An Interfacefor a
Fragment Assembly Kernel
Susan Larson
Mudita Jain

Eric Anson
Gene Myers

TR 96-04A

An Interfacefor a
Fragment Assembly Kernel

Susan Larson
Mudita Jain
Eric Anson
Gene Myers

TR 96-04A

ABSTRACT

This document describes the C programming language interface to our Fragment Assembly Kernel library.
Inputs to the Fragment Assembly Kernel are (1) DNA fragment sequences from potentially inaccurate
seguencing experiments, and (2) optional constraints on fragment assembly such as known fragment overlaps
or relative fragment orientation. Fragment sequence version control is supported. The Fragment Assembly
Kernel produces the most probable reconstructions of the original DNA sequence from the fragments, subject
to any specified constraints. Each fragment assembly includes multiple sequence alignment and consensus
sequences. Multiple sequence alignment editing capabilities are provided to allow manual correction of
sequence errors.

March 10, 1996

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

*Thiswork was supported in part by DOE Grant DE-FG03-94ER61911.

An Interface for a Fragment Assembly Kernel

1. Overview

At a conceptua level, the problem of assembling DNA sequence fragments naturally dividesinto three
phases. In the overlap phase each fragment is compared against every other fragment to seeif they share a com-
mon subseguence, implying that they were potentially sampled from overlapping stretches of the original strand.
Each pair of fragments is compared in two ways: with both fragments in the same relative orientation, and with
one of the fragments having been reverse-complemented. The result of thisfirst phase may be thought of as an
overlap graph in which each fragment is modeled as a vertex and each statistically significant overlap between
two sequences is modeled as a directed edge between the vertices representing them.

The second, layout phase takes the overlap graph as input and generates a series of alternate assemblies or
layouts of the fragments based on the pairwise overlaps therein. A layout specifies the relative locations and
orientations of the fragments with respect to each other and is typically visualized as an arrangement of overlap-
ping directed lines, one for each fragment. The general criterion for the layout phase is to produce plausible as-
semblies of maximun likelihood, but with the advent of mixed-mode sequencing strategies, may also be required
to meet an additional set of constraints. We advocate that the layout algorithm must be generative, i.e. produce
a sequence of layoutsin decreasing order of "quality”. For example, it isimportant to know if there is more than
one way to put the pieces together, especially if different solutions appear equally plausible. In such a case, one
would return to the lab and obtain additional information to remove the ambiguity.

The final, multi-alignment phase uses more information than just the pairwise alignmentsin the layout.
The sequences of all the fragmentsin alayout are simultaneously aligned, giving afinal consensus segquence as
the desired reconstruction of the original strand. We think of these final multi-alignments as being a resulting
assembly.

The Fragment Assembly Kernel (FAK) facilitates the creation of three types of objects. overlap graphs,
constraint sets, and assemblies. Overlap graphs record versions of fragment sequences and the overlaps
between them. Constraint sets store information about fragment relationships, such as fragments that are known
to overlap or to not overlap, or fragments that are in the same orientation or are reverse complemented with
respect to each other. For a given overlap graph and an associated constraint set, a series of fragment assemblies
can be generated. In generating an assembly, fragments are assembled into contigs, or groups of overlapping
fragments, and a multi-alignment is computed for each contig. Each successive assembly is built up from a dif-
ferent "seed" edge from the overlap graph, to increase the likelihood that the resulting assembly is different from
any preceding assemblies.

Functions are provided to create and destroy overlap graphs, constraint sets, and assemblies, and to read
and write them to and from disk files. Each object created by a Fragment Assembly Kernel function is persistent
until it is destroyed by another FAK function. FAK routines allow access to information about fragmentsin a
contig, such as fragment position, orientation, and type of overlap. The Fragment Assembly Kernel provides
functions for editing the multiple sequence alignments so that errors in fragment sequences may be corrected
manually.

2. Initialization, Error Handling, and Shutdown of the Kernel

int fa_startup (int trapflag, char *path);
char *fa_error_nsg ();
void fa_shutdown();

Function f a_st ar t up initializes the fragment assembly system and must be the first routine called. If
trapfl ag isnon-zero, f a_st ar t up usesthe C Library setjmp/longjmp mechanism to allow control to return to
the point of thecall tof a_st art up inthe event of an error. Thefirst call tof a_st art up returns zero but has
the important side effect of establishing itself as the return point for error exceptions. Thereafter, whenever an
error is detected, control istransferred to the call asif it had just returned, but this time with a non-zero value in-
dicating the type of error. Inthisway error handling isleft to the discretion of the user of the kernel. The user

routine that callsf a_st ar t up must not return before invoking other Fragment Assembly Kernel procedures,
otherwise the system may be returning control to a non-existent environment. See the example below and refer
to the C library function setjmp for a description of thismechanism. If fa_startupiscaledwithtrapfl ag
set to zero, then on the detection of an error, an error message is output on stderr and execution terminates. The
pat h string passed to f a_st ar t up must be the pathname of the directory in which the FAK score table file(s)
(fa*.i) reside. If pat hisaNULL pointer or an empty string (""), FAK will expect the score table file(s) to bein
the current directory.

Function f a_er r or _nmsg returns a pointer to a string containing the error message for the most recently
detected error. The following code fragment is an illustration of the use of the FAK error routines:

int rc;

if (rc = fa_startup(1, ""))

{
fprintf(stderr, "%", fa_error_nsg());
...error handling based on the value of rc...
}
el se
{
...calls to other Fragment Assenbly Kernel routines...
fa_shut down();
}

Thef a_shut down procedure frees working memory used by the kernel for overlap computations, minim-
izes the amount of memory allocated for error checking based on the number of extant graph, assembly and con-
straint objects, and removes the file created for pointer checking. This routine may be called at any time to free
memory, and any subsequent calls to FAK routines needing the freed structures will result in their being rebuilt
on ademand basis.

3. Constructing Overlap Graphs

An overlap graph is constructed by using FAK primitives to perform a series of additions and deletions of
fragments and edges between the fragments. Each edge in the overlap graph represents one of two types of
overlap. A containment overlap between two fragments occurs when one fragment sequence is completely con-
tained within the other fragment sequence. An overlap between a suffix of one fragment and a prefix of another
iscalled a dovetail.

All possible aignments are represented with one of the following edge types:

A -cmm oo
----- B (A contains B)
Aceemeeeeaa _
----- B (A contains B reverse conpl enent)
B --cccmmmeeoo 2
----- A (B contains A)
B oo
----- A (B reverse conpl enent contains A)

................ B (A dovetails to B)

A _
................ B (A dovetails to B reverse conpl enent)
B ---cmmmmeee oo
................ A (B dovetails to A)
B occemmam e

---------------- A (B reverse conpl ement dovetails to A)

Note that, for example, (A reverse complement contains B) isnot in the list, but it can be represented by (A con-
tains B reverse complement), which is an encoding of the same alignment with the fragments in the opposite
orientation. To simplify the encoding, FAK edge representations always refer to the A fragment in its forward
orientation, and the B fragment may or may not be reverse complemented. Thisisreflected in the edge types
listed above.

FAK uses an edge edit script to represent each alignment between two fragments. The edit script isan ar-
ray of integers that encodes the alignment. The first integer is FA_SAME if the B fragment isin its forward
orientation, and FA_COMP if the B fragment is reverse complemented. The second and third integers represent
the left and right ends of the overlap as indicies of basesin the fragments. Positiveindices are in the A frag-
ment, and negative indices correspond to bases in the B fragment. Positions are numbered from left to right, 1 to
the length of the fragment, and is a fragment is reverse complemented, the numbering is done afterwards. In-
serts and deletes do not count as positions in fragments. If both indices are in the same fragment (i.e. have the
same sign), the edge is a containment, otherwise it isadovetail. The remaining integersin the script form alist
of insertions and deletions, with a zero at the end of the list. Again, positive integers refer to positionsin the A
fragment and negative integers to positions in the (possibly reverse complemented) B fragment. An insert or
delete position is the index of the base that comes after the insert or delete.

Asanillustration, the edit scripts for a few example edges are;

i j (i =5 j =28
A gtgcta-gtgatgc edit script: (FA_SAME 5,8,7,0)
t aggt B (i *j >0 => contai nment)
S (i =-5 j =-8)
B ccgcgat - aggcac edit script: (FA SAME -5,-8,2,-8,0)
g-tta A (i *j >0 => contai nment)
i (i =-5 j =10
B atatgtca-tagtgc edit script: (FA_COW,-5,10,2,2,-9,0)

g--attagtgccaat A (i *j <0 => dovetail)
j

In determining significant overlaps, a user-specified error rate is taken into account. The error rate is mul-
tiplied by the sum of the lengths of the two fragments being compared, giving the maximum number of differ-
ences alowed in an overlap that isto be represented in the graph. That is, if the error rate is 5% then a sequence
of length 500 could have 25 errorsin it, which implies that when comparing two such sequences up to 50 differ-

-3-

ences must be permitted:

[----- up to 25 errors in fragA ------ [

fragA == XX X===X X=X ==X =X===XX===X== ... ===
fr agB SSSSSSX X SSXX SSXXSSXSSEXXXSSEXS=EXX==X ... ==========

[----- up to 25 errors in fragB ------ |

We have always advocated using full-sensitivity sequence comparisons for finding approximate overlaps,
as opposed to heuristics which occasionally miss significant overlaps. Sequencing errors must be accommodat-
ed and while one may not wish to use the more error laden data toward the end of agel run for the purposes of
multi-alignment and consensus, its use for detecting overlaps can significantly improve closure probabilities for
pure shotgun projects. Using higher error rates for overlap comparisons allows for less trimming of the raw
data. Thuswe argue that the further ability of our approach to correctly handle large error ratesis an asset.

In order to support version control for fragments, the set of fragments in a graph are partitioned into
classes, each class representing the versions of a given fragment. Only one fragment in a class can be active and
it isthisfragment that is used in overlap comparisons and in assemblies. Before generating assemblies over a
graph, the active fragment of a class can be changed, fragments can be added and deleted from a class, and
classes can be added and deleted from the graph. 1f a user does not intend to support version control, then they
can ssimply place one fragment in each class.

The following primitives can be used to construct overlap graphs.

FA _GRAPH *fa_create_graph ();
voi d fa_destroy_graph (FA_GRAPH *graph);

Function f a_cr eat e_gr aph returns a pointer to an empty overlap graph. Theroutinef a_dest r oy_gr aph
frees the memory consumed by an overlap graph.

FA_NAME fa_add_cl ass (FA_GRAPH *graph, char *sequence, int ext_id,

int cnp_type, double error_limt,

doubl e overlap_threshold, double distrib_limt);
voi d fa_del _class (FA_GRAPH *graph, FA NAME frag);

FA NAME fa_add_frag (FA_GRAPH *graph, FA NAME frag, char *sequence, int ext_id,
int cnp_type, double error_limt,
doubl e overlap_t hreshol d, double distrib_limt);

voi d fa_del _frag (FA_GRAPH *graph, FA _NAME frag);

void fa_active (FA _GRAPH *graph, FA NAME frag);

void fa_list_class (FA_GRAPH *graph, FA NAME frag, void (*handler)());
voi d handl er (FA_NAME fnane);

void fa_list_active (FA_GRAPH *graph, void (*handler)());
voi d handl er (FA_NAME f nane);

Function f a_add_cl ass establishes a new fragment class whose sole and active member is the supplied
sequence with associated user-supplied id, ext _i d. The fragment is assigned a name of type FA_NAME that is
the return value of the call and that must subsequently be used to refer to the fragment in callsto FAK routines.
The remaining parameters control the addition of edges between this new fragment and the active members of
other classesin the graph. If cnp_t ype isFA_COVPARE_NONE then no edges are added and the remaining
parameters need not be specified. If cnp_t ype isFA_COMPARE_ALL then the new fragment is compared against
all active fragments. The overlap computation is guaranteed to produce all overlaps within the specified
error_linmtanddistrib_limt,andthosewith ascore greater than or equal to theover| ap_t hr eshol d
are added to the overlap graph. The overlap computation may produce some overlaps that are outside of the
error_limtordistrib_linit range; if desiredthese may be screened out for the purpose of assembly with
the parameterspassedtof a_i nit _assenbl e. Notethattheerror limit,distrib_linit and

over | ap_t hreshol d values apply to the overlap comparisons done by f a_add_cl ass, rather than being asso-
ciated with the fragment being added to the overlap graph. When a fragment is added to an overlap graph, these
values are used to determine the edges that are added to the graph. A detailed description of overlap and error-
distribution scores is given below, in the discussion of thef a_conpar e function.

Thef a_del _cl ass procedure removes from the overlap graph all fragmentsin a class and the edges in-
cident to these fragments.

Functionf a_add_frag isidentical tof a_add_cl ass except that (1) the supplied fragment sequenceis
added to the pre-existing class containing fragment f r ag, and (2) the parameter cnp_t ype may be specified as
FA COVPARE_CLASS. Toillustrate the use of the cnp_t ype parameter, let A be the active fragment in the class.
If cnp_t ype iSFA_COVPARE_CLASS, then the new fragment is compared against the active fragments of the
classes containing fragments to which A has an edge. Just before f a_add_f r ag returns, the new fragment is
made the active fragment of the class.

The procedure f a_del _f r ag removes the specified fragment f r ag from its class and removes any edges
incident to f r ag from the overlap graph. If f r ag was the active fragment of the class, then another fragment in
the classis randomly selected to be active.

Theroutinef a_act i ve makes the specified fragment the active fragment of the class containing it. Re-
call that only one version of a fragment can be active at any given time.

Theprocedurefa_list_cl ass may be used tolist all of the fragments in the class containing fragment
frag. Theuser writesahandl er routinethat ispassedtofa_l i st_cl ass. Thehandler is called once for
each fragment in the class, with the FA_NAVE of the fragment passed in as a parameter.

Thefa_list_active procedure may be used to list the active fragments in the overlap graph pointed to
by gr aph. The user writesahandl er routinethat ispassedtofa_|i st_active. Thehandler iscalled once
for each fragment class in the graph, with the FA_NAME of the active fragment of the class passed as a parameter.

In Version 4.0 or later of the FAK kernel, searches against a set of fragments as implied by the use of
FA_COWPARE_ALL inthecalstofa_add_cl ass and/or f a_add_f r ag, can be significantly accelerated by opt-
ing to use alarge index structure in conjunction with some new code. The single instance of thisindex is allo-
cated by the primitivef a_cr eat e_t he_i ndex and destroyed with the primitivef a_dest r oy_t he_i ndex
below. Theformer must be called after f a_st ar t up is called, and the latter before f a_shut down is called.
While the index isin existence, one can associate it with a given graph, gr aph, by invoking f a_appl y_i ndex
onit. While the association between gr aph and theindex isin effect, all FA_ COVPARE_ALL searches over the
current set of active fragments in the graph will be accelerated. One isfree to add and delete fragments and
classes, or to change the active fragment in a class, during the time of association: the changes are automatically
reflected in the index.

void fa_create_the_index ();
void fa_destroy_the_index();
voi d fa_apply_i ndex (FA_GRAPH *graph);

The efficiency of the overlap computation is primarily related to the error rate specified when fragments
are added to the graph. Lower error rates will allow a more efficient overlap computation. The most efficient
overlap computation is possible when the error rate islow, say less than 5%. A somewhat lower efficiency
results at or above each of the 5%, and 10% error rate levels. Refer to the section on Building and Using the
Fragment Assembly Kernel for more details regarding efficiency and index memory requirements.

To examine the results of an overlap comparison between two fragments, f a_conpar e may be used.

int *fa_conpare (FA_GRAPH *graph, FA NAME fragl, FA NAME frag2,
doubl e error _|imt, double *score, double *distrib limt,
int orient, int coordl, int coord2);

Function f a_conpar e returns a pointer to alist of integers representing an optimal overlap alignment between
fragl andfrag2. Theoverlap is computed using the specified error rate and any non-zero valuesin the

ori ent and coor dl, coor d2 parameters. Passing non-zero valuesfor ori ent, coor d1 and coor d2 specifies
amore restricted set of comparisons, as explained below. Inf a_conpar e the highest scoring overlap (con-
sistent with ori ent, coor d1, and coor d2 values, if any) is determined, and the overlap score and error-
distribution score are returned via the pointersscor e and di st ri b_I i mi t, respectively. If no such overlap is
found, f a_conpar e returns NULL.

The overlap score of an alignment roughly reflects the length of the overlap with a deduction for
mismatches in the alignment. The score is computed as —log, of the probability that such an alignment would
occur at random. Thisisaprior oddsratio, i.e. it does not take into account the total number of comparisons
made in building a particular overlap graph. By taking the —log, of the probability, scores are scaled so that a
perfect alignment of length L, has score L, and an alignment with D errorsin it scores approximately
L -DlogsL /(D +1) when D/L issufficiently small. That is, the score isthe length of the overlap less afactor
multiplied by the number of differences, where the factor becomes smaller as the number of difference becomes
larger. Wefind that choosing a cutoff score of around 10 (1 in amillion) is generally satisfactory.

The error-distribution score of an alignment provides another useful and orthogonal measure of the quality
of an overlap. It isbased on the Erlang approximation of the probability of seeing the number of differencesin
the alignment given that errors are distributed exponentially with arrival rate 1/ error _I i ni t. The need for
this additional measure is motivated by the following example. Functionf a_conpar e will find all overlapsin-
volvinguptoerror_limt*(length(fragl)+l ength(frag2)) differences. Soonemight find an overlap
of 200 symbols between two fragments of length 500 with 100 differences when the error rate is set at 10%.

The overlap scorein this caseis still well over 10 as such an aignment isvery rare. But if the 10% errors were
distributed exponentialy we would on average see only 40 errorsin an overlap of 200 symbols, and would see
100 errorsin this overlap only 1 in a1000 times. Thus the Erlang-based error-distribution score reveals such an
alignment to be suspect. Another common phenomenon is for a significant overlap (with respect to overlap
score) to occur in the case of a chimeric fragment or two fragments that both contain part of arepeated sequence
in the original DNA strand. In these cases one has a very good alignment, distributionally speaking, for a prefix
or suffix of the overlap followed by avery poor alignment thereafter. We capture this by computing the distri-
butional score of every suffix and prefix of an alignment and taking the minimum score over al. This number is
the distributional score returned by f a_conpar e. When passed as a parameter to thef a_add routines, atypical
distrib_limit threshold is about . 001. An error-distribution limit of . 01 tends to eliminate some good aign-
ments, and . 0001 tends to retain potentially bad ones. Note that using 0. 0 guarantees that no edges are elim-
inated on thisbasis, and using 1. 0 isnon-sensical asit will guarantee that all overlaps are rejected.

If the fragments are to be compared in both the same and reverse complement orientations, the or i ent
parameter should have a zero value. If one wishes to specify the relative orientation of the fragments con-
sidered, the parameter ori ent isused asfollows: Setting ori ent to FA_ SAME specifiesthat f r agl and f r ag2
are to be compared in the same orientation. If ori ent iSFA_COWP, then f r agl is compared to the reverse com-
plement of f r ag2. If the orientation constraint is given and the last two arguments have a zero value then the
best overlap between the fragments in the given orientation is returned.

Finally, if the best alignment subject to a given orientation and overlap interval is desired, then one may
further specify the interval with the parameters coor d1 and coor d2. These parameters specify the beginning
and ending positions of the overlap interval. Positive values represent positionsin f r agl, and negative values
indicate positionsin f r ag2. If the product of the valuesfor coor d1 and coor d2 is positive, a containment
overlap isindicated; if this product is negative, it represents a dovetail overlap. For example, if fragl is110
characters long and f r ag2 is 60 characters long, then the (or i ent, coor d1, coor d2) triples at |eft giverise to
the overlaps at right:

(FA_SAME, 100, - 10) <==> fragl[100..110] dovetails frag2[1l..10]
(FA_SAME, 20, 85) <==> fragl[20.. 85] contains frag2
(FA_SAME, - 45, 20) <==> frag2[45.. 60] dovetails fragl[1l..20]
(FA_SAME, -1,-60) <==> frag2 contains fragl (with lots of errors)
(FA_COWP, 100, - 10) <==> fragl[100..110] dovetails FRAR[1.. 10]
(FA_COWP, 20, 85) <==> fragl[20.. 85] contains FRAR

where FRAR2 is the reverse complement sequence of f r ag2

Notice that FRAG2[1. . 10] isthe reverse complement of f r ag2[51. . 60] . Also notice that the overlaps may
contain errors. For example, the first triple above implies that the last 11 characters of f r ag1 overlap with the
first 10 characters of f r ag2, so there must also be aninsertinf r ag2 in order for it to align withfr ag1.

Thelist of integers returned by f a_conpar e represents the alignment as follows: Thefirst three integers
indicate the orientation and overlap interval, exactly as do the parametersto f a_conpar e. That is, thefirst in-
teger inthelistisFA_SAME or FA_COVP, indicating whether or not f r ag2 is reverse-complemented. The second
and third integers indicate the beginning and ending positions of the overlap interval as described above. The
remaining integers in the list indicate the positions at which to insert dashes into the two sequences so as to pro-

-6-

duce the encoded alignment. Specifically, a positive integer, k, indicates that a dash should be inserted before
the k’th symbol of f r ag1, and a negative integer, —k, indicates that a dash should be inserted before the k’th
symbol of f rag2. Thelististerminated with a0. For example, if fragl =’ acggt acgt t acgat acg’ and
frag2 =’ gt aaactt aagaacgt aa’ , then the alignment:

acggt - - acgt t acgat acg
gt aaac-tt aaga- acgt aa

is specified by thelist <FA_SAME,4,-15,6,6,-7,-13,0>.

The following FAK routines may be used to add and del ete edges from an overlap graph manually, and to
inspect the edges in a graph:

voi d fa_add_edge (FA_GRAPH *graph, FA _NAME fragl, FA _NAME frag2,
int *alignnent, double o_score, double ed_score);

void fa_del _edge (FA_GRAPH *graph, FA_NAME fragl, FA NAME frag2,
int orient, int coordl, int coord2);

void fa_list_edges (FA _GRAPH *graph, FA NAME frag, void (*handler)());
voi d handl er (FA_NAME fnanel, FA_NAME fnane2,
int *alignnent, double o_score, double ed_score);

The procedure f a_add_edge adds an edge from f r ag1 to f r ag2, using the specified alignment and
overlap and error-distribution scores, to an overlap graph. The alignment is represented by alist of integers such
asthose returned by f a_conpar e. The edge is assigned the designated scores for the purposes of computing
best layouts. These may be the scores returned by f a_conpar e or whatever the user desires (e.g. the length of
the overlap for o_score).

Thef a_del _edge routine removes from an overlap graph all edges between f r ag1 and f r ag2 with the
specified orientation (FA_SAME or FA_COWP) and overlap interval (coor d1 and coor d2 as described for
fa_conpare). Thatis, the edgeisidentified by the first three integersin the list of integers encoding it. If there
is more than one edge between f r ag1 and f r ag2 satisfying the description (but possibly differing in the exact
alignment between the overlapped intervals), they all are removed.

Theroutinef a_| i st _edges can be used to obtain information about all edges incident to the specified
fragment in an overlap graph. The user writesahandl er routinethat ispassedtofa_| i st _edges. The
handl er routineis called once for each edge incident to the specified fragment, and is passed the FA_NAMES of
the overlapping fragments represented by the edge, a pointer to the integer list encoding of the alignment (as
described for f a_conpar e), and the overlap and error-distribution scores of the edge. The handl er routine
can then use thisinformation as desired by the user. The value of either f namel or f nanme2 passed to the
handler isthevaluefrag passedtofa_| i st _edges. The handler must expect a score of type double, to allow
us to accomodate pre-ANSI C compilers.

char *fa_sequence (FA_GRAPH *graph, FA NAME nane);
int fa_length (FA_GRAPH *graph, FA _NAVE nane);
int fa_ext_id (FA_GRAPH *graph, FA _NAVE nane);
Function f a_sequence returns a pointer to the character string for the sequence in the overlap graph with
the associated nane, or the null pointer, if no such sequence exists.
Function f a_| engt h returns the length of the named sequence, or 0 if there is no such sequence.

Function f a_ext _i d returns the integer id supplied by the devel oper when the specified sequence wasin-
serted into the overlap graph. If there isno such sequence, f a_ext _i d returns 0.

voi d fa_wite_graph (FA_GRAPH *graph, FILE *stream;
FA GRAPH *fa_read_graph (FILE *stream;
voi d fa_ascii_wite_graph (FA_GRAPH *graph, FILE *strean);

FA GRAPH *fa_ascii_read_graph (FILE *strean);
Proceduref a_writ e_graph storesan overlap graph in afile. The specified file must be opened for writ-

ingwhenfa_wite_graphiscaled. Functionfa_read_graph reads apreviously stored overlap graph from
afile that has been opened for reading. Thefa_read_graphandfa_write_graph routines make use of the C
library buffered 1/0 functions fread and fwrite. If callsto FAK read/write routines are intermixed with input or
output of other data, these other reads and writes must also use the buffered I/O functions. That is, callsto the
system read/write functions cannot be intermixed with callsto the C library fread/fwrite routines.

Procedurefa_ascii _write_graph storesan ASCII representation of an overlap graph in afile. The
specified file must be opened for writing when f a_ascii _write_graph iscaled. Thefirst line of the ASCII
graph file has the format "G(verification code): internal graph structure values'. The first two values are the
number of classes and the number of fragmentsin the graph. Next the ASCII representation of each fragment is
given as"F: internal fragment structure values' and "S: fragment sequence, 60 characters per line". Class active
fragment values and nameindex values follow the fragment data. Finally, for each edge in the graph there is
datain the format "E: internal edge structure values including edge overlap score and error-distribution score”
and "D: orientation overlap-coordinates' followed by any remaining edit script values (insert positions), 10 per
line". Refer to the description of alignment representation inf a_conpar e. Functionfa_asci i _read_graph
reads a previoudly stored ASCII representation of an overlap graph from afile that has been opened for reading
and returns a pointer to the graph.

4. Fragment Assembly Constraints

An additional capability provided by our Fragment Assembly Kernel allows the user to provide morein-
formation to the kernel regarding fragment assembly. Constraints can be used to specify that given fragments or
edges in an overlap graph are used in an assembly in a particular way, or are not included in an assembly.

Theinclusion of fragment assembly constraints in the kernel was motivated by the use of mixed-mode
sequencing strategies. Previously we had developed an approach for the layout phase that was suitable for pure
shotgun sequencing projects [Kec91]. This approach is based on operations research techniques for finding a
maximum weight Hamiltonian path through the overlap graph of the first phase. Since that time, it has become
clear that large sequencing projects will not and cannot employ a pure shotgun strategy. Most experimentalists
advocate shotgunning to the point of marginal return and then resorting to primer-based or directed methods for
achieving completion or closure. Others advocate approaches involving sequencing only those fragments that
do not hybridize (overlap) with other sequenced fragments, or sequencing both ends of an insert, all in an at-
tempt to improve on the coverage of pure shotgunning. The impact of these mixed-mode sequencing strategies
isthat one must now produce the most compact layout subject to a collection of constraints modeling the addi-
tional information provided by the enhanced strategy.

Given that the simple and heuristic greedy algorithm [Sta82,PSU84,Hua92] for producing layouts tends to
work well in most cases, and in light of the additional complexity of constraints, we have chosen in our new ker-
nel to utilize a greedy algorithm that will produce solutions that meet the given constraints. Like the basic
greedy a gorithm, fragments are progressively melded together, where melds are chosen in order of the "degree”
of overlap between fragments. But in addition the algorithm rejects a potential meld if it violates a constraint.

The following functions can be used to build constraint sets:
FA CSET *fac_all _frags();

FA _CSET *fac_frag_in (FA_NAME frag);
FA _CSET *fac_frag_out (FA_NAME frag);

FA _CSET *fac_edge_in (FA_NAME fragl, FA NAME frag2,

int orient, int coordl, int coord2);
FA CSET *fac_edge_out (FA_NAME fragl, FA NAME frag2,

int orient, int coordl, int coord2);

FA CSET *fac_orient _same(FA_NAME fragl, FA NAME frag2);
FA _CSET *fac_orient_opp (FA_NAME fragl, FA _NAME frag2);

FA _CSET *fac_di stance(FA_NAME fragl, FA NAME frag2, int anchorl,
int anchor2, int mngap, int maxgap);

Each of the above constraint functions returns a reference to a constraint set containing a single constraint.

-8-

Constraint sets consisting of more than one constraint can be built using the function f ac_uni on which is
described below. Fragment constraints have the highest priority, followed by edge constraints, orientation con-
straints, and finally distance constraints. Therefore, if afragment is constrained to be out of an assembly, and an
edge involving that fragment is constrained to be in the assembly, the edge constraint is considered to be incon-
sistent with the higher priority fragment constraint. Notethat it is also possible for inconsistent constraint setsto
be created by taking the union of conflicting constraints of the same priority. For example, constraining the
same edge to be both in and out of an assembly or the same two fragments to be oriented in both the same and
opposite directions are inconsistencies. If aninconsistency isdetected inf a_i ni t _assenbl e, auser defined
warning handler will be called, and the assembly will proceed without using the most recently added constraint
which caused the inconsistency to be discovered. Also note that when a constraint is created or evaluated by
another FAK function, references to fragments are to the active member of the class containing it.

For certain types of edge IN constraints, it is necessary to include containing edges and transitive edgesin
the constraint so that they are assembled properly. Each edge IN constraint is now "expanded" to include con-
sistent related edges. In any constraint conflicts involving the expanded constraints, both the original and the in-
cluded constraints are reported. The ability to correctly expand constraints depends on the use of an appropriate
error limit with fa_add_class/frag and suitable values of asm_error_rate and asm_distrib_thresh being passed to
fa init_assemble(). If, for example, the error limit or asm_error_rate istoo low, edges needed for constraint ex-
pansion will not be found and constraint conflict errors will be reported.

Functionf ac_al | _f r ags returns areference to a constraint set that asserts that all active fragments are
to be considered in the assembly. If two constraint sets are merged using the f ac_uni on function and either set
containsthe"fac_al | _frags" constraint, the resulting constraint set will assert that all fragments, except those
referenced in"f ac_f rag_out " constraints in the merged set, will be considered in the assembly.

A constraint set built by f ac_f rag_i n asserts that the specified fragment is to be among those assembled.
Functionf ac_frag_out creates aconstraint set that asserts that the specified fragment is not included in the as-
sembly. Thus one may specify a set of fragments to be assembled either by listing which ones arein, or by list-
ing which ones are out. In thefirst case, one builds a constraint set of "f ac_f rag_i n"s, and in the latter case
one buildsa constraint set of "fac_al | _frags" and"f ac_frag_out"s.

Function f ac_edge_i n returns areference to a constraint set that asserts that one of the edges (if any)
between f r agl and f r ag2 meeting the the orientation and overlap conditionsimposed by ori ent , coor d1,
and coor d2 will be used to overlap the fragments in the resulting assembly. Theori ent, coor d1, and coor d2
parameters optionally specify the relative orientation and the overlap of the edgesto be considered. Asin
f a_conpar e, one may use a zero value for all three of these parameters, specify anon-zero value for just the
orientation, or pass non-zero values for all three parameters, in each case specifying a progressively more res-
tricted set of edgesto consider.

Function f ac_edge_out returns a pointer to a constraint set that asserts that all edges between f r agl
and f r ag2 satisfying the orientation and overlap conditions (if in effect), will be disregarded while building as-
semblies over the graph associated with this constraint set.

Functionf ac_ori ent _sane creates a constraint set that asserts that the two fragments specified will be
in the same orientation in the resulting assembly.

A constraint set created by f ac_or i ent _opp asserts that the two fragments specified will be in the oppo-
site (or reverse complement) orientation in the resulting assembly.

Function f ac_di st ance returns areference to a constraint set that asserts that position anchor 1 with
respect to f r ag1 and position anchor 2 with respect to f r ag2 are to be separated by at least ni ngap characters
and at most maxgap characters in the resulting assembly. The fragments may bein either orientation with
respect to their anchors and the anchors do not necessarily have to be positions in the fragment, e.g. an anchor
value of —10 specifies a position 10 characters to the |eft of the first character of the relevant fragment.

FA _CSET *fac_uni on(FA_CSET *cset1l, FA CSET *cset?2);
FA CSET *fac_copy(FA _CSET *cset);
voi d fac_destroy(FA CSET *cset);
Function f ac_uni on returns areference to the constraint set that results from merging two specified con-

straint sets. Merging constraint sets consumes the referencesto cset 1 and cset 2. To retain areferenceto ei-
ther of these constraint sets, f ac_copy must be called on the reference.

Function f ac_copy creates a new reference to a constraint set and returns the newly created reference.
Proceduref ac_dest r oy consumes areference to a constraint set and frees the memory associated with the
constraint set if thiswas the last reference to the object.

Asimplied by the naming of pointers to constraint sets as references, areference counter mechanismis
used to manipulate constraint sets. We have found that the conventions described above are very flexible and
are best illustrated with an example.

FA CSET *cf, *ce, *ca;
FA NAME f1, f2, 3, f[n+l];

cf = fac_all_frags();
for (i =1; i <=n; i++4)
cf = fac_union(cf,fac_frag_out(f[i]);

ce = fac_union(fac_union(fac_edge_in(f1,f2),
fac_edge_in(f1,f3)),
fac_edge_in(f2,f3));

ca = fac_union(cf,ce);

fac_destroy(ca);

cf becomes areference to a constraint set specifying that all fragments except f [1. . n] should be assembled.
Within the loop, f ac_uni on consumes the referenceto cf and that returned by f ac_frag_out and returnsa
new one to an object modeling their union. Later, when f ac_dest r oy iscalled on ca, al the objects created

are destroyed. If instead one had set "ca = fac_uni on(fac_copy(cf), ce)", then after the code is execut-
ed, cf will still be avalid reference, but all constraints associated with ca and ce will have disappeared.

From another point of view, the fundamental constraint set primitivesand f ac_uni on return pointers to
objects whose reference count is 1. Moreover, f ac_uni on does not modify the reference counts of its operands
but since it needs to point at them, it effectively consumes one of the counts. f ac_copy increments the refer-
ence count. fac_dest r oy decrements the reference count and if it becomes zero, recursively garbage collects
all objects that become unreferenced as a result.

voi d fac_wite(FA_CSET *cset, FILE *strean);
FA CSET *fac_read(FILE *strean);
voi d fac_ascii_wite(FA CSET *cset, FILE *stream;

FA CSET *fac_ascii_read(FILE *strean);

Proceduref ac_wri t e writesaconstraint set to afile. The file must be open for writing. Function
f ac_r ead returns areference to a constraint set read from afile. The file must be open for reading.

Proceduref ac_asci i _writ e writesan ASCII representation of a constraint set to afile. The file must be
open for writing. Thefirst line of the ASCII constraint set file has the format " C(verification code): allfragin
flag". Each constraint typeislisted and the number of constraints of that typeis given, followed by alist of the
actual constraints. FA_NAMEs of fragments specified in fragment constraints are listed 10 per line. Edge con-
straints are listed one per line, including the FA_NAMEs of the fragments in the edge, their relative orientation
if specified in the constraint, and overlap coordinates if specified. Orientation constraints are listed one per line,
consisting of two FA_NAMEs and the relative orientation in the constraint. Distance constraints are written one
per line, astwo FA_NAMEs, two anchor positions, and the mingap and maxgap values. Function
fac_ascii _read returns areferenceto a constraint set read from an ASCII constraint set file. The file must be
open for reading.

5. Generating Assemblies

The FAK assembly generator includes the layout phase and the multi-alignment phase. The layout phase
uses a greedy algorithm that respects any specified constraints, as described above. For the multi-alignment
phase, we proceed by producing an initial alignment consistent with all the pairwise alignments of the edgesin
the layout of the previous phase. Thisisaways possible, computationally efficient, and since the error rateis
typically less than 10% produces a very good first approximation. As an improvement, a"window" is swept
over thisinitial alignment to optimize the alignment in subregions where the use of global overlap alignments
produced locally nonoptimal subalignments. Within the window, the alignment is again the result of merging
pairwise alignments, but in this case, in a potentially different order according to the best pairwise alignments

-10-

between the subsequences within the window. With this window-sweep we empirically find the resulting
multi-alignment to be almost-everywhere optimal, especially when the error rate is less than 5%. Most com-
plaints about current fragment assembly software are due to suboptimal results in the overlap and multi-
alignment phases. We thus believe it isimperative to use the best possible alignment algorithms in these phases.

The following functions can be used to generate assemblies from an overlap graph:

void fa_init_assenble (FA_GRAPH *graph, FA CSET *cset, void (*handler()),
doubl e asm ov_t hresh, double asmerror_rate,
doubl e asm distrib_thresh);
voi d handler (int errcode, char *warn_str);

FA_ASSEMBLY *fa_gen_assenbly (FA_GRAPH *graph);
voi d fa_destroy_assenbl y(FA ASSEMBLY *asm ;

void fa_finis_assenble (FA _GRAPH *graph);

Proceduref a_i ni t _assenbl e prepares for the computation of assemblies over a subset of edges from an over-
lap graph, using a constraint set.

In some situationsit may be useful to specify alower overlap threshold, higher error limit, and lower
error-distribution limit when adding fragments to an overlap graph, then vary the stringency of these values
when generating assemblies. This strategy has the effect of being generous in terms of including overlapsin the
graph, then being more selective at the assembly stage. Since the overlap computation takes more time than
generating the assemblies, it may be convenient to include all possibly useful overlapsin the overlap graph, then
"turn the knobs" later to cull out the desired subset of edges.

The subset of edges to be considered in assembliesis determined by cset and by the values of the
asm ov_t hresh,asmerror_rate,andasm di strib_t hresh parameters. If asm ov_t hresh isgreater
than 0.0, only those edges with an overlap score greater than or equal to asm ov_t hr esh will be considered in
assemblies (unless the edges have been constrained to be IN). If asm di stri b_t hr esh isgreater than 0.0,
then for each edge with a sufficient overlap score, an error-distribution score is computed based on
asm error_rate. If thiserror-distribution scoreislessthanasm di stri b_t hr esh, the edge will be exclud-
ed from any assemblies. If asm ov_t hr esh islessthan or equal to 0.0, all edges in the overlap graph are eligi-
ble for assembly (except any edges constrained OUT). If asm di stri b_t hr esh islessthan or equal to 0.0, no
assembly error-distribution screening is done.

Acdltofa_init_assenbl e also associates a user defined warning message handler with the graph.
The warning handler is called by FAK procedures operating on a graph whenever an error is encountered that
can be safely ignored. For example, if inconsistenciesin a constraint set are detected, the warning handler is
called, and if control is returned to the Fragment Assembly Kernel, the offending constraint is ignored and the
assembly process continues. If aNULL pointer is passed as the warning handler, the warning message will be
sent to stderr, and the assembly process will continue.

Thefa_init_assenbl e routine must be called before thefirst call tof a_gen_assenbl y. Thegraphis
locked by f a_i ni t _assenbl e, and remains locked until f a_fi ni s_assenbl e iscaled. Locking prevents
any changes to the graph (such as addition or deletion of fragments or edges, or changing the active fragment of
aclass) while assembly generation isin progress. Modifications to the constraint set associated with a graph are
effectively ignored while the graph islocked, since constraint set evaluation takes place only when the constraint
set gets associated with the graph inf a_i ni t _assenbl e. Passing alocked graphtofa_i nit_assenbl e,
fa_wite_graph, or any FAK routine that modifies a graph causes an error trap as described at the start of the
document.

Function f a_gen_assenbl y generates the next best fragment assembly over a graph, using the constraint
set specifiedinthecal tofa_i nit _assenbl e. A pointer to an object of type FA_ ASSEMBLY isreturned, or the
null pointer if there is no next best assembly. The same constraint set is used for each assembly; to use a dif-
ferent constraint set, f a_fi ni s_assenbl e must be caled, followed by acall tof a_i ni t _assenbl e with the
new constraint set. If f a_gen_assenbl y iscalled on a graph that has not had assembly initialized viaa call to
fa_init_assenbl e, theerror is handled as described in the Initialization and Error Handling section.

-11-

Proceduref a_dest r oy_assenbl y frees the data structures associated with an assembly.

Proceduref a_fi ni s_assenbl e terminates assembly generation over a graph, frees the associated data
structures, and disassociates the constraint set specified inthecall tof a_i ni t _assenbl e from the graph.

6. Accessing information about assemblies

i nt fa_num conti gs(FA_ASSEMBLY *asm ;
int fa_contig_hei ght (FA_ASSEMBLY *asm int ctg);
int fa_contig_w dth(FA_ASSEMBLY *asm int ctg);

double fa_contig_score(FA_ASSEMBLY *asm int ctg);

int fa_contig_vi ew(FA_ASSEMBLY *asm int ctg, int beg_col, int end_col,
i nt consensus, void (*handler)());
void handler(int row, int col, int frag, int len, int pos);
int fa_num fragment s(FA ASSEMBLY *asm int ctg);
FA NAME fa_frag_ i d(FA _ASSEMBLY *asm int ctg, int frag);
voi d fa_frag_l oc(FA_ASSEMBLY *asm int ctg, int frag,
int *row, int *bcol, int *ecol);
char *fa_frag_eseq(FA_ASSEMBLY *asm int ctg, int frag);
int fa_frag_overl ap(FA_ASSEMBLY *asm int ctg, int frag);
int fa_frag_orient (FA_ASSEMBLY *asm int ctg, int frag);

FA CSET *fa_assenbly_seed(FA ASSEMBLY *asm;

Function f a_num cont i gs returns the number of contigsin an assembly. The remaining assembly infor-
mation routines require a contig index as an input parameter. Thisindex provides the user a meansto iterate
through the contigsin an assembly. Contigs are indexed from zero to the number of contigs - 1.

Functionf a_conti g_hei ght returns the number of rows needed to display an assembly contig.
Functionf a_cont i g_wi dt h returns the length in characters of an assembly contig.
Functionf a_cont i g_scor e returns the score of an assembly contig.

Functionf a_cont i g_vi ewproduces the portion of an assembly contig that is delineated by beg_col
and end_col , and calls a user-supplied routing, handl er, once for each fragment that lies within this window.
If the consensus argument is non-zero, a consensus row will be computed and passed to the handler routine
after the last fragment in the window. Thefa_conti g_vi ewfunction returns a non-zero result if no errors oc-
cur while producing the contig rows. If an error is detected, such as a column number out of range,
fa_conti g_vi ewreturns zero. The handler routine must accept arguments specifying the row being passed,
the column of the multi-alignment in which the fragment begins, the index of the fragment in the contig (or -1 if
the consensus row is being passed in), the length in characters of the portion of the fragment in the window (in-
cluding dashes), and the first column position of the fragment that is within the window. Note that more than
one fragment can occupy the same row, in which case the handler is called more than once with the same row
number. Also, beg_col can specify acolumn before the start of a particular fragment, so that the correspond-
ing value of pos passed to the handler is1, or beg_col can intersect afragment so that pos represents the
column position of the intersection point. Fragments within a contig are indexed from zero to the number of
fragments - 1. For example, if fa_contig_view is called on the following 3-fragment contig with beg_col 9 and
end_col 36,

beg_col end_col
| |
I I
fragA ccgcg-tatatga-gct cgaaagct agt aaccag- gagccggce
fragB ggtata--acgctcga fragC cc-gagagc- ggct aact t agg

| |
L wndow |

-12 -

then handl er will be called 3 times:

handler(1, 9, 0, 28, 9); for row 1, col 9, fragA, len 28, pos9
handler(2, 9, 1, 12, 5); for row 2, col 9, fragB, len 12, pos5
handler(2, 31, 2, 6, 1); for row 2, col 31, fragC, len 6, pos1

Function f a_num f r agnent s returns the number of fragmentsin an assembly contig. Aswith contigs, it
is assumed that the user will look through the fragments by iterating a fragment index from zero to the number
of fragments - 1 and passing thisindex to FAK functions.

Functionf a_f rag_i d returns the FA_NANE for the fragment with index f r ag in the assembly contig in-
dexed by ct g. Proceduref a_frag_| oc passes back the row, *r ow, and beginning and ending column posi-
tions, *bcol and*ecol , of the fragment indexed by f r ag in the assembly contig indexed by ct g.

Function f a_f r ag_eseq returns a pointer to a character buffer containing the aligned sequence for the
fragment with index f r ag in the assembly contig indexed by ct g, or if f r ag is —1, the consensus sequence is
returned. The aligned sequence for afragment is the sequence of characters (including dashes) representing the
fragment in the multi-alignment. The buffer containing the aligned sequence is overwritten each time
fa_frag_eseqiscalled. Functionfa_frag overl ap returns FA_CONTAI N, FA_DOVETAI L, or O to indicate
whether the fragment indexed by f r ag in assembly contig ct g is contained in another fragment, dovetailed with
another fragment, or istheroot (first fragment) of the contig. Functionfa_frag_ori ent returns 1if the frag-
ment indexed by f r ag in the assembly contig with index ct g is reverse-complemented, O otherwise.

Function f a_assenbl y_seed returns areference to a constraint set that containsa"f ac_edge_i n" con-
straint for the seed edge used to generate the assembly. The seed edge selected for an assembly is the highest
scoring edge that is not constrained (by a"f ac_edge_i n" constraint) to be in the assemblies, and that has not
yet been included in a previously generated assembly over the relevant graph. This selection of the seed edgeis
intended to give rise to alternate assemblies.

The seed edge can be used to regenerate its assembly without having to produce any of the preceding as-
semblies. For example, suppose that 10 assemblies have been generated over graphl with associated constraint
set csetl. If the seed for assembly number 10 has been saved, then this assembly can be reproduced after all of
the assemblies have been destroyed and fa finis_assemble has been called as follows:

FA GRAPH *graphi;
FA CSET *csetl, *seed_ 10;
FA_ASSEMBLY *asnb;

csetl = fac_union(csetl, seed_10);
fa_init_assenbl e(graphl, csetl);
asnb = fa_gen_assenbl y(graphl);

This approach saves the time required to generate the first 9 assemblies. Note that if the function
fa_assenbl y_seed iscalled with asnb, the seed returned will not be the same asseed_10, sinceseed_10
was added to cset 1 which prevents it from being selected as a seed.

voi d fa_wite_assenbl y(FA_ASSEMBLY *asm FILE *stream;
FA_ASSEMBLY *fa_read_assenbl y(FA _GRAPH *graph, FILE *stream;
voi d fa_ascii_wite_assenbl y(FA ASSEMBLY *asm FILE *strean);

FA ASSEMBLY *fa_ascii_read_assenbl y(FA_GRAPH *graph, FILE *strean);

Procedurefa_write_assenbl y writes an assembly to afile. The file must be open for writing, and the
graph from which the assembly was generated must be saved independently by callingfa_wri te_graph.
Function f a_r ead_assenbl y reads an assembly in terms of an existing graph. The file from which the assem-
bly isto be read must be open for reading.

Procedurefa_ascii_wite_assenbly storesan ASCII representation of an assembly in afile. The
specified file must be opened for writing beforef a_ascii _write_assenbl y iscaled. The graph from which
the assembly was generated must be saved independently by calling f a_asci i _writ e_graph. Thefirst line of
the ASCII assembly file has the format " A (verification code): number of contigs in assembly”. The second line
contains the assembly seed edge representation. The assembly representation is divided into three groups. In

-13-

the first group, for each contig in the assembly the number of fragments, rows, columns, score, and edit informa-
tionisgiven. For each fragment in the contig, layout information is stored. The consensus for the contig is writ-
ten to thefile, followed by internal consensus and layout information. The second group listsinternal informa-
tion for fragments in each row of each contig, and the third group contains more internal layout and edit infor-
mation. Functionfa_ascii _read_assenbl y reads a previously stored ASCII representation of an assembly
from afile that has been opened for reading and returns a pointer to the assembly. The graph from which the as-
sembly was generated must be extant when f a_asci i _read_assenbl y iscaled.

7. Editing multi-alignments

void fa_swap_rows(FA ASSEMBLY *asm int ctg, int rowl, int row2);

char *fa_get_col (FA_ASSEMBLY *asm int ctg, int col);

void fa_delete_col (FA_ASSEMBLY *asm int ctg, int col);

void fa_insert_col (FA_ASSEMBLY *asm int ctg, int col, char *seq);
void fa_substitute_col (FA_ ASSEMBLY *asm int ctg, int col, char *seq);
void fa_undo_edit(FA _ASSEMBLY *asm int ctg);

The multi-alignment edit functions operate on the assembly asm in the contig indexed by ct g. Procedure
fa_swap_rows swapsrowl and r ow2.

Proceduref a_get _col returns a null-terminated string containing the symbols from column col . The
string is overwritten each timef a_get _col iscalled.

Proceduref a_del et e_col deletesthe column specified by col .

Proceduref a_i nsert _col insertsthe column of characters specified by the null-terminated string seq
before column col . The length of the string seq must be the same as the number of rows in the contig. Valid
characters for seq include dashes and characters representing an encoded nucleotide set.

Proceduref a_substi t ut e_col replaces the the specified column in the multi-alignment with the
column passed in viaseq. Theseq string must be NULL-terminated, and must be equal in length to the number
of rows in the contig indexed by ct g, which isreturned by thef a_cont i g_hei ght function.

Procedure f a_undo_edi t reversesthelast edit made to the assembly contig.

Asaniillustration of the use of the editing functions, consider the multi-alignment from contig 0 of assem-
bly asnb:

fragA: ggctaccgce- ct ac

fragB: accgcggt a- gga

fragC g-tacggaaca
Consensus: GECTACGECG? TACGGAACA

The consensus column 11 could not be determined from the given fragment sequences. |If the user determines
that the seventh base in FragB isactually a’c’ rather thana’g’, the following FAK calls can be used to correct
the multi-alignment:

fa_del ete_col (asnb, 0, 11);
fa_insert_col (asnmb, 0, 11, "cc-");

8. Building and Using the Fragment Assembly Kernel

The Fragment Assembly Kernel package is comprised of severa C source and header files, and an accom-
panying Makefile. The Unix "make" command can be used to build the FAK source filesinto alibrary that can
be linked with a user program. The user program must contain the directive '#include "fa_interface.h™’. The
files"fa interface.h" and "fa_errors.h" must be accessible through the include path for the user program, or may
simply be placed in the directory in which the user program resides.

In addition, the Fragment Assembly Kernel uses a score table file that contains very large tables. Thefile
isnamed with a".i" extension, and by default has been built for the Sun4 platform. For other architectures, the
"make all" command can be used to regenerate the FAK score table file. Thisfile may beinstalled in any direc-
tory, provided that the pathname of thisdirectory ispassedtof a_st art up. To avoid hardcoding this pathname

-14-

into the user program, the standard C library routine getenv can be used to check an environment variable that
can be set to the pathname. If the path parameter passed tof a_st art up isaNULL pointer or an empty
string(""), the Fragment Assembly Kernel will attempt to find the FAK score table file in the current directory.

The maximum length of fragments assembled by FAK is dependent on the constant LENMAX, defined in
thefilefa global.h. If the error FA_ERR_SCORE_OVERFLOW occurs (or the message "Error: score table
limits exceeded" appears), LENMAX should be increased, and the score table rebuilt by using the "make all"
command. The value of LENMAX should be approximately 1.6 times the length of the longest fragment to be
assembled by FAK. If LENMAX is made larger, the constant DIFFMAX may aso need to be increased. DIFF-
MAX must be greater than or equal to 2 * max_error_limit * LENMAX, where max_error_limit is the max-
imum error rate for overlaps.

The speed of overlap computations is affected by the size of the index structure created. Thissizeis
determined by the defined constant OVTUPLE. The memory requirement for the index is sizeof(int) * pow(4,
OVTUPLE). In other words, each time OVTUPLE isincreased by 1, the memory requirement grows by a factor
of 4. For example, if OVTUPLE is 10 and the size of an integer is 4 bytes, the index uses 4Mb of memory. For
agiven value of OVTUPLE, the fastest overlap computation will result when the error rate isless than
0.5/0VTUPLE. The second most efficient overlap computation will occur with error rates between 0.5/0VTU-
PLE and 1.0/OVTUPLE. Higher error rates may be specified, which will increase the time required to compute
the overlaps.

9. Conclusion

We have produced a fragment assembly tool that is flexible and robust, yet efficient. FAK users may
choose between completely automatic assembly and a high degree of user control. Our Fragment Assembly
Kernel consists of what we feel isthe simplest possible set of atomic yet sufficient primitives to support proven
methods of fragment assembly as well as new sequencing techniques.

In our implementation we have strictly maintained the objected-oriented paradigm: the kernel realizes ob-
jects of type overlap graph, constraint set, and assembly that may be created, destroyed, and manipulated only
viaroutines of the kernel. An object persists until it is explicitly destroyed.

The kernel developed actually represents the Arizona group’ s second such construction effort
[Kec91,MiM91,KeM93]. Thissecond effort started from scratch with a complete redesign of the underlying al-
gorithms and interface.

10. References

[Hua92]
[Keco1]
[KeM93]
[MiMO1]
[PSU84]

[Sta2]

Huang, X. "A contig assembly program based on sensitive detection of fragment overlaps'.
Genomics 14 (1992), 18-25.

Kececioglu, J.D. "Exact and approximate algorithms for DNA sequence reconstruction”. Ph.D.
Thesis. Technical Report 91-26, Dept. of Computer Science, U. of Arizona, Tucson, AZ 85721.

Kececioglu, J.D. and EW. Myers. "Combinatorial algorithmsfor DNA sequence assembly”. Ac-
cepted for publication in Algorithmica (1993).

Miller, S. and E.W. Myers. "A fragment assembly project environment”. Technical Report 91-17,
Dept. of Computer Science, U. of Arizona, Tucson, AZ 85721.

Peltola, H., H. Sbderlund, and E. Ukkonen. "SEQAID: A DNA sequence assembly program based
on amathematical model”. Nuc. Acids Res. 12 (1984), 307-321.

Staden, R. "Automation of the computer handling of gel reading data produced by the shotgun
method of DNA sequence”. Nuc. Acids Res. 10 (1982), 4731-4751.

-15-

