
pC*: Efficient and Portable Runtime Support
for Data-Parallel Languages

(Ph.D. Dissertation)

Peter Alfred Bigot

UA CS TR-96-8 and ORC TR-91-1

Copyright 1996 by Peter Alfred Bigot

Technical Report TR-96-8

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

Technical Report ORC-TR-96-1

Oasis Research Center, Inc.

April 11, 1996

PC*: EFFICIENT AND PORTABLE RUNTIME SUPPORT FOR
DATA-PARALLEL LANGUAGES

by

Peter Alfred Bigot

Copyright 1996 by Peter Alfred Bigot

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 6

iii

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an ad-

vanced degree at The University of Arizona and is deposited in the University Library to

be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgement of source is made. Requests for permission for ex-

tended quotation from or reproduction of this manuscript in whole or in part may be granted

by the copyright holder.

SIGNED:

iv

ACKNOWLEDGMENTS

The research described in this dissertation could have been neither undertaken nor com-

pleted without the assistance of a variety of people. In particular, the existence of the dis-

sertation proper is the direct result of the willingness of my advisor, Saumya Debray, to

support my sudden switch in research topics, from semantic and implementation issues in

logic programming languages, to run-time systems for distributed data-parallel execution.

Similar thanks are due to the other members of my committee, Todd Proebsting and Pete

Downey. Such expressions of support when graduate students have an opportunity and de-

sire to pursue independent research seem regrettably rare.

The work itself could not have been performed without the support of Oasis Research

Center, and Charlie Turner in particular. Charlie provided me access to a variety of state-

of-the-art computers which were capable of tackling large-scale problems without limita-

tions such as tiny workstation clusters or inadequate computational power and memory—

limitations which would have obscured the existence of many of the issues discussed in this

work. The value of performing research in the context of real-world problems cannot be un-

derstated. Viability of the pC* system in a production environment was enhanced through

discussions with Charlie Turner, Michael Pagels, David Izraelevitz, and Steve Swartz, all

of ORC.

Thanks are also due to Phil Hatcher of the University of New Hampshire, who provided

me with an early version of the UNH C* compiler, from which the work described in this

dissertation evolved. Without this initial “leg up”, the mundanities of developing a grammar

for C* and otherwise getting to a working baseline system would have subtracted from time

available to pursue the interesting research questions addressed herein.

Weekly lunches with Ed Menze, who has always been willing to quietly accept my off-

the-wall quirks even when he didn’t quite follow them himself, helped me preserve my san-

ity during a particularly trying period. Discussions with Barbara Hales on gender issues in

cultural studies provided a welcome change from debugging communications interfaces.

The early years of my graduate experience were supported by an Office of Naval

Research-funded National Defense Science and Engineering Graduate Fellowship, and by

an AT&T Bell Laboratories Foundation PhD Fellowship. Support for the development of

pC* was provided in part by the Advanced Research Projects Agency under U.S. Army To-

pographic Engineering Center contract DACA76-93-C-0026, and by Oasis Research Center

under IRAD-7001-002.

v

To my parents

TABLE OF CONTENTS

LIST OF FIGURES : ix

LIST OF TABLES : xii

ABSTRACT : 1

CHAPTER 1: SO WHAT’S THIS ALL ABOUT : : : : : : : : : : : : : : : : : : 2

CHAPTER 2: INTRODUCTION TO C* AND PC* : : : : : : : : : : : : : : : : : 8

2.1 Overview of C* : 8

2.1.1 Shape and Parallel Execution : : : : : : : : : : : : : : : : : : : 8

2.1.2 Communication and Position Addressing : : : : : : : : : : : : : 10

2.1.3 Contextualization : 13

2.1.4 Summary : 15

2.2 The pC* Implementation of C* : 16

2.2.1 Genesis : 16

2.2.2 Basic Implementation Model : : : : : : : : : : : : : : : : : : : 17

2.2.3 Current Status : 19

2.3 Related Parallel and Data-Parallel Systems : : : : : : : : : : : : : : : : : 20

CHAPTER 3: IMPLEMENTATION OF PARALLEL VALUES AND CONTEXT : 23

3.1 Issues in Data Distribution : 23

3.1.1 Data Distribution Options : 24

3.1.2 Data Distribution in pC* : 27

3.2 Data Structures for Parallel Values in pC* : : : : : : : : : : : : : : : : : 27

3.2.1 Implementation of shape in pC* : : : : : : : : : : : : : : : : : 28

3.2.2 Runtime Memory Management : : : : : : : : : : : : : : : : : 38

3.2.3 Implementation of Parallel Variables : : : : : : : : : : : : : : : 40

3.2.4 Data Access Patterns : 45

3.3 Implementation of Context : 48

3.3.1 Representation of Context : 48

3.3.2 Building Context : 51

3.3.3 Additional Context Optimizations : : : : : : : : : : : : : : : : 53

3.3.4 Evaluation of Context Optimizations : : : : : : : : : : : : : : : 54

3.4 Conclusions and Related Work : 56

CHAPTER 4: BASIC COMMUNICATION PRINCIPLES : : : : : : : : : : : : : 58

vi

TABLE OF CONTENTS vii

TABLE OF CONTENTS—Continued

4.1 Portability versus Performance : 59

4.1.1 General Purpose Communication Libraries : : : : : : : : : : : : 59

4.1.2 Direct Network Control : 61

4.1.3 Application Specific Libraries : : : : : : : : : : : : : : : : : : 62

4.2 Network Assumptions : 62

4.3 The Communications Hierarchy : 66

4.3.1 Low-Level Communication Routines : : : : : : : : : : : : : : 68

4.3.2 Mid-Level Communication Routines : : : : : : : : : : : : : : : 70

4.3.3 High-level Communication Routines : : : : : : : : : : : : : : : 83

4.4 Point-to-Point or Multicast? A Case Study : : : : : : : : : : : : : : : : : 83

4.4.1 Ping-Pong Test : 85

4.4.2 Broadcast and Reduction Algorithms : : : : : : : : : : : : : : : 90

4.4.3 Evaluation and Conclusions : : : : : : : : : : : : : : : : : : : 95

4.5 Conclusions : 100

CHAPTER 5: ALGORITHMS FOR GENERAL COMMUNICATIONS : : : : : : 102

5.1 Semantics of General Communication : : : : : : : : : : : : : : : : : : : 102

5.2 Basic Implementation Techniques : 104

5.3 Optimized Send Operations : 106

5.4 Optimizing Get Operations : 116

5.5 Evaluation and Related Work : 119

5.6 Conclusions : 126

CHAPTER 6: GRID COMMUNICATION : 128

6.1 Forming Grid Boundary Contexts : 129

6.2 Application to Grid Communications : : : : : : : : : : : : : : : : : : : 132

6.3 Evaluation and Related Work : 139

CHAPTER 7: EVALUATION OF PC* : 145

7.1 Target Platforms : 145

7.2 Target Applications : 146

7.3 Performance of pC* On the Cluster : 148

7.4 Performance of pC* on the SGI : 154

7.5 Performance of pC* on the Paragon : 154

7.6 Performance of pC* Contrasted with Sequential C : : : : : : : : : : : : : 163

7.7 Performance of pC* Contrasted with TMC C* : : : : : : : : : : : : : : : 173

7.8 Performance of pC* Contrasted with UNH C* : : : : : : : : : : : : : : : 178

CHAPTER 8: CONCLUSIONS : 183

APPENDIX A: CODE FOR GRID COMMUNICATION : : : : : : : : : : : : : : 185

TABLE OF CONTENTS viii

TABLE OF CONTENTS—Continued

A.1 Data types and accessors : 185

A.2 Loop Initialization : 186

A.3 Region Search Support : 192

A.4 Grid Send : 196

APPENDIX B: C* BENCHMARK CODE : 204

B.1 Fast Fourier Transform : 204

B.2 Histogram Equalization : 207

B.3 Jacobi Iteration : 210

B.4 Road Distance : 212

B.5 Amplitude Screener : 214

B.6 Julia Set : 217

B.7 Matrix Multiply : 219

B.8 Rank Filter : 220

REFERENCES : 224

INDEX : 232

LIST OF FIGURES

2.1 Results of 10*pcoord(0)+pcoord(1) in a 4�4 shape : : : : : : : : : 11

2.2 Assignment iv2 = [.+1][.-1]iv : : : : : : : : : : : : : : : : : : : 12

2.3 Assignment iv2 = [pcoord(1)][pcoord(0)]iv : : : : : : : : : : : 12

2.4 Histogram example input and result : : : : : : : : : : : : : : : : : : : 13

2.5 Contextualized assignment result : 14

3.1 Examples of Data Distributions : 25

3.2 Example of Supported Block Distribution : : : : : : : : : : : : : : : : 28

3.3 shape_base structure contents : 29

3.4 shape_pernode structure contents : 30

3.5 Calculation of Global Shape Geometry : : : : : : : : : : : : : : : : : : 31

3.6 Calculation of Local Shape Geometry : : : : : : : : : : : : : : : : : : 32

3.7 Shape data values for distribution in figure 3.2 : : : : : : : : : : : : : : 33

3.8 Dynamic Memory Classes : 39

3.9 Structures for Parallel Variables : 40

3.10 C Translation of C* code iv2 = 2 * iv : : : : : : : : : : : : : : : : 41

3.11 Shape Alias Example Data : 42

3.12 Code for Shape Aliasing Example : 43

3.13 Elevation and Index Data in One Dimension : : : : : : : : : : : : : : : 44

3.14 Reduction Index Variable : 44

3.15 Reduced Band Data : 45

3.16 Auxiliary Reduce Function Example : : : : : : : : : : : : : : : : : : : 46

3.17 Encoding of Boundary Context : 51

3.18 Code for RLE-Contextualized Parallel-Value Assignment : : : : : : : : 52

3.19 Code for RLE Context Formation : 53

4.1 The Communications Hierarchy : 67

4.2 Communications hierarchy: low-level interface : : : : : : : : : : : : : 69

4.3 Common message header : 71

4.4 Communications hierarchy: mid-level read/write interface : : : : : : : : 72

4.5 Communications hierarchy: mid-level buffer handler support : : : : : : 75

4.6 Communications hierarchy: mid-level collective communications routines 78

4.7 Algorithm for Broadcast (Power-of-2 Mesh Case) : : : : : : : : : : : : 80

4.8 Algorithm for Reduce (Power-of-2 Mesh, Fan-In Phase) : : : : : : : : : 82

4.9 Ping-Pong Tests of Low-level Interfaces : : : : : : : : : : : : : : : : : 87

4.10 Ping-Pong Tests of Low-level Interfaces: Small Packets : : : : : : : : : 89

ix

LIST OF FIGURES x

LIST OF FIGURES—Continued

4.11 Owner-Broadcast Function Algorithm Comparisons : : : : : : : : : : : 92

4.12 Reduce Function Algorithm Comparisons : : : : : : : : : : : : : : : : 94

5.1 General Communications Operands : : : : : : : : : : : : : : : : : : : 103

5.2 General Communications Results : 103

5.3 Pseudo-implementation of General Get : : : : : : : : : : : : : : : : : : 107

5.4 Send Communication Times relative to Collision Rates: Linear Scan : : 110

5.5 Pseudo-code for scan collision detection heuristic : : : : : : : : : : : : 113

5.6 Send Communication Times relative to Collision Rates, with P t = 0:45 : 114

5.7 Send Communication Times, 4-byte Data, Linear and AVL Scan Methods 115

5.8 Send Communication Times, 1-byte Data, Linear and AVL Scan Methods 116

5.9 Get Communication Times, 1-byte Data : : : : : : : : : : : : : : : : : 119

5.10 Get Communication Times, 4-byte Data : : : : : : : : : : : : : : : : : 120

6.1 Emulation of Arbitrarily Nested for Loops : : : : : : : : : : : : : : : 130

6.2 Build Procedure for Boundary Contexts : : : : : : : : : : : : : : : : : 132

6.3 Example Boundary Restrictions : 133

6.4 RLE Storage Procedure for Boundary Contexts : : : : : : : : : : : : : 134

6.5 Block-based Grid Sends : 134

6.6 Example Grid Send Sequences: [.-3][.-3]dest = src : : : : : : : : 135

6.7 Nodal Region Info for Grid Send in Figure 6.6 : : : : : : : : : : : : : : 136

6.8 Torus shift used for grid versus general communications comparison : : 140

6.9 pC* General Grid versus Special Case code : : : : : : : : : : : : : : : 144

7.1a Cluster Elements-Per-Second (Part 1) : : : : : : : : : : : : : : : : : : 149

7.1b Cluster Elements-Per-Second (Part 2) : : : : : : : : : : : : : : : : : : 150

7.2a Cluster Speedup (Relative to pC*–1 processor) (Part 1) : : : : : : : : : 152

7.2b Cluster Speedup (Relative to pC*–1 processor) (Part 2) : : : : : : : : : 153

7.3a Cluster Efficiency (Relative to pC*–1 processor) (Part 1) : : : : : : : : 155

7.3b Cluster Efficiency (Relative to pC*–1 processor) (Part 2) : : : : : : : : 156

7.4a SGI Performance (Part 1) : 157

7.4b SGI Performance (Part 2) : 158

7.5a SGI Efficiency (Relative to pC*–1 processor) (Part 1) : : : : : : : : : : 159

7.5b SGI Efficiency (Relative to pC*–1 processor) (Part 2) : : : : : : : : : : 160

7.6a Paragon Performance (Part 1) : 161

7.6b Paragon Performance (Part 2) : 162

7.7a Paragon Efficiency (Relative to pC*–1 processor) (Part 1) : : : : : : : : 164

7.7b Paragon Efficiency (Relative to pC*–1 processor) (Part 2) : : : : : : : : 165

7.8a Relative Performance Cluster / Paragon (Part 1) : : : : : : : : : : : : : 166

7.8b Relative Performance Cluster / Paragon (Part 2) : : : : : : : : : : : : : 167

7.9a Speedup of Cluster pC* Relative to C (Part 1) : : : : : : : : : : : : : : 169

LIST OF FIGURES xi

LIST OF FIGURES—Continued

7.9b Speedup of Cluster pC* Relative to C (Part 2) : : : : : : : : : : : : : : 170

7.10a Speedup of SGI pC* Relative to C (Part 1) : : : : : : : : : : : : : : : : 171

7.10b Speedup of SGI pC* Relative to C (Part 2) : : : : : : : : : : : : : : : : 172

7.11a Performance of Benchmarks on CM5 (Part 1) : : : : : : : : : : : : : : 174

7.11b Performance of Benchmarks on CM5 (Part 2) : : : : : : : : : : : : : : 175

7.12a Speedup of Cluster Relative to CM5-64 (Part 1) : : : : : : : : : : : : : 176

7.12b Speedup of Cluster Relative to CM5-64 (Part 2) : : : : : : : : : : : : : 177

7.13a Cluster and CM5 Performance: Elements Per Second Per Processor (Part 1)179

7.13b Cluster and CM5 Performance: Elements Per Second Per Processor (Part 2)180

7.14 Cluster Relative Performance pC* / UNH C* : : : : : : : : : : : : : : 181

LIST OF TABLES

3.1 Evaluation of pcoord Implementation Alternatives : : : : : : : : : : : : 35

3.2 Per-Position Costs of C* to Local Index Conversion : : : : : : : : : : : : 37

3.3 Axial versus Linear Walks of Multidimensional Data : : : : : : : : : : : 47

3.4 Context Encoding Frequency and Space Summary : : : : : : : : : : : : : 50

3.5 Context Build/Reference Timings : 54

4.1 Reliable TCP: LOGLOG relative to LOGLOCEX : : : : : : : : : : : : : : 96

4.2 Reliable TCP: NAIVEMW relative to LOGLOCEX : : : : : : : : : : : : 96

4.3 Reliable Hybrid: LOGBC relative to LOGLOGEX : : : : : : : : : : : : : 97

4.4 Reliable Hybrid: LOGLOG relative to LOGLOCEX : : : : : : : : : : : : 97

4.5 Reliable Hybrid LOGBC relative to Reliable TCP LOGLOCEX : : : : : : 98

5.1 Send Communication Times: With and Without Collision Detection : : : : 109

5.2 Time estimators for n repetitions of various send communications (sec) : : 124

6.1 Context Build Info for Example Boundary Restrictions : : : : : : : : : : 131

6.2 Region Decomposition of Grid Send in Figure 6.6 : : : : : : : : : : : : : 136

6.3 Grid versus General Communication comparison : : : : : : : : : : : : : 141

6.4 pC* General Grid versus Special Case code : : : : : : : : : : : : : : : : 143

xii

ABSTRACT

A variety of historically-proven computer languages have recently been extended to sup-

port parallel computation in a data-parallel framework. The performance capabilities of

modern microprocessors have made the “cluster-of-workstations” model of parallel com-

puting more attractive, by permitting organizations to network together workstations to

solve problems in concert, without the need to buy specialized and expensive supercom-

puters or mainframes.

For the most part, research on these extended languages has focused on compile-time

analyses which detect data dependencies and use user-provided hints to distribute data and

encode the necessary communication operations between nodes in a multiprocessor system.

These analyses have shown their value when the necessary hints are provided, but require

more information at compile-time than may be available in large-scale real-world programs.

This dissertation focuses on elements important to an efficient and portable imple-

mentation of runtime support for data-parallel languages, to the near absence of any re-

liance on compile-time information. We consider issues ranging from data distribution and

global/local address conversion, through a communication framework intended to support

modern networked computers, and optimizations for a variety of communications patterns

common to data-parallel programs. The discussion is grounded in a complete implementa-

tion of a data-parallel language, C*, on stock workstations connected with standard network

hardware. The performance of the resulting system is evaluated on a set of eight benchmark

programs by comparing it to optimized sequential solutions to the same problems, and to the

reference implementation of C* on the Connection Machine CM5 supercomputer. Our im-

plementation, denoted pC* for “portable C*”, generally performs within a factor of four of

the optimized sequential algorithms. In addition, the optimizations developed in this dis-

sertation permit a cluster of twelve workstations connected with Ethernet to outperform a

sixty-four node CM5 in absolute performance on three of the eight benchmarks.

Though we specifically address the issues of runtime support for C*, the material in this

dissertation applies equally well to a variety of other parallel systems, especially the data-

parallel features of Fortran 90 and High Performance Fortran.

1

CHAPTER 1

SO WHAT’S THIS ALL ABOUT

It seems disjointed and jumps around like water on a griddle, but it all comes

together, so be patient.

— Harlan Ellison, “Revealed at Last! What Killed the Dinosaurs! And

You Don’t Look So Terrific Yourself.”

The calculation capability of computer systems has increased by orders of magnitude

over their history, to the point where modern workstations, even personal notebook comput-

ers, have performances that match those of state-of-the-art mainframe computers of as little

as ten years ago (Hennessy & Patterson, 1990). Unfortunately, this increase in the ability of

single-processor computers to handle larger problem sizes has only whetted the appetite of

scientists and researchers who are interested in problems that would require months or years

of processing to solve. As software and hardware technology matures, interest and accep-

tance of parallel computation—linking many single processors together to solve a problem

in concert—has increased.

Some software mechanism must be available for programmers to take advantage of these

parallel hardware systems. Three primary techniques have been considered:

� Modify the compilation systems for standard sequential languages to detect opportuni-

ties for exploiting parallelism, and generate code which takes advantage of those oppor-

tunities;

� Develop new languages which have explicit constructs for parallel computation, such

as distribution directives, synchronization primitives, and communication routines; and

� Extend current sequential languages with constructs which provide their compilers with

information necessary to generate efficient code that runs on a parallel system.

The first two techniques received the most attention in early work on parallel systems. Pre-

vious data-dependence analyses developed to permit vectorization optimizations on vector-

based supercomputers such as the Cray-2 could be extended to allow distribution of compu-

tation amongst separate processors (Banerjee, 1988). An ability to detect parallelism from

previously-written “dusty-deck” programs would capitalize on a large investment in extant

code. However, a consensus seems to be emerging that these techniques are inherently ham-

pered by the fact that such codes were usually written with a particular system (hardware

and/or software) in mind, and the opportunities for parallelization are often so deeply hidden

that they cannot be effectively extracted (Adve, Carle, Granston, Hiranandani, Kennedy,

Koelbel, Kremer, Mellor-Crummey, Warren, & Tseng, 1994).

2

CHAPTER 1. So What’s This All About 3

The second method provides the programmer with an ability to control the computa-

tion completely, taking full advantage of the underlying parallel system. It is now acknowl-

edged, though, that these parallel languages tend to result in programs that are hard to un-

derstand, difficult to debug, and often limited to a particular concept of a parallel system,

such as uniform shared memory or distributed memory machines (Harris, Bircsak, Bolduc,

Diewald, Gale, Johnson, Lee, Nelson, & Offner, 1995).

More recently, attention has turned to the third method. Proposed extensions to proven

languages such as C (American National Standards Institute, 1989; Numerical C Extensions

Group of X3J11, 1994) and Fortran (Adams, Brainerd, Martin, Smith, & Wagener, 1992;

High Performance Fortran Forum, 1993) allow a programmer to express particular algo-

rithms or operations in a high level form which the compiler can use to translate into code

that implements the operations in an effective way on its target hardware. In addition, the

backwards compatibility inherent from the underlying language means that investments in

large software projects are not totally lost: core routines can be replaced with new code us-

ing the parallel features, while the less critical (and often larger) support code can be reused.

Two paradigms for how parallelism can be expressed are data parallelism (Hillis &

Steele Jr., 1986) and control parallelism. The control-parallel paradigm, generally embod-

ied in languages with explicit parallel constructs, requires the programmer to distribute work

herself, and take responsibility for starting and synchronizing worker processes, and ensur-

ing that each computing process is given the data it needs before it begins to work. In a data-

parallel implementation, parallelism is implicit in the distribution of large data structures

amongst many computing devices, each of which is responsible for performing operations

on a subset of the entire problem. While a control parallel implementation provides fine

control of the computation (in essence, an “assembly language” of parallel programming),

data parallel systems are generally more easy to program, and are capable of expressing ef-

fective solutions to a wide variety of problems (Fox, 1988).

Two significant extensions for parallel programming support the data-parallel paradigm.

The most recent standard for Fortran, denoted Fortran 90, contains support for operating

on whole arrays without an enclosing DO loop: conceptually, the specified operation is per-

formed on each element of the array simultaneously, and it is up to the Fortran 90 system

to ensure that this is done correctly. Similar but more extensive support for data-parallel

programming is in High Performance Fortran (HPF Forum, 1993). Many of the data par-

allel features in these languages are based on experience with an extension to C, called C*

(pronounced “see-star”), developed at Thinking Machines Corporation (Frankel, 1991) to

support their massively-parallel SIMD system, the CM2. C* has also birthed an alternative

proposed data-parallel C, DPCE (Numerical C Extensions Group of X3J11, 1994). A va-

riety of current research projects are investigating mechanisms that support these language

extensions.

Optimizations for a parallel system can be implemented at three different levels:

� Control and dataflow analysis in the compiler can improve on the programmer’s nota-

tions or detect special cases which can be handled more efficiently than a general case.

CHAPTER 1. So What’s This All About 4

If communication patterns can be derived, part of the work involved in distributing data

can be done at compile time, making the execution more efficient.

� The support system invoked at runtime, i.e. the mechanisms used to communicate values

between nodes or implement control operations that are not resolvable at compile time,

can be optimized for the types of operations expected in the language, or again to support

special cases that can be detected either at compile time or during execution.

� At a lower level, the runtime system can be optimized for a particular host platform,

by providing support within the operating system or hardware for fast communications.

Research in this area also applies to general problems in networked computing.

While many research programs are devoted to compile time analyses (Tseng, 1993; Bozkus,

Choudhary, Fox, Haupt, Ranka, & Wu, 1994), this approach can fail if the source program

does not provide adequate information for the analyses to find opportunities to exploit par-

allelism.

In this dissertation, we focus on optimizations that can be performed solely at runtime,

with no or minimal compiler support. We consider issues ranging from data distribution

and runtime data structures, to a framework for portable inter-node message transmission

and mechanisms for efficient communication of data between nodes with a variety of com-

munication patterns. Because it is difficult to determine the synergistic effect of particular

optimizations which are clearly desirable when only kernel computations are considered,

we frame the approach described here in the context of a portable implementation of C*

specifically intended to support a large extant image processing system developed at Oasis

Research Center, which was originally developed to run on the Connection Machine CM5

system. The algorithms in this system are required to work on real-world programs and

data sets, a constraint which has had a significant effect on the level of detail necessary to

implement a complete and reliable runtime system. For example, image data such as that

available from the Landsat satellite imaging system is often measured in gigabytes; a single

multi-spectral Landsat image will be over 200MB (Richards, 1994). The algorithms often

use a hierarchical view of data which narrows the focus of operations to a data-dependent

subset of an image (Turner & Turner, 1994), which means that we will not know until run-

time what size of data we will be working on in a particular routine, making compile-time

analyses ineffective.

pC* (“portable C*”) is a complete implementation of the C* language, designed to be

fully compatible with C* as implemented on the Connection Machine CM5, from core lan-

guage up to and including the complex computation-and-communication routines in the

TMC cscomm library. The system was designed primarily to support stock workstations

networked with standard interconnects such as Ethernet, while retaining a high degree of

portability which we have proved by running the system on a variety of symmetric and dis-

tributed multiprocessors. We make certain basic assumptions about the type of interconnec-

tion mechanism supported, and show how these assumptions percolate through the entire

system to allow a variety of optimizations in the runtime system and opportunities to easily

CHAPTER 1. So What’s This All About 5

support compile-time analyses. The intent of this dissertation is to support the following

thesis:

The performance of runtime support routines is fundamental to the performance

of a parallel language/system: no compiler optimization can compensate for in-

efficient communications or memory operations. Carefully crafted runtime al-

gorithms can yield adequate performance on their own, and independently pro-

vide support for compiler-assisted optimizations. Adequate performance can

be achieved in a portable manner, though OS support for buffers and direct

hardware control could improve this performance further.

We support this thesis in the following chapters.

Chapter 2 We describe the C* language, focusing on the features of particular significance

to the runtime system: the paradigm with which data is viewed and the type of communi-

cations operations that are performed in programs, especially related to image processing.

We go on to describe the genesis of the pC* system from the C* compiler developed at the

University of New Hampshire by Phil Hatcher and his group, and describe its current sta-

tus. We close with a description of how the material in this dissertation relates to and can

support other data-parallel languages and systems, such as Fortran 90.

Chapter 3 In this chapter we examine in detail issues relating to data distribution, includ-

ing runtime structures and the effect on performance of address translation between the pro-

grammer’s global view and the runtime system’s internal view. We show how translation

techniques allow a cache sensitive data access pattern when straightforward non-contiguous

access would result in very bad performance. We conclude with an examination of how

uniform use of this access pattern permits an optimized encoding of a fundamental C* con-

struct, context, in a way that reduces memory usage by up to 99%, and run time by as much

as 25–50% on common programs.

Chapter 4 We consider the design of a communications framework in the context of the re-

quirements of our system: correctness, portability, and efficiency. We outline a three-level

hierarchy which isolates system-specific routines to a small set of well-defined and limited

procedures, using a set of intermediate routines to handle issues of buffering and unrestricted

communications in a machine-independent fashion, and supporting language-specific com-

plex high-level communication operations. In the context of this framework, we examine

a variety of algorithms to implement one-to-all broadcast and all-to-all reductions on both

point-to-point and multicast protocols over Ethernet, and how the effect of imposing relia-

bility requirements at user-level on top of an Ethernet-based UDP implementation can make

use of hardware broadcast not as beneficial as one would normally expect.

Chapter 5 We use the intermediate routines of the framework described in the previous

chapter to implement an efficient mechanism for moving data between nodes in an arbi-

trary fashion (“irregular communication” in the distributed-processing literature). We also

CHAPTER 1. So What’s This All About 6

examine a special type of communication pattern, common in certain image processing al-

gorithms, and show how a heuristic can detect the pattern at runtime at little-to-no cost, and

enable a variant communication implementation which can save up to 85% of the runtime

by reducing communication volume.

Chapter 6 We examine how a simple mechanism can be used to emulate multi-dimensional

loops at runtime without knowing the number of loops that will be needed. The mechanism

is used to develop a method of quickly forming a common type of C* context using minimal

compiler support. More importantly, it can be used to implement a general mechanism for

grid-based communications, operating on data of arbitrary rank and dimension, with simul-

taneous shifts in multiple directions. The resulting general implementation is competitive

with optimized implementations of special cases of grid communications, and is orders of

magnitude faster than a straightforward general implementation.

Chapter 7 In this chapter we use a set of eight benchmark programs to measure the effec-

tiveness of particular optimizations described in previous chapters, and the pC* system as

a whole. We contrast the system on its native platform (twelve networked Sun SPARC-

Stations connected with Ethernet) with optimized C solutions of the same algorithms, and a

different portable C* implementation. We show portability by giving performance numbers

on a symmetric multiprocessor (a Silicon Graphics 4D340), and the distributed memory In-

tel Paragon. We also compare the native platform performance of pC* with the performance

of the reference implementation of C* on the Connection Machine CM5, showing that the

optimizations in the previous chapters permit pC* to solve three of the eight benchmarks

faster in real time than a sixty-four node, multi-million dollar supercomputer.

Chapter 8 We review the major contributions of the dissertation.

A hallmark of this work is its reliance on detailed experimental evaluation at all phases

of development, to help build an understanding of the accuracy of our initial perceptions

of an issue as important or unimportant. Within this dissertation, we often present initial

and intermediate results along with our final decisions, so the reader has an opportunity to

follow the development of our ideas and, we hope, build on her own intuitions. We express

some code and data structures using a pseudo-code very similar to C (American National

Standards Institute, 1989). These excerpts should not be taken as the only way to express

an idea—in fact, the implementation in pC* usually differs for mundane reasons—but do

often contain some nugget which has guided our path to a particular solution.

For the reader who is frustrated by our “whodunnit” approach, we provide a very short

summary at the start of each chapter, which outlines its results. In conjunction with the in-

dex, the summaries can be used to jump to areas of particular interest. However, the bulk

of the text is intended to address the question of “why” at least as much as it presents our

conclusions of “what” and “how”.

The core system described in this dissertation, as well as reports of subsequent research

based on it, may be made available, at no charge, to interested researchers. To inquire about

CHAPTER 1. So What’s This All About 7

the current availability of pC*, send electronic mail to pcstar-info@OasisRC.COM.

Version: overview.tex,v 1.8 1996/04/09 02:06:52 pab Exp

CHAPTER 2

INTRODUCTION TO C* AND PC*

If we believe in data structures, we must believe in independent (hence simul-

taneous) processing. For why else would we collect items within a structure?

Why do we tolerate languages that give us the one without the other?

— Alan J. Perlis, Epigram #68

Before describing the details of the implementation of data parallel languages, it is

necessary to understand the basic features of such a programming model. In this

chapter we present the fundamental features of C* (Thinking Machines Corpora-

tion, 1993; Frankel, 1991), one of the more mature data parallel languages, and in-

clude a discussion of the aspects of C* that make it difficult to use compiler-level

optimizations for many real-world programs. We continue with a discussion of the

genesis of the pC* system—the framework used in the remainder of the thesis—and

briefly describe its current status. We conclude with a discussion of the relationship

between C* and other data parallel languages, and the applicability of our work to

these languages.

2.1 Overview of C*

C* is a data-parallel language with extensions to ANSI C (American National Stan-

dards Institute, 1989), designed to support single-instruction multiple-data (SIMD) com-

puters such as Thinking Machines Corporation’s CM2. We will present here a very brief

overview of the fundamental concepts of C*; this, in conjunction with more detailed exam-

ples throughout the text, should provide sufficient information for the reader to understand

the issues involved in implementing the class of languages represented by C*. Readers in-

terested in pursuing the syntax and semantics of the language in more depth are directed to

(Frankel, 1991; Thinking Machines Corporation, 1993; Numerical C Extensions Group of

X3J11, 1994).

2.1.1 Shape and Parallel Execution

Parallelism in C* is supported by extending C with shapes, which are similar to (multi-

dimensional) arrays. Shapes are named objects, with rank or number of dimensions, and

8

CHAPTER 2. Introduction to C* and pC* 9

dimension or extent along each axis. Examples of shape declarations include:

shape [10] S1;

shape [20][30] S2;

S1 is declared to be a one-dimensional shape with 10 elements or positions, while S2 is a

two-dimensional shape with a total of 600 positions. We use dimension both in the sense of

the length of a particular axis, and in general to refer to the combined information of rank

and all dimensions; the intended reading should be clear from context.

In C* terminology, a scalar type is any standard C data type, including aggregate types

such as structs, but not arrays. A parallel type is a standard C data type augmented by a

shape. Conceptually this denotes an object with a single scalar value at each position in the

shape. For example, the declarations:

int:S1 i1, i1b;

float:S2 f2;

following the above shape declarations cause i1 and i1b to be parallel integers—bundled

groups of 10 integers treated as single objects—and f2 to be a parallel float bundling 600

floats as a single object. We use “parallel variable” (or object or value, as appropriate, and

often shortened to “pvar”) to refer to the group of scalars together with their shape. We will

generally use the term position to refer to an individual element in a shape, and element to

refer to a particular individual scalar value in a parallel value; that is, position names an

address, while element names a scalar value at an address. The distinction is not rigorous,

however, and for prosaic convenience “element” will sometimes be used with the sense of

“position”.

C* is a data-parallel language, which means that parallelism is achieved by operating on

program data in parallel. The standard C operators are extended to work on parallel objects

with the expected semantics: each position in the shape is acted on separately and, concep-

tually, concurrently by different processors. We will use the notion of a virtual processor

associated with each position to describe the semantics of C*. With the above declarations,

the code fragment:

with (S1) {

i1b = 2 * i1;

}

instructs each virtual processor to assign to the element of i1b that it owns twice the value

of the element of i1 that it owns. To ensure that such concurrent execution is well defined,

C* uses the concept of current shape, introduced syntactically by the with construct used

above, and requires that all parallel operands occurring in an expression be of the current

shape. If a scalar value appears in a position which requires a parallel value, as with the con-

stant 2 above, it is implicitly replicated in each virtual processor to satisfy the requirement.

The keyword current yields a shape-valued expression which names the current shape,

allowing access to shape information inside functions called within with bodies.

CHAPTER 2. Introduction to C* and pC* 10

In addition to the source specification of shapes exhibited above, C* also permits shapes

to be defined at runtime. Both the dimensions and the rank may be fixed at runtime, by

calling a function which allocates a shape object. The code sequence:

shape S;

int * dims;

...

allocate_shape (&S, n, dims);

defines S to be an n-dimensional shape, where the extent of axis 0 is defined by dims[0],

axis 1 by dims[1], etc. Following this, the new shape can be used in code just like any

other:

with (S) {

int:current iv;

iv = ...

As a result, it may not be possible for the compiler to determine the number of positions of

the shape, or even its rank, at the time the program is compiled. This is in stark contrast

to languages such as Fortran, where at least the rank of a distributed array (analogous to a

C* parallel variable) is known at compile time; most research compilers also assume full

information about array bounds is available, if their most powerful techniques are to be ap-

plied (Koelbel, 1990; Hiranandani, Kennedy, & Tseng, 1993). Only recently has this begun

to change (Agrawal, Sussman, & Saltz, 1995). Dynamic allocation of shapes is required

for good performance in data-dependent algorithms, so assuming that full information is

available at compile time leaves the problem of implementing these languages incompletely

solved.

2.1.2 Communication and Position Addressing

As shapes are analogous to arrays, individual positions may be accessed using array in-

dexing syntax. However, because a parallel object may be stored in a distributed fashion on

a multi-computer, shape indexing is moved to the left side of the expression being indexed,

to highlight that it may not have the same execution time profile as standard C indexing.

with (S1) {

[4]i1 = 3;

}

This assigns the integer 3 to the fifth position of the shape (as with arrays, shape indexing

begins with 0). Shape indexing is known as left-indexing, and left-indexing should always

be assumed to have the potential to involve communication. Multidimensional left-indexing

involves multiple bracketed indexing expressions, and the number of left-index expressions

must exactly match the rank of the shape of the indexed expression.

If all index expressions are scalar, a single element of the parallel expression is named.

Parallel index expressions must be parallel integers of the current shape. If any index ex-

pression is parallel, a communication operation is invoked. Grid communication results in

CHAPTER 2. Introduction to C* and pC* 11

iv

shape S

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

0 1 2 3

0

1

2

3

Figure 2.1: Results of 10*pcoord(0)+pcoord(1) in a 4�4 shape

a transfer of data between elements linked by a fixed relative offset within the shape, while

general communication transfers data between elements that may have no obvious struc-

tural relationship.

C* provides an intrinsic function1
pcoord(i), which evaluates to a parallel integer of

the current shape whose values at each position contain the index along the ith axis of that

position. For example, the following code assigns to iv the values depicted in figure 2.12:

shape [4][4] S;

int:S iv, iv2;

with (S) {

iv = 10 * pcoord (0) + pcoord (1);

}

Grid communication is invoked when the left index expressions consist of calls to pcoord

on the corresponding axis, with a integral scalar offset. For simplicity, C* supports using

the dot character as short-hand for the corresponding call to pcoord in this context. As an

example, the expression:

iv2 = [.+1][.-1]iv;

assigns to a position hi; ji of iv2 the value in position hi+ 1; j� 1i of iv, as depicted in

figure 2.2. Use of a left-indexing communication expression as a C rvalue or plain value

results in a get communication. Intuitively, each processor adds the necessary offsets to the

indices which represent its own position, then requests the value from the named position.

This results in a parallel value of current shape. Left-indexed communication can also be

used in an lvalue context, i.e. as the target of an assignment, in which case a send communi-

cation is invoked: each virtual processor performs the index evaluation, then sends its value

to the named position of the left-hand-side object. The send communication corresponding

1. Intrinsic functions—a notion borrowed from C++—are language constructs which are syntactically func-
tion calls but which may be recognized by the compiler and translated directly to any appropriate implemen-
tation. In addition to pcoord, C* counts the shape allocation functions among its intrinsics.

2. Throughout this work, rank-2 parallel variables will be shown with axis 0 proceeding vertically and axis
1 proceeding horizontally, from the upper left corner of the matrix.

CHAPTER 2. Introduction to C* and pC* 12

iv2

shape S

? 10 11 12

? 20 21 22

? 30 31 32

? ? ? ?

0 1 2 3

0

1

2

3

Figure 2.2: Assignment iv2 = [.+1][.-1]iv

iv2

shape S

0 10 20 30

1 11 21 31

2 12 22 32

3 13 23 33

0 1 2 3

0

1

2

3

Figure 2.3: Assignment iv2 = [pcoord(1)][pcoord(0)]iv

to the above get communication is:

[.-1][.+1]iv2 = iv;

Note that the signs on the offsets have changed, as we are now providing the relative shift

which yields the position to which our value is to be sent, rather than the position from which

we wish to receive a value. Send and get operations are not exact duals: context (introduced

in section 2.1.3) affects communication patterns differently for each, and send allows a com-

bining communication (to be described later in this section).

General communication results when parallel left index expressions do not conform to

the grid communication requirements: i.e., the index expression for axis i is not syntacti-

cally equivalent to pcoord(i)+c. In this case, the set of indices at a given position name

the position from which this processor reads its value, or to which the processor sends its

value. For example, matrix transposition may be implemented as follows, with results in

figure 2.3:

iv2 = [pcoord(1)][pcoord(0)]iv;

Note that axis 0 has pcoord(1) as its index expression, so the processor which owns posi-

tion hi; ji reads the value from processor h j; ii. In a general communication all left indices

must be parallel; if a scalar value is used as an index expression, it is implicitly extended to

a parallel value just as is done in expression evaluation.

CHAPTER 2. Introduction to C* and pC* 13

im

shape Image

0 1 2 1

1 2 1 0

0 1 3 1

0 0 2 1

0 1 2 3

0

1

2

3 hist

shape HistShape

5 7 3 1

0 1 2 3

Figure 2.4: Histogram example input and result

Send communications allow use of compound assignment, where the incoming values

may be combined with the previous value in the target position and other incoming values

to that position if the index expressions result in collisions. These features are exemplified

by the idiom for image histograming: we have a shape whose elements represent pixels and

have some integral data type, usually 8 or 16 bit, representing the brightness at that pixel.

We wish to create a histogram which counts the number of occurrences of each intensity in

the image. The following code does this, with image size and intensity range restricted so

the illustrative example in figure 2.4 fits on the page:

shape [4][4] Image;

shape [4] HistShape;

int:Image im;

int:HistShape hist;

with (HistShape) hist = 0;

with (Image) {

[im]hist += (int:current) 1;

}

In this example, the histogram target is initialized to zero. Then, while working in Image

shape, each processor sends a one to the position in the histogram shape that is named by

the image intensity at its own position. The compound assignment adds the incoming con-

tributions, and the result is the number of positions in the image which have each intensity.

This example also shows explicit casting of scalar values to parallel values, and the use of

left indexing to convert from one shape to another.

2.1.3 Contextualization

The last major feature of C* that we will outline here is contextualization. In certain

problems, there are regions of the shape where we do not want the processors to act; for

example, window operations on images should not be performed at the edges where the

window would have extended beyond the boundary of the shape. The observant reader will

have noted in figure 2.2 that certain positions have undefined values. This is because those

positions attempted to read from a shape position which did not exist. Reference to non-

CHAPTER 2. Introduction to C* and pC* 14

im

shape Image

4 1 2 1

1 2 1 4

4 1 3 1

4 4 2 1

0 1 2 3

0

1

2

3

Figure 2.5: Contextualized assignment result

existent positions generally results in undefined behavior in C*: at best the system will qui-

etly ignore the reference, but in some implementations other objects could be corrupted, just

as may occur when accessing data outside array bounds in C.

Contextualization uses a conditional construct similar to sequential C’s if statement,

but using the keyword where and a parallel boolean expression to denote which positions

are active for a block of code. For example, if we wished to replace all image pixels which

have a 0 value with a different value, say 4, we could execute the following:

where (0 == im) {

im = 4;

}

Each virtual processor will evaluate the conditional expression in the where statement. Only

those which evaluate to a nonzero value will go on to execute the assignment in the body.

If im initially has the value shown in figure 2.4, the value of im following the above con-

textualized assignment is shown in figure 2.5, where inactive positions are shaded. Note

that the elements whose positions were inactive are unchanged. Careful programmers will

avoid the undefined behavior mentioned for out-of-bounds accesses by protecting commu-

nication routines with contexts which will only reference valid locations. Thus, the grid

communication shown in figure 2.2 should be coded as:

where ((dimof(current,0)-1 > pcoord (0)) &&

(0 < pcoord (1))) {

iv2 = [.+1][.-1]iv;

}

to ensure the index expressions do not stray outside axis bounds. The intrinsic function

dimof(s,i) returns the scalar integer representing the dimension or extent of axis i in

shape s.

Context is associated with the current shape, can be nested, and is persistent into func-

tions called from within a where block: it is a dynamic feature of shapes. Therefore, in

most cases the compiler is unable to determine the context under which a particular expres-

sion will be evaluated. If a new shape is entered with a with statement, the context will be

reset to the context of the latest dynamically enclosing where block affecting that shape;

CHAPTER 2. Introduction to C* and pC* 15

when the with statement is left, the previous shape is restored with its last known context.

Like if, where statements have an optional else clause which is executed with the logical

negation of the contextualization expression, subject to enclosing contexts. For example,

with:

where (f1) {

where (f2) {

im = v1;

} else {

im = v2;

}

}

the effect on im is:

� where both f1 and f2 are true im is assigned v1;

� where f1 is true but f2 is false im is assigned v2; and

� where f1 is false im is unchanged.

The semantics of where/else is that both branches are executed in sequence, even if one

might have no active positions. As such, any scalar operations that appear in either body

(either directly or due to called functions) will be executed, and any side effects (scalar or

parallel) in the where body will complete before operations in the else body begin. There

is a corresponding everywhere statement which resets the context to completely active,

since this cannot be represented by nested where statements.

2.1.4 Summary

We have introduced the major concepts of C*: parallelism is generated by augmenting a

sequential language with shapes which represent groups of scalar objects as a single entity

and which can be allocated and destroyed as execution progresses; data are moved about

using left-indexed communication expressions; and evaluation can be restricted to certain

elements through the use of context. The subset of C* outlined here is insufficient for serious

programming: other C* features that will be addressed only in passing are:

� Reduction operators: these perform global operations to reduce all values in a shape

down to a single scalar, such as the sum of elements in a parallel value

� More generic communication routines, which vary how addresses are specified, what

the source value or destination object are, or permit fill values to be used when out-of-

bounds accesses are performed

� Axis-specific computation routines, to perform reductions or spreads along axes in the

shape independently (e.g., the sum of values in each column)

CHAPTER 2. Introduction to C* and pC* 16

� Parallel prefix operations, to perform an associative operation along all elements in an

axis, leaving intermediate results behind: e.g., the incremental sum along rows (the

scan family of functions)

These functions and others are needed to allow C* to express many data parallel algorithms

in various application domains, such as image processing and scientific computation. Al-

though they have been implemented in pC*, the insight they offer is not as fundamental as

the insights evoked by the core features described in more detail above, and as such this

dissertation will focus on the issues of these core features, pointing out similarities in or

additional requirements for the extended functions only in passing.

2.2 The pC* Implementation of C*

2.2.1 Genesis

This dissertation describes pC* (“portable C*”). The system was developed to support

a group responsible for image processing software supporting a variety of applications in

remote sensing (Richards, 1994), such as old growth forest mapping (Congalton, Green, &

Teply, 1993), species habitat mapping (Turner & Turner, 1994; Aspinall & Veitch, 1993),

land use change (Green, Kempka, & Lackey, 1994), and other instances where one wants

to classify ground phenomena over wide areas quickly and inexpensively. The software in

question was written in C* and had been running on Connection Machine supercomput-

ers built by Thinking Machines Corporation. In the spring of 1994, the strong dependence

of the system on TMC hardware and software was perceived as a serious weakness, es-

pecially given the questionable financial status of the company at the time: if TMC went

out of business, the entire software system would need to be ported to a new platform, us-

ing a different language, with the concomitant loss of previous experience and libraries of

algorithms. There was a strong interest in investigating the feasibility of an implementa-

tion of C* which would not be dependent on any particular hardware platform, allowing it

to be moved from system to system based on whatever hardware was most cost-effective.

A cluster-of-workstations model (Cheung & Reeves, 1992), using stock workstations con-

nected with stock network hardware, was determined to be the best alternative to the previ-

ous “big iron” approach.

Since compatibility with TMC C* was of paramount importance, the choice of a replace-

ment system was limited. The only available alternative that had a promise of robustness

and would not suffer from the same single-source problems as TMC was a research imple-

mentation of C* developed at the University of New Hampshire by Phil Hatcher and others,

based on previous work by Hatcher and Quinn on Dataparallel C (Hatcher & Quinn, 1991;

Lapadula & Herold, 1994). We examined the UNH C* compiler and found that, although it

implemented the core language, it had a variety of limitations which made it inefficient for

large scale programming on the sort of data expected in image processing (data on the order

of tens to hundreds of megabytes), and most importantly did not support any of the auxiliary

C* functions that the image processing system required. Furthermore, the system was by

CHAPTER 2. Introduction to C* and pC* 17

design a research compiler, with focus primarily on compile-time analysis to improve com-

munications behavior in core-language expression of mesh-based scientific algorithms, and

some work on the Intel Delta network subsystem which had been its primary target, while

more mundane issues needed for large programs and data but without real research value

were discounted. What we needed was a solid C* implementation whose correctness and

completeness were of significantly higher importance than speed, at least for the short-term.

Therefore, we undertook to adapt the UNH system to our needs.

The original intent was simply to add the required additional functionality on top of the

core UNH implementation. Over time, though, in support of the new functionality and re-

liability requirements, all components of the runtime system were replaced with new algo-

rithms and data structures, and the front-end was extensively modified to use the changed

runtime interface as well as programming features such as typedefs which are important in

a production environment. The replacement algorithms were based on core assumptions

about network features and getting as much speed and reliability as possible without rely-

ing on compiler analysis or limiting the source programs to restricted cases. Eventually it

became clear that many of the algorithms and issues that had been addressed in the pC*

system were of independent interest and had not been adequately addressed in the litera-

ture. The purpose of this dissertation is to examine the design and implementation of the

resulting system. Before considering the details in the following chapters, we first exam-

ine the fundamental implementation model, retained from UNH C* and common to most

implementations of distributed languages, then go on to present the current status of the sys-

tem.

2.2.2 Basic Implementation Model

The fundamental implementation model of pC* is retained from the UNH C* system,

and resembles that chosen for other distributed languages that translate to scalar languages,

such as the original Dataparallel C (Hatcher & Quinn, 1991), Fortran-D/90D (Bozkus,

Choudhary, Fox, Haupt, Ranka, & Wu, 1993; Choudhary, Fox, Hiranandani, Kennedy,

Koelbel, Ranka, & Tseng, 1993) and SR (Andrews, Olsson, Coffin, Elshoff, Nilsen, Pur-

din, & Townsend, 1988). We use a single-program, multiple-data (SPMD) model, where

each compute node in the system runs a copy of a common scalar program, operating on

its own portion of the global data and using a library of message-passing routines to com-

municate with the other nodes in the computation. In the case of pC*, C* is translated to C

code.

An important feature of the implementation model, and one which differs from SIMD-

based implementations like the CM2, is that scalar data are replicated on all compute nodes,

and all nodes perform the same operations on that scalar data. This allows us to handle Am-

dahl’s observation that a portion of any program will be scalar computation, and hence not

amenable to speedup, without suffering additional overhead by designating one compute

node as responsible for performing scalar computation and distributing the results to other

nodes. Since in C* all control flow at the program level is based on scalar values (using if,

CHAPTER 2. Introduction to C* and pC* 18

while, etc.), we can be assured that, unless somehow the same scalar expression evaluates

to different values on different nodes,3 control flow will be the same on all nodes, so in-

correct behavior resulting from different execution paths will not occur. Synchronization is

also easy to accommodate, since it is either implicit in communicating operations (such as

reductions), or performed explicitly at the end of the communicating library routines: absent

data flow analyses which would lift synchronization out of the library routines, no barriers

need be inserted into the C translation.

Unlike other systems where communication behavior can generally be discovered by

examining the program source, we do not attempt to generate calls to message passing rou-

tines directly, but rather call library routines to perform any operations associated with a

communication (as is done in the Syracuse version of Fortran-90 (Choudhary et al., 1993)).

This results in smaller code, and isolates the opportunities for implementation errors and op-

timizations to one location rather than everywhere in a program that communication might

occur. In trade, we may lose opportunities for latency-hiding communication/computation

overlap when dataflow analysis is not performed. The decision is motivated primarily by

the lack of information at compile time about shape dimension and distribution and the size

of the cluster on which the program will run.

Each physical processor in the computation environment is responsible for a subset of

the positions of each shape. Scalar computations in C*, including control flow, are trans-

lated directly to C, while regions of parallel code are grouped in the body of a loop which

iterates over the positions of the shape held by the particular node: these loops are called

VP loops (virtual-processor loops). Since communications invoke calls to library routines

that operate on entire parallel values, they cannot appear within the body of VP loops. Thus

communications and other library calls must be lifted out of—or split—VP loops, and the

resulting parallel values stored in temporary variables by the compiler. For example, the C*

code:

with (S) {

iv2 = [.-1][.-1]iv + [.+1][.+1]iv;

}

would be translated to C code roughly comparable to:

readgrid (&tm1, iv, -1, -1);

readgrid (&tm2, iv, 1, 1);

for (vp = 0; vp < S.vplimit; vp++) {

iv2 [vp] = tm1 [vp] + tm2 [vp];

}

(abstracting away from complexities not yet introduced). This does not take direct advan-

tage of the fact that much of tm1 and tm2 are values that are available at positions vp+δ1

3. Such behavior is contrary to the semantics of C*, but could occur with naı̈ve implementations of reduc-
tion operations on floating point values, where the operations which are mathematically associative are not
associative in implementation: a difference in order of evaluation on different nodes can result in different
answers. Cf. section 4.3.2.

CHAPTER 2. Introduction to C* and pC* 19

and vp+δ2 respectively, because to do so would generally require knowledge about shape

dimensions and distribution which is not available to the compiler. However, some of the

techniques described later in this dissertation could be extended to permit direct reference to

local data not present at the current position of the VP loop, at some (perhaps considerable)

complication to the VP loop structure. These issues are reserved for future investigation.

2.2.3 Current Status

The current pC* system is a complete implementation of C*, including core language

and auxiliary cscomm libraries. Though the primary development platform is networked

Sun multiprocessors running Solaris 2.3 and using TCP sockets for communication, the sys-

tem has been ported to and tested on Intel Pentiums running Linux and DEC Alphas running

OSF/1 (single-process execution), the Portable Virtual Machine version 3 (PVM3), the Sys-

tem V message facility (under Solaris and Irix 5), a Sequent Symmetry using shared buffers

to emulate a message passing architecture, and the Intel Paragon using the NX communica-

tions library. The system is currently used as the main development platform by four pro-

grammers in addition to the author. Over seventy thousand lines of code including several

major image processing systems have been run using pC*; other applications such as short-

est path and some core graph and linear algebra routines have also been implemented and

used to solve problems.

The system has evolved from the UNH C* compiler of May 6, 1994, graciously provided

to us by Phil Hatcher. The following significant changes to the front end translation program

were made:

� Removed all dataflow analysis support. At the start of modifying the system to meet

the pC* goals, it was deemed too difficult to guarantee reliability of the generated code

when both the runtime library routines and dataflow analysis were required for correct-

ness; over time, sufficient changes were made to the internal representations in the com-

piler and assumptions held by the runtime system that leaving such a large amount of

unverified code in place was unwise from a software maintenance point-of-view. We

do not feel this to be a great liability: evolution of the runtime library has resulted in a

system which can integrate with a simple dataflow analysis with little effort, as will be

described later in the dissertation. It seems unlikely, had we had the goal of supporting

both fast runtime routines and compile-time dataflow analysis, that either could have

been accomplished as well.

� The parsing system was overhauled, primarily to support maintaining C typedefs and

ensuring compatibility of declarations between separately compiled modules.

� The analysis of where loops and corresponding generation of virtual-processor loops

was enhanced to avoid overhead and generating unnecessary context maps (a similar

optimization was independently added to a later version of the UNH C* compiler by

the UNH researchers).

CHAPTER 2. Introduction to C* and pC* 20

� Additional care was taken to ensure that compiler-allocated parallel values were col-

lected when the blocks in which they were declared were exited “abnormally” (e.g.,

through goto or break). The image processing system generally works on shapes with

millions of positions, making it very important to reclaim memory as quickly as possi-

ble.

The front-end generates C code, which is compiled and linked with a runtime library

which implements memory management, communication, and the extended C* functions.

The library and the runtime structures it uses have been completely redesigned several times

by replacing core routines, until the library no longer bears any relation to the UNH C*

implementation except in several hold-over utility functions for writing error messages. The

details of the algorithms and structures used in the current runtime system comprise the bulk

of this dissertation.

In addition to the compiler and runtime system, a distributed control system which al-

lows execution of programs on a network of machines has been implemented. While some

of its features are interesting in their own right, it is not significantly different from the con-

trol components of other systems such as PVM, and is not considered further here.

2.3 Related Parallel and Data-Parallel Systems

There are a variety of research systems which address the same general issues as

this dissertation—language and implementation support for parallel programming—but

none which seem to investigate runtime issues in data parallelism to the extent covered

herein. The closest from the language point of view are the implementation of Dataparallel

C (Hatcher & Quinn, 1991), based on the original version of the C* language (Rose & Steele

Jr., 1987), and its successor C* compiler from the University of New Hampshire (Lapadula

& Herold, 1994). The current literature on Dataparallel C seems to be addressed primar-

ily to data distribution on networks of heterogeneous processors (Crandall & Quinn, 1993)

and focuses on mathematical description of decomposition alternatives based on communi-

cation patterns rather than a detailed investigation of their implementation techniques and

costs. Recent work on the University of New Hampshire C* compiler has addressed com-

piler analyses to improve communications behavior on irregular problems (Mason, Hatcher,

& Chappelow, 1994). Neither system attempts to extract the level of performance that we

demand from the runtime system alone.

Other languages provide a data parallel model of programming: most notable among

these are the various extensions to Fortran which extend array semantics to operate over

whole arrays at once, such as the array components of Fortran 90 (Adams et al., 1992),

Fortran-D (Tseng, 1993), and High Performance Fortran (HPF Forum, 1993). Research on

the Fortran extensions tend to be more limited, though; since the Fortran paradigm has his-

torically been one where the code expressed dependencies and explicitly coded loop bounds,

research on data parallelism in Fortran has focused on analyses based on the assumption that

the source code provides sufficient information to determine, for example, communication

CHAPTER 2. Introduction to C* and pC* 21

behavior or preferred data layout. This is in sharp contrast to C*, where most of the func-

tionality used in image processing algorithms at least is buried deep inside library functions

such as scan or specialized grid communication routines, where it is infeasible to special-

ize the code to a particular invocation. For example, the Fortran 90 equivalent to where

does not reach down into user-defined functions called within its scope; hence, generation

of contextualized loops is simplified considerably. Research compilers for data parallel For-

tran (Tseng, 1993; Choudhary et al., 1993) can have a sufficiently strong dependence on the

availability of information at compile time that they are unable to translate general Fortran

applications because run-time issues for the general case have not been addressed (Hiranan-

dani et al., 1993). The material in this dissertation, which contrarily focuses on run-time

implementation to the near exclusion of available compile-time information, should com-

plement these analysis techniques to result in a system which takes full advantage of all

information available at all translation and execution stages.

APL (Gilman & Rose, 1984) is an array-based language which can be considered data-

parallel. Translators from APL to C targeting both shared (Ching & Ju, 1991) and dis-

tributed (Ching & Katz, 1994) memory machines have been implemented. These imple-

mentations are geared towards “low-hanging fruit”—only array-parallel material (the con-

tents of our VP loops) is considered. The reliance on shared memory and replicated data in

these translators could be removed by merging the framework of this dissertation into the

APL runtime system.

In addition, there are a variety of systems which use more explicit parallel constructs,

but to which some of the data layout and access techniques described in this dissertation

could be applied. Kali (Koelbel & Mehrotra, 1991) uses compile-time analyses to determine

communication patterns and reduce communication overhead; the Kali implementation for

runtime resolution of grid communication could benefit from the techniques of chapter 6.

DINO (Rosing, Schnabel, & Weaver, 1991) requires explicit user specification of communi-

cations across nodes, hence does not embody a data-parallel model, but addresses the same

sort of issues of data distribution and location resolution as we discuss in chapter 3. SPLIT-

C (Culler, Dusseau, Goldstein, Krishnamurthy, Lumetta, von Eicken, & Yelick, 1993) is

another explicitly parallel language which is designed to be portable and is being used for

image processing applications (Fallah-Adl, JáJá, Liang, Kaufman, & Townshend, 1995).

There have also been specialized languages such as Apply (Hamey, Webb, & Wu, 1989)

which focus solely on neighborhood-based computations, and languages that permit nested

rather than single-level data-parallelism (Blelloch, Chatterjee, Hardwick, Sipelstein, & Za-

gha, 1993).

C* has also served as the basis for an alternative data parallel version of C, as described

in the Data Parallel C Extensions report (Numerical C Extensions Group of X3J11, 1994) of

a subcommittee of X3J11, the American National Standards Institute committee responsible

for the C programming language. DPCE is quite different from traditional C*: among other

changes, it removes the need for current shape (requiring shape equivalence of operands in-

stead), allows the user to specify slices out of a shape if interested in, say, only one row

(something expressible in C* only through contortions and the use of context or general

CHAPTER 2. Introduction to C* and pC* 22

communications), adds parallel pointers to support irregular computations (C* does not per-

mit pointers to appear inside parallel types), and adds nodal functions to allow the user to

escape the data-parallel programming model (permitting each processor to execute different

code up to a synchronization point). Though some of the features in DPCE are interesting,

most such as nodal functions and parallel pointers have not yet been validated in a full-scale

production compiler, and appear to result in some serious implementation difficulties unless

strong restrictions are placed on internal representations. Due to their newness and other

pragmatic restrictions outlined in section 2.2.1, the material described in this dissertation

is addressed to C* as currently implemented by TMC supercomputers. Most of the core

techniques should extend to a DPCE implementation without difficulty.

Version: intromat.tex,v 1.13 1996/04/10 22:03:26 pab Exp

CHAPTER 3

IMPLEMENTATION OF PARALLEL VALUES AND CONTEXT

I see you stand like greyhounds in the slips,

Straining upon the start. The game’s afoot: .. .

— Wm. Shakespeare, King Henry V, act III, scene i, line 31

We describe how pC* distributes data amongst nodes in a computation, especially

taking into account the costs of global/local address conversion, an issue which we

argue has not been adequately addressed for the more complex distribution mech-

anisms described in the literature. We describe a mechanism for block distribution

which allows the user a fairly fine control over placement of data, while still per-

mitting very fast conversion between global and local addresses. We examine the

issues of data access patterns on multidimensional objects, and measure the perfor-

mance improvements of imposing a contiguous sequential access pattern on the data

even when the operation being performed is conceptually non-contiguous. The tech-

niques that permit this access pattern are those developed for address conversion.

Uniform application of the contiguous access pattern permits a novel representation

of context using run-length encoding, a method which yields space savings of up to

99% and time savings of 10–50% in common cases.

Since computer programs operate on data, the operations required to access the data are

perhaps the most important contributor to the efficiency of those programs. Along with clas-

sical issues of the appropriate structure for complex data, distributed multiprocessing raises

the question of how data should be apportioned amongst processing nodes to balance the

speedup from dividing the work equally with the slowdown of moving data to where they

are needed, an operation that is generally quite expensive. This chapter examines the issues

involved in choosing both data distribution and implementation data structures for parallel

objects in C*. Since contextualization—restricting operations to apply to only certain data

elements—is closely tied to data layout, we also address context representations that allow

access to active positions and skip inactive positions with as little overhead as possible.

3.1 Issues in Data Distribution

A primary tenet of many research projects in parallel languages is that the fundamen-

tal determiner of performance is data distribution. The volume of literature on distribu-

tion of arrays in Fortran-like languages on a variety of hardware platforms is staggering

23

CHAPTER 3. Implementation of Parallel Values and Context 24

(Sheffler, Schreiber, Gilbert, & Chatterjee, 1994; Mahéo & Pazat, 1993; Knobe, Lukas, &

Guy L. Steele, 1990). While we would not argue that data distribution is an insignificant

contributor to performance, we feel that certain corollary issues have not been sufficiently

addressed: specifically, the overhead involved in computing the owning node in schemes

designed to distribute data equally over homogeneous or heterogeneous networks can be

exorbitant, and any implementation that requires changing distribution between program

points based on analysis of communication patterns leaves itself open to bad runtime be-

havior (“thrashing” of data distribution) if the analysis is inaccurate.

C* avoids some of these problems by dictating that a given shape has a fixed distribution,

and all variables with that shape share the distribution. This ensures that operations that do

not have communication coded explicitly by the programmer will occur without communi-

cation at runtime, presenting a predictable model that aids the programmer in understanding

the performance of her code. Other problems are avoided by restricting the sorts of distribu-

tion that are supported in the system. While this restriction may affect certain algorithms by

being unable to support the specialized distributions that are most appropriate for them, the

limitation is outweighed by the corresponding improvement on other, more common, op-

erations, where owner computation is simplified. The major distribution mechanisms and

how they interact with C* programming are discussed below.

3.1.1 Data Distribution Options

If an algorithm requires no communication, then any distribution which doles out data in

proportion to the computation power of each processing unit will result in a load-balanced

system with maximal efficiency. However, most algorithms relate values at one position in

a shape to others, either close or distant and with either relative or absolute position spec-

ifications. Two sources of overhead in these cases cut into the speedups from an equally-

distributed system. The first is communication cost induced when the data needed for a com-

putation reside on different processors, and the second is overhead induced by determining

where the desired data live, using either absolute or relative indexing. As interconnection

networks with higher bandwidth and lower latency become more common, the latter cost

becomes increasingly more significant.

As an extreme case, it is possible to support a fully general distribution where there is

no relation between the global address of an element (the set of indices that name that posi-

tion in a shape) and its location at a particular address on a particular processor. While this

is good from algorithmic and theoretical perspectives, in practice the need to do a complex

computation or table lookup at each element to find its physical location will cause a dras-

tic increase in the local processing costs of communication. We would like a mechanism

where the hardest cases, e.g. general communication which has no structure, require very

little computation per element, and easier cases such as structured grid communication are

able to take advantage of their regularity and do address computation once for blocks of sim-

ilar elements. In support of these desires, it is common to restrict distributions by supporting

only a few regular layout options, and considering each axis separately (Tseng, 1993; HPF

CHAPTER 3. Implementation of Parallel Values and Context 25

Block0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 0

0 1 2 3 4 5 6 7

0

1

2

3

Block1

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

0 1 2 3 4 5 6 7

0

1

2

3

Block01

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

2 2 2 2 3 3 3 3

2 2 2 2 3 3 3 3

0 1 2 3 4 5 6 7

0

1

2

3

Cyclic1

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0

1

2

3

Figure 3.1: Examples of Data Distributions. The block distributions are supported in pC*; the cyclic

is not.

Forum, 1993).

Assuming a set of P processors (computation nodes) and a distributed one-dimensional

shape (array) of N positions, the most common layout options are:

� Serial—all N positions are owned by one of the processors

� Block—the N positions are partitioned into P sequences, which are apportioned to each

processor in turn

� Cyclic—the N positions are distributed in round-robin fashion over the P processors,

with element i owned by processor imodP

Cyclic and block can be combined into a block-cyclic distribution where chunks of size k are

distributed in round-robin fashion. The issues are essentially the same as for cyclic distri-

bution. Block distribution can require that each node has the same size partition as others—

usually bN=Pc, with any excess apportioned to the first N modP processors—or may allow

arbitrarily sized subsequences. Some example distributions are shown in figure 3.1, with

the values at each position naming the owning processor in a 4-node cluster, and heavier

lines in the shape denoting borders between nodes.

The layout options supported in an implementation are fundamental to the performance

of the system, and to its maintainability. There are several operations that are commonly

performed and that depend on the distribution. These include:

� Given an element that is stored at offset o on processor p, what is its global coordinate

along axis k of its shape?

� Given a vector of indices~i, what processor owns the named element, and what offset is

it at on that processor?

CHAPTER 3. Implementation of Parallel Values and Context 26

� Given an element that is stored at offset o on processor p, what is the processor/offset

pair of the element n positions away along axis k?

For simple distributions, such as equal-sized blocks along one axis, the computations re-

quired to do these conversions are straightforward and can be inlined directly. As an imple-

mentation or language comes to support more, and more complex, distributions, it becomes

infeasible to duplicate the conversion code everywhere that it is required, and each such

conversion requires a call to a function which determines the appropriate answer based on

distribution information. This is especially an issue in a language like C*, where the shape

dimension information is not available at compile time, or the conversions are being applied

inside library routines where the distribution of the particular input cannot be determined a

priori. Any system which attempts to generate code that does not rely on a hard-coded num-

ber of processors will encounter the same problems.

The above considerations rule out distributions more complex than the block/cyclic ones

described above. Yet there is still a jump in complexity when supporting cyclic distribu-

tions, especially if full block-cyclic layout is allowed. It has been argued (Dongarra, van de

Geijn, & Walker, 1992) that cyclic distributions are necessary for load balancing in certain

linear algebra problems such as LU decomposition, where certain regions of data (rows or

columns of a matrix) drop out as the computation progresses. In a naı̈ve block-based imple-

mentation, processors will drop out one-by-one as rows become disabled in order, resulting

in poor load balancing. Cyclic decomposition avoids this problem, because each row that

drops out is owned by a different processor than the last row, so all processors remain active

until the final rows are resolved.

However, even in this case, simple algorithmic changes permit block distributions to be

probabilistically as effective as cyclic distributions. For example, if in LU decomposition

we use virtual pivoting, where the chosen pivot row is not moved to its final position in

the decomposition (an expensive operation in its own right) but instead the row number is

recorded, load balance is effected by an assumption that pivot rows will be randomly dis-

tributed throughout the matrix. If this assumption should be invalid for expected inputs, or

if a decomposition method is used which does not rely on pivoting for numerical accuracy

(such as QR), a simple pre-processing step can effect a cyclic distribution at runtime un-

der user control where necessary, without burdening all other computation by supporting a

feature needed only for this case (see section 5.5.

Neighborhood-based grid computations, a primary component of image processing sys-

tems, also suffer under cyclic distributions, because strides which are not a multiple of the

cycle length will induce communication for every position on the node, instead of having

an internal block where all operations are local. The final straw that makes cyclic distribu-

tion untenable in C* is the existence of the parallel prefix scan functions: implementation

of these, which requires saving the intermediate values as an operation is performed along

an axis of a shape, becomes significantly more complex when values adjacent in the user’s

view of the data are never co-resident on the same processor.

CHAPTER 3. Implementation of Parallel Values and Context 27

3.1.2 Data Distribution in pC*

For these reasons, pC* supports only serial and block distributions, and meets the goal

mentioned earlier of simple calculation for unstructured communication and amortizing the

cost over similar sequences in grid calculations. However, the features of those distribu-

tions are not very restrictive, and application-specific load balancing and communication

reduction are possible under the user’s control. Furthermore, if cyclic distribution is truly

required in a system which could use it more effectively, simple and common restrictions

would permit many of the algorithms including the grid communications routines in chap-

ter 6 to be extended to cover it as well.

If no other distribution is specified, the system will by default distribute axis 0 across the

processors equally (using block distribution) while leaving higher axes undistributed (serial

distribution). This allows the programmer to have an expected performance model for ax-

ial operations, regardless of the size of cluster the program will run on: i.e., she knows that

“communication” along axis 1 or higher axes requires shifting data only within the proces-

sor, while operations along axis 0 will be more expensive. Should more control be required,

the user is permitted to partition the axis in whatever fashion she desires, up to and includ-

ing processors which receive empty sections, or allocating the entire extent to one processor.

Distribution is also supported on any or all axes of a shape, under user control, subject to the

restriction that the product of the number of blocks on all distributed axes yields the number

of processors in the cluster: i.e., the distribution itself must yield an orthogonal partition-

ing of the shape. The sub-blocks of the partitioned shape are assigned to the processors in

row-major order. Unlike data distribution on other parallel/distributed systems, neither the

axis extent nor the sub-block size need be powers of 2, nor is there any benefit if they are.

With the data sizes anticipated in an image processing system, rounding up to powers of 2

or otherwise requiring “nice” shape sizes can result in huge amounts of wasted space and

concomitant performance loss (cf. the performance of matrix multiply on the CM5 in sec-

tion 7.7).

As an example, figure 3.2 represents the distribution of a 8�8 shape across six proces-

sors, with axis 0 partitioned into three chunks of sizes 3, 1, and 4, and axis 1 partitioned

into two chunks of sizes 2 and 6. The values in each cell name the processor number which

owns that cell. This distribution mechanism, which allows partitioning of a shape into an

arbitrary regular grid with subgrids on each node, should be powerful enough to meet most

load-balancing and communication-reducing needs. The details of the internal data struc-

tures and functions required to support it are presented in the next section.

3.2 Data Structures for Parallel Values in pC*

In this section we will examine the data structures used to implement parallel data in

pC*, and the associated functions which perform the required conversions between internal

representation and the indexing scheme used by the C* programmer. We will also address

issues in allocating memory which uses these structures, and how to support access patterns

CHAPTER 3. Implementation of Parallel Values and Context 28

distvar

shape Image

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

2 2 3 3 3 3 3 3

4 4 5 5 5 5 5 5

4 4 5 5 5 5 5 5

4 4 5 5 5 5 5 5

4 4 5 5 5 5 5 5

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Figure 3.2: Example of Supported Block Distribution

which preserve good cache behavior while still computing values which require large strides

between elements, as when summing the elements in columns of a matrix.

3.2.1 Implementation of shape in pC*

As noted in section 2.1, C* shapes encode multidimensional arrays with scalar values

at each position. The arrays can be dynamically sized, not only in terms of the extent along

each axis but also in terms of the number of axes. Although C* permits dynamic allocation

of shapes, the user can specify when a shape is declared that the shape object can only hold

shapes with a particular rank: for example, if parallel values with that shape are left-indexed,

specifying that the shape will have two dimensions permits the compiler to make additional

checks on the user’s code. There are three classes of shape specification:

� A fully unspecified shape gives no information about either rank or extents. This shape

may be used as the destination for any dynamically allocated shape. A fully-unspecified

shape is declared in the following manner:

/* Fully unspecified shape */

shape UnspecShape;

Note the absence of any left indexing.

� A partially specified shape provides information about its rank, but not its extent. This

shape may be used as the destination for any dynamically allocated shape with the cor-

responding rank. A partially specified shape is declared by leaving the extents empty:

/* Partially specified shape of 2 dimensions */

shape [][]PartiallySpec2d;

CHAPTER 3. Implementation of Parallel Values and Context 29

typedef struct shape_base {

int rank; /* Rank of shape */

int num_total; /* Total number positions in the shape */

int extent [MAX_RANK]; /* Length of each axis for whole shape */

int ndistaxes; /* Number axes w/non-serial distribution */

axis_distribution_t disttype [MAX_RANK]; /* Axis distribution types */

int distnblocks [MAX_RANK]; /* Number blocks each axis is split into */

int * distbsizes [MAX_RANK]; /* Block sizes along each axis */

int distpprod [MAX_RANK]; /* Axis-to-node support */

PCS__ctx_rletype * context; /* Pointer to current context */

shape_pernode * dpernode; /* Distribution information per node */

} shape_base;

Figure 3.3: shape_base structure contents

� A fully specified shape provides both rank and extent information. This is the only case

where (in conjunction with cluster size) the distribution can be calculated at compile

time. Fully specified shapes are declared thusly:

/* A 3-dimensional shape with 60 positions */

shape [3][4][5] FullySpec3d;

The extents, which are constant integral expressions, must be provided for all axes.

An unspecified or partially specified shape becomes fully specified when it is used as the

destination of a dynamic shape allocation; it returns to its former specification level when

the shape is deallocated. It is a runtime error to attempt to dynamically allocate into a shape

object which is fully specified, either from declaration or dynamic allocation, or to allocate a

rank k shape into partially specified shape of rank j 6= k. The two-stage shape data structure

described here permits these checks to be performed.

A shape at user C* level is represented internally by a pointer to a shape_base struc-

ture, as defined in figure 3.3. A fully unspecified shape is represented by a null pointer; at

allocation time, a base structure is dynamically allocated from system memory. A partially

specified shape is represented by a pointer to a shape_base structure, but only some of the

fields are filled in.

The fields in figure 3.3 contain the following information, which is defined only for fully

specified shapes unless otherwise noted.

� rank: The number of dimensions in the shape. Must be a positive integer. Defined for

partially or fully specified shapes.

� num_total: The total number of positions in the shape: the product of the extents.

� extent[]: The extent along each dimension. Must be positive integers.

CHAPTER 3. Implementation of Parallel Values and Context 30

typedef struct shape_pernode {

int num_local; /* Number of local VPs */

int localabove [PCS__MAX_RANK]; /* VPs above this node in each axis */

int localdim [PCS__MAX_RANK]; /* VPs on this node in each axis */

int num_per_axis [PCS__MAX_RANK]; /* Partial prods */

} shape_pernode;

Figure 3.4: shape_pernode structure contents

� ndistaxes: The number of axes which are distributed. Used for quick-lookup to see

if communication is necessary with this shape, and for walking a shape in blocks as in

chapter 6.

� disttype[]: For each axis, the distribution type: serial or block.

� distnblocks[]: For each axis, how many chunks is it split into?

� distbsizes[][]: For each axis, what are the sizes of the sections it is split into. Must

be non-negative integers which sum, within each axis, to the extent of the axis.

� distpprod[]: A partial-product vector indexed by axis to aid in translating between

processor number and shape partition subblock.

� context *: A pointer to the currently active context. This value is updated as context

changes; see section 3.3.

� dpernode []: An array indexed by processor number to aid in determining the layout

information for particular nodes.

Once a shape becomes fully specified, the dimension and distribution informa-

tion is used to build information about the local layout on each node. An array of

shape_pernode structures, one per processor, is allocated and assigned to the dpernode

field of shape_base. The shape_pernode structure is defined in figure 3.4, with the fol-

lowing meanings per field:

� num_local: The number of elements that are stored on this node: the sub-grid size.

� localabove[]: For each axis, the position along the axis at which the data in this sub-

grid starts.

� localdim[]: The extent along each axis for the subgrid that is held on this node.

� num_per_axis[]: Partial product information used for converting between local axis

indices and the local offset.

CHAPTER 3. Implementation of Parallel Values and Context 31

Image->ndistaxes = 0;

Image->num_total = 1;

k = Image->rank - 1;

Image->distpprod[k] = 1;

Image->ndistaxes = (block_distribution == Image->disttype[k]);

Image->num_total = Image->extent[k];

while (0 <= --k) {

Image->distpprod[k] = Image->distpprod[k+1];

if (block_distribution == Image->disttype[k]) {

Image->distpprod[k] *= Image->distnblocks[k];

++Image->ndistaxes;

}

Image->num_total *= Image->extent[k];

}

Figure 3.5: Calculation of Global Shape Geometry

Now let us consider in depth the process involved in generating the data used to con-

vert between local (processor/offset pairs) and global (set of indices) addresses, using the

distribution in figure 3.2 as an example. First, shape initialization assigns the basic fields

thusly:1

Image->rank = 2;

Image->extent[0] = Image->extent[1] = 8;

Image->disttype[0] = block_distribution;

Image->distnblocks[0] = 3;

Image->distbsizes[0][0] = 3;

Image->distbsizes[0][1] = 1;

Image->distbsizes[0][2] = 4;

Image->disttype[1] = block_distribution;

Image->distnblocks[1] = 2;

Image->distbsizes[1][0] = 2;

Image->distbsizes[1][1] = 6;

With this information, the system can fill in num_total and ndistaxes trivially. Re-

call that we required that the product of the distnblocks fields for distributed axes

yield the number of processors. This is so that the processor numbers, which range

from 0 to P � 1, can be mapped to coordinates in the partitioning of the shape, using

the equation that processor p uses section s of the partitioning of axis k, where s =

(p=distpprod[k])moddistnblocks[k]. This provides a row-major mapping between pro-

cessor numbers and partition coordinates. Code similar to that in figure 3.5 performs the

necessary calculations, while information about local layout per-node is computed in the

manner shown in figure 3.6. The resulting information for the distribution in figure 3.2 is

1. We give here only the effective code to perform the initialization for the example distribution. Initialization
in the system is done through an allocation function which performs additional checks and allocates space for
arrays such as distbsizes.

CHAPTER 3. Implementation of Parallel Values and Context 32

for (p = 0; p < P; p++) {

pi = Image->pernode+p;

pi->num_local = 1;

k = Image->rank;

while (0 <= --k) {

pi->localabove[k] = 0;

if (block_distribution == Image->disttype[k]) {

sgi = (p / Image->distpprod[k]) % Image->distnblocks[k];

pi->localdim[k] = Image->distbsizes [k][sgi];

while (0 <= --sgi) {

pi->localabove[k] += Image->distbsizes[k][sgi];

}

} else {

pi->localdim[k] = Image->extent[k];

}

pi->num_per_axis [k] = pi->num_local;

pi->num_local *= pi->localdim[k];

}

}

Figure 3.6: Calculation of Local Shape Geometry

summarized in the tables in figure 3.7.

The internal representation of shapes is treated the same as user scalar values: the infor-

mation is duplicated on all nodes, and all nodes possess information about the layout used on

all other nodes. This simplifies the functions which convert between local and global infor-

mation. We can now examine the implementation of the two primary conversion functions

mentioned in section 3.1, leaving the third to chapter 6 where it is of most interest.

3.2.1.1 Internal Location to C* Index

Given an element that is stored at offset o on processor p, what is its global coordinate

i along axis k of its shape?

This is the pcoord computation: the function that must be evaluated for each local offset

o on a given processor p when generating the result of a call to pcoord(k). The block

distribution in conjunction with local row-major linearization permits a simple calculation

using the partial product information in num_per_axis:

spn = shape->pernode + p;

i = spn->localabove [k] + (o/spn->num_per_axis[k]) % spn->localdim[k];

The division by num_per_axis[k] eliminates the effect of axes higher than k, while the

modulo operation eliminates those below. This yields the position along axis k in the local

subgrid; we need only add in the effect of prior elements along axis k stored on other nodes

to get the final result.

This function is a good example of where the complexity of the distributions supported

CHAPTER 3. Implementation of Parallel Values and Context 33

shape_base Data

Field Value

rank 2

extent h8;8i

num_total 64

ndistaxes 2

disttype hblock_distribution;block_distributioni

distnblocks 3;2

distbsizes h3;1;4i, h2;6i

distpprod h2;1i

shape_pernode Data

Field p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

num_local 6 18 2 6 8 24

localabove h0;0i h0;2i h3;0i h3;2i h4;0i h4;2i

localdim h3;2i h3;6i h1;2i h1;6i h4;2i h4;6i

num_per_axis h2;1i h6;1i h2;1i h6;1i h2;1i h6;1i

Figure 3.7: Shape data values for distribution in figure 3.2

in a system can have a strong effect on program performance, and it is worth spending some

time examining the ways in which the implementation can be improved. pcoord generally

appears in one of three places in a C* program, in decreasing order of frequency:

� In a grid communication, e.g. [.-1][.+1]iv. In this case, the implicit pcoord rep-

resented by . is not actually calculated in pC*; it is handled in the course of the grid

communication, in the manner described in chapter 6.

� In a contextualization expression designed to prevent invalid positions from being ac-

cessed in grid operations; e.g.

where ((dimof(current,0)-1 > pcoord (0)) &&

(0 < pcoord (1))) {

iv2 = [.+1][.-1]iv;

}

Again, in this case the pcoord is not calculated explicitly: the format of the where ex-

pression is noted by the compiler, and a context is built taking advantage of the regular

form of the resulting boolean parallel expression (see sections 3.3 and 6.1).

� In some other fashion.

The third case is the only one where the pcoord calculation is actually performed with the

above expression. In many such uses, pcoord will be called with a constant axis, as in the

CHAPTER 3. Implementation of Parallel Values and Context 34

initialization expression for figure 2.1:

iv = 10 * pcoord(0) + pcoord (1);

Because the pcoord function is small, it can be defined in a C macro, with an expansion

to the above expression in the resulting C code. The major time sinks in evaluating the ex-

pression are the two integer division operations (one divide, one modulo). Although most

modern architectures implement these in hardware, they tend be several times slower than

other instructions. By examining the construction of num_per_axis above and assuming

that o < num_local (guaranteed by the pC* code generator or checks in library functions),

the reader will note that for k = 0, the modulo operation is unnecessary: the division already

yields a value which is within the localdim[0] extent. Measurement within an old version

of pC* indicated that evaluation of pcoord(0) was 50% slower when the unnecessary mod-

ulo operation was performed. On some small test programs this yielded a 10% slowdown

overall, because of the large number of pcoord calls.2 To improve performance we rede-

fined the pcoord macro to check its axis and use an expression that does not perform the

modulo operation when it is unnecessary:3

#define pcoord(_k,_o) (DimAbove(curshape,(_k)) + \

((0 == (_k)) \

? ((_o) / NPA(curshape,(_k))) \

: (((_o) / NPA(curshape,(_k))) % DimLocal(curshape,(_k)))))

In many cases, the axis parameter _k is a constant at compile time, so the correct expression

can be compiled without overhead. When the axis can be determined to be 0 the resulting

expression is twice as fast as one which goes ahead and blindly does the modulo operation,

even if the check must be performed at runtime; in the rare cases when the axis cannot be

determined at compile time the check induces an overhead of only 5%. The effect in perfor-

mance by such a small change to an already nearly trivial conversion calculation indicates

the importance of keeping conversion functions as small and fast as possible.

However, we still have a pcoord function which contains at least one division operation.

When pcoord is called in a VP loop which iterates through the processor’s local offsets in

sequence we can do much better by using a finite-state-machine implementation. Here the

pcoord value cycles over the range of axis indices that are held on this node, increment-

ing once every so-many (NPA(curshape,k) to be exact) elements, and wrapping when it

reaches the upper limit of the axis. Thus we can maintain a separate counter for the value

of pcoord(k) with the following initialization before the VP loop:

pccnt = 0;

pcval = DimAbove (current, k);

2. Caveat: this was prior to the optimization which generates special context for the grid-bound protection
expression above; in the current implementation many of these pcoord invocations would instead be routed
to the boundary context code, which uses a different evaluation mechanism (cf. section 6.1).

3. We use NPA as a shorthand accessor function to the shape num_per_axis field; similarly for DimAbove
and DimLocal.

CHAPTER 3. Implementation of Parallel Values and Context 35

pcoord type constant 0 constant 1 variable 0 variable 1

div+mod, unopt 1176413 1176606 1176696 1179604

div+mod, opt 567973 1176518 630970 1218764

step/wrap 262926 263137 264576 362870

power-of-2, unopt 147764 147687 148041 147851

power-of-2, opt 147711 128411 169864 147656

Table 3.1: Evaluation of pcoord Implementation Alternatives. Times in µsec for 220 conversions.

and the following increment step within the VP loop:

if (++pccnt == NPA (current, k)) {

pccnt = 0;

if ((DimAbove (current, k) + DimLocal (current, k)) == ++pcval) {

pcval = DimAbove (current, k);

}

}

This implementation, which can be considered a form of strength reduction (Aho, Sethi, &

Ullman, 1986; Fischer & LeBlanc, Jr., 1988) performs much faster than the divide based

mechanism. When it can be determined at compile-time that the axis in the pcoord is the

highest axis in the shape (k == rankof(current)-1), we know that the distribution will

guarantee that NPA(current,k) == 1, and the per-step increment can be reduced to:

if ((DimAbove (current, k) + DimLocal (current, k)) == ++pcval) {

pcval = DimAbove (current, k);

}

This technique can be used to good effect anywhere in the library where it is necessary

to walk the node’s local data in sequence while retaining the pcoord values along a given

axis; see section 3.2.4. The implementation here relies on a block-based distribution, though

a technique similar to this or one based on the stride access pattern method of (Chatterjee,

Gilbert, Long, Schreiber, & Teng, 1993) would be possible with a cyclic distribution. Irreg-

ular distributions are less likely to permit such a simple and fast pcoord implementation.

The performance of the various pcoord calculations in a C program designed to test al-

ternative implementations is shown in the experimental results in table 3.1.4 We consider

the time requirements for various methods of pcoord calculation along each axis, where the

axis is known at compile time (constant) or only at runtime (variable). Along with the unop-

timized and optimized divide/modulo implementations and the step/wrap method described

above, we present for comparison the time the pcoord calculation would take if the subgrid

extents on axes 1 and higher were restricted to powers of 2. This has historically been done

to improve exactly this sort of global-to-local address calculation, because it allows the di-

4. Timings run as the only active process on a 50MHz Sparc 20 using gcc 2.6.3 -O2 -msupersparc, on a
rank 2 1024� 1024 shape measuring time to generate pcoord(k) for various types of k and various imple-
mentations of pcoord. Values are in microseconds, and are the median of 5 runs.

CHAPTER 3. Implementation of Parallel Values and Context 36

vision and modulo operations to be performed with shifts and masks instead. The resulting

functions are approximately 8 times faster than the unoptimized divide-based implementa-

tions on the tested hardware, though only 2-3 times faster than the step/wrap method, and it

is straightforward to extend the shape_pernode structure to contain the necessary shift and

mask values for each axis. However, the concomitant subgrid extent restriction is onerous:

if the user wishes to extract an n�m block from an image for more detailed processing,

she or the system must round m up to a power of 2. This may make the shape nearly twice

as large as the region of interest, and requires extra care to either avoid processing the fill

elements or ensure that the operations performed will not fail due to invalid data in the fill

area. The step/wrap method is less than twice as slow as the shift/mask version except on

the highest axis when this is not detected at compile-time, and has no restrictions on the axis

extents. As such, limiting shape extents to powers-of-2 does not appear to be worthwhile,

and pC* uses the step/wrap method for all pcoord operations within VP loops.

Outside VP loops the internal-location-to-C*-address conversion is used in several li-

brary functions. When we are operating on a single offset we always want the indices for all

axes (e.g., to yield a global address for a particular position), and in this case, the pcoord

computation can be placed in a loop which calculates the indices by peeling them out of

the offset one-by-one; the step/wrap method is inappropriate in this case, and we must re-

sort to using the division operations (one per axis). There is one obscure library function

(copy_multispread) which requires computing all indices for each element in turn; it uses

a variant of the multidimensional for-loop described in chapter 6.

3.2.1.2 C* Address to Internal Location

Given a set of indices idx[], what processor owns the named element, and what offset

is it at on that processor?

The inverse operation of mapping a user-provided C* global address to a proces-

sor/offset pair is less common, occurring most often when addressing an element of a paral-

lel value as a scalar value through scalar left index expressions, as is done at each position

when performing general communications (cf. chapter 5). It is somewhat more complex

than the pcoord calculation above, requiring several loops to search for the owning proces-

sor based on the index values, and calculate the linear offset given the local indices within

CHAPTER 3. Implementation of Parallel Values and Context 37

Rank Inline Outline

1 0.4002 0.5802

2 0.5603 0.7402

3 0.7203 0.9003

4 0.8802 1.0604

Table 3.2: Per-Position Costs of C* to Local Index Conversion. Time in seconds for 106 conversions.

the subgrid stored on that processor.

pn = 0;

for (k = 0; k < shape->rank; k++) {

d = idx [k];

i = 0;

while ((i < shape->distnblocks[k]) &&

(d >= shape->distbsizes[k][i])) {

d -= shape->distbsizes [k][i];

i++;

}

ldims [k] = d;

if (block == shape->disttype [k]) {

pn += i*shape->distpprod[k];

}

}

offs = 0;

for (k = 0; k < shape->rank; k++) {

offs += ldims [k] * shape->pernode [pn]->num_per_axis [k];

}

Were this functionality required in many locations, it would be undesirable (for code bloat

reasons) to generate it using a macro or by explicitly coding it, and it should be placed in-

side a function to ensure maintainability of the system. However, since there are relatively

few locations where the conversion must be done and all are inside library routines (unlike

pcoord, which can appear arbitrarily many times in converted user code), the code sequence

can be encapsulated in a macro or inlined function to save the (rather significant) function

call overhead on each position.

The cost of this function is given for shapes with ranks 1 to 4 in table 3.2, running on a

50MHz Sun Sparc 20. The test converts one million global index vectors to processor/offset

pairs using the above code fragment. The time in the table indicates the average per-position

cost in microseconds, comparing a method which inlined the conversion in the VP loop with

one which placed it in a function which was called once for each position. The constant

difference of 0.18sec is about what we would expect for one million function calls on a 50

MHz SS20 (measured independently to be approximately 166 nsec per call). This amounts

to roughly 30% of the conversion time for a 2d shape, so it is clear that inlining is desirable.

To understand the performance with respect to communications overhead, an Ethernet

CHAPTER 3. Implementation of Parallel Values and Context 38

packet of 1400 bytes5 will hold 175 elements in a general communication of integers (nodes

must receive both the value and its destination offset; see chapter 5). We can estimate the

one-way transmission using the reliable TCP package of figure 4.9 on 10Mbps Ethernet to

be approximately 750µsec for startup (half the bi-directional TCP overhead); we will as-

sume that, since sending a packet does not require waiting for it to go across the wire, 1msec

is a conservative (over-)estimate of the time required to transmit a 1400-byte message with-

out waiting for any response (as is appropriate in this case).6 The location calculation time

using a rank-2 shape with the inlined conversion for the elements which go into that packet

is 98µsec, approximately 10% of the per-packet transmission cost. The per-packet com-

munications cost can be decreased significantly with network optimizations such as those

outlined in section 4.5, increasing the proportion of time spent on local address computa-

tions. This again leads us to remark on the importance of ensuring that translations between

global and internal addressing be as simple and fast as possible.

3.2.2 Runtime Memory Management

We must pause the discussion of implementation data structures to address a related

issue—that of allocating space for them at runtime. Although shape structures require a cer-

tain amount of dynamic memory (e.g., allocating the per-node array once the cluster size is

known), the amount of memory is fairly small. This is not the case for parallel variables and

contexts. C* variable declarations have the same storage-classes as C declarations: ones at

file scope or with static class persist throughout the life of the program, while auto-class

variables inside blocks are created and destroyed when the block is entered and exited. Since

the amount of memory required for a parallel variable is not known until runtime, and is of-

ten extremely large, it is not feasible to create pvars on the C stack. Therefore, we need a

dynamic memory allocation scheme which allows easy creation and reclamation of parallel

objects.

While many parallel objects are created in direct response to user declarations, some

must be created by the compiler, for example to use as temporary values to hold the results

of communications. A complex garbage collection scheme is not required, but it is neces-

sary to reclaim, at the end of the block, both the user- and compiler-generated parallel vari-

ables which were allocated therein. A simple high-water mark collection scheme suits this

well: the memory allocator must support marking a current allocation level when a block is

entered, and reclaiming everything allocated since that point when it is left.

The implementation in pC* assigns allocations to the classes listed in figure 3.8.

Allocation is performed on each node through a function which is given the size of the block

required and a memory class with which it is associated. The memory is allocated using C’s

5. See footnote 9 on page 90 for why sizes were limited to 1400 bytes.

6. It is difficult to determine the exact cost, since it depends on the status of system buffers, but simple timing
tests indicated that absent flow control problems the write(2) system call for 1400 bytes to a TCP socket
takes less than 500µsec on the experimental hardware. We will accept 1msec as an estimate to include the
extra processing time that is required per chapter 4, though discussion in section 5.5 indicates a more complex
estimation may be required for large data transfers.

CHAPTER 3. Implementation of Parallel Values and Context 39

typedef enum PCSRTMemClass {

PCS__RTMC_CompilerTemp, /* For compiler temporaries */

PCS__RTMC_UserMem, /* User pvars */

PCS__RTMC_StackedContext, /* Stacked contexts within where blocks */

PCS__RTMC_ParFuncRetval, /* Return values from parallel ftns */

PCS__RTMC_ShapeDecl, /* Non-dynamic shape information */

PCS__RTMC_StaticPvar /* Static local pvar */

} PCSRTMemClass;

Figure 3.8: Dynamic Memory Classes

malloc function, and a pointer to the block is saved in an array which emulates a stack of

allocations in that class. High-water marks are indexes into the arrays, and memory is re-

claimed in one pass by walking the array from the mark to the last allocation, calling free on

each block to be freed. We chose to use malloc and free directly rather than cache blocks

inside the pC* memory handler because the host system’s allocation routines will perform

necessary block splitting and merging as memory allocation patterns change, while dupli-

cating this work inside the pC* memory handler (as was done in (Lapadula & Herold, 1994))

would be complex and liable to leave blocks of memory allocated but unused, especially

when using dynamically allocated shapes of various sizes over a long program execution.

A necessary step to ensure that memory use does not grow through leaks is to execute the

reclamation code everywhere a block can be exited: not only when it is closed, but at goto,

break, and continue statements as well. While the memory would be reclaimed when

the enclosing block was left, a loop with a body in which reclamation code is consistently

skipped due to non-structured resumption could easily consume all available memory.

The shape of file scope parallel variables must be fully specified at compile time, and the

compiler generates initialization functions that are called prior to invoking the user’s main

function to do the necessary allocation in appropriate classes, as described in (Lapadula &

Herold, 1994). Management of non-persistent allocations is performed on block entry and

exit, using the high-water stack method outline above. Five of the six classes in figure 3.8

use this stack-based allocation: compiler temporaries, user pvars (with C auto storage class,

i.e. declared inside blocks), stacked contexts (contexts allocated when a where block is en-

tered), temporaries which hold parallel return values, and the space required for partially

and fully-specified shape declarations inside blocks all can be reclaimed when the scope in

which they were defined has been left.7 The last class is used for values with static stor-

age class (which are allocated and initialized the first time the block is entered, and must

be of a shape which is fully specified at compile-time). Though high-water mark and re-

claim is not used in this case, we collect the blocks used for static allocations so they can

be freed when the program exits. Similarly, the memory allocated through the initializa-

7. Though all five are stack based, we do not attempt to coalesce them into a single allocation stack, because
they are conceptually separate entities. Allocation and reclamation patterns can differ slightly between the
classes, and there would be no benefit in memory use or code clarity by combining the classes.

CHAPTER 3. Implementation of Parallel Values and Context 40

typedef struct PCS__Pvar {

PCS__shape_base * shape; /* Shape by which data is to be interpreted */

char *base; /* Base of data region for variable */

int stride; /* Bytes between subsequent elements */

} PCS__Pvar;

typedef struct PCS__PvarPtr {

PCS__Pvar var; /* Basic information about the variable */

char * data; /* Base of the data pointed to */

} PCS__PvarPtr;

Figure 3.9: Structures for Parallel Variables

tion functions for file-scope variables is freed by the compiler’s exit function (by reclaim-

ing the whole stack of blocks), leaving allocated only memory which the user has asked for

specifically. Memory allocations in response to user commands such as palloc (for cre-

ating parallel variables of a given shape with given element size) or allocate_shape (for

dynamic shape specification) are done using direct calls to malloc, since there is no need to

be able to recognize them or treat them as distinct classes, and it is the user’s responsibility

to make the corresponding calls to pfree and deallocate_shape. Careful management

of compiler-allocated memory permits development tools such as Purify (Pure Software,

1994), which analyzes memory usage and detects illegal accesses, to be used on the result-

ing C* programs, aiding in making the user’s code robust by ensuring that access errors

and leaked memory are due to problems in the user’s code and are not caused or masked by

similar problems in the runtime system.

3.2.3 Implementation of Parallel Variables

The data structures used for parallel variables are significantly simpler than those for

shapes, and are given in figure 3.9. These are essentially the same as in (Lapadula & Herold,

1994), except for one change—relocating the information from a header which appears be-

fore the raw data to a structure dissociated with the data—which is required to support alias-

ing parallel variables between shapes, a feature used in a common image analysis technique

described in an extended example below.

The basic variable structure contains a pointer to a shape_base structure, indicating the

shape of the variable; a pointer to a data region of

spn->pernode[mynode].num_local

elements treated as a linear sequence; and a stride which gives the element size in bytes.

A pointer-to-parallel consists of a parallel variable along with a separate pointer into the

data region. This pointer will be in the range [var.base;var.base+ var.stride), and

permits the user to address specific fields of parallel aggregate types, such as structures or

arrays. A pointer-to-parallel does not require a separate stride field, as it will use the stride of

CHAPTER 3. Implementation of Parallel Values and Context 41

char * PCS__t0, * PCS__t1;

int PCS__s0, PCS__s1;

PCS__t0 = iv.base;

PCS__s0 = iv.stride;

PCS__t1 = iv2.base;

PCS__s1 = iv2.stride;

PCS__vpi = 0;

PCS__vplimit = PCS__current->pernode[PCS__nodenum].num_local;

while (PCS__vpi < PCS__vplimit) {

* (int *)PCS__t1 = 2 * *(int *)PCS__t0;

PCS__t0 += PCS__s0;

PCS__t1 += PCS__s1;

PCS__vpi++;

}

Figure 3.10: C Translation of C* code iv2 = 2 * iv

the base variable. Pointers-to-parallel are valuable both by providing a way to dynamically

allocate parallel variables through palloc, and by providing a way to pass parallel variables

to functions by reference. This avoids the need to make a copy of an arbitrarily large block

of data on each parallel function call, since C* retains C’s call-by-value semantics even for

parallel parameters.

Access to the elements of a parallel expression is made within virtual-processor loops by

associating a C char * pointer with each parallel object, dereferencing a cast of that pointer

to the appropriate type, then adding a stride to point to the next element. For example, the

C* code

iv2 = 2 * iv;

would be translated into something like that given in figure 3.10. In cases where the parallel

value has a scalar type and it is known that the stride is equal to the size of the type, the

pointer dereferencing can be converted into array indexing; e.g. PCS__t0 [PCS__vpi].

A more extended example will highlight the use of parallel variable structures and point-

ers, the need to be able to refer to parallel variables by different shapes, and the rationale

for supporting arbitrarily-sized blocks in distribution specifications.

3.2.3.1 Extended Example: Shape Aliasing

Image analysis tends to operate on extremely large sets of data: for example, the data for

a single patch of Landsat Thematic Mapper imagery covers a ground area 185 kilometers

on each side with an 8-bit value for each of six frequency bands at each 30m�30m pixel,

yielding a 216MB data set (Richards, 1994). In many cases, a quick-and-dirty analysis can

determine that there are only certain regions of the image that hold data of interest; in many

of those cases, the structural relationship between the pixels in the regions is less important

CHAPTER 3. Implementation of Parallel Values and Context 42

elev

shape Image

4 1 2 1

1 2 1 4

4 1 3 1

4 4 2 1

0 1 2 3

0

1

2

3

imband1

shape Image

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

0 1 2 3

0

1

2

3

imband2

shape Image

16 15 14 13

15 14 13 12

14 13 12 11

13 12 11 10

0 1 2 3

0

1

2

3

Figure 3.11: Shape Alias Example Data

than the values of features associated with them. For example, a pass over an image look-

ing at elevation data could recognize pixels above a certain elevation, and perform a more

detailed multi-band spectral analysis on those pixels to identify the type of ground cover in

those regions (see, for example, (Turner & Turner, 1994)). Though context might restrict

operations to the pixels of interest, thus saving time, we would still need to allocate space

for the uninteresting pixels as long as we operated in the image shape. Therefore, we want

to extract those pixels from the image into a smaller shape (Voorhees & Tucker, 1992).

As an example, consider the data in figure 3.11 as representing elevation data (elev)

and two bands of spectral data that can be used for ground cover classification (imband1

and imband2). We wish to extract the band data corresponding to pixels whose elevation is

highest, and put those into new parallel variables to operate on. The code in figure 3.12 per-

forms this function.8 To further illustrate aspects of data distribution and shape aliasing, we

have assumed a layout for the image data which distributes it along both rows and columns,

on a 4-node cluster, with bold lines indicating cross-processor boundaries in the shapes. Let

us now examine in detail what the code does.

� First, we create a new shape which is one-dimensional, has as many elements as Image,

uses block distribution into as many sections as there are nodes in the cluster, and uses as

the section sizes the Image subgrid sizes on each node. This ensures that we have a shape

which has the same number of elements on each node as Image, but is one-dimensional.

� Next, we create two pointers-to-parallel which point to the same memory as the two-

dimensional parallel variables elev and imidx but will treat that memory is though it

were of shape ImageIn1d. The elevation data interpreted as a one-dimensional pvar is

shown in figure 3.13. Note that the one-dimensional view is not simply a row-major

flattening of the two-dimensional view, because we are retaining node ownership of the

8. The interface to detailed allocation in pC* is actually somewhat more complex than that shown in fig-
ure 3.12, but the differences would serve only to confuse the issue. As a policy decision, we retain TMC C*
names for functions which perform the same operation as TMC versions or like allocate_detailed_shape
are documented to be implementation-specific, while changing the names for functions which do not
appear in TMC C*: hence the use of PCS_shape_subgrid_sizes, which is specific to pC*, but
CMC_change_pointer_shape, which is supported in both implementations.

CHAPTER 3. Implementation of Parallel Values and Context 43

with (Image) everywhere {

shape ImageIn1d; /* Shape for 1d image */

shape ReducedImage; /* Shape for reduced data set */

int:Image imidx; /* Reduction conversion map */

Peltype:ImageIn1d * elev1d; /* Elevation data as 1d pvar */

int:ImageIn1d * imidx1d; /* Index as 1d pvar */

/* Allocate a 1d shape with same subgrid sizes as 2d Image */

allocate_detailed_shape (&ImageIn1d, 1, positionsof(Image),

PCS__block_distribution, dimof(physical),

PCS_shape_subgrid_sizes (Image));

/* Alias both the image and the idx vector to 1d */

elev1d = CMC_change_pointer_shape (&elev, ImageIn1d);

imidx1d = CMC_change_pointer_shape (&imidx, ImageIn1d);

imidx = -1;

with (ImageIn1d) where (4 == *elev1d) {

/* In 1d space, generate an enumeration of high-elevation

* pixels */

*imidx1d = enumerate (0, CMC_upward, CMC_exclusive, CMC_none,

CMC_no_field);

/* Determine the number of pixels which are turned on. */

npix = += (int:current) 1;

}

deallocate_shape (&ImageIn1d);

/* Allocate a new shape to hold the reduced image */

allocate_shape (&ReducedImage, 1, npix);

with (ReducedImage) {

Peltype:current rband1, rband2;

with (Image) where (0 <= imidx) {

/* Send the band data for the high elevation pixels into

* the pvars for the working shape */

[imidx]rband1 = band1;

[imidx]rband2 = band2;

}

/* Operate on the reduced image data here */

...

}

deallocate_shape (&ReducedImage);

}

Figure 3.12: Code for Shape Aliasing Example

CHAPTER 3. Implementation of Parallel Values and Context 44

*im1d

shape Image

4 1 1 2 2 1 1 4 4 1 4 4 3 1 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*imidx1d

shape Image

0 -1 -1 -1 -1 -1 -1 1 2 -1 3 4 -1 -1 -1 -1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.13: Elevation and Index Data in One Dimension

imidx

shape Image

0 -1 -1 -1

-1 -1 -1 1

2 -1 -1 -1

3 4 -1 -1

0 1 2 3

0

1

2

3

Figure 3.14: Reduction Index Variable

data: although the right half of the first row is owned by processor 1, the data appear

following the left half of the second row, which is owned by processor 0.

� Now we can create the index variable. We initialize it to �1, so positions which do not

satisfy the elevation test are recognizable, then switch to the one-dimensional shape and

immediately restrict the context to the positions where the elevation is maximal. The

inactive positions are shaded in figure 3.13.

� Under this restricted context, we call a C* auxiliary function enumerate which labels

the active positions with the number of positions prior to them: this gives each high-

elevation pixel a unique index. The result, viewed as a one-dimensional pvar, is also

shown in figure 3.13. We determine how many positions pass the elevation test: this

will be the required size of the shape for the reduced data.

� We can now free the one-dimensional image shape, since we are finished, and allocate

a new one-dimensional shape to hold the reduced data.

� Next, we enter the reduced data shape, and declare variables of that shape for the band

data. To send the band data to the new shape, we drop back into Image shape, restrict

the context to positions which have valid indices, then send the image band data into the

reduced shape pvars. The imidx pvar interpreted in Image space is in figure 3.14, and

the band data in its final format are in figure 3.15.

CHAPTER 3. Implementation of Parallel Values and Context 45

rband1

shape ReducedImage

0 4 2 3 4

0 1 2 3 4

rband2

shape ReducedImage

16 12 14 13 12

0 1 2 3 4

Figure 3.15: Reduced Band Data

Through the use of pvar aliasing, we are able to perform all the steps up to the final redis-

tribution of the data without communication, except for a small amount within enumerate.

After execution of the alias and distribution code, we have reduced the problem size to ex-

actly what we need to work with, and have redistributed the necessary data over the en-

tire cluster, eliminating any load imbalance due to an unequal distribution of high-elevation

points in the original image.

This example illustrates some of the functions we wish to perform and how the inter-

nal representation supports them. The need to view an object as two-dimensional and one-

dimensional data simultaneously comes from the object’s natural form as a representation

of an image area, conflicting with the desire to label a subset of the area with a linear se-

quence of integers. While it may be possible to generate an index value similar to that of

figure 3.14 using C* operations on the rank-2 shape, it would not be nearly as succinct and

efficient as the shape alias plus enumerate method used in the example.

It is this need to be able to represent blocks of data as subgrids in differently-ranked

shapes that mandates the support of arbitrary partitioning of axes described in section 3.1,

so that the code in figure 3.12 will work regardless of the number of rows and columns in

the image, the distribution of the two-dimensional image, and number of workers in the

cluster. If the user, for independent reasons, distributed Image only along axis 0, and the

system required a near-equal partitioning along the axis (where each node had at most one

more row than any other node), the difference of one row would translate to a difference

of dimof(Image,1) in number of positions, and the near-equal partitioning would not be

satisfied in the one-dimensional alias.

3.2.4 Data Access Patterns

The fact that shape dimensions are unknown at compile time means that the virtual pro-

cessor loops which perform computations at all elements in the shape walk through data in

their linear form, disregarding rank and extents. It is not possible for the compiler to emit

a nested loop structure to walk a parallel value, unless one is willing to provide at compile

time a hard upper-bound on the rank of shapes on which the generated code will operate.

An algorithm outlined in section 6.1 shows that it is possible to emulate arbitrary for-loops

using a while loop, but it is unnecessary in the cases examined so far to do so, since a linear

walk provides a perfectly adequate access pattern (though this does require us to use a more

complex pcoord computation than simply referencing an index variable).

However, there are a variety of auxiliary C* functions which operate on one user-

CHAPTER 3. Implementation of Parallel Values and Context 46

data

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

0 1 2 3

0

1

2

3

dx0

60 64 68 72

? ? ? ?

? ? ? ?

? ? ? ?

0 1 2 3

0

1

2

3

dx1

? ? 6 ?

? ? 46 ?

? ? 86 ?

? ? 126 ?

0 1 2 3

0

1

2

3

Figure 3.16: Auxiliary Reduce Function Example

specified axis of a shape at a time. For example, the library reduce function9 takes as pa-

rameters a shape, an axis number, a destination index, and an operator. It then separates the

shape into groups of elements where each group has the same global index except within

the provided axis, applies the operator to the elements in each group, and stores the answer

in the position that is at the given index along the axis. These groups are known as scansets,

and, in a 2d shape, correspond to rows or columns. For example, figure 3.16 shows the ap-

plication of the add operation to a 2 dimensional shape, with one result being along axis 0

(scansets are columns) and stored in index 0, and the other along axis 1 (scansets are rows)

stored in index 2.

The simplest way to implement this function is to use nested for-loops, one loop for each

axis and ordering the loops so that the innermost one iterates over the axis along which the

reduction is performed; e.g., for the axis 0 reduction in figure 3.16 the effective code would

be something like:

for (c = 0; c < 4; c++) {

sum = 0;

for (r = 0; r < 4; r++) {

sum += data [r][c];

}

dx0 [0][c] = sum;

}

Although the reduce function is a library routine so cannot have hard-coded nested loops,

the multi-dimensional for-loop emulation method of chapter 6 can be modified to provide

this functionality. The primary benefits of this method are that it is conceptually simple, and

it requires only one scalar temporary to hold the accumulated results along the scanset that

is currently being walked.

The primary disadvantage of the method is that it has extremely poor memory access pat-

terns. Rather than perform one pass over the local data set, it will perform multiple passes,

each one accessing a slightly different area of memory. Advances in computer hardware

mean that access time increases by several orders of magnitude as the data that are required

9. This routine is one of the cscomm auxiliary routines provided in the Thinking Machines Corporation im-
plementation of C*, and should distinguished from the core language reduce function and the pC* internal
reduce collective communications routine described in section 4.3.2.

CHAPTER 3. Implementation of Parallel Values and Context 47

Dimensions Axis AXIAL LINEAR

1000000 0 0.1501 0.2076

100�10000 0 0.5017 0.1949

1000�1000 0 0.6509 0.1720

10000�100 0 0.7677 0.1726

100�10000 1 0.1500 0.2077

1000�1000 1 0.1507 0.2079

10000�100 1 0.1614 0.2115

100�100�100 0 0.5076 0.1936

100�100�100 1 0.1935 0.1769

100�100�100 2 0.1631 0.2115

Table 3.3: Axial versus Linear Walks of Multidimensional Data. Time in seconds over one million

positions.

live further away from the processor along the spectrum of on-processor cache, external

cache, main memory, and paged disk memory (Hennessy & Patterson, 1990). The large-

stride access means that the block of memory holding a desired element must be loaded

into the cache, incurring some cost, but we then refer only to the one element in that block,

losing the chance to amortize the load cost by operating on all elements in order. In the case

of large images, the amount of data is such that while walking along a column performing

a reduction the previously-loaded blocks must be freed to make room for more data, so the

load cost is incurred again on the next column.

To quantify the overhead involved, we implemented the reduce function in sequential

C, and tested the performance on a variety of one million element shapes ranging from 1

to 3 dimensions on each axis. The experimental platform was a Sun Sparc 20, using a 50

MHz SuperSPARC chip with a 16K 4-way set associative D-cache on-chip, a 1MB second

level cache, and 512MB of memory. General algorithms were coded to handle arbitrarily-

dimensioned shapes using one of two methods: AXIAL emulates the above nested for-loop

method operating on each scanset in sequence, while LINEAR walks the data in their locally

stored order, and uses a variant of the step/wrap pcoord method to determine which scanset

it is examining. The LINEAR algorithm therefore requires an array which maintains the par-

tial sums of many scansets simultaneously. Results of the experiment are shown in table 3.3.

Walking axis k� 1 of a rank k shape using the LINEAR algorithm induces a roughly 15%

performance loss (relative to other axes) due to the same effect seen in the step/wrap pcoord

calculation on this axis: specifically, overhead from repeatedly executing a loop for one it-

eration, because a special case could not be anticipated. The effect of bad memory access

can be seen most clearly in the lower axes of multidimensional shapes. The degree of in-

terference is proportional to the number of times a different region of memory is accessed:

hence using AXIAL on the 100� 10000 shape on axis 0 the inner loop iterates only 100

times before it finishes and data it has already loaded is accessed for the next scanset. But

when the shape is 10000�100, there are 10000 accesses before re-examining a previously-

CHAPTER 3. Implementation of Parallel Values and Context 48

loaded cache line, and the likelihood of the data surviving in the cache is correspondingly

less, increasing the average access cost. The inverse interference pattern can be seen in the

performance of LINEAR on the same data: for the first case the summary vector is 10000 el-

ements long, yielding a much larger cache footprint than the 100 element summary vector

for the second case.

Assuming the likelihood of walking each axis is equal, the AXIAL method on the square

rank-2 shape takes on average 0.4 seconds, compared with 0.19 seconds for the LINEAR

method. Thus, by carefully coding all algorithms to walk data in a cache-sensitive manner

we can obtain very good speedups. In addition, mandating this access pattern (when we

must touch every element in a shape) allows additional optimizations such as the context

encoding described next.

3.3 Implementation of Context

Context allows the C* programmer to specify that operations should not be performed

on certain elements in the shape. Essentially this associates a boolean value with each po-

sition, indicating whether or not the position is active for operations. As all operations not

within the direct scope of an everywhere block are performed under context, it is important

to make the overhead of context checking as small as possible.

3.3.1 Representation of Context

The natural first approach to context is to use a parallel boolean value. Since bit-wise

operations on modern RISC processors usually require multiple instructions, a sensible al-

ternative is to use one byte per position, with 0 indicating an inactive and non-zero an ac-

tive position. Thus, inside a VP loop, a test can be made to determine whether the operation

should be performed for that virtual processor: e.g.

/* OMITTED: initialize other pvar pointers and strides */

PCS__ctx = (char *) PCS__current->context;

for (PCS__vpi = 0; PCS__vpi < PCS__vplimit; ++PCS__vpi) {

if (*PCS__ctx) {

/* OMITTED: perform operation here */

}

/* OMITTED: add stride to pvar pointers */

++PCS__ctx;

}

While simple, this method, which we will call a charmap encoding, is suboptimal for a va-

riety of reasons that become clear when the common forms of context are considered. Con-

texts generally fall into one of the following categories:

� Everywhere—Operations that have no inactive positions. In this case, we pay the price

for storing a charmap which is all ones, and for checking it at each position. Further-

more, although the compiler may be able to recognize that code appears within the

CHAPTER 3. Implementation of Parallel Values and Context 49

boundary of an everywhere context and thus generate a VP loop that omits the unneces-

sary check, library routines will be unable to take advantage of this information unless

everywhere contexts are marked internally in some form.

� Boundary elimination—An internal regular region of the shape is active, but there is a

boundary region for each axis which masks out areas which would induce out-of-bounds

grid accesses or destroy values that are to be algorithmically invariant. These contexts

generally alternate long runs of active positions with short runs of inactive positions.

� Random—There is no easily-recognizable structural regularity to the context. Often a

high percentage of the shape is inactive, as with the high-elevation context in the exam-

ple on page 41.

� Tiled—Elements are alternately on and off: for example, as would be used in a red-

black or odd-even simultaneous over-relaxation algorithm (Press, Flannery, Teukoloky,

& Vetterling, 1984).

We counted the uses of context restrictions in the source for benchmarks described in chap-

ter 7, and found fifteen everywhere (in part because of the performance benefits of doing this

when entering a new function, to permit extra compile-time optimizations), thirteen bound-

ary elimination, and nine random or non-structured contexts. Tiled contexts can appear in

some numerical analysis algorithms but are virtually unknown in image processing appli-

cations. The other forms are fairly common, and have a noticeable feature that they have

long runs of consecutive elements with the same context type (active or inactive). Given

that compiler-generated VP loops and library routines both access data in internal, linear

order, this leads one to consider whether a run-length encoding of context might be more

efficient, both in terms of space required to store the context, and in time by skipping over

inactive regions in one step and putting operations over active regions inside a tight loop

which does not need to check context.

A run-length encoding (RLE) of context can be implemented by using a signed integral

type to encode the run, with positive values indicating an inactive sequence and negative

values an active sequence (or vice-versa). The RLE context map is represented by a pointer

to a sequence of integers which encode runs; the space required by the map depends on the

integer data-type used to encode runs, and the variability of the context. By combining ad-

jacent runs of the same type in the function which reads the context map, we can get the full

length of each active and inactive sequence, allowing a simple conditional to distinguish an

inactive region that should be skipped immediately from an active region that does not re-

quire context checking. An everywhere context can be easily represented by a null pointer,

which the routines interpret as an active sequence of num_local positions. This allows both

an optimal space representation and communication of the everywhere context into library

routines and user functions where the compiler isn’t able to determine the execution context

at compile time, at the cost of only a single calculation at VP loop entry.

The next question is what size value should be used as the base type. If we use 8

bit chars, which can represent from -128 to 127, we are guaranteed that in the worst case

CHAPTER 3. Implementation of Parallel Values and Context 50

Program # Everywhere # Where char RLE short RLE int RLE

amp 2 4 0.01302 0.01270 n/a

col 0 384 0.22298 0.44370 n/a

dens 1222 1827 0.00896 0.00286 n/a

fft 1 65 0.12753 0.24615 n/a

hist 100 0 n/a n/a n/a

hough 3 0 n/a n/a n/a

hyp 111 200 0.20903 0.41674 n/a

jac 1 1 0.00788 0.01576 n/a

mat 111 43 0.30528 0.60655 n/a

obj 2 2 0.21810 0.43620 n/a

det-arag 25 41 0.01655 0.01914 0.03827

det-famp 18 35 0.01515 0.01651 0.03298

cta-arag 41 736 0.09490 0.18156 0.36313

cta-famp 47 582 0.10705 0.20536 0.41072

Table 3.4: Context Encoding Frequency and Space Summary. Number of dynamic context forma-

tions of each type, and fraction of space required by RLE relative to the charmap encoding.

(a tiling where each run is 1 element long) the RLE encoding will take no more space

than the charmap encoding; while if the entire local subgrid is inactive, we must use

dnum_local=127e bytes to store the context. A 32 bit integer encoding with a represen-

tation magnitude of at least 231 would eliminate the second problem by encoding the entire

run length in one word, at a potential cost of quadrupling the space requirements for a tiled

context. Using a 16 bit short word is an intermediate alternative.

We instrumented a set of 10 test programs (from (Turner, 1994)) and four full image pro-

cessing programs to determine the effect of using run-length encoded contexts with various

data types. The results are shown in table 3.4, and give the dynamic numbers of contexts—

separated into everywhere and non-everywhere—generated during one run on a single rep-

resentative input for each program on a single-node cluster. The data-sets were small to

medium-sized problems for each program, ranging from a 256�256 sub-image for hist, a 10

band 128�128 sub-image for hyp, up to 2048�1024 for det. The context maps were exam-

ined, and the space requirements to represent the non-everywhere contexts using run-length

encodings in each of the basic types—char (1 byte), short (2 bytes), and int (4 bytes)—

normalized to the charmap encoding (one byte per element), are presented. It is clear that

an RLE encoding with char base types is sufficient: although two of the fourteen programs

(amp and dens) got a small space improvement from using short base types, on average

using shorts increased memory requirements by a factor of 1.93, very nearly the worst-case

increase of 2�. Therefore, for these types of programs, there is no benefit in using more

than 8 bits for the run-length encoding type: enough of the runs are short enough that the

increased representation range is unnecessary. In addition, the relative space requirements

show that RLE encodings tend to consume either around 1% or 10–20% of the space of the

CHAPTER 3. Implementation of Parallel Values and Context 51

inbound

shape S

0 1 1 1

0 1 1 1

0 1 1 1

0 0 0 0

0 1 2 3

0

1

2

3

ctx = [1, -3, 1, -3, 1, -3, 4]

Figure 3.17: Encoding of Boundary Context

full charmap encoding on these programs: this does not count the savings from representing

everywhere contexts as null pointers. (To help in understanding the effectiveness of this on

overall memory usage, other instrumentation on the image processing programs indicated

that the charmap context encoding consumed from 2% to 7% of the peak dynamic memory

used by the program.)

As an example of context encoding, consider the boundary restriction required to avoid

out-of-bounds access while executing the following code:

shape [4][4] S;

...

with (S) where (inbounds) {

iv2 = [.+1][.-1]iv;

}

The source variable is shown in figure 3.17, along with the run-length encoding assuming

all elements appear on one node. The corresponding C code which performs the assign-

ment under context is shown in figure 3.18. This is the general method for implementing

contexted VP loops with run-length encoded context. PCS__ctx_nextseq is a macro used

to determine the combined length of a context run. It detects an everywhere context by

noticing a null context pointer, and handles it implicitly. If the context is not everywhere,

it will combine adjacent runs of the same context type (active/inactive) yielding the total

length of the run. It updates the PCS__ctxcnt variable to give the length and type of the

next run. It requires PCS__vpi and PCS__vplimit to ensure it does not go beyond the ends

of the context encoding, since the length of the encoding is not stored elsewhere.

3.3.2 Building Context

Once it is decided to use a run-length encoded context representation, methods for build-

ing the run encoding are fairly clear, though efficient implementation can be nontrivial. We

do not know the space required to hold the encoding until it is complete. Therefore, the

routines that allocate shapes ensure that there is a memory buffer called the context build

arena which is as large in bytes as the maximum number of local positions in any shape.

The choice of chars as base elements, along with care in the generation method to ensure

CHAPTER 3. Implementation of Parallel Values and Context 52

/* OMITTED: build the context */

/* OMITTED: perform grid read into PCS__gtmp */

/* OMITTED: initialize pvar pointers and strides */

PCS__ctx = PCS__current->context;

while (PCS__vpi < PCS__vplimit) {

PCS__ctx_nextseq (PCS__ctxcnt, PCS__ctx, PCS__vpi, PCS__vplimit);

if (0 > PCS__ctxcnt) {

do {

*(int *)PCS__iv2p = * (int *)PCS__gtmpp;

++PCS__vpi;

PCS__iv2p += PCS__iv2s;

PCS__gtmpp += PCS__gtmps;

} while (0 > ++PCS__ctxcnt);

} else {

PCS__vpi += PCS__ctxcnt;

PCS__iv2p += PCS__ctxcnt * PCS__iv2s;

PCS__gtmpp += PCS__ctxcnt * PCS__gtmps;

}

}

Figure 3.18: Code for RLE-Contextualized Parallel-Value Assignment

no 0-length runs are stored, ensures that this will hold any context which might be required.

Context builds proceed in an inverse of the way the context is used: we determine the

length and type of a context sequence, then store the RLE encoding for it. The simplest case

is building an initial context restriction: a where construct which appears directly in scope

of an everywhere block. The code in figure 3.19 shows the build process, where expr

represents some parallel boolean expression. While the control flow may seem somewhat

baroque, it serves a purpose. Notice that we evaluate expr once for each position, regard-

less of whether at the time we correctly anticipated the value of the expression: if we were

wrong, we store the now completed sequence, change the sense of the current sequence and

reset the count, then jump back into the loop and continue. This also allows us to avoid

duplicating the code for incrementing the pointers which walk parallel values referred to

in expr. We take care to ensure that only non-zero values are stored in the context, so we

do not exceed the space bounds of the arena. At the end of the build code, we allocate a

block of ctxp-context_arena bytes, copy the new encoding into it, save (the pointer to)

the previous context in a variable in the block, and store the new context map in the shape.

If, after the where expression has executed, there is an else expression which requires the

inverse context, we need only walk the map changing the sign on the saved run lengths.

Building a cumulative context is substantially more tricky, since we must preserve the

inactive sequences from the parent context, yet add new ones where the new restriction is

more stringent. Essentially the build loop is lifted into a VP loop contexted on the parent

context: inactive sequences in the parent are immediately stored, while active sequences

proceed to execute the test code and store active or inactive sequences according to the

CHAPTER 3. Implementation of Parallel Values and Context 53

vpi = 0;

vplimit = PCS__current->pernode[mynode].num_local;

cnt = 0;

testval = 0;

ctxp = context_arena;

/* OMITTED: initialize pointers and strides for parallel variables

* in test expr */

while ((vpi < limit) && (testval == !!(expr))) {

ctx_lbl1:

++cnt;

++vpi;

/* OMITTED: increment pointers for parallel variables in expr */

}

while (RLE_Limit < cnt) {

*ctxp++ = testval ? -RLE_Limit : RLE_limit;

cnt -= RLE_Limit;

}

if (0 < cnt) {

*ctxp++ = testval ? -cnt : cnt;

}

if (vpi < vplimit) {

testval = !testval;

cnt = 0;

goto ctx_lbl1;

}

Figure 3.19: Code for RLE Context Formation

boolean expression results. Care is taken to combine adjacent runs to decrease space: if

a parent inactive sequence is k �RLE_Limit+ i long, the extra i will be combined into any

initial inactive sequence resulting from false expr values in the new context. The required

contortions are not sufficiently interesting to reproduce here. There are similar difficulties in

producing a cumulative else context, since we need to take the inverse of the child encoding

while preserving inactive sequences in the parent: this becomes a sort of merge operation,

walking child and parent simultaneously and switching sequences which are active in the

parent, again merging adjacent runs.

3.3.3 Additional Context Optimizations

In addition to a run-length encoding, several steps can be taken to decrease the cost as-

sociated with context. In many cases, it is not necessary for the context to be stored at all:

if the body of the where (and/or else) construct is all parallel code, then the test can be

moved into the virtual processor loop and executed for each position. Similarly, any initial

portion of the where body which would appear inside a VP loop can be lifted into the context

build loop, at the point immediately following the ctx_lbl1 label in the build loop in fig-

ure 3.19, avoiding the need for an extra loop construct immediately after the context build.

CHAPTER 3. Implementation of Parallel Values and Context 54

Type Operation charmap RLE

everywhere build 0.10964 0.00002

body 0.24631 0.20538

boundary init build 0.18265 0.16101

cumulative build 0.20747 0.15543

body 0.24429 0.20094

random init build 0.18612 0.20545

cumulative build 0.17261 0.08345

body 0.16968 0.08376

tiled init build 0.10592 0.54829

cumulative build 0.18654 0.81277

body 0.25197 0.53542

Table 3.5: Context Build/Reference Timings. Seconds for build/reference in rank-1 shape with 220

positions.

These features have been implemented in pC*, with some amount of additional complexity

to the context building code described in the previous section.

A significantly more powerful context optimization is in handling of the boundary elim-

ination case. If the where expression consists of a conjunction of comparisons between

pcoord and a scalar integral expression, the resulting context can be generated directly us-

ing techniques similar to those of grid communication in chapter 6. In essence, we emulate

a multidimensional loop over the local subgrid, with lower and upper bounds corresponding

to the region of the subgrid owned by the node, but corrected for range restrictions imposed

by the where expression. When an index of the iteration space wraps, we have reached an

out-of-bounds area, and store into the context an inactive sequence whose length depends

on how many axes wrapped and the bounds of each of them. A full description of the tech-

nique is reserved for chapter 6, since it is based on the same techniques as the method for

skipping or detecting out-of-bounds grid axes described therein. Since evaluating pcoord

at each element can be expensive even with the step/wrap implementation of section 3.2.1.1,

this technique results in a significant speedup.

3.3.4 Evaluation of Context Optimizations

We have already seen from table 3.4 that run-length encoding can result in a 90%–99%

decrease in space requirements. However, it should be clear that the build loop is more com-

plex than that for a charmap encoding, and the loop nesting required for contexted VP loops

is also more expensive than a simple boolean test. We should therefore examine the effect

of a run-length encoding on execution time.

Table 3.5 contains information about context build and reference for RLE and charmap

implementations of each of the context classes mentioned earlier. In all cases, the exper-

imental body consists of a call to a function which assigns from one parallel variable to

CHAPTER 3. Implementation of Parallel Values and Context 55

another. Therefore, within the function the execution context is unknown, and no inlining

of bodies into context build loops was done, nor was context check code eliminated due

to a syntactically enclosing everywhere block. Except for everywhere the contexts were

built from a pre-computed boolean variable which reflected the type of mask—in essence,

a charmap encoding itself, although neither implementation took direct advantage of this in

forming the context. Timings are in seconds, and are the median of five runs on a 50MHz

Supersparc. Operations were performed on a 1024�1024 shape. Builds for initial contexts

recognized that the parent context was everywhere, and avoided the merge step; cumula-

tive contexts built the initial context, then timed the cumulative build using the same mask

again.

� Everywhere—Build time for charmap requires allocating a block of memory and initial-

izing it to all 1s. For RLE, it requires assigning a null pointer, a constant-time operation

regardless of shape size. The improvement in RLE body time is due to the avoidance

of checking the charmap flag for each position; if the test had permitted the body to be

syntactically enclosed in an everywhere context, the compiler would have noted this

and the charmap time would be nearly identical to the RLE time.

� Boundary—The leftmost and bottommost 5 columns and rows were disabled, leaving

99.03% of the shape active. Notice that the initial build times for both methods are ap-

proximately the same, while the cumulative build was faster for RLE, due mostly to

avoiding the context check for the active runs, and possibly aided by better cache be-

havior with the smaller context encoding. Execution of the body is 19% faster with the

RLE encoding, because context need not be examined for long runs.

� Random—5% of the internal elements, chosen at random, were made active, with the

rest inactive. The resulting map is not an accurate reflection of the type of “random”

contexts expected in image processing, because images would tend to group active ar-

eas into longer active and inactive runs, providing better amortization during builds and

loops. The initial build is slightly more expensive for the RLE encoding, but the cumu-

lative one is twice as fast, mostly because it can skip the 95% inactive positions where

the charmap encoding must at least look at them. Using the resulting RLE context is

also twice as fast as using the charmap, for the same reason.

� Tiled—Odd numbered elements were active, while even were inactive. This is the worst

case for the RLE context: it consumes as much space as the charmap encoding, and

the overhead of storing and extracting the unit sequences, which is not amortized over

long runs, causes a four-fold slowdown during builds, and just over two-fold slowdown

during VP loops.

While the results in table 3.5 reflect a single simplistic test, experience with test and pro-

duction programs during development of the encoding tended to support a 10%–25% im-

provement in execution time using the RLE contexts. This is mostly because the worst case

of tiled context does not occur in the image processing applications we currently use. In no

CHAPTER 3. Implementation of Parallel Values and Context 56

case did the RLE context result in a significant slowdown, and in all cases it saved more

than half the space required by charmap encodings.

The times in table 3.5 indicate the cost of building a boundary context when the source

expression is a boolean variable and each position is tested. In many cases, especially for

the boundary context, the expression contains calls to pcoord. We describe in section 6.1 a

method to build contexts more quickly in this case, i.e. without evaluating pcoord for each

element of the shape. For the experimental results in table 3.5, the time to build the bound-

ary context evaluating pcoord at each position (using the step/wrap method) was 0.34sec,

less than twice the time required to examine the pre-computed boolean value. When the

aforementioned optimization which takes advantage of grid restrictions to build boundary

contexts is used, the build time drops to 0.0029 seconds, over 100� faster: rather than per-

forming a test on each of one million elements, it need merely execute a loop body 1024

times and store a count on each iteration. Tests on other programs indicated that the time

required to build a boundary-safe context without the optimized build was approximately

half the time required to perform the grid communication it protected; with the optimized

build, the context formation time becomes insignificant. The optimized build method was

never applied to the charmap case; while it would undoubtedly provide a significant speedup

there as well, one would expect to lose an order of magnitude due to cache effects required to

store a value at each of one million bytes, similar to the cost difference observed for building

an everywhere context in the charmap style.

It is clear that, if the problem domains to be addressed by a system include frequent use

of tiled contexts, an RLE encoding may not be appropriate: in fact, given the RLE encoding,

it is faster in pC* to perform simultaneous overrelaxation operations at all positions in the

shape, then generate the value for the next step using a tiled context which can be wholly

inlined, avoiding the costly build/walk steps at the price of ignoring half of the computed

results. Alternatively, one can simply split the problem data into two separate pvars, one

each holding red or black data, and perform the computation by alternating between them

without contextualization. Since all functions which examine data must know the format

in which context is represented, and an RLE representation is significantly different from a

charmap encoding, it is impractical to support both in the same system.

3.4 Conclusions and Related Work

We’ve considered three major issues in language implementation in this chapter. Much

work on distributed computation presumes that data distribution is a critical component to

system performance (Tseng, 1993). While we do not wish to argue that this is untrue, it is

clear that data placement is not the whole story: we must also be able to convert between

global and local addresses, to know what values must be transferred between processors.

Even the fairly simple block-based distribution scheme discussed in this chapter can, if not

carefully optimized, require a significant proportion of execution or communication time

just to perform the conversions. Less regular schemes such as those described in (Crandall

& Quinn, 1993; Socha, 1991), which are designed to decrease the high-level communica-

CHAPTER 3. Implementation of Parallel Values and Context 57

tion requirements by partitioning data with less regard to topological neighborhood or or-

thogonal boundaries, would intuitively require more effort for the conversion phases; the

descriptions of these placement methods do not address this issue. The appropriateness of

more complex placements for particular algorithms, such as block-cyclic for linear algebra

routines, should be tempered by the effect on the rest of the system of adding this support.

When all communication patterns and address resolution can be discerned at compile time,

this is not such a large issue, but it will affect general case implementations that are relied

on when compiler analysis fails to detect an optimizable case.

We have also examined the value of interpreting the locally-owned data as linear se-

quences, regardless of the layout imposed on them by the user. This is done in the C

code generated from user C* code, in part because the necessary information (rank and ex-

tents) for generating nested loops for user-view access may not be available to the compiler

(though techniques described in chapter 6 would permit a simulation of nested loop if that

were useful). However, linear access in library routines is primarily desirable in order to im-

prove cache behavior. Fortran source usually presents sufficient information for the com-

piler to emit a nested-loop access scheme, but for code fragments such as DOALL loops

where the semantics does not require preserving the user’s access pattern there may be a

significant benefit to re-ordering or linearizing the loops so data are accessed in one-pass

sequences.

Issues of data access and address computation in the context of a sequential translation

from APL to C are considered in (Budd, 1988). Here the interest is more in decreasing mem-

ory usage, and a choice is made to use a non-contiguous access pattern for complex primitive

operations that would otherwise require space for temporary intermediate values. The work

also addresses the need for fast address calculation, though in a uni-processor implementa-

tion and therefore not to the generality described here.

Finally, we have presented a method of encoding context which requires much less space

than the “natural” charmap encoding and reduces overhead in loops by making the cost of

context checking proportional to the number of context sequences rather than the number of

elements in the shape. Although this encoding is valuable for the context types common to

image processing applications, it is clear that algorithms which use tiled contexts, as in red-

black simultaneous overrelaxation systems, can behave poorly. Implementers should con-

sider the target applications of their systems and choose the appropriate encoding accord-

ingly. Unlike the previous two issues which can be applied to languages such as Fortran, the

C* notion of context is more general and requires communicating the activity information

to operations distant from the context formation, while Fortran 90 context is a purely local

phenomenon which does not reach into called functions, and it is not clear that storing the

context is required in that case.

Version: dataimpl.tex,v 1.14 1996/04/10 22:03:26 pab Exp

CHAPTER 4

BASIC COMMUNICATION PRINCIPLES

Are you sitting comfortably? Then we’ll begin.

— Julia Lang (introduction to BBC Radio programme Listen with

Mother)

In this chapter we examine in detail fundamental assumptions about interconnection

networks in the context of a highly portable yet high performance distributed lan-

guage. The three-level framework of pC*’s communications hierarchy is described.

A low-level interface permits target-specific implementation of a limited number of

functions, and delivers a common quality-of-service when its requirements are met.

At the highest level are language-specific communications operations, such as grid

and general communications patterns and more complex computations such as sort-

ing and prefix scans. Mediating these levels is a target-independent set of routines

which use the low-level interface to implement communication of arbitrary amounts

of data, as well as basic group communications such as one-to-all broadcast and all-

to-all reductions. We describe how a message handling facility built into the mid-

level routines is required for correctness, but simultaneously reduces memory us-

age and will permit eventual implementation of latency-hiding communications op-

timizations, given sufficient compiler support. We close with a case study which

implements broadcast and reduction operations with a variety of algorithms on both

point-to-point reliable Unix TCP sockets and multicast unreliable Unix UDP sock-

ets, coming to the conclusion that the benefits of a broadcast/multicast implementa-

tion, given their frequency of use in our benchmark suite, are negligible relative to

the system complexity that is introduced by imposing our reliability requirements

on them in a portable manner.

Distribution of data amongst nodes in a distributed multiprocessor system is a major fac-

tor in the performance of the system, but regardless of the distribution chosen data will even-

tually need to be moved between processors. This implies that the communications subsys-

tem used is of similarly high importance to total system performance. However, the path to

choosing an appropriate implementation framework is difficult because network issues—

especially in a system that attempts to be portable—are more complex than data distribution,

a matter that is purely internal to the system. In this chapter we will examine the issues that

led us to the communications system that is used in pC*, and describe the primary features

and design considerations of the system. We conclude with an extended look at the relative

58

CHAPTER 4. Basic Communication Principles 59

performance of two network-level message facilities to show how reliability, features, and

performance must be balanced to meet the needs of the pC* system.

Throughout this chapter, by “network” we mean any mechanism for communicating be-

tween processes. Most often this takes the form of connecting machines through a physical

path such as Ethernet, FDDI, or ATM, but it also includes Unix domain sockets, System

V messages, shared memory, a shared file system, or anything else upon which the func-

tionality demanded in section 4.3.1 can be imposed. The “network interface” is the set of

system-provided functions or capabilities that are used to interact with the network.

4.1 Portability versus Performance

The issue of connecting computers together to cooperate in tasks through some form

of internetwork is a major topic of investigation in computer science. There are virtually

limitless ways to approach the issue for a particular application, depending on the level at

which one cares to address the problem. Sufficient research issues exist in this component

alone that without sacrifices and compromises of some sort the primary goal of a portable

and reasonably efficient implementation framework for data-parallel languages would be

unreachable. Here we examine the alternatives across the spectrum from highly portable

communications packages which may be unable to take full advantage of particular plat-

forms, to highly optimized implementations which use the features of a particular host con-

figuration to provide excellent performance while forgoing any hope of portability. While

there are research efforts to create systems that collapse the spectrum (Message Passing In-

terface Forum, 1994; Mitra, Payne, Shuler, van de Geijn, & Watts, 1995), those efforts have

not yet succeeded fully, preventing us from relying on them.

4.1.1 General Purpose Communication Libraries

In recent years, the cost of computer hardware has decreased, and scientists and other

programmers wish to connect a variety of small machines to solve problems that formerly

required large, expensive, and dedicated hardware. Issues of ease-of-programming and

compatibility across these systems have led to the development of a variety of libraries

which provide functions to aid in distributed computing across homogeneous or hetero-

geneous clusters of computers linked with various networks. These libraries provide rou-

tines for joining computations, passing data between computation processes, and perform-

ing high-level collective communications such as global reductions without burdening the

applications programmer with the need to implement these herself. Perhaps the most well

known of these is currently the Portable Virtual Machine (PVM) of ORNL (Geist, Beguelin,

Dongarra, Jiang, Manchek, & Sunderam, 1994), though industry preference now seems to

be turning towards the Message-Passing Interface (MPI) (Message Passing Interface Forum,

1994) which combines features of PVM with those from similar libraries in an attempt to

provide a standard library that will be supported by all vendors of high performance com-

puting devices.

CHAPTER 4. Basic Communication Principles 60

The primary goal of these libraries is to provide access to a set of common functions

while ensuring portability of the applications which use them. PVM has been adopted by

several vendors who have provided optimized implementations which take advantage of the

particular features of their hardware platforms. Platforms which do not have specialized

implementations are still able to use the routines through standard hardware (e.g., Ethernet)

using common networking interfaces (e.g., Unix sockets). The PVM source comes with

configuration files to support fifty different platforms. Since portability is a major goal of

the pC* system, it is worth considering the use of a general library such as PVM or MPI as

the communications infrastructure of the system.

Though the benefits of using such libraries seem clear when coding applications using

languages which were not originally intended to provide support for multiprocessor com-

puting, such as C and Fortran, general communications libraries appear to be ill-suited as

a component of a language system which already has parallel constructs. Though there are

routines provided to perform some high-level operations, such as global reductions, these

may not have the semantics required by the parallel language, such as following the C* no-

tion of context. There are other C* routines, such as the segmented scan operations, that

are not present and would need to be implemented using more primitive operations from

the library. Furthermore, the library necessarily constrains data layout and internal repre-

sentations to match its own requirements. If all these issues are addressed in the context

of the communication requirements of the language, the only components of the general li-

brary that are really useful are simple point-to-point message exchange, and perhaps some

form of broadcast.

An additional problem is the performance of the general system. Although vendors may

provide an optimized library for high-cost hardware such as the Cray T3D (Oed, 1993), they

are less likely to do so for lower cost systems, such as networked workstations or PCs. The

effort required of the library implementors to support the whole library takes away from the

opportunities to make the few routines required by the pC* system run fast. For example,

we compared the execution time of PVM with that of a plain TCP socket implementation on

two 4 processor Sun SS20s connected by Ethernet, in a C* program which “transposed” (re-

versed) a distributed 1-dimensional parallel variable of 216 elements ten times: a test which

involved almost nothing but constant point-to-point communication. Even though the PVM

system was informed that it was on a homogeneous network and need not encode its param-

eters (PvmDataRaw), it was 35% slower (4.10 seconds versus 3.03 seconds) on four proces-

sors on the same machine, and 130% slower (10.8 versus 4.67 seconds) on eight processors

across both machines, than the plain socket implementation. Slow-downs of this magnitude

are a high price to pay for portability, especially when already buying unneeded function-

ality.

These issues led us to avoid attempting to use a general purpose communication system

as the basic framework for the communication needs of the pC* runtime libraries, and net-

work and application-specific concerns outlined below drove the system design. For com-

pleteness and comparison purposes, though, PVM support has been added to the pC* sys-

tem, and hence the communications portion of pC*—which is the most system-dependent

CHAPTER 4. Basic Communication Principles 61

component—may be ported quickly to any system which implements PVM.

4.1.2 Direct Network Control

At the other end of the spectrum are communications infrastructures which are based

on the characteristics of particular networks, and permeate the entire communications sys-

tem with that knowledge. This could include assumptions about non-standard interconnects

such as hyper-cube routing networks, which are more common on high speed massively par-

allel systems such as the TMC CM5 or Intel Paragon. Performance on these interconnects

can be improved by ensuring that operations are performed in a way to reduce network con-

gestion by delaying or re-routing message transmissions which could induce collisions, at

a potentially significant cost in code complexity and portability in our case.

Another possibility is to assume that the host architecture provides some means of direct

access to the network device, a feature which is unusual in standard operating systems be-

cause of concerns for security of network data, but can be countenanced when considering

an isolated compute cluster dedicated to a single task (Turner, 1994). Without such direct

control, any program running at user level suffers due to the overheads involved in crossing

protection domains to invoke code which is permitted to drive the network controller, and

in copying data between domains and processes (Druschel, 1994; Brustoloni & Bershad,

1993). A significant performance improvement could be induced if the C* system were

able to have data transmitted directly between the network adaptor and the memory loca-

tions where they are stored in the C* program’s memory space. However, these features are

generally available only in research operating systems, or to those who have access to the

vendor source (Chang, Flower, Forecast, Gray, Hawe, Nadkarni, Ramakrishnan, Shikarpur,

& Wilde, 1994).

If one is constrained to write code which can be executed by a normal user on a nor-

mal operating system, in accordance with the pC* design goals, there are still restrictions

that could be made to improve performance. For example, we may choose to assume that

we will run on a Unix-based computer, and can use standard Unix system calls to access

network functions through the streams or socket libraries. In this case, we will probably

be able to use interrupt driven communications, where the kernel of the operating system

will detect the arrival of a message at a network interface, and asynchronously inform the

library system of its presence. The system can then immediately read the message and deal

with it appropriately, relieving the kernel of the burden of buffering the message until the C*

system gets around to looking for it. However, even assumptions such as this would cause

portability and usability problems for the pC* system. Since the entire system is operating

at the same protection/user level, installing a signal handler removes a useful resource from

the programmer, who would no longer be able to use the same interrupt-driven I/O in her

own programs without interfering with basic system functionality. It would also be neces-

sary to ensure that the invocation of a message handler without warning could not corrupt

any data structures in the program, either in the library or in the user’s code.

Finally, even such relatively weak assumptions turn out to affect portability. On shared-

CHAPTER 4. Basic Communication Principles 62

memory multiprocessors such as the Sequent Symmetry, or even distributed multiproces-

sors such as the Intel Paragon, the preferred method of communicating between processes

may not involve Unix system calls, and may not have a notion of interrupt-driven communi-

cation. By designing the system around those assumptions we would have limited its porta-

bility to such machines. During the first year of development of the pC* system, we ex-

amined the requirements necessary to port the system to machines ranging from the Intel

Paragon to multiprocessor SGIs to Linux-based PCs. The assumptions we ended up using

allowed us to eventually perform these ports with limited effort.

4.1.3 Application Specific Libraries

The “middle ground” approach to networking for pC* is to design a library of commu-

nications routines which are specialized to the needs of the C* language, but not to any par-

ticular assumptions about the connection mechanism. By designing a hierarchy to isolate

the components of the library which are network specific, we get the best—and worst—of

both worlds: the bulk of the library is platform-independent, and only the lowest level rou-

tines need to be written when porting the system to new hardware, while we are able to take

advantage of our knowledge of communication behavior within the system and the general

features of the expected target architectures to avoid unnecessary overhead. In return, we

pay the penalty of not taking full advantage of certain features such as direct adaptor control

when the low-level functions where we have access to these features are too far from where

they would do the most good.

It is safe to say that any inter-process(or) interface will have certain limitations on the

amount of data it can handle at any time, or the quality of service that it guarantees. How-

ever, given the complexity of some of the algorithms that must be generated, such as the

grid operations described in chapter 6 or the parallel prefix scan operations not explicitly de-

scribed in this dissertation, it is important to limit the effect of these constraints on the higher

level functions. We can now go on to examine the restrictions we were willing to make on

the system, and how they affected the design of the communications hierarchy within the

pC* runtime system.

4.2 Network Assumptions

We must pause to review the philosophy under which pC* was designed, and how this

affects the assumptions we are free to make about the execution network environment. First,

the most important aspect of the system is that it must perform correctly, and operate on its

intended application—analysis of large images—without crippling limitations. This means,

for example, that limitations on the amount of data that can be buffered by a network inter-

face must not be allowed to interfere with system behavior: we cannot permit deadlock if

a kernel buffer would overflow and a system call block just because a user chose to invoke

an operation which sent a 32MB chunk across the network. Nearly as important is the re-

quirement that it be portable, so that we would not find ourselves bound permanently to a

CHAPTER 4. Basic Communication Principles 63

particular hardware platform again. We can make only the most general assumptions about

the implementation platform. Performance is the third most important goal. These issues

led us to design a three-level communications hierarchy:

� High-level functions include the C* grid and general communication routines, as well

as complex library routines such as scan and spread.

� Mid-level functions are an abstraction of the unconstrained network interface, including

writing messages to other nodes, broadcasting, and performing simple reductions.

� Low-level functions implement a constrained interface to a particular communications

network, taking responsibility for providing any service requirements that are assumed

in the higher level routines but are not provided by the network.

Assumptions about network characteristics can reach throughout this hierarchy or be iso-

lated in one level, depending on their effect on the system as a whole.

Let us first consider the issue of message size. Almost every network fabric will have

some limitation on the amount of data it will operate on as a single entity. This is the net-

work’s maximum transfer unit, or MTU. It is very likely that the MTU will be small com-

pared with the amount of data being transferred: for Ethernet, it is 1500 bytes, while for

ATM it may be as small as 56 bytes (though providers of ATM hardware will often imple-

ment a level of abstraction which provides an interface with a larger MTU, say 4KB or 8KB

(FORE Systems, 1994)). Even in a shared memory system, it makes sense to operate on ob-

jects that are some multiple of the cache line or page size, depending on the granularity with

which memory is shared. While we are unwilling to fix a particular MTU for all target archi-

tectures, we can parameterize the library routines by declaring that there will be a constant

MTU whose value will be available at runtime.

There are a variety of benefits from assuming that the network will operate at its peak

performance with messages that do not exceed a particular size, and the assumption can

be applied usefully at all levels of the communication hierarchy. Many algorithms do not

require that we bundle up a complete message, whose size may be data dependent, before

sending part of it. For example, the first stage of a general get involves sending a request

message to each node for each value that the remote node has and the local node requires.

Sending a separate message for each value is very wasteful, and it is common practice to

accumulate the requests to amortize the cost of communication (c.f. message vectorization,

(Hiranandani, Kennedy, & Tseng, 1994)). However, if we were to wait until we had the list

of all remote values the local node requires, we would require a buffer of nearly unbounded

size for each remote node.

Though it is accepted wisdom (Balasundaram, Fox, Kennedy, & Kremer, 1991; Hi-

ranandani et al., 1994) that for small messages communications overhead is more closely

related to the number, rather than the size, of the messages, this is not so clear when mes-

sage size exceeds the network MTU. On many networks, the cost of sending a message of

size k�MTU is roughly equal to the cost of sending k messages of size MTU, since in both

CHAPTER 4. Basic Communication Principles 64

cases the bottleneck of the transmission interface must be entered k times, and there is little

if any benefit in allowing some intervening service to do the necessary fragmentation.1 It is

valuable to impose a reasonable limitation on the size of messages even when this is untrue,

and transmission time is the cost of message startup plus a penalty directly proportional to

message size no matter how large that may be. Without a limit, we would need to retain arbi-

trarily large buffers into which messages would be built, and ensure that these buffers were

not improperly shared between functions that might be executing simultaneously through

some sort of multiprogramming to increase efficiency. In addition to the space wastage for

the accumulated request message, we would pay a penalty in latency by waiting until the

whole message is ready before sending any of it, while we could instead overlap the local

computation of what values are required from what nodes with at least some of the commu-

nication of the requests to the other nodes.

Even with an assumption that there is a preferred size for messages, we cannot refuse

to transfer messages which exceed that size—for example, if a single element in a parallel

value is larger than the MTU—and it would be undesirable to force every part of the sys-

tem which might build a message for transmission to take responsibility for fragmenting

the message to satisfy the MTU requirements. Therefore, the MTU is taken only as a hint,

and we must retain the ability to transfer, when necessary, messages of whatever size might

be required. (We may reasonably require that the MTU be at least some minimum size so

that a common header along with some data may be transmitted; with the current system,

the header will consume 16 bytes on a 32-bit machine, so useful MTUs must exceed this

length.)

Related to this is the fact that most networks will limit the amount of data that can travel

on the network at any time, or be buffered at a remote end. As long as processors can build

messages faster than the network can deliver them, some sort of flow control will be required

to ensure these buffer limitations are handled. The issue of flow control when a communi-

cation transmits a large amount of data does not seem to have been explicitly addressed by

most researchers. Deadlock avoidance implies that, at least for cluster-based architectures,

it is not sufficient to precede a loop with a single massive transmit, perform local operations,

then read in data from other nodes. Unless one can assume the availability of asynchronous

transmit and receive operations, deadlock avoidance mechanisms can be sufficiently com-

plex that their integration into any communication optimization is non-trivial.

We do not wish to trouble higher level routines with flow control complexities, because

the particular warning signs and recovery actions will vary depending on the underlying

network. Flow control must be the responsibility of lower level routines, though we must

be willing to provide some sort of mechanism, such as calling a check function at regu-

lar intervals, to give the low-level functions the opportunity to detect the situation and take

compensatory action promptly.

1. For example, simple testing on Ethernet-connected Solaris workstations showed a performance loss of
only 5% when a 32KB buffer was transmitted in 23 fragments of at most 1480 bytes rather than in one 32KB
block.

CHAPTER 4. Basic Communication Principles 65

We can also profitably take advantage of assumptions about the quality of service pro-

vided by a network. For example, TCP/IP will guarantee that messages are delivered exactly

once, and in the order in which they were sent. On the other hand, UDP/IP may duplicate

or drop packets, and messages may arrive out-of-order. Other protocols may guarantee that

duplicates will not occur, but may fail to deliver a packet if some negotiated bandwidth limi-

tation is exceeded by the program. Clearly, the type of failure is dependent on the underlying

network, and it would be an implementation nightmare if the details of error recovery were

able to propagate up into the higher levels of the communications hierarchy. Therefore, we

will require that the lowest level will guarantee in-order reliable delivery of packets.

For some algorithms this is stronger than is strictly necessary—for example, it is not

critical in the general get operation described above that requests for data be served in or-

der, as long as all are eventually received (and this state is recognizable). However, there is

often some benefit even in these algorithms in assuming that requests arrive in the order they

were sent. State on the remote node, such as a current position in a data or context structure,

as well as cache lines from previous requests, may require a sudden large shift if the order

of requests received is not monotonic. However, many network interfaces support the as-

sumed level of reliability, and even with those which do not the frequency with which the

desired service level is not actually met can be fairly low (Mosberger, Turner, & Peterson,

1994) (though the results in this study, based on C* communications patterns on an FDDI

token ring, conflict with an evaluation of C* communications patterns on Ethernet using

UDP (Chandranmenon, Russell, & Hatcher, 1994)). The value of allowing for out-of-order

reception of messages in the high-level protocols is therefore unclear.

Though some systems are intended to work on heterogeneous platforms (Skjellum,

1993; Weissman & Grimshaw, 1994; Crandall & Quinn, 1993), issues of byte re-ordering

and differences in the representation of primitive data types such as C ints and doubles

are orthogonal to the basic communications structure. In general, the C* communications

system is unaware of the internal structure of data that it is sending to other nodes (e.g.,

when transmitting parallel structs with arbitrary fields), and therefore is unable to perform

a translation to a common data representation. Rather than enter into the morass of struc-

ture inference or tagging data with type identifiers, we restrict our attention to homogeneous

networks, which contain only one hardware or software architecture.

One final question is whether we should assume that all communications operations are

point-to-point, or whether we can rely on the availability of some sort of multicast or broad-

cast operation to propagate information amongst all nodes quickly. Though many interfaces

support one-to-many communications, there are often limitations on it: on standard Unix

interfaces to Ethernet, broadcast may require running as a privileged user, while multicast

is only available with a protocol that does not provide reliability guarantees, inducing extra

overhead to meet the quality-of-service demands in the low-level routines. Furthermore, the

most communication-intensive operations are inherently point-to-point: by number, very

few operations in the C* library could take advantage of a broadcast mechanism. The hierar-

chy described in the next section is based on an assumption that only point-to-point message

passing is supported. Experimental results which cast doubt on the value of using multicast

CHAPTER 4. Basic Communication Principles 66

even for the operations in which it might be expected to be beneficial, given our other sys-

tem requirements, appear in section 4.4 after the details of the communications system are

presented.

4.3 The Communications Hierarchy

The communications subsystem of pC* is structured into a hierarchy of three levels.

The highest level routines implement core and library C* operations, such as grid and gen-

eral communications, axial operations such as spread and reduce, and the more complex

operations of scan and rank. These routines are almost completely divorced from any net-

work limitations, except that they may where appropriate take advantage of knowing the

network’s MTU to decrease communication latency and buffering requirements.

The mid-level routines implement a generic set of communication functions and serve

as an interface between the higher level routines and the lowest level, network-specific func-

tions. These include:

� sending a value to a particular node

� reading from one (or any) node

� installing and invoking message handlers to decrease buffering requirements for incom-

ing messages

� broadcast (each node contributes a portion of a whole which must eventually be avail-

able on all nodes)

� reduction (each node contributes an operand, the set of which are combined to yield a

single value available on all nodes)

The interface presented accepts messages of any size, and performs all necessary fragmen-

tation and network-independent buffering.

The lowest level routines have strong restrictions on what they can be asked to do, and in

return guarantee to meet the reliability needs of the higher level routines. The mid-level rou-

tines ensure that low-level routines are not asked to handle messages that exceed the MTU,

and that any incoming message is completely read before another is requested. In return,

the low-level routines allow messages to be read piece-by-piece, so that header information

can be used to determine where the remainder should be stored, and provide a mechanism

which informs the mid-level routines that data from a particular node has arrived. This per-

mits the mid-level routines to perform generic buffering operations to alleviate pressure on

the network interface.

Figure 4.1 shows the hierarchy and dependencies between levels (solid lines) and rou-

tines within levels (dotted lines). Due to their complexity and number, not all high-level

routines are depicted. Because communications functions are globally visible, the names

are prefixed with PCS__ to remove them from the user’s namespace and avoid conflict with

CHAPTER 4. Basic Communication Principles 67

write read

prim_writev poll prim_read

check_messages

register_hnd unregister_hnd

reducebroadcast

multiwritev

writev

scan grid write+=, *=, etc.general get

High Level Routines

Low Level Routines

Mid Level Routines

(Partial Set)

Figure 4.1: The Communications Hierarchy

CHAPTER 4. Basic Communication Principles 68

system functions of the same name; this is reflected in the interface figures that follow, but

the prefix is removed from the text descriptions to avoid unnecessary verbosity. A detailed

description of each level follows.

4.3.1 Low-Level Communication Routines

Three routines are sufficient to meet the needs of the network-dependent component of

the hierarchy; the interface is shown in figure 4.2. These provide the ability to write a mes-

sage to a destination, read a message from a source, and determine what nodes have sent

data. Nodes are named by their number within the cluster; where necessary, these must be

mapped within the low-level routines to any network-specific information associated with

the interface to the given node, such as IP address and port number, or Unix file descriptor.

prim_writev is the message transmission interface. The parameters to this proce-

dure are the partner, or node number to which the message is to be written, an array of

prim_iovec structures which point to the data to be sent, and the number of prim_iovec

structures in the array. The prim_iovec structures are C structs, containing a pointer to

a data block and an integral size indicating the amount of data to be sent from the block.

This allows us to write to the network messages whose data are spread throughout mem-

ory; if the network does not support such a “gather” operation, the message can be packed

inside the prim_writev implementation. It is assumed that there is a limit on the number

of prim_iovec structures accepted by the network interface; this value is available to the

system just as is the MTU.

Support for gather is extremely important, since every message which goes out must

include a header, described in the section on mid-level routines, to identify the particular

operation to which the message pertains. Similarly, at the higher level we may want to send a

block of data from within a C* variable along with a structure containing instructions such as

where on the remote node the data should be stored. Gather writes permit us to send directly

from the original location of the data in memory, without unnecessary copying, when the

interface allows this.

To aid in detecting network buffer overflows, the prim_writev routine is permitted to

return without sending any of its message if it detects that there are insufficient resources

to complete the message transmission. However, for correctness, it must guarantee that it

sends either all or none of the message, lest the remote node read a header and attempt to go

on under the assumption that the entire message is available. While some networks (such as

fully-connected TCP socket meshes) keep all source/destination pairs separate, others rely

on the header to determine the source of the incoming message, and will fail if messages

are not transmitted atomically (as with named pipes where each node has a single incom-

ing source through which all remote nodes send data to it). Failure to write a message is

a signal to the mid-level routines that they should buffer any pending incoming messages

to avoid network buffer overflow and deadlock as described in section 4.3.2. However, if

the network interface permits writing a partial message, thus committing prim_writev to

complete, the low-level routine may be obliged to take on some of this buffering role itself.

CHAPTER 4. Basic Communication Principles 69

/* The structure used by the primitive readv and writev functions */

typedef struct PCSprim_iovec {

void * iov_base; /* Address of data block */

int iov_len; /* Size of data block */

} PCSprim_iovec;

/* Primitive read function. Read up to size bytes into buffer from

* partner. */

int

PCS__prim_read (int partner, /* Node number to read from */

void * buffer, /* Destination of data */

int size); /* Amount of data */

/* Write to the transport the combined data from the locations specified

* by iov, as one message. Guarantees no interleaving if total message

* length does not exceed PCS__prim_msglimit. */

int

PCS__prim_writev (int partner, /* Node number to write to */

PCSprim_iovec * iov, /* Specification of data sources */

int iovcnt , /* Number of specifications */

int blockp); /* Blocking/nonblocking write */

/* Generic polling function. onodes is where the worker node number of

* connections that satisfy the poll request are stored; nonodes says how

* many there is room for. Returns immediately if timeout is 0; waits

* indefinitely if timeout is -1; waits timeout milliseconds if timeout is

* positive. Returns the number of entries filled in onodes; -1 if no

* entries were filled and there was a non-zero timeout. Errors are

* fatal errors to the system. */

int

PCS__poll (unsigned int * onodes, /* Where output nodes should go */

unsigned int nonodes, /* How many output nodes can we handle */

int timeout); /* Timeout on wait for event, msec */

Figure 4.2: Communications hierarchy: low-level interface

CHAPTER 4. Basic Communication Principles 70

prim_read is the message reception interface. It is given the partner from which a

message is to be read, the size of the data, and a pointer to the destination where the data

should be stored. The read routine will block until the requested data has arrived, so care

must be taken not to commit to a read unless it is known that the data will be available. It is

not necessary to read the entire message at once; in fact, the preferred use of the prim_read

routine is to read the header and use its contents to determine what should be done with the

remainder of the message. This allows the “scatter” analog of the gather write supported

by prim_writev, where we can store incoming data directly into its final location based on

information provided by the header, saving both buffer space and copy operations. Though

the mid-level routines may invoke prim_read multiple times to read a message, they guar-

antee that they will not attempt to read any other message until the partially consumed one

has been completely read.

Finally, poll is used to check for the presence of incoming messages. The parameters

include a onodes array to store the node numbers from which pending messages have ar-

rived, a count nonodes indicating the maximum number of nodes that can be stored, and a

timeout which permits us to control behavior when there are no pending messages: either

to return immediately, or to wait up to the given timeout for an incoming message. This

routine is used within the deadlock prevention scheme in the mid-level functions, and to

determine the partner passed to prim_read.

These three routines make up the network-dependent components of the system, and a

separate module (C source file compiling to a Unix object file) is maintained for each of

the networks supported by the pC* system. Currently, five multiprocessor mechanisms are

actively supported. These modules, averaging approximately 500 lines each, are maintained

separately from the primary runtime library, and the user can specify at link time which

network a particular C* program should use.

4.3.2 Mid-Level Communication Routines

The mid-level communication routines are more numerous, and significantly more com-

plicated, than the low-level routines. They can themselves be partitioned into three sets:

basic read and write, buffer handling, and collective communication routines.

All messages which pass through the mid-level are associated with a transaction type,

which is an integer that indicates the type of operation with which the message is associated.

There are approximately two dozen transaction types in the current system, most of which

name phases in high-level routines; examples include owner broadcast, grid read, and gen-

eral get request. Each type has an associated index number, which allows us to have several

of the same transaction active at any time; the index number is incremented for each new

operation. When combined the transaction type and index create a transaction code, an inte-

ger which uniquely associates a message with an operation. However, the mid-level routines

are generally invoked with only the transaction type as a parameter; the code is constructed

internally based on the current index.

The mid-level routines are responsible for fragmentation of data into MTU-sized pack-

CHAPTER 4. Basic Communication Principles 71

typedef struct IPCmsghdr {

int sender; /* Node number of origin */

int mcode; /* Type tag, for synchronization */

int size; /* Size of the data portion of the msg */

int index; /* Index of message if split */

} IPCmsghdr;

Figure 4.3: Common message header

ets, and the corresponding reconstruction. To aid in reconstruction, each message passed to

the low-level routines begins with a header whose structure is given in figure 4.3. In addi-

tion to the type code, information is provided about who sent the message, the size of the

data portion of this message, and the index of the message when it is fragmented by the

mid-level routines. The low-level routines may need to examine this header in order to de-

termine who sent the message, or the appropriate order for returning message packets if in-

order delivery is not guaranteed by the underlying network. If the low-level routines wish

to piggy-back additional information into the messages they transmit, such as checksums or

acknowledgements of previous messages, it is their responsibility to ensure this information

does not propagate to the mid-level routines, which are not concerned with it.

Notice that the fields in the IPCmsghdr are all of type int. One might consider whether

some space savings could be achieved by using types which are likely to be smaller. One

reason for not doing so is the danger in limiting the ranges of the field, especially the index

used in fragmentation. A 16 bit index field, in conjunction with a 512 byte MTU (reason-

able for some interfaces, such as named pipes or shared memory machines), would limit

single data transfers to 32MB. Though this sounds like a large message, we want the mid-

level routines to behave as though there were no practical limit to message size, and in terms

of large images 32MB would be a practical limitation. A more interesting reason to avoid

the “non-native” word sizes is given in (Mosberger, Peterson, & O’Malley, 1995), which

describes an analysis of TCP protocol latency on DEC Alpha workstations connected by

Ethernet. The analysis found that the largest savings in the number of instructions executed

to implement a protocol was due to using ints instead of chars or shorts in state vari-

ables, because the Alpha does not have hardware support for accessing data in less than

32-bit chunks. As other architectures can also suffer from non-aligned memory accesses

(in terms of speed if not additional instructions), the minimal space savings from packing

structure fields was therefore not considered to be worthwhile.

4.3.2.1 Mid-level Write and Read

The mid-level routines shown in figure 4.4 include several methods of writing data to

other nodes. The basic write routine is given a destination node, a message type, a

buffer address, and a size, and sends the size bytes which live locally at buffer to the

destination in as many MTU-sized messages as are required.

CHAPTER 4. Basic Communication Principles 72

/* Read an arbitrarily sized block of data of code type from partner.

* Handles interleaved messages and out-of-order delivery. If size is -1,

* reads until a partial primitive packet has been read. Returns total

* number of bytes read */

int

PCS__read (int partner, /* Who's sending the data? */

MessageType type, /* Message type code */

void * buffer, /* Where to store the data */

int size); /* Amount of data to expect. */

/* Send an arbitrary sized amount of data to partner, tagged as type, from

* buffer. Encases data in primitive-level packets as required by the

* transport level. The final packet will be partial, so PCS__read can

* detect the end of an arbitrarily sized read. This will send a null

* message if size is 0. */

int

PCS__write (int partner, /* Who to send to */

MessageType type, /* Message type tag */

void * buffer, /* Where data lives */

int size); /* Amount of data to send */

/* Package up the iovec along with any external data it references into a

* single message, which is split as required by the network to avoid

* interleave problems. The message is sent to everybody in the dest

* list. */

int

PCS__multiwritev (int * dests, /* Who to send it to */

int ndests, /* How many are there */

MessageType type, /* Type tag of message */

PCSiovec * iov, /* Data to send */

int iovcnt, /* Number of iov elements. */

PCS__Bool sendiovcnt); /* Send iovcnt in message? */

/* Package up the iovec along with any external data it references into a

* single message, which is split as required by the network to avoid

* interleave problems. The message is sent to the single partner

* given. */

int

PCS__writev (int partner, /* Who to send it to */

MessageType type, /* Type tag of message */

PCSiovec * iov, /* Data to send */

int iovcnt, /* Number of iov elements. */

PCS__Bool sendiovcnt); /* Send iovcnt in message? */

Figure 4.4: Communications hierarchy: mid-level read/write interface

CHAPTER 4. Basic Communication Principles 73

A somewhat more powerful routine is writev, which instead of the buffer and size ar-

guments takes a pointer to a sequence of PCSiovec structures and a count of how many

structures are in the sequence. These structures are similar to the ones used for the low-level

interface, but include information about the source node (used in broadcast and high-level

functions) and have the option of storing a scalar type code and a value (e.g., int or float)

instead of a buffer size and external address. The network-level message that is formed from

an invocation of writev consists of the sequence of PCSiovec structures followed by the

data pointed to by members of the sequence which refer to memory blocks instead of con-

taining scalar values. With the exception of the mid-level broadcast routine, all call sites

to writev invoke it with only two PCSiovec structures, the first of which generally con-

tains an integer which names an offset within an agreed-upon C* shape, and the second of

which is a pointer to the local data which are to be transmitted to the remote node and stored

in the given offset.

The third interface extends writev to a multiwritev function which, instead of send-

ing the data to only one node, can send them to several or all the nodes in the computa-

tion. This permits higher level routines to assume that some sort of multicast one-to-many

mechanism is available and saves repeatedly fragmenting the same message, even though

the current implementation does not support broadcast directly. (In the code, writev is a

front-end to multiwritev, so the fragmentation code is not duplicated.)

Incoming messages are received in one of two ways. Where synchronous transfer is re-

quired, a read routine is provided a source node, a message type, a destination address,

and a size, and a message with the current code for that type is read from the source node

and stored into the destination. size can be a wild-card indicating “the whole message,

I don’t know how big it is,” or can be less than the whole message. In the latter case, read

will go on to read and buffer locally any remaining portion of the current network packet,

to maintain the invariant that partial packets are not left pending at the low-level interface.

More commonly, incoming messages are handled asynchronously through an extension of

the mechanism used to avoid network buffer limitations.

4.3.2.2 Mid-level Buffer Management

Recall our assumption that a given underlying network is likely to limit the amount of

data that can be in transit or left unread. For example, experimentation under Sun’s Solaris

operating system indicates that stream sockets have an upper limit of approximately 40 KB

pending data, named pipes a limit of 9 KB, and the System–V message passing facility of

4 KB. If the limit has been reached, the interface functions will either block or refuse to

transmit more data (Papadopoulos & Parulkar, 1993). Though some of these limitations can

be increased by modifying kernel variables, it is generally either impossible or unreason-

able to extend them to the point where we can be sure the limitations will not be exceeded.

Consider, then, what will happen if two nodes attempt to exchange large buffers, say 1 MB

in size, during the same operation: each will start to fragment the buffer into MTU sized

chunks and send them out, but soon the low-level prim_writev routine will indicate that it

CHAPTER 4. Basic Communication Principles 74

is unable to transfer the data because the other end is also busy writing instead of reading.

Something must be done to alleviate the pressure on the network.

The problem is addressed with a cooperative buffer-management protocol. It is not

possible to inform a remote node that we are no longer able to write to it.2 Therefore,

we must trust that it will notice this and deal with the problem itself. To avoid network

buffer limitations, we check the interface (using the low-level poll routine) just prior to

each prim_writev, and read in any messages which are pending at the interface. These are

stored in buffer chains indexed by transaction code. When a write attempt fails, we pause

and clean up our incoming messages, then attempt to retransmit. Since execution on all

nodes is coupled (albeit loosely) by communication requirements, and all high-level com-

munication operations have an implicit barrier which ensures that the operation has com-

pleted, we can be sure that the remote node will eventually check its incoming queue and

remove enough pending material that we will be able to send more data to it. So long as the

MTU is less than the network buffer limits, and the low-level routines atomically deliver or

refuse to deliver messages in a bounded finite time, deadlock will be prevented.

It is not sufficient to check for pending messages only when we attempt to write, since

the communications pattern for an operation might not cause write to be invoked with any

regularity. Therefore, we provide a check_messages routine at the mid-level, which takes

an optional timeout (described later) and reads in all pending messages and buffers them.

This routine should be called at regular intervals in any portion of the code in which mes-

sages might be expected to arrive while we are not calling communications routines our-

selves: for example, when walking the local portion of a shape in the grid communication

routines (chapter 6), we can expect data from other nodes to arrive during the walk.

Though preemptive buffering of messages in this fashion avoids deadlock due to net-

work buffer limitations, we have merely transferred the buffering requirements from the

network interface into the mid-level communication module, which by design does not have

any fixed limitations on how much data it will accept (as long as it can continue to allocate

buffer memory). In the example above of exchanging two 1MB chunks, this means that af-

ter the transfer each side will have 1MB of data, buffered in chains of MTU-sized chunks,

to walk through and deal with appropriately. It would be far better if we could, at the time

we read the fragment, perform whatever operation was required immediately, thus avoiding

the buffer at the mid-level (as well as the ensuing copy when it is moved to its final resting

place). The message handler component of the mid-level hierarchy was designed to address

this issue; it is somewhat analogous to the Active Message concept of (von Eicken, Culler,

Goldstein, & Schauser, 1992), though more general and correspondingly of heavier weight.

Two functions complement check_messages by permitting it to detect expected mes-

sages and perform a specified operation on them (see figure 4.5). register_handler

takes a transaction code, a pointer to a function, and a pointer to some arbitrary parame-

ter, and records this information. When check_messages is informed through poll that

2. This may appear obvious; there are, however, interfaces which would permit transfer of out-of-band infor-
mation such as error conditions even when the normal band is blocked. These are not universally available,
hence cannot be relied upon in system design.

CHAPTER 4. Basic Communication Principles 75

/* Type of function invoked on handled messages */

typedef void (* ChkMsgFunction) (

unsigned int sender, /* Who sent it */

unsigned int mcode, /* Message code */

void * msgbody, /* Data in message */

void * otherparm); /* Parameter paired with mcode */

/* Look for any incoming messages that are sitting on the input ports:

* we want to pull them off, because the other side might be blocking

* on a write. This function provides the ability to dispatch messages

* that we expect, and buffer those we don't know what to do with. */

int

PCS__check_messages (int timeout);

/* Add a message handler: when a message with the given code appears

* on an input channel, call the given function with the message as

* a parameter. */

void

PCS__register_handler (unsigned int mcode, /* Code to look for */

ChkMsgFunction fn, /* Function to call */

void * params); /* Parameters to pass to fn */

/* Remove the handler associated with the given message code. */

void

PCS__unregister_handler (unsigned int mcode); /* Code to look for */

Figure 4.5: Communications hierarchy: mid-level buffer handler support

data are available from a given node, it reads in the header and compares the message’s

transaction code with the ones in its list. If no match is found, the remainder of the mes-

sage is read and buffered. But if an entry for the incoming transaction code is discovered,

check_messages reads the message body into a local buffer and invokes the provided func-

tion on the message.3 check_messages is then free to avoid buffering this message, since

the handler is presumed to have done whatever is required. The additional parameter is

passed to the provided function along with message data, to allow the function access to

other state such as variables into which incoming data should be stored or detailed informa-

tion on the particular operation to be performed. A companion unregister_handler rou-

tine informs the mid-level that we have completed all operations corresponding to the given

transaction code and removes the handler from the list examined by check_messages.

There are a variety of complexities involved in the message handling interface, from

3. Although this violates our desire to avoid copying buffers if the handler will simply move the message into
place, most handler invocations, such as those from general and grid communications, need to pick values out
of the message and store them in various different locations. In this case, no particular location is preferable
for the message, and the overhead of asking the handler for a destination buffer is undesirable. Should our
perception of this change, it is obvious how to extend the system to handle both cases (cf. the following dis-
cussion of broadcast).

CHAPTER 4. Basic Communication Principles 76

trivial ones such as checking for buffered messages which arrived prior to the handler reg-

istration, to far more complex ones due to the fact that we do not restrict what operations

may be performed by the handler function. As described in chapter 5, the handler function

for a general get operation will read in a list of request values, which indicate what elements

should be sent to a remote node. It will then package up those requests and send the data.

The act of sending the data will itself invoke the check_messages routine, which may read

in another request which arrived in the meantime. Were we to recurse into the handler for

the new request immediately, we would trample on data being used by the previous, still

active, invocation. Therefore, we must again buffer the incoming requests, being careful to

maintain order of arrival, yet be sure that when the first check_messages call has finished

it has dealt with not only messages pending at the network interface but also those which ar-

rived and were buffered by recursive calls to check_messages. The issues of maintaining

correct message order in a multiply–re-entrant handler make this one of the more complex

routines in the system (based on the number of subtle, difficult-to-reproduce errors found

during testing and production use).

By policy, we do not permit the two methods of reading messages to intermix in a given

transaction type—messages which may be read may not have handlers installed for them,

lest the complex buffer management required of handled messages be corrupted, or state

maintained by the handler not be correctly updated. Therefore we use the timeout parame-

ter to check_messages when we have completed all local operations and need to ensure that

a transaction with a registered handler has completed. We assume that completion is noted

by the handler on reception of the final message by setting some global state flag that can be

examined in the high-level communication routine; we simply loop, at the end of the routine,

calling check_messages until either the completion flag has been set or check_messages

informs us that it has waited the expected time and has not received any additional messages.

This permits us to distinguish between a remote node which is simply slow to respond and

one which is no longer operational: such a failure results in a fatal runtime error, rather than

permitting the program to block indefinitely.

It is possible that a highly imbalanced computation might result in an erroneous timeout

if one node gives up before another has had a chance to complete its work. By default, the

timeout is one minute for each node in the system (e.g., an 8-node cluster will wait up to 8

minutes for an expected message). Under normal processing in most applications, commu-

nication is common enough that nodes remain too closely coupled to exceed this timeout;

however, if this should change, a more complex method of failure detection, perhaps based

on a heartbeat system, could be implemented.

The message handler is used in almost all high-level communication operations, and the

broadcast mid-level collective routine described in the next subsection. Instrumentation

on the benchmark programs in chapter 7 running on eight nodes with medium-to-large sized

tests indicates that 99% of messages intercepted by the check_messages routine are han-

dled immediately, requiring no buffering (the lowest nodal handle rate was 90.9%), while

the remainder were either unrecognized (arrived before the handler was installed), or re-

quired buffering to avoid out-of-order handling in nested calls to check_messages. The

CHAPTER 4. Basic Communication Principles 77

one benchmark that called a high-level routine that does not use the message handler needed

to buffer half the messages it received, because they were for a different operation than the

one the node was expecting. This implies that the message handler is saving a significant

amount of buffer space, in addition to preventing deadlock.

Though we have said that most high-level operations have an implicit barrier at the end

which indicates the communication has completed, the handler functions permit us to take

advantage of data dependence analysis and move this barrier from the end of the high-level

routine to a position in the code just before the result is to be used. For example, a general

send operation may install a handler for incoming messages, send its data to remote nodes

as appropriate, then continue processing without waiting for incoming data to arrive, sav-

ing the transaction code as a key. Just prior to use of the communication result, code can

be generated to see whether the transaction has completed (based on the key which identi-

fies it) and block until it has. Performing this operation would require a compiler analysis

to determine that a particular parallel value results from a communication operation with

a movable, handler-based barrier, and where the value will next be used. This analysis has

not been implemented in pC*, so the optimization described here remains theoretical. How-

ever, it would appear that such an analysis would permit us to overlap the communications

of data with local computation in almost every case, by making the compiler recognize val-

ues which are defined by operations with handlers, including any high-level library routine.

We thus have a runtime system which, though designed without concern for compiler-based

analysis that may or may not be available or applicable, integrates smoothly with such anal-

ysis when it can be done.

4.3.2.3 Mid-level Collective Communication

Collective communications (Mitra et al., 1995) are interactions where a group of nodes

cooperate to form a common result. There are two collective communications routines in

the mid-level suite, which are used to communicate amongst a set of nodes rather than a pair.

These are the broadcast and reduce operations, shown in figure 4.6. Though in both cases

they involve communicating a contribution from each node, they have very different usage

patterns, and the implementations are correspondingly dissimilar.

The purpose of broadcast is to take a block of data from each node, and ensure that

after the broadcast every node has available to it the data from all nodes. The amount of

data originating on each node may be different, and it is generally the case that the total

amount of data is fairly large. For example, broadcast is used in the implementation of

read_from_pvar, which transfers data from a distributed parallel value into a scalar array

which is replicated on each node and contains all the values from the distributed value. Sim-

ilarly, it is used for summary information when computing scan operations over all nodes,

to indicate where scan set boundaries break the normal incremental progression along an

axis. The size of data blocks in this case is proportional to the number of positions in the

shape divided by the number of positions in the axis being scanned. In addition, the results

of a broadcast operation are normally simply stored into some region of memory on each

CHAPTER 4. Basic Communication Principles 78

/* An array of iovec structures, one per mesh node, to use for creating

* and reading various broadcast data stuff */

extern PCSiovec * PCS__iovecvec; /* Data to be broadcast */

/* Function to locate buffer for broadcast data from src */

typedef void *

RecvDataFunc (unsigned int src, /* Node which sent the data */

PCSiovec * iov, /* Data received */

void * params); /* Parameters provided by caller */

/* Perform a broadcast involving the given nodes. This node must

* have filled out PCS__iovecvec[0] with its own data. When the

* function returns PCS__iovecvec will contain data from each node.

* The handler function will have been called on the data from all

* other nodes, but not this one. Each node will have the same final

* data in its own PCS__iovecvec, but probably in a different order;

* the position of the data from this node may have changed. */

void

PCS__broadcast (RecvDataFunc rfunc, /* Function to execute on receipt */

void * rfparam, /* specific params to pass to rfunc */

unsigned int * bcmembers, /* Who's in the broadcast */

int groupsize); /* Number of members in bcmembers */

/* The data type for a function which performs a particular operation on

* operands of known types. */

typedef void PCS__DoopFunction (void * lhsp, void * rhsp, size_t size);

/* General reduction operation, which applies doop to dest over all nodes.

* Fans in down to first node, then returns result back, so everybody

* agrees even if doop isn't associative. */

void

PCS__reduce (void * dest, /* Our node's source / destination */

int size, /* Size of data being spread */

PCS__DoopFunction * doop, /* Function to apply on receipt */

unsigned int * members, /* List of members in reduction */

int groupsize); /* Number of members in reduction */

Figure 4.6: Communications hierarchy: mid-level collective communications routines

CHAPTER 4. Basic Communication Principles 79

node, and are consulted unpredictably in further computation, rather than being condensed

or operated on immediately as they are received.

The implementation of broadcast follows a fairly standard butterfly exchange algo-

rithm (Mellor-Crummey & Scott, 1991) involving logP stages, since we have only point-

to-point communications facilities available to us. Since the data involved are large, and we

already have fragmentation support available, we call mid-level communications routines

rather than low-level ones in the implementation. The PCSiovec facility of writev is used

to allow us to read and write directly from and to the target buffers on each node. There is an

array of PCSiovec structures, one for each node in the mesh, which is reserved for broad-

cast operations. In preparation, each node initializes the first PCSiovec structure with the

information that it is contributing. The parameters to broadcast include a function which

is called with the number of the originating node for a block of data when the first fragment

of the data arrives, and which returns the memory address on the local machine into which

the data is to be stored. This ensures that each node is able to arrange the data in a preferred

order, without requiring special computation in the calling routine to determine the order in

which blocks will be received during the log-based exchange.

To complete the exchange, each node first determines its partner for each stage, assigns

a transaction code to the messages for the stage, and registers a handler to do the storing

of incoming data. It also determines the number of elements in the global PCSiovec array

which it must send to the partner, which contain the broadcast data that the partner has not

yet seen. The array is managed so that at each stage an initial sequence of elements of the

array must be sent: these consist of the data that originated on the node plus those which

were sent to it in previous stages, allowing us to transmit data for a stage in a single call

to writev. The handler routine associated with each stage will detect an incoming (frag-

mented) message, and store the data segments in the proper location, invoking the provided

routine to determine buffer addresses as necessary: the handler is aware of the fragmen-

tation algorithm used by multiwritev so it can reconstruct the data. When the handler

detects that the last fragment of the message associated with a stage has completed, it calls

the provided routine one more time to perform any associated clean-up code, and marks the

stage finished. This permits the implementation to store data into their final location even if

the data correspond to a stage which the local node has not yet reached, because it doesn’t

have what it needs to send in that stage. Since we are operating on large blocks of memory,

this will avoid all buffering of data that arrive after the broadcast operation starts but before

the data’s stage is reached. The broadcast routine itself simply walks through the stages,

sending the local data to the partner for that stage and waiting in check_messages for the

necessary incoming data to arrive before proceeding to the next stage. At the completion

of the operation, all nodes have all data, though the order of PCSiovec entries in the global

array will be different on different nodes.

Pseudo-code for an implementation on a mesh with 2k nodes is presented in figure 4.7.

The handler routine bcasthandler is not shown; it simply unparses the fragments from

writev and stores them appropriately. For meshes with 2k
< P < 2k+1 elements there are

initial and final steps in which nodes n where 2k
� n send their data to a partner n� 2k,

CHAPTER 4. Basic Communication Principles 80

pmask = nnodes = 1;

sip = bcastsuminfo; /* Array of summary info */

while (pmask < groupsize) {

if (mynode & pmask) { /* Chose our partner within mesh */

sip->partner = mynode - pmask;

} else {

sip->partner = mynode + pmask;

}

sip->istart = nnodes; /* Where we start storing iovecs */

sip->nread = sip->nwrite = pmask;

sip->state = BST_Initial;

sip->mcode = NextMessageCode (MT_Broadcast);

register_handler (sip->mcode, bcasthandler, sip);

nnodes += sip->nread; /* Number of data available for next stage */

pmask <<= 1;

sip++;

}

pmask = 1;

sip = bcastsuminfo;

while (pmask < groupsize) {

/* Reset message index so writev uses correct code */

SetMessageCode (MT_Broadcast, sip->mcode);

writev (sip->partner, MT_Broadcast, PCS__iovecvec, sip->nwrite, 1);

/* Wait until we've received everything for stage, or error */

while (BST_Finished != sip->state) {

if (0 > check_messages (io_timelimit)) {

fatal ("broadcast: failed to complete stage %d\n", pmask);

}

}

unregister_handler (sip->mcode);

pmask <<= 1;

++sip;

}

Figure 4.7: Algorithm for Broadcast (Power-of-2 Mesh Case)

CHAPTER 4. Basic Communication Principles 81

then the exchange is performed amongst the lowest 2k nodes and the partner sends the final

results back.

The reduce function differs in several ways from broadcast. First, the primary use is

to generate a single scalar value which is a combination of the contributions from all nodes.

The reduce function therefore takes a pointer to a function which, given two parameters d

and s which point to memory regions, combines the data at s into d in an operation-specific

fashion. The routine is most often used in C* reduction operations such as s = += p, where

we are to store in the scalar s the sum of all active elements in the parallel value p. To

implement this, each node computes the sum of the values in the region of p which it owns,

then performs a global add reduction on the result.

One possible implementation is to use the broadcast operation to distribute each node’s

contribution, then walk the results locally computing the combined result. But the broadcast

exchange results in a total of O(P2
) network traffic, because it must transmit data from each

of P nodes to each of P�1 other nodes. We could reduce this total traffic to O(P) if we could

perform the combination operation at each stage, thus receiving and sending only a single

value. However, there is a potential difficulty with this.

It is critical for execution correctness that the results of a reduce operation be the same

on all nodes, because scalar values determine control flow: a difference of only one bit can

result in a divergence of execution on different nodes, with catastrophic results. If nodes re-

ceive reduction operands in different orders, this requirement may be violated. Depending

on the reduction algorithm chosen, it may be sufficient that a reduction operator be commu-

tative (i.e., (a�b) = (b�a)) or associative (i.e., a� (b� c) = (a�b)� c). However, as-

sociativity is not generally satisfied by arithmetic operations on floating point numbers, and

commutativity is not satisfied by some other C* operations (e.g., parallel-to-scalar casts).

Since the amount of data communicated for reduce operations is generally very small—

8 bytes or less—and will fit into the PCSiovec structure directly, we may simply choose

to use broadcast without reducing in stages, since the amount of network traffic is small.

We could then walk the data in a defined order based on source node (available in the global

broadcast PCSiovec array) and perform the same sequence of combinations on each node,

to yield a common final answer. The problem in this case is not correctness, but perfor-

mance: the broadcast implementation was designed for transfer of large amounts of data,

and the introduction of handler routines at the butterfly exchanges causes a significant over-

head for such small messages. Comparing this method with the reduce algorithm described

below on a variety of cluster sizes from 1 to 24 nodes, we found that the combination of

additional network traffic and handler invocation caused, on average, a 15% performance

penalty when performing reductions over 4-byte quantities; the difference was generally

higher for non–power-of-2 meshes.

We would therefore prefer an alternative algorithm which maintains correctness but does

not cause a performance penalty from unnecessary buffer handling. There are many pos-

sibilities, including simply writing the (small) data packets to all nodes and reading them

in in order, or using log-based fan-ins to a single node which then distributes the answer

to the other nodes in some fashion. Various algorithms were implemented and tested in the

CHAPTER 4. Basic Communication Principles 82

pmask = 1;

while (pmask < groupsize) {

if (0 == (mynode & (pmask-1))) { /* Do I take part in stage? */

if (mynode & pmask) { /* I'm source for this stage */

write (mynode - pmask, MT_Reduction, dest, size);

} else { /* Read from partner and combine locally */

read (mynode - pmask, MT_Reduction, buffer, size);

doop (dest, buffer, size);

}

}

pmask <<= 1;

}

Figure 4.8: Algorithm for Reduce (Power-of-2 Mesh, Fan-In Phase)

process of comparing point-to-point with multicast support at the low-level communication

routines; a discussion of the issues and results is given in section 4.4.

The algorithm finally chosen is the second best considered in section 4.4, due to a misap-

prehension about the correctness requirements for the best algorithm (cf. page 99). It uses

a log-based fan-in operation to send contributions to a single node, which then performs

the reverse fan-out operation to distribute the single result. Unlike the broadcast operation,

at each stage a node either reads a value or writes one, but not both. Each node sends its

value only once during the fan-in phase: after that point, it waits to receive the final result.

Local combination is done at each read step of the fan-in, since the bottleneck of the sin-

gle node ensures that there will be no disagreement on the answer. Since the data values

are small and the fan-in/fan-out algorithms do not involve all nodes at all stages, we do not

bother installing handlers to receive the incoming data, instead blocking on a read until the

data arrive. (NB: the “blocking” mid-level read will detect and handle or buffer other mes-

sages which arrive in the meantime, so deadlock will not occur.) Pseudo-code for the fan-in

phase appears in figure 4.8; the fan-out code is similar. For non–power-of-2 meshes initial

and final phases similar to those described for broadcast send contributions and results to

partners outside the primary fan-in group.

It is important to note that, in both these routines, the set of nodes over which the op-

eration is performed is not necessarily the complete cluster: this is the purpose of the pa-

rameter which gives the set of nodes which cooperate. Synchroneity of control flow means

that all nodes in the cluster will enter a particular collective communication routine at the

same time. However, some invocations, such as the CSComm reduce function described

in section 3.2.4, partition the cluster into groups based on ownership of data. For example,

with a six-node cluster distributing a two-dimensional shape in both dimensions as shown

in figure 3.2, a reduce along axis 0 involves two separate groups of nodes: nodes 0, 2,

and 4 share information about the first two columns, while nodes 1, 3, and 5 share infor-

mation about the last six. This separation means that in many cases true broadcast support

would burden nodes by sending them information they do not need to know. Since there can

CHAPTER 4. Basic Communication Principles 83

be arbitrary partitioning of the cluster into broadcast/reduce groups depending on how the

user has chosen to distribute data, it is necessary that we use a more insular implementation

which ensures that data are distributed to exactly the nodes that require them. Of course,

we must ensure that all nodes agree on the set of nodes that make up their broadcast group.

A similar partitioning of clusters into node groups is recognized in other communications

libraries (Barnett, Gupta, Payne, Shuler, Geijn, & Watts, 1994).

4.3.3 High-level Communication Routines

High-level routines in the communication hierarchy implement operations that are di-

rectly visible at the C* level, through core language operations such as left-indexed commu-

nication, parallel-to-scalar conversions, reductions, or communication-with-computation li-

brary calls such as spread, scan, rank, etc. The operations are often very complex, and

we will not attempt to describe them in this section. Two particular examples of high-level

communications routines are covered in other parts of this dissertation: the general commu-

nication functions are described in chapter 5, and grid communications operations are de-

scribed in chapter 6. Both of these take advantage of various features of the communications

hierarchy, including message handlers and the assumptions about MTU limitations, and are

good examples of the integration of data layout, traversal, and communications decisions

made in the pC* system. The other high-level communications routines, while interesting

in their own right, do not provide fundamental insight to the issues that are the topic of this

dissertation, and are left unexamined.

4.4 Point-to-Point or Multicast? A Case Study

Although pC* was designed to be portable to a variety of architectures, it was expected

that for the first two years of development the primary target platform would be stock Unix-

based workstations linked together with standard network hardware, using standard Unix

system calls to perform communication. Under this environment there are two network in-

terfaces which are obvious potential building blocks for the low-level routines of the com-

munication hierarchy: stream sockets, generally implemented using TCP/IP, and datagram

sockets, generally implemented using UDP/IP. Stream sockets offer reliable point-to-point

delivery, while datagram sockets offer best-effort delivery and also provide access to a mul-

ticast facility.4 We used stream sockets for the first year of development because they are

reliable, but after some time it became clear that reduction operations were consuming a

large portion of the execution time on some algorithms. For example, a common idiom for

4. Multicast support is distinguished from broadcast support by the fact that it can (a) be invoked by any
user while broadcast requires superuser privileges (at least on common Unix/UDP implementations), and (b)
restricts delivery to members of a group of (hardware) interfaces, rather than every interface on a connected
subnet. While true broadcast might be useful in some applications, we prefer the safety of non-privileged
execution and limiting reception of packets to machines which expect them.

CHAPTER 4. Basic Communication Principles 84

iteration until convergence is:

do {

old = latest;

... /* compute new latest */

} while (0 < += (old != latest));

which loops until the number of differences between successive iterations is zero. Though

syntactically short, the add-reduction is a high-cost operation (often due more to the time

it takes to communicate the reduction operands to all nodes than the time determining how

many differences there are on the local node).

Although the quality-of-service of the datagram interface is not immediately adequate to

meet our needs for a low-level implementation, common wisdom has it that communication

over datagram sockets is significantly faster than over stream sockets. We wanted to know

whether adding the necessary wrappers to UDP to meet the reliability requirements would

yield a faster system, especially given that we could then (theoretically) take advantage of

the multicast facility to improve reductions.

We performed two experiments to test this hypothesis. The first consisted of a program

which simply timed a series of message exchanges between two processors, using a vari-

ety of message sizes and several different message passing protocols. This provided ba-

sic information on the performance of the different protocols over a range of MTUs. In

the second experiment we examined the performance of two of the three core operations

which could take direct advantage of a multicast mechanism: owner-broadcast, in which

one node sends a single value to all nodes, and the mid-level reduce operation.5 Several

different algorithms were used to implement each operation, and their performance over

the different message passing packages and message sizes was evaluated. In summary, the

overhead induced when grafting our reliability requirements on top of UDP at user-level

overwhelms any benefits from the faster underlying transport for point-to-point operations,

and even when multicast operations are available their use should be considered carefully.

In all results described below, the experimental hardware was a set of twelve dual-

processor Sun SPARC 20s running 60MHz SPARC chips with 256MB of memory, using So-

laris 2.3, and connected in a star network through 10BaseT Ethernet with a Kalpana Ether-

Switch EPS-2015 RS serving as hub. The primary purpose of the EtherSwitch is reducing

network collisions due to multiple nodes sending data at the same time. It has been observed

(LaRosa, 1995) that the synchronous nature of data-parallel computation often means that

processors will enter communication phases at the same time. By putting each machine on

its own leg of the star network with a switching hub at the center, point-to-point messages

between nodes 0 and 1 (say) will not be visible to, hence not affect, any other nodes. Com-

parison tests done at the time the Kalpana was installed showed performance benefits on a

wide variety of programs that ranged from a 10% slowdown to an 80% speedup, relative to

5. Mid-level broadcast was ignored, because some of the same algorithms that would be used for it were
among those used to implement reduce, and conclusions about their performance on broadcast could be drawn
from their performance on reduce.

CHAPTER 4. Basic Communication Principles 85

a non-switching Ethernet hub. The bulk of the tests indicated a 20–50% speedup when six

or more machines were involved.

Because UDP multicast is to hardware interfaces, not running processes, we could not

use the dual processors to increase cluster sizes to 24, and tests were run with 2, 3, 4, 6, 8,

10, and 12 node clusters.6 All programs were compiled using gcc 2.6.3 with optimizations

-O2 -msupersparc, and during the tests no other non-system programs were running on

the cluster. As a sanity check, the tests were also executed on a network of eight single-

processor Sun IPCs running 25MHz SPARC chips with 24MB of memory each, also using

Solaris 2.3 but connected on a standard 10Base2 Ethernet segment. The results observed

in this environment followed the same trends as those described here, though performance

tended to degrade more rapidly as cluster size grew, due to collisions on the Ethernet seg-

ment which were filtered out in the production cluster by using the EtherSwitch as a hub.

4.4.1 Ping-Pong Test

The first test program is similar to the Unix system utility ping(1).7 A server process

runs on one machine, awaiting connections. A client process connects to the server, and in-

forms the server that it wishes to execute i iterations exchanging packets of size p. The time

taken at the client end to perform the exchanges is recorded. The program can be compiled

to use a variety of communication packages. Here we used the following four packages

which implement an interface similar to the lowest level of the pC* communications hier-

archy, except that any necessary polling is handled implicitly within the routines.

� Optimistic TCP opened stream sockets and used the Unix read(2) and write(2) sys-

tem calls to exchange messages. We call this protocol “optimistic” because it makes

no provision for recovery from or even detection of errors such as buffer overflow. No

problems with buffer limitations were encountered during the experiment runs below

(though limitations were exceeded when the packet size grew larger than is considered

here). Only point-to-point between two nodes was supported, since this interface is only

used in the ping-pong test.

� Optimistic UDP opened datagram sockets and used the Unix read(2) and write(2) sys-

tem calls to exchange the messages. In the experiments below, the machines ran fast

enough, and the total amount of data exchanged was small enough, that no packets were

lost between the server and client, so no additional reliability support was implemented.

6. I.e., a multicast message is delivered once to the machine’s Ethernet interface, and only one of the two
processes would be able to read it. Supporting multiple processes on one machine would require forward-
ing the packet to the other processes through some other mechanism such as shared memory or inter-process
messages, at a significant increase in code complexity. Other experiences indicate the second processor can
have a small effect on execution time, either slightly improving it by off-loading work required to handle in-
terrupts, or slightly degrading it by moving the running process between the two CPUs which have separate
second-level 1MB caches. Nothing indicated that the cumulative effect was significant on these tests.

7. To distinguish standard functions from those of the pC* hierarchy, throughout this section we follow the
Unix convention of marking, at their introduction, standard functions and programs with the section of the
Unix manual in which they are described; hence (1) for programs and (2) for system calls.

CHAPTER 4. Basic Communication Principles 86

� Reliable TCP is a small extension to TCP to support an arbitrary number of nodes in

a communications mesh (a fully-connected graph of P nodes), and to support transac-

tion codes, which are required in the second experiment to avoid mixing data between

stages or iterations even when in-order delivery is guaranteed between node pairs. The

write implementation interposes a function call which uses the gather writev(2) system

call to send the message code, data size, and data buffer. The read implementation is

somewhat more complicated, since it must poll(2) all sockets and buffer available data

according to source and transaction code, to avoid deadlock due to buffer overflow or

insufficient process read/write synchronization. To simulate a low-level interface which

supports broadcast, there are separate functions to exchange point-to-point and broad-

cast messages; the implementation sets a bit in the transaction code to distinguish the

nature of an incoming message. In this case, broadcast write is implemented as a series

of P�1 point-to-point writes; broadcast read is identical to point-to-point read except

for the queues on which it looks for previously-received data. The reliable TCP imple-

mentation consists of approximately 400 lines of C code, some 75–100 of which could

be eliminated by merging the read functions.

� Reliable UDP is a major extension to UDP which, in addition to supporting transaction

codes and buffering incoming messages, must also save outgoing messages until they

are acknowledged, and retransmit them if the acknowledgement is not received in a “rea-

sonable” period of time. Two datagram sockets are maintained on each node: the first

is for reading and writing multicast messages, and the second is for reading and writing

point-to-point messages and acknowledgements of both message kinds. On a write call

of either kind, the header and data are packed into an allocated message buffer, which is

written to the destination node and placed onto an “unacknowledged” list. On reception

of a message, a 20-byte acknowledgement containing source node id, sequence num-

ber, transaction code, and flags is sent to the originating node. Incoming messages are

sorted and buffered on point-to-point or broadcast queues as appropriate; out-of-order

and duplicate delivery due to dropped messages are also handled. Message retransmis-

sion is performed if a message remains unacknowledged after 200 milliseconds; if only

one node has failed to acknowledge a broadcast packet, the retransmission will be done

along the point-to-point interface to avoid disturbing other nodes. Care was taken to use

poll(2) to detect available messages and acknowledgement timeouts reasonably effi-

ciently. The implementation is approximately 1300 lines of C code.

The last two implementations are sufficient to serve as communications primitives for the

second experiment, though not quite adequate for a low-level facility in pC*: the reliable

UDP implementation does not implement flow control, viz. there is no limit on the amount

of unacknowledged data it will transmit and save. This was safe for the current application,

which did not attempt to exceed the Ethernet MTU on any operation and had very close

synchronization with almost no local processing, but would be inadequate for C* programs.

Although both implementations include broadcast write and read functions, only the point-

to-point interfaces were tested in the first experiment.

CHAPTER 4. Basic Communication Principles 87

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400

M
ic

ro
se

co
n

d
s

Packet size

SS-20/60 Ethernet TCP/UDP Optimistic vs Reliable Round-trip Times [29Aug95]

Reliable UDP: 1782.3740 + 1.9653/b
Reliable TCP: 1568.1332 + 1.7146/b

Optimistic TCP: 1308.6449 + 1.7225/b
Optimistic UDP: 860.8395 + 1.7429/b

Figure 4.9: Ping-Pong Tests of Low-level Interfaces

The round trip times for each implementation are given in figure 4.9, along with a least-

squares fitted linear approximation to give basic start-up and per-byte costs. The times that

appear in the graph are the median of ten runs for each packet size, to abstract away from

outliers due to network or processor interference, taken using a microsecond resolution real-

time timer. Each run consisted of 100 packet exchanges; the final time was divided by 100

to yield the time in microseconds for a single [client write]–[server read]–[server write]–

[client read] sequence.

The results for the optimistic protocols are as expected. UDP performs significantly bet-

ter than TCP, with an overhead 448µsec (34%) less than TCP.8 The per-byte cost for both

is approximately 1.7µsec, only 0.1µsec (6%) higher than the lower bound of 1.6µsec due to

10Mbps transfer over 10BaseT Ethernet. The numbers are in concord with ones expecta-

tions for bidirectional exchange over Ethernet, implying the test is measuring what we want

it to measure.

8. For reference, the Kalpana EtherSwitch introduces a 40µsec routing delay on all packets.

CHAPTER 4. Basic Communication Principles 88

The reliable TCP implementation adds approximately 260µsec to the basic TCP imple-

mentation. Though we were unable to discretize the low-level implementation to determine

exactly where the time is going, it is likely that the bulk of this time is due to the complex

control flow around the poll(2) operations required to check incoming ports before read-

ing data, plus overhead for checking buffer queues. Though the ping-pong test would never

induce buffering or require checking more than one descriptor, these operations must be in-

cluded in the general case implementation.

The biggest surprise comes with the reliable UDP implementation, which has an over-

head 220µsec higher than that for the reliable TCP implementation, twice as large as the

optimistic UDP implementation. Here there are many plausible culprits, including:

1. Copying the data from their original location into a buffer on write

2. Queueing the write buffer, regularly checking the queue for acknowledgement timeouts,

and retransmitting when necessary

3. The complexity of polling to check for incoming data on both point-to-point and multi-

cast sockets

4. Sending an acknowledgement for every data packet read and moving newly read data

to the appropriate read queue

5. Unqueuing acknowledged packets

The above operations require multiple crossings of the user/kernel protection boundary to

execute read, write, and poll system calls; measurements on separate programs indicate

these system calls take between 15 and 30 µsec each for the smaller packet sizes (4–8 bytes).

While we feel that the reliable UDP implementation has taken reasonable steps to ensure ef-

ficiency, it is clear that operations such as this, as well as some of the buffer management,

would be better done inside the operating system kernel where domain crossing is not nec-

essary and fewer copies need be made.

It is interesting to note that, unlike the other three interfaces, reliable UDP has a non-

linear performance curve for packets that are less than 125 bytes. A second sequence was

run with a finer discretization of packet sizes, and is shown in figure 4.10. It confirms that

the reliable UDP implementation starts out faster than the reliable TCP implementation,

and crosses over somewhere around 20-byte payloads (the first to exceed 32 bytes message

buffer size, including header). We hypothesize that this non-linearity is due to cache effects

in copying data to and from larger buffers as the packet size increases. If a least-squares

fit is taken for the reliable UDP data shown in figure 4.9 for packets at or above 125 bytes,

we get an approximation of 1935:6269+1:8010=b, which more accurately reflects the true

start-up costs and brings the per-byte cost much closer to the expected value of processing

time plus 1:6µsec for network transmission.

Naturally, further effort could improve the performance of the reliable UDP interface:

imposing a reliable interface on an unreliable network fabric is a fundamental issue in

CHAPTER 4. Basic Communication Principles 89

800

1000

1200

1400

1600

1800

2000

2200

2400

0 20 40 60 80 100 120 140 160 180 200

M
ic

ro
se

co
n

d
s

Packet size

SS-20/60 Ethernet TCP/UDP Optimistic vs Reliable Round-trip Times: Small Packets [30Aug95]

Reliable UDP: 1618.4942 + 3.8342/b
Reliable TCP: 1610.2581 + 1.8231/b

Optimistic TCP: 1338.2664 + 1.7202/b
Optimistic UDP: 859.2056 + 1.7541/b

Figure 4.10: Ping-Pong Tests of Low-level Interfaces: Small Packets

network-based computing, and many issues such as timeout handling and flow control have

a variety of solutions that can be judged based on intended use and the level of effort the im-

plementor is willing to apply. However, we feel the implementation used here is defensible.

Since we are precluded for reasons noted in section 4.2 from using certain features such as

interrupt driven IO and interval timers, there are limits on how much improvement can be

achieved by grafting on wrappers at the user level. For example, we do not attempt to piggy-

back acknowledgements on normal messages sent to remote nodes, because we do not know

that an appropriate message will be sent soon enough, and cannot detect that enough time

has passed that we should send an acknowledgement by itself. It seems unlikely that per-

formance comparable to reliable TCP could be achieved, given the gap that must be closed

and our implementation constraints. The only reason for going through the extra work, in-

cluding extensions necessary to support flow control for exchanging multi-megabyte data

blocks, would be a significant improvement in the C* algorithms which could take advan-

tage of the multicast features. As we shall see, the improvement is not that impressive.

CHAPTER 4. Basic Communication Principles 90

4.4.2 Broadcast and Reduction Algorithms

The second experiment consisted of a program which implemented two operations with

a variety of algorithms, and linked to a low-level interface, similar to that described in sec-

tion 4.3.1, which provided point-to-point and broadcast support. In the results presented

here the reliable TCP and reliable UDP implementations of the previous section were used

as the low-level interface. In each case, each algorithm was invoked in a loop of 100 iter-

ations; the maximum time taken to execute the loop on any node was recorded. Each run

of the program yielded one such time for each algorithm; the program was run five times

for each cluster / data size pair, and the median number for each algorithm was recorded.

We ran the above algorithms using both low-level interfaces on seven clusters from 2 to

12 nodes, and ten data sizes from 4 to 1400 bytes.9 To conserve our nation’s woodlands,

we restrict the graphical results presented here to those for 4 byte and 1400 byte packets:

most operations will be on scalar data such as ints or floats, which are represented by

the 4-byte values, while the behavior on more rare large element types such as structures,

or broadcast operations on large scanset summaries, can be inferred from the large packet

results.

The first function to be implemented is C* owner broadcast: this is what is invoked when

a scalar left index expression is used to distribute a single value to all nodes in the cluster,

to be used as the value of a scalar expression. In this case, we have a single writer and P�1

readers. Three methods of performing this distribution were implemented:

MWRITE The source node invokes P�1 point-to-point write operations, sending the data

to each of the nodes that require them.

LOGFAN A log-based fanout similar to the one used in the mid-level reduce function is

used to distribute the value in dlogPe stages of point-to-point transfers.

BCAST The low-level broadcast operation was invoked to transmit the data.

Because algorithms MWRITE and BCAST are not inherently synchronous, the time taken

to execute them on the source node would be drastically different from the time on other

nodes. To alleviate the extent to which this obscures the true performance of the algorithms,

the iterations cycled the source node through the entire cluster.10

9. In the initial stages of developing pC*, we were unsure of the exact layout and payload of an Ethernet
frame through various interfaces like TCP. We therefore chose a 1400 byte message limit (cf. section 4.2) as
a safe upper bound for the socket system: this includes 16 bytes for the pC* IPC header, but does not include
space for any headers added by the host system during transmission. This initial estimation remained in place
until the late stages of preparing this dissertation, when instrumentation on the Solaris/TCP cluster indicated
that the pC* message limit could be increased to a maximum of 1463 [sic] bytes before sending a message
required multiple Ethernet frames. Testing done at that time showed no significant performance differences,
on the benchmarks in chapter 7, between Solaris/TCP runs with 1400 and 1463-byte message limits.

Therefore, although later versions of pC* use the larger value, most performance results throughout this
dissertation, including those of chapter 7, assume only 1400 bytes of user payload are available under a generic
hosted Ethernet implementation.

10. This was not done in the synchronous LOGFAN, which always used node 0 as the source.

CHAPTER 4. Basic Communication Principles 91

Graphs showing the execution time per operation over the cluster sizes for both inter-

faces and a hybrid to be described later are in figure 4.11. The time scales on the graphs are

the same for each packet size, enabling visual comparison of performance between inter-

faces. For the point-to-point interface, BCAST and MWRITE are almost indistinguishable—

as we would expect, since the broadcast operation in reliable TCP is implemented by mul-

tiple write statements. For both small and large packets the extra steps required for the log

fan-out algorithm cause it to perform worse than the P� 1 write operations. Performance

for log-fanout is even worse using reliable UDP, where point-to-point messages are signif-

icantly more expensive. However, true multicast shows its value by performing in nearly

constant time regardless of cluster size. At 12 nodes, the multicast owner-broadcast im-

plementation runs 60% faster for 4-byte packets, and nearly five times faster for 1400-byte

packets, than the multiwrite implementation. So for this function multicast support appears

to be beneficial.

The second function to be tested is the mid-level reduce operation. Each node con-

tributes a buffer of some fixed size; each algorithm tests a different communications pattern

which would propagate the results to all nodes allowing application of a binary function to

them (though in fact no such function was used, since we were interested only in commu-

nication times). Eight implementations of this operation were tested:

NAIVEMW Each node invoked P�1 write operations to send its data to the other nodes.

It then looped reading P� 1 statements from other nodes, in the order they arrived

(using a wildcard source node).

MASTERMW Each node other than node 0 wrote its data to node 0, which performed the

necessary combination and wrote the answer back to the rest of the cluster using P�1

write operations.

MASTERBC Each node other than node 0 wrote its data to node 0, which performed the

necessary combination and wrote the answer back to the rest of the cluster using a

broadcast operation.

REALBC The low-level broadcast operation was used to transmit each node’s data to all

other nodes, then the broadcast read operation was invoked to read the P�1 remote

values in arbitrary order.

LOGLOCEX A butterfly implementation to exchange data with all other nodes in dlogPe

stages (a log exchange with local calculation of the final result).

LOGMW A log fan-in to node 0, which then used P�1 point-to-point write operations to

send the final result to the other nodes.

LOGLOG A log fan-in to node 0, with a corresponding log fan-out back to the remainder

of the cluster: this is the algorithm described in section 4.3.2.

CHAPTER 4. Basic Communication Principles 92

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable TCP Results: 4 Byte Packets , Eth , Owner Bcast

LogFan[2]
Bcast[3]

MWrite[1]

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable UDP Results: 4 Byte Packets , Eth , Owner Bcast

LogFan[2]
MWrite[1]

Bcast[3]

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable Hybrid Results: 4 Byte Packets , Eth , Owner Bcast

LogFan[2]
MWrite[1]

Bcast[3]

0

5000

10000

15000

20000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable TCP Results: 1400 Byte Packets , Eth , Owner Bcast

LogFan[2]
Bcast[3]

MWrite[1]

0

5000

10000

15000

20000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable UDP Results: 1400 Byte Packets , Eth , Owner Bcast

LogFan[2]
MWrite[1]

Bcast[3]

0

5000

10000

15000

20000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable Hybrid Results: 1400 Byte Packets , Eth , Owner Bcast

LogFan[2]
MWrite[1]

Bcast[3]

Figure 4.11: Owner-Broadcast Function Algorithm Comparisons

CHAPTER 4. Basic Communication Principles 93

LOGBC A log fan-in to node 0, which used the broadcast write operation to send the result

to the remainder of the cluster.

Since reduction operations are synchronous by nature, we did not vary the master node in

MASTERMW and MASTERBC as we did with the corresponding owner-broadcast algo-

rithms. Note also that NAIVEMW and REALBC do not satisfy correctness requirements

for non-associative operators, though they could be modified to do so. LOGLOCEX can

yield an incorrect answer with a non-commutative operator.

Graphs showing the performance of these algorithms under the various interfaces are in

figure 4.12. Entries in the legends are sorted by decreasing runtime at 12 nodes. The time

range on the Y axis was chosen to give a good overview of the relative performance of most

algorithms, even when one or two algorithms performed significantly worse than the upper

limit used. For example, the LOGMW and LOGBC operations with the point-to-point inter-

face (both of which have identical communication behavior due to emulation of broadcast)

suddenly jump to 50 milliseconds per iteration as soon as the cluster size reaches four nodes,

and remain at 50msec up to 12 nodes. This appears to be due to an inefficiency in Solaris

2.3 TCP code with this particular communications pattern, since similar behavior was not

seen in the UDP implementation. It does not occur with the MASTERMW or NAIVEMW

algorithms, so is not due solely to attempting to write P�1 packets to different nodes in a

very short time.

For reliable TCP, the log based algorithms that do not invoke a multiwrite operation have

a flatter performance profile for the range of packet sizes, though they are slightly slower

than the other implementations for small packets on small clusters, becoming fastest when

cluster size exceeds 8 nodes. The log-based methods show their superiority on large packets

where they cause significantly less data to be transmitted than any of the multiwrite-based

algorithms; for smaller packets the difference between algorithms is much smaller.

The performance using reliable UDP with multicast support is much more intriguing.

The REALBC implementation using multicast from each node has the second worst perfor-

mance with 6 or more nodes and small packets, coming in at over four times slower than

LOGBC for 12 node clusters (only two times slower for 1400-byte packets). Again log-

based fan-in algorithms prove to be the fastest, though use of broadcast by the bottleneck

node to distribute the result proves to be valuable.

These results imply that the most effective use of multicast is in a supplementary role,

implementing a one-to-many rather than a many-to-many communications pattern. Though

LOGBC is fastest in the reliable UDP implementation, it is still 53% slower than the reli-

able TCP implementation of LOGLOCEX on small packets. The results of the ping-pong

test imply that this is due to the high overhead of reliable UDP on point-to-point messages,

which make up the first phase of the LOGBC algorithm. Therefore we constructed a hybrid

interface combining the reliable TCP and UDP implementations, where the TCP implemen-

tation was used for all point-to-point operations, and UDP restricted to multicast operations.

The results of using this interface on the same algorithms are also shown in figures 4.11 and

4.12; it is clear that the algorithms which depend highly on point-to-point communications

CHAPTER 4. Basic Communication Principles 94

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable TCP Results: 4 Byte Packets , Eth , Reduce

LogMW[9]
LogBC[11]
RealBC[7]

NaiveMW[4]
MasterMW[5]

MasterBC[6]
LogLog[10]

LogLocEx[8]

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable UDP Results: 4 Byte Packets , Eth , Reduce

NaiveMW[4]
RealBC[7]

MasterMW[5]
LogMW[9]

MasterBC[6]
LogLog[10]

LogLocEx[8]
LogBC[11]

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable Hybrid Results: 4 Byte Packets , Eth , Reduce

LogMW[9]
RealBC[7]

MasterBC[6]
NaiveMW[4]

MasterMW[5]
LogLog[10]
LogBC[11]

LogLocEx[8]

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable TCP Results: 1400 Byte Packets , Eth , Reduce

LogBC[11]
LogMW[9]

MasterBC[6]
MasterMW[5]
NaiveMW[4]

RealBC[7]
LogLog[10]

LogLocEx[8]

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable UDP Results: 1400 Byte Packets , Eth , Reduce

NaiveMW[4]
MasterMW[5]

LogMW[9]
RealBC[7]

LogLog[10]
MasterBC[6]
LogLocEx[8]

LogBC[11]

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 6 8 10 12

T
im

e
(u

se
c)

Cluster Size

Reliable Hybrid Results: 1400 Byte Packets , Eth , Reduce

LogMW[9]
MasterMW[5]
NaiveMW[4]

RealBC[7]
MasterBC[6]
LogLog[10]

LogLocEx[8]
LogBC[11]

Figure 4.12: Reduce Function Algorithm Comparisons

CHAPTER 4. Basic Communication Principles 95

retain their reliable TCP performance, while those which use broadcast follow the reliable

UDP performance curves. The performance of LOGBC using the hybrid relative to the UDP

interface improves 21% on 4-byte packets and 11% on 1400-byte packets through use of the

more efficient point-to-point communications, and remains the fastest method for all packet

sizes (though it is closely challenged by LOGLOCEX).

4.4.3 Evaluation and Conclusions

We have collected a large amount of data that compares two implementations of low-

level communications operations, plus a hybrid that combines their best features. We must

now evaluate the results and determine which implementation is most useful, not merely for

the broadcast and reduce operations tested here but for pC* as a whole.

There are two axes along which the performance of low-level communication imple-

mentations vary: the size of the cluster, and the size of the data packet. Evaluation of al-

gorithms for owner-broadcast is relatively simple: the multicast features of reliable UDP

uniformly beat the point-to-point implementations required with reliable TCP, with small-

est improvement 6% faster at 1400-byte packets with 2 nodes, and largest improvement 66%

faster at 1400-byte packets with 12 nodes. The improvement on 4-byte packets ranges from

20% to 36%. We must consider this in context with the frequency of use of owner-broadcast,

however. It is common in some numerical analysis algorithms (e.g., it would be used to

broadcast the selected pivot element in LU-decomposition), but is relatively rare in image

processing algorithms, and in almost all cases only small single scalar elements such as ints

or floats would be distributed.

Reduction operations are more common and, unfortunately, the performance issues are

more complex. The major contenders within the reliable TCP implementation are LOGLO-

CEX, LOGLOG, and NAIVEMW. LOGLOG is slower than LOGLOCEX almost uniformly,

but improves as packet size increases. For small packets NAIVEMW (or, equivalently for

this implementation, REALBC) performs better but it degrades as packet and cluster sizes

increase. The trends exhibited by the graphs indicate that the log-based routines will con-

tinue to perform well on larger clusters, while NAIVEMW does not scale as well. See ta-

bles 4.1 and 4.2 for the performance of LOGLOG and NAIVEMW respectively, relative to

LOGLOCEX.

We can reject the pure reliable UDP implementation because of its poor performance on

the point-to-point communications which make up the vast majority of C* communications

outside the operations of owner broadcast and reduce. Within the hybrid scheme, the top

three contenders over all cluster and packet sizes are LOGBC, LOGLOCEX, and LOGLOG.

It is interesting to note that, even with the improved performance by using TCP for point-

to-point communications, LOGBC is still slightly slower than the pure log-based method,

though it does do better on larger packets and cluster sizes. The performance of LOGBC

and LOGLOG relative to LOGLOCEX on all cluster and packet sizes is given in tables 4.3

and 4.4, respectively.

Having narrowed the field, and with no obvious reason to prefer an algorithm which

CHAPTER 4. Basic Communication Principles 96

Packet Cluster Size Geometric

Size 2 3 4 6 8 10 12 Mean

4 1.225 0.979 1.185 1.147 1.227 1.198 1.149 1.156

8 1.203 0.994 1.171 1.113 1.134 1.219 1.172 1.141

16 1.302 1.003 1.234 1.146 1.221 1.219 1.145 1.178

32 1.358 0.989 1.201 1.137 1.251 1.246 1.101 1.178

64 1.191 1.008 1.161 1.145 1.201 1.206 1.110 1.144

128 1.196 1.023 1.173 1.089 1.177 1.200 1.179 1.146

256 1.149 1.035 1.157 1.082 1.145 1.080 1.187 1.118

512 1.146 1.050 1.112 1.120 1.109 1.125 1.104 1.109

1024 1.092 1.036 1.079 0.999 1.056 0.982 1.031 1.039

1400 1.076 1.030 1.092 0.977 1.057 0.960 1.012 1.028

GMean 1.191 1.014 1.155 1.094 1.156 1.139 1.118 1.123

Table 4.1: Reliable TCP: LOGLOG relative to LOGLOCEX

Packet Cluster Size Geometric

Size 2 3 4 6 8 10 12 Mean

4 0.948 0.799 0.739 0.875 1.067 1.358 1.361 0.995

8 0.943 0.802 0.726 0.848 0.959 1.373 1.505 0.989

16 1.008 0.749 0.748 0.845 0.913 1.230 1.374 0.957

32 1.007 0.763 0.726 0.860 1.054 1.188 1.312 0.967

64 0.935 0.855 0.731 0.880 0.973 1.289 1.309 0.976

128 0.992 0.857 0.740 0.947 1.003 1.316 1.406 1.015

256 0.946 0.918 0.824 1.064 1.171 1.428 1.601 1.107

512 1.000 1.132 1.000 1.323 1.393 1.727 1.987 1.325

1024 0.997 1.305 1.330 1.525 1.729 2.013 2.248 1.541

1400 0.996 1.343 1.420 1.626 1.885 2.078 2.372 1.615

GMean 0.977 0.931 0.869 1.046 1.177 1.472 1.608 1.127

Table 4.2: Reliable TCP: NAIVEMW relative to LOGLOCEX

CHAPTER 4. Basic Communication Principles 97

Packet Cluster Size Geometric

Size 2 3 4 6 8 10 12 Mean

4 1.530 1.304 1.110 1.012 1.007 1.137 1.027 1.148

8 1.542 1.161 1.125 1.026 0.977 1.097 1.050 1.128

16 1.615 1.242 1.078 1.002 0.993 1.081 1.066 1.138

32 1.662 1.172 1.093 1.022 0.890 0.999 1.032 1.104

64 1.487 1.236 1.026 0.979 0.946 1.121 0.984 1.098

128 1.579 1.147 1.023 0.972 0.855 1.000 0.865 1.042

256 1.399 1.207 0.949 0.929 0.835 0.952 0.868 1.004

512 1.302 1.188 0.901 0.894 0.759 0.830 0.780 0.932

1024 1.267 1.081 0.870 0.870 0.739 0.738 0.757 0.886

1400 1.230 1.013 0.859 0.818 0.751 0.727 0.721 0.859

GMean 1.454 1.172 0.999 0.950 0.870 0.956 0.906 1.029

Table 4.3: Reliable Hybrid: LOGBC relative to LOGLOGEX

Packet Cluster Size Geometric

Size 2 3 4 6 8 10 12 Mean

4 1.205 1.026 1.229 1.115 1.206 1.120 1.086 1.139

8 1.262 1.001 1.260 1.097 1.199 1.135 1.139 1.153

16 1.211 1.000 1.196 1.182 1.207 1.098 1.152 1.147

32 1.286 1.000 1.217 1.124 1.094 1.052 1.090 1.120

64 1.185 1.034 1.165 1.092 1.166 1.157 1.157 1.135

128 1.252 0.998 1.169 1.148 1.124 1.146 1.025 1.120

256 1.168 1.058 1.114 1.087 1.148 1.110 1.040 1.103

512 1.096 1.113 1.089 1.125 1.066 1.135 1.114 1.105

1024 1.121 1.077 1.061 1.030 1.077 0.973 1.070 1.057

1400 1.077 1.058 1.083 1.002 1.064 0.947 1.021 1.035

GMean 1.184 1.036 1.156 1.099 1.134 1.085 1.088 1.111

Table 4.4: Reliable Hybrid: LOGLOG relative to LOGLOCEX

CHAPTER 4. Basic Communication Principles 98

Packet Cluster Size Geometric

Size 2 3 4 6 8 10 12 Mean

4 1.599 1.338 1.109 1.099 1.034 1.220 1.120 1.205

8 1.605 1.385 1.085 1.107 0.922 1.127 1.116 1.175

16 1.684 1.253 1.089 1.084 1.025 1.200 1.118 1.192

32 1.705 1.284 1.099 1.112 0.997 1.123 1.095 1.185

64 1.533 1.353 1.038 1.114 0.966 1.179 1.046 1.162

128 1.604 1.358 1.046 1.038 0.896 1.036 0.974 1.115

256 1.404 1.244 0.978 1.004 0.864 0.959 0.975 1.048

512 1.357 1.156 0.915 0.919 0.775 0.805 0.809 0.943

1024 1.222 1.087 0.885 0.849 0.744 0.747 0.762 0.884

1400 1.233 1.016 0.863 0.813 0.749 0.730 0.742 0.863

GMean 1.485 1.242 1.007 1.008 0.891 0.995 0.964 1.069

Table 4.5: Reliable Hybrid LOGBC relative to Reliable TCP LOGLOCEX

comes in second or third overall, we can now make a choice between using LOGLOG with

the reliable TCP interface and using LOGBC with the hybrid interface. The relative per-

formance numbers are given in table 4.5. On average, using hardware multicast does not

give us a speedup over the point-to-point algorithm. This is true across all clusters for small

packets. However, we would get a benefit, peaking at about 25%, by using the hardware

multicast algorithm on large packets and clusters.

Qualitatively we must weigh these results against the following mitigating factors.

� The only time using the multicast support could provide an improvement is in owner-

broadcast, reduce, and broadcast operations. Far more frequent in terms of amount

of data sent across the network are general communication and grid communica-

tion, neither of which would benefit from multicast, and complex computation-plus-

communication functions such as scan and spread which could only benefit if data

distributions were restricted to one axis, so that all nodes participated in each reduction

group.11

� It is specifically communications latency and the fact that the implementation blocks

until data arrive which causes bad performance on reductions on small data. Using the

compiler analysis suggested in section 4.3.2 to move the synchronization operation up

to the point where the reduced value is needed would allow us to perform other useful

computations during this latency time (though we would add overhead by using the mes-

11. Counting static calls to communication routines in the benchmarks described in chapter 7, we find fourteen
are for grid communications, nine for general communications, three for other complex communications, and
only five for reduce or broadcast-type operations. Of those five, two would require the single-axis-distribution
restriction to allow hardware broadcast to be used. In the benchmarks examined there are more general and
grid communications calls in loops than there are reduction or broadcast operations, so dynamic frequency of
operations that can make use of multicast support is even less.

CHAPTER 4. Basic Communication Principles 99

sage handler facilities on small messages). This implies implementation effort would be

better directed to this analysis, which would improve other operations as well.

� The source for the hybrid interface is roughly four times as long as that for the TCP

system. Its internal complexity is also much higher, with more buffering and polling

being required. This makes correctness verification and maintenance significantly more

complex.

� Neither multicast implementation has been tested inside the pC* system, where commu-

nications often involve data blocks that are much larger than the network MTU, nor with

other communications patterns. Experience writing the TCP-based low-level module

for pC* indicates that there can be issues that will only arise in such a communication-

intensive environment.

� The current primary production platform is networked multiprocessors. As noted pre-

viously, supporting multicast with multiple processes on a single network node would

require internal forwarding of packets. Given the small improvement in performance,

there is a high probability that the additional overhead will overcome the benefits of

supporting multicast.

� While the current TCP implementation in pC* is relatively simple and hence should

be portable, a more complex UDP implementation, especially bound to a (most likely

platform-specific) inter-process forwarding mechanism, is far less likely to be usable on

a different target platform.

Taking all these issues into account, we have chosen not to attempt to use any UDP-based

communications in the current pC* system, and all performance results in the remainder of

this dissertation rely on other low-level interface modules. The decision is based on our own

understanding of the goals and tradeoffs relative to our own application; we hope that the

experiences related here will prove useful to other researchers faced with similar choices in

their own systems.

4.4.3.1 Why pC* Didn’t Use the Best Algorithm

Recall that the LOGLOCEX algorithm considered in this section does not satisfy correct-

ness requirements when the operator is not commutative. This was originally discovered in

pC* when a particular operation—parallel-to-scalar cast, which selects an arbitrary active

element of a pvar and returns it as a scalar—caused problems because nodes disagreed on the

chosen value. We initially assumed that the disagreement came from the non-associativity

of the operator, and therefore that LOGLOCEX was unacceptable as a general-purpose re-

duction algorithm because floating point arithmetic is non-associative.12 As a result, we

chose to use LOGLOG as the reduction algorithm, and the experimental results in chapter 7

12. This is due to the fixed-point nature of most hardware implementations of floating point arithmetic, ex-
pressed as 0:m� 2e where m and e are integers represented with a fixed number of bits. Consider forming

CHAPTER 4. Basic Communication Principles 100

use this algorithm. The comparison in table 4.1 shows that using the sub-optimal algorithm

could cost us about 12% on average, and is likely to be responsible for some of the problems

we encountered relative to the performance of reduction on power-of-2 sized meshes (note

that 2-, 4-, and 8-processor clusters are generally much slower relative to LOGLOCEX than

the other sizes). We have since realized that LOGLOCEX is perfectly acceptable to non-

associative operators because it combines values in pairs at each stage, where at most the

left and right operands are swapped. The few non-commutative operators used in pC* have

been modified to enforce an order on their operands, making them commutative, and we

now use the LOGLOCEX algorithm instead of the LOGLOG one described in section 4.3.2.

4.5 Conclusions

This chapter has presented an overview of the issues involved in choosing a communi-

cations infrastructure on which to build a runtime system for a distributed language. The

trade-offs along the spectrum from portability to performance were examined, and a mid-

dle ground chosen which embodies a three-level hierarchy to isolate target-specific code

from the routines invoked by the C* programmer. At the highest level, language-specific

functions are coded using full knowledge of the expected behavior of the runtime system,

without much concern for the details of the actual communications network. At the lowest

level, we must provide a very few functions with clearly delimited rights and responsibili-

ties, making it relatively simple to add support for a new network interface. An intervening

level links the two, providing an essentially unconstrained communications interface to the

highest level while ensuring the lowest level need not be burdened with message fragmen-

tation or buffering which are common to all possible platforms for distributed computing.

The next two chapters will examine in detail high-level functions which use this hierarchy

to good effect.

This hierarchy has resulted in reasonable performance (to be shown in chapter 7) and

proven portability, with five underlying networks currently supported, ranging from TCP

sockets over a cluster of workstations to shared and distributed memory machines like the

Sequent Symmetry and Intel Paragon. Providing definitions for the three low-level func-

tions on a new platform is relatively straightforward, taking on average one programmer-day

each for the last three modules implemented (none of which required extensive enhance-

ments for reliability).

Though portability is our second goal in this project (reliability over the range of po-

tential applications taking precedence), the system has still been designed to integrate with

advanced techniques to improve communications performance, such as better management

of buffers (supported through the scatter/gather interfaces and message handlers) and direct

control of the network system. Integration has not been proven, and with some thought it

the sum of a, b, and c, where (a;b)� c. If evaluation proceeds as a+(b+ c), and a and b are smaller than
0:00 : : :01�2e, then b+c= c and a+c= c, so the final result is c. However, if a and b are large enough that
a+b is at least 0:00 : : :01�2e, then (a+b)+ c 6= c.

CHAPTER 4. Basic Communication Principles 101

is clear that slight changes may be necessary. For example, on some architectures perfor-

mance could be improved by using asynchronous writes where the low-level routines queue

a transmission (perhaps through a separate DMA controller) but data must remain in their

original buffer until the transmission is complete. Since some high-level routines place their

data directly into MTU-sized buffers, provision must be made to tell the high-level routine

to switch to a new buffer until the previous one is again available. Similar changes would

be necessary to allow use of kernel-provided buffers that are mapped into multiple protec-

tion domains, obviating buffer copying (Druschel, 1994). An approach to providing nearly

direct control of network adaptors on IBM RS/6000s in support of MPI collective commu-

nications routines is described in (Bruck, Dolev, Ho, Rosu, & Strong, 1994); the lower lev-

els of their hierarchy would seem to fit well into our lowest level, with perhaps some small

modifications to our mid-level. The extent of the changes necessary to support advanced

network optimizations in the pC* communications hierarchy cannot be known until the at-

tempt is made, but we are confident that the changes should be minimal.

Portability desires prevent us from doing the sort of vertical integration observed in

(Turner, 1994), where data-parallel algorithms were coded in-kernel using a primitive mes-

sage system, which was specifically adapted for the underlying FDDI interface, to imple-

ment some of the communications patterns described in this thesis. The characteristics of

the FDDI network, the in-kernel implementation, and the limitation of testing to a fixed set

of programs around which the system was designed permit very good performance, which

pC* is only able to match on the largest problem sizes. The FDDI ring used in that research,

though technically able to drop packets, proved to be sufficiently reliable that a “careful”

protocol which assumed the network fiber would not drop packets was acceptable (Mos-

berger et al., 1994); avoiding acknowledgement and retransmission support provided a sig-

nificant performance improvement (roughly 20% of communication time). Although using

a star network with EtherSwitch to connect our twelve machines resulted in a noticeable

decrease in collision rate over a standard same-segment network, the synchronous commu-

nications behavior of data-parallel programs still results in periods where the network is

overloaded and packets are dropped.

We have also examined closely the performance issues in attempting to impose a reli-

able protocol on top of UDP at user level, and the behavior of a variety of global reduction

algorithms comparing the resulting system which supports multicast with a simpler point-

to-point system. For our own current needs, the benefits of multicast are not sufficient to

outweigh the costs of implementing a reliable system, and effort would be best directed to

more general optimization techniques.

One such technique is a compiler analysis to permit communications routines to return

before all messages have been received, leaving a key which can be used to block at the

result’s point-of-use until the communication has completed. The runtime infrastructure for

this is almost complete, inherent in the message handling facility of the communications

hierarchy which is needed anyway to deal with buffered messages in a timely manner. Only

the analysis to detect the opportunities remains.

Version: comm.tex,v 1.14 1996/04/09 16:50:51 pab Exp

CHAPTER 5

ALGORITHMS FOR GENERAL COMMUNICATIONS

If a listener nods his head when you’re explaining your program, wake him up.

— Alan J. Perlis, Epigram #17

Using the communications framework of the last chapter we describe an implemen-

tation of general communications—nodes send data to arbitrary nodes in arbitrary

order. Our assumptions, for example that there is a fixed optimal message size, per-

mit packing operations that would not otherwise be available without excessive data

copying. We describe how a particular class of communications—those which send

many values to the same address, or read the same address many times—can be de-

tected at runtime and redundant data transmission avoided. The heuristic involved

can determine that the overhead it is introducing outweighs its benefits, and turn it-

self off; when it is active, it can decrease runtimes by more than 50%. The heuristic

can be tuned to a particular host platform and interconnect. We close with an ex-

perimental evaluation of the described system, comparing its common use with an

implemented C* extension similar to other optimizations which pre-compute com-

munications schedules. We argue that evidence implies our more straightforward

runtime-only approach is likely to be more effective, at least on our target applica-

tions.

In the last chapter we presented the details of the pC* communications hierarchy, cover-

ing the functions that are available and the features that we can use in high-level operations

to improve performance. We will now use these features to implement two of the simpler,

yet most expensive, high-level communications operations: general send and get. We will

start with a review of the semantics of these operations, then proceed to see how the fea-

tures of the communications hierarchy are used to implement them. We then examine a

special case in which the performance of the original implementation can be significantly

improved. We close with a comparison with methods of handling the same problem in other

data-parallel languages, where it is known in the literature as “irregular communication”.

5.1 Semantics of General Communication

Recall that communications operations in C* are expressed through the use of left-

indexing, a syntactic construct similar to array indexing in C but moved to the left side of

the indexed expression to make it clear that the operation may involve communication with

102

CHAPTER 5. Algorithms for General Communications 103

i0

shape OneD

0 1 2 3

0 1 2 3

i1 3 2 1 0

0 1 2 3

iv

shape TwoD

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

0 1 2 3

0

1

2

3

Figure 5.1: General Communications Operands

getres

shape OneD

3 12 ? 30

0 1 2 3

iv

shape TwoD

0 1 2 0

10 11 1 13

20 21 22 23

3 31 32 33

0 1 2 3

0

1

2

3

Figure 5.2: General Communications Results

other nodes. In the case of general communications, the index expressions are parallel in-

tegers of the current shape; however, the expression being indexed need not be of the cur-

rent shape. There is an index expression for each axis of the indexed shape. Unless other-

wise noted, throughout this chapter we restrict the notion of “left-indexed expression” to be

specifically a left-indexed expression which results in a general communication, in contrast

to scalar or grid left-indexing (cf. section 2.1.2).

When a left-indexed expression is used as a C rvalue or basic expression value, this is

a “get” operation, and it results in a parallel value of current shape. The value at each local

position consists of the scalar value from the indexed parallel expression at the “remote” po-

sition named by the global address specified by the local elements of the index expressions.

For example, consider the system in figure 5.1. When evaluating the expression:

getres = [i0][i1]iv;

the current shape must be the one-dimensional 4-element shape OneD, so the index expres-

sions are valid. Conceptually, each active position forms a global address using the index

expressions and requests the corresponding element of the indexed parallel value. The re-

sulting value of getres is shown in figure 5.2. Note that positions that are inactive in the

indexing shape have no defined value, while positions that are inactive in the indexed shape

will be read.

When used as a C lvalue, i.e. as the target of an assignment, a “send” operation is in-

CHAPTER 5. Algorithms for General Communications 104

voked. The results are similar, except in this case the index expressions name a remote posi-

tion to which the value in the current position on the right-hand-side of the assignment will

be sent. For example, we can modify certain positions in a parallel value with code similar

to the following:

[i0][i1]iv = pcoord (0);

Here we use the index expressions to change the values in certain positions of iv. Again

context is performed in the indexing shape, and because the third position of OneD is inactive

the corresponding element of iv remains unmodified, as do any positions which were not

named in the communication. However, the fact that position h0;3i of TwoD is inactive does

not prevent its value from being overwritten.

Note that in get operations we may read from the same position multiple times, and in

a send write to the same position multiple times. Reading the same position results in no

difficulties, since the value is replicated as many times as necessary. However, writing to

the same position will result in “collisions”. C* permits these collisions to be resolved in

different ways, using the compound assignment operators. If regular assignment is used and

a collision occurs, exactly one of the values will be stored in the target position; the language

does not specify which value will be stored. If compound assignment is used, the incoming

values are combined with each other and the original value in the target position using the

assignment’s operator. This was exhibited in the idiom for image histogramming, described

in section 2.1.2.

5.2 Basic Implementation Techniques

We have argued the value of walking through parallel data in linear fashion, to preserve

good cache behavior (section 3.2.4). We would also prefer not to walk the shape more than

once, for the same reason. Therefore the general communications implementations in pC*

are based on a sequential walk through the current shape, converting index expressions to

physical addresses in turn, and communicating with all nodes simultaneously. To avoid ex-

cessive memory use and improve communications latency we take full advantage of the

features of the mid-level functions of the communications hierarchy.

The implementation of general send is straightforward. We maintain an MTU-sized

buffer for each remote node. We proceed along the positions of the current shape in lin-

ear order. For each active position, we translate the global address from the index values

into a node/offset pair. If the target node is our own node, we simply store the source value

directly into its destination, performing combination as necessary. Care is taken to ensure

the source and destination pvars are different, to avoid overwriting data before they are read.

If the target node is remote, we add to the buffer for the remote node an integer naming the

target position, and the value from the source pvar. When the buffer for a remote node fills,

we transmit it and continue processing. Hence we are implicitly performing message vec-

torization (Hiranandani et al., 1994) by combining values that are to be sent to the same

node into larger groups to amortize transmission overhead, and achieve a degree of latency

CHAPTER 5. Algorithms for General Communications 105

reduction by sending data as soon as they are available. We install a message handler which

walks incoming buffers, storing the values into the locations specified by the source node;

if a combining operator was specified, the operator is applied during the store.

The format of the send buffer is of some interest. To operate on data in or from the mes-

sage directly (desirable for the optimization in section 5.3), alignment requirements for both

offsets and data must be satisfied. An initially plausible method is to use a structure, contain-

ing one offset and one data element, to represent each packet, and placing these structures

consecutively in the buffer. This is wasteful in several senses:

� Space is lost due to padding required between the end of the data element and the start of

the next structure, aligned for offset access. In the case of sending character (one-byte)

data, roughly 3=8 of the message space is lost.

� The size of the structure must be determined dynamically, based on the size of the data

element. This means that accessing elements of the buffer in turn requires a more com-

plex address calculation (based on a run-time, rather than compile-time, stride).

� Larger data types, such as eight-byte doubles, may not have their alignment require-

ments met by implicit structure alignment. Addressing this requires either an additional

modification of the inter-packet stride, or copying data out of the message into an aligned

region with an expensive general copy routine.

Fortunately, because we know the length of the buffer, we can separate the offset informa-

tion from the data blocks, and store the offsets in a contiguous aligned region at the start of

the buffer, and the data in a contiguous region immediately following the offsets somewhere

in the middle of the buffer. The start location for data can be determined by computing the

maximum number of offset-plus-data elements that will fit in the buffer, and adjusting it

for data alignment requirements. The number of elements actually present in the buffer is

stored in the header of the send message. In the more common case where a buffer is com-

pletely filled no data moves are required. For the final buffer, where there is a potentially

large amount of unused space between the last offset and the first data element, we can shift

the data values down to the next aligned address following the offsets. This format ensures

that both offset and data values are aligned in the buffer exactly as required for operations,

and that space lost to satisfying the alignment requirements is minimized. Such an opti-

mization is more complex when there is no bound on the length of a message; in that case

we would have to maintain separate buffers for offsets and data, possibly combining them

at the time the message is sent.

General get is similar, but two separate buffers are maintained for each node, since two

communications are going on simultaneously: data requests and data responses. Again we

walk the local shape computing node/offset pairs for each position. If the node is local, we

read the value from the offset and store it into the result. If the node is remote, we add a

packet to the request buffer, including the remote offset (where the data are to come from)

and the local offset (where they are to be stored on reception). Again buffers are flushed as

CHAPTER 5. Algorithms for General Communications 106

they fill. Two handlers are registered for a get operation. The first recognizes request mes-

sages and responds to them with the data requested and their target offset. The responses

are in the same format as send data messages, so the second handler is the send handler de-

scribed above: it reads in data from the remote node and stores them in the desired locations.

It is clear that some amount of bandwidth is wasted by sending the local destination off-

set to the remote node, to be returned along with the data. The alternative is to divine the

destination offset from local information when the requested data arrive. This presents some

complexity with respect to the possibility of receiving message buffers out-of-order (con-

sidered in section 4.2), and would at a minimum require either a temporary table propor-

tional to the number of active positions on the receiving node, or re-walking the destination

to detect active elements where incoming data should be stored. We prefer to leverage off

the send implementation described above, and have not attempted a detailed examination

to determine which implementation is better, leaving that for future work.1

Pseudo-code for the general get operation, including what each handler does, is given

in figure 5.3. The add* routines pack their parameters into the proper format and add them

to the buffer associated with the remote node, first sending off the current buffer if adding

the new value would exceed the MTU. The flush* routines send off final packets to each

node, marking each one as the last one for this communications operation. The handlers

thus detect the completion of a given phase, allowing progress to the next phase: note that

it is the handler for the request phase which flushes the responses (since no more requests

will arrive). It is clear that after the initial walk of local data the node is doing nothing but

waiting for messages to arrive and processing them inside the handlers. Here may be a good

opportunity to take advantage of latency by moving the wait for completion of responses out

of the communications routine back up into the user’s code, right before the resulting value

is referenced, as proposed in section 4.3.2.

The implementation here takes advantage of standard message-passing optimizations

such as vectorization by combining information into MTU-sized buffers. There are rare

cases where the size of a scalar element exceeds the network MTU; for example, when op-

erating on a parallel value with structure elements. We detect the situation during the ini-

tialization phase, and allow the addresp and handler routines to operate on each element

as a single message.

5.3 Optimized Send Operations

The implementation of general send described above places a message packet—a des-

tination offset and a data value—into the buffer for each position in the shape; gener-

ally, somewhere between several dozen and several hundred packets fit into an MTU-sized

buffer. This means that the number of network transmissions is proportional to the number

of positions in the shape, scaled by the number of packets that fit into the MTU. Recall that

1. The enhancement described here was added subsequent to the completion of this dissertation. Though we
cannot present an analysis in this footnote, initial results indicate that caching destination offsets locally cuts
in half the execution time of get operations with no collisions on an Ethernet-linked cluster.

CHAPTER 5. Algorithms for General Communications 107

resp_handler (sender, msize, msg, parm) {

for (i = 0; i < msg->npacks; i++) {

parm->doop (&parm->target [msg->pack [i].offs], msg->pack[i].data);

}

if (msg->lastresp) {

--nrespleft;

}

}

req_handler (sender, msize, msg, parm) {

for (i = 0; i < msg->nreqs; i++) {

addresp (sender, msg->req[i].doffs, parm->spvar, msg->req[i].soffs);

}

if (msg->lastreq) {

--nreqleft;

if (0 == nreqleft) {

flush_resp_packets (); /* Send off final response packets */

}

}

}

/* dpvar = [indices] spvar */

genget (spvar, indices, dpvar) {

/* OMITTED: initialize parameters for resp and req handlers */

nreqleft = nrespleft = MeshSize-1;

register_handler (NextCode (MT_Send), resp_handler, &rpparm);

register_handler (NextCode (MT_Get), req_handler, &rqparm);

for (vp = 0; vp < numlocal; vp++) {

(rnode, roffs) = convert_index (indices, vp);

if (mynode == rnode) {

dpvar [roffs] = spvar [vp];

} else {

addreq (rnode, roffs, vp);

}

}

flush_req_packets (); /* Send off final request packets */

while (0 < nrespleft) { /* Wait until we've received everything */

if (0 > check_messages (io_timelimit)) {

fatal ("timed out waiting for get.");

}

}

}

Figure 5.3: Pseudo-implementation of General Get

CHAPTER 5. Algorithms for General Communications 108

we have mentioned the possibility of collisions on both get and send operations, where mul-

tiple communications come from or are sent to the same position of a shape. When there are

no collisions, the amount of network traffic is essentially optimal (modulo detailed analyses

which obviate the need for some offset information), but in the case of collisions we waste

bandwidth by performing collision resolution at the destination instead of the source.

To see this, consider again the image histogramming idiom of section 2.1.2. Under the

above naı̈ve implementation we require as many packets as there are positions in the source,

Image, shape; generally on the order of one million. However, the destination shape nor-

mally has very few positions, say 256. If the addition combination for the histogram is done

on the source node, we can drastically decrease the amount of communication required. We

need only note that we already have a packet for a particular destination, and do the com-

bination into the data region of that packet rather than creating a new packet. The trick be-

comes to recognize that a particular general send has this collision behavior, and take ad-

vantage of it. There are two issues here: the method used to detect that collisions are likely,

and the method used to find the previously-buffered packet and form the combination.

Unfortunately, it is not easy to tell at the start of a general send whether it will or will

not result in collisions. The case of histogramming, where the target shape is significantly

smaller than the source, is one where we can be reasonably sure of collisions. However

there are other high-collision cases where this does not occur—we may want to attribute to

certain regions of an image (say elevation peaks) values from each pixel, sent to the nearest

region center; for example, to determine the size of the surrounding area. In this case we

have large numbers of collisions but the source and destination shapes are the same, and

are often large. Similarly, experience with test and production programs showed that we

cannot assume that sends with combination operators will result in collisions, nor that those

with overwrite operations will be collision-free. Even a particular instance of general com-

munication in a given source program may have strongly data-dependent collision behavior,

causing compile-time analyses to fail. Therefore, the general solution requires either an im-

plementation where collision detection is free, or one where we can turn the detection on or

off within a particular communication operation depending on our success rate.

The simplest approach to collision detection is to scan through the buffer looking at

packets already deposited, and stopping at a match. There is reason to believe that col-

lisions are likely amongst close neighbors—in the case of histogram, adjacent pixels are

likely to have nearly the same value. We can decrease detection time by first checking to see

if we match the last value we stored, and if not scan from the end of the buffer backwards to

slightly decrease the expected time to finding a match. From a theoretical viewpoint, the re-

sulting linear scan through the buffer for each position is costly—O(MTU)—and we might

want to use a more complex method with better asymptotic behavior, such as hashing on

the offsets or binary search. Initially we chose not to implement these, because we felt a

straightforward tight-loop scan through a relatively small contiguous area would be faster

in practice than the alternatives, all of which require extra book-keeping that complicates

both control flow and memory access. Experience from implementing the corresponding

get optimization, described in section 5.4, led us to reconsider this assumption; we will ex-

CHAPTER 5. Algorithms for General Communications 109

Cluster No Always Scan; Varying Collision Rates

Size Scan 0% 20% 40% 60% 80% 100%

4 3.80 5.36 4.68 4.11 3.46 2.88 0.61

8 2.16 2.80 2.56 2.19 1.93 1.64 0.33

12 1.57 2.03 1.71 1.61 1.38 1.17 0.24

Table 5.1: Send Communication Times: With and Without Collision Detection. Time in seconds to

send 106 elements, clusters with 4, 8, or 12 nodes.

amine the issue in some detail later in this section. However, the collision detection method

is not essential to the exposition here; the point is that any method will induce some amount

of work, and that work is wasted when collisions are not occurring. It is the wasted work

that we wish to avoid.

An understanding of the time taken in send operations, and in collision detection, can

be taken from the performance numbers shown in table 5.1 and figure 5.4. The results are

from tests performed on the star-network using each machine as a single worker, from 2 to

12 nodes. The test program used general send to store a constant 1 into certain elements of

a one-million–element parallel int. The index pvar was carefully initialized so that stores

were randomly distributed amongst the remote nodes (no local stores), and the collision rate

within the send buffer—the likelihood the back-scan would find a match—was kept at a

particular level. The program was run on different clusters with the backscan optimization

both enabled and disabled, on index variables with collision rates from 0% (no collisions in

a buffer) to 100% (all values went to the same position on each remote node). The depicted

times where collision detection was enabled are the fastest runtime of five runs for each

collision rate.2 Testing indicated that, as expected, when collision detection was disabled,

runtime is independent of the collision rate; the value given is the minimum of the times in

five detection-disabled runs.

The cost of collision detection is observed by the difference in table 5.1 between the

never-scan column and the always-scan column with a 0% collision rate. The experiment

indicates that a 30–40% overhead is induced by scanning without success. This is a fairly

high price to pay, especially in situations where we expect most send operations will have

few if any collisions. However, the benefits of scanning are clear by comparing never-scan

with always-scan on high collision rates. Scanning with a 100% collision rate is 85%—

five times—faster than sending the values without scanning. Though the speedup here is an

overestimate in general because the single index value was always found immediately, the

histogram equalization algorithm with a 256-value pixel will also generally have a nearly

100% collision rate because the total number of positions per node is less than the number

of packets that fit in a buffer. Tests on a histogram program indicate that the speed-up even

with additional search time is over 65%.

2. Though we generally use the median as our statistic-of-choice for summarizing results, this particular test
occasionally induced very bad network behavior, especially with low collision rates (i.e. high network traffic).
The minimum was found to be a better filter of extreme results.

CHAPTER 5. Algorithms for General Communications 110

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
)

Collision Rate

Send times , linear collision resolution , int data

4-node, noscan
4-node, linear scan

8-node, noscan
8-node, linear scan

12-node, noscan
12-node, linear scan

Figure 5.4: Send Communication Times relative to Collision Rates: Linear Scan

It is clear from these results that in some cases it is beneficial to search for collisions in

send operations, and in some it is better not to do so. Since we are unable to determine col-

lision behavior prior to beginning the communication, we wish to determine it as quickly as

possible during the communication, so we can choose whether or not to perform backscan-

ning.

Our solution to the problem is a heuristic which initially assumes there will be collisions,

but keeps track of its success rate in searching for collisions. If the observed collision rate

drops below a threshold value, the heuristic stops performing the search for a certain period

of time, after which it restarts to see if the collision behavior has changed. In more detail,

we use the following parameters:

� Pt is the threshold scan probability, which is the lowest observed collision rate at which

it is still worth backscanning.

� BI is the number of buffers that we scan while computing the collision rate.

� BM is the maximum number of buffers that we will commit to scan based on past colli-

CHAPTER 5. Algorithms for General Communications 111

sion behavior. This ensures that if collision behavior varies over a single send operation

we will not commit to scanning far into a low-collision region.

� BS is the number of buffers on which we will not use detection if the collision rate drops

below Pt . After this hiatus, we will recompute the collision rate.

The observed collision rate is estimated using an integer counter collctr, to which at each

position a weight δs is added if a collision is detected, and a weight δ f subtracted if no col-

lision is detected. The weights are computed so that if the observed collision rate is Pt the

counter will, on average, remain at its initial value, while if the observed rate exceeds Pt it

will grow. I.e., we choose integer values for δs and δ f such that:

Pt �
δ f

δ f +δs

The initial value of collctr gives us a window in which we can compute the observed

collision rate without decrementing the counter to 0, which would cause us to stop scanning

(hence stop observing the collision rate). To decrease the overhead of rate maintenance and

dampen the effects of collision rate variance, we only examine the approximated rate when

a buffer has filled. Hence, when a new buffer is started and scanning is turned on, we will

continue to scan until the buffer fills, regardless of the behavior of the rate variable. The

effect of this is that, if the rate counter is positive at the start of the buffer, we will scan

throughout that buffer. Therefore, assuming that Nb packets will fit in an MTU-sized buffer,

we set the initial counter to:

collctr = 1+(BI�1)�Nb �δ f

This guarantees that, even if no collisions are observed, we will scan at least the first BI

buffers to compute our observed collision rate. Though this initial value biases the rate ap-

proximation, over time the effect is decreased.

There are two reasons for maintaining the maximum buffer value BM. The first is that,

when Pt is less than 0.5, δs > δ f ; and the closer Pt is to 0, the larger the difference. If we

encounter a region of high collision, this means that collctr will be continually increasing.

With values of Pt near 0, the magnitude of δs eventually may cause collctr to overflow,

resulting in an apparent negative value and inappropriate disabling of detection. Secondly,

if the collision rate varies over the shape, a period of high collision in this case may result in

an extended period of detection even when the rate within the region is low, because many

subtractions of δ f are required to compensate for each past addition of δs. Therefore, we

set an upper limit on collctr of

collctr_max = 1+(BM�1)�Nb �δ f

which ensures that, no matter how good past success was, if the collision rate drops to 0 we

will scan no more than BM buffers before disabling detection.

CHAPTER 5. Algorithms for General Communications 112

When the observed collision rate drops low enough that detection is disabled, we will

stop the scanning step which is necessary to maintain the rate approximation. Since the rate

may vary over a shape, we would like to re-sample the rate later on to see if it has changed.

Therefore, when scanning is disabled we reset collctr to BS, and decrement it each time

the buffer fills. When it reaches zero, we reset it to its initial value and start scanning just

as we did at the start of the communication.

Pseudo-code for the detection mechanism is given in figure 5.5. We maintain a separate

detection flag doscan and collision rate approximation counter collctr for each remote

node, because collision rates may differ depending on the destination of the send.

The final issue to be addressed is the choice of values for the parameters on which the

heuristic depends. The appropriate value for Pt is dependent on a wide variety of system

parameters, including processor speed (which affects scanning time), network transmission

overhead and MTU, the size of the cluster, and the number of elements being sent. While

an equation might be developed to calculate Pt for a particular configuration, perhaps at

runtime, it is not immediately clear how all the system parameters interact (e.g. cache size

versus buffer size), and it may be difficult to obtain the necessary system parameters. It is

significantly simpler and intuitively more reliable to determine empirically the appropriate

value from tests such as those depicted in figure 5.4. The cross-over points where scanning

becomes beneficial are 50% for four nodes, 42% for eight, and 44% for twelve. We chose

Pt = 0:45 as a value likely to perform reasonably well on all clusters. As long as an MTU-

buffer holds a sufficient number of elements, say Nb � 25, we can get a good approximation

of the collision rate within a single buffer, so we set BI = 1. The remaining parameters are

perhaps less critical, and we arbitrarily chose BM = 2 and BS = 50.

With these values, the performance is shown in figure 5.6. It is interesting to note that

using the heuristic adds little cost when the collision rate is below the threshold, though

a minute improvement could be gained by decreasing the threshold slightly for the eight

and twelve node clusters. This is because the collctr value immediately drops below the

threshold, and only one out of every BS of the tens of thousands of message buffers created

is scanned. As the actual collision rate increases, a few more buffers are scanned each time

detection is re-enabled, resulting in a slight improvement due to collision resolution until

the approximation again drops below the threshold. Finally, when the actual collision rate

exceeds the threshold, scanning remains on throughout the communication and there is a

significant drop in execution time.

The experimental results presented so far used a linear scan to determine whether a re-

mote offset had been seen before. This seemed a reasonable choice, because the number

of elements that fit in an MTU-sized buffer is relatively small: given a 1400 byte Ethernet

packet (reduced by other message headers as described in chapter 4),3 we can fit 172 4-byte

packets and 275 1-byte packets, with offset information, in each buffer. This limitation does

not hold for the get optimization described in the next section, because we wish to perform

collision detection over the entire communication rather than within a single buffer. Since

3. See footnote 9 on page 90 for why sizes were limited to 1400 bytes.

CHAPTER 5. Algorithms for General Communications 113

if (Pt < 0.5) { /* Fixed value of 10 provides good approx */

dfail = 10;

dsucc = (int) (0.5 + dfail * (1.0 - Pt) / Pt);

} else {

dsucc = 10;

dfail = (int) (0.5 + Pt * dsucc / (1.0 - Pt));

}

initctr = 1 + (BI - 1) * Nb * dfail;

maxctr = 1 + (BM - 1) * Nb * dfail;

doscan = 1;

collctr = initctr;

reset buffer;

for each element in sequence do {

if (doscan) {

scan for element;

if found {

collctr += dsucc;

/* perform any necessary combination in buffer */

continue;

}

/* failed: adjust rate and fall through to store */

collctr -= dfail;

}

/* Either not scanning, or failed to find element. Flush an already

* full buffer, since we're going to need another space. */

if buffer is full {

send off buffer;

reset buffer;

if (doscan) { /* we were scanning---should we continue? */

if (0 > collctr) { /* no, rate too low */

if (collctr >= - Nb * dfail) { /* dropped below during walk */

doscan = false;

collctr = BS;

} else /* neg because of overflow */

collctr = maxctr;

} else /* yes, truncate rate */

collctr = MIN (collctr, maxctr);

} else { /* we were skipping---should be restart scanning? */

if (0 >= --collctr) { /* yes */

collctr = initctr;

doscan = 1;

}

}

}

add element to buffer;

}

Figure 5.5: Pseudo-code for scan collision detection heuristic

CHAPTER 5. Algorithms for General Communications 114

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
)

Collision Rate

Send times , int data , Pt=45%

4-node, noscan
4-node, linear scan

8-node, noscan
8-node, linear scan

12-node, noscan
12-node, linear scan

Figure 5.6: Send Communication Times relative to Collision Rates, with Pt = 0:45

the number of offsets we wish to track in that case is bounded only by the number of offsets

on each remote node, we chose to implement an AVL search tree (Knuth, 1973) to improve

collision search time. Imagine our surprise when we discovered that the cross-over point

for an improvement using collision detection in the get implementation was essentially a

collision rate of 0%: it cost us nothing to perform the collision search, even when it failed

every time.

To resolve this anomaly, we re-examined the performance of a linear insertion compared

with an AVL-based insertion for various numbers of elements, all with no collisions, and

on our primary target hardware (Sun SparcStation 20/612). In each case, insertion required

verifying that a particular key was not present in the search structure, then adding it to the

structure. We verified that for small numbers a linear implementation is faster because the

overhead is less: with 30 elements, linear insertion is twice as fast as AVL insertion (43µsec

to linearly insert 30 elements, compared with 86µsec for AVL). However, the cross-over

point is around 79 elements (275µsec each), and at 172 an AVL insertion is twice as fast

(680µsec) as linear (1255µsec), and almost three times as fast with 275 elements. The net

CHAPTER 5. Algorithms for General Communications 115

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
)

Collision Rate

Send times , int data

4-node, noscan
4-node, linear scan
4-node, AVL scan

8-node, noscan
8-node, linear scan
8-node, AVL scan

12-node, noscan
12-node, linear scan
12-node, AVL scan

Figure 5.7: Send Communication Times, 4-byte Data, Linear and AVL Scan Methods. Buffers hold

172 elements.

effect of this is to reduce the overhead of search to the point where it is absorbed in the

normal latency induced by the network and flow control, as further examined in section 5.5.4

We naturally modified the send implementation to use AVL trees to store collision in-

formation, and the resulting performance is shown in in figure 5.7 for integer data (172 ele-

ments per buffer). The 30–40% overhead observed for linear scan when no collisions were

detected disappears with an AVL-based scan. It is satisfying to note that the real-time im-

provement using AVL instead of linear search is consistent across all but the very highest

collision rates, making AVL twice as fast as linear at an 80% collision rate.

With character data (figure 5.8, 275 elements per buffer), the number of elements is large

enough that not all AVL search overhead can be absorbed into normal latency, and the cross-

over point is somewhere around 20%. Comparing the two search methods, it is clear that

4. A similar effect is observed when a reasonable proportion of the data is sent to positions on the source node,
thus bypassing the network entirely. This local work is also absorbed into communication latency, but reduces
the proportion of time spent searching for collisions even more because no search is required to perform the
combination/store to a locally-owned position.

CHAPTER 5. Algorithms for General Communications 116

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
)

Collision Rate

Send times , char data

4-node, noscan
4-node, linear scan
4-node, AVL scan

8-node, noscan
8-node, linear scan
8-node, AVL scan

12-node, noscan
12-node, linear scan
12-node, AVL scan

Figure 5.8: Send Communication Times, 1-byte Data, Linear and AVL Scan Methods. Buffers hold

275 elements.

our choice of Pt = 0:45 when using linear insertion is very bad for 1-byte sends on small

clusters, and would yield a significant search penalty; a useful cross-over would be some-

where around 95% or higher.

The choice of an appropriate constant Pt for all send operations is less clear now that

we have seen the effects on different sized data packets. Rather than further complicate the

implementation by attempting to pick a rate at runtime, we now use AVL search consistently,

with a threshold Pt = 0:05 to detect non-colliding sends.

5.4 Optimizing Get Operations

Collisions can occur in get operations as well as in send operations. In this case, we

have a situation where multiple positions request the same (remote) value. Network traffic

can be decreased if we recognize the case, request only one copy of the value, and when it

arrives store it locally in the positions that need it.

CHAPTER 5. Algorithms for General Communications 117

The difficulty with optimizing get operations is that it requires saving state information,

or walking the shape multiple times, to detect that a value requested some time previously

and which has now arrived must be stored in several locations. To see this, recall that a

general get is a two-phase operation. In the case of no collisions, it can be translated into

two send operations at the C* source level. For example, with a rank-one shape, the get

operation:

d = [idx]s;

can be written as:

[idx]ridx = pcoord (0);

[ridx]d = s;

The effect of this is to send our address to remote nodes which own the data we want, then

have them send the data back. The complication with collisions arises because of the first

send operation: if idx is not a simple permutation of the positions of the shape, then two or

more address values from pcoord (0) will be sent to the same position of ridx, and only

one will survive. The other is permanently lost, and the corresponding position of d will not

receive the required value. We must retain this information.

To implement a get optimization similar to the previous section’s send operation we must

note, at the time the packet containing remote (source) offset and local (destination) offset is

to be written into the request buffer, that a previous packet with the same source has already

been requested. However, in this case we must perform the additional step of recording

somewhere that when the requested data come in they should be stored in multiple locations.

In the get implementation described in section 5.2, the store location is sent to the remote

node to be returned along with the data, but there is only room for one store location in

the send packet. Rather than attempt to expand the send packet to give multiple storage

offsets, which would neutralize the benefits of not requesting the data multiple times, we

must keep the multiple location information on the requesting node. When a packet comes

in, we must determine whether it is to be stored in a single or in multiple locations, and what

those locations are.

To support this, we maintain an AVL tree (Knuth, 1973) for each remote node. Each tree

node contains as its key the source (remote) offset from which the value will be requested,

and a list of local offsets into which the value should be stored. Since we have no bound

(except the size of the shape) on the number of positions into which an incoming value must

be stored, we arbitrarily choose a limit MC (currently 6), and define a structure type which

can hold MC destination locations, plus a link to another object of the same type in case more

than MC destinations are required. As an optimization, we can detect when a series of gets

are made from a single source position into a contiguous block of local elements, and store

only the endpoints of the block. Thus we can handle arbitrary numbers of destinations, but

in reasonably sized chunks to cut down on memory usage.

We use the detection heuristic of the previous section to determine whether the search

is likely to be worthwhile, based on the observed collision rate. When collision detection is

CHAPTER 5. Algorithms for General Communications 118

enabled and a new remote source / local destination pair is to be added to a request buffer,

we first perform an AVL search to see if we already have collision data for the source posi-

tion. If we do and the data have already been received, we simply copy the data over from

a saved canonical location into the local destination. If we have a collision structure but the

required data are not yet available, then we add the new local destination to the store list,

and continue. If we have no collision information for the source offset, we scan through the

current buffer of request packets looking for a collision. If we find one, we add a new entry

to the collision tree and initialize its destination list to the destination from the packet in the

buffer and the new local destination. We then replace the destination in the buffer packet

with the value �(s+1) where s is the source offset on the remote node. Legitimate offsets

are always non-negative, and we will assume that no shape will have so many positions that

a positive offset will appear to be negative due to overflow (i.e., for a 32 bit system we as-

sume no more than 2 billion positions of a particular shape will be held on a single node).

When a data response arrives from a node, we walk each packet performing stores as

before. However, if a destination offset in the packet is negative, we convert it back into

a positive source offset and use its value to search the AVL tree for the current collision

information for that offset. We then copy the value from the message buffer into all local

elements where it is to be stored, and save a pointer to one of them as a “canonical source”

in case additional requests for the value are made.

The performance of this optimization, relative to gets without collision searching, is

shown in figure 5.9 for character data, and figure 5.10 for integer data. The benefits of col-

lision search are apparent immediately, with any nonzero collision rate, and yield up to 8�

performance improvement with a 100% collision rate. As there is a very minimal overhead

when no collisions are encountered, we set Pt = 0:01 for the get optimization.

The optimization here is a heuristic, and there are high-collision cases that it does not

detect. An example is spread communications in two-dimensional shapes. Consider an N�

N shape, where each position reads its value from column 0 of its own row. Because we

perform a linear walk which proceeds along columns within rows, the first position requests

the value from column 0; the second notices that the value has been requested and adds itself

to the list; and so forth. In this case, each value is requested only once, and is then stored

into all positions on the row.

If, on the other hand, each position reads its value from row 0 in its own column, then

the linear walk means there are N intervening requests, all for different remote elements,

before a redundant request is made. If N exceeds the number of elements that can be fit into

the request buffer, that buffer will be flushed and a new one started before the next row is

started, and the existence of collisions will not be detected.

Handling this case would require storing information about each request in the AVL tree

immediately, rather than waiting until a duplicate is noticed. This would result in an AVL

node for each remote request, yielding an extremely large search structure in the case of

no collisions. Furthermore, since the distance between colliding elements may exceed the

window in which collision rates are computed, we must either never disable search, or face

the chance that we will turn off the search before we detect any collisions, thus wasting the

CHAPTER 5. Algorithms for General Communications 119

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
)

Collision Rate

Get times , char data

4-node, noscan
4-node, AVL scan

8-node, noscan
8-node, AVL scan

12-node, noscan
12-node, AVL scan

Figure 5.9: Get Communication Times, 1-byte Data

effort we spent building the search tree. Neither option is appealing, and we simply admit

that there are colliding communications which are not detected by these heuristics.

5.5 Evaluation and Related Work

Implementation of the general case of what C* calls general communications has not

been a major area of research, though at least one special case has received much attention.

Most implementations use the same paradigm as Kali (Koelbel & Mehrotra, 1991) for these

operations. The inspector/executor system inserts code prior to a loop which involves com-

munications. The iterates of the loop are inspected in this code to determine the remote ref-

erence pattern and build a schedule that indicates what elements needed to be sent off-node,

and where elements referenced locally could be found (either in the original local data, or in

buffers holding off-node data). Then the loop itself is executed, using the schedule to speed

up communication and indexing. This method has since been adopted and extended in cur-

rent distributed Fortran implementations for a particular type of communication pattern, as

CHAPTER 5. Algorithms for General Communications 120

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
)

Collision Rate

Get times , int data

4-node, noscan
4-node, AVL scan

8-node, noscan
8-node, AVL scan

12-node, noscan
12-node, AVL scan

Figure 5.10: Get Communication Times, 4-byte Data

will be described below.

The University of New Hampshire C* compiler uses a more complex mechanism de-

signed for a hypercube network architecture (Lapadula & Herold, 1994). Each node walks

its local data and builds up a single large buffer that holds all data to be sent off-node. The

buffers are then exchanged in a log-swap method, with receivers at each stage extracting the

elements that are addressed to them, and adding new ones from previous steps. The need to

buffer everything at once, and the multiple exchange steps which transmit values to nodes

that are not interested in them, yield suboptimal performance on networked workstations.

Recent versions of the UNH C* compiler support a variant of the schedule-based communi-

cation described below, memoizing the communications pattern the first time it is used and

using point-to-point communication operations for further exchanges with the same pattern

(Mason et al., 1994). This implementation requires data-flow analysis to detect instances

where the optimization is both valid and likely to be beneficial.

Several research programs in high performance distributed computing have addressed

the issue of general communications in the context of “irregular problems” (Bozkus et al.,

CHAPTER 5. Algorithms for General Communications 121

1994; Chapman, Zima, & Mehrotra, 1994; Das, Uysal, Saltz, & Hwang, 1994; Ponnusamy,

Saltz, Choudhary, Hwang, & Fox, 1995; Ponnusamy, Hwang, Das, Saltz, Choudhary, &

Fox, 1995; Sharma, Ponnusamy, Moon, shin Hwang, Das, & Saltz, 1994; Brezany, Gerndt,

Sipkova, & Zima, 1992). These are problems such as molecular dynamics and particle sim-

ulations where inter-element communication behavior is highly dependent on the data set,

and is often adaptive, changing as the computation proceeds (e.g., as particles move about

and affect different neighbors). The primary motivation for research into irregular problems

is supporting irregular distributions, which ensure that the distribution of data is such that as

little communication as possible is required between nodes: array elements are distributed

based on the access patterns, as determined at runtime. For example,

DOALL i=1,ni

DOALL j=1,nj

A (i, j) = functionof (A (n1(i), n2(j)));

END DO

END DO

where n1 and n2 are indirection arrays which map each array element to a different element

(presumably, a “neighbor” in some sense), and DOALL indicates a data-parallel loop (which

may ignore order dependencies). In C*, the computation would be expressed using general

get and implicit data-parallelism:

A = functionof ([n1][n2]A);

It is generally the case that the indirection arrays involve references sufficiently far away

that a block distribution would require inter-node communication for almost all references:

there is no locality.

The most mature support for irregular distribution seems to be the Chaos runtime system

developed at the University of Syracuse for the Syracuse Fortran-90D compiler (Ponnusamy

et al., 1995). The Chaos system supports irregular distributions at runtime through a six-

phase sequence at each major computation loop:

� Data partitioning involves consulting a user-provided routine or directives to determine

which processors should own particular elements of a distributed array. The result of this

phase is a look-up table to map from array index to owning processor.

� Data remapping redistributes array elements in accordance with the distribution from

the previous phase.

� Iteration partitioning determines which iterations of a parallel loop are to be executed

on each processor.

� Iteration remapping redistributes the indirection arrays so that loop iterates own the in-

direction elements to which they will refer.

� Inspector examines the array indices for the node’s iterates, and determines a commu-

nication schedule which indicates what values should be sent off-node, what values will

CHAPTER 5. Algorithms for General Communications 122

arrive from off-node, and where off-node values will be stored locally.

� Executor performs the computation and communication using the results of the previous

phases.

The lookup table of the data partitioning phase in essence defines a completely uncon-

strained data distribution (see section 3.1). Because there must be an entry in the table for

each array element giving its owning processor and offset, the table must have as many ele-

ments as the array. In many cases, this requires that the table itself be distributed, lest mem-

ory requirements grow too large. Though Chaos attempts to limit the cost of accessing the

distributed table by splitting it into pages which can be cached on nodes that normally do

not own them, in the worst case determining the new owner of each position could involve a

remote table lookup. Data mapping itself results in a general communication, sending data

from their original owner to the processor appropriate for the upcoming computation loop.

Iteration partitioning is not directly relevant to C*, because loops over the scalar ele-

ments in parallel values are implicit, and are partitioned based on ownership of positions in

a shape. Iteration remapping is intended to modify the owner-computes rule, by assigning

responsibility for computing a value to the node which owns the bulk of the data involved in

the computation. This has no analog in the pC* system, which uses owner-computes con-

sistently, though other C* systems might differ.

The inspector/executor paradigm first introduced in Kali provides a measure of commu-

nication aggregation and latency removal, by collecting information that allows all sends to

occur prior to loop execution, rather than performing a communication operation at each po-

sition in the array. There is support within Chaos and similar libraries to detect where a com-

munication schedule can be re-used between iterations and in some cases between differ-

ent code sections, and where values from off-node may be re-used without being requested

again (Das, Ponnusamy, Saltz, & Mavriplis, 1992; Agrawal, Sussman, & Saltz, 1993; Pon-

nusamy, Saltz, & Choudhary, 1993). This re-use may be aided by compile-time analysis,

or determined at runtime by destroying a schedule when an index expression on which it is

modified.

The problem domain addressed by the Chaos library is quite different from that com-

monly encountered in image processing applications, and this is reflected in the very differ-

ent communications implementations of Chaos and pC*. For example, the multiple phase

preparation of Chaos can induce a significant overhead: in many reports of timing results

using the inspector/executor paradigm, the inspector phase itself generally takes as long as a

single executor phase (Agrawal et al., 1993; Koelbel, Mehrotra, & Rosendale, 1990; Koel-

bel & Mehrotra, 1991; Ponnusamy et al., 1993). When data partitioning and remapping is

involved the preparation can be as long as 30–40 executions (Ponnusamy et al., 1995). As a

result, the cost of the preparation must be amortized over a large number of repetitions using

the same communications pattern before an absolute improvement could be observed.

For the most part, a particular general communications pattern in a C* image process-

ing program is used once, or perhaps a small number of times: for example, sending band

data to a new shape as in example 3.2.3.1 need be done only as many times as there are

CHAPTER 5. Algorithms for General Communications 123

bands in the multispectral image. If a C* program does use a pattern which is repeated mul-

tiple times, there is support within pC* to remove at least some of the overhead involved in

determining the pattern at each communication. An extended data type, CMC_sendaddr_t

(Thinking Machines Corporation, 1993), provides a representation of the address of a spe-

cific element in a specific shape; i.e. it encodes what would normally be an index vector as

some internally-appropriate address. In the case of pC*, the CMC_sendaddr_t type holds

the remote node and offset corresponding to a position in the shape. TMC C* and pC* both

support library functions which translate a group of parallel index expressions into a parallel

value which has a CMC_sendaddr_t at each position; there are also library get and send

functions which use these address values instead of index expressions to perform general

communication. This means that the address translation described in section 3.2.3 can be

performed once prior to the communication, and the addresses used directly in communi-

cation operations.

This feature can be considered a crude approximation to a communications schedule-

based approach. Experimentation in pC* indicates that the value of using this feature is

highly dependent on the amount of communication involved and on network overheads. We

devised a program to time several general send operations on a two-dimensional shape:

� Local stores—the indirection arrays named the local position as the target. No commu-

nication was involved.

� Shift—the indirection arrays shifted each node’s data to the next node. For clusters with

2 or more nodes, all values were sent off node, but each element went to the same node

as its predecessor.

� Cyclic distribution—the indirection arrays sent each position to a different node than

the previous position. For clusters with P nodes, (P� 1)=P of the elements were sent

off node, and there was no locality in sends.

Two send mechanisms were timed: the first performed the index-to-node/offset-pair trans-

lations on every communication, while the second first computed the CMC_sendaddr_t in-

formation for the communication into a parallel variable, then used the communication op-

eration which read the pre-computed node/offset data from the parallel value.

To see the performance effects of pre-computing the node/offset information, we mea-

sured the time to perform each of the sends with each implementation from one to five

times in sequence, on a 1024�1024 shape with one byte per position. The programs were

run on clusters with 1, 2, 4, and 8 nodes. For each cluster size and communications pat-

tern, we fitted the data to an estimator function appropriate for the send model: normal left-

index sends with address recomputation cost a particular amount for each repetition, while

CMC_sendaddr_t sends have a fixed overhead plus a different amount for each repetition.

The estimator functions, yielding runtimes in seconds, are given in table 5.2.5

5. Tests were performed on the compute cluster using the reliable TCP interface, with one process per phys-
ical machine. Times for per-iteration costs were found by taking the median of five runtimes for each of 1,

CHAPTER 5. Algorithms for General Communications 124

Cluster Send Recompute CMC_sendaddr_t Per-Iter %Imp Min Iters

Size Pattern Send Send Using SA to SA Faster

1 local 2:34n 2:95+0:99n 58 3

shift 2:35n 2:95+0:99n 58 3

cyclic 2:39n 2:95+1:04n 56 3

2 local 1:44n 1:75+0:49n 66 2

shift 4:75n 1:74+4:59n 3 11

cyclic 2:52n 1:72+2:30n 9 8

4 local 0:78n 0:92+0:25n 68 2

shift 2:57n 0:93+2:49n 3 13

cyclic 1:99n 0:88+1:88n 5 9

8 local 0:45n 0:53+0:13n 71 2

shift 1:29n 0:53+1:26n 2 17

cyclic 1:28n 0:49+1:25n 3 14

Table 5.2: Time estimators for n repetitions of various send communications (sec)

In all cases, the precomputation itself is more expensive than computing the address

in the context of the send operation. This is mostly due to the need to allocate and fill

a parallel variable containing node numbers and offsets for each element in the shape—

the analog of a communications schedule—and may be a cause of the similar overhead in

inspector/executor implementations. When we consider the total cost of communication,

things become more murky. With one processor—forcing all moves to be local—address

pre-computation is beneficial if three or more sends are to be performed; the results indicate

that about 60% of the per-iteration cost is due to address calculation. With multiple nodes,

where sends actually invoke communication costs, only the send pattern with no off-node

transmission yields an impressive improvement with pre-computation. In the other patterns,

the cost per repetition is very nearly the same with each method, with about 3% savings with

address pre-computation. It would require between 8 and 17 iterations before the overhead

incurred by precomputation was recaptured. This is surprising, considering the result in

chapter 3 which implied that address calculation would be 10% of the communication cost;

only one communications pattern / cluster size supports an overhead that high.

The conflict can be resolved by recalling that the previous estimate of 1msec for send-

ing a 1400-byte Ethernet packet did not take into account overhead from flow control.

More than 100KB of data are transferred off-node in each iteration of shift and cyclic pat-

terns in these tests. To prevent deadlock due to filled the system network buffers, the

check_messages routine will be invoked to read and manage incoming data while the out-

2, 3, 4, and 5 repetitions of the communication. Four per-iteration costs were found by subtracting pairwise
(5-4,4-3,3-2,2-1). The mean of these costs is the value given in the table. The variance of the four costs was
generally around 1% of the mean, with a maximum of 8% for the 8-node cluster, indicating that the approxi-
mations are a close fit to the data independent of number-of-iterations. The time for the send-address build is
the mean of the measured time for the build, rather than an extracted intercept from fitting the recorded times
to a line.

CHAPTER 5. Algorithms for General Communications 125

going data are still being prepared and sent. While these invocations are critical for cor-

rectness, the additional overhead increases the per-buffer cost to between 2.4 and 3.2 msec

for the communication times in table 5.2. Tests indicate that the same behavior holds for

smaller shapes as well, because latency is small enough that incoming messages arrive be-

fore all local messages can be sent off-node. Though the underlying network would be capa-

ble of buffering the entire communication, the system cannot know this, and transmission is

delayed to handle the incoming messages. The larger transfers are also slowed due to oper-

ating system-induced flow control (e.g., writers must wait until a reader has acknowledged

receipt of previous data before more data can be queued).

While it is still beneficial to perform address pre-computation when most communica-

tion is intra-node, the inherent costs of communication, both in overhead and in latency,

make pre-computation less valuable for heavy communication patterns. To some extent,

this is due to the choices made in pC*’s communications hierarchy: for example, avoiding

unportable, specialized network-specific optimizations that could reduce the overhead, and

using fixed-sized buffers rather than sending all data in one buffer. However, the results do

imply that the communications schedule approach may have certain limitations which make

it less appropriate for systems where communications operations are removed to library rou-

tines, not specialized to a particular source-program loop. Few papers have compared com-

munication times using a schedule implementation with a well-optimized implementation

which computes addresses at each position. The small fractional improvement we observe

with our approximation to schedule-based communication implies that other systems may

see similarly little improvement when compared with non-schedule implementations which

do not have the overhead of the inspector loop, especially for patterns with few repetitions.

The University of New Hampshire C* system supports an optimization which builds a

communication schedule during the first execution of a communication pattern, and uses

it for subsequent repetitions (Mason et al., 1994). This optimization yields speedups of

10% or more per repetition on networked workstations when the schedule approach is used,

but this seems mostly because the unoptimized approach uses a log-based communication

which passes values through intermediate nodes on the way to the final destination. Both

implementations are generally two to three times slower than the corresponding code in pC*

running with the same network interface (PVM) (cf. section 7.8). The experimental results

in (Mason et al., 1994), which use the Intel Delta architecture for which the non-schedule

implementation in UNH-C* was designed, do not clearly quantify the expected benefit of

the optimized implementation.

One clear benefit of the communication schedule approach of Chaos and Kali is its po-

tential to access local elements directly, by providing a schedule which points to local data in

their local positions and remote data in a separate buffer. Buffers for remote data in commu-

nication schedule systems are often allocated as “ghost cells” at the end of the local portion

of a parallel value (Das et al., 1992). In the worst case of accessing only remote data, the

external buffers must be the same size as the local data, meaning that no space savings is

achieved; in fact, more space is required to store the schedule itself. However, the copying

cost will be avoided for intra-node references. This is in contrast to pC*, which uses a tem-

CHAPTER 5. Algorithms for General Communications 126

porary parallel value into which both local and remote values are copied, to place values at

the element at which they will be referenced. This simplifies the implementation consider-

ably, at a cost in extra memory and copying.

The performance results in (Ponnusamy et al., 1995) indicate that the bulk of improve-

ment using the Chaos runtime system comes directly from its support for irregular distribu-

tion: the system ran twice as fast in its executor phase when data was re-distributed to limit

inter-node references, although the preceding five phases took somewhat longer to perform

the more complex preparation. The partitioning scheme is algorithm and data dependent,

and is not a direct part of the Chaos system. If irregular algorithms with repeated execution

are to be coded in C*, the same functionality can be achieved within the core C* language

without additional compiler support, assuming a repartitioner is available. This is done by

noting that data redistribution is essentially a renumbering of the distributed elements, so

that communications nearness is reflected in their ordering.

For example, let d denote a (rank-one) parallel value, i an index vector, and m a mapping

vector taking position k to position [k]m. That is, m encodes a partitioning (a permutation

of element addresses) designed to decrease inter-node communications while performing

communications such as [i]d. Then the parallel value dmay be redistributed with a general

send:

[m]rd = d;

and index expressions remapped through a general get:

ri = [i]m;

After this redistribution, get operations of the form [ri]rd yield the same parallel value

as the original [i]d, though with less inter-node communication (assuming m represents a

better distribution). Redistribution of higher-rank data can be supported in a similar fashion.

This technique is used in the Julia-set benchmark given in section B.6, to impose a cyclic

distribution of rows so the computational load is balanced.

These idioms show how any arbitrary distribution may be supported in pC* even though

the underlying system supports only block-based distribution. The caveat is that the user

must undertake to specify the required distribution and perform the redistribution steps her-

self. However, this is not much different from HPF and Fortran-D which similarly require

source-level hints or calls to extrinsic repartitioners to provide the necessary distribution

information (Chapman et al., 1994; Bozkus et al., 1993; Ponnusamy et al., 1995).

5.6 Conclusions

Two of the core communications operations of C* involve sending and getting values

from positions which are related in arbitrary ways to the target position. In this chapter, we

have presented a straightforward yet effective implementation of these operations using the

communications hierarchy described in chapter 4. We have also presented a heuristic which,

at essentially no cost, detects at runtime a special case where the amount of data sent over

CHAPTER 5. Algorithms for General Communications 127

the network can be reduced, resulting in a significant performance improvement.

The contents of this chapter are only distantly related to other work on similar commu-

nications patterns, which are focused on pre-computing send and receive behaviors to ag-

gregate messages and take advantage of latency. These methods tend to involve sufficient

overhead that for the common (in image processing) case of few executions of each pattern

we feel the straightforward, one-pass implementation is preferred. We achieve message ag-

gregation through the use of MTU-sized buffers, and take advantage of latency by sending

buffers as soon as they are filled, or (in the future) by delaying the barrier that verifies all

data has been received until the resulting value is to be accessed.

While the irregular communications patterns addressed in this chapter have inherent lim-

itations on runtime optimization simply because they can distribute data arbitrarily, patterns

with regular behavior, such as shifting data along a vector, admit a highly optimized imple-

mentation which can be up to ten times faster than a general communications operation with

the same communications behavior. These optimized grid communications are the subject

of the next chapter.

Version: gencomm.tex,v 1.13 1996/04/09 21:07:55 pab Exp

CHAPTER 6

GRID COMMUNICATION

You can’t communicate complexity, only an awareness of it.

— Alan J. Perlis, Epigram #105

Here we develop an optimized method of calculating the communications require-

ments for grid-based sends and gets completely at runtime, in contrast to most other

systems which require that knowledge of shape (array) size and runtime environ-

ment be available when code is generated. The mechanism works on shapes of any

dimension or size, shifts in any number of dimensions simultaneously, clusters of

any number, and any data layout conforming to the generalized block distribution

described in chapter 3. It permits a common contextualization operation to be per-

formed roughly 100� faster than a method which looks at each position. Experi-

mentation on grid communication indicates it imposes no more than a 5% increase

over the cost of simply copying data, up to the point network latency interferes. Ex-

perimentation on a single processor indicates its performance is nearly independent

of shape rank, is competitive with hand-coded optimized implementations for one-

and two-dimensional send operations, and is orders of magnitude faster than a gen-

eral method which performs translations at each position in the shape.

Many algorithms in both image processing and scientific computation use neighborhood

or stencil operations where elements near a position are combined to create a new value for

that position. These operations use grid communications: elements get values from posi-

tions that are a fixed offset from them through one or more dimensions. In the case where

array bounds, offsets, distribution, and number of processors are all known at compile time,

determining what values are required can be done by the compiler, which can then emit ex-

plicit calls to message passing routines to send data to the nodes which will want them, read

data from other nodes, and perform local computation.

With C*, none of this information, including potentially the rank of the array being in-

dexed, may be known until runtime. We must still provide a way to read values from fixed

offsets with as little overhead as possible. In this chapter we will describe a method of

global-to-local address computation for grid-based communication which is completely re-

solved at runtime, up to and including the rank of the shapes it is to work on. The imple-

mentation is more than competitive with previous runtime resolution schemes, and provides

ability to overlap communication and computation both within the library routines which

accomplish the communication and, with the addition of some compiler support, across the

user’s code as well.

128

CHAPTER 6. Grid Communication 129

Because of the intricacies of a fully-general resolution scheme handling arbitrary dis-

tributions (of the sorts described in section 3.1), we build up to the grid algorithm by first

examining the simpler but related case of forming the run-length encoded context map for

boundary-restricted contexts, which uses the same fundamental concepts.

6.1 Forming Grid Boundary Contexts

In most of this dissertation, we have viewed the local component of a distributed parallel

value as a linear sequence, abstracting away from whatever multi-dimensional system the

user has imposed on it. This allows us to handle arbitrarily ranked shapes without concern,

but causes difficulties when working with operations that inherently depend on the users’

view of the data, such as grid offset computations.

If the shape’s rank is available to the compiler, an alternative to the linear VP sequence is

a set of nested for loops, one in each dimension, ranging from 0 to the extent of the shape

in that dimension. In the case of distributed data, the bounds for a particular node would

consist of the subgrid that the node owns. This is the approach taken by most compilers for

distributed systems (Tseng, 1993), and makes computations which rely on the user’s view

of the data fairly easy to implement, since the global positions along particular axes are im-

mediately available through simple transformations of the index variables. However, the

approach generally relies on having not only rank but also extent, grid offset, data distribu-

tion, and the number of processors in the target system available for the compiler.

As noted previously, C* does not guarantee us knowledge of shape rank at compile time,

and our implementation is required to work with code where shape dimension and cluster

size are not specified until runtime. To support run-time specification of shape rank, not

all communication in C* uses the left-indexing syntax introduced in section 2.1. There are

grid communication library routines which handle arbitrarily-ranked shapes, with the offset

vector specified either through C’s stdarg support for variadic functions, or though an ar-

ray of integers. If the system implemented one version for each rank of shape that might be

handed to the routines, it is clear that unreasonable code bloat would occur and only a small

number of ranks could be supported. Therefore, we need a way of simply but effectively em-

ulating a multidimensional nested for loop using a single-nested iteration construct. Code

to perform this operation is shown in figure 6.1, and forms the foundation for all the meth-

ods used in this chapter. Briefly, we use an integer array idx[] to represent the loop indices,

and increment them from highest axis (deepest loop) to lowest axis (outermost loop) in turn,

wrapping when each reaches its upper bound, until the outermost loop wraps, at which point

we terminate. Since data are laid out in row major order, we encounter each position in turn

in its linear order, preserving good cache behavior. As a lagniappe, the code automatically

resets all index values so it is ready to execute again. Let’s now see how this approach can

be used to generate the run-length encoded context for a boundary-restricted context.

Boundary contexts were described in section 3.3 as blocking off regions of a shape cer-

tain distances from the boundaries of each axis, to prevent out-of-bounds access through

grid operations or preserve border information in iterative algorithms. The type of restric-

CHAPTER 6. Grid Communication 130

/* Assume lb and ub are initialized to the lower and upper bounds,

* depth to the number of dimensions, and idx[k] to lb[k]. Generates

* cross-product from [lb_k,ub_k). */

do {

/* OMITTED: Perform op for idx[0],idx[1],...,idx[depth-1] here. */

k = depth;

while ((0 <= --k) && (++idx [k] == ub [k])) {

idx [k] = lb [k];

}

} while (0 <= k);

Figure 6.1: Emulation of Arbitrarily Nested for Loops

tion recognized by the pC* compiler is a conjunction of one or more comparisons between

a pcoord call and a scalar integer expression. As an example, consider again the context

which prevents undefined behavior when executing the communication of figure 2.2:

where ((dimof(current,0)-1 > pcoord (0)) &&

(0 < pcoord (1))) {

iv2 = [.+1][.-1]iv;

}

The bounds for the active region use the same values as distribution partitions use for node

boundaries: the lower bound names the first active position along the axis, while the upper

bound names the first following inactive position, so the desired range is [lb;ub). The first

conjunct in the example lowers the global upper bound on active sequences along axis 0

from dimof(current,0) by one; the second raises the global lower bound on axis 1 to 1.

The pC* compiler will recognize where restrictions of this form, and translate them to

calls to a library routine which is given the current shape, parent context, and a sequence of

triples naming axis, comparison operator, and integer bound value. Each node then initial-

izes the bounds of its subgrid using the boundaries for the portion of each axis that it holds.

Where a restriction is given that blocks off part of the region held on this node, we move

the corresponding bound inwards to note where the active region starts or ends.

Conceptually we then have the following information for each axis k: the lower bound

of data held on this node dl
k, the upper bound of data held du

k , the lower bound of the active

region al
k, and the upper bound of the active region au

k . Since we are interested only in the

active region on this node, we can ensure that dl
k � al

k and au
k � du

k . Therefore, we could

form the context by walking the loop using the hdl
;du

i pairs as bounds, and at each position

checking to see whether idx falls within the hal
;au

i bounds. However, we can do much

better than this.

First, note that the active sequence on the highest axis is a contiguous block from al
r�1

up to au
r�1. Therefore, we never need to increment through the highest axis point-by-

point: for each index set of lower axes, we get an active sequence of size (au
r�1 � al

r�1)

positions. Furthermore, if it should happen that al
r�1 = dl

r�1 and au
r�1 = du

r�1, then the

CHAPTER 6. Grid Communication 131

Name mulfact noob nb Loop 0 Loop 1 Context

lb ub oob lb ub oob

unrestr 24 0 0 n/a n/a n/a n/a n/a n/a 24a

bottom 6 0 1 0 3 6 n/a n/a n/a 18a 6i

lr 1 1 2 0 4 0 1 5 2 1i 4a 2i 4a 2i

4a 2i 4a 1i

rtb 1 6 2 1 3 12 0 5 1 6i 5a 1i 5a 7i

Table 6.1: Context Build Info for Example Boundary Restrictions

same contiguity argument propagates down to axis r� 2, giving active sequences of size

(au
r�2�al

r�2)(d
u
r�1�dl

r�1), and we do not have to walk the highest axis at all. By similar

reasoning, unrestricted internal loops can be merged and replaced with a new loop which

iterates up to the product of the ranges of the unrestricted loops.

The second thing to note is that the length of inactive sequences is also known immedi-

ately. If dl
r�1 < al

r�1, then we start with an inactive sequence of length (al
r�1�dl

r�1). When

we wrap around an axis k, we are skipping an inactive sequence of length

((du
k �au

k)+(al
k�dl

k))�

m<r

∏
m>k

(du
m�dl

m)

which skips the lower and upper inactive areas and scales by the number of positions on

higher axes which are disabled by out-of-bounds indices on axis k. Taken together, these

observations mean that we can restrict the bounds of the iteration space to those of the ac-

tive region, with axes that have no limitations merged together, and detect inactive regions

in chunks when we wrap an axis in the loop emulation. The code in figure 6.2 builds the

necessary data. At the end of this code, nb indicates the depth of nesting that we must use

to generate the context. noob contains the length of the initial out-of-bounds (inactive) se-

quence; all other inactive sequences arise from wrapping around axes during the iteration

emulation, and a wrap on axis k yields an inactive sequence of length oob[k]. mulfact

gives a scaling factor representing unrestricted axes at the high end of the iteration space.

Several example contexts on 4�6 grids are shown in figure 6.3, with the corresponding

loop and context information in table 6.1. Note that if there are no restrictions, nb= 0, and

we can immediately store an encoding for an everywhere-active context. The corresponding

everywhere-inactive sequence can be detected by finding a case where lb[k]= ub[k].

We can now generate the run-length encoded context using the template in figure 6.4,

assuming the parent context is everywhere-active. The omitted code is essentially that re-

quired to store an RLE sequence, as shown in section 3.3. In the presence of a parent context,

the code is somewhat but not informatively complicated by the need to merge inactive/active

sequences with the restriction imposed by the external context.

The time taken by the context forming loop is proportional to the number of context

sequences in the resulting RLE encoding, with a slight overhead to wrap the loop counters.

CHAPTER 6. Grid Communication 132

mulfact = 1; /* Scaling factor for unrestricted axes */

nb = 0; /* Number of nested loops to simulate */

k = 0; /* Axis number being examined */

pprod = ShpNumLocal (current); /* Number of pos per index at axis */

noob = 0; /* Number of positions out-of-bounds at start */

while (k < rankof (current)) {

pprod /= ShpDimLocal (current, k);

if ((al [k] == dl [k]) && (au [k] == du [k])) {

/* Combine unrestricted axis with adjacent unrestricted axes */

mulfact *= du [k] - dl [k];

} else {

if (1 < mulfact) {

/* Store a loop to cover combined unrestricted axes */

idx [nb] = lb [nb] = 0;

ub [nb] = mulfact;

oob [nb] = 0;

nb++;

mulfact = 1;

}

/* Set the bounds */

idx [nb] = lb [nb] = al [k];

ub [nb] = au [k];

/* Compute leading out-of-bounds region */

oob [nb] = (lb [nb] - dl [k]) * pprod;

noob += oob [nb];

/* Compute trailing out-of-bounds length */

oob [nb] += (du [k] - ub [nb]) * pprod;

nb++;

}

k++;

}

Figure 6.2: Build Procedure for Boundary Contexts

For a two-dimensional shape with N�M positions, the number of context sequences will

be at most O(N) with a restriction on axis 1, and a constant at most 3 with an unrestricted

axis 1, in essence eliminating the factor of M from the context formation time. As noted in

section 3.3, the ability to avoid evaluating multiple pcoord expressions at each position in

the shape can provide a significant improvement in speed.

6.2 Application to Grid Communications

As with general communications, grid communications come in two flavors—send and

get—and an overview of their properties and implementation is in order. In both cases, com-

munication involves moving elements along a constant vector in one or more axes; the vec-

tor is specified by an array of signed integers, with as many elements as the rank of the

CHAPTER 6. Grid Communication 133

unrestr

0 1 2 3 4 5

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

0 1 2 3 4 5

0

1

2

3

bottom

0 1 2 3 4 5

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

0 1 2 3 4 5

0

1

2

3

lr

0 1 2 3 4 5

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

0 1 2 3 4 5

0

1

2

3

rtb

0 1 2 3 4 5

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

0 1 2 3 4 5

0

1

2

3

Figure 6.3: Example Boundary Restrictions

communicating shape.

In a grid send operation with offset vector ~v, each active position at global location ~p

sends its value to the position ~p+~v. The position receiving the value may either combine it

with the current value at that position or replace its value with the new one, just as general

send may combine or replace. If the target position is out-of-bounds, the value is not sent.

However, some interfaces to the basic grid operation permit a fill value to be specified: when

the source location is out-of-bounds (i.e., an element has nothing sent to it), the target instead

reads a value from its position in the fill value. This can be used to define boundary values

which are used by default when communications extend beyond the area we are primarily

interested in (and for which we defined the shape). Grid get operations are slightly different,

in that each active position ~p requests the value from position ~p+~v. If the latter position

is out of bounds, a fill value may be read instead. In both cases, if the grid operation does

not provide a fill value, we would like the option of having the system detect where out-of-

bounds positions are accessed, since this may result in undefined behavior on other systems

or future versions of the pC* system.

At a high level, both communications require the same operations: we walk through

the positions on this node, sending data or requests to other nodes, and using the incoming

data or fill values. Naı̈vely, for each local position we would need to compute its global

address, add the grid offsets, then convert back to find the owning node and offset to classify

the position. These conversion operations are extremely expensive when repeated for each

position, and we would like to use a more efficient method. With the data layout restrictions

imposed in chapter 3—i.e. block decomposition—when an element at local offset i has a

partner on node p at offset j it is fairly likely that the partner of the element at offset i+1 is

on node p at offset j+1. If we can detect the runs where a local sequence corresponds to a

CHAPTER 6. Grid Communication 134

/* OMITTED: store sequence of noob inactive positions */

vp = noob;

/* Scale mulfact for effect of contiguous active seq in highest axis */

mulfact *= ub [nb-1] - lb [nb-1];

do {

/* OMITTED: store sequence of mulfact active positions */

vp += mulfact;

k = nb-1;

noob = oob [k];

/* Iterate through loops, wrapping axes and adding OOB */

while ((0 <= --k) && (++idx [k] == ub [k])) {

noob += oob [k];

idx [k] = lb [k];

}

/* OMITTED: store seq of min (noob, vplimit-vp) inactive positions */

vp += noob;

} while (0 <= k);

Figure 6.4: RLE Storage Procedure for Boundary Contexts

src

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

0 1 2 3

0

1

2

3

s0

? ? ? ?

0 1 2 3

10 11 12 13

20 21 22 23

0 1 2 3

0

1

2

3

s1

1 2 3 ?

11 12 13 ?

21 22 23 ?

31 32 33 ?

0 1 2 3

0

1

2

3

Figure 6.5: Block-based Grid Sends

sequence on a (local or remote) node, we can treat them all identically, without needing to

perform the address calculations at each position.

One way to do this is to specialize the grid communications functions by rank and type

of shift. Figure 6.5 shows an example using a two-dimensional shape allocated on one node,

moving one step along axis 0, and separately one step along axis 1. For the first case, the

send can be accomplished with a single move of a twelve-element sequence from local offset

0 to offset 4; in the second, it is accomplished with four moves of three-element sequences.

Though the example does not involve communication between nodes, distributed shapes

permit similar behavior, sending whole blocks at once. By detecting at the start of the send

which axis is being offset, sends along only one axis can be handled with routines optimized

for these cases.

While such an approach works on the particular cases that are implemented, it does not

improve the general case, and results in a large performance penalty when the user codes

a grid operation which does not match one of the specialized versions: say, a shift along

CHAPTER 6. Grid Communication 135

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

2 2 3 3 3 3 3 3

4 4 5 5 5 5 5 5

4 4 5 5 5 5 5 5

4 4 5 5 5 5 5 5

4 4 5 5 5 5 5 5

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Send To:

Get From:

Figure 6.6: Example Grid Send Sequences: [.-3][.-3]dest = src

two axes at once. It is also necessary to make the system work when the source or des-

tination variable is a field of a parallel structure (in which case the “chunks” are not con-

tiguous and we must move them element-by-element), when send communications require

a per-element operation, and with all the various actions desired on out-of-bounds access:

reading fill elements, warning, aborting, or ignoring. The resulting code, filled with spe-

cial cases, is a software maintenance nightmare, and poorly satisfies the C* programmer’s

needs. Therefore, we would much rather spend the effort designing a general case which is

more easily verified, very near though perhaps not quite as efficient as the special cases, and

performs equally well on the more unusual shifts along multiple dimensions simultaneously

or on higher-ranked shapes. Such a general case implementation is the goal of this chapter.

A measure of the complexity of the problem can be achieved by examining the grid send

depicted in figure 6.6. In this operation, none of the target positions exist where nodes 0, 1,

2, or 4 would send data, while node 3 sends data only to nodes 0 and 1, and node 5 sends

data to all nodes. Nonetheless, all data can be interpreted as contiguous regions which are

treated alike. These regions are listed in table 6.2, where the notation n ! a@b indicates a

sequence of n elements that is sent to offset a on node b.

To complete a grid send, each node must know what blocks it must send to which other

CHAPTER 6. Grid Communication 136

Node Region Operations

0 6!oob

1 18!oob

2 2!oob

3 1!oob ; 2!0@0 ; 3!0@1

4 8!oob

5 1!oob; 2!2@0; 3!6@1;

1!oob; 2!4@0; 3!12@1;

1!oob; 2!0@2; 3!0@3;

1!oob; 2!0@4; 3!0@5

Table 6.2: Region Decomposition of Grid Send in Figure 6.6

Node 5 sends

b 0 0 1 1 1

b 0 0 1 1 1

b 2 2 3 3 3

b 4 4 5 5 5

2 3 4 5 6 7

4

5

6

7

Node 3 receives

3 3 3 F F F

5 5 5 F F F

5 5 5 F F F

2 3 4 5 6 7

0

1

2

Figure 6.7: Nodal Region Info for Grid Send in Figure 6.6

nodes; an overlay indicating sent data is outlined with dashed lines in figure 6.6. Similarly,

to detect that all data have been received, nodes must know what other nodes will be sending

them data. This information is found by negating the offset vector, as is shown by the dotted

outline. In both cases, the superposition of the inter-node boundaries of the shape onto the

local subgrid breaks the local data into regions. Examples showing the send regions of node

5 and the receive regions of node 3 are in figure 6.7. The cells with numbers indicate the

remote partner with which the cell communicates in the operation; those with value b in the

send case would be sent out of bounds, hence are ignored; and those with value F in the

receive case are ones where the corresponding sending positions are out of bounds, hence

must be read from the fill variable.

In conjunction with the loop simulator discussed earlier, figure 6.7 gives the basic idea

which allows us to recognize and treat sequences of similarly-handled data. Essentially, we

emulate the loops which iterate over the positions in row major order, and detect whenever

an axis index crosses over one of the darkened lines which indicates that the target posi-

tion has stepped onto a different remote node. These split points are found for each axis by

adding the grid shift offset for the axis to the axis indices and recording the places where

the resulting offset crosses into another node, or out of the shape. The walk code which

recognizes cross-overs is a straightforward extension of the loop emulator described in the

CHAPTER 6. Grid Communication 137

previous section. Just as with boundary contexts, we do not have to step through the highest

axis one element at a time: we can take the whole region between split points (at columns

2, 3, 5, and 8 for the node 5 send example) and deal with each region as a block. It is easy to

determine the remote node, by adding and subtracting distpprod values (cf. section 3.2)

as split points of an axis are crossed. By executing the loops and computing offsets for each

region, this method yields exactly the sequences listed in table 6.2.

The sole complication is determining the remote offset to which the sequence should be

sent. Doing this requires translating the global subgrid indices for the source sequence to

local subgrid indices on the remote node, and computing the corresponding offset. Since

both sequences are contiguous regions on their respective nodes, the difference between lo-

cal and remote offsets is a constant for a particular sequence. By using index values that are

global positions (rather than relative to the start of a particular node’s portion of the axis),

the translation is fairly straightforward. The offset of the currently indexed position on the

local node is:1

olocal
=

rankof(S)-1

∑
k=0

((idx[k]�DimAbove

local
[k])�NPAlocal

[k])

which performs the global-index-to-local-offset translation using information about the lo-

cal subgrid. The offset on the corresponding remote node is:

oremote
=

rankof(S)-1

∑
k=0

((idx[k]+delta[k]�DimAbove

remote
[k])�NPAremote

[k])

Thus, given a local offset, we can compute the corresponding remote offset by adding

oremote
�olocal to it. For example, the sequence of three elements at offset 3 on node 5 that are

to be sent to node 1 begin at global position h4;5i. Translated by the grid shift h�3;�3i this

becomes global position h1;2i, which is h1;0i in the local subgrid of node 1, corresponding

to offset 6. Using the subgrid information from figure 3.4 in the above formula, we get:

oremote
�olocal

= ((4�3�0) �6+(5�3�2) �1)� ((4�4) �6+(5�2) �1) = 6�3 = 3

The difference value varies depending on the sequence location and remote node, and can

be simplified to be a linear function of the index values. The scaling factor and constant

term of the resulting linear functions would be different for each axis and remote node. We

could dynamically allocate a table to hold the scaling factor and constant offset, but feel that

the calculation time savings in so doing (a couple integer arithmetic operations) is not worth

the additional code complexity.

While this walk to find sequences of each type (local, remote, out-of-bounds) could be

done in one pass with some complication to control flow, grid communications tend to par-

tition the shape into fairly long blocks of data, each of which is associated with only one

1. We use NPAlocal
[k] as shorthand to represent the num_per_axisvalue for the kth axis of the current shape

with respect to the local node’s distribution; similarly for DimAbove, and the remote node’s distribution infor-
mation. Refer to section 3.2.1 for details on distribution parameters.

CHAPTER 6. Grid Communication 138

operation (send off-node, move locally, read from off-node, copy from fill, ignore). The

cache advantages of a linear access pattern are less significant in this case, but performance

will be adversely affected if data which are sent off-node are found and sent only in the

last stages of the operation. Therefore, grid communications routines are the exception to

our rule favoring linear walks through data, and we perform several consecutive walks, first

gathering and sending off-node data (to take advantage of latency), then performing local

moves and fills (or bounds checks), and finally storing data from off-node into their desired

local area. The last step can be handled implicitly by using the communications handler in-

frastructure described in chapter 4: on entry to the communications routines, we register a

function which reads the incoming data and places them in the appropriate location.

The need to perform multiple passes through the data when searching for regions of a

particular type can have undesirable performance effects, since in each pass we want to find

only a subset, often small, of the regions. Using the example of figure 6.7, if we are looking

only for regions which are stored on the local node, we will examine and reject eleven re-

gions in node 5 before finding the one we want. In the general case, each pass would require

examining every region and picking those that are associated with our node, or any remote

node, or an out-of-bounds area. However, by modifying the portion of the loop emulation

control flow that determines when index values need to wrap, we can drastically reduce this

overhead.

Consider in particular the send regions for node 5 when scanning for local data (the sin-

gle region going to node 5). We necessarily start at the beginning of the shape, at global

position h4;2i. The key point to note is that, if we complete the scan of row 4 without find-

ing a region of interest, we need not examine row 5 because the types of regions encountered

will be the same as the previous row, until we cross over the next split point along axis 0.

Therefore, once we’ve rejected all regions at a given axis, we can skip immediately to the

next split point on a lower axis rather than iterate through it index-by-index. When scanning

for a particular region type which does not appear between given split points, this reduces

the number of regions examined from being on the order of the dimension of an axis to the

order of number of distribution partitions along the axis.

The details of the implementation for grid communication, considering all these issues,

are too complex to present in the body of this dissertation. The source code for grid-based

communication, which includes both get and send, and a modification of the split-point han-

dling which allows torus get and send (out-of-bounds references wrap around the shape),

consists of 3500 lines of heavily-commented C code. A subset of this code corresponding

to a grid send operation, including code to identify sequences and walk the different classes

of sequence, is presented in appendix A. The comments in the code, in conjunction with

the high-level overview presented here, should provide the determined reader with enough

information to implement these operations in her own runtime system.

CHAPTER 6. Grid Communication 139

6.3 Evaluation and Related Work

We are unaware of any other general approaches to optimizing runtime resolution of

regular communications. For many years, systems for parallel languages, especially deriva-

tives of Fortran, have been able to detect certain cases at compile-time and generate calls

to send and receive data, but these are most often restricted to times where the cluster size,

shape size, and shift values are known at compile time.

Kali (Koelbel, 1990) detects, at compile time, communications patterns that are a super-

set of our grid communications operations, and emits code to compute sets of positions that

are to be sent to or received from other nodes. The general framework described in (Koel-

bel, 1990) supports both block and cyclic distributions, and could be extended to multiple

dimensions. The representation of elements as sets rather than as sequences implies that

the data structures and emitted code for multi-dimensional distributions and shifts such as

that in figure 6.6 would be highly complex. Though the Kali framework is relatively inde-

pendent of shape dimensions and the size of the target cluster, it does require knowledge of

shape rank at compile time. It is not clear that the framework could be reasonably extended

to a completely general runtime system that was rank-independent; on the other hand, it is

not clear that Kali’s target applications would require such an extension.

Experimentation using a specially-instrumented grid send implementation within pC*

indicates that the cost of runtime resolution is fairly low. Performing grid sends on a two-

dimensional shape with 2048� 2048 positions on clusters from 1 to 12 nodes, the initial

step which builds the loop bounds is on average 0.21% of the total communication time,

with a maximum of 3%. For communications which had more than one in-bound local se-

quence (e.g., one per row), an average of 4% of the communication time went to overhead in

computing sequence locations and remote node information; when there was only one such

sequence, the overhead was less than 0.1%. These overheads are sufficiently low that we

feel the runtime mechanism described here is likely to be quite competitive with a compile-

time implementation such as Kali’s. When dimensions or shift offsets must be specified

at runtime, both systems perform much the same calculation. Our system could easily be

adapted to save the sequences of each type as a communication schedule, and could be in-

tegrated with Kali or the schedule-based mechanisms for general communication described

in section 5.5.

Another measure of performance is to compare grid communications with a general

communication which involves the same communications pattern. For this experiment, we

used the torus version of the grid routines to implement a shift along the (1,1) diagonal of

a rank-2 shape. Figure 6.8 shows the communications pattern for a shift of half the shape

size in each axis.

We compared the time to perform the shift from a source pvar into a destination pvar on

clusters from one to twelve nodes and a shape with 1024�1024 four-byte elements.2 Three

2. Had we used one-byte elements as we did in the previous chapter, the effect of location overhead would
taint the comparison: general send has a 4-to-1 overhead when using one-byte elements, while four-byte ele-
ments have 1-to-1 overhead.

CHAPTER 6. Grid Communication 140

orig

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

0 1 2 3

0

1

2

3

shifted

22 23 20 21

32 33 30 31

2 3 0 1

12 13 10 11

0 1 2 3

0

1

2

3

Figure 6.8: Torus shift used for grid versus general communications comparison

different times were measured:

� The time to copy the data from the source pvar to the destination pvar with no communi-

cations routine involved. This yields a lower bound for any communication operation.

� The time to perform the shift using the torus adaptation of the grid mechanism described

in this chapter.

� The time to perform the shift using left-indexed general send, as described in chapter 5.

The results are presented in table 6.3. Times are in seconds, for one send of each type, and

are the median of five experiments, except for copy, which is the median of the fifteen ex-

periments for the given cluster size.

Three shift amounts are given for each cluster size. A shift of 0 is intended to mea-

sure the overhead involved in merely invoking the communications, even though it never

requires exchanging data with another node. In this case, the grid routines perform the ini-

tial loop construction, then notice that no shifts will occur and simply copy the data. The

Torus/Copy ratio column indicates that the overhead of merely invoking grid communica-

tions and building the loop bounds is less than the timing measurement noise (hence the

incongruous result that it is apparently often faster to perform a zero-offset torus shift than

copy a variable). However, the general routines still incur a cost, both in converting ad-

dresses to perform the moves and in global synchronization to determine that no data will

be arriving from off-node.

A shift of one position along each axis is a more common case. Since we used the default

row-distribution for shapes, each node writes values to the node “below” it, and reads them

from the node “above”. The torus operation on 2 and 4-node clusters indicates that the oper-

ation is only 5% more expensive than copying the data with no communication. This com-

bines the overhead of determining the moves with the time required to transmit data between

nodes. It is likely that the portion of overhead attributable to the grid mechanism is smaller

than 5%: with larger clusters the time required to perform the operation remains constant at

60msec, indicating communications overhead or latency is the primary consumer of time.

The difference between grid and general communication is apparent, with the general mech-

anism taking about ten times longer, except where the torus had reached its network-limited

lower bound.

CHAPTER 6. Grid Communication 141

Cluster Shift Copy Torus General Torus/Copy General/Torus

Size Amount Time Time Time Ratio Ratio

1 0 0.171 0.170 2.036 0.995 11.948

1 0.171 0.250 2.049 1.463 8.183

512 0.171 0.179 2.034 1.047 11.342

2 0 0.087 0.086 1.285 0.989 14.885

1 0.087 0.092 1.294 1.057 14.025

512 0.087 3.697 7.320 42.354 1.980

4 0 0.056 0.056 0.706 1.000 12.614

1 0.056 0.059 0.717 1.050 12.201

512 0.056 1.881 3.682 33.593 1.957

8 0 0.015 0.014 0.419 0.919 30.831

1 0.015 0.060 0.428 4.054 7.130

512 0.015 0.951 1.867 64.270 1.963

12 0 0.008 0.007 0.324 0.843 46.329

1 0.008 0.060 0.337 7.205 5.629

512 0.008 0.672 1.295 81.012 1.926

Table 6.3: Grid versus General Communication comparison. Times in seconds to send 220 four-byte

values.

The third case performs a shift half way along each axis. This requires all data to be sent

off-node in both mechanisms. Here we can see that the torus and general communications

are within a factor of two of each other. This is exactly what one would expect in the case

where the network performance is the sole determining factor. Recall that in general com-

munications each element sent off-node has an associated offset sent along with it. This

means that, for a four-byte element, eight bytes are sent for each position. With the grid

algorithm, we send packed sequences consisting of an offset, a count, and a run of count el-

ements. Sequences for the 512-position shift are 512 elements long, so the amount of data

sent in the torus operation is slightly more than half the amount sent in the general commu-

nication. This means that the best we should expect of general communications is that it be

2� slower than torus communications for these patterns. As shown in section 5.5, with high

communications behavior, even the overhead of general communications is overwhelmed

by network latency.

In section 6.2 we mentioned that certain grid communication operations can be recog-

nized and handled as special cases. The initial version of pC*, based on the University of

New Hampshire C* compiler (Lapadula & Herold, 1994), did this, with special cases for one

and two-dimensional grid get operations, and a general algorithm which performed point-

wise address calculation for other cases. As time went on more cases became important: in

particular, send operations, which do not have the inherent two-phase structure of get opera-

CHAPTER 6. Grid Communication 142

tions, are heavily used in code originally written for the Connection Machine.3 Torus oper-

ations are also used in several algorithms, and to prevent a large and confusing performance

discrepancy between grid and torus operations, these should also be special-cased. As time

went on, the grid/torus implementation module became a morass of conditionals and ques-

tionably reliable code. The final straw was the support for general block distributions de-

scribed in section 3.2, which invalidated several assumptions in the special-case code. To

clean up this maintenance and reliability problem, we designed the algorithm described in

this chapter. However, it is still natural to question whether a special-case implementation

is sufficiently faster to be worth maintaining for the most common cases.

To address this, we compared pC* with a more recent implementation of UNH-C*,4

on both sends and gets with one-position shifts in various directions using one, two,

and three-dimensional shapes. To avoid bias due to differences in the network imple-

mentation of each system, we ran the tests on a single processor. The results, with

times in seconds on a SS20/612, are presented in table 6.4, and in graphical form in fig-

ure fig:gridops:eval:pcsvsunh.

We started by determining the base time to copy data from the source value to the des-

tination. Both systems implement this with a VP loop performing the assignment to each

active element in turn. In contrast, calling a routine which performs the same copy but over

the entire shape at once, rather than element-by-element, runs twice as fast. This routine

is only implemented in pC*, but is essentially the operation performed by the torus shifts

of 0 positions in table 6.3, and on sequences of data in both pC* and the UNH optimized

routines.

Following this in table 6.4 are the performance results for get and send operations for

all three shapes. The shapes all had 7529536 one-byte elements, and were allocated to be

“square”: i.e., shapes were 7529536, 2744� 2744, and 196� 196� 196. One key point

in understanding the results is that get operations store their results in a compiler-allocated

temporary, which is then copied into the active positions of the dest variable by element-

wise assignment. This is because in most cases the results of the get are used from the com-

piler temporary in a complex expression; if only the communicated results are desired, a

C* send communication would generally be coded instead. Neither compiler recognizes the

opportunity to store the results directly in dest, though this could be done in both systems,

modulo some complications related to context.

Taking this (roughly 0.5sec) overhead for get operations into account, we can see that,

in pC*, grid get and send have the same performance when all communication is intra-node.

Communications which do not involve shifts along the highest (right-most) axis are gener-

ally slightly faster than those that do, because the sequences of values operated on are longer

3. Although in the absence of context a grid get may be implemented in a single phase by interpreting it as a
send in the reverse direction, when context is involved this can result in performance problems. Since context
is determined on the requesting node, pre-emptively sending data may result in higher communication costs
than a request/reply implementation. For small enough shapes, the advantage in avoiding one communications
phase may be worthwhile.

4. Version 950609.

CHAPTER 6. Grid Communication 143

UNH pC* UNH/pC* Operation

0.517716 0.55136 0.93898 dest = src

n/a 0.3062755 n/a memcpy (&dest,&src,boolsizeof (src))

1.535910 0.8570395 1.79211 dest = [.-1]src

53.620190 0.365047 146.886 [.-1]dest = src

0.948832 0.850059 1.1162 dest = [.][.-1]src

0.868239 0.828215 1.04833 dest = [.-1][.]src

0.870376 0.8391835 1.03717 dest = [.-1][.-1]src

73.510028 0.331552 221.715 [.][.-1]dest = src

73.589463 0.31381 234.503 [.-1][.]dest = src

73.519656 0.336797 218.291 [.-1][.-1]dest = src

92.688201 0.995749 93.0839 dest = [.][.][.-1]src

92.809967 0.91927 100.961 dest = [.][.-1][.]src

92.684462 0.846993 109.428 dest = [.-1][.][.]src

92.777239 1.010195 91.8409 dest = [.-1][.-1][.-1]src

94.027049 0.5133385 183.168 [.][.][.-1]dest = src

94.060914 0.297252 316.435 [.][.-1][.]dest = src

94.021485 0.3156275 297.887 [.-1][.][.]dest = src

94.076640 0.4722375 199.215 [.-1][.-1][.-1]dest = src

Table 6.4: pC* General Grid versus Special Case code. Time in seconds to send 7529536 (1963)

one-byte values on a single-processor.

in those cases. This also holds for the specialized implementations in UNH C*. There are

a variety of interesting conclusions that can be drawn from the results:

� The grid algorithm described in this chapter is not particularly sensitive to the rank of the

data being operated on, or the number of axes along which shifts occur simultaneously.

The performance differences observed can be explained by differences in the average

length of a sequence.

� The general algorithm in pC* is faster than the special-case code in UNH-C*. In the

case of one-dimensional operations, the difference is nearly two-fold. It is not immedi-

ately clear why this should be so, since in the case of single-node clusters both systems

perform a small amount of pre-computation prior to a call to memcpy.

� The general algorithm in pC* is well over 100� faster than a general algorithm which

performs address computation at each position.

The memory requirements of both systems to execute these tests are also informative. pC*

has a peak usage of roughly 31MB, with about 24MB resident at peak. The usage breaks

down into 7.5MB for each of src and dest, 7.5MB for the compiler temporary used in

the get assignment, and 7.5MB for the context build arena (which was not used in the test

CHAPTER 6. Grid Communication 144

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
ec

o
n

d
s

1d 2d 3d 1d 2d
pC* UNH-C*

P = 1

1d 2d 3d 1d 2d
pC* UNH-C*

P = 2

1d 2d 3d 1d 2d
pC* UNH-C*

P = 4

1d 2d 3d 1d 2d
pC* UNH-C*

P = 8

Figure 6.9: pC* General Grid versus Special Case code. Time in seconds to send 7529536 (1963)

one-byte values, 1, 2, 4, and 8 processors.

program). In contrast, the UNH-C* program had a peak usage of 119MB, most of which

was listed as resident memory throughout execution. It is unclear where the memory was

being used or what effect this had on the performance of UNH-C*, though no swapping

occurred during the execution (the benchmark machine had 256MB of physical memory).

Version: gridops.tex,v 1.12 1996/04/09 02:06:52 pab Exp

CHAPTER 7

EVALUATION OF PC*

The proof of the pudding is in the eating.

— Miguel de Cervantes, Don Quixote de la Mancha, bk. IV, ch. 10,

p. 322

In which we walk the walk. We evaluate pC* on a set of eight benchmarks: four de-

signed to test the operations described previously in this dissertation, two image pro-

cessing problems, and two general problems. We prove portability by giving results

on a cluster of Ethernet-networked SPARCstations, a multiprocessor SGI, and an

Intel Paragon. Efficiencies (speedup per processor added) range from 45% to 90%

on the primary target platform. When contrasted with optimized sequential C im-

plementations on the same hardware, pC* outperforms C on two benchmarks with

as few as two processors, and on three more with as few as four processors. When

compared with the Thinking Machines Corporation implementation of C* on a 64

node Connection Machine CM5, pC* on a twelve SPARCstation Ethernet cluster

outperforms the CM5 in real terms on three benchmarks, due in large part to the op-

timizations described in this dissertation. On a per-processor basis, pC* outperforms

the CM5 on six of the eight benchmarks.

7.1 Target Platforms

Evaluation tests were performed on a total of six architectures using pC*, as well as two

architectures using other C* implementations. The number of processors available for pC*

testing ranged from one to twenty-four. The particular platforms that will be referenced in

this chapter are:

the cluster The primary computational cluster for pC* is a network of twelve Sun SPARC-

station 612s, with two 60MHz SuperSPARC processors each, 1MB of external cache

per processor, and 256MB of memory per machine. The machines are connected

with 10baseT Ethernet (10Mbps) in a star network through a Kalpana 2015 RS

EtherSwitch. The host operating system was Solaris 2.3, and communication was

performed through TCP sockets (AF_INET, SOCK_STREAM). Compilations were per-

formed with GNU gcc version 2.6.3, using flags -O2 -DNDEBUG -msupersparc.

The cluster is operated by Oasis Research Center, Inc.

145

CHAPTER 7. Evaluation of pC* 146

the SGI To determine performance on a different interprocessor model, we used a Sili-

con Graphics 4D340, with four 33MHz MIPS R3000 processors, primary data and

instruction caches of 64KB each, a secondary data cache of 256KB, and 64MB of

physical memory. The worker processes communicated through the System V Mes-

sage Passing (msgctl(2)) interface under the host operating system, Irix 5.2. Com-

pilation was performed with the SGI ANSI C EOE version 3.18 compiler, using flags

-O2 -DNDEBUG. The SGI is operated by the Department of Computer Science at the

University of Arizona.

the Paragon As a second check of portability and other IPC interfaces, we used an Intel

Paragon XP/S Model A4, with 16 compute nodes each with two 50MHz Intel i860

processors (one reserved for network management), and 16MB of memory per node.

The host operating system, Paragon OSF/1 Release 1.0.4 Server 1.3, consumed ap-

proximately 8MB of memory on each node, drastically limiting the problem sizes

which could be run. Worker processes communicated using the built-in Intel NX mes-

sage passing library over the Paragon’s 30MBps mesh network, with 1000-byte mes-

sages. Compilations were performed with GNU gcc version 2.6.3, using flags -O2

-DNDEBUG. The Paragon is operated by the Department of Computer Science at the

University of Arizona.

the CM5 We compared the system with the defining implementation of C* by Thinking

Machines Corporation, on a set of Connection Machine CM5s with 64, 256, and 512

nodes (Hillis & Tucker, 1993). Each node consists of one 32MHz Sparc chip cou-

pled tightly with a specially-designed four-processor vector unit, and has 32MB of

memory available on each node. The nodes are connected through a 20MBps fat-

tree network. Compilations were performed with TMC C* version 7.2, using flags

-O2 -DNDEBUG. The CM5 is operated by the Army High Performance Computing Re-

search Center at the Minnesota Supercomputer Center in Minneapolis, Minnesota.

7.2 Target Applications

Though there are a variety of applications that can be used to measure the performance

of the pC* system, we have chosen a total of eight. To provide an honest evaluation of the

performance of pC* (Sahni & Thanvantri, 1996; Bailey, 1991), we tested both C* and C

implementations of these, in each case with an implementation that a reasonably skilled

programmer would consider to be appropriate to solve the problem. Here we describe the

benchmarks and their C* implementations. The C* source code for the benchmark pro-

grams is presented in appendix A, and contains more details on the algorithms used.

The first four problems were chosen specifically to exercise components of the library

that were described in the previous chapters.

fft A straight-forward butterfly implementation of the Fast Fourier Transform using

complex floating point numbers. The normal divide-and-conquer FFT algorithm is

CHAPTER 7. Evaluation of pC* 147

parallelized using a loop with log(n) iterations performing pairwise combinations

of 2-element FFTs, using general send to exchange the operands between paired

virtual processors. The test performs the transform, and then the inverse transform.

This benchmark exercises general communication with no collisions.

histeq Histogram equalization of a digital image with eight bits per pixel. The intensi-

ties in the image are histogrammed using the method introduced in section 2.1.2,

then the bin values are used to spread the image range over the pixel range, and the

equalized pixel values are read back into the image shape. This benchmark exer-

cises general communication with high collision behavior.

njac A standard Jacobi iteration program. Boundary and internal elements are initial-

ized, then 100 iterations of four-point-stencil (North-East-West-South) averaging

is performed over the internal region. This benchmark exercises grid read.

roadnet The program is given a map with certain pixels distinguished as belonging to a

“road”. Pixels adjacent to roads are set to their distance from the road, using con-

textualized grid send of the adjacent four elements with a minimization operation.

The test is initiated with “roads” which superimpose an “X” reaching to each cor-

ner and a “+” to each edge, centered on the middle of the map. By setting the active

context to the most recent road perimeter only, this benchmark tests operations with

a highly inactive context.

The C code implementations of three of these four programs are highly optimized, as will be

discussed in section 7.6, and comparisons between the C* and C versions do not give a rea-

sonable representation of the system’s performance on more complex programs. We evalu-

ated four additional benchmarks, which do not necessarily exercise components of pC* that

were described in this dissertation, but also represent the type of operations that are common

in our real target applications and provide a better representation of the pC*’s capabilities.

These include:

amp An image amplitude screener. The value of each pixel is compared with the aver-

age value of its surrounding 8 pixels, and a boolean pvar is set to indicate the pix-

els which are above some threshold percentage of their surrounding pixels. This

benchmark primarily exercises the prefix scan operation, though it also performs

grid sends.

julia Essentially a Mandelbrot set calculation. This is an “obscenely parallel” bench-

mark; no communication takes place in the computation loop. The Mandelbrot

set develops large inactive regions, and block distribution leads to load imbalance.

Therefore we precede the computation loop with a general send which distributes

the computation field in a cyclic manner, as described at the end of section 5.5.

mm The straightforward C* implementation of matrix multiply. Working on square ma-

trices only, we start by transposing one of the operands using general send, then use

CHAPTER 7. Evaluation of pC* 148

the extended library routines copy_spread and reduce to spread each column in

turn across a parallel value, do a point-wise multiply, then reduce each row into the

appropriate column of the result.

rf An image rank filter. The value of each pixel is replaced with the median of the

values in the 3� 3 window surrounding it. This benchmark exercises torus grid

sends, and inlined context.

Each of these tests was run on data sizes ranging from a few thousand to roughly thirty-

two million elements, one per virtual processor, with larger data sizes skipped on architec-

tures which lacked sufficient computational capacity or memory to run them. The experi-

mental method was to run each benchmark over its range of data sizes on all subsets of a par-

ticular architecture, then repeat this four more times. The measured time for any multi-node

run was the maximum elapsed time observed on any node; some nodes may have finished

more quickly, if work was not evenly distributed, but since the problem is not solved until

all nodes are finished, the maximum elapsed time measures the real solution time. Perfor-

mance results in this chapter are the median of the resulting five runs for each benchmark–

host cluster–data size.

7.3 Performance of pC* On the Cluster

We ran the benchmarks on the cluster, with 1, 2, 4, 8, and 12 workers, running only

one worker on each machine.1 The raw performance is shown in the graphs in figure 7.1.

Throughout this chapter, the legends in the graphs indicate the host architecture (e.g, “cl1”

for the SS20 cluster, “Fd340” for the SGI 4D340, “pgon” for the Intel Paragon), with

the number of processors involved appearing in parentheses following the host code (e.g.,

“cl1(4)” for a four-processor SS20 cluster).

Tests histeq, amp, and julia appear to have consistent performance for a given cluster,

once they reach their optimal operating size. fft implements an O(n logn) algorithm, so the

slight decrease in capacity as size increases is appropriate; similarly for the O(n3=2
) algo-

rithm used by matrix multiply.2 The roadnet benchmark continues to increase, again as we

should expect, since the number of road elements in the test increases with the lengths of

the sides of the map, not the total number of pixels in the map.

rf performs well on small to medium problems, then drops to a lower plateau on larger

problems. This behavior, which is more obvious in the SGI results to follow, is explained

1. Experience showed that using both processors resulted in inconsistent performance across different bench-
marks, due perhaps to contention for the network interface and the memory bus, and the difference in in-kernel
control flow when transmitting packets between two workers on the same machine, and between two work-
ers on different machines. Testing with one processor disabled indicated that having the additional processor
present and unused did not affect runtimes significantly, except for the smallest data sizes where the newly
forked worker could execute simultaneously with the daemon which controlled distributed execution.

2. Note that the data size n= t2, for 2d matrices with side t—for n an odd power of 2, we chose a t such that
jn� t2

j was minimized. When times are divided by square-root powers of the scaled size to correct for the
algorithm time complexity, the performance curves become flat, as expected.

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
4
9

2000

4000

6000

8000

10000

12000

14000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of fft

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of histeq

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

10000

20000

30000

40000

50000

60000

70000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of njac

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of roadnet

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.1

a:
C

lu
ster

E
lem

en
ts-P

er-S
eco

n
d

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
0

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of amp

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

200000

400000

600000

800000

1e+06

1.2e+06

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of rf

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of julia

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of mm

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.1

b
:

C
lu

ster
E

lem
en

ts-P
er-S

eco
n
d

(P
art

2
)

CHAPTER 7. Evaluation of pC* 151

by noting that, as problem size increases, the working data will no longer fit in the cache.

The curves in rf indicate that if peak performance for size n is reached with a cluster with P

nodes, peak performance for size 2n is reached with a cluster with 2P nodes, maintaining a

consistent amount of memory per-processor.

One might expect njac to have a flat performance profile since the algorithm is linear

in the number of elements, but in fact it takes a fairly steep dive at larger problems. Part

of this is due to the cache thrashing also seen in rf, but the remainder, especially the large

drop in performance with eight nodes at 220 elements, is more significant. Runs of this par-

ticular benchmark consistently had significantly higher idle times than the same program

and data size on other configurations—in fact, the same problem run on seven nodes exe-

cuted in half the time required on eight nodes. The njac implementation performs a global

reduction on each iteration, to check convergence and the need for an additional iteration.3

Initial evidence indicates that the slowdown is due to differences in perceived latency us-

ing the LOGLOG reduction algorithm from chapter 4: the master node spends one tenth the

time in the reduction than does node P=2. Further analysis is required to determine why this

is occurring and an appropriate fix, and whether it occurs to the same degree when a better

reduction algorithm is used (cf. page 99). We have found the Solaris 2.3/Ethernet platform

to be susceptible to bad behavior with certain communications patterns,4 and we currently

believe the bad performance on reductions is due in part to latency effects in the fan-in and

fan-out stages. A plausible solution is to use a different master node for each reduction,

distributing communications patterns more evenly.

Other apparently anomalous results are the small dip at 512K with fft on eight nodes

(experimental noise; not visible in a second set of experiments); the peak in histeq at 1M

on eight nodes (experimental noise); the dip in amp at 4M on eight nodes (idle times in

calls to reduce); and the performance drops for mm at 642 elements with four nodes and

912 elements with eight nodes. This last seems due to bad handling in Solaris Ethernet code

of the communication pattern that arises from these problem sizes; idle times are increased,

due perhaps to the fact that mm is the only benchmark that sends significant amounts of data

in an operation that does not have a registered handler (cf. chapter 4). The performance

drops for these problems are regularly reproducible using the Kalpana EtherSwitch, but are

not visible when the same systems are linked with a Fore Systems ATM switch.

More interesting is the measure of speedup we get by increasing the cluster size. This

comparison is shown in figure 7.2. As expected, many of the programs perform worse with

3. The benchmark actually ignores this value, since the benchmark is expected to iterate a specific number
of times and not drop out early, but a real-world program would require it.

4. For example, the torus version of the grid routines in chapter 6 sends data to a node in one direction, and
reads data from a different node. It is twice as fast, in terms of elapsed time, to send the data one element
too far, then send it back one element, than to send the data exactly the distance required. The difference is
consumed in system idle time during the single-phase communication. Using a different interprocess com-
munications package (e.g., the System V Message Passing Facility) on the same hardware, the two-step send
is two times slower than the one-step send, as we would normally expect. The only explanation we have for
this is that the paired calls result in a communication pattern where each node both sends to and receives from
both neighbors, and the Solaris TCP execution path is optimized for such exchanges and suffers when unequal
exchanges occur.

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
2

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1000 10000 100000 1e+06

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of fft

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

1

2

3

4

5

6

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of histeq

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

2

4

6

8

10

12

1000 10000 100000 1e+06

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of njac

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

2

4

6

8

10

12

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of roadnet

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.2

a:
C

lu
ster

S
p
eed

u
p

(R
elativ

e
to

p
C

*
–
1

p
ro

cesso
r)

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
3

0

1

2

3

4

5

6

7

8

9

10

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of amp

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

2

4

6

8

10

12

14

16

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of rf

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

2

4

6

8

10

12

14

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of julia

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

1

2

3

4

5

6

7

8

1000 10000 100000 1e+06

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
l1

(1
)

Problem size (VPs)

Performance of mm

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.2

b
:

C
lu

ster
S

p
eed

u
p

(R
elativ

e
to

p
C

*
–
1

p
ro

cesso
r)

(P
art

2
)

CHAPTER 7. Evaluation of pC* 154

larger clusters for the smallest data sizes: the overhead of communication synchronization

overwhelms the speedup from multiple processors. This is most clear in the graphs for amp

and histeq. julia does not have communication in the timed loop, so does not suffer this

overhead, and the smallest size used in fft is large enough that the overhead is absorbed.

A more clear understanding of scalability can be obtained from the efficiency graphs

in figure 7.3. The efficiency is simply the speedup divided by the number of processors

in the cluster. Most of the tests seem to converge toward a constant efficiency dependent

on the program; roughly 45% for histeq, and closer to 95% for roadnet. The efficiency of

fft is affected more strongly by cluster size than the other programs, which do not stress

network communications so much. Super-linear speedup (efficiencies in excess of 100%)

is observed for three programs at several problem sizes, occurring when the larger amount of

cache memory allows faster execution for a particular problem size than did smaller clusters.

7.4 Performance of pC* on the SGI

The benchmarks were run on the SGI machine with 1, 2, and 4 processors. Raw perfor-

mance in elements-per-second is shown in figure 7.4. The major difference between these

results and those of the cluster is the clear effect of small cache memory on problems which

require large amounts of data. Trends for each benchmark follow those of the cluster, un-

til a certain (benchmark-dependent) data size is reached, at which point performance drops

precipitously to a new plateau. The failure point doubles as number of workers (hence, total

cache size) doubles. The efficiency results in figure 7.5 are affected by this, where super-

linear speedup is observed in all tests except histeq; the efficiency generally exceeds 100%

around the data size where the single-worker test exceeded its cache size and slowed down.

Histogram equalization, which has a relatively small memory load per virtual processor,

and does not re-visit data frequently, does not suffer as much from the small cache, and ef-

ficiency measurements are roughly the same for the SGI as they were on the cluster. The

roughly 100% efficiency of fft, in contrast to its consistently decreasing behavior on the clus-

ter, is explicable by noting that fft exceeds the first level cache with its smallest data size,

and rapidly exceeds the second level cache as well. It is plausible that in the baseline one-

processor runs, the bulk of time is spent waiting for data to be loaded to a cache level where

the code may read them, and adding processors allows the memory loads to be pipelined,

distributing the latency equally amongst the processors.

7.5 Performance of pC* on the Paragon

The performance results on the Paragon are shown in figure 7.6 and exhibit perhaps the

cleanest curves of any test architecture. Most interesting is the performance of histeq at the

largest data sizes that we even attempted to run, where not just cache but also physical mem-

ory was exceeded during execution, resulting in a drop to a constant performance limited by

the access speed of the paging device. Clearly, execution of real-world problems requires

systems with more than toy amounts of memory.

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
5

10

20

30

40

50

60

70

80

90

100

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of fft

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

10

20

30

40

50

60

70

80

90

100

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of histeq

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

20

40

60

80

100

120

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of njac

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

10

20

30

40

50

60

70

80

90

100

1000 10000 100000 1e+06 1e+07 1e+08

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of roadnet

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.3

a:
C

lu
ster

E
ffi

cien
cy

(R
elativ

e
to

p
C

*
–
1

p
ro

cesso
r)

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
6

0

20

40

60

80

100

120

1000 10000 100000 1e+06 1e+07 1e+08

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of amp

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

20

40

60

80

100

120

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of rf

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

50

60

70

80

90

100

110

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of julia

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

20

40

60

80

100

120

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 c

l1
(1

)

Problem size (VPs)

Performance of mm

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.3

b
:

C
lu

ster
E

ffi
cien

cy
(R

elativ
e

to
p
C

*
–
1

p
ro

cesso
r)

(P
art

2
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
7

500

1000

1500

2000

2500

3000

3500

4000

1000 10000 100000 1e+06

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of fft

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

20000

40000

60000

80000

100000

120000

140000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of histeq

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

1000

2000

3000

4000

5000

6000

1000 10000 100000 1e+06

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of njac

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of roadnet

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

F
ig

u
re

7
.4

a:
S

G
I

P
erfo

rm
an

ce
(P

art
1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
8

0

50000

100000

150000

200000

250000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of amp

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

10000

20000

30000

40000

50000

60000

70000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of rf

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of julia

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1000 10000 100000 1e+06

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of mm

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

F
ig

u
re

7
.4

b
:

S
G

I
P

erfo
rm

an
ce

(P
art

2
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
5
9

0

50

100

150

200

1000 10000 100000

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of fft

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

50

100

150

200

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of histeq

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of njac

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

50

100

150

200

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of roadnet

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

F
ig

u
re

7
.5

a:
S

G
I

E
ffi

cien
cy

(R
elativ

e
to

p
C

*
–
1

p
ro

cesso
r)

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
0

0

50

100

150

200

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of amp

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

50

100

150

200

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of rf

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

50

100

150

200

1000 10000 100000 1e+06 1e+07

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of julia

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 F

d
34

0s
v

m
sg

(1
)

Problem size (VPs)

Performance of mm

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

F
ig

u
re

7
.5

b
:

S
G

I
E

ffi
cien

cy
(R

elativ
e

to
p
C

*
–
1

p
ro

cesso
r)

(P
art

2
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
1

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of fft

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

100000

200000

300000

400000

500000

600000

700000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of histeq

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

5000

10000

15000

20000

25000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of njac

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of roadnet

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

F
ig

u
re

7
.6

a:
P

arag
o
n

P
erfo

rm
an

ce
(P

art
1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
2

0

200000

400000

600000

800000

1e+06

1.2e+06

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of amp

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of rf

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50000

100000

150000

200000

250000

300000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of julia

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of mm

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

F
ig

u
re

7
.6

b
:

P
arag

o
n

P
erfo

rm
an

ce
(P

art
2
)

CHAPTER 7. Evaluation of pC* 163

The efficiency results for the Paragon do not exhibit any surprises (figure 7.7). They

tend to be higher than corresponding cluster efficiencies for problems that are dependent

on network performance, such as fft and njac. Relative performance figures comparing the

cluster with the Paragon when equal numbers of processors are used in each are shown in

figure 7.8. It is interesting to note that the 50MHz i860 chips in the Paragon result in per-

formance which is roughly two to four times slower than the 60MHz Sun systems, with

Paragon performance best on the most communications-intensive benchmark, fft, where

10Mbps Ethernet cannot compete with the Paragon’s low-latency 30MBps (240Mbps) mesh

system.

7.6 Performance of pC* Contrasted with Sequential C

All previous results have been intra-system: i.e., they compared pC* with itself on dif-

ferent architectures or cluster sizes. To gain a proper understanding of the absolute per-

formance of the system, it is necessary to compare it to independently developed systems

running, where possible, on the same hardware.

For the first comparison we will consider how the C* benchmarks described in sec-

tion 7.2 compare with sequential ANSI C solutions of the same problems. In all cases, the

C implementation was one involving at least some thought; all obvious, and a few unobvi-

ous, algorithmic optimizations were performed. In particular, the C implementations differ

in the following ways from the C* ones:

fft In the most major difference, the Fast Fourier Transform code used was taken from

the netlib fftpack version 4, written in Fortran by Paul Swarztrauber at the National

Center for Atmospheric Research.5 It was translated to C using f2c 19950110, a

Fortran-to-C translator from AT&T Bell Labs.6 The interface to these FFT routines

uses a pre-processing step which is shared by both the forward and inverse transfor-

mations, amortizing cost between the two phases in a way that is not done with the

C* butterfly implementation. The C implementation is therefore highly optimized,

and the C* version will suffer accordingly when compared with it; nonetheless, if

a Fourier algorithm is required in a C program, re-use of packaged code like this is

the appropriate choice.

histeq The histogram equalization implementation can simply use the pixel values as in-

dices into an array, whose elements are incremented immediately; the overhead is

significantly less than the C* invocation of general send.

njac The Jacobi iteration implementation benefits from not requiring four temporary val-

ues that are the size of the array when computing the stencil.

5. Available via ftp from netlib.att.com:netlib/fftpack.

6. Available via ftp from netlib.att.com:netlib/f2c.

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
4

0

50

100

150

200

1000 10000 100000

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of fft

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of histeq

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of njac

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of roadnet

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

F
ig

u
re

7
.7

a:
P

arag
o
n

E
ffi

cien
cy

(R
elativ

e
to

p
C

*
–
1

p
ro

cesso
r)

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
5

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of amp

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of rf

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of julia

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

0

50

100

150

200

1000 10000 100000 1e+06

P
er

ce
n

t
E

ff
ic

ie
n

cy
 r

el
at

iv
e

to
 p

g
o

n
(1

)

Problem size (VPs)

Performance of mm

pgon(1)
pgon(2)
pgon(4)
pgon(8)

pgon(16)

F
ig

u
re

7
.7

b
:

P
arag

o
n

E
ffi

cien
cy

(R
elativ

e
to

p
C

*
–
1

p
ro

cesso
r)

(P
art

2
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
6

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1000 10000 100000 1e+06

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of fft

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

0

2

4

6

8

10

12

14

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of histeq

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of njac

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

2

2.5

3

3.5

4

4.5

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of roadnet

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

F
ig

u
re

7
.8

a:
R

elativ
e

P
erfo

rm
an

ce
C

lu
ster

/
P

arag
o
n

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
7

0

1

2

3

4

5

6

7

8

9

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of amp

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

0

1

2

3

4

5

6

7

8

9

10

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of rf

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

2.2

2.3

2.4

2.5

2.6

2.7

2.8

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of julia

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of mm

cl1(1)/pgon(1)
cl1(2)/pgon(2)
cl1(4)/pgon(4)
cl1(8)/pgon(8)

F
ig

u
re

7
.8

b
:

R
elativ

e
P

erfo
rm

an
ce

C
lu

ster
/

P
arag

o
n

(P
art

2
)

CHAPTER 7. Evaluation of pC* 168

roadnet The C implementation of the distance-to-road problem maintains a list which con-

tains exactly the points which are on the current road perimeter, sorted by x and y

coordinates (in an array, and linked list per array bin, respectively, to permit fast

searches). Therefore it, like the C* implementation, gains from operating only on

positions of interest, but does not have to examine the entire map to determine the

current perimeter.

amp The amplitude screener is a reasonable implementation, performing a scan of all

elements in the window around each pixel in turn to compute the average. Depend-

ing on the window size tested, a prefix-scan implementation similar to the internals

of the C* version could decrease the computation cost, by maintaining a running

sum and subtracting the value from one side of the window when adding the value

from other side. We chose not to implement this more complicated algorithm for

benchmark purposes alone, since we use a constant window size (3�3) in all tests.

julia There is no essential difference between the C* and C implementations.

mm The C version uses a straightforward triply-nested loop with accumulation of vector

dot products into a temporary value.

rf The region around each pixel is scanned, and a bubble-sorted list of neighbors

yields the window median. The implementation is much more cache-friendly than

the C* one, which has the same general algorithm but, due to data-parallel treatment

of the image, puts the “loops” over rows and columns within the sorting code.

The speedup of the cluster relative to the C implementation running on a single cluster

node is shown in figure 7.9. The trends are essentially the same as those for speedup rel-

ative to pC* on one cluster node, except for roadnet where the C version improves faster

with larger problem sizes than the C* version. In three benchmarks—fft, histeq, and road-

net—the C* version does not succeed at outperforming the C version, even with twelve

processors. However, all three do approach to nearly half the sequential performance, with

fft continuing to improve as problem size increases.

The other benchmarks perform better in comparison to C on the cluster. julia is best, out-

performing C with two processors, and continuing to improve with an efficiency of about

80%. On larger problem sizes, matrix multiplication is faster with two processors, while

the remaining three benchmarks require four processors to outperform the sequential im-

plementations.

On the SGI (figure 7.10), performance is less impressive, due for the most part to the

fact that the C implementations uniformly require less memory than the C* ones, so rela-

tive performance suffers as the C* versions quickly result in bad cache behavior. julia per-

forms quite well with 80%–90% efficiency until data sizes exceed the cache, and rf has a

respectable 50% efficiency on the smaller problem sizes. The most interesting result is for

matrix multiply, where the C* version uses more memory but accesses it in a more cache-

friendly manner, resulting in efficiencies of 60%–100% for the larger data sizes.

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
6
9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of fft

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of histeq

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of njac

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of roadnet

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.9

a:
S

p
eed

u
p

o
f

C
lu

ster
p
C

*
R

elativ
e

to
C

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
0

0

0.5

1

1.5

2

2.5

3

3.5

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of amp

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

1

2

3

4

5

6

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of rf

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

1

2

3

4

5

6

7

8

9

10

11

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of julia

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

0

1

2

3

4

5

6

1000 10000 100000 1e+06

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
lC

(1
)

Problem size (VPs)

Performance of mm

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)

F
ig

u
re

7
.9

b
:

S
p
eed

u
p

o
f

C
lu

ster
p
C

*
R

elativ
e

to
C

(P
art

2
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1000 10000 100000 1e+06

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of fft

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of histeq

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000 10000 100000 1e+06

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of njac

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

0.05

0.1

0.15

0.2

0.25

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of roadnet

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

F
ig

u
re

7
.1

0
a:

S
p
eed

u
p

o
f

S
G

I
p
C

*
R

elativ
e

to
C

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
2

0

0.2

0.4

0.6

0.8

1

1.2

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of amp

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of rf

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of julia

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000 1e+06

S
p

ee
d

u
p

 r
el

at
iv

e
to

 F
d

34
0C

(1
)

Problem size (VPs)

Performance of mm

Fd340svmsg(1)
Fd340svmsg(2)
Fd340svmsg(4)

F
ig

u
re

7
.1

0
b
:

S
p
eed

u
p

o
f

S
G

I
p
C

*
R

elativ
e

to
C

(P
art

2
)

CHAPTER 7. Evaluation of pC* 173

7.7 Performance of pC* Contrasted with TMC C*

The next comparison is to run the C* benchmarks on an architecture with a highly op-

timized special vector processor and fast network, and a compiler designed specifically for

that hardware: to wit, TMC C* 7.2 on a CM5 supercomputer. Raw performance numbers

are given in figure 7.11. The efficiency of the TMC implementation on its native architec-

ture is impressive, with all benchmarks except the communications-intensive histeq having

efficiencies in excess of 80%, and often in the high 90%s. The CM5 implementation does

not do the sort of communication collision detection that we describe in chapter 5, so perfor-

mance drops considerably on histeq due to the bottleneck of data transfer between nodes.7

A very interesting performance issue, first raised in chapter 3, can be seen in the behavior

of matrix multiply, where to increase the data size by (roughly) doubling at each step while

retaining a square shape, we were obliged to specify shapes that did not have a power-of-

two extent along each axis. Shapes with power-of-two sides were perfectly allocated on the

CM5 with square subgrids stored on each node, but this could not be done for the oddly sized

shapes. The CM2 SIMD implementation of C* padded shape sides to powers-of-two; the

CM5 is not quite so restrictive, but still requires decomposing the vector units into a physical

grid whose sides are powers of two; the subgrid assigned to each vector unit must be the

same; and the subgrid size must be a multiple of 8 (see Appendix B of (Thinking Machines

Corporation, 1993) for details). The effect of these restrictions is to cause elongated node

subgrids and wasted space. For example, on the 256 node (1024 vector unit) CM5, the shape

which is 724�724 is allocated as 1024 subgrids of size 92�6, causing an overallocation of

7.8%, as well as a fifteen-to-one imbalance in the length/width ratio of the nodal subgrids. It

is to be expected that, had we not chosen powers-of-two for the input data sizes on the other

benchmarks, similar undesirable behavior would have been exhibited on them as well. The

ability of pC* to partition the shape into subgrids which need not be the same on all nodes

is a significant benefit.

The speedup of the cluster relative to the 64 node CM5 is shown in figure 7.12. For the

most part, the results are as expected when comparing a multi-million dollar 64-processor

supercomputer with a set of twelve workstations connected by Ethernet. However, it is very

heartening to notice that the cluster outperforms the CM5 in absolute performance on three

of the eight benchmarks: histeq, due to the general communications optimizations in chap-

ter 5, will be faster with eight nodes; roadnet, with the context optimizations described in

chapter 3, will be faster with as few as four nodes; and rf, due to the efficient grid commu-

nications routines of chapter 6 and use of the context inlining mentioned in chapter 3, will

be faster with eight to twelve nodes, depending on data size.

In terms of raw compute power, the CM5 should be three (64 32MHz SPARCs com-

pared with 12 60MHz SPARCs) to twelve times faster than the cluster, depending on how

well the benchmarks take advantage of the four-processor vector units available on each

7. The library implementation of general get in TMC C* has an additional parameter that specifies the ex-
pected collision behavior of the operation, but the description implies this is mostly intended to decrease mem-
ory requirements on large shapes. There is no documented analog for colliding sends.

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
4

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of fft

cm64(256)
cm256(1024)
cm512(2048)

100000

200000

300000

400000

500000

600000

700000

800000

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of histeq

cm64(256)
cm256(1024)
cm512(2048)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of njac

cm64(256)
cm256(1024)
cm512(2048)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of roadnet

cm64(256)
cm256(1024)
cm512(2048)

F
ig

u
re

7
.1

1
a:

P
erfo

rm
an

ce
o
f

B
en

ch
m

ark
s

o
n

C
M

5
(P

art
1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
5

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of amp

cm64(256)
cm256(1024)
cm512(2048)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of rf

cm64(256)
cm256(1024)
cm512(2048)

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of julia

cm64(256)
cm256(1024)
cm512(2048)

0

100000

200000

300000

400000

500000

600000

700000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
 p

er
 S

ec
o

n
d

Problem size (VPs)

Performance of mm

cm64(256)
cm256(1024)
cm512(2048)

F
ig

u
re

7
.1

1
b
:

P
erfo

rm
an

ce
o
f

B
en

ch
m

ark
s

o
n

C
M

5
(P

art
2
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of fft

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of histeq

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

0

0.2

0.4

0.6

0.8

1

1.2

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of njac

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of roadnet

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

F
ig

u
re

7
.1

2
a:

S
p
eed

u
p

o
f

C
lu

ster
R

elativ
e

to
C

M
5
-6

4
(P

art
1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
7

0

0.2

0.4

0.6

0.8

1

1.2

1000 10000 100000 1e+06 1e+07 1e+08

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of amp

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

0

0.5

1

1.5

2

2.5

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of rf

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

0

0.5

1

1.5

2

2.5

3

3.5

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of julia

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

0

0.2

0.4

0.6

0.8

1

1.2

1000 10000 100000 1e+06 1e+07

S
p

ee
d

u
p

 r
el

at
iv

e
to

 c
m

64
(2

56
)

Problem size (VPs)

Performance of mm

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
cm64(256)

F
ig

u
re

7
.1

2
b
:

S
p
eed

u
p

o
f

C
lu

ster
R

elativ
e

to
C

M
5
-6

4
(P

art
2
)

CHAPTER 7. Evaluation of pC* 178

node. In fact, its advantage, when scaled to per-processor performance, is less impressive,

as shown in figure 7.13. Only on fft does the CM5 clearly outperform the cluster, due no

doubt to its high speed interconnect. It also outperforms the cluster on the larger mm bench-

marks, though not to such a marked degree. On the rest of the benchmarks, per-processor

performance seems to be between one half and one eighth that of the cluster. Note that,

although (for example) the 64 node CM5 has 256 vector unit processors, we are taking the

conservative view that these processors are not effective for the benchmarks considered, and

instead assume each CM5 has as many processors as it has Sparc nodes. The per-processor

advantage of the cluster is multiplied by four if the alternative interpretation is taken.

7.8 Performance of pC* Contrasted with UNH C*

The final comparison is between pC* and the most recent version of its parent system,

the UNH C* compiler from the University of New Hampshire.8 To permit a reasonable

comparison between the systems, we use the PVM inter-process mechanism for each, and

modified the UNH job startup mechanism to match that of pC*.9 We were able to test only

three of the eight benchmarks—fft, njac, and roadnet. julia encountered a bug in the UNH

translator, and the remaining programs rely on auxiliary routines that are not available in

the UNH runtime library.

The relative performance of the two systems is shown in figure 7.14. The performance

of fft indicates that the communications method described in chapters 4 and 5 is roughly two

times faster than the mechanism in (Lapadula & Herold, 1994). The latter algorithm falls

down in particular when the cluster size is not a power of two (cf. the performance curve

for twelve nodes).

On njac, pC* outperforms UNH by approximately a factor of three, except at higher data

sizes on clusters with 2k nodes where the performance drops to a factor of 2, and at small

data sizes with large clusters where the UNH implementation is faster. Degradation of pC*

in both these cases is due to the performance problems with reduce described in section 7.3.

The UNH system implements an algorithm equivalent to our LOGLOCEX of section 4.4.2,

which uses half the exchange steps that pC*’s algorithm does and does not suffer as badly

on power-of-two meshes. Comparing njac to a version without the reduction operation in-

dicates that, on a 2M-element problem with eight nodes, 10% of the UNH runtime goes to

reductions, compared with about 21% of the pC* runtime. On small problems, pC* per-

8. We used UNH C*, version 950609 from June 1995, available from ftp.cs.unh.edu:pub/cstar. The
runtime library was compiled with the same flags as that of pC*: -O2 -DNDEBUG -msupersparc, using gcc
2.6.3. C* programs were translated using flags -O2 -DNDEBUG -msupersparc -debug=308, the latter be-
ing recommended to us by Phil Hatcher as turning on the largest number of useful compile-time optimizations,
such as schedule-based communications (Mason et al., 1994).

9. Initial tests with PVM indicated that pvm_spawn, when permitted to assign processes to machines under
its own rules, did not provide a sufficiently fine control over what machine executed worker jobs, sometimes
putting two workers on the same machine while an available machine was left idle. The pC* and UNH im-
plementations described here assign jobs to all machines listed in the PVM configuration in a round-robin
order.

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
7
9

0

500

1000

1500

2000

2500

3000

3500

4000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of fft

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

0

50000

100000

150000

200000

250000

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of histeq

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of njac

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of roadnet

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

F
ig

u
re

7
.1

3
a:

C
lu

ster
an

d
C

M
5

P
erfo

rm
an

ce:
E

lem
en

ts
P

er
S

eco
n
d

P
er

P
ro

cesso
r

(P
art

1
)

C
H

A
P

T
E

R
7

.
E

v
alu

atio
n

o
f

p
C

*
1
8
0

0

50000

100000

150000

200000

250000

300000

350000

400000

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of amp

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of rf

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

0

5000

10000

15000

20000

25000

30000

35000

40000

1000 10000 100000 1e+06 1e+07 1e+08

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of julia

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 10000 100000 1e+06 1e+07

E
le

m
en

ts
-p

er
-s

ec
o

n
d

 p
er

 p
ro

ce
ss

o
r

Problem size (VPs)

Performance of mm

cl1(1)
cl1(2)
cl1(4)
cl1(8)

cl1(12)
scm64(64)

scm256(256)
scm512(512)

F
ig

u
re

7
.1

3
b
:

C
lu

ster
an

d
C

M
5

P
erfo

rm
an

ce:
E

lem
en

ts
P

er
S

eco
n
d

P
er

P
ro

cesso
r

(P
art

2
)

CHAPTER 7. Evaluation of pC* 181

0

1

2

3

4

5

6

7

8

9

1000 10000 100000 1e+06 1e+07 1e+08

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of roadnet

clpvm(1)/unhpvm(1)
clpvm(2)/unhpvm(2)
clpvm(4)/unhpvm(4)
clpvm(8)/unhpvm(8)

clpvm(12)/unhpvm(12)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of njac

clpvm(1)/unhpvm(1)
clpvm(2)/unhpvm(2)
clpvm(4)/unhpvm(4)
clpvm(8)/unhpvm(8)

clpvm(12)/unhpvm(12)

1

1.5

2

2.5

3

3.5

4

4.5

5

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
P

er
fo

rm
an

ce

Problem size (VPs)

Performance of fft

clpvm(1)/unhpvm(1)
clpvm(2)/unhpvm(2)
clpvm(4)/unhpvm(4)
clpvm(8)/unhpvm(8)

clpvm(12)/unhpvm(12)

Figure 7.14: Cluster Relative Performance pC* / UNH C*

CHAPTER 7. Evaluation of pC* 182

forms slightly faster than UNH when the reductions are removed; on the larger problems,

pC*’s advantage returns closer to the factor of 3 improvement.

In the final benchmark, roadnet, the effect of the context optimizations of chapter 3 is

clearly shown, with pC* rocketing above UNH C* at approximately eight times faster for

the larger problem sizes.

Version: eval.tex,v 1.11 1996/04/09 02:06:52 pab Exp

CHAPTER 8

CONCLUSIONS

Parallel computing is founded upon the premise that, if one worker can dig a

post-hole in sixty seconds, sixty workers can dig a post-hole in one second.

— Origin unknown

In this dissertation, we have considered many issues in the implementation of a runtime

system for data parallel languages on stock networked workstations. We have supported our

observations with extensive experimentation throughout the text, both in small programs

designed to carefully test particular issues such as global-to-local address conversions and

data access patterns, and in more complex programs which verify that the material described

herein integrates well in a complete system.

Among the contributions of this dissertation we include:

� A heightened awareness of performance implications of local/global address conver-

sion, and the way that distribution decisions can affect this (chapter 3). The techniques

developed also allow us to use uniformly a cache-sensitive access pattern throughout

the entire runtime system.

� A novel method of encoding the lists of active processors in C* programs, through run-

length encoding, which saves space (up to 99% of a straightforward charmap encoding)

and time by not requiring checks on each inactive position in a shape (chapter 3).

� A framework for portable but efficient communications support for the C* language

(chapter 4). The approach described here should also work for other parallel languages

which require extensive runtime support.

� A heuristic to measure the success rate of a runtime test and avoid performing the test

when the test itself overwhelms the benefits that its result can enable (chapter 5). We

apply the test to detect colliding general communications, yielding in some common

cases a four-fold performance improvement.

� A method of handling arbitrary grid communications over block distributed shapes or ar-

rays, which has extremely low overhead and is competitive with optimized special-case

implementations of communications on shapes with one or two dimensions (chapter 6).

We have found that careful and considered design of one part of the system often yields op-

portunities for additional optimizations in a related part. For example, finding a method of

uniformly walking all data in a strict sequential, contiguous order—desired independently

183

CHAPTER 8. Conclusions 184

to elicit good cache behavior—permits us to use an improved encoding of contexts, saving

both space and time. Similarly, the communication handler functions—required for system

correctness given limitations on network buffering—will permit an overlap of communica-

tion with computation by allowing the system to proceed with future computations during

the latency periods of a communication whose result is not needed immediately.

We have proved the performance of the pC* system by contrasting it with both optimized

sequential C solutions of a set of eight problems, and the latest C* implementation on a

specially-designed supercomputer, the CM5. Except for algorithms which admit highly op-

timized sequential implementations not conducive to parallelization, a four-processor pC*

system generally meets or exceeds the performance of the optimized sequential algorithm.

A twelve workstation cluster connected with Ethernet outperforms a 64 node supercomputer

with 5GB/sec interconnection on three of the eight benchmarks.

The portability of the system has been proved by giving performance results on net-

worked Unix workstations, a symmetric multiprocessor, and a distributed memory multi-

processor. The system has been ported to a total of eight hardware platforms using five

inter-process communications mechanisms. Porting the system is a straightforward task,

taking roughly one programmer-day for each of the last three targets.

The methods described in this dissertation are applicable to a variety of parallel systems,

not just C*. Many of the issues apply directly to the proposed Data Parallel C Extensions

(Numerical C Extensions Group of X3J11, 1994). Others, especially the communications

optimizations, can be integrated into any data-parallel system, such as Fortran 90 (Adams

et al., 1992) or High Performance Fortran (HPF Forum, 1993). The resulting synergism

will increase the performance of compilers that perform extensive compile-time analyses

by decreasing the performance gap when the analyses are unsuccessful, due to lacunae in

the source program.

Version: concl.tex,v 1.5 1996/04/09 02:06:52 pab Exp

APPENDIX A

CODE FOR GRID COMMUNICATION

A little inaccuracy sometimes saves tons of explanation.

— Saki (H.H. Munro), The Square Egg (1924) “Clovis on the Alleged

Romance of Business”

This appendix contains verbatim source for the grid algorithm described in chapter 6.

To reduce space and confusion, only the material pertinent to the grid send operation is in-

cluded, and conditionally compiled code relating to benchmarking or debugging has been

removed.

Id: ngridrw.c,v 2.33 1995/12/15 00:21:01 pab Exp

A.1 Data types and accessors

/* Dimensions in the n-dimensional loop we emulate during grid operations

* can be of one of these types */

typedef enum GridShiftType {

ST_noshift, /* Group of axes that don't have shifts */

ST_block, /* Axis has shift, but is entirely local */

ST_distributed /* Axis has shift, with data across two rnodes */

} GridShiftType;

/* Essential information about the boundaries of the n-dimensional

* shift walk loop. Note that number of split points depends on the

* distribution of the axis, and can't be predetermined; it's

* dynamically allocated during setup. */

typedef struct GridShiftAxisInfo {

int axis; /* Axis this boundinfo applies to */

int shift; /* Amount of shift along axis */

int idelta; /* Change in offset when incrementing by 1 */

int wdelta; /* Change in offset when wrapping back to llim */

int walked; /* Have we walked this axis during skip? */

int wrapsplit; /* Index where torus wraps */

int cnt; /* Upper limit position in count */

int nsplit; /* Number of splits along axis */

int idx; /* Current loop index */

int * split; /* Split limit points */

} GridShiftAxisInfo;

#define GSIData(_gsi, _k) ((_gsi)->sinfo + (_k))

#define GSIaxis(_gsi, _k) (GSIData(_gsi, _k)->axis)

#define GSIshift(_gsi, _k) (GSIData(_gsi, _k)->shift)

185

APPENDIX A. Code for Grid Communication 186

#define GSIincrdelta(_gsi, _k) (GSIData(_gsi, _k)->idelta)

#define GSIwrapdelta(_gsi, _k) (GSIData(_gsi, _k)->wdelta)

#define GSIwalked(_gsi, _k) (GSIData(_gsi, _k)->walked)

#define GSIcnt(_gsi, _k) (GSIData(_gsi, _k)->cnt)

#define GSInsplit(_gsi, _k) (GSIData(_gsi, _k)->nsplit)

#define GSIsplit(_gsi, _k) (GSIData(_gsi, _k)->split)

#define GSIidx(_gsi, _k) (GSIData(_gsi, _k)->idx)

#define GSIwrapsplit(_gsi, _k) (GSIData(_gsi, _k)->wrapsplit)

typedef struct GridShiftInfo {

int validp; /* Nonzero iff info set is initialized */

int irnode; /* Initial rnode */

int irshift; /* Initial rshift */

int inib; /* Initial IB size */

int inoob; /* Initial OOB size */

int nshift; /* Number of active shift axes */

int mulfact; /* Number of positions in highest nonshift set */

int hascomm; /* If nonzero, grid shifts along dist. axis */

int ninbounds; /* Number of positions in bounds */

PCS__Shape shp; /* Shape the grid is for */

GridShiftAxisInfo sinfo [PCS__MAX_RANK]; /* Info about shift axes */

} GridShiftInfo;

#define GSIvalid(_gsi) ((_gsi)->validp)

#define GSIirnode(_gsi) ((_gsi)->irnode)

#define GSIirshift(_gsi) ((_gsi)->irshift)

#define GSIinoob(_gsi) ((_gsi)->inoob)

#define GSIinib(_gsi) ((_gsi)->inib)

#define GSInshift(_gsi) ((_gsi)->nshift)

#define GSImulfact(_gsi) ((_gsi)->mulfact)

#define GSIhascomm(_gsi) ((_gsi)->hascomm)

#define GSIninbounds(_gsi) ((_gsi)->ninbounds)

#define GSIshape(_gsi) ((_gsi)->shp)

/* For pre-determining how we're going to handle certain blocks of data */

typedef enum MoveMode {

MM_ignore, /* Ignore it */

MM_blockzero, /* Fill block with 0s */

MM_blockmove, /* Move over in one chunk */

MM_elementzero, /* Fill with 0s, element-by-element */

MM_elementdoop /* Perform doop element-by-element */

} MoveMode;

A.2 Loop Initialization

/* This function builds the loop emulator bounds and split points

* associated with a particular grid shift on a particular shape. */

static int

APPENDIX A. Code for Grid Communication 187

setup_grid_bounds (PCS__Shape shp, /* Shape we're operating on */

int * offset, /* Offsets for shift */

int sign, /* Direction of shift */

GridShiftInfo * sip) /* Where boundary info goes */

{

int ashift; /* Axis shift, from offset * sign */

int nshift; /* Number of dimensions in shift loop */

int mulfact; /* Scaling factor, combining nonshift axes */

int noob; /* Number of OOB elements starting region */

int ninbounds; /* Number of inbounds elements over all dims */

int k; /* Index over axes */

int rnode; /* Remote node we start with */

int rshift; /* Shift corresponding to rnode */

int bcol; /* Which block along distributed axis are we at */

int blimit; /* Number elements along axis on current node */

PCS__shape_pernode * rpn; /* Information about dist. on remote node */

int axis; /* Axis along which shift occurs */

int llim; /* Lower limit of comm */

int ulim; /* Upper limit of comm */

nshift = 0;

mulfact = 1;

noob = 0;

ninbounds = 1;

/* Mark the info valid. Whoever passed this in should have cleared

* the valid field at the start. The field is used to detect

* whether there is dynamic memory in the structure (for split

* points) which needs to be freed later. */

assert (! GSIvalid (sip));

GSIvalid (sip) = 1;

/* Start with our node; if nothing shifts, we keep this, otherwise

* we adjust it for the axes along which we shift. The result is

* the node that owns the first position we're looking at. */

rnode = PCS__nodenum;

GSIhascomm (sip) = 0;

/* Loop through all the axes of the shape, classifing each one as a

* shift or nonshift. Aggregate the adjacent nonshift ones

* together, since we can treat them as a contiguous block. For

* shift ones, determine the lower and upper bounds for that

* portion of the shift loop, as well as information required to

* get the target processors if we cross out of the initial

* node. */

for (k = 0; k < PCS__ShpRank (shp); k++) {

ashift = sign * offset [k];

if (0 == ashift) {

/* Accumulate all adjacent non-shift axes */

APPENDIX A. Code for Grid Communication 188

mulfact *= PCS__ShpDimLocal (shp, k);

continue;

}

if (abs (ashift) >= PCS__ShpDim (shp, k)) {

/* Shifts beyond the extent are equivalent to shifts to

* exactly the extent; doesn't matter which direction in this

* case, all values will show up as out-of-bounds. */

ashift = PCS__ShpDim (shp, k);

}

if (1 < mulfact) {

/* Save a set of non-shift axes. We associate these with the

* lowest axis in the set, and set the range to cover the

* whole thing with no skips. We offset the range by the

* DimAbove for the highest axis, so that the rshift change

* is accurate. */

assert (0 < k);

GSIaxis (sip, nshift) = k-1;

GSIshift (sip, nshift) = 0;

GSInsplit (sip, nshift) = 1;

/* Allocate 2 split points. */

GSIsplit (sip, nshift) = malloc ((1+GSInsplit(sip, nshift))

* sizeof (int));

assert (NULL != GSIsplit (sip, nshift));

GSIsplit (sip, nshift) [0] = PCS__ShpDimAbove (shp, k-1);

GSIsplit (sip, nshift) [1] = GSIsplit (sip, nshift)[0] + mulfact;

GSIincrdelta (sip, nshift) = PCS__ShpNumPerAxis (shp, k-1);

GSIwrapdelta (sip, nshift) = 0;

GSIidx (sip, nshift) = GSIsplit (sip, nshift) [0];

GSIcnt (sip, nshift) = 1;

ninbounds *= mulfact;

mulfact = 1;

nshift++;

}

GSIaxis (sip, nshift) = k;

GSIshift (sip, nshift) = ashift;

/* In the worst case distribution, we may cross an internal node

* boundary DistNumBlocks-1 times. This plus the two external

* node boundaries determines the number of split points

* needed. */

GSIsplit (sip, nshift) = malloc ((1+PCS__ShpDistNumBlocks (shp, k))

* sizeof (int));

assert (NULL != GSIsplit (sip, nshift));

/* Compute the lower and upper limits of the targets to which

* our subgrid extent along axis k will map. Truncate to the

* ends of the full shape. We'll use global index coordinates

* rather than local ones, to aid in offset calculations. */

llim = PCS__ShpDimAbove (shp, k) + ashift;

APPENDIX A. Code for Grid Communication 189

ulim = llim + PCS__ShpDimLocal (shp, k);

if (0 > llim) {

llim = 0;

} else if (PCS__ShpDim (shp, k) < llim) {

llim = PCS__ShpDim (shp, k);

}

if (0 > ulim) {

ulim = 0;

} else if (PCS__ShpDim (shp, k) < ulim) {

ulim = PCS__ShpDim (shp, k);

}

assert (llim <= ulim);

assert (0 <= llim);

assert (0 <= (llim - ashift));

assert (PCS__ShpDim (shp, k) >= ulim);

assert (PCS__ShpDim (shp, k) >= (ulim - ashift));

/* Set up the increments based on the axis and the out-of-bound

* portion of the local axis */

GSIincrdelta (sip, nshift) = PCS__ShpNumPerAxis (shp, k);

GSIwrapdelta (sip, nshift) = (PCS__ShpDimLocal (shp, k)

- (ulim - llim))

* GSIincrdelta (sip, nshift);

/* Compute which block along the axis the first source position

* goes to---that's where we start. First, subtract out any

* component of this axis that is already reflected in rnode

* because of our node number. Then add the absolute

* contribution from the walk. */

if (1 < PCS__ShpDistNumBlocks (shp, k)) {

/* Retrench to basis for processors handling this axis. */

bcol = (rnode / PCS__ShpDistPProd (shp, k))

% PCS__ShpDistNumBlocks (shp, k);

rnode -= bcol * PCS__ShpDistPProd (shp, k);

}

if (llim == ulim) {

/* Nothing live on this node: just set up the walk range. */

GSIsplit (sip, nshift) [0] = llim - ashift;

GSIsplit (sip, nshift) [1] = ulim - ashift;

GSInsplit (sip, nshift) = 1;

} else {

/* Walk up to find the node that owns llim. */

bcol = 0;

blimit = PCS__ShpDistBlockSizes (shp, k) [0];

while (llim >= blimit) {

bcol++;

assert (bcol < PCS__ShpDistNumBlocks (shp, k));

blimit += PCS__ShpDistBlockSizes (shp, k) [bcol];

}

APPENDIX A. Code for Grid Communication 190

/* Adjust node number by the shift to get llim */

rnode += bcol * PCS__ShpDistPProd (shp, k);

/* Figure out all the break points along the axis: these are

* computed by noticing when a target crosses a distribution

* split, but are stored in terms of the source offset to

* ease address translation */

GSIsplit (sip, nshift)[0] = llim - ashift;

GSInsplit (sip, nshift) = 1;

/* As long as the upper limit exceeds what the range we've

* looked at covers, we're going to cross into another

* node. */

while (ulim > blimit) {

assert (GSInsplit (sip, nshift) <

(1+PCS__ShpDistNumBlocks (shp, k)));

GSIsplit (sip, nshift) [GSInsplit (sip, nshift)] =

blimit - ashift;

++GSInsplit (sip, nshift);

++bcol;

assert (bcol < PCS__ShpDistNumBlocks (shp, k));

blimit += PCS__ShpDistBlockSizes (shp, k) [bcol];

}

/* We end up in the final block; save the upper bound of the

* transfer. */

assert (GSInsplit (sip, nshift) <

(1+PCS__ShpDistNumBlocks (shp, k)));

GSIsplit (sip, nshift) [GSInsplit (sip, nshift)] =

ulim - ashift;

}

/* Add the contribution of this axis to the in-bound region. */

ninbounds *= (ulim - llim);

/* If the shift is backwards, any OOB block from this axis

* occurs at the start. */

if (0 > ashift) {

noob += GSIwrapdelta (sip, nshift);

}

/* Set up to start at the beginning of the in-bound region on

* this axis */

GSIidx (sip, nshift) = GSIsplit (sip, nshift) [0];

GSIcnt (sip, nshift) = 1;

/* There's communication if there's shifting along a distributed

* block. */

APPENDIX A. Code for Grid Communication 191

GSIhascomm (sip) |= PCS__ShpAxisIsDistributed (shp, k);

nshift++;

}

/* Either the base mulfact is positive, or there's nothing on this

* node. */

assert ((0 < mulfact) ||

((0 == mulfact) && (0 == PCS__ShpNumLocal (shp))));

/* Scale the values that are in blocks by the number of elements

* per base block. */

ninbounds *= mulfact;

/* Compute the delta which we add to a local offset to get the

* right offset for a remote node. Note that the loop bounds and

* index values are in global values along the axis. Therefore,

* the local offset is:

* lo = sum (idx_k - Above_k{local}) * NPA_k{local}

* and the remote offset will be:

* ro = sum (idx_k + delta_k - Above_k{remote}) * NPA_k{remote}

* We want to find rshift = ro - lo. This value differs depending

* on the remote node and on the axis. Though we could precompute

* some of the terms in (ro-lo), it'd be a pain to dynamically

* allocate the array to hold them for each grid operation, so we

* just recompute them at each stage. (Note that if there is no

* shift along an axis, both local and remote have the same NPA for

* that axis, and so there's no component for that axis in rshift.)

* */

rshift = 0;

rpn = PCS__ShpNodeLocalDist (shp, rnode);

for (k = 0; k < nshift; k++) {

axis = GSIaxis (sip, k);

rshift += (GSIidx (sip, k) + GSIshift (sip, k)

- PCS__SPNAbove (rpn, axis)) * PCS__SPNNPA (rpn, axis)

- (GSIidx (sip, k) - PCS__ShpDimAbove (shp, axis))

* PCS__ShpNumPerAxis (shp, axis);

}

if (0 == ninbounds) {

GSIinoob (sip) = PCS__ShpNumLocal (shp);

} else {

GSIinoob (sip) = noob;

}

if (0 == ninbounds) {

GSIinib (sip) = 0;

} else if (0 == nshift) {

GSIinib (sip) = mulfact;

} else {

GSIinib (sip) = (GSIsplit (sip, nshift-1)[GSIcnt (sip, nshift-1)]

APPENDIX A. Code for Grid Communication 192

- GSIsplit (sip, nshift-1)[0]) * mulfact;

}

GSImulfact (sip) = mulfact;

GSInshift (sip) = nshift;

GSIirnode (sip) = rnode;

GSIirshift (sip) = rshift;

GSIninbounds (sip) = ninbounds;

GSIshape (sip) = shp;

return ninbounds;

}

A.3 Region Search Support

Routines that find particular regions, given current position.

/* For restricted loop iterations, what type of sequence do we want to

* stop at? */

typedef enum IBSkipTo {

IBST_local, /* Stop at blocks on this node */

IBST_remote, /* Any block not this node */

IBST_remote_um_get, /* Any remote block not marked for get */

IBST_remote_um_send /* Any remote block not marked for send */

} IBSkipTo;

/* Conditions that implement each of the above stopping cases. */

#define IBST_TestNode(_ibst,_rn) (\

(IBST_local == (_ibst)) ? (PCS__nodenum == (_rn)) : \

(IBST_remote == (_ibst)) ? (PCS__nodenum != (_rn)) : \

(IBST_remote_um_get == (_ibst)) ? ((PCS__nodenum != (_rn)) && \

! SGNgneed (_rn)) : \

(IBST_remote_um_send == (_ibst)) ? ((PCS__nodenum != (_rn)) && \

! SGNsneed (_rn)) : \

(assert (0), 0))

/* Jump to the next out-of-bounds region, updating offs to the proper

* offset for that. Returns the size of the oob region. */

PCS__INLINE static int

skip_to_grid_oob (GridShiftInfo * sip, /* Shift info */

int * offs) /* Current offset */

{

int k;

int noob;

k = GSInshift (sip) - 1;

*offs += (GSIsplit (sip, k) [GSInsplit(sip, k)] - GSIidx (sip, k))

* GSIincrdelta (sip, k);

GSIidx (sip, k) = GSIsplit (sip, k) [0];

APPENDIX A. Code for Grid Communication 193

GSIcnt (sip, k) = 1;

noob = GSIwrapdelta (sip, k);

while ((0 <= --k) &&

(++GSIidx (sip, k) == GSIsplit (sip, k)[GSInsplit (sip, k)])) {

noob += GSIwrapdelta (sip, k);

GSIidx (sip, k) = GSIsplit (sip, k) [0];

GSIcnt (sip, k) = 1;

}

return noob;

}

PCS__INLINE static int

skip_to_grid_inbound (

IBSkipTo skipto, /* Criterion for accepting target */

GridShiftInfo * sip, /* Information about shifts */

int * offs, /* Current offset in local shape */

int * rnodep, /* Node *offs maps to */

int * rshiftp) /* Delta to get to target on rnode */

{

int ib; /* Size of in-bound block */

int k; /* Index to shift group being walked */

int mink; /* Minimum k visited, for setting walked flags */

int clearforskip; /* Is it OK to skip to split when we loop */

int validr; /* Is the rnode value correct */

/* Note to all readers: This is probably the most terse and complex

* function (along with skip_to_torus) in the entire pC* system.

* There is not a single aspect of control flow that isn't critical

* to correct behavior. Modify at your own peril. */

clearforskip = 1;

validr = 1;

k = mink = GSInshift (sip) - 1;

do {

/* See if we go to the next split point along the current axis */

if (clearforskip ||

(++GSIidx (sip, k) == GSIsplit (sip, k)[GSIcnt (sip, k)])) {

if (GSIcnt (sip, k) < GSInsplit (sip, k)) {

/* Internal split point. Jump offset to split point, and

* up the remote node as well. */

*offs += (GSIsplit (sip, k)[GSIcnt (sip, k)]

- GSIidx (sip, k)) * GSIincrdelta (sip, k);

GSIidx (sip, k) = GSIsplit (sip, k) [GSIcnt (sip, k)];

GSIcnt (sip, k)++;

assert (0 != GSIshift (sip, k));

*rnodep += PCS__ShpDistPProd (GSIshape(sip),

GSIaxis (sip, k));

/* Normally, the resulting node is valid. However, if

* there are nodes with 0 elements along this axis between

* nodes that have data, there will be adjacent split

APPENDIX A. Code for Grid Communication 194

* points with the same value. Those must be skipped

* over, each one inducing another step of node number

* along the axis. We ensure the step is taken by

* blocking the validity of the rnode, and setting

* clearforskip true so we don't increment the index

* during the loop back. (We want clearforskip true

* anyway, so at worst this means we move it out of the

* conditional since it's always true when k==nshift-1.)

* */

validr = (GSIsplit (sip, k) [GSIcnt (sip, k)-1] <

GSIsplit (sip, k) [GSIcnt (sip, k)]);

clearforskip = 1;

if (validr && (k < (GSInshift (sip) - 1))) {

/* Clear walked field, indicating we haven't checked

* higher axes for this split region. Restart at

* highest axis. */

while (k < (GSInshift (sip) - 1)) {

GSIwalked (sip, k) = 0;

k++;

}

}

} else {

/* Wrap at end of axis */

*offs += (GSIsplit (sip, k)[GSIcnt (sip, k)]

- GSIidx (sip, k)) * GSIincrdelta (sip, k)

+ GSIwrapdelta (sip, k);

GSIidx (sip, k) = GSIsplit (sip, k) [0];

GSIcnt (sip, k) = 1;

if (0 != GSIshift (sip, k)) {

*rnodep -= (GSInsplit (sip, k) - 1) *

PCS__ShpDistPProd (GSIshape (sip), GSIaxis (sip, k));

}

/* Decrement down to the next lower axis so we adjust its

* idx value. Mark clearforskip false so we don't

* short-circuit around the increment. Mark validr false

* to guarantee we re-enter the loop to execute the

* increment. */

clearforskip = 0;

validr = 0;

k--;

if ((k < mink) && (0 <= k)) {

/* First time at this axis: clear the walked field */

GSIwalked (sip, k) = 0;

mink = k;

}

}

} else {

assert (k < (GSInshift (sip) - 1));

/* The increment of idx for this axis was done in the second

APPENDIX A. Code for Grid Communication 195

* branch of the logical OR in the conditional we failed to

* get here. */

validr = 1;

clearforskip = GSIwalked (sip, k);

GSIwalked (sip, k) = 1;

if (! clearforskip) {

/* Gotta go back and look at things again. Up axis to

* highest, clearing the walked fields. */

while (++k < (GSInshift (sip) - 1)) {

GSIwalked (sip, k) = 0;

}

clearforskip = 1;

}

}

} while ((0 <= k) && ((! validr) ||

(! IBST_TestNode (skipto, *rnodep))));

if (0 <= k) {

PCS__shape_pernode * rpn; /* Distribution info for remote node */

PCS__Shape shp; /* Current shape */

int axis; /* Axis for each loop */

/* Compute the appropriate shift value added to local offsets to

* get the remote offset for a particular node. */

assert (validr);

*rshiftp = 0;

assert (0 <= *rnodep);

assert (*rnodep < PCS__mesh_size);

shp = GSIshape (sip);

rpn = PCS__ShpNodeLocalDist (shp, *rnodep);

assert (0 < PCS__SPNNumPos (rpn));

for (k = 0; k < GSInshift (sip); k++) {

axis = GSIaxis (sip, k);

assert (0 <= axis);

assert (axis < PCS__ShpRank (shp));

/* See setup_grid_bounds for explanation of this formula */

*rshiftp += (GSIidx (sip, k) + GSIshift (sip, k) -

PCS__SPNAbove (rpn, axis)) * PCS__SPNNPA (rpn, axis)

- (GSIidx (sip, k) - PCS__ShpDimAbove (shp, axis))

* PCS__ShpNumPerAxis (shp, axis);

}

k = GSInshift (sip) - 1;

ib = (GSIsplit (sip, k)[GSIcnt (sip, k)] - GSIidx (sip, k))

* GSIincrdelta (sip, k);

} else {

ib = 0;

}

return ib;

}

APPENDIX A. Code for Grid Communication 196

A.4 Grid Send

/* Do a grid write from srcp into destp, performing dest op= src, with

* a shift given by offset. Where the corresponding source position

* is out of range and fillp is not null, use fillp. */

/* !!Begin PCS__defs!! */

void

PCS__grid_send (PCS__PvarPtr destp, /* Dest. pvar */

PCS__PvarPtr srcp, /* Source pvar */

PCS__PvarPtr fillp, /* Fill source for oob source */

PCS__Type dtype, /* Type of dest */

PCS__Type stype, /* Type of src */

PCS__size_t size, /* Size of operand */

PCS__RedOp op, /* Reduction operator */

int offset[]) /* Offsets */

/* !!End PCS__defs!! */

{

int offs; /* Local offset */

PCS__ctx_rletype * ctxp; /* Pointer to context */

int vplimit; /* Maximum local vp index */

int ctxvpi; /* Context VP index */

int ctxcnt; /* Encoded context sequence */

int nib, noob; /* Number in and out of bounds for block */

PCS__Shape shp; /* Shape being walked */

GridShiftInfo nsi; /* Negative shift summary info */

GridShiftInfo psi; /* Positive shift summary info */

int rnode, rshift; /* Remote node and offset delta */

MoveMode fillmode; /* How to move from *fillp to *srcp */

MoveMode sendmode; /* How to move from *srcp to message */

MoveMode recvmode; /* How to move from message to *destp */

PCS__DoopFunction * movedoop; /* Function to perform moves */

PCS__DoopFunction * opdoop; /* Cached function to perform doop */

ENTER_FUNCTION;

/* Invalidate skip information, so we don't free unallocated

* pointers */

GSIvalid (&nsi) = GSIvalid (&psi) = 0;

shp = PCS__PPshape (srcp);

vplimit = PCS__ShpNumLocal (shp);

movedoop = PCS__lookup_doop (PCS__NOP, dtype, stype);

opdoop = PCS__lookup_doop (op, dtype, stype);

/* Under normal circumstances, the source and dest are disjoint, so

* we don't buffer local stuff, but just stuff it right where it's

* supposed to go. Of course, if they aren't disjoint, that'll

* break big-time, so we make sure they are. */

if (PCS__PPdata (destp) == PCS__PPdata (srcp)) {

PCSRTMemMark PCS__cplrtemp_mark; /* Temporary mempool marker */

APPENDIX A. Code for Grid Communication 197

PCS__Pvar tvar; /* Created temporary value */

PCS__PvarPtr tvarp; /* Pointer to tvar */

int i; /* Index over local elements of dshp */

/* Mark the current state of the temporary mem pool. Allocate a

* temporary which we can use for the source. Copy the original

* destination into the temporary. Call ourselves with the same

* arguments except the source. Free the temporary, and

* return. */

PCS__cplrtemp_mark = PCS__RTMMark (PCS__RTMC_CompilerTemp);

tvar = PCS__PvarAlloc (shp, size, PCS__RTMC_CompilerTemp);

PCS__PPSetPointTo (tvarp, PCS__PVdata (tvar), tvar);

if (PCS__PPstride (srcp) == PCS__PPstride (tvarp)) {

assert (PCS__PPstride (tvarp) == size);

memcpy (PCS__PPdata (tvarp), PCS__PPdata (srcp), vplimit * size);

} else {

for (i = PCS__ShpNumLocal (shp) - 1; i >= 0; i--) {

movedoop (PCS__PPelement (tvarp, i), PCS__PPelement (srcp, i),

size);

}

}

PCS__grid_send (destp, tvarp, fillp, dtype, stype, size, op,

offset);

PCS__RTMReclaim (PCS__cplrtemp_mark, PCS__RTMC_CompilerTemp);

LEAVE_FUNCTION;

return;

}

if (PCS__PPshape (destp) != shp) {

PCS__Fatal ("grid_send: Destination shape doesn't match"

"source shape.\n");

}

if ((! PCS__is_null_pvar_ptr (fillp)) &&

(PCS__PPshape (fillp) != shp)) {

PCS__Fatal ("grid_send: Fill shape doesn't match source shape.\n");

}

/* Set up the operation modes for fills and local receives, so we

* don't have to check these in the body of the loop. */

if (PCS__is_null_pvar_ptr (fillp)) {

fillmode = MM_ignore;

} else {

if ((PCS__PPstride (fillp) == PCS__PPstride (destp)) &&

(PCS__PPstride (fillp) == size)) {

fillmode = MM_blockmove;

} else {

fillmode = MM_elementdoop;

}

APPENDIX A. Code for Grid Communication 198

}

/* Mode for applying data from source or incoming message to

* destination. Must be conservative (message will [probably]

* always be contiguous, but srcp might not). If source and dest

* types aren't the same, they might be different sizes, so we need

* to ensure conversions are done. */

if ((PCS__NOP == op) && (dtype == stype) &&

(PCS__PPstride (destp) == PCS__PPstride (srcp)) &&

(PCS__PPstride (destp) == size)) {

recvmode = MM_blockmove;

} else {

recvmode = MM_elementdoop;

}

/* Mode for copying from source area into outging message buffer */

if (PCS__PPstride (srcp) == size) {

sendmode = MM_blockmove;

} else {

sendmode = MM_elementdoop;

}

CSafety_OOB_Reset ();

setup_grid_bounds (shp, offset, 1, &psi);

if (0 == GSInshift (&psi)) {

opassign_var (destp, srcp, recvmode, dtype, stype, size, op);

free_gridshiftinfo (&psi);

LEAVE_FUNCTION;

return;

}

if (GSIhascomm (&psi)) {

init_addsdat (0, destp, dtype, stype, recvmode, op, size);

assert (ASD_datactx != asdtype); /* This is only for gets */

/* Walk through sending off data to the other side. */

offs = GSIinoob (&psi);

nib = GSIinib (&psi);

rnode = GSIirnode (&psi);

rshift = GSIirshift (&psi);

ctxvpi = 0;

ctxp = PCS__ShpContext (shp);

PCS__ctx_nextseq (ctxcnt, ctxp, ctxvpi, vplimit);

while (offs < vplimit) {

if (PCS__nodenum != rnode) {

int toffs = offs; /* Mutable offset value */

assert (0 <= rnode);

APPENDIX A. Code for Grid Communication 199

assert (rnode < PCS__mesh_size);

SGNsused (rnode) = 1;

while (0 < nib) {

int cnt;

PCS__ctx_skiptovpi (&ctxcnt, &ctxp, &ctxvpi, vplimit,

toffs);

if (0 > ctxcnt) {

/* Active sequence: package up to min (bsize, ctxcnt) */

cnt = -ctxcnt;

if (cnt > nib) {

cnt = nib;

}

addsdata (srcp, toffs, cnt, sendmode, movedoop,

rnode, toffs + rshift, size);

} else {

/* Inactive sequence: skip to min (nib, ctxcnt) */

cnt = ctxcnt;

if (cnt > nib) {

cnt = nib;

}

}

nib -= cnt;

toffs += cnt;

}

}

nib = skip_to_grid_inbound (IBST_remote, &psi, &offs, &rnode,

&rshift);

}

reset_shift_info (&psi);

/* Send the final packets on their way */

flush_addsdat ();

/* Now walk looking the other way, and see who's going to be

* sending us something, so we're sure we've finished */

setup_grid_bounds (shp, offset, -1, &nsi);

offs = GSIinoob (&nsi);

nib = GSIinib (&nsi);

rnode = GSIirnode (&nsi);

while (offs < vplimit) {

if ((PCS__nodenum != rnode) && ! SGNsneed (rnode)) {

SGNsneed (rnode) = 1;

sdat_nleft++;

}

nib = skip_to_grid_inbound (IBST_remote_um_send, &nsi, &offs,

&rnode, &rshift);

}

sdat_flready = 1;

}

APPENDIX A. Code for Grid Communication 200

/* Walk handling the local stuff */

offs = GSIinoob (&psi);

nib = GSIinib (&psi);

rnode = GSIirnode (&psi);

rshift = GSIirshift (&psi);

ctxvpi = 0;

ctxp = PCS__ShpContext (shp);

PCS__ctx_nextseq (ctxcnt, ctxp, ctxvpi, vplimit);

while (offs < vplimit) {

if (PCS__nodenum == rnode) {

int toffs = offs; /* Mutable offset value */

/* Make sure everybody will be in range */

if (toffs + nib >= vplimit) {

nib = vplimit - toffs;

}

assert (0 <= toffs);

assert (toffs < vplimit);

assert (0 <= toffs + rshift);

assert (toffs + rshift < vplimit);

/* Send is contexted from sourcep position */

while (0 < nib) {

int cnt;

PCS__ctx_skiptovpi (&ctxcnt, &ctxp, &ctxvpi, vplimit, toffs);

if (0 > ctxcnt) {

/* Active sequence: package up to min (nib, ctxcnt) */

cnt = -ctxcnt;

if (cnt > nib) {

cnt = nib;

}

switch (recvmode) {

case MM_blockmove:

memcpy (PCS__PPelement (destp, toffs + rshift),

PCS__PPelement (srcp, toffs), size * cnt);

break;

case MM_elementdoop: {

int i;

char * dp, * sp;

int ddp, dsp;

dp = PCS__PPelement (destp, toffs + rshift);

sp = PCS__PPelement (srcp, toffs);

ddp = PCS__PPstride (destp);

dsp = PCS__PPstride (srcp);

i = cnt;

while (0 < i--) {

APPENDIX A. Code for Grid Communication 201

opdoop (dp, sp, size);

dp += ddp;

sp += dsp;

}

break;

}

default:

assert (0);

}

} else {

/* Inactive sequence: skip to min (nib, ctxcnt) */

cnt = ctxcnt;

if (cnt > nib) {

cnt = nib;

}

}

nib -= cnt;

toffs += cnt;

}

}

nib = skip_to_grid_inbound (IBST_local, &psi, &offs, &rnode,

&rshift);

}

/* Warn about any attempts to send out-of-bounds. */

if (! CSafety_OOB_Ignore ()) {

offs = 0;

ctxp = PCS__ShpContext (shp);

ctxvpi = 0;

PCS__ctx_nextseq (ctxcnt, ctxp, ctxvpi, vplimit);

reset_shift_info (&psi);

noob = GSIinoob (&psi);

while (offs < vplimit) {

assert (0 <= noob);

if (0 < noob) {

/* We have a sequence of OOB positions who we "send" to.

* If any are active, this is illegal, so do a warning. */

if (offs + noob > vplimit) {

noob = vplimit - offs;

}

while (0 < noob) {

int cnt;

PCS__ctx_skiptovpi (&ctxcnt, &ctxp, &ctxvpi, vplimit,

offs);

if (0 > ctxcnt) {

/* Active sequence. Skip to min (ctxcnt, noob) and

* warn. */

cnt = -ctxcnt;

APPENDIX A. Code for Grid Communication 202

if (cnt > noob) {

cnt = noob;

}

PCS__OOBWarn ("grid send", PCS__current, NULL);

} else {

/* Inactive sequence. Skip to min (ctxcnt, noob). */

cnt = ctxcnt;

if (cnt > noob) {

cnt = noob;

}

}

noob -= cnt;

offs += cnt;

}

}

noob = skip_to_grid_oob (&psi, &offs);

}

}

/* Handle any OOB reception actions. */

if (MM_ignore != fillmode) {

if (GSIvalid (&nsi)) {

/* Already created nsi during send walk */

reset_shift_info (&nsi);

} else {

/* Create nsi so we can see what incoming sends come from OOB */

setup_grid_bounds (shp, offset, -1, &nsi);

}

offs = 0;

noob = GSIinoob (&nsi);

while (offs < vplimit) {

assert (0 <= noob);

if (0 < noob) {

/* We have a sequence of positions who are "sent" to by

* OOB. Do a context insensitive move from the fill value

* into the region. */

if (offs + noob > vplimit) {

noob = vplimit - offs;

}

switch (fillmode) {

case MM_blockmove:

/* Fills in send operations are uncontexted. Blow

* the data in. */

memcpy (PCS__PPelement (destp, offs),

PCS__PPelement (fillp, offs), size * noob);

break;

case MM_elementdoop: {

int i;

char * dp, * sp;

APPENDIX A. Code for Grid Communication 203

int ddp, dsp;

dp = PCS__PPelement (destp, offs);

sp = PCS__PPelement (fillp, offs);

ddp = PCS__PPstride (destp);

dsp = PCS__PPstride (fillp);

for (i = 0; i < noob; i++) {

opdoop (dp, sp, size);

dp += ddp;

sp += dsp;

}

break;

}

default:

assert (0);

}

}

offs += noob;

noob = skip_to_grid_oob (&nsi, &offs);

}

}

/* If we're communicating, wait for the last of the incoming data */

if (GSIhascomm (&psi)) {

finish_sdat ();

}

/* Free any dynamic memory allocated during gsi setup, looking at

* the valid flag to see if there was any. */

free_gridshiftinfo (&nsi);

free_gridshiftinfo (&psi);

LEAVE_FUNCTION;

return;

}

Version: appgridops.tex,v 1.5 1996/04/09 02:06:52 pab Exp

APPENDIX B

C* BENCHMARK CODE

Where’s the beef?

— Cliff Freeman (advertizing slogan for Wendy’s Hamburgers; words

spoken by Clara Peller)

This appendix contains source for the C* benchmarks used in chapter 7.

B.1 Fast Fourier Transform

/* Id: fft.cs,v 1.1 1996/01/09 15:23:21 pab Exp

*

* FFT: Implements a 1 dimensional complex FFT. The real and

* imaginary parts are presented separately in two poly floats.

* The length of the data array is n, and n is 2^p. */

#include <stdio.h>

#include <stdlib.h>

#include <cscomm.h>

#include <math.h>

#include <assert.h>

#include <cm/timers.h>

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif /* M_PI */

shape []Shape1d;

void fft_1d (float:Shape1d *realpart,

float:Shape1d *imagpart,

bool inversep)

{

int i; /* General index value */

int spacing; /* Stride in butterfly loop */

int iteration = 0; /* Which iteration of loop? */

int nbits; /* Number of bits in loop mask */

double pi; /* Value of pi for forward/invert */

float:current sin_factor; /* Trig factors of pi/spacing */

float:current cos_factor;

float:current real_assoc; /* Temps for communicated values */

float:current imag_assoc;

204

APPENDIX B. C* Benchmark Code 205

float:current ftemp; /* Temp for source for trig factors */

unsigned int:current name; /* Bit mask for partners */

unsigned int:current name_shift;

unsigned int:current assoc;

bool:current assoc_flag; /* Which type of partner? */

/* Set nbits to floor(log_2 (dimof (current, 0))) */

i = dimof (current, 0);

nbits = 0;

while (1 < i) {

++nbits;

i >>= 1;

}

if (dimof (current, 0) != (1 << nbits)) {

fprintf (stderr, "fft1d: Error: Incoming shape must have power-of-2"

"dimension (has %d)\n", dimof (current, 0));

exit (1);

}

everywhere {

/* Reverse the bits in the processor numbers */

name_shift = name = pcoord(0);

assoc = 0;

for (i = 0; i < nbits; i++) {

assoc = (assoc << 1) | (name_shift & 1);

name_shift >>= 1;

}

name_shift = name;

[assoc] *realpart = *realpart;

[assoc] *imagpart = *imagpart;

pi = inversep ? -M_PI : M_PI;

/* top of butterfly loop */

for (spacing = 1; spacing < dimof (current, 0); spacing = 2*spacing) {

iteration++;

/* assign associate processor */

where (name_shift % 2) {

assoc_flag = 1;

assoc = name - spacing;

} else {

assoc_flag = 0;

assoc = name + spacing;

}

/* exchange data between associated processors */

APPENDIX B. C* Benchmark Code 206

[assoc] real_assoc = *realpart;

[assoc] imag_assoc = *imagpart;

/* prepare data in primary processors */

where (assoc_flag) {

ftemp = *realpart;

*realpart = real_assoc;

real_assoc = -ftemp;

ftemp = *imagpart;

*imagpart = imag_assoc;

imag_assoc = -ftemp;

}

/* Obtain phase factors. For FFT inversion, the value of pi has

* been negated so the sign difference in the sin component for

* the fft inverse formula is effected. */

ftemp = (pi / spacing) * (name % spacing);

cos_factor = cos (ftemp);

sin_factor = sin (ftemp);

*realpart += (cos_factor * real_assoc) + (sin_factor * imag_assoc);

*imagpart += (cos_factor * imag_assoc) - (sin_factor * real_assoc);

name_shift >>= 1;

}

/* Normalize for inverse transform */

if (inversep) {

float tmp = 1.0F / dimof(current, 0);

*realpart *= tmp;

*imagpart *= tmp;

}

}

}

main(int argc, char **argv)

{

int len;

int loglen;

len = 65536;

if (1 < argc) {

len = atoi (argv [1]);

}

loglen = 0;

while (1 < len) {

++loglen;

len >>= 1;

APPENDIX B. C* Benchmark Code 207

}

len = (1 << loglen);

allocate_shape(&Shape1d, 1, len);

with (Shape1d) everywhere {

float:current realpart, imagpart; /* Data we're operating on */

float:current rp0, ip0; /* Original values, for comparisons */

rp0 = (prand () % 10000) / 100.0 - 50.0;

ip0 = (prand () % 10000) / 100.0 - 5.0;

realpart = rp0;

imagpart = ip0;

CM_timer_clear(0);

CM_timer_start(0);

fft_1d(&realpart, &imagpart, 0);

fft_1d(&realpart, &imagpart, 1);

CM_timer_stop(0);

printf ("# Maximum difference is (%g, %g)\n",

>?= fabs (rp0 - realpart),

>?= fabs (ip0 - imagpart));

printf ("%10.4f %10.4f %10.4f # fft %d ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), len, positionsof (Shape1d),

positionsof (physical));

}

deallocate_shape (&Shape1d);

}

B.2 Histogram Equalization

/* Id: histeq.cs,v 1.1 1996/01/09 15:23:21 pab Exp

* Created: Tue Jun 6 13:36:36 1995

* Peter A. Bigot (pab@clotho)

* Last Revised:

*

* Description:

* C* version of the histogram equalization filter benchmark.

*

* Update Information:

* --

* End of updates

*/

APPENDIX B. C* Benchmark Code 208

/* ------------- */

/* Include Files */

#include <stdio.h> /* Standard input/output routines */

#include <stdlib.h> /* Standard library routines */

#include <assert.h> /* Debugging assertion macro */

#include <cscomm.h>

#include <cm/timers.h>

#include <string.h>

/* ------------------------------- */

/* Constant and Macro Declarations */

/* ----------------- */

/* Type Declarations */

/* -------------------- */

/* Variable Definitions */

/* -------------------- */

/* Function Definitions */

/* Enhance an image by assigning intensities based on the frequency of

* intensities in the original image. Sets a new image. */

void

histogram_equalization (

unsigned char:void * imp, /* Pointer to source image */

unsigned char:shapeof(*imp) * newimage,

unsigned int outpelrange) /* Number of intensities in output image */

{

shape [] PixelVal;

unsigned char maxpel;

with (shapeof (*imp)) everywhere {

/* Find the maximum pixel value, and set up a shape to histogram

* into. */

maxpel = >?= *imp;

allocate_shape (&PixelVal, 1, maxpel+1);

with (PixelVal) everywhere {

unsigned int:current hist;

unsigned int:current histrc;

unsigned char:current newpel;

/* Count the number of times each pixel value appears in the

* image. */

hist = 0;

with (shapeof (*imp)) everywhere {

[*imp] hist += (int:current) 1;

}

APPENDIX B. C* Benchmark Code 209

/* Do a running sum of the histogram values, then normalize them

* over the real pixel range, assigning each original pixel

* value to a new pixel value in the normalized histogram based

* on the midpoint of the histogram bins. */

histrc = scan (hist, 0, CMC_combiner_add, CMC_upward, CMC_none,

CMC_no_field, CMC_exclusive);

newpel = (unsigned char:current)

(outpelrange * (histrc + hist/2.0)

/ (float:current) positionsof (shapeof (*imp)));

/* Read the normalized pixel values from the "normalized"

* histogram bins. */

with (shapeof (*imp)) everywhere {

*newimage = [*imp] newpel;

}

}

deallocate_shape (&PixelVal);

}

}

int main (int argc, /* Number of command line arguments */

char * argv []) /* Array of command line arguments */

{

int nrows; /* Rows in image */

int ncols; /* Columns in image */

shape Image; /* Image shape */

nrows = ncols = 512;

if (1 < argc) {

nrows = atoi (argv [1]);

}

if (2 < argc) {

ncols = atoi (argv [2]);

}

allocate_shape (&Image, 2, nrows, ncols);

with (Image) everywhere {

unsigned char:current img;

unsigned char:current mfimg;

img = 25 + (prand () %% 200);

CM_timer_clear (0);

CM_timer_start (0);

histogram_equalization (&img, &mfimg, 256);

CM_timer_stop (0);

printf ("%12.5g %12.5g %12.5g # histeq %d %d ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), dimof (current, 0),

dimof (current, 1), positionsof (current),

positionsof (physical));

APPENDIX B. C* Benchmark Code 210

}

deallocate_shape (&Image);

return (0);

}

B.3 Jacobi Iteration

/* Id: njac.cs,v 1.1 1996/01/09 15:23:21 pab Exp

* Created: ??

* Peter A. Bigot (pab@alecto)

* Last Revised:

*

* Description:

* Jacobi iteration benchmark.

*

* Update Information:

* --

* End of updates

*/

/* ------------- */

/* Include Files */

#include <stdlib.h>

#include <stdio.h>

#include <cscomm.h>

#include <math.h>

#include <cm/timers.h>

shape [][] Field;

int

main (int argc, char * argv [])

{

float delta;

int niters;

int maxiters;

int nrow, ncol;

ncol = nrow = 128;

maxiters = 100;

if (1 < argc) {

nrow = atoi (argv [1]);

}

if (2 < argc) {

ncol = atoi (argv [2]);

}

APPENDIX B. C* Benchmark Code 211

if (3 < argc) {

maxiters = atoi (argv [3]);

}

allocate_shape (&Field, 2, nrow, ncol);

with (Field) everywhere {

float:Field field;

where (0 == pcoord (1)) {

field = 65.0F;

} else where (dimof (current, 1)-1 == pcoord (1)) {

field = 55.0F * pcoord (0) / dimof (current, 0);

} else where (dimof (current, 0)-1 == pcoord (0)) {

field = 55.0F;

} else where (0 == pcoord (0)) {

field = 0.0F;

} else {

field = 30.0F;

}

niters = maxiters;

CM_timer_clear (0);

CM_timer_start (0);

while (0 < niters--) {

float:current tmp;

where ((0 < pcoord (0)) &&

(0 < pcoord (1)) &&

((dimof (current, 0)-1) > pcoord (0)) &&

((dimof (current, 1)-1) > pcoord (1))) {

tmp = ([.-1][.]field + [.+1][.]field +

[.][.-1]field + [.][.+1]field) / 4.0F;

/* Normally, we would use delta to determine convergence;

* since this is a benchmark, we compute the necessary value,

* but instead use iteration counts to determine how long we

* should run. */

delta = >?= fabs (field - tmp);

field = tmp;

}

}

CM_timer_stop (0);

printf ("%12.5f %12.5f %12.5f # njac %d %d %d ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), nrow, ncol, maxiters,

positionsof (current), positionsof (physical));

}

deallocate_shape (&Field);

}

APPENDIX B. C* Benchmark Code 212

B.4 Road Distance

/* Id: roadnet.cs,v 1.1 1996/01/09 15:23:21 pab Exp

* Created: Wed Dec 6 08:17:52 1995

* Peter A. Bigot (pab@alecto)

* Last Revised:

*

* Description: Test to measure distance of points from roads: all

* points within maxiters 4-connected steps from a "road" (marked as

* 0s in the pvar) are labelled with the number of steps it took to

* get there from some road point.

*

* Update Information:

* --

* End of updates */

/* ------------- */

/* Include Files */

#include <stdio.h> /* Standard input/output routines */

#include <stdlib.h> /* Standard library routines */

#include <assert.h> /* Debugging assertion macro */

#include <cm/timers.h> /* Timing support */

int main (int argc, /* Number of command line arguments */

char * argv []) /* Array of command line arguments */

{

int height; /* Rows in map */

int width; /* Columns in map */

int maxiters; /* How far away from road do we go */

int i; /* Index over iters */

shape S; /* Shape of map */

height = width = 1024;

maxiters = 10;

if (1 < argc) {

height = atoi (argv [1]);

}

if (2 < argc) {

width = atoi (argv [2]);

}

if (3 < argc) {

maxiters = atoi (argv [3]);

}

allocate_shape (&S, 2, height, width);

with (S) everywhere {

int:current map;

APPENDIX B. C* Benchmark Code 213

/* Initialize the map: everywhere but a road is set to a maximum

* value; road locations are set to 0. For the benchmark, the

* road network consists of an overlaid cross and X at the center

* of the map, extending to all edges. */

map = (int:current) (1+maxiters);

where (((dimof (current, 0) / 2) == pcoord (0)) ||

((dimof (current, 1) / 2) == pcoord (1)) ||

(pcoord (0) == pcoord (1)) ||

((dimof (current, 0) - 1 - pcoord (0)) == pcoord (1))) {

map = 0;

}

CM_timer_clear(0);

CM_timer_start(0);

for (i = 0; i < maxiters; i++) {

/* Restrict attention to regions known to be on the edge of

* roads. */

where (map == i) {

int:current tmap; /* Source map values */

/* For each point known to be near a road, let its neighbors

* know that they're at most one further away. */

tmap = map + 1;

where (0 < pcoord (0)) {

[.-1][.] map <?= tmap;

}

where ((dimof (current, 0)-1) > pcoord (0)) {

[.+1][.] map <?= tmap;

}

where (0 < pcoord (1)) {

[.][.-1] map <?= tmap;

}

where ((dimof (current, 1)-1) > pcoord (1)) {

[.][.+1] map <?= tmap;

}

}

}

CM_timer_stop(0);

printf ("%10.4f %10.4f %10.4f # roadnet %d %d %d ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), height, width, maxiters,

positionsof (current), positionsof (physical));

}

deallocate_shape (&S);

return (0);

APPENDIX B. C* Benchmark Code 214

}

B.5 Amplitude Screener

/* Id: amp.cs,v 1.1 1996/01/09 20:40:52 pab Exp

* amp.cs - scan-based amplitude screener

*/

#include <stdlib.h> /* General support routines */

#include <cscomm.h> /* Scan and communication routines */

#include <cm/timers.h> /* Timing support */

/* Maximum image value */

#define MAX_VAL 256

/* Detect all pixels which are more than threshold times the average

* of their surrounding pixels within a wsize window in both

* directions. */

int amp_screener (

unsigned char:current *image, /* IN: Image data */

int wsize, /* IN: Window size */

float threshold, /* IN: Threshold for brights */

unsigned char min_threshold, /* IN: Min pixel threshhold for brights */

bool:current *bright_return) /* OUT: Boolmask indicating brights */

{

int:current iimage; /* Temporary used for image window sums */

int lwsize; /* Extent of window strictly below center */

int uwsize; /* Extent of window strictly above center */

/* Determine portion of window that falls to right of center pixel.

* We allot (wsize/2) to left, and discount the center. This

* correctly handles even-sized windows (although there is a bias if

* you use them). */

lwsize = (wsize / 2);

uwsize = wsize - lwsize - 1;

everywhere {

/* Determine the sum of the pixels in the wsizeXwsize window

* centered on each pixel, using scan/subtract. Note that we use

* an integer-valued temporary to avoid problems with overflow. */

iimage = scan ((int:current) *image, 1, CMC_combiner_add, CMC_upward,

CMC_none, CMC_no_field, CMC_inclusive);

where (pcoord (1) >= wsize) {

iimage -= [.][.-wsize] iimage;

}

iimage = scan (iimage, 0, CMC_combiner_add, CMC_upward,

CMC_none, CMC_no_field, CMC_inclusive);

where (pcoord (0) >= wsize) {

APPENDIX B. C* Benchmark Code 215

iimage -= [.-wsize][.] iimage;

}

/* iimage holds window sums, with sum appearing in lower right

* (higher along axes) corner of the window. Shift them back to

* the center. */

where ((pcoord (0) >= uwsize) &&

(pcoord (1) >= uwsize)) {

[.-uwsize][.-uwsize] iimage = iimage;

}

/* Subtract the center pixel from the total sum of the wsize,

* yielding the sum of the surrounding pixels */

iimage -= *image;

/* Mark a bright if the window sum is valid (*center_pixel), the

* image value meets the minimum threshold, and the image value is

* more than threshold times the average of the surrounding

* pixels. */

/* Scale threshold to do average of surround when scaling center

* value. */

threshold /= wsize*wsize - 1;

/* Only set brights within the active area; the edges are

* non-bright. */

where (((wsize / 2) <= pcoord (0)) &&

((wsize / 2) <= pcoord (1)) &&

((dimof (current, 0) - uwsize) > pcoord (0)) &&

((dimof (current, 1) - uwsize) > pcoord (1))) {

*bright_return = (min_threshold < *image) &&

((threshold * iimage) < *image);

} else {

*bright_return = 0;

}

return += *bright_return;

}

}

int main(int argc, char **argv)

{

shape Imageshape; /* Shape to use for images */

int wsize; /* Window size for screening */

int nreturns; /* Number of bright returns */

float thresh; /* Threshold for brights */

int num_cols; /* Columns in image */

int num_rows; /* Rows in image */

APPENDIX B. C* Benchmark Code 216

num_cols = num_rows = 128;

wsize = 3;

thresh = 1.1;

/* Usage: amp nrows ncols winsize threshold */

if (1 < argc) {

num_rows = atoi (argv [1]);

}

if (2 < argc) {

num_cols = atoi (argv [2]);

}

if (3 < argc) {

wsize = atoi (argv [3]);

}

if (4 < argc) {

thresh = atof (argv [4]);

}

printf("# Amplitude Screener: Image [%d x %d], ws: %d, thresh: %g\n",

num_rows, num_cols, wsize, thresh);

Imageshape = allocate_shape(&Imageshape, 2, num_rows, num_cols);

with (Imageshape) {

unsigned char:current image; /* Image being amp'd */

bool:current bright; /* Which positions are brights */

everywhere {

/* We could use randoms, but this varies with numbers of

* processors, and would be difficult to match in the C version.

* Use an image with intensity based on geometric value:

* essentially, a mountain range laid out on grid interstices.

* Not a good representation of reality, but the algorithm isn't

* data-dependent anyway. */

int:current gval;

int vrange;

gval = pcoord (0) + pcoord (1);

vrange = MAX_VAL / 4;

where (0 == (gval / vrange) %% 2) {

image = vrange + (gval %% vrange);

} else {

image = vrange - (gval %% vrange);

}

gval = (dimof (current, 0) - pcoord (0)) + pcoord (1);

where (0 == (gval / vrange) %% 2) {

image += vrange + (gval %% vrange);

} else {

image += vrange - (gval %% vrange);

APPENDIX B. C* Benchmark Code 217

}

}

CM_timer_clear(0);

CM_timer_start(0);

nreturns = amp_screener(&image, wsize, thresh, 1, &bright);

CM_timer_stop(0);

printf("# %d bright returns detected (out of %d).\n", nreturns,

positionsof (current));

printf ("%12.5f %12.5f %12.5f # amp %d %d %d %g ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), num_rows, num_cols, wsize,

thresh, positionsof (Imageshape), positionsof (physical));

}

}

B.6 Julia Set

/* Id: julia.cs,v 1.1 1996/01/09 20:40:52 pab Exp

* Another example program from Justin R. Smith. Modified for

* correctness and appropriateness as a benchmark. This version also

* modified for load balance: rows use a cyclic decomposition so

* adjacent rows appear on adjacent processors. */

#include <stdio.h>

#include <cm/timers.h>

shape [][] plane;

int main (int argc,

char * argv [])

{

int nrows;

int ncols;

int niters;

float rmin, rmax, cmin, cmax;

float p_r, p_c;

nrows = ncols = 512;

niters = 100;

if (1 < argc) {

nrows = atoi (argv [1]);

}

if (2 < argc) {

APPENDIX B. C* Benchmark Code 218

ncols = atoi (argv [2]);

}

if (3 < argc) {

niters = atoi (argv [3]);

}

rmin = cmin = -2.0;

rmax = cmax = 2.0;

p_r = 0.23;

p_c = 0.13;

allocate_shape (&plane, 2, nrows, ncols);

with (plane) everywhere {

float:plane r, c, r1;

bool:plane injulia;

int:current pivot;

int i, j;

/* Set up plane to range from -2..+2 */

/* Set up pivots to be a permutation of pcoord (0) such that when

* row R is on processor N, row R+1 is on processor N+1. This

* should improve load balance when whole rows are inactive */

i = dimof (plane, 0) % dimof (physical, 0);

j = dimof (plane, 0) / dimof (physical, 0);

if (0 < i) {

j++;

}

pivot = (pcoord (0) / dimof (physical, 0)) + j * (pcoord (0) %

dimof (physical, 0));

if (0 < i) {

where ((pcoord (0) % dimof (physical, 0)) > i) {

pivot -= (pcoord (0) % dimof (physical, 0)) - i;

}

}

r = rmin + (rmax - rmin) * pivot / dimof (current, 0);

c = cmin + (cmax - cmin) * pcoord (1) / dimof (current, 1);

/* Initially assume that all points are in the Julia set. */

injulia = 1;

CM_timer_clear (0);

CM_timer_start (0);

/* Compute the first niters z's for each point of the selected

* region of the complex plane. */

for (i = 0; i < niters; i++) {

/* We only work with points still thought to be in the Julia

* set. */

APPENDIX B. C* Benchmark Code 219

where (injulia) {

r1 = r * r - c * c + p_r;

c = 2.0 * r * c + p_c;

r = r1;

/* If sqr(|pt|) is less than 5, we're still active. */

injulia &= (5.0 >= (r * r + c * c));

}

}

CM_timer_stop (0);

printf ("# %d of %d are active at end.\n", += injulia,

positionsof (current));

printf ("%12.5f %12.5f %12.5f # julia %d %d %d ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), nrows, ncols, niters,

positionsof (current), positionsof (physical));

}

deallocate_shape (&plane);

}

B.7 Matrix Multiply

/* Id: mm.cs,v 1.1 1996/01/09 20:40:52 pab Exp

* Basic matrix multiplication benchmark.

*/

#include <stdio.h>

#include <stdlib.h>

#include <cscomm.h>

#include <cm/timers.h>

shape [][] Matrix;

void

matmult (float:current * ma,

float:current * mb,

float:current * res)

{

int col;

everywhere {

float:current mbt;

[pcoord (1)][pcoord (0)] mbt = *mb;

/* For each column of mb, spread it across, do an element-wise

* multiply, and reduce into the answer */

for (col = 0; col < dimof (current, 0); col++) {

APPENDIX B. C* Benchmark Code 220

reduce (res, *ma * copy_spread (&mbt, 0, col), 1, CMC_combiner_add,

col);

}

}

return;

}

int

main (int argc, char * argv [])

{

int order;

order = 128;

if (1 < argc) {

order = atoi (argv [1]);

}

allocate_shape (&Matrix, 2, order, order);

with (Matrix) everywhere {

float:current mat;

float:current m1;

float:current m2;

m1 = (prand () %% 1000) / 500.0;

m2 = (prand () %% 1000) / 500.0;

CM_timer_clear (0);

CM_timer_start (0);

matmult (&m1, &m2, &mat);

CM_timer_stop (0);

printf ("%12.5g %12.5g %12.5g # mm %d ; VP %d; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), order, positionsof (current),

positionsof (physical));

}

deallocate_shape (&Matrix);

}

B.8 Rank Filter

/* Id: rf.cs,v 1.2 1996/01/22 15:38:38 pab Exp

* Created: Tue Jun 6 13:36:36 1995

* Peter A. Bigot (pab@clotho)

* Last Revised:

*

* Description:

* C* version of the rank filter benchmark.

*/

/* ------------- */

APPENDIX B. C* Benchmark Code 221

/* Include Files */

#include <stdio.h> /* Standard input/output routines */

#include <stdlib.h> /* Standard library routines */

#include <assert.h> /* Debugging assertion macro */

#include <cscomm.h>

#include <cm/timers.h>

#include <string.h>

/* Rank filter: assign each pixel the ridx'th largest value in the win

* x win window surrounding it. */

void

rank_filter (unsigned char:void * imp,

unsigned char:void * outp,

int win,

int ridx)

{

int wdnhalf = win / 2;

int wuphalf = win - wdnhalf - 1;

with (shapeof (*imp)) everywhere {

unsigned char:current timage;

unsigned char:current wval;

unsigned char:current * rvals;

unsigned char:current swaptmp;

int dc;

int i, j, k;

/* Allocate a parallel array to hold the first ridx elements in

* the window in sorted order. Initialize it to the max value of

* a pixel, so propagation occurs properly. */

rvals = palloc (current, (ridx+1)*boolsizeof (unsigned char));

memset (rvals, 255, (ridx+1)*boolsizeof (unsigned char));

/* Start by shifting the image so that the upper left corner of

* the window each pel is interested in is positioned at the

* current position. (We use torus so we don't have to worry

* about shifting necessary values out of bounds during the walk,

* then shifting back in the fills.) Then we walk each row of the

* window, and insert the value from that position in the window

* into its sorted order in the rvals array. Values that go past

* the ridx'th element fall off the end. The walk is

* snake-row-major, rather than spiral, because this allows most

* shifts to be along axis 1, which generally requires no

* communication. */

to_torus (&timage, imp, boolsizeof (*imp), wdnhalf, wdnhalf);

dc = -1;

for (i = 0; i < win; i++) {

j = 0;

APPENDIX B. C* Benchmark Code 222

while (j < win) {

/* Propagate the value from this position into its proper

* position in the sorted array. */

wval = timage;

k = 0;

while (k <= ridx) {

where (wval < rvals [k]) {

swaptmp = rvals [k];

rvals [k] = wval;

wval = swaptmp;

}

k++;

}

/* Shift over one column if we're not at the edge */

if (++j < win) {

to_torus_dim (&timage, &timage, boolsizeof (timage), 1, dc);

}

}

/* Shift up to the next row. The next row shifts in the opposite

* direction, to get the desired snaking effect. */

if (i < win-1) {

to_torus_dim (&timage, &timage, boolsizeof (timage), 0, -1);

}

dc = -dc;

}

/* Pull out the desired value from the sorted set. */

*outp = rvals [ridx];

pfree (rvals);

}

}

int main (int argc, /* Number of command line arguments */

char * argv []) /* Array of command line arguments */

{

int nrows; /* Rows in image */

int ncols; /* Columns in image */

int window; /* Window size */

int rankid; /* Desired statistic of window */

shape Image; /* Image shape */

nrows = ncols = 32;

window = 3;

if (1 < argc) {

nrows = atoi (argv [1]);

}

if (2 < argc) {

ncols = atoi (argv [2]);

APPENDIX B. C* Benchmark Code 223

}

if (3 < argc) {

window = atoi (argv [3]);

}

rankid = (window * window) / 2;

if (4 < argc) {

rankid = atoi (argv [4]);

}

allocate_shape (&Image, 2, nrows, ncols);

with (Image) {

unsigned char:current img;

unsigned char:current mfimg;

img = prand () %% 256;

CM_timer_clear (0);

CM_timer_start (0);

rank_filter (&img, &mfimg, window, rankid);

CM_timer_stop (0);

printf ("%12.5g %12.5g %12.5g # rf %d %d %d %d ; VP %d ; P %d\n",

CM_timer_read_elapsed (0), CM_timer_read_cm_busy (0),

CM_timer_read_cm_idle (0), nrows, ncols, window, rankid,

positionsof (current), positionsof (physical));

}

deallocate_shape (&Image);

return (0);

}

Version: appbmarks.tex,v 1.2 1996/04/09 02:06:52 pab Exp

REFERENCES

Adams, J. C., Brainerd, W. S., Martin, J. T., Smith, B. T., & Wagener, J. L. (1992). Fortran

90 Handbook: Complete ANSI/ISO Reference. McGraw Hill. Cited on pp. 3, 20, 184.

Adve, V., Carle, A., Granston, E., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U.,

Mellor-Crummey, J., Warren, S., & Tseng, C.-W. (1994). Requirements for data-

parallel programming environments. IEEE Parallel and Distributed Technology,

2(3). Cited on p. 2.

Agrawal, G., Sussman, A., & Saltz, J. (1993). Compiler and runtime support for structured

and block structured applications. In Supercomputing ’93, pp. 578–587. ACM Press.

Cited on p. 122.

Agrawal, G., Sussman, A., & Saltz, J. (1995). An integrated runtime and compile-time

approach for parallelizing structured and block structured applications. IEEE Trans-

actions on Parallel and Distributed Systems, 6(7), 747–754. Cited on p. 10.

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers: Principles, Techniques, and

Tools. Addison-Wesley. Cited on p. 35.

American National Standards Institute (1989). American National Standard for Information

Systems—Programming Language—C. ANSI. Cited on pp. 3, 6, 8.

Andrews, G. R., Olsson, R. A., Coffin, M., Elshoff, I., Nilsen, K., Purdin, T., & Townsend,

G. (1988). An overview of the SR language and implementation. ACM Transactions

on Programming Languages and Systems, 10(1), 51–86. Cited on p. 17.

Aspinall, R., & Veitch, N. (1993). Habitat mapping from satellite imagery and wildlife sur-

vey data using a Bayesian modeling procedure in a GIS. Photogrammetric Engineer-

ing and Remote Sensing, 59(4), 537–543. Cited on p. 16.

Bailey, D. H. (1991). Twelve ways to fool the masses when giving performance results on

parallel computers. Tech. rep. RNR-91-020, NASA Ames Research Center. Cited on

p. 146.

Balasundaram, V., Fox, G., Kennedy, K., & Kremer, U. (1991). A static performance esti-

mator to guide data partitioning decisions. In Third Principles and Practice of Par-

allel Programming, pp. 213–223. ACM. Cited on p. 63.

Banerjee, U. (1988). Dependence Analysis for Supercomputing. Kluwer Academic Pub-

lishers. Cited on p. 2.

224

REFERENCES 225

Barnett, M., Gupta, S., Payne, D. G., Shuler, L., Geijn, R. v., & Watts, J. (1994). Building

a high-performance collective communication library. In Supercomputing ’94, pp.

107–116. IEE Computer Society Press. Cited on p. 82.

Blelloch, G., Chatterjee, S., Hardwick, J., Sipelstein, J., & Zagha, M. (1993). Implementa-

tion of a portable nested data-parallel language. In Fourth Principles and Practice of

Parallel Programming, pp. 102–111. Cited on p. 21.

Bozkus, Z., Choudhary, A., Fox, G., Haupt, T., Ranka, S., & Wu, M.-Y. (1993). Fortran

90D/HPF compiler for distributed memory MIMD computers: Design, implementa-

tion, and performance results. In Supercomputing ’93. ACM Press. Cited on pp. 17,

126.

Bozkus, Z., Choudhary, A., Fox, G., Haupt, T., Ranka, S., & Wu, M.-Y. (1994). Compiling

Fortran 90D/HPF for distributed memory MIMD computers. JPDC, 21, 15–26. Cited

on pp. 4, 120.

Brezany, P., Gerndt, M., Sipkova, V., & Zima, H. P. (1992). SUPERB support for irregu-

lar scientific computations. In Proceedings / Scalable High Performance Computing

Conference, SHPCC-92. IEEE Computer Society Press. Cited on p. 120.

Bruck, J., Dolev, D., Ho, C.-T., Rosu, M.-C., & Strong, R. (1994). Efficient message passing

interface (MPI) for parallel computing on clusters of workstations. Tech. rep. RJ 9924

(87305) 12/13/94, IBM Research Division. Cited on p. 100.

Brustoloni, J. C., & Bershad, B. N. (1993). Simple protocol processing for high-bandwidth

low-latency networking. Tech. rep. CMU-CS-93-132, Carnegie Mellon University.

Cited on p. 61.

Budd, T. (1988). An APL Compiler. Springer–Verlag. Cited on p. 57.

Chandranmenon, G. P., Russell, R. D., & Hatcher, P. J. (1994). Providing an execution en-

vironment for C* programs on a Mach-based PC cluster. Tech. rep. TR 94-20, Uni-

versity of New Hampshire. Cited on p. 65.

Chang, C.-H., Flower, D., Forecast, J., Gray, H., Hawe, B., Nadkarni, A., Ramakrishnan, K.,

Shikarpur, U., & Wilde, K. (1994). High-performance TCP/IP and UDP/IP network-

ing in DEC OSF/1 for Alpha AXP. In Third High Performance Distributed Comput-

ing, pp. 35–42. IEEE. Cited on p. 61.

Chapman, B., Zima, H., & Mehrotra, P. (1994). Extending HPF for advanced data-parallel

applications. IEEE Parallel and Distributed Technology, 2(3). Cited on pp. 120, 126.

REFERENCES 226

Chatterjee, S., Gilbert, J. R., Long, F. J., Schreiber, R., & Teng, S.-H. (1993). Generating

local addresses and communication sets for data-parallel programming. In 4th Prin-

ciples and Practive of Parallel Programming, pp. 149–158. ACM Press. Cited on p.

35.

Cheung, A. L., & Reeves, A. P. (1992). High performance computing on a cluster of work-

stations. In First High Performance Distributed Computing, pp. 152–160. IEEE

Computer Society Press. Cited on p. 16.

Ching, W.-M., & Ju, D. (1991). Execution of automatically parallelized APL programs on

RP3. IBM Journal of Research and Development, 35(5/6). Cited on p. 21.

Ching, W.-M., & Katz, A. (1994). An experimental APL compiler for a distributed memory

parallel machine. In Proceedings of Supercomputing ’94. Cited on p. 21.

Choudhary, A., Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Ranka, S., & Tseng,

C.-W. (1993). Unified compuation of Fortran 77D and 90D. ACM Letters on Pro-

gramming Languages and Systems, 2(1-4), 95–114. Cited on pp. 17, 18, 20.

Congalton, R. G., Green, K., & Teply, J. (1993). Mapping old growth forests on national

forest and park lands in the Pacific Northwest from remotely sensed data. Photogram-

metric Engineering and Remote Sensing, 49(4), 529–535. Cited on p. 16.

Crandall, P. E., & Quinn, M. J. (1993). Block data decomposition for data-parallel program-

ming on a heterogeneous workstation network. In 2nd Intl. Symp. High Performance

Distributed Computing, pp. 42–49. IEEE Computer Society Press. Cited on pp. 20,

56, 65.

Culler, D. E., Dusseau, A., Goldstein, S. C., Krishnamurthy, A., Lumetta, S., von Eicken,

T., & Yelick, K. (1993). Parallel programming in Split-C. In Supercomputing ’93,

pp. 262–273. ACM Press. Cited on p. 21.

Das, R., Ponnusamy, R., Saltz, J., & Mavriplis, D. (1992). Distributed memory compiler

methods for irregular problems—data copy reuse and runtime partitioning. In Saltz,

J., & Mehrotra, P. (Eds.), Languages, Compilers, and Run-Time Environments for

Distributed Memory Machines, pp. 185–219. Elsevier Science Publishers. Cited on

pp. 122, 125.

Das, R., Uysal, M., Saltz, J., & Hwang, Y.-S. (1994). Communication optimizations for ir-

regular scientific computations on distributed memory architectures. JPDC, 22, 462–

478. Cited on p. 120.

Dongarra, J., van de Geijn, R., & Walker, D. (1992). A look at scalable dense linear algebra

libraries. In Scalable High Performance Computing Conference–92, pp. 372–379.

IEEE Computer Society Press. Cited on p. 26.

REFERENCES 227

Druschel, P. (1994). Operating System Support for High-Speed Networking. TR 94-24, The

University of Arizona. Cited on pp. 61, 100.

Fallah-Adl, H., JáJá, J., Liang, S., Kaufman, Y. J., & Townshend, J. (1995). Efficient algo-

rithms for atmospheric correction of remotely sensed data. Tech. rep. UMD CS-TR-

3464, UMIACS, University of Maryland. Cited on p. 21.

Fischer, C. N., & LeBlanc, Jr., R. J. (1988). Crafting a Compiler. Benjamin/Cummings.

Cited on p. 35.

FORE Systems (1994). ForeRunner SBA-100/-200 ATM SBus Adapter User’s Manual, Re-

vision Level D. Cited on p. 63.

Fox, G. (1988). What have we learnt from using real parallel machines to solve real prob-

lems. In Third Conference on Hypercube Concurrent Computers and Applications,

Vol. 2, pp. 897–955. ACM Press. Cited on p. 3.

Frankel, J. L. (1991). A reference description of the C* language. Tech. rep. TR-253, Think-

ing Machines Corporation. Cited on pp. 3, 8.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., & Sunderam, V. (1994). PVM

3 user’s guide and reference manual. Tech. rep. ORNL/TM-12187, Oak Ridge Na-

tional Laboratory. Cited on p. 59.

Gilman, L., & Rose, A. J. (1984). APL: An Interactive Approach (3rd edition). John Wiley

and Sons. Cited on p. 21.

Green, K., Kempka, D., & Lackey, L. (1994). Using remote sensing to detect and monitor

land-cover and land-use change. Photogrammetric Engineering and Remote Sensing,

60(3), 331–337. Cited on p. 16.

Hamey, L. G., Webb, J. A., & Wu, I.-C. (1989). An architecture independent programming

language for low-level vision. Computer Vision, Graphics, and Image Processing,

48, 246–264. Cited on p. 21.

Harris, J., Bircsak, J. A., Bolduc, M. R., Diewald, J. A., Gale, I., Johnson, N. W., Lee,

S., Nelson, C. A., & Offner, C. D. (1995). Compiling high performance fortran for

distributed-memory systems. Digital Technical Journal, 7(3). Cited on p. 2.

Hatcher, P. J., & Quinn, M. J. (1991). Data-Parallel Programming on MIMD Computers.

MIT Press. Cited on pp. 16, 17, 20.

Hennessy, J. L., & Patterson, D. A. (1990). Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann. Cited on pp. 2, 46.

REFERENCES 228

High Performance Fortran Forum (1993). High Performance Fortran Language Specifica-

tion (1.0 edition). Cited on pp. 3, 20, 24, 184.

Hillis, W. D., & Steele Jr., G. L. (1986). Data parallel algorithms. Communications of the

ACM, 29(12), 1170–1183. Cited on p. 3.

Hillis, W. D., & Tucker, L. W. (1993). The CM-5 Connection Machine: A scalable super-

computer. Communications of the ACM, 36(11), 30–40. Cited on p. 146.

Hiranandani, S., Kennedy, K., & Tseng, C.-W. (1993). Preliminary experiences with the

Fortran D compiler. In Supercomputing ’93, pp. 338–350. ACM Press. Cited on pp.

10, 20.

Hiranandani, S., Kennedy, K., & Tseng, C.-W. (1994). Evaluating compiler optimizations

for Fortran D. JPDC, 21, 27–45. Cited on pp. 63, 104.

Knobe, K., Lukas, J. D., & Guy L. Steele, J. (1990). Data optimization: Allocation of arrays

to reduce communication on SIMD machines. Journal of Parallel and Distributed

Computing, 8, 102–119. Cited on p. 23.

Knuth, D. E. (1973). Sorting and Searching, Vol. 3 of The Art of Computer Programming.

Addison-Wesley. Cited on pp. 112, 117.

Koelbel, C. (1990). Compiling Programs for Nonshared Memory Machines. Csd-tr-1037,

Purdue University. Cited on pp. 10, 139.

Koelbel, C., & Mehrotra, P. (1991). Compiling global name-space parallel loops for dis-

tributed execution. IEEE Transactions on Parallel and Distributed Systems, 2(4),

440–451. Cited on pp. 21, 119, 122.

Koelbel, C., Mehrotra, P., & Rosendale, J. V. (1990). Supporting shared data structures on

distributed memory architectures. In 2nd Principles and Practice of Parallel Pro-

gramming. ACM Press. Cited on p. 122.

Lapadula, A. J., & Herold, K. P. (1994). A retargetable C* compiler and run-time library

for mesh-connected MIMD multicomputers. Tech. rep. TR 92-15, University of New

Hampshire. Cited on pp. 16, 20, 38, 39, 40, 120, 141, 178.

LaRosa, J. A. (1995). A protocol for network-based concurrent computing.. Cited on p. 84.

Mahéo, Y., & Pazat, J.-L. (1993). Distributed array management for HPF compilers. Pub-

lication interne 787, Institut de Recherche en Informatique et Systemes Aleatoires.

Cited on p. 23.

Mason, J. R., Hatcher, P. J., & Chappelow, S. (1994). Optimizing irregular communication

patterns in UNH C*. Tech. rep. TR 94-14, University of New Hampshire. Cited on

pp. 20, 120, 125, 178.

REFERENCES 229

Mellor-Crummey, J. M., & Scott, M. L. (1991). Algorithms for scalable synchronization on

shared-memory multiprocessors. TOPLAS, 9(1), 21–65. Cited on p. 79.

Message Passing Interface Forum (1994). MPI: A Message-Passing Interface Standard.

Cited on p. 59.

Mitra, P., Payne, D. G., Shuler, L., van de Geijn, R., & Watts, J. (1995). Fast collective

communication libraries, please. Tech. rep. TR95-22, University of Texas at Austin.

Cited on pp. 59, 77.

Mosberger, D., Peterson, L. L., & O’Malley, S. (1995). Protocol latency: MIPS and reality.

Tech. rep. TR 95-02, University of Arizona. Cited on p. 71.

Mosberger, D., Turner, C. J., & Peterson, L. L. (1994). Exploiting highly reliable networks

with careful protocols. Tech. rep. TR 94-14, University of Arizona. Cited on pp. 65,

101.

Numerical C Extensions Group of X3J11 (1994). Data parallel C extensions. Tech. rep.

X3J11/94-080 / WG13/N395, ANSI X3J11. Cited on pp. 3, 8, 21, 184.

Oed, W. (1993). The Cray Research massively parallel processor system: CRAY T3D..

Cited on p. 60.

Papadopoulos, C., & Parulkar, G. M. (1993). Experimental evaluation of SUNOS IPC

and TCP/IP protocol implementation. IEEE/ACM Transactions on Networking, 1(2),

199–216. Cited on p. 73.

Ponnusamy, R., Hwang, Y.-S., Das, R., Saltz, J. H., Choudhary, A., & Fox, G. (1995). Sup-

porting irregular distributions using data-parallel languages. IEEE Parallel and Dis-

tributed Technology, 3(1), 12–24. Cited on pp. 120, 121, 122, 126.

Ponnusamy, R., Saltz, J., & Choudhary, A. (1993). Runtime compilation techniques for data

partitioning and communication schedule reuse. In Supercomputing ’93, pp. 361–370.

ACM Press. Cited on p. 122.

Ponnusamy, R., Saltz, J., Choudhary, A., Hwang, Y.-S., & Fox, G. (1995). Runtime sup-

port and compilation methods for user-specified irregular data distributions. IEEE

Transactions on Parallel and Distributed Systems, 6(8), 815–831. Cited on p. 120.

Press, W. H., Flannery, B. P., Teukoloky, S. A., & Vetterling, W. T. (1984). Numerical

Recipes in C. Cambridge University Press. Cited on p. 49.

Pure Software (1994). Purify User’s Guide. Cited on p. 39.

Richards, J. A. (1994). Remote Sensing Digital Image Analysis (2nd edition). Springer-

Verlag. Cited on pp. 4, 16, 41.

REFERENCES 230

Rose, J. R., & Steele Jr., G. L. (1987). C*: An extended C language for data parallel pro-

gramming. In Proceedings 2nd International Conference on Supercomputing, Vol. 2,

pp. 2–16. International Supercomputing Institute. Cited on p. 20.

Rosing, M., Schnabel, R. B., & Weaver, R. P. (1991). The DINO parallel programming

language. JPDC, 13, 30–42. Cited on p. 21.

Sahni, S., & Thanvantri, V. (1996). Performance metrics: Keeping the focus on runtime.

IEEE Parallel & Distributed Technology, 4, 43–56. Cited on p. 146.

Sharma, S. D., Ponnusamy, R., Moon, B., shin Hwang, Y., Das, R., & Saltz, J. (1994). Run-

time and compile-time support for adaptive irregular problems. In Supercomputing

’94, pp. 97–106. IEE Computer Society Press. Cited on p. 120.

Sheffler, T. J., Schreiber, R., Gilbert, J. R., & Chatterjee, S. (1994). Aligning parallel ar-

rays to reduce communication. Tech. rep. RIACS TR 94.10, Research Institute for

Advanced Computer Science, NASA Ames. Cited on p. 23.

Skjellum, A. (1993). Scalable libraries in a heterogeneous environment. In Second High

Performance Distributed Computing, pp. 13–20. IEEE. Cited on p. 65.

Socha, D. G. (1991). Supporting fine-grain computation on distributed memory parallel

computers. TR 91-07-01, University of Washington. Cited on p. 56.

Thinking Machines Corporation (1993). C* Programming Guide. Thinking Machines Cor-

poration. Cited on pp. 8, 122, 173.

Tseng, C.-W. (1993). An Optimizing Fortran-D Compiler for MIMD Distributed-Memory

Machines. Rice COMP TR93–199, Rice University. Cited on pp. 4, 20, 24, 56, 129.

Turner, C. J., & Turner, J. G. (1994). Adaptive data parallel methods for ecosystem moni-

toring. In Supercomputing ’94, pp. 281–290. IEEE Computer Society Press. Cited on

pp. 4, 16, 41.

Turner, C. J. (1994). Cluster-C*: A Data Parallel Computing Architecture for Automated

Remote-Sensing Applications. Ph.D. thesis, The University of Arizona. Cited on pp.

50, 61, 101.

von Eicken, T., Culler, D. E., Goldstein, S. C., & Schauser, K. E. (1992). Active messages:

A mechanism for integrated communication computation. Tech. rep. UCB/CSD

92/#675, University of California, Berkeley. Cited on p. 74.

Voorhees, H., & Tucker, L. W. (1992). Efficient representation and transformation of image

data on the connection machine system.. Machine Vision and Applications, 5(2), 63–

83. Cited on p. 41.

REFERENCES 231

Weissman, J. B., & Grimshaw, A. S. (1994). Network partitioning of data parallel compu-

tations. In 3rd Intl. Symp. High Performance Distributed Computing, pp. 140–156.

IEEE Computer Society Press. Cited on p. 65.

INDEX 232

INDEX

., see pcoord

active position, see context

address conversion, 25, 31

allocation

parallel variables, 40

reclamation, 20, 38

shapes, 10, 28, 40, 44

AVL search tree, 114, 117

block distribution, see distribution,

block

broadcast, 77

network support for, 65

buffer management, 73

cache sensitivity, 45–48, 104, 129,

138

CM5, 146

collective communications, 77

colliding communications, 13, 104,

108

communications

torus, 139

compiler temporaries, 18

context, 13, 13–15

boundary exclusion, 51, 129

building, 51

charmap encoding, 48, 54

in shapes, 14

representation of, 48–51

RLE encoding, 49, 54

copy avoidance, 61, 68

current, 9

cyclic distribution, see distribution,

cyclic

data distribution, see distribution

data-parallel, 3

dimension, 9

dimof, 14

distribution, 23–27

cyclic, 26, 126, 147, 217

irregular, 24

types of, 25

element, see position

everywhere, 15

ghost cells, 19, 125

heterogeneity, 65

hic dracones, 192

histogram equalization, 13

image processing, 4, 41

inactive position, see context

inlining, 37

inspector/executor, 119

Intel Paragon, 146

intrinsic function, 11

left-index, 10

scalar, 36

linear search, see search mechanisms

LU decomposition, 26

lvalue, 11, 103

maximal transfer unit, 63

message fragmentation, 64, 70

message handlers, 74

message headers, 71

message padding, 105

MTU, see maximal transfer unit

network, 59

network interface, 59

packet, 106

parallel prefix, 16, 26

INDEX 233

parallel variable, 9

parallelizing compilers, 2

pcoord, 11, 32, 130

pivot, see LU decomposition

pointer-to-parallel, 40

poll, 70

portability, 59

position, 9

pvar, see parallel variable

quality of service, 65, 85

rank, 8

reduce, 77

C* library function, 46

correctness requirements for, 81

correctness requirements for, 99

reliability, see quality of service, 85

rvalue, 11, 103

scalar left index, 10

scalar left-index, see left-index, scalar

scalar type, 9

scan, see parallel prefix

scanset, 46

search mechanisms, 108, 112

shape, 8

current, 9

fully specified, 29

fully unspecified, 28

implementation of, 28

partially specified, 28

shape aliasing, 41

Silicon Graphics, 146

SIMD, 8

SPMD, 17

strength reduction, 35

stride, 40

vectorization, 2

virtual processor, 9

virtual processor loop, 18

VP, see virtual processor

where, 14

