agreement,

ordering, or synchrony properties as discussed above, or they could be requirements

on how many failures have to be tolerated, how quickly a failure has to be reported,

etc. The membership or system diagnosis algorithm implements a service that satisfies

these requirements, given what the environment makes available. We make assumptions

about how the processors fail (failure model), if the communication is synchronous or

asynchronous, and partially dictated by these facts, what kind of fault coverage the tests

have and if false detections may occur.

In [BMD93] the problems of system diagnosis and membership are reviewed and the

problems compared. The major difference noted in this paper is that membership algo-

rithms mostly test for failures in the time domain whereas system diagnosis algorithms

usually test for failures in the data domain. These two domains were considered orthogo-

nal. A suggestion was made that techniques from membership algorithms could be used in

system diagnosis algorithms to detect time domain failures and similarly techniques from

system diagnosis algorithms could be used in membership algorithms to detect failures

in the data domain. However, in practical system diagnosis algorithms, such as [BB91,

BB93, WHS95], lack of response is considered a failure, i.e., time domain failures are

essentially detected as well. The differences between the service guarantees or possible

transformations between membership and system diagnosis algorithms were not addressed

in [BMD93].

6.3 From System Diagnosis to Membership

In this section, we apply the observations above and show how typical distributed system

diagnosis algorithms NEW SELF [HKR84], EVENT SELF [BGN90], and Adaptive DSD
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[BB91] can be transformed into membership algorithms. The transformation is based on

changing the failure model and thereby the testing method. The last example generates

a new membership algorithm that appears to be competitive with published membership

algorithms due to its simplicity and low message and execution overhead.

6.3.1 NEW SELF System Diagnosis Algorithm

NEW SELF [HKR84] assumes that each processor in the distributed system is capable of

testing its neighbors. Correctly operating processors pass on results of these tests to other

processors in the network. No assumptions are made about faulty processors. Diagnosis

messages, which contain test results, flow between neighboring processors and reach

non-neighboring processors through intermediate processors. Each processor determines

diagnosis of the network with its given information independently.

Each node P
i

tests a set of its neighboring nodes, denoted by TESTED BY(P
i

). After

these tests, P
i

receives additional diagnostic information from the fault-free members of

TESTED BY(P
i

) and stores the information in an input buffer. P
i

then re-tests all nodes

in TESTED BY(P
i

). If node P

j

2 TESTED BY(P
i

) tests fault-free again, all previously

received diagnostic information from P

j

is validated and stored in an array structure. Once

diagnostic information is validated at node P
i

, the information is forwarded to all of the

nodes that test P
i

, denoted TESTERS OF(P
i

). Diagnostic information propagates through

the network along testing paths in the reverse direction of the tests being performed. In

summary, node P
i

operates as follows:

1. P
i

tests all P
j

2 TESTED BY(P
i

);

2. P
i

receives diagnostic information from all P
j

2 TESTED BY(P
i

);

3. P
i

re-tests all P
j

2 TESTED BY(P
i

);

4. P
i

validates information from all fault-free P
j

2 TESTED BY(P
i

);

5. P
i

forwards the validated information and the results of all its tests to TESTERS OF(P
i

).

A good testing subnetwork for this algorithm is D
1t

[PMC67], since it minimizes the

required tests and keeps the majority of the tests between local processors. As noted

above, D
1t

is t
p

self-diagnosable when t = t

p

+ 1.

The theoretically optimal NEW SELF algorithm has been found to be too expensive for

practical systems, so a modified algorithm named EVENT SELF was developed [BGN90].

The original algorithm requires a high number of diagnostic messages to be forwarded

through the network. This message count is significant and can exceed network capacity

for testing networks with even a small number of nodes. The algorithm also requires

the testing time to be insignificant as compared to the testing period. The EVENT SELF

algorithm solves these problems by only propagating diagnostic information when it

has changed and by not testing all nodes in the TESTED BY set on every test cycle.
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EVENT SELF also adds automatic reconfiguration of the testing assignments upon failures

or recoveries.

6.3.2 NEW SELF Membership Algorithm

To construct the corresponding membership algorithm, we first change the failure model to

one typical for membership algorithms, in this case crash failures. In order to test for these

failures, a test consists of sending a test message to the tested processor, which should

generate a reply message. If no reply message arrives within a specified time period, the

test is assumed to indicate failure. Now, since we are dealing with crash failures, we do

not need to validate the information from the processors in the TESTED BY(P
i

) set, so the

re-testing step 3 can be omitted from the NEW SELF algorithm. Furthermore, since no

test result other than the message indicating the reception of the test message is returned,

the reply message can be made to carry the diagnostic information. Finally, based on the

assumption about the failure model, no processor ever forwards incorrect information, so

the validation step 4 is not required. Thus, assuming that the communication network is

synchronous and the processors only suffer from crash failures, the following variation

of the NEW SELF algorithm would guarantee that every failure is known by every correct

processor in the system after the required number of iterations.

1. P
i

sends test message to all P
j

2 TESTED BY(P
i

);

2. P
i

receives reply message with diagnostic information from allP
j

2TESTED BY(P
i

);

3. P
i

combines the information and sends the results to TESTERS OF(P
i

).

However, a problem arises if the network is assumed to be asynchronous or the

processors experience performance failures. This means that two different processors

testing some processor P
j

might get different results. A simple approach would be to

consider a processor faulty if at least one non-faulty processor detects it to have failed.

If this approach is taken, the algorithm can be simplified; in particular, the information

passed around can be reduced to a simple boolean vector, Members
j

, where Members
j

[i]

indicates whether processor j considers processor i to be correct and functional. Assume

now that initially these vectors are initialized to true and that a processor changes an entry

to false when the corresponding processor fails a test. Now, the information that has

to be passed around consists of these vectors, with information being combined by an

elementwise “and” operation. If the suspicion of one processor is not considered to be

enough, all Members vectors have to be propagated and a failure is only declared when

all t (or a certain portion of the t testers) consider a processor to have failed.

This algorithm guarantees that every correct processor has the same view of the

group membership after some required number of iterations. If those processors that are

considered faulty are not explicitly excluded from the algorithm, i.e., they can continue
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testing the processors in their TESTED BY set, they will eventually find out that the other

processors have decided that they have failed, assuming no network partitions.

Similar changes can be made to EVENT SELF to derive a new membership algorithm

more efficient than the one derived from NEW SELF.

6.3.3 Adaptive DSD System Diagnosis Algorithm

Adaptive DSD [BB91] is a variation of the NEW SELF algorithm where testing assign-

ments change adaptively during the execution of the system diagnosis. Adaptive DSD

assumes a distributed network, in which nodes perform tests of other nodes and determine

them to be faulty or fault-free. Test results conform to the PMC model. The Adaptive

DSD algorithm is based on a similar test cycle to NEW SELF and EVENT SELF, with four

phases: test, receive information, test again, accept information. The difference is that

the testing set changes with time. In contrast with NEW SELF, no restrictions are placed

on the number of faulty nodes, and the algorithm can diagnose any fault situation with

any number of faulty nodes. For correct diagnosis, each node must be tested by at least

one fault-free node; in Adaptive DSD, each node is tested by exactly one fault-free node.

Each node typically tests one other node, but can be required to test multiple nodes, of

which one must be fault-free. Adaptive DSD is shown to be a considerable improvement

over previous algorithms, including being optimal in terms of the total number of tests

and messages required.

The Adaptive DSD algorithm operates at each node by first identifying another unique

fault-free node and then updating local diagnostic information with information from that

node. Functionally this is accomplished as follows. List the nodes in sequential order, as

(n

0

; n

1

; : : : ; n

N�1

). Each node, n
i

identifies the next sequential fault-free node in the list.

This is accomplished at n
i

by sequentially testing consecutive nodes n
i+1

; n

i+2

; : : :, until

a fault-free node is found. Diagnostic information received from the fault-free node is

assumed to be valid and is utilized to update local information. All addition is modulo N

so that the last fault-free node in the list will identify the first fault-free node. As a result

of this process the fault-free processors will form a directed cycle. After N testing rounds

every fault-free processor knows about every other fault-free processor in the system. The

detailed algorithm and correctness proofs can be found in [BB91].

As noted above, the Adaptive DSD algorithm is optimal in terms of the total number

of tests required. The algorithm can be improved, however, with respect to total number

of messages and diagnostic latency. In a manner similar to the EVENT SELF algorithm, it

is possible to reduce the number of diagnostic information messages by only transmitting

when the information has actually changed. This can be accomplished by means of

timestamping information and comparing timestamps of new diagnostic messages to

currently stored information. Also, the diagnostic latency can be decreased by not waiting

until the next testing period before changed information is forwarded. This can be

accomplished by storing information about processors to whom the information has to

be forwarded in FORWARD TO tables. This table is essentially the reverse of the testing
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subnetwork: if a node n

i

tests n

j

, n
j

includes n

i

in its FORWARD TO table. Now,

when n
i

gets new diagnostic information, it forwards the information to the nodes in the

FORWARD TO table instead of waiting until the next testing period. Upon receiving the

information, these nodes test node n
i

to validate the correctness of the information.

6.3.4 Adaptive DSD Membership Algorithm

Adaptive DSD is fairly close to membership algorithms in the sense that the testing

arrangement is not fixed and that any number of failures can be tolerated. It could be

used as the membership algorithm in a synchronous system where the lack of response

can be reliably credited to the failure of a processor. However, to deal with more realistic

asynchronous systems some modifications must be made. In the following, we present a

complete membership algorithm designed for asynchronous distributed systems based on

the Adaptive DSD algorithm. This algorithm deals with both failures and recoveries, and

guarantees the agreement property defined in chapter 4.

Assume that processors in the group start with the same initial membership. Now, as

in Adaptive DSD each processor finds a correct processor based on the identifiers of the

processors. Testing is based on test and reply messages, as in the membership algorithm

derived from the NEW SELF algorithm. Similarly, the reply message carries the current

membership view of the sending processor. For now, assume that the communication

layer provides best effort message delivery, i.e., messages are retransmitted until there

is reason to believe that the receiver has failed. We assume that each message includes

at least the sender and an incarnation number that identifies how many failure/recovery

cycles the processor has experienced. It is assumed that the incarnation number is stored

in such a manner that it can be recovered after failure. Figure 6.2 outlines two procedures

used by the membership algorithm. Procedure reconfigure, given the current view of the

membership, calculates the new identities of Tester, the processor that tests this processor,

and Tested, the processors that is tested by this processor. Procedure combine, given

the current membership m

1

and the membership in a reply message m
2

, decides which

membership changes have occurred, notifies the application accordingly, and updates the

local membership. Figure 6.3 outlines an event-driven pseudo-code for the membership

algorithm.

The algorithm operates as follows. Initially, it creates a logical ring of correct proces-

sors in a manner similar to Adaptive DSD. If a processor fails, it will be detected by its

tester and this information propagated to everybody using the Tester links. If a processor

p

i

recovers, it finds a correct processor p
j

analogously to the initialization of the logical

ring. p
j

, in turn, finds out about the recovery of p
i

when it receives a test message from

p

i

. p
j

notifies its Tester about the recovery of p
i

, with the information being propagated

to every other correct processor. Every time the membership changes, each processor

recalculates the identities of its Tested and Tester processors.

The algorithm can be verified by showing that if a correct processor p changes its

local view of membership, this change will be reflected eventually on all the other correct
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type MemType = array[1:N] of record fok: bool; inc: intg;

procedure reconfigure(mem:MemType;tested,tester,id:int) f
var i: int;

i = (id+1)mod N; while !mem[i].ok do i = (i + 1)mod N;
tested = i; i = (id–1)mod N;
while !mem[i].ok do i = (i – 1)mod N; tester = i;

g

procedure combine(mem,new mem:MemType;id,inc,tester,tested:int) f
var change: bool = false;

if inc = new mem[id].inc and !new mem[id].ok then f
notify application: failure of this processor;
initiate recovery; return();

g

for i = 1 to N: i 6= id do f
if mem[i].ok and !new mem[i].ok and mem[i].inc = new mem[i].inc then f

notify application: failure of i;
mem[i].ok = false; change = true;

g elseif !mem[i].ok and new mem[i].ok and mem[i].inc < new mem[i].inc then f
notify application: recovery of i;
mem[i] = new mem[i]; change = true;

g elseif mem[i].ok and new mem[i].ok and mem[i].inc < new mem[i].inc then f
notify application: failure and recovery of i;
mem[i] = new mem[i]; change = true;

g

g

if change then f
send reply message with mem to tester; reconfigure(mem,tested,tester,id);

g

g

Figure 6.2: Procedures for Adaptive DSD Membership Algorithm

processors in the same partition, provided that p does not fail. It is also easy to show that

every failure and recovery will eventually be detected by every correct processor in the

same partition. Furthermore, this algorithm guarantees that if a processor has been falsely

detected as faulty, it will eventually receive a membership set indicating it is faulty, which

causes it to initiate recovery. The details of the proof have been omitted for brevity.

As noted above, the algorithm can handle the case where processors are falsely assumed

faulty. The key here is that those processors falsely accused continue communication with

other processors and so will eventually receive a membership view where they have been

deleted. The situation will be totally different if a true network partition occurs. In this

case, each partition will form a group of correct processors of its own, with no provisions

for further communication with other groups. This can be fixed simply by having each

processor occasionally test a random processor that it assumes is faulty.

For the code outline, we assume that communication is reliable. This assumption

could easily be omitted by having the membership algorithm take care of retransmitting
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protocol Membership(MyId:int) f
var Mem: MemType; % membership status of each site

Tested: int; % site tested by this site
Tester: int; % site that tests this site
MyInc: stable int; % current incarnation of this site

when msg: message from network do f
var sender: int = msg.sender;

if msg.type = test then f
if !Mem[sender].ok and msg.inc > Mem[sender].inc then f

notify application: recovery of sender;
Mem[sender].ok = true; Mem[sender].inc = msg.inc;
send reply message with Mem to Tester;
reconfigure(Mem,Tested,Tester,MyId);

g

send reply with Mem to sender;
g elseif msg.type = reply then f

cancel reply timer; cancel test cycle timer;
combine(Mem,msg.Mem,MyId,MyInc,Tester,Tested);
set test cycle timer;

g

g

when reply timer timeout do f
Mem[Tested].ok = false; notify application: failure of Tested;
reconfigure(Mem,Tested,Tester,MyId);

g

when test cycle timer timeout do f
cancel reply timer; send test message to Tested;
set reply timer; set test cycle timer;

g

when recovery do f
for i = 1 to N do f Mem[i].ok = true; Mem[i].inc = 1; g
MyInc = MyInc + 1; Mem[MyId].inc = MyInc;
notify application: recovery of each processor i;
reconfigure(Mem,Tested,Tester,MyId); set test cycle timer;

g

initial f MyInc = 0; initiate recovery; g
g

Figure 6.3: Adaptive DSD Membership Algorithm

the test message a certain number of times before suspecting the failure of the receiver.

The reply messages need not be retransmitted since if one is lost, the reception of a new

test message will cause a new reply message to be generated. Other extensions to the

algorithm are also possible. For example, the assumption about the known identities of

all possible processors in the group could be omitted and the group could be built on the

fly when processors find out about other processors. Furthermore, as will be discussed in

the following sections, the algorithm could be augmented to provide ordering and other

properties.

Although the algorithm uses similar ideas as some published membership algorithms—
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for example, using a logical ring structure [AMMS+93, HS94a, RFJ93]—the complete

algorithm is different from any of which we are aware. In terms of message complexity it

is very attractive. If the test messages and replies are excluded, the algorithm uses exactly

N � 1 messages to propagate information about a membership change to every processor

in the group, which is the optimal for a system with no multicast communication. Also, in

contrast to token or coordinator based membership algorithms, there are no complicated

steps required to deal with coordinator failure or token loss. Finally, the extension required

to deal with network partitions is remarkably simple.

A version of the algorithm that can tolerate communication failures and can recover

from network partitions has been implemented using the C++/Solaris prototype of the

event-driven execution model. In spite of the extensions, the algorithm is less than 300

lines of C++ code, and has behaved as expected under all test scenarios.

6.3.5 General Guidelines

It is premature to draw any general conclusions on how to transform an arbitrary system

diagnosis algorithm into a membership algorithm mechanically. The above examples

show that in the case of the family of system diagnosis algorithms derived from the

NEW SELF algorithm, the steps consist mostly of eliminating the validation step due to

the difference in the failure model, and dealing with false failure detections.

In general, most non-distributed system diagnosis algorithms are not suitable for

transformation into membership algorithms since membership algorithms typically do

not admit centralized solutions. There may be some exceptions to this rule for parallel

applications, where the user initiates the computation from a distinguished site that is

assumed not to fail.

6.4 From Membership to System Diagnosis

In this section, the reverse transformation is illustrated. First, similar to above, a typical

membership algorithm is transformed into a system diagnosis algorithm while preserving

some of the properties of the membership algorithm. This makes the resulting algorithm

superior in the strength of the properties it guarantees to the user or the application.

Second, a typical system diagnosis algorithm is augmented with some of the properties a

membership algorithm might provide. This makes it easier for an application that utilizes

the information from the system diagnosis service to deal with failures in the environment.

6.4.1 Family of Membership Algorithms

As an example, we take the family of membership algorithms consisting of weak, strong,

and hybrid described in [RFJ93] and briefly outlined in section 4.4.7. All the algorithms in

this family assume an asynchronous communication network and processors that experi-

ence only crash failures. The algorithms are based on a logical ring where every processor

monitors its immediate neighbors by means of heartbeats, i.e., periodic hello messages.
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If a processor suspects a failure, it notifies a processor elected to be the leader, which then

distributes the information to all the members in the group. The failure of the leader is

dealt with by having an agreed processor be the crown prince that takes over. The exact

properties guaranteed by the different variants were described in section 4.4.7.

6.4.2 System Diagnosis Algorithm

Assume first that we have a reliable way of testing a processor for a failure, in particular,

that communication is synchronous. Now, it is very easy to transform the above mem-

bership algorithms into system diagnosis algorithms by simply changing the heartbeats

into tests and validating all information sent by another processor along the lines of the

NEW SELF algorithm. The heartbeats can be transformed into tests in two different ways.

If the test is a self-test, each processor can run the test program and send the results to

its immediate neighbors using the heartbeat messages. If, on the other hand, the test is

determined by the tester, each heartbeat message is simply replaced by a pair of messages:

test and reply. If a test fails, the leader is notified of the failure of the tested processor.

These steps are common for all the algorithms.

The validation step consists of testing the sender of a message before accepting the

information as valid. If the test fails, the tester assumes the tested processor is faulty

and does not accept any information from that processor. For the weak algorithm, the

leader has to validate the correctness of the processor reporting the failure, while each

member receiving the new membership from the leader must validate the correctness of

the leader. The strong algorithm has a two-phase commit step for the transition to the new

membership. In the first step, the leader informs all group members to prepare for the new

membership and then waits for responses. In the second, it sends out a commit message,

which causes recipients to install the new membership. All messages sent by the leader

in the two-phase algorithm have to be validated. This guarantees the properties discussed

in section 4.4.7.

Note that all the changes to the membership algorithm are very easy, practically

mechanical, and that the resulting algorithm conforms to the style of traditional system

diagnosis algorithm. However, the ordering guarantees are stronger than any system

diagnosis algorithm of which we are aware. Moreover, the message complexity of the

algorithm is comparable to the best system diagnosis algorithms. For example, the weak

algorithm and Adaptive DSD both require N validated message exchanges to propagate

information about a failure or a recovery. Finally, the detection delay is close to optimal

since distributing the change information only involves one validated message exchange

and one or two validated multicasts. The exact delay depends on the implementation of

validated multicast.

Now, consider the case where communication is asynchronous. With this model, there

is no way to distinguish between a failed processor and a slow communication network.

However, since the original membership algorithms were designed for asynchronous

systems, the derived system diagnosis algorithm will work as well given a few minor
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changes. In particular, if a processor fails to receive a response to a test it is applying to

a neighbor within a specified time limit, a failure is suspected. Furthermore, if validation

fails to complete within a specified time limit, the information that was being validated

is simply considered to never have been received. All the properties specified for the

membership algorithms are still guaranteed.

6.4.3 Augmented Adaptive DSD

Recall that the Adaptive DSD algorithm described above was characterized as being fairly

close to membership algorithm in many respects. In this section, the Adaptive DSD

algorithm is augmented to provide ordering properties so that the application layer on

every site that executes the algorithm sees the failures and recoveries in a consistent total

order. We also show how the algorithm can be augmented to deal with false failure

detections.

One option for implementing a total order is to use a leader process like above. Here,

however, we outline an implementation that relies on logical clock based timestamp

ordering [Lam78]. Assume that the communication between processors is FIFO ordered

and that each processor uses its local logical clock to timestamp the information it passes

on about failures and recoveries that it has detected. Now, since the communication

for the system diagnosis is confined to the logical ring, any processor that receives this

information has its logical time greater than the timestamp of the event. To implement a

total order based on these timestamps, each processor must delay until it is guaranteed that

no correct processor can issue a timestamp smaller than the timestamp of the event being

ordered. However, since the order of the processors in the logical ring is known to every

processor, it is easy to calculate which processors have logical time greater than the event’s

timestamp and which therefore cannot submit an event with a smaller timestamp. Thus,

every processor upon receiving an event indication updates its own view of the functioning

processors and stores the event in a queue in the order based on the timestamp. Also,

based on the processors that have already seen the event indication, each processor keeps

track of the minimal timestamp each processor could still submit. If the event at the head

of the queue has a timestamp smaller than this value, the event can be forwarded to the

user or the application with the guarantee that the order on each of the correct processors

is identical. This algorithm requires that each event indication be rotated at most twice

around the logical ring.

The Adaptive DSD algorithm does not address the possibility that a site is ever

erroneously assumed faulty. This may not be the case in a realistic system, and in

particular, if the communication network is asynchronous, tests may falsely accuse a

processor of failure. Section 6.3.4 presented a membership algorithm that deals with false

detections by means of eventually notifying the falsely detected processors about their

suspected failure so they can fail and recover and rejoin the group. A similar modification

to the Adaptive DSD system diagnosis algorithm would give the same outcome.
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6.4.4 General Guidelines

In general, when developing a new system diagnosis algorithm using a membership

algorithm as a starting point, the changes that have to be made are modifying the test to one

that conforms to traditional system diagnosis algorithms and validating all information

exchanges by testing the sender before accepting the information. Many membership

algorithms do not explicitly test other members for failures. If an algorithm like this is

taken as a starting point, an explicit test must be added. However, if the membership

algorithm is such that any member can suspect the failure of any other member, such

as in Consul [MPS92], implementing corresponding semantics in the system diagnosis

algorithm by means of explicit tests may be too expensive for a practical system. As was

shown, the validation step can be fairly simple given leader-based information distribution.

The same is true for information distribution based on a logical ring as demonstrated, for

example, by the Adaptive DSD algorithm. However, numerous membership algorithms

use multicast for distributing change information and for reaching agreement either on the

accuracy of the information or the new membership after the change. Although multicast

may be an efficient solution for membership algorithms provided that the underlying

network provides physical broadcast (or a close approximation), in the case of system

diagnosis, the validation of the information may be too expensive. Naturally, if testing is

based on self-tests, optimizations such as having each processor execute the self-test and

including the test result with the broadcast message may be possible. The validation step

may not require any extra message exchange in this case. Finally, membership algorithms

that assume synchronous communication are often more straightforward to transform into

system diagnosis algorithms due to the similarity of assumptions.

6.5 Conclusions

This chapter contrasted system diagnosis and membership, two services that have similar

goals but that have been traditionally treated separately. These problems can be char-

acterized as, given the assumptions about the failure model and communication service,

how to detect a failure of the given type, and how to distribute information about the

failure to every processor in a manner that tolerates the given failure model and guarantees

required service properties. Some of the assumptions made by membership and system

diagnosis algorithms have traditionally been different, as have the service guarantees pro-

vided. However, the problems are closely related enough that by changing the testing

method and the manner in which information is distributed, algorithms in one area can be

transformed into the other. Based on these findings, we demonstrated how well-known

system diagnosis algorithms can be transformed into membership algorithms and how a

family of membership algorithms can be transformed into system diagnosis algorithms

that guarantee stronger properties than other similar algorithms. Furthermore, it was

demonstrated how a system diagnosis algorithm can be augmented to provide properties

traditionally provided by membership algorithms.
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While these observations potentially give rise to a large number of new algorithms

for both membership and system diagnosis, the most important contribution is showing

the relationship between these problems. Lately, the distinction in the literature between

membership and distributed system diagnosis algorithms seems to be diminishing. In par-

ticular, some of the new system diagnosis algorithms are starting to exhibit characteristics

typical to membership algorithms, such as dynamically assigning testing subnetwork and

tolerating any number of failures. Ideally, the fields of system diagnosis and membership

should be considered as one, with the choice of which algorithms to use being based solely

on the requirements placed on the system and the properties of the underlying computing

environment.

Much work in this area remains to be done, however. Here, we concentrated only

on distributed system diagnosis based on the PMC model, which is only one approach.

For example, we did not address probabilistic system diagnosis and how those strategies

might be applied to membership. Finally, an obvious future goal is to use the micro-

protocol approach described in this dissertation as a way to combine system diagnosis and

membership. The result would be a general configurable change detection and reporting

service, where configurability is used to match the failure model to the requirements of the

application. In particular, the failure model chosen would dictate which failure detection

module is used and which information exchange module is used for communication

between sites to ensure that the expected failure model cannot corrupt the data that is

exchanged.
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CHAPTER 7

GROUP REMOTE PROCEDURE CALL

Remote Procedure Call (RPC) [BN84, Nel81] is a communication abstraction designed

to simplify the writing of distributed programs. With RPC, a request for service from

a client to a server process is structured to give synchronization semantics at the client

similar to normal procedure call. Numerous examples of different RPC services and

implementations exist, including Firefly RPC [SB90], Alphorn [AGH+91], lightweight

RPC [BALL90], Peregrine [JZ93], [RSV94], and SUPRA-RPC [Sto94]. Among the

commercial RPC packages released have been Courier from Xerox [Xer81], Sun RPC

[Sun88], Netwise RPC from Novell Netware, and NCA from Apollo [Apo89]. [TA90]

gives a survey of work in this area.

On the surface, the semantics of RPC seem very simple, yet the reality is that there

are subtleties and variations. For example, there are many ways to define how an RPC

service deals with server and communication failures. The set of options grows even more

when considering group RPC, a variant of RPC often used for fault tolerance where the

request is sent to a group of servers rather than one. For example, there are numerous

ways to define how requests are ordered at a server, and how the multiple replies to a

given request are collated for return to the client. Making choices in each of these cases

gives a different variant of RPC. This explains at least in part why so many RPC systems

have been defined and implemented: since each system typically realizes one and only

one set of semantics, a new system is built whenever different semantics are called for by

the application requirements.

In this chapter, we apply our approach of constructing configurable fault-tolerant

distributed services to group RPC. To simplify the presentation, we concentrate on RPC

features related to distribution and fault tolerance. Other issues, although important, are not

addressed here. These include stub generation and heterogeneity [Sun88, Gib87, HS87,

Apo89, TB90, WSG91], binding [BN84, LT91, BALL90], performance or performance

optimizations [PA88, RST89, SB90, BALL90], and security issues [Bir85b]. Our design

assumes unreliable asynchronous communication and crash failure model.

7.1 Properties of RPC Services

The construction of any configurable service starts from identifying the abstract properties

of the service, as was described in chapter 3 and illustrated for the membership service in

chapter 4. Here, we start with the properties of simple RPC, by which we mean RPC calls

to non-replicated servers. Then, these properties are augmented to accommodate group

RPC.



156

7.1.1 Simple RPC

The properties of simple RPC can be classified into five categories: failure semantics,

call semantics, orphan handling semantics, communication semantics, and termination

semantics defined as follows.

Failure semantics specify what guarantees are given to the client about the execution

of the server procedure, both when the call returns successfully and when the call returns

unsuccessfully. The two properties are unique execution, which states that the server

procedure is not executed more than once, and atomic execution, which states that the

server procedure is either executed completely or not at all.

Call semantics specify the synchrony of the client call. A call is synchronous if the

client thread is blocked until the call to the server is completed, while a call is asynchronous

if the client thread returns immediately. In the latter case, the RPC system may include

another system call that allows the thread to retrieve results later. Although synchronous

is most commonly used, a number of systems provide an asynchronous option as well

(e.g., [ATK91]).

Orphan handling semantics specify how orphans—that is, server computations

associated with clients that have failed—are dealt with. Orphans not only waste computing

resources, but may also interfere with new calls issued by a recovered client. Options

for dealing with orphans include interference avoidance, where the orphans finish their

computation before the recovered client is allowed to issue new requests, and orphan

termination, where orphans are terminated upon detection [PS88, Shr83].

Communication semantics specify properties about the communication between the

client and server. Here, we concentrate on reliable communication, which can be imple-

mented by message acknowledgments and retransmissions. Of course, if the reliability

guarantees provided by the underlying communication layer are strong enough, then the

RPC layer may not need to implement reliability. Furthermore, an application builder

might choose not to have this property for other reasons, such as, efficiency or cost.

Termination semantics specify the guarantees that are given about termination of a

call. Due to communication and server failures, the client site may retry a call an arbitrary

number of times. Bounded termination states that a call always terminates and the client

thread returns within a bounded, specified time. If the server has not responded by the

deadline, the call returns with an indication of failure.

Note that our classification of failure semantics subsumes more traditional distinctions,

which can be summarized as follows [PS88]. At least once guarantees that if the invocation

terminates normally, the remote procedure has been executed one or more times, and if it

terminates abnormally, no conclusion is possible [Spe82]. Exactly once guarantees that if

the invocation terminates normally, the remote procedure has been executed exactly one

time, and if it terminates abnormally, no conclusion is possible other than that it has not

been executed more than once. At most once is the same as exactly once if the invocation
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terminates normally, while if the invocation terminates abnormally, the execution of the

remote procedure is guaranteed to be atomic, that is, either executed completely or not

at all [LS83]. In our classification, each of these semantics can be realized as some

combination of the unique and atomic execution properties, as illustrated in Table 7.1.

Unique execution Atomic procedure execution

At least once NO NO

Exactly once YES NO

At most once YES YES

Table 7.1: Decomposition of Traditional RPC Semantics

Many papers that discuss RPC do not even address the failure semantics. Exactly

once appears to be the most popular in implemented systems. For example, it is the

semantics chosen in Rajdoot [PS88], Courier RPC [Xer81], OSI RPC [LH94]. Some

systems guarantee at least once, such as [Mar89]. At most once is rare because of the

cost of implementation, although it is provided in both Atomic RPC [LG85] and Arjuna

[SDP91].

7.1.2 Group RPC

Group RPC is any RPC service where the request is sent to more than one server—

that is, a server group—using either multicast or point-to-point communication. Group

RPC has numerous applications. For example, it can be used to implement replicated

servers to increase availability of the service in the event of failures, to implement parallel

computation, or to improve response time. Examples of group or multicast RPC include

[CGR88, Coo85, WZZ93, YJT88].

Here, we consider only one-to-many group RPC, in which one client uses RPC to

invoke a procedure implemented by a server group. Other variants not discussed here are

many-to-one RPC, where a replicated client invokes an RPC on a non-replicated server,

and many-to-many RPC, where a replicated client invokes a procedure implemented by a

server group. The semantics of group RPC are identical to ordinary RPC when considering

the call, orphan handling, communication, and termination semantics discussed above.

However, group RPC also includes the ordering semantics, collation semantics, and failure

semantics for group RPC defined as follows.

Ordering semantics specify the order in which concurrent calls are executed by

different members of the server group. FIFO order guarantees that all calls issued by

any one client are executed in the same order by all group members, while total order

guarantees that all calls are executed in the same total order. Other variants such as causal

order have also been defined.
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Collation semantics specify how responses from the multiple members of the group

are combined before being returned to the client. Different possibilities include return

any reply, return all replies, or return the result of a function that maps all replies into one

result (for example, average). Of course, any of these alternatives can be described as a

function, so we take the general approach of having the user provide the desired collation

function at initialization time.

Failure semantics for group RPC are defined as failure semantics for simple RPC

but augmented for more than one server. In particular, different combinations of failed and

successful executions must be considered. Specifically, we must now consider how many

servers must succeed in order for the group RPC to be considered successful, a property

we term acceptance semantics. Possibilities range from requiring successful execution at

only one server to successful execution at all servers. Note that the concept of “all” is

non-trivial. For example, if we assume the server group has a fixed membership and that

all sites eventually recover, a response will be forthcoming from all servers if the client

waits long enough. On the other hand, the client might not want to wait for recovery, but is

willing to settle for the responses from all servers that are still functioning. Dealing with

site failure and recovery in this way constitutes the membership semantics of the group

RPC.

Note that conventional failure semantics can also be extended to group RPC. For

example, at least once on one semantics in this case guarantees that if the invocation

terminates normally, the remote procedure has been executed one or more times on at

least one server site, and if it terminates abnormally, no conclusion is possible. This

semantics is useful for getting one read-only response quickly and is used, for example, in

the lookup RPC of GRPC [WZZ93]. At least once on all semantics is defined similarly,

except that the invocation must have been executed on all server sites. Note that the

number of sites where the call must succeed can be anything between “one” and “all”.

Similarly, we can define exactly once on : : : and at most once on : : : semantics. Note that

all these semantics can be trivially mapped to the unique and atomic execution properties

with appropriate acceptance policies.

Figure 7.1 summarizes the properties of group RPC and by implication, simple RPC.

Note in the figure that Collation, Acceptance, and Membership Semantics are repre-

sented as choice nodes since they all represent sets of different collation, acceptance,

and membership semantics properties. Furthermore, the Basic RPC node represents a

simple RPC with no ordering, reliability, boundedness, atomicity, uniqueness, or orphan

handling properties. Based on this dependency graph there are 192 possible functional

combinations of the given properties.

7.2 Implementing a Configurable Group RPC Service

In this section, we outline a modular and configurable implementation of RPC using the

event-driven model described in chapter 3. This section outlines the general implemen-
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Figure 7.1: Group RPC Dependency Graph

tation strategy, events, and shared data structures, with the actual micro-protocols being

presented in the next section. The focus here is on group RPC. Simple RPC can be seen as

a special case in this implementation, although in practice it would likely be implemented

separately to obtain a more compact and efficient protocol.

7.2.1 Outline

RPC services are typically structured along the lines described in Nelson’s thesis [Nel81]

consisting of the user (or client), user-stub (or client stub), the RPC communication pack-

age (RPC runtime), the server-stub and the server. The user (client) and server look like

regular non-distributed programs, with the stubs masking the distribution and commu-

nication from the user and server. Stubs responsibilities include converting parameters

between different representation formats and layouts, and transmitting converted parame-

ters across networks. Stubs may also use encryption techniques to make communication

more secure. Stubs are often generated automatically using a stub generator.

In large part our design reflects this general structure of RPC service implementations.

In following the tenets of the event-driven execution model, the RPC service is imple-

mented as a composite protocol GroupRPC. We assume that the system also includes

the following composite or simple protocols: UnreliableCommunication, User (that is,

the server and client code), and possibly Membership. The unreliable communication

protocol provides the transport service needed to deliver messages between GroupRPC

on the client and server sites. We also assume that the client above GroupRPC has a

stub for each RPC call that marshals arguments and does binding. A similar stub on the

server site unmarshals the data and invokes the actual procedure. From the perspective
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of GroupRPC, then, the arguments are treated as one continuous untyped field that is

copied to and from messages.

7.2.2 GroupRPC Composite Protocol

The composite protocol contains a number of shared data structures. The first is pRPC,

a table for storing pending remote procedure calls at the client. For each pending call,

the table contains one record (type ClientRecord) with fields for unique call identifier

(id), operation identifier (op), input and output parameters (args), identity of server

group (server), semaphore for the pending client thread (sem), number of responses

required for the call (nres), list of server processes from which a response to the call is

waited (pending), and status of the call (status). The call identifier is carried along

with the call to the server and its response so that calls and responses can be matched.

The number of responses required field has a value of one for simple RPC and a value

depending on the acceptance policy for group RPC. The pending list has, for each entry

in the list, the process id of the server process (p) and a counter for the number of call

attempts made (attempts). The status field has values OK for a normally terminated

call, WAITING for a pending call, and TIMEOUT for an incorrectly terminated call. The

pRPC table is indexed using the call identifier (for example, pRPC(id)), while other fields

are accessed using record notation (for example, pRPC(id).sem). Access to the pRPC
table is controlled using semaphore pRPCmutex.

A similar data structure, sRPC, is used at the server to store information about each

pending client call. For each client call, sRPC has one ServerRecord that contains the

fields id, op, args, and server that are identical to the fields in pRPC, and fields for the

identity of the client (client) and a boolean vector for keeping track of which properties

have been satisfied for the call (hold). Access to sRPC is controlled using semaphore

sRPCmutex.

As described above, messages are exchanged between the user and GroupRPC (type

UserMsgType), and between GroupRPC and the underlying communication service

(type NetMsgType). The NetMsgType has fields for type (type), the sender (sender),

and the incarnation number of the sender (inc), in addition to fields id, op, args, and

server that are similar to above. Finally, if a message is an acknowledgment, it has a field

for the call being acknowledged (ackid). The message type is either CALL or REPLY

for the standard RPC messages, ORDER for messages carrying total ordering information,

or ACK for acknowledgment messages. The UserMsgType has type, id, op, args,

server, and status fields analogous to above.

Finally, a number of global variables are accessed by all micro-protocols. Variable Net
is a pointer to the communication protocol and a point-to-point send or multicast operation

that can be executed with operation Net.push. Variable Server is an analogous pointer

to the user protocol and an operation Server.pop that is used to pass messages up the

protocol stack. A call to this operation is blocking. Variable inc number contains the

number of the current incarnation. The boolean HOLD vector is used to indicate which
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properties must be satisfied before a call can be passed up to the server, or, in other words,

which micro-protocols must process the message. An analogous vector is associated with

each call indicating which properties have been satisfied, and when the two are equal, the

call is given to the server. The Members data structure contains the identities of the sites

considered functioning at the moment.

7.2.3 Events

The events used by GroupRPC’s micro-protocols are the following; for simplicity, we

assume all events are blocking and sequential:

� CALL FROM USER(umsg:UserMsgType): Triggered at the client site when a new

call from the user protocol arrives.

� NEW RPC CALL(id:int): Triggered at the client site when a call is ready to exit

GroupRPC and be sent to the server site. This event is used primarily by micro-

protocols to update data structures before the invocation is sent.

� CALL TO SERVER(id:int): Triggered at the server site before GroupRPC passes

the call to the server.

� REPLY FROM SERVER(id:int): Triggered at the server site when the server passes

a call response to GroupRPC.

� MSG FROM NET(msg: NetMsgType): Triggered when a message arrives from the

network; used at both the client and server sites.

� RECOVERY(IncNumber:int): Triggered when a failed site is recovering; used at

both client and server sites. The argument IncNumber is the sequence number of

the current incarnation.

� MSHIP CHANGE(who: pid, change: MemChange): Triggered by the membership

service when a process fails or recovers. Most properties identified in section 7.1 do

not require this information in their implementations, so the membership component

of the system is omitted in these cases.

7.3 RPC Micro-Protocols

In this section, we outline the micro-protocols for the configurable RPC service. All major

micro-protocols are described, with pseudo-code for several shorter micro-protocols given

to illustrate the programming style. Detailed pseudo-code for all micro-protocols can be

found in [HS94b]. The section starts with a base micro-protocol RPCMain followed by

collection of micro-protocols for various aspects of remote procedure calls ranging from

ones for user thread managements to dealing with orphans.
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7.3.1 RPCMain

The RPCMain micro-protocol handles the main control flow of an RPC on both the client

and server sides. Specifically, it stores the call request in pRPC, sends the request over

the network, issues the call to the server, sends the response over the network, and stores

the results in pRPC. The call is issued to the server only when all the specified properties

(e.g., ordering properties) are satisfied. Checking is done by comparing the global HOLD
array to the hold array of each individual call. This checking and eventual forwarding

is done by calling the forward up procedure, which is exported by RPCMain. This

micro-protocol constitutes the basic, unchangeable, foundation for the configurable RPC

service.

7.3.2 User Thread Management

As described in section 7.1, an RPC invocation can be either synchronous (blocking) or

asynchronous (non-blocking). The SynchronousCall micro-protocol implements syn-

chronous RPC semantics by blocking the caller thread and matching responses with

pending threads. The code segment in Figure 7.2 illustrates this micro-protocol. Notice

that the event handler registered for the event CALL FROM USER is executed after all the

other micro-protocols have processed the call and sent it to the server.

micro-protocol SynchronousCall()

event handler msg from user(umsg:UserMsgType) f
if umsg.type = Call then f

P(pRPC(umsg.id).sem); % block at private sem
umsg.args = pRPC(umsg.id).args; % copy results
umsg.status = pRPC(umsg.id).status;
pRPC -= pRPC(umsg.id); % cleanup

g

g

initial f register(CALL FROM USER,msg from user,LAST); g
g

Figure 7.2: The SynchronousCall Micro-Protocol

AsynchronousCall implements a very simple asynchronous RPC where the caller

thread is not blocked when the call is issued, but may later request the result using a

REQUEST message. If the result is pending, the request message returns immediately;

otherwise, the caller is blocked until the result arrives or the call is otherwise terminated.

7.3.3 Communication Aspects

The standard approach to making RPC reliable is to retransmit the call to the server site

until the response or some other form of acknowledgment arrives. The ReliableCommu-
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nication micro-protocol implements these retransmissions. The micro-protocol uses the

pRPC.pending field to determine which sites have not yet responded.

RPCMain combined with ReliableCommunication provides for unbounded termina-

tion, that is, the GroupRPC protocol at the client side keeps trying until it gets a response.

In order to guarantee bounded termination, either a limit of the amount of time that can

pass or the number of retransmissions can be used. The implementation of BoundedTer-

mination illustrated in Figure 7.3 uses a retransmission limit. The micro-protocol is based

on periodically invoking the event handler handle timeout that checks if the attempt

limit has been exceeded for each pending call in pRPC. If it has, the call is released by

signaling the private semaphore on which the call thread is waiting.

7.3.4 Response Handling

The Collation micro-protocol in Figure 7.4 implements collation semantics, taking the

function used to combine the results and the initial value of the result from the user protocol

as parameters. Notice how the return value is initialized when a new call is issued (event

NEW RPC CALL) and the value is updated every time a response arrives from the network

(event MSG FROM NET).

micro-protocol BoundedTermination(Limit:int;timeout:real) f

event handler handle timeout() f
var expired: bool;

for each id:int in pRPC do f
expired = false;
for each p:pid in pRPC(id).pending do

if pRPC(id).pending(p).attempt > Limit then expired = true;
if expired then f pRPC(id).status = TIMEOUT; V(pRPC(id).sem); g

g

register(TIMEOUT,handle timeout,timeout);
g

initial f register(TIMEOUT,handle timeout,timeout); g
g

Figure 7.3: The BoundedTermination Micro-Protocol

The Acceptance micro-protocol implements the corresponding property. For a call

to be accepted, it must be executed successfully by at least ALimit (Acceptance Limit)

members of the server group, where ALimit is specified as a parameter at initialization

time. If the acceptance limit is greater than the number of group members, we chose

to set the number of required responses to the size of the group. An alternative would

be to abort the call. The micro-protocol keeps track of responses using an event-handler

registered for the MSG FROM NET event, and when enough responses have been received,
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the calling thread’s local semaphore is signaled. The micro-protocol also keeps track of

membership changes.

micro-protocol Collation(cum func:func,init:arg type) f

event handler msg from net(msg: NetMsgType) f
var old val: arg type;

if msg.type = Reply and exists pRPC(msg.id) then
if exists pRPC(msg.id).pending(msg.sender) then f

P(pRPC mutex);
old val = pRPC(msg.id).args;
pRPC(msg.id).args = cum func(old val,msg.args);
V(pRPC mutex);

g

g

event handler handle new call(id:int) f pRPC(id).args = init; g

initial f
register(MSG FROM NET,msg from net,SECOND);
register(NEW RPC CALL,handle new call); g

g

Figure 7.4: The Collation Micro-Protocol

7.3.5 Failure Semantics

RPCMain and ReliableCommunication combined with SynchronousCall or Asyn-

chronousCall provide the equivalent of at least once semantics. To implement exactly

once semantics, GroupRPC must guarantee that a call will not be executed more than

once at each server, that is, the unique execution property from section 7.1. This is im-

plemented by the UniqueExecution micro-protocol. The basic strategy is to keep track

of requests that have already been executed. In our solution, the server stores its response

to the original request until the client acknowledges the response. If a duplicate request is

received after the acknowledgment has been received, the message is assumed to be old

and simply discarded.

To provide at most once semantics, GroupRPC also has to guarantee that execution of

the server procedure is atomic, that is, the atomicity property from section 7.1. In situations

where the server has no stable state—that is, state that would persist across failures, such as

values stored on disk—execution is automatically atomic. On the other hand, if the server

does have stable state, transactional techniques must be used to guarantee atomicity. These

techniques can either be implemented in the server itself, or, with some extra support,

within the RPC layer. The tradeoff is efficiency versus transparency: implementing the

atomicity within the server means that the technique used can be more application specific,
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while doing it within the RPC layer simplifies the task of programming the server at the

cost of some execution overhead.

Here, we outline an AtomicExecution micro-protocol that follows the second ap-

proach of implementing atomicity in the RPC layer. To support this, the micro-protocol

must have the ability to take an atomic checkpoint of the state of the server and write it

to stable storage. Here we assume that the server (application layer) provides an oper-

ation checkpoint(file) that writes the state of the server to file, and an operation

load(file) that restores the state of the server from file. In the following, simple vari-

ables that reside in non-volatile storage are labeled stable; assignment to these variables

is assumed to be atomic.

micro-protocol AtomicExecution() f
var old, new: stable ptr file; % checkpoint file ptrs

event handler handle reply(id:int) f checkpoint(new); old = new;g

event handler handle recovery(inc:int) f load(old); g

initial f
register(REPLY FROM SERVER,handle reply,FIRST);
register(RECOVERY,handle recovery,LAST); g

g

Figure 7.5: The AtomicExecution Micro-Protocol

Note that this micro-protocol only deals with restoring the state of the server following

site recovery, not the state of the GroupRPC composite protocol itself. To accomplish

this, appropriate checkpoints of composite protocol’s state would have to be written at

each site or provisions included for retrieving the current state from other group members.

Finally, for AtomicExecution to work correctly, calls must be processed one at a

time by the server, so an additional micro-protocol, SerialExecution, is also needed. The

micro-protocol operates by locking semaphore serial just before the user level gets the call

(event CALL TO SERVER) and releasing the semaphore after the call is finished (event

REPLY FROM SERVER). Note that the event handler for REPLY FROM SERVER is con-

strained to execute after the analogous handler in AtomicExecution, thereby guaranteeing

that no other call can enter the server before checkpointing is done.

7.3.6 Ordering Calls

The default execution order of the client calls at the server group members is entirely

arbitrary, even to the point where calls from the same client may be executed in a dif-

ferent order by different servers. Restricting the order is, however, straightforward by

incorporating a suitable micro-protocol.
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micro-protocol SerialExecution() f
var serial: semaphore = 1;

event handler handle call(id:int) f P(serial); g

event handler handle reply(id:int) f V(serial); g

initial f
register(CALL TO SERVER,handle call,SECOND);
register(REPLY FROM SERVER,handle reply,SECOND); g

g

Figure 7.6: The SerialExecution Micro-Protocol

Two micro-protocols for ordering have been defined: FIFOOrder and TotalOrder.

FIFOOrder guarantees that the calls from each client will be served in a FIFO order at

every server. The order is based on keeping track of the maximum call identifier received

from each client and then executing each call only after the previous one from that client

has been completed. For this algorithm to work correctly, the call identifiers must be

sequential and each call must reach each server site, that is, micro-protocol ReliableCom-

munication is required. Furthermore, a micro-protocol like BoundedTermination that

may terminate the retransmission before every server has received the call cannot be used

with FIFOOrder.

TotalOrder, on the other hand, guarantees that calls from all clients are processed

in a consistent order by all servers. The technique used to implement this ordering is to

have one group member, the leader, assign the order in which calls are to be executed and

disseminate it to the group. The leader at any point is defined to be the server with the

largest unique identifier of all non-failed servers. Thus, for example, if the initial leader

fails, the server with the second largest identifier takes over. Like FIFOOrder, it must be

guaranteed that every call reaches every server in order to avoid deadlocks.

7.3.7 Dealing with Orphans

The basic set of micro-protocols presented so far ignores orphans in the sense that any

responses generated by orphan computations are simply ignored. This approach may,

however, cause problems. For example, a client may issue a request, fail, recover, and

issue the request again while the previous request is still being processed by the server.

As described in section 7.1, two ways of dealing with these problems are interference

avoidance and orphan termination.

The micro-protocol InterferenceAvoidance implements the first option. The solution

technique is based on using client incarnation numbers to partition calls into generations.

In particular, if a call from the client arrives with a new incarnation number, execution

of the requested procedure can only be initiated once execution of any pending calls
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micro-protocol InterferenceAvoidance() f
type client info table = table of fclient: process id, inc: int, count: int, next inc: intg

indexed by client;
var Cinfo: client info table;

event handler msg from net(msg: NetMsgType) f
var client: process id;

if msg.type = Call then f
client = msg.sender;
if not exists Cinfo(client) then

Cinfo += (client,msg.inc,0,msg.inc);
if Cinfo(client).inc > msg.inc then f

cancel event(); return();
g elsif Cinfo(client).inc < msg.inc then f

Cinfo(client).inc = MAX INT;
Cinfo(client).next inc = msg.inc;
if Cinfo(client).count = 0 then

Cinfo(client).inc = msg.inc;
g

if Cinfo(client).inc = msg.inc then
Cinfo(client).count++;

g

g

event handler handle reply(id:int) f
var client: process id;

client = sRPC(id).client; Cinfo(client).count–;
if Cinfo(client).count = 0 and Cinfo(client).inc = MAX INT then

Cinfo(client).inc = Cinfo(client).next inc;
g

initial f
register(MSG FROM NET,msg from net,THIRD);
register(REPLY FROM SERVER,handle reply); g

g

Figure 7.7: The InterferenceAvoidance Micro-Protocol

with old incarnation numbers have been completed. Rather than storing these calls with

new numbers, we use the approach of simply dropping them until all current calls have

been finished, relying on retransmission from the client to ensure they will eventually be

executed. To avoid starvation, no more calls with the old incarnation number are started

once the first one with a new number has been seen.

The micro-protocol TerminateOrphan implements the second option of immediately

killing orphans as soon as they are detected. Detection can be based either on receiving

a message from a newer incarnation of the client, indicating that the previous incarnation

died, or by periodically probing the client. TerminateOrphan uses the first approach.

The actual termination of the server thread executing the orphaned computation is done
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using thread management operations provided by the underlying operating system.

7.4 Configuring a Group RPC Service

A group RPC service is configured by choosing those micro-protocols implementing the

desired properties and then combining with the GroupRPC composite protocol to form a

customized group RPC service. Figure 7.8 shows the group RPC configuration graph.

Membership

Service AsynchronousCall SynchronousCall

UserRPCMain

Collation

10 N...
Acceptance

ReliableComminication

SerialExecution

FIFOOrder BoundedTermination

TotalOrder

InterferenceAvoidance

TerminateOrphans

AtomicExecution

UniqueExecution

Figure 7.8: Group RPC Configuration Graph

Note that for a group of N servers there are N + 1 possible acceptance policies and,

in principle, an unbounded number of possible collation policies. Given these facts and

the above graph, it is easy to see that hundreds of different group RPC services can be

configured from the above micro-protocols and even a small number of collation policies.

Given even just one collation and acceptance policy, the total number of functional

configurations is still 198.

To illustrate how a specific instance of a group RPC service might be configured,

consider a simple group RPC designed to provide quick response time to read-only re-

quests. To achieve this, the system is configured with “at least once” semantics—that is,

no unique or atomic execution properties—acceptance one—that is, only one response

required—synchronous call semantics, and bounded termination time. Furthermore, we

choose to implement reliability directly in the RPC service rather than relying on the un-

derlying transport. This combination of semantics can be realized using micro-protocols

RPCMain, SynchronousCall, ReliableCommunication, Acceptance(1), BoundedTer-

mination, and Collation(fid), where fid is a function that returns the latest response.
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It is also easy to configure RPC services that realize the same set of properties as

existing services. For example, [BN84] corresponds to a service configured with RPC-

Main, SynchronousCall, Acceptance(1), Collation(id), ReliableCommunication, and

UniqueExecution. Rajdoot [PS88] corresponds to the same set, plus BoundedTermi-

nation and TerminateOrphans. Among group RPC services, the one-to-many RPC de-

scribed in [Coo85] corresponds to the set RPCMain, SynchronousCall, Acceptance(N),

Collation with a function consisting of identity and comparison to detect inconsistencies at

the server processes, ReliableCommunication, UniqueExecution, and TotalOrder. As

an example of a very simple group RPC, lookup RPC [WZZ93] corresponds to RPCMain,

SynchronousCall, Acceptance(1), and Collation(fid).

Finally, note that the configuration graph does not map directly to the dependency

graph of the properties given in Figure 7.1. One cause for differences are the typical

transformations of dependencies into inclusion relations. Another difference is that Fig-

ure 7.8 contains extra dependencies that simplify the implementation rather than being

inherent to the properties themselves. For example, there is an edge from TotalOrder to

UniqueExecution since our implementation of TotalOrder assumes that any request is

received at the server only once. Furthermore, we introduce an additional micro-protocol

SerialOrder that, although not required, makes it easier to implement AtomicExecu-

tion. Finally, BoundedTermination conflicts with the ordering micro-protocols because

it operates by terminating an unfinished call when the timelimit is reached. This causes

ReliableCommunication to stop retransmitting the call, which means that a server may

never receive the call. Note that this conflict does not exist between the correspond-

ing properties, since returning the call to the user as unsuccessful does not require that

retransmission of the call to the server be stopped.

7.5 Conclusions

This chapter has illustrated our approach to constructing configurable services in the con-

text of a group RPC service. The resulting service can provide hundreds of different

configurations to match different application requirements, and in particular, can be con-

figured to match the properties of many existing RPC services. Although, the presentation

was not as detailed as in chapters 4 and 5, this chapter shows again the general design

steps and application of the event-driven execution model described in chapter 3.

Other researchers have also proposed modular implementations of RPC. For exam-

ple, in [HPOA89] a modular implementation of RPC service based on the x-kernel is

described. In contrast with our emphasis on configurability and modularization based

on abstract properties, however, that paper describes a modularization of an RPC service

implementing one chosen semantics where the modules are syntactic components rather

than implementations of abstract properties. The work on an agent-synthesis system for

Cross-RPC communication in [HR94] is relatively closely related to our goals. Although

its primary goal is to allow heterogeneous RPC systems to communicate with one another,
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the system also offers the possibility for designing and prototyping new variants of RPC.

Specifically, the authors divide RPC semantics into three components: call semantics

(synchronous versus asynchronous), failure semantics, and RPC topology (one server ver-

sus multicast RPC). An RPC agent is synthesized from a specification written in Cicero,

an event-driven specification language. Our approach to building composite protocols

from micro-protocols provides more structuring support, however, and promotes a style in

which RPC services are configured from a collection of already-written micro-protocols

rather than generated from specifications.



171

CHAPTER 8

ADAPTIVE SYSTEMS

Configurability can be used to match service properties to application requirements, as

was done in chapter 5, or it can be used to match the implementation of a service to the

underlying execution environment, both to improve performance and to allow continued

operation in the face of changed conditions. The potential gains in these areas are

maximized if changes can be made during system execution. In this case, we say that

the system dynamically reconfigures or adapts to changes. Thus, an adaptive computing

system is one that modifies its behavior based on changes in the environment. These

changes could be, for example, changes in communication patterns, frequency, or failure

rates, but also changes such as processor or link failures, or changed user requirements.

Therefore, adaptive techniques are not only useful for improving performance, but can

also be used as the mechanism for reacting to failures and responding to changes in user

requirements.

Numerous examples of adaptive techniques can be found in existing systems. A sim-

ple example of an adaptive algorithm is the Ethernet protocol, which may increase or

decrease the interval after which it tries to resend the message based on the collisions on

the broadcast medium. The ability to adapt in this way reduces the number of collisions

and thereby improves the overall throughput of the system. The Transmission Control

Protocol (TCP) of the Internet protocol suite uses adaptive mechanisms for flow control,

retransmission, and congestion control [Jac88]. Other examples include concurrency

control of database transactions [BFHR90], real-time parallel systems [BS91, SBB87],

operating systems [MS96], and high-speed communication protocols [SBS93]. Further-

more, as noted above, adaptive systems are important in the area of dependable computing

[GGL93]. An example in this area is the SCOP (Self-Configuring Optimistic Program-

ming) scheme [BDGX93], an adaptive version of N-version programming [Avi85]. In

this scheme, multiple alternative algorithms are executed, with the actual number of al-

ternatives used being determined at runtime based on the level of confidence desired.

Adaptive algorithms have also been used to diagnose faulty processors in distributed

systems [KH83, BB91, LYS93].

This chapter focuses on the adaptive aspect of configurability and use of the event-

driven execution model in this context. We first describe a general model for adaptive

systems. This model divides the adaptation process into three different phases—change

detection, agreement, and action—that can be used as a common means for describing

various algorithms. The use of the general model is then demonstrated by applying it

to different adaptive situations. The examples are classified based on the reason for
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adaptation: performance, failure, or change of the expected failure model. Finally, we

demonstrate how adaptive systems structured using the general model can be implemented

using the event-driven model. Here, micro-protocols are not used to encapsulate the

implementations of abstract properties, but rather to implement the different phases of the

adaptive process.

8.1 A General Model for Adaptive Systems

8.1.1 Phases of Adaptation

An adaptive system built on a distributed computing platform can be modeled as respond-

ing to changes with the following three phases:

1. Change Detection. Monitoring for a possible change in the environment and

deciding when to suspect that the change has actually occurred.

2. Agreement. Reaching agreement among all sites that adaptation is required.

3. Action. Changing the behavior of the system.

The change detection phase can take various forms depending on what type of system

or change is being dealt with. For example, in a distributed system, it might involve

monitoring message flow between sites or sending control/test messages to the change

detection processes on other sites. The change could also be initiated by the user or the

application if the service needed from the underlying system is changing.

The agreement phase is often some kind of distributed agreement algorithm. Depend-

ing on the situation, it may be a majority vote, agreement on maximum or minimum

value, or something similar. In some cases, an expensive distributed agreement protocol

is unnecessary. For example, if a centralized algorithm is used, only the decision of

the central entity may be required. Similarly, each site can sometimes make a decision

independently of others, in which case the entire agreement phase can be omitted.

The action phase can take various forms depending on the type of adaptation. Perhaps

the simplest case is changing some execution parameters, such as modifying the timeout

period for a network protocol. Another possibility is reassigning roles, such as changing

a centralized coordinator or reassigning roles in a primary/backup fault-tolerance scheme.

Slightly more involved would be taking some corrective action, such as recomputing

routing tables, aborting deadlocked computations, or regenerating a lost token. In the

extreme case, the action might consist of actually changing the program that provides the

service.
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8.1.2 Adaptation Policies

The execution of each of the three phases is governed by policies, as follows:

1. Change Detection.

� Detection Policy: Specifies the condition under which a change is suspected.

2. Agreement.

� Response Policy: Specifies the response of a site when the agreement starts,

for example, if the site agrees or disagrees that a change has happened.

� Voting Policy: Dictates under what conditions the result of the agreement is

positive (“change has occurred”) and negative (“change has not occurred”). If

the agreement is quantitative, the voting policy also describes how to combine

the responses.

3. Action:

� Action Policy: Specifies the action to be taken as a result of the (agreed)

change.

� Timing Policy: Specifies when the action is to be taken.

8.1.3 Model

Putting these two aspects of adaptation together yields the general model depicted in

Figure 8.1. The adaptation process sometimes needs more than one round of agreement

and action phases, which is represented in the figure by the dashed arrow.

Detection Policy:

When is change suspected?

Response Policy:

What is site’s vote?

Voting Policy:

How are votes combined?

Action Policy:

What action is taken?

Timing Policy:

When is action taken?

Change Detection Agreement Action

Figure 8.1: General Model of Adaptive Systems

The normal operation of the adaptive system or algorithm often continues in parallel

with the change detection phase and sometimes even with the agreement phase. An

adaptive system may also adapt multiple times, either because the system handles different

types of changes concurrently, or because one change leads to the start of new change

detection and agreement algorithm that adapts to subsequent changes. The latter case

can also be used to cover adaptation back to the original algorithm if it turns out that the

change in the environment was only temporary.
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Figure 8.2: Correctness Domains and Performance Profiles

8.1.4 Correctness Domains and Performance Profiles

An adaptive system can be characterized by the correctness domains and performance

profiles of the algorithms it employs during its execution. The correctness domain of

an algorithm is the subset of all execution environments in which the algorithm behaves

correctly, that is, provides a service according to its specification. Thus, two algorithms

can provide identical service in most cases, but still have different correctness domains if

one can handle situations the other cannot. A system with a smaller correctness domain is

usually easier to construct and faster to operate since it can be based on more simplifying

assumptions. However, since it cannot handle certain scenarios, it may become necessary

to adapt the system to one that has a larger correctness domain if the execution environment

happens to change significantly. Correctness domains are related to failure models for

fault-tolerant systems, which describe the type of software or hardware failures a system

is designed to tolerate.

The performance profile of an algorithm is a function that maps each point of the

correctness domain to a performance metric of choice, such as throughput or response

time. In this case, if two algorithms implement the same service and have the same

correctness domain but their performance profiles differ, it may make sense to adapt from

one to the other simply for performance reasons.

Figure 8.2 illustrates these concepts. Here, the correctness domain of each algorithm—

represented by the largest enclosed figure–is characterized along two dimensions; these

might be, for example, failure rate and transmission time if the algorithms are network

protocols. The shading is used to represent the performance profile of each program,

with the darker shades representing better performance expressed using some metric of

interest. If the environment is in point marked by x, then, it might be desirable to adapt to

algorithm 2 to improve the performance of the system even though both are equally correct.

However, if the environment is in the point marked by y, the adaptation to algorithm 2 is

required since algorithm 1 is no longer able to provide correct service.

8.2 Adapting to Improve Performance

Examples in this section show how adaptive systems can increase the efficiency or decrease

the cost of running a system. All these examples can be characterized as being transitions
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within one correctness domain solely because of the performance profiles of the respective

algorithms, as illustrated in Figure 8.2. The changes to which the adaptive system reacts

here usually cause the service’s performance to deteriorate without actually causing the

service to stop or act incorrectly. The adaptive action is taken to attempt to restore the

performance. Most of the examples of adaptive systems, protocols, and algorithms in the

literature fall into this category.

8.2.1 Adaptive Timeout Protocols

Timeouts are used in distributed systems for a variety of purposes, such as deciding when

to retransmit a potentially lost message or reconfigure the system to exclude a potentially

failed site. In some cases, the ability to adjust timeout periods dynamically would be

advantageous. For example, consider a long-haul network, where the transmission time

and failure rate of any given connection may vary over time. Because of such changes in

the environment, each site should be able to adjust its timeout period individually based

on the particular circumstances at any given time.

This type of adaptation is straightforward to describe in the above model. Assume that

sites have local clocks that have approximately the same, approximately constant rate,

and that special “ping” messages are used to measure the propagation time between sites.

Then the following characterizes the system:

1. Change Detection. Send ping messages periodically to all sites; upon reception of

such a message, send a response. Detection Policy: Compare the time it takes for

a response to arrive to the timeout periods stored; if the difference is greater than

some value X, suspect change.

2. Agreement. Not necessary.

3. Action. Action Policy: Change the timeout period to be a weighted sum of the old

timeout period and the new “ping delay.” Timing Policy: Immediately.

8.2.2 Adaptive Reliability Protocols for Message Passing

The two most common approaches for implementing reliable message transfer in a dis-

tributed system are positive and negative acknowledgments. The positive acknowledgment

scheme is based on the receiver sending an acknowledgment message immediately after

receiving a message. If such an acknowledgment is not received by the sender within a

specified time interval, the message is retransmitted. In contrast, the negative acknowl-

edgment scheme is based on the receiver being able to detect a missing message using, for

example, sequence numbers, and then explicitly requesting retransmission of the missing

message.

An adaptive version of this type of reliability protocol can change between the two

schemes based on current conditions. Since losing a message is relatively uncommon in
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modern networks, starting with negative acknowledgments is reasonable, assuming that

sites exchange messages frequently. If the failure rate becomes unacceptable or sites

begin exchanging messages less frequently, the system should adapt to using positive

acknowledgments.

In designing such an adaptive reliability protocol, a number of issues must be ad-

dressed. One is the technique to use for change detection. This can be done, for example,

by monitoring the average message delivery latency, defined as reception time minus

sending time. This approach requires globally synchronized clocks, however. Another

approach is to monitor the failure rate, i.e., how often a request for a missing message must

be made when negative acknowledgments are used. In either case, the detection policy

gives a threshold value defining the boundary at which the change must be made. Another

issue is whether to make the adaptation on a per message or a per session basis. In the

former, the sender of each individual message decides if the message is to be positively

or negatively acknowledged, while in the latter, all the processes make a global decision

to change from one method to another. Below, we describe both message-based and

session-based approaches.

Message-based approach. Assume that the primary method is negative acknowledg-

ments, with positive acknowledgments used only when necessary. To smooth the transition

between the two schemes, all messages, including those to be positively acknowledged,

carry the sequence numbers needed for negative acknowledgments. In our design, both

protocols are actually run all the time, but the positive ack protocol only acts if a “positive

ack bit” is set on a given message.

1. Change Detection. See above.

2. Agreement. Not necessary.

3. Action. Action Policy: Send each message using positive/negative ack scheme

depending on the decision of Detection Policy. Each message carries information

of what kind of scheme was used, so the receiver can behave accordingly. Timing

Policy: Immediately.

Session-based approach. In this approach, all processes change to the new protocol at

the same time. Note that this adaptive action has two separate agreement/action phases.

1. Change Detection. Same as message-based approach.

2. Agreement(1). Not necessary.

3. Action(1). Timing Policy: When change detection or agreement message arrives.

Action Policy: Stop sending new messages.
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4. Agreement(2). Response Policy: Define range around the threshold where the

answer is yes; outside the range no. Send response to every site. When changing

from positive acks to negative acks, send the response only when all messages

transmitted by your site have been acked. When changing from negative acks to

positive acks include an ack vector with the vote where the ack vector indicates

which is the last message received from each site in correct order (no gaps). Voting

Policy: Must wait for response from everyone; lots of different options for voting

policies (e.g., majority vote).

5. Action(2). Timing Policy: Immediately when agreement reached. Action Policy: If

decide to change from negative to positive acks each site checks the ack vectors it

received from every other site with the vote and starts resending messages starting

from the first message that somebody did not receive. Otherwise resume sending

new messages using the new algorithm.

Note that both protocols operate on the same pool of messages, so that the new protocol

must have access to the messages received using the old one.

8.2.3 Adaptive Concurrency Control Protocol

The problem of concurrency control in database systems is to ensure that two or more

concurrent transactions do not leave the database in an inconsistent state, that is, a state

that could not have been reached by executing the transactions in some serial order

[BHG87]. There are numerous such concurrency control algorithms, which can be broadly

classified as pessimistic versus optimistic. The pessimistic algorithms are based on

preventing conflicts that can lead to inconsistencies using locking or some other technique.

Optimistic algorithms, on the other hand, allow conflicts to occur, with detection and

rollback occurring in a final commit step. The tradeoff, of course, is a greater degree

of concurrent execution in the optimistic case versus the chance that multiple conflicting

transactions will have to be aborted.

By design, optimistic algorithms work well if the system is lightly loaded whereas

pessimistic ones are better when the system is heavily loaded. Therefore, it is advantageous

to design an adaptive concurrency control protocol that changes between optimistic and

pessimistic depending on the load. See, for example, [BFHR90] for more discussion on

adaptive concurrency control.

8.3 Adapting to Failures

This section examines examples of adaptive algorithms where the change in the environ-

ment is a processor or communication link failure. Changes to be adapted to here typically

cause the system to stop until an adaptation is made. This type of adaptation is fairly easy

to deal with, since the only negative effect between the time the change occurs and the
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adaptation is made is denial of service. Examples of this type of adaptations are common

in the literature, but are often not characterized as adaptive.

In terms of performance profiles and correctness domains, failures here transform the

execution environment to a point outside the original correctness domain of the algorithm.

An adaptive mechanism is then invoked to, in essence, expand the correctness domain by

taking some corrective action. In other words, the mechanism makes it appear as if the

environment is indeed contained in the correctness domain despite the failure. This case

is illustrated in Figure 8.3 where the correctness domain of the original program is shown

as being within the correctness domain of the program including the adaptive extension.

The figure also shows the behavior that results with this type of adaptation. Specifically,

if the environment spontaneously transfers to a point marked by x due to a failure, the

adaptation mechanism compensates and expands the correctness domain of the program

to encompass the new environment.

Adaptive extension

x

Change in the environment

Original algorithm

Figure 8.3: Adapting to Failure

8.3.1 Membership Service

The importance of membership service in distributed systems was extensively discussed

in chapters 4 and 5, and a configurable implementation of the service was presented in

chapter 5. Here, we take a different look at the membership problem, viewing it as

an example of adaptive system where the changes in the environment are membership

changes such as failures or recoveries. The system has to detect these changes, agree on

them, and generate membership messages, a sequence that follows the general adaptive

system model quite closely.

As an example, consider a membership protocol like that used in the Consul system

described in sections 2.1.2.1 and 4.4.2. This algorithm is based on examining successive

waves (i.e., levels) of the context graph of causally-ordered messages. A membership

change in this scheme can be described using the general model of adaptive systems as

follows.

1. Change Detection. Detection Policy: If no message has arrived from a site within

a T-second interval, suspect failure and multicast “failure suspicion” message.
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2. Agreement. Response Policy: If local context graph has no message from site

suspected to have failed in the same wave as failure suspicion message, respond

yes; otherwise, respond no. Voting Policy: If every site excluding those suspected

to have failed respond yes, result is positive; otherwise, result is negative.

3. Action. Action Policy: Remove failed site from membership list. Trigger an event

indicating membership change for all interested parties. Send a membership change

message to user, if required. Timing Policy: Immediately after agreement is reached.

The actions taken by a membership protocol are actually just a small part of those taken

by the system as a whole when a failure occurs. In fact, membership acts as detection and

agreement mechanism for other protocols that are interested in membership changes. An

example of such an adaptation can be seen in the protocol in Consul that implements a

consistent total ordering of messages at all sites.

1. Change Detection. Provided by membership. Detection Policy: If site failure

event is triggered by membership.

2. Agreement. Not necessary (provided by membership).

3. Action. Action Policy: Remove failed site from the membership list used to make

completeness decisions. Timing Policy: When all waves before the one where the

failure was observed have been processed.

8.3.2 Adaptive Token Passing

Token passing is a technique used in different application areas to regulate access to a

shared resource. The loss of token is a change in the environment to which the system

must adapt. Here, we consider the detection of token loss and subsequent regeneration of

a new token as an adaptive protocol.

The detection phase can be implemented using any of several strategies. One common

approach is to use timeouts, in which case a loss is suspected by a site if some period

of time passes without it having received the token. Alternatively, if the token is used

to regulate access to some shared resource, the resource itself can be monitored. With

this scheme, a token loss is suspected if the resource remains unused for some time even

though there are processes waiting access.

The following summarizes the three phases of adaptive change. The agreement phase

is especially important here since the number of tokens must be kept under some specified

limit (one in most cases).

1. Change Detection. If some period of time passes without receipt of token, suspect

loss and initiate agreement algorithm.
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2. Agreement. Response Policy: If site suspects token has not been lost, answer no;

otherwise, answer yes. Voting Policy: Consensus, i.e., if all currently functioning

sites agree that token is lost, decide token is lost.

3. Action. Action Policy: The leader site generates a new token. Timing Policy:

Immediately.

Note that normal operation—the part of the program that uses the token—can be

separated completely from the algorithm that realizes adaptation in the face of changes.

This example is treated in more detail later in this chapter.

8.3.3 Centralized Total Ordering

A simple and straightforward way to achieve a consistent total ordering of messages in a

distributed system is to use a central ordering server [KTHB89]. In this scheme, messages

are first sent directly to the ordering server, which then retransmits them in some total

order to all receivers. Alternatively, messages can be multicast directly to the receivers,

with the central ordering service only sending ordering messages [AFM92]. Like any

centralized service, a total ordering service of this type suffers from the problem of how

to handle the failure of the central authority.

This protocol can be structured as a fault-tolerant adaptive system, where the regular

total ordering algorithm implements the ordering assuming the central server remains

functioning, and the adaptive portion takes care of changing the server when necessary.

Without loss of generality, assume that the scheme being used has the central server

sending only ordering messages. Assume further that an ordering message is the pair

<message id,total order number> and that a negative acknowledgment reliability protocol

is used for the application messages. The latter ensures that, if any non-empty subset of

the sites receives the message, every site will eventually receive the message unless all

sites in the subset fail. Finally, assume that a membership service provides notification of

membership changes.

Given these assumptions, then, the three phases are as follows.

1. Change Detection. Provided by membership. Detection Policy: Site failure event

triggered by membership.

2. Agreement. Response Policy: Send the total order number of the latest totally-

ordered message at this site. Voting Policy: Site sending maximum total order

number is elected as new central ordering server, with unique site id used as tie

breaker. Must wait for vote from everybody assumed alive.

3. Action. Action Policy: New central ordering server assumes the role of the central

server and sends ordering message starting from the smallest total ordering number

received in the agreement phase. Other sites start expecting ordering messages from

this new site. Timing Policy: Immediately after decision reached.
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8.4 Adapting to Change of Failure Model

This section examines adaptive systems where the system actually adapts its actions

from operating in one correctness domain to another. Fault-tolerant systems are usually

designed to tolerate failures that conform to a particular failure model, as was described

in chapter 1. Some of these models, such as fail-stop and omission, are easier to deal with

from the perspective of the system designer, but represent a risk since a failure outside the

model can lead to unpredictable results. On the other hand, failures in the more inclusive

failure models, such as Byzantine, are rare and require expensive protocols. As a result, it

would be advantageous to design an adaptive system that initially assumes a benign failure

model, but is prepared to change to a less benign one should the environment no longer

match the original assumption. This type of adaptation is a special case of configurability

where the user reliability requirements are matched by choosing an algorithm with the

required failure model, as discussed in chapter 1.

Figure 8.4 illustrates this type of adaptation. Here, two algorithms 1 and 2 are designed

for failure models C1 and C2, respectively. If the environment changes to point x outside

the correctness domain of algorithm 1, an adaptive action is taken to replace 1 by 2.

x

Algorithm 1 in failure class C1

Algorithm 2 in failure class C2

Figure 8.4: Adapting to Change of Failure Model

These types of changes do not typically stop the system execution, but the system

may operate incorrectly, possibly corrupting the system state until an adaptation is made.

Therefore, reestablishing a correct state is a problem. For example, if the system imple-

ments total ordering of messages assuming a fail-stop failure model and a different type

of failure occurs, several messages may be delivered out of order before the change is

detected and corrective action taken. A well-known, but expensive, solution is to write the

system state periodically onto stable storage and then use these checkpoints to roll back

the system to an earlier uncorrupted state should such a failure occur.

Note that this approach is only practical if detecting the change of failure model is

cheaper than tolerating the more difficult failure model for the whole duration of the

system execution.

8.4.1 Point-to-Point Data Transmission Protocol

As a simple example, consider a point-to-point data transmission protocol that assumes

no transmission failures (i.e., failure model none), combined with an adaptive portion that
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detects and adapts to possible transmission failures.

1. Change Detection. Add sequence numbers to all messages. Detection Policy:

Monitor reception of messages. Since the channel need not be FIFO to be reliable,

receiving messages out of order is not a reason to suspect change. The detec-

tion policy could, however, be based on assuming bounded FIFO-ness—messages

cannot arrive more than R messages out of order—or bounded transmission time—

messages cannot arrive more than T time units after any message that follows it in

the order.

2. Agreement. Not necessary.

3. Action. Action Policy: Start negative ack protocol starting from the missing mes-

sage(s). Timing Policy: Immediately.

Note that the solution is not much cheaper than running negative acks to begin with.

One advantage, however, is that it reduces the number of unnecessary nacks and retrans-

missions.

8.4.2 Synchronous Atomic Broadcast

In [CASD85], a set of broadcast protocols for different failure models is described. The

assumption is that the underlying network is synchronous—that is, that messages are

delivered within some time bound—and that each pair of sites is connected by at least k

disjoint paths, where k is the number of network failures to be tolerated. These broadcast

protocols guarantee a consistent total ordering. as well as atomic delivery of messages to

all sites.

The network synchrony and k-connectivity assumptions are difficult to guarantee in

practice. As a result, even though a network may satisfy these assumptions with a high

probability, there is always some small chance of the assumptions being violated. This can

cause one or more sites to enter an inconsistent state relative to other sites, and raises the

possibility of system contamination should a site in an inconsistent state send a message

[GT91].

Adaptivity can be used to address such a scenario and increase the overall dependability

by allowing the system to continue providing message ordering despite the change in the

environment. To deal with the loss of network synchrony, the system can change to using

a total ordering algorithm intended for asynchronous networks, such as one that uses a

centralized ordering server. Similarly, to deal with loss of k-connectivity, the system

can change to using a reliability protocol for asynchronous networks, such as the use of

negative acknowledgments.

Detection of such changes can be implemented using a scheme similar to the one

presented in [GT91]. Assume the sender of a message, say site p, includes the sequence

of messages delivered to the user at site p, DEL
p

, in the header of each message sent.
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Now, a site q that receives this message can check its DEL
q

against DEL
p

. When it

comes time to deliver the message from p, DEL
p

must be a prefix of DEL
q

. If this is

not the case, the total order must have been violated. This basic idea can be optimized to

cut down the overhead on each message either by using the approach taken in [GT91] of

sending message counts instead of the complete history, or by using the fact that stable

messages—that is, messages received by every site—can be removed from the message

delivery history. With either of these approaches, the space overhead can be cut on average

to O(n) per message.

An agreement phase is required for establishing the last message that has been re-

ceived by every site before the ordering failed. Since the synchronous protocols can no

longer be trusted, the agreement must be done using an asynchronous reliability protocol.

Agreement messages need not be totally ordered, however, so the central ordering server

is not required for this phase.

This series of actions fits within the generalized adaptive system model. One action,

changing the protocol, is actually done before the agreement phase. The sequence of

phases is therefore: detection, agreement (nil), action (change protocol), agreement (agree

on last properly ordered message), action (rollback/recovery). The first agreement is nil

since sites are assumed to suffer only crash failures: if one site detects that the total order

is corrupted, other sites can trust its judgment.

Several approaches can be taken to deal with sites whose state becomes inconsistent

between the occurrence of the change and the corrective action. One is to force such sites

to fail and then recover, building their new state from a state transferred from some other

site. Another is to use the checkpoint technique outlined above; if the checkpointing and

change detection algorithms are coordinated appropriately, at most two checkpoints per

site are required.

8.5 Implementation Based on the Event-Driven Model

The event-driven execution model described in chapter 3 has a number of characteristics

that make it especially appropriate for implementing adaptive systems based on this

general model. For example, the three distinct phases can often be implemented as three

separate micro-protocols, with the normal behavior of the system also realized by one or

more micro-protocols. Since micro-protocols are designed for configurability, the normal

behavior of the system can easily be combined with the micro-protocols required by the

adaptation mechanisms.

Events and shared data structures are also a natural way to implement interac-

tions between phases. That is, the change detection phase can trigger an event, say

SUSPECT CHANGE X, that starts agreement, and agreement can trigger an event, say

CHANGE X, that starts the action phase. Sometimes the interaction and synchronization

requirements between phases are more complex; for example, the different phases may

need to access a shared data structure. Such requirements are also easy to accommodate

in this model using the shared data structures.
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Finally, the event-driven model makes it easy to implement different types of adaptive

actions. The simplest actions only involve changing execution parameters such as timeout

periods or membership, which can be done by updating shared variables within the

composite protocol. Some actions require a more sophisticated corrective step such

as recreating a token or reassigning the roles of different sites. These steps can be

encapsulated in the action phase micro-protocol. The most complicated actions may even

require changing the algorithms executed. The model supports this by allowing handler

bindings to be changed at runtime.

const HIGH = 1; MEDIUM = 10; LOW = 100; % priorities
var have token: boolean;

next site: site identifier;

micro-protocol TokenControl() f

event handler handle net msg(var msg: NetMsgType) f
var new msg = new(UserMsgType);

if msg.type = TOKEN then f
new msg.type = TOKEN;
User.Pop(new msg);

g

g

event handler handle user msg(var msg: UserMsgType) f
var new msg = new(NetMsgType);

if msg.type = TOKEN and have token then f
new msg.type = TOKEN;
Network.Send(new msg,next site);
have token = false;

g

g

initial f
register(MSG FROM NET,handle net msg,LOW);
register(MSG FROM USER,handle user msg,LOW); g

g

Figure 8.5: TokenControl Micro-Protocol

As an example of mapping an adaptive system onto this implementation model, con-

sider the token passing example described in section 8.3.2. In this scheme, a distributed

application program uses a token to implement access to a shared resource, with adaptation

in the event of token loss being implemented transparently with separate micro-protocols.

The token passing is based on a logical ring where each application process knows the

identity of its successor in the ring. We assume a point to point communication network

accessed using routine Network.Send, and that communication is unreliable, but with

FIFO ordering guaranteed between pairs of processes. We also assume that the sites in-

volved with the token passing are known in advance, and that if one fails, it either recovers
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micro-protocol TokenLossDetection(timeout period: real) f

event handler handle msg(var msg: NetMsgType) f
if msg.type = TOKEN then f

deregister(TIMEOUT,monitor);
have token = true;
register(TIMEOUT,monitor,timeout period);

g

g

event handler monitor() f
trigger(SUSPECT TOKEN LOSS);

g

initial f
register(MSG FROM NET,handle msg,HIGH);
register(TIMEOUT,monitor,timeout period); g

g

Figure 8.6: TokenLossDetection Micro-Protocol

quickly or is replaced by a new site with the same address. All these assumptions are not

strictly necessary, but simplify the code so that emphasis can be placed on the structuring

principles.

Note that this problem is very closely related to the problem of token regeneration in the

TokenDriver micro-protocol in chapter 5. The main difference here is that the problem is

structured using the general model for adaptive systems and decomposed into a number of

micro-protocols instead of being implemented in one micro-protocol as was the case with

TokenDriver. This decomposition makes each part correspondingly simpler. Naturally,

a direct comparison is not possible because both the assumptions and the actual problem

here are much simplified.

Figure 8.5 gives an outline of the micro-protocol that controls the passing of the token

and implements interaction with the application. The application is notified of token

acquisition by passing it a TOKEN message using the User.Pop routine. Similarly, the

token is released and passed to the next site when a TOKEN message arrives from the

application, as signaled by the occurrence of the MSG FROM USER event.

The change detection phase shown in Figure 8.6 is based on simply monitoring that

the token is received once every specified time period. If the token is not received within

this period, its loss is suspected and the event SUSPECT TOKEN LOSS is triggered. The

micro-protocol detects arriving messages by registering an event handler for the event

MSG FROM NET, which is triggered by the framework when a message is delivered to

the composite protocol by the network.

Figure 8.7 shows the outline of the token loss agreement and action micro-protocols.

The agreement portion is based on sending a VOTE message along the same logical ring

used to transmit the token. If some site receives the VOTE message while holding the

token, it simply drops the VOTE message. If, on the other hand, the sender of the VOTE



186

micro-protocol TokenLossAgreement() f
var vote id: int (mod m); % id of the latest vote started

mutex: semaphore;

event handler start vote() f
var msg = new(NetMsgType);

P(mutex);
if not have token then f

msg.type = VOTE;
msg.sender = my id;
vote id++;
msg.id = vote id;
Network.Send(msg,next site);

g

V(mutex);
g

event handler handle vote(var msg: NetMsgType) f
P(mutex);
if msg.type = VOTE then f

if msg.sender = my id and msg.id = vote id then
trigger(TOKEN LOST);

elseif not have token then
Network.Send(msg,next site);

g elseif msg.type = TOKEN then
vote id++;

V(mutex);
g

initial f
register(SUSPECT TOKEN LOSS,start vote,LOW);
register(MSG FROM NET,handle vote,MEDIUM);
vote id = 1; g

g

micro-protocol TokenLossAction() f

event handler recreate token() f
var msg = new(NetMsgType);

msg.type = TOKEN;
Network.Send(msg,next site);

g

initial f
register(TOKEN LOST,recreate token,LOW); g

g

Figure 8.7: Agreement and Action Micro-Protocols

message receives that message back before receiving the token, it is assumed that the token

has been lost and the event TOKEN LOST is triggered. Note that the change detection

micro-protocol can trigger SUSPECT TOKEN LOSS even if agreement is in progress. In

fact, this strategy is used to deal with transmission failures during the voting process.
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Essentially, a new VOTE message is sent every time the event is triggered, with agreement

only reached if such a message reaches the sender before the time arrives to send another.

This assumption is reasonable since the timeout period of the change detection micro-

protocol would typically be much greater than the time it takes to circulate either the token

or the VOTE message.

The action micro-protocol is simple in this case. All that is required is to field the

TOKEN LOST event and then regenerate the token.

Finally, note that agreement is the most complicated part of this example despite the

relative simplicity of the application. One way to address this problem is to decompose

the agreement phase further into a voting mechanism—based on logical ring in this

case—and response and voting policies. Such a structure also enhances configurability

by allowing, for example, the same voting mechanism to be used for different policies

without modification.

8.6 Conclusions

This chapter has illustrated a special case of customization, namely adaptation, where the

system changes occur at runtime instead of compile or link time, and how the event-driven

model can be applied in this case. We introduced a general model for adaptive systems

and presented examples of how this model can be applied in different scenarios that arise

in the context of distributed systems. Based on these examples, our tentative conclusion is

that the model has the potential to simplify the design and construction of a wide variety

of adaptive systems. It provides a unifying framework for discussing various attributes

of such systems, as well as suggesting new strategies to be pursued. It also illustrates

a different way of using micro-protocols. As for cost, analytical and simulation studies

are needed for any definitive answer, but our initial investigations suggest a considerable

variation based on the type of adaptation considered. Most promising are adaptations

to enhance the performance of the system in the face of changes in the computational

environment, with those done to extend the system’s failure coverage to deal with site or

network failures close behind. The ability to adapt from tolerating one failure model to

another is also intriguing, but more speculative at this point.



188



189

CHAPTER 9

CONCLUSION

9.1 Summary

This dissertation has addressed the problem of providing customizable services for fault-

tolerant distributed applications. Customizing underlying services, such as membership,

multicast, or RPC, is important because no single implementation of a service is a perfect

match for every application; either the service implementation provides guarantees that are

too weak to ensure correctness, or it provides guarantees that are too strong, thereby slow-

ing execution of the application unnecessarily. Furthermore, the chosen guarantees may

have different implementations that perform better in different execution environments.

Prior work on configurability and extensibility, both in the context of fault-tolerant

systems and other system-level services, was described in chapter 2. We reviewed a

number of systems and showed that the approaches taken by existing systems can be

typically be characterized as hierarchical or function-based. Both approaches have their

limitations that our work attempts to eliminate.

In chapter 3, we presented our approach to constructing configurable services. Our goal

is to provide support for flexible configuration, where the units of configuration correspond

to the abstract properties of the service. Thus, the design always starts from identifying

the properties. We introduced a new approach to specifying abstract properties that allows

all message delivery orders that satisfy required properties of a service to be represented

and accommodates graphical illustrations of properties. We also identified and specified

three relations between properties—dependency, conflict, and independence—that dictate

which combinations of properties are feasible in any service implementation.

The implementation of configurable services built using our approach is based on an

event-driven execution model that was also described in chapter 3. In this model, prop-

erties are implemented as micro-protocols, which interact through events and shared data

structures. These mechanisms provide a degree of indirection that makes it possible to

construct highly configurable services. Next, the event-driven model as well as the design

steps involved in constructing a configurable service were outlined. Analogously to the

relations between properties, we can identify relations between micro-protocols that dic-

tate which combinations of micro-protocols work correctly. Four relations—dependency,

inclusion, conflict, and independence—were specified and illustrated using configuration

graphs, which are graphical representations corresponding to dependency graphs. Finally,

three prototype implementations of the event-driven model were described.

Chapters 4 and 5 illustrated the application of the approach to membership services.

In chapter 4, message ordering graphs were used to specify 23 properties of membership
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services, and dependency graphs that represent the relations between the properties were

given. The properties include change detection, agreement, ordering, synchrony, and

partition handling properties. The specified properties have thousands of different feasible

combinations, which illustrates the great potential for customization. A number of the

relations between membership properties were proven to illustrate our proof techniques.

Finally, a collection of existing membership services were characterized in terms of the

properties specified. In chapter 5, an implementation of a configurable membership

service was presented. This implementation is based on the event-driven execution model

and is extremely configurable, providing over 1000 legal configurations. The costs of

various properties were calculated in terms of number of messages required. The chapter

concluded with a discussion about the implementation of the membership service using

the C++ prototype.

A problem closely related to membership, system diagnosis, was introduced in chapter

6. Despite their close resemblance, these two problems have been almost always treated

separately. In this chapter, we compared the problems and concluded that they are closely

enough related to be considered specializations of the same general change detection and

reporting problem. Using observations about the differences, we transformed a number

of system diagnosis algorithms into typical membership algorithms, resulting in a simple

but powerful membership algorithm. A similar transformation in the other direction was

used to derive a new system diagnosis algorithm and to augment an existing one with

membership-type properties.

Our approach was applied to group RPC services in chapter 7. A number of properties

were defined and a configurable implementation presented.

In chapter 8 the flexibility of the event-driven model was illustrated by applying it

to adaptive systems. We developed a general model for adaptive systems that divided

the adaptation process into three different phases: change detection, agreement, and

action. This model was applied to a large number of examples including some not usually

considered as adaptive systems. An implementation approach was then presented using

the event-driven execution model. Here, micro-protocols were used to encapsulate phases

in adaptive process instead of implementations of abstract properties. This demonstrated

the versatility and flexibility of the model.

9.2 Future Work

This work can be expanded in many different directions. These include applying the

approach to other fault-tolerant distributed services, adding real-time constraints to the

model allowing implementation of timeliness properties, expanding the work on adaptive

systems, more rigorously treating correctness issues, expanding the prototype implemen-

tations, and finding commercial applications.

Although our approach has been successfully applied to membership and RPC services,

the work could be expanded to many other interesting fault-tolerant services. For example,
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the work on multicast services in [HS93, GBB+95] could be expanded. In particular,

the properties of multicast services can be specified using message ordering graphs as

done in chapter 4 for membership services. Another potential application of the model

was mentioned in chapter 7, where we proposed a configurable change detection and

reporting service, which is a generalization of membership and system diagnosis services.

Furthermore, transactions with their ACID properties have been an example that we have

frequently used, but have not yet properly studied. The choice here is not only which

of the ACID properties the application requires, but also which algorithms are used to

implement each property. The applicability of the approach could also be explored in

other service areas, such as time and synchronization services, file systems, and perhaps

even operating systems.

An important topic that we have not yet addressed is real time. To guarantee real-time or

any timeliness properties, changes are required in the model itself and its implementation,

such as scheduling of eligible event handlers using deadlines. The model has features

that should make it extendable in this direction. For example, event handlers are typically

small, and therefore their execution time is predictable in most cases. Naturally, issues such

as synchronization and priority inversion have to be addressed. Related to timeliness are

issues about the system model, such as whether the system is synchronous, asynchronous,

or something in between, such as timed-asynchronous [Cri96].

The work on adaptive systems presented in chapter 8 is just a beginning. The general

model and the implementation using the event-driven approach appear promising, but

we have to apply the ideas to real implementations to gain a better understanding of the

performance tradeoffs. The addition of real-time considerations to the adaptation process

is the next major conceptual issue. An interesting extension of current work would also

be combining the property-based design of chapter 5 with the adaptive mechanisms. In

this case each property would be realized by a set of micro-protocols, each implementing

a different phase of adaptation. The potential benefits would include not only improved

performance, but also simplified design of complex micro-protocols.

There are several fundamental issues still to be explored in conjunction with our

approach. In particular, the correctness of a configurable service is an important but

difficult problem. The two major issues here are formal verification and testing. Formal

verification is required to prove that each micro-protocol implements the specified property

and that combinations of micro-protocols can cooperate without inadvertent interference.

Compared to proving correctness of monolithic non-configurable programs, our approach

has the advantage that micro-protocols are typically relatively small modules, but has the

disadvantage that there are potentially thousands of different combinations. Testing is

similarly complicated by the number of configurations; testing any one configuration is

similar to testing a non-configurable program, but testing all of the potentially thousands

of configurations is often not feasible.

To date, three different prototype implementations of the event-driven model have

been completed. The SR prototype that provided the first experimentation environment is

not currently used or maintained, but the other two prototypes are both in active use. The
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independent development of these two prototypes allowed experimentation with different

tradeoffs in the model. After we gain further experience with these systems, an important

aspect of future work is to compare results and potentially combine the best features

into a single implementation. The next major step for the C++ prototype is a distributed

implementation, either based on UDP or distributed computing environments such as DCE

[RKF93] or Corba [OMG95a, OMG95b]. The next major step for the x-kernel prototype

is to port it to a version of the Mach operating system with features for supporting real time

[TNR90, TN91]; this would make it feasible to deal with timeliness properties. Porting

this prototype to the Scout operating system [MMO+94a, MP96] might further improve

performance over the current Mach implementation.

Although many experimental projects have successfully applied configurability in

areas such as operating systems and networking, the idea have not yet gained widespread

commercial acceptance. As a result, it would be interesting to find commercial applications

where our approach can be shown to result in financial benefits. Compared to projects

in operating systems and networking, our approach is more easily applied since the

event-driven model can be used at the user level and does not require changes to the

operating system or other lower-level services. Furthermore, the model is not restricted

to middleware and could be used to construct configurable application software.

Perhaps the most commercially appealing application of configurability would be in

the creation of customized products and services. In this case, configurability is only

used to facilitate the creation of a customized version of the product for each client,

rather than making the configurability itself available to clients. Consider, for example,

a company that exports wireless communication systems to a number of different coun-

tries. Different countries typically have their own requirements and methods for billing,

security, wire tapping, and other additional features. Instead of providing all possible

options in one monolithic implementation, the different methods could be implemented

as configurable micro-protocols. Naturally, it is impossible to predict all requirements,

but services constructed using the event-driven model are easier to extend than mono-

lithic implementations. A similar approach could be taken in embedded systems, where

the limited resources of the system could be best utilized by including only the features

required for each client.
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APPENDIX A

C++ PROTOTYPE IMPLEMENTATION

This appendix describes the key concepts of the C++ prototype and demonstrates

how C++ classes can be used to derive specific micro-protocols and composite protocols.

However, the prototype does not fully correspond to the event-driven model as described

in chapter 3. In particular, some of the latest changes to the abstract model have not yet

been implemented in the prototype and a few simplifying assumptions were made.

A.1 Event Handlers

Events handlers are implemented as type event handler, which is a function pointer

that takes two character pointer arguments:

typedef void (*event_handler)(char *,char *);

The first is required to accommodate C++: when a C++ class method is called, the first

argument on the stack is expected to be a pointer to the object (this). Since the event

handlers are called as if they were regular functions, the first argument is used to pass the

required object pointer. The second character pointer is used to pass the real arguments

to the event handler.

This type definition allows ordinary object methods to be used as event handlers, as

illustrated below for an arbitrary PropertyX micro-protocol and handle eventX event

handler.

void PropertyX::handle_eventX(char *args, char *nothing)
{

ApplMessage *msg; int *site;

msg = (ApplMessage *)((PtrPair *)args)->i1;
site = (int *)((PtrPair *)args)->i2;

}

Note that the handler receives the actual arguments in the first argument args, since

C++ has already stripped out the object pointer. However, the handler has to have two

arguments to compile, so a second null argument is used. If a handler requires more than

one argument, they are stored in a structure. For example, args in this case contains

pointers to two arguments, one for a message and the other for a site identifier.
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A.2 Event Operations

The event operations for handling an event EVENT X are illustrated below.

cp->Register(EVENT_X,(event_handler *)&(handle_eventX),\
100,(char *)this);

cp->Deregister(EVENT_X,(event_handler *)&(handle_eventX);

info.i1 = (int *)&msg;
info.i2 = (int *)&site;
cp->Trigger(EVENT_X,(char *)&info);

cp->CancelEvent();

In this example, cp is a pointer to the composite protocol of the service in question. For

the Register and Deregister operations, the C++ class methods have to be cast into

function pointers. Furthermore, the Register operation requires the priority argument,

in this case 100, and pointer to the object this that enables the runtime system to set the

stack correctly when the handlers are invoked. The complexity of these operations could

be simplified using a simple macro for both Register and Deregister. Finally, the

example illustrates how several arguments are packed for the Trigger operation.

A.3 Micro-Protocols

A.3.1 MicroProtocol Class

The MicroProtocol class is the base class for all micro-protocols. Although the class,

presented below, is trivial, it enables all micro-protocols to be handled in a uniform fashion.

/*************************************************************/
/* FILE : MicroProtocol.h */
/* CLASS: MicroProtocol */
/*************************************************************/
class CompositeProtocol;

class MicroProtocol {
protected:

int MyId; /* unique identifier */
int TraceId; /* bit mask for tracing the */

/* the execution of this microp */
public:

char *ident; /* symbolic name of the microp */

MicroProtocol(){ /* creation */
ident = "MicroProtocol"; /* default identity */

};
˜MicroProtocol(); /* destruction */

};
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A.3.2 Custom Micro-Protocols

Specific micro-protocols are derived from MicroProtocol, as illustrated below for

TotalOrder. Here, cp is a pointer to a membership composite protocol type MEM.

/*************************************************************/
/* FILE : TotalOrder.h */
/* CLASS: TotalOrder */
/*************************************************************/
#include "MEM.h"

class TotalOrder: public MicroProtocol {
private:

void handle_membmsg(char *,char *); /* event handler */

int previous_mid; /* previous msg in total order */
MEM *cp; /* pointer to composite protocol */

public:
TotalOrder(int, MEM *);
˜TotalOrder();

};

/*************************************************************/
/* FILE: TotalOrder.cc */
/* CLASS: TotalOrder */
/*************************************************************/
#include "MEM.h"
#include "TotalOrder.h"

void TotalOrder::handle_membmsg(char *args, char *garbage)
{

ApplMessage *msg;
PtrPair *info;

info = (PtrPair *)args;
msg = (ApplMessage *)info->i1;
... code omitted ...

}

TotalOrder::TotalOrder(int id, MEM *comp)
{

cp = comp;
TraceId = id;
MyId = cp->SiteId;
ident = "TotalOrder";

cp->Register(MEMBER_MSG,(event_handler *)&(handle_membmsg),\
100,(char *)this);

}

TotalOrder::˜TotalOrder()
{ cp->Deregister(MEMBER_MSG,(event_handler *)&(memb_msg)); }

A.4 Composite Protocols

CompositeProtocol is the base class for all composite protocols. It implements the

event-handling operations Register, Deregister, Trigger, and CancelEvent, as
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well as operations for interfacing with other (composite) protocols above and below: Push
and Pop. The prototype does not currently implement the Define operation, so events

are specified simply by defining their names as C constants as follows.

#define TIMEOUT 0
#define MSG_FROM_NET 1
#define MSG_FROM_USER 2

...

A.4.1 CompositeProtocol Class

The following code segment lists the type definitions and operations of CompositePro-
tocol. Event handlers registered for events are stored in data structures TimeoutList
(TIMEOUT event) and Events (all other events). For simplicity, all data structures are

of fixed size. Note also that the information about each handler contains a pointer to the

object that contains the handler (context).

/*****************************************************************/
/* FILE : CompositeProtocol.h */
/* CLASS : CompositeProtocol */
/* - operations: Register, Deregister, Trigger, CancelEvent */
/*****************************************************************/
#include <std.h>
#include <thread.h>
#include "types.h"
#include "User.h"
#include "MicroProtocol.h"
#include "Mutex.h"
#include "StableStore.h"
#define NUM_HANDLER 20 /* max # of handlers/event */

class Network;

typedef struct { /* entry for one handler, includes */
int priority; /* priority */
event_handler *function; /* handler function */
char *context; /* object pointer (this) */

} Entry;

typedef struct { /* entry for one event, includes */
int count; /* how many handlers registered */
Entry Handler[NUM_HANDLER]; /* ordered handler entries */

} Pair;

typedef struct { /* temp. storage for handler */
event_handler *function; /* handler function */
char *context; /* object pointer */

} TempEntry;

typedef struct { /* entry for one TIMEOUT handler */
int delay; /* delay from previous */
event_handler *function;
char *context;

} TimeoutEntry;

typedef struct { /* handlers for TIMEOUT event */
int count; /* how many */
TimeoutEntry Handler[NUM_HANDLER]; /* ordered list */
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} Timeout_Record;

class CompositeProtocol {
protected:
short site_status; /* FAILED or OK */
Pair Events[NUM_EVENT]; /* registered event handlers */
Mutex *TableMutex; /* control access to Events */
Timeout_Record TimeoutList; /* registered TIMEOUT handlers */
Mutex *fw_mutex; /* control access to TimeoutList */
Network *myNet; /* pointer to network protocol */

void Sleep_Guardian(void *); /* functions for handling timeout*/
void Start_Guardian(); /* events */
void Handle_Timeout(event_handler *,int,char *);
void Cancel_Timeout(event_handler *);

public:
User *myUser; /* pointer to user protocol */
int SiteId; /* id of the simulated site */
CompositeProtocol();
˜CompositeProtocol();
void Status(); /* information about handlers */

void Register(int,event_handler *,int, char *);
void Deregister(int, event_handler *);
void Trigger(int,char *);
void CancelEvent();
void push(ApplMessage *);
void pop(NetMessage *);

void Start(); /* operations for starting up, */
virtual void ShutDown(); /* terminating, and */
virtual void ReStart(); /* restarting a composite protocol*/

};

Some of the more important operations of CompositeProtocol.cc are presented

below, although the complete code is not presented here for brevity. The Register
operation takes the event name (key), event handler, priority, and pointer to the object and

stores this information either in the Events table or in the TimeoutList using function

Handle Timeout.

void CompositeProtocol::Register(int key, event_handler *function,\
int priority, char *context) {

int next,i;

if (key < 0 || key >= NUM_EVENT) {
printf("ERROR: CompositeProtocol Register:");
printf(" illegal event %d.\n",key);
exit(-1);

}

if (site_status == FAILED) return;

if (key == TIMEOUT) {
Handle_Timeout(function,priority,context);
return;

}

TableMutex->Lock();

if (Events[key].count > (NUM_HANDLER-1)) {
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printf("ERROR: CompositeProtocol Register:");
printf(" too many handlers for event %d.\n",key);
exit(-1);

}

next = 0;
while(next < Events[key].count &&

Events[key].Handler[next].priority < priority)
next++;

for(i=Events[key].count;i>next;i--)
Events[key].Handler[i] = Events[key].Handler[i-1];

Events[key].Handler[next].function = function;
Events[key].Handler[next].priority = priority;
Events[key].Handler[next].context = context;
Events[key].count++;
TableMutex->Unlock();

}

Trigger implements triggering of sequential blocking events. Note that Trigger
first copies the event handlers to be invoked into a temporary data structure. This makes

it possible to release the lock on the Events table, which in turn allows the handlers to

invoke other operations such as Register or Trigger without deadlock.

void CompositeProtocol::Trigger(int key, char *args) {
int i;
int prio,count;
TempEntry Handlers[NUM_HANDLER];
event_handler ev;

if (key < 0 || key >= NUM_EVENT) {
printf("ERROR: CompositeProtocol Trigger:");
printf(" illegal event %d.\n",key);
exit(-1);

}

if (site_status == FAILED) return;

TableMutex->Lock();

count = Events[key].count;
for(i = 0; i < count; i++) {

Handlers[i].function = Events[key].Handler[i].function;
Handlers[i].context = Events[key].Handler[i].context;

}

TableMutex->Unlock();

for(i = 0; i < count; i++) {
ev = (event_handler)Handlers[i].function;
if (site_status != FAILED) ev(Handlers[i].context,args);

}

thr_setprio(thr_self(),prio);
}

CancelEvent currently terminates the thread that executes the operation. So far, this

simplified implementation has been adequate, but the operation should be refined to only

terminate the execution of event handlers and return control to caller.
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void CompositeProtocol::CancelEvent() {
thr_exit(NULL);

}

A.4.2 Custom Composite Protocols

Customized composite protocols are created as derived classes of CompositeProtocol
by defining custom shared data structures, procedures, events, and micro-protocols. This

is illustrated below for the membership service prototype described in chapter 5.

/*****************************************************************/
/* FILE: MEM.h */
/* Defines Membership service composite protocol. */
/*****************************************************************/
#include "CompositeProtocol.h"
#include "OrderingGraph.h"
#include "Network.h"

class MEM: public CompositeProtocol {
private:
MicroProtocol *MP[30]; /* pointers to activated mps */

public:
User *Application;
Network *Net;
int Membership[NUMSITE];
int ParList[NUMSITE];
TokenType token;
int SuspectList[NUMSITE];
... other variables omitted ....

void Start(); /* start membership service */
void ShutDown(); /* shutdown membership serv. */
... other procedure omitted ....

MEM(int, Network *);
˜MEM();

};

An important part of a customized composite protocol is the initialization of global

data and creation of the required micro-protocols objects with their proper arguments, as

illustrated below.

/*****************************************************************/
/* FILE: MEM.cc */
/* Implements Membership service composite protocol. */
/*****************************************************************/
#include "MEM.h"
#include "Network.h"
#include "CommService.h"
#include "MessageDriver.h"
#include "TokenDriver.h"
#include "StartUp.h"
#include "Recovery.h"
#include "SimpleMembershipDriver.h"
#include "MembershipDriver.h"
#include "LiveFailureDetection.h"
#include "TotalOrder.h"
... other micro-protocols omitted ....
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void MEM::Start()
{
/* Initialize data structures here */

MsgGraph = new OrderingGraph(1,SiteId);

/* Start all micro-protocols here */

MP[0] = new CommService(1,this);
MP[1] = new MessageDriver(2,this);
MP[2] = new TokenDriver(4,this,4,70,limit+1);
MP[3] = new StartUp(8,this,localMship);
MP[4] = new Recovery(16,this);
MP[5] = new LiveFailureDetection(32,this,60,limit);
MP[6] = new AccurateRecoveryDetection(32,this);
MP[7] = new MembershipDriver(64,this);
MP[8] = new TotalOrder(128,this);
MP[9] = new PartitionDetection(512,this,localMship,100);
MP[10] = new CollectiveJoin(1024,this);
... other micro-protocols omitted ...

Net->Members[SiteId] = TRUE;
}

MEM::MEM(int id, Network *net)
{

SiteId = id;
Net = net;
Start();

}

MEM::˜MEM()
{

int i;
for(i=0;i<30;i++) delete MP[i];

}

A.5 Simulation Driver

The execution of the prototype is coordinated by a simulation driver that creates the

network object and the simulated sites, and generates system events such as failures,

recoveries, token loss, partitions, and partition joins. Below is an example driver used

to test the various membership service configurations. Note that the driver starts up and

shuts down the simulated sites by sending special messages using a reliable communication

method rel push.

/*****************************************************************/
/* FILE: driver.cc */
/* The main program of the simulation. */
/*****************************************************************/
#include <stdio.h>
#include "types.h"
#include "Network.h"
#include "MEM.h"
#include <time.h>

static Network *Net;
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void DropToken()
{

sleep(80);
printf("DRIVER: drop token.\n");
System->DropToken = TRUE;
sleep(400);

}

void Partition()
{

sleep(80);
printf("DRIVER: create partition.\n");
Net->Partition[0] = 1;
Net->Partition[2] = 1;
sleep(400);
printf("DRIVER: join partitions.\n");
Net->Partition[0] = 0;
Net->Partition[2] = 0;
sleep(600);

}

void FailNRec(int many)
{
int VICTIM1,VICTIM2,VICTIM3;

VICTIM1 = 0;
VICTIM2 = 2;
VICTIM3 = 2;

sleep(80);
printf("DRIVER: kill site %d.\n",VICTIM1);
Net->ShutDown(VICTIM1);

if (many > 1) {
sleep(40);
printf("DRIVER: kill site %d.\n",VICTIM2);
Net->ShutDown(VICTIM2);

sleep(50);

printf("DRIVER: recover site %d.\n",VICTIM2);
Net->site[VICTIM2]->ReStart();
printf("DRIVER: recover site %d - done.\n",VICTIM2);

}

sleep(20);
printf("DRIVER: recover site %d.\n",VICTIM1);
Net->site[VICTIM1]->ReStart();
printf("DRIVER: recover site %d - done.\n",VICTIM1);

if (many > 2) {
sleep(150);
printf("DRIVER: kill site %d.\n",VICTIM3);
Net->ShutDown(VICTIM3);

sleep(50);

printf("DRIVER: recover site %d.\n",VICTIM3);
Net->site[VICTIM3]->ReStart();

}
sleep(400);
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}

main()
{

NetMessage *msg;
long seed;
int i,option;

printf("Enter seed:\n");
scanf("%d",&seed);
srand48(seed);

printf("Choose type of test run:\n");
printf("0 : an event-less run.\n");
printf("1 : kill site with token. \n");
printf("2 : kill and recover one site. \n");
printf("3 : kill and recover two sites. \n");
printf("4 : kill and recover three sites. \n");
printf("5 : create and fix partition. \n\n");
scanf("%d",&option);

/* */
/* Start system */
/* */

Net = new Network;
Net->FAILURE_RATE = 0.10; /* set comm. failure rate */
for(i=0;i<NUMSITE;i++) Net->Members[i] = FALSE;

for(i=0;i<NUMSITE;i++) /* create sites */
Net->site[i] = new MEM(i,Net);

msg = new NetMessage; /* start site execution */
msg->type = SYSTEM_START;
Net->rel_push(BROADCAST,(char *)msg);
delete msg;

/* */
/* Choose operation here */
/* */

if(option == 0) sleep(400);
else if(option == 1) DropToken();
else if(option == 2) FailNRec(1);
else if(option == 3) FailNRec(2);
else if(option == 4) FailNRec(3);
else if(option == 5) Partition();

/* */
/* Shutdown system */
/* */

msg = new NetMessage;
msg->type = SYSTEM_STOP;
Net->rel_push(BROADCAST,(char *)msg);
delete msg;

}
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