
E�cient Support for

Fine-Grain Parallelism

on Shared-Memory Machines

Vincent W. Freeh

David K. Lowenthal

Gregory R. Andrews

E�cient Support for Fine-Grain Parallelism on Shared-Memory

Machines

Vincent W. Freeh David K. Lowenthal Gregory R. Andrews

TR 96-1

Abstract

A coarse-grain parallel program typically has one thread (task) per processor, whereas

a �ne-grain program has one thread for each independent unit of work. Although there

are several advantages to �ne-grain parallelism, conventional wisdom is that coarse-

grain parallelism is more e�cient. This paper illustrates the advantages of �ne-grain

parallelism and presents an e�cient implementation for shared-memory machines. The

approach has been implemented in a portable software package called Filaments, which

employs a unique combination of techniques to achieve e�ciency. The performance of

the �ne-grain programs discussed in this paper is always within 13% of a hand-coded

coarse-grain program and is usually within 5 percent.

January 29, 1996

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1

This work was supported by NSF grants CCR-9415303 and CDA-8822652.

1 Introduction

The typical approach to writing a parallel program for a p-processor machine is to divide the

application into p tasks and then to execute each task on a distinct processor. For example,

to multiply two n � n matrices one can partition the n

2

inner product computations among p

processes by assigning each process a strip or block of the result matrix. Assuming there are more

inner products to compute than processors available, the result is a coarse-grain program. An

alternative approach is to write a �ne-grain program in which each process (thread) consists of a

small, independent unit of work. For matrix multiplication each inner product can be computed in

parallel by a logically distinct process.

There are several advantages to �ne-grain programs. First, they are architecture independent

because parallelism is expressed in terms of the problem size, not the number of processors that

execute the program. Fine-grain programs are easier to write, because it is not necessary to

statically cluster independent units of work into a �xed set of larger tasks; adaptive programs such

as divide and conquer algorithms do not have any a priori �xed set of tasks. Third, the implicit

parallelism in functional or dataow languages is inherently �ne-grain, as is the loop parallelism

either extracted by parallelizing compilers or expressed in parallel variants of languages such as

Fortran. The �ne-grain model simpli�es code generation for such languages. Finally, when there

are many more processes than processors, it is often easier to balance the total amount of work

done by each processor.

This paper illustrates the usefulness of �ne-grain parallelism by examining several applica-

tions and then presents an e�cient implementation of �ne-grain parallelism. The focus here is on

shared-memory multiprocessors. Although most current work on supporting massive parallelism

concentrates on machines with physically distributed memory, supporting small-scale parallelism

on multiprocessors is still important. It will be more important as networks of multiprocessors

become more common.

Our approach has been implemented in a portable software package called Filaments, which

also supports �ne-grain parallelism and a shared-memory programming model on both shared- and

distributed-memory machines [FLA94]. It achieves e�ciency in iterative computations by using

stateless threads and implicitly coarsening granularity and in fork/join computations by pruning

and automatically balancing the load. Filaments strives to make languages and compilers simpler

by moving complexity into the run-time system. It has been used as a runtime library for parallel

programs written in C and as the runtime system for a compiler for the functional language Sisal

[Fre95].

The remainder of the paper is organized as follows. The next section gives an overview of �ne-

grain parallelism and the Filaments package. Section 3 describes how the package is implemented.

Section 4 gives performance results for a variety of applications. Section 5 discusses related work.

Finally, Section 6 contains concluding remarks.

2 Fine-Grain Parallelism and the Filaments Package

The most natural granularity to use when writing a parallel program depends on the application;

however, �ne-grain programs are usually the simplest. This section describes three applications in

some detail: matrix multiplication, Jacobi iteration, and adaptive quadrature. We show how to

program each application as a �ne-grain shared-memory program using the Filaments package.

The Filaments package supports two kinds of very lightweight threads, which are called �l-

aments . Iterative �laments execute repeatedly, with a global reduction operation (and hence a

barrier synchronization) occurring after each execution of all �laments. The package also supports

1

sequences of iterative �laments, which are used when loop bodies have multiple phases, each of

which ends in a barrier. Iterative �laments are used in applications such as Jacobi iteration, LU

decomposition, SOR, and multigrid. Fork/join �laments recursively fork new �laments and wait

for them to return results. They are used in divide-and-conquer applications such as adaptive

quadrature, quicksort, and recursive FFT. A server thread on each processor executes �laments.

A program that uses Filaments contains three additional components relative to a sequential

program:

� declarations of variables that are to be located in shared memory,

� functions containing the code for each �lament, and

� a section that initializes the package, creates the �laments, places them on processors, and

times and controls their execution.

Upon creation, each iterative �lament is placed in a pool, which is a group of �laments that

ideally have similar data-reference patterns. A collection of pools is called a pool set. Pool sets

additionally consist of a pointer to the function that each �lament calls and a pointer to another

function that is called after each execution of all �laments in the pool set; the latter function most

often synchronizes the processors and checks for termination. Hence, a pool set logically represents

a parallel code segment terminated by a barrier synchronization point.

Conversely, fork/join �laments are created dynamically and in parallel. When a processor forks

a �lament, it is placed on the processor's list; however, any processor may execute the �lament.

Fork/join applications do not have inherent locality. Hence, pools are not used because the data-

reference patterns of fork/join �laments cannot be statically determined.

2.1 Matrix Multiplication: Simple Iterative Filaments

Consider the problem of computing the matrix product of two n�n matrices a and b. The natural

unit of parallelism in this problem is one inner product; there are n

2

inner products.

1

The shared

variables for this application are the three n � n matrices: a, b, and c. Each inner product is

computed by a �lament that executes the following function:

void inner_prod(int i, int j) {

int k;

double sum = 0.0;

for (k = 0; k < n; k++)

sum += a[i][k]*b[k][j];

c[i][j] = sum;

}

The key roles of the initialization section are to initialize the Filaments package, create and

initialize the matrices, and create the �laments themselves. This section is executed on only one

server thread.

1

There is actually even a �ner grain of parallelism for this problem: do all multiplies within an inner product

in parallel, and then add them in parallel using a combining tree. However, this granularity of parallelism is quite

di�cult to program, because of all the synchronization steps and the bookkeeping for the combining tree.

2

void main() {

/* declarations of local variables */

/* create and initialize the shared matrices */

fInit();

ps = fCreatePoolSet(inner_prod, NULL);

pool = fCreatePools(ps, num_fil);

for (i = 0; i < n; i++) {

pool_id = whichPool(); /* calculate pool to use for filaments in row i */

for (j = 1; j < n; j++)

fCreateFilament(ps, pool[pool_id], i, j);

}

fStart();

}

The call to fInit initializes the Filaments package. The call of fCreatePoolSet creates a pool

set, which contains �laments that execute the function inner prod. The last argument is a pointer

to a function for the sequential code. This is the reduction/termination checking routine, which

is executed after all �laments in the pool set have completed; it is not needed in this application

(hence the NULL pointer). The fCreatePools call creates an array of pools, one per processor,

where each pool contains space for num fil �laments. The fCreateFilament routine creates a

single �lament. Each �lament is de�ned by i and j, which are passed as arguments to inner prod.

The value of pool id indicates the pool into which the �lament is to be placed. For this application,

the programmer-de�ned function whichPool should, assign strips of �laments to the same pool;

i.e., each server thread should execute �laments that compute the results for a strip of the result

matrix. This will provide data locality and hence good cache performance.

2

The �nal Filaments package call, fStart, starts the parallelism. All �laments are executed to

completion before the call returns.

2.2 Jacobi Iteration: Iterative Filaments with Barriers

Laplace's equation in two dimensions is the partial di�erential equation

@

2

u

@x

2

+

@

2

u

@y

2

= 0:

Given boundary values for a region, its solution is the steady values of interior points. These

values can be approximated numerically by using a �nite di�erence method. Jacobi iteration is

one such method; it works as follows. Discretize the region using a grid of equally spaced points,

and initialize each point to some value. Then repeatedly compute a new value for each grid point;

the new value for a point is the average of the values of its four neighbors from the previous

iteration. The computation terminates when all new values are within some tolerance, EPSILON,

of their respective old values. Because there are two grids, the n

2

updates are all independent

computations; hence, all new values can be computed in parallel.

For this application, the key shared variables are the two n � n arrays, new and old, and the

reduction variable maxdiff. The new and old variables are dynamically allocated two-dimensional

vectors. (The boundaries of the region are stored in the edges of the arrays.) A reduction variable

2

Because data locality is inherently algorithm-dependent, the decision about which server thread is to execute

each �lament has to be made outside the Filaments package, either by language annotations, compiler analysis, or

run-time support. See [LA96] for details.

3

is a special kind of variable with one copy per processor. Here, maxdiff is of type double and is

shared among all �laments on a processor. The local copy of a reduction variable can be accessed

directly. In addition, such variables are used in calls to fReduce, which atomically combines all

processor's private copies into a single copy using an associative/commutative operator such as add

or minimum. A call of fReduce also results in a barrier synchronization.

The code executed by each �lament computes an average and di�erence:

void jacobi(int i, int j) {

double temp;

new[i][j] = (old[i-1][j] + old[i+1][j] + old[i][j-1] + old[i][j+1]) * 0.25;

temp = absval(new[i][j] - old[i][j]);

if (temp > Local(maxdiff))

Local(maxdiff) = temp;

}

After computing the new value of grid point (i,j), jacobi computes the di�erence between the

old and new values of that point. If the di�erence is larger than the maximum di�erence seen on

this iteration of the entire computation, then maxdiff needs to be updated. The Local macro

accesses the server thread's local copy of maxdiff.

After all grid points are updated, the following procedure is called to check for convergence and

to swap grids:

int convergenceCheck() {

fReduce(maxdiff, MAX);

if (maxdiff < EPSILON)

return F_DONE;

swap(old, new);

maxdiff = 0.0;

return F_CONTINUE;

}

This code is executed sequentially by one processor at the end of every update phase, i.e., after

every �lament in the pool sets has been executed once. The call to fReduce combines all copies

of maxdiff (using the MAX operator) into a single consistent copy. If convergenceCheck returns

F DONE, then the computation terminates; otherwise, the server thread on each processor starts

another iteration by once again executing each �lament in its pool of �laments.

The initialization section again initializes the Filaments package, creates and initializes the

arrays, creates the pools and �laments, and then starts the server threads on each node.

void main() {

/* declarations of local variables */

/* create and initialize the shared variables */

fInit();

ps = fCreatePoolSet(jacobi, convergenceCheck);

pool = fCreatePools(ps, num_fil);

for (i = 1; i < n-1; i++) {

pool_id = whichPool(); /* determine which pool to use for this row */

for (j = 1; j < n-1; j++)

fCreateFilament(ps, pool[pool_id], i, j);

}

4

fStart();

}

The above code is virtually identical to the main function for the matrix multiplication pro-

gram. The only essential di�erence is that the call of fCreatePools has a third argument,

convergenceCheck, the function that checks for convergence.

2.3 Adaptive Quadrature: Fork/Join Filaments

This section introduces the fork/join style of programming in Filaments. It also illustrates an

application that has no natural coarse-grain counterpart.

Consider the problem of approximating the integral

Z

b

a

f(x)dx:

One method to solve this problem is adaptive quadrature, which works as follows. Divide an interval

in half, approximate the areas of both halves and of the whole interval, and then compare the sum

of the two halves to the area of the whole interval. If the di�erence of these two values is not within

a speci�ed tolerance, recursively compute the areas of both intervals and add them.

The best way to program adaptive quadrature is to use a divide-and-conquer approach. Because

subintervals are independent, a new �lament computes each subinterval. Hence this application

uses fork/join �laments. The more rapidly the function is changing, the smaller the interval needed

to obtain the desired accuracy. Therefore, the work load is not uniformly distributed over the entire

interval.

The computational routine for adaptive quadrature is:

double quad(double a, double b, double fa, double fb, double area) {

double left, right, fm, m, aleft, aright;

/* compute midpoint m and areas under f() from a to m (aleft) and m to b (aright) */

if (close enough)

return aleft + aright;

else { /* recurse, forking two new filaments */

fjFork(quad, left, a, m, fa, fm, aleft); /* return value in left */

fjFork(quad, right, m, b, fm, fb, aright); /* return value in right */

fjJoin(); /* wait for children to complete */

return left + right;

}

}

The algorithm above evaluates f() just once at each point and evaluates the area of each interval

just once. Previously computed values and areas are passed to new �laments to avoid recomputing

the function and both areas. If the computed estimate is not close enough, the program forks a

�lament to compute the two subintervals, and then waits for them to complete. The results are

stored in left and right.

The initialization section for adaptive quadrature is shown below.

void main() {

double left, right, answer, fleft, fright, init_area;

fInit();

/* input left and right, then compute fleft, fright, and init_area */

5

/* fork initial filament */

fjFork(quad, answer, left, right, fleft, fright, init_area);

fStart(); /* also serves as implicit join */

}

In this application, the program initially creates one �lament that computes the area for the entire

interval. As always, the call of fStart terminates when all �laments have terminated; in fork/join

applications this serves as an implicit join to the initial fjFork call.

3 Implementation

The Shared Filaments package is currently implemented on a 4-processor Silicon Graphics Iris and

a 14-processor Sequent Symmetry. The Filaments package is implemented entirely in software. It

supports e�cient �ne-grain parallelism and the shared-memory programming model. This section

describes key aspects of the implementation.

A �lament can access any data that is allocated in shared memory. Variables are allocated in

shared memory through a system-supplied routine (shmalloc on the Sequent and malloc on the

Iris).

A �lament does not have a private stack; it consists only of a (shared) function pointer, argu-

ments to that function, and|for fork/join �laments|a few other �elds such as a parent pointer

and the number of children. Filaments are executed one at a time by server threads, which are

traditional lightweight threads with a private stack. The server thread's stack provides a place for

temporary storage so that �laments can compute partial results.

Filaments are never preempted, so only one server thread is created on each processor. All

�laments are of equal importance, because parallel programs complete when all work is done.

Hence, implementing fairness gains no advantage; it can only increase the overhead of executing

�laments.

3.1 Implementing Iterative Filaments

Descriptors of iterative �laments are stored in pools represented by arrays; each element contains

the arguments to be passed to the �lament code. This allows an iterative �lament descriptor to

contain only arguments, avoiding a pointer to the next �lament. This is important because having

small �lament descriptors leaves more room in the cache for program data. Iterative �laments are

also executed in a back-and-forth order; at the end of an iteration, some of the �lament descriptors

and associated data will still be in the cache. Hence, on the next iteration the �laments are run in

reverse order so that these descriptors and data elements do not need to be loaded into the cache.

Many Filaments programs attain good performance with little or no optimization. For example,

in matrix multiplication, each �lament performs a signi�cant amount of work (O(n) multiplications

and additions), amortizing the �lament overheads. However, achieving good performance for iter-

ative applications that possess many �laments that perform very little work (e.g., Jacobi iteration)

requires using implicit coarsening , which allows �laments in a pool to be executed as if the ap-

plication were written as a coarse-grain program.

3

To implement implicit coarsening, we use two

techniques: inlining and pattern recognition. This reduces the cost of running �laments, reduces

the working set size to make more e�cient use of the cache, and uses code that is easier for compilers

to optimize.

3

Systems such as Chores [EZ93] and the Uniform System [TC88] have a �ne-grain speci�cation and a coarse-grain

execution model, but use preprocessor support. Filaments generates di�erent codes at compile time and chooses

among them at run time.

6

Inlining consists of directly executing the body of each �lament rather than making a procedure

call. In particular, when processing a pool, a server thread executes a loop, the body of which is

the code speci�ed for �laments in the pool. This eliminates a function call for each �lament, but

the server thread still has to traverse the list of �lament descriptors in order to load the arguments.

The second technique is to recognize common patterns of �laments at run-time. The Filaments

package recognizes regular patterns of �laments assigned to the same pool, and at run time switches

to code that iterates over the �laments, generating the arguments in registers rather than loading

from memory. The package currently recognizes a few common patterns (such as one- and two-

dimensional loops) that support a large subset of regular problems; however, the general approach

is capable of supporting other patterns.

3.2 Implementing Fork/Join Filaments

Fork/join �laments are used to create �laments dynamically and later wait for them to terminate

and return results, making them quite di�erent from iterative �laments. Most importantly, �la-

ments must be capable of blocking and later resuming execution; this requires some method of

saving state. We still have one server thread execute many �laments by using recursion to avoid

switching context. We use a child counter that is incremented on child creation and decremented

on child completion. When this counter is zero, the parent is guaranteed that all of its children

have completed. While waiting, the parent executes other threads. In other words, the parent

becomes the server thread. This works correctly because parent/child relationships are ordered;

i.e., children are always created after their parents and terminate before their parents.

Fork/join �laments also necessarily have a more complex structure than iterative �laments.

Besides the argument list, a fork/join �lament needs several other �elds, such as a pointer to

its parent, the number of children it has created, and where to put the return value. Fork/join

�laments are also stored in linked lists to make load balancing easier (see below).

Some applications (e.g. quicksort, adaptive quadrature) that use fork/join �laments require

dynamic load balancing to avoid a situation where some processors do most of the work. (In

contrast, applications that use iterative �laments, which must statically distribute �laments among

the processors in order to attain good performance.) Fork/join programs tend to employ a divide-

and-conquer strategy. The computation starts on just one processor; all other processors are idle.

To get all processors involved in the computation, new work (from forks) needs to be given to idle

processors. Then, once all processors have work, additional load balancing may be required to

keep the nodes busy. This is because when some tasks require more work than others, di�erent

nodes will receive di�erent initial work allocations. For example, in adaptive quadrature, when

integrating the function e

x

, the amount of computation increases with x. The processor that is

initially given the interval containing the right endpoint will do the most work.

Filaments �rst uses a sender-initiated load-balancing scheme and then sometimes employs a

simple receiver-initiated, dynamic load-balancing policy (this can be enabled and disabled by the

application programmer or compiler). Suppose that a fork/join application creates parallelism by

two forks and then a join. The implementation employs a logical tree of processors (see Figure 1).

The initial load-balancing phase works as follows. The �rst processor (root node in the tree) begins

the computation; after forking the �rst two �laments, it gives one �lament to its left child and keeps

the other. Both processors continue the computation. When the root forks another two �laments,

it gives one to its second child and keeps the other; the next time it gives a new �lament to its third

child and keeps the other; and so on. Each child processor follows the same pattern. Consequently,

in each step the number of processors with work doubles. The initial phase continues in this way

until a processor has given work to all of its children, after which it keeps all �laments it forks (this

7

0

1

2

3

4

4 4 4

4 4 4

4

3 3

32

Figure 1: Logical tree of 16 processors, for applications that create parallelism by the pattern of 2

forks and a join. At each step, the number of processors with work doubles. The numbers in the

�gure indicates the step in which the processor �rst gets work.

takes O(log p) steps, where p is the number of processors).

After the initial work-distribution phase, some applications will need to employ dynamic load

balancing. In Filaments this is receiver initiated; newly forked �laments are put on the tail of a

processor's local list, a server thread removes work from the front of its local list, and other server

threads, when idle, scan all other processors' lists and take �laments o� of the list with the most

�laments

4

. This works well because the largest units of work tend to be at the front of processor

lists [VR88].

For applications that do not exhibit much load imbalance|such as merge sort|the cost of

acquiring data outweighs the gain of load balancing, so the programmer or compiler would disable

the receiver-initiated phase. On the other hand, for applications such as adaptive quadrature|

where evaluating intervals can take widely varying amounts of time|dynamic load balancing is

absolutely necessary.

Another optimization for fork/join �laments is pruning, which is analogous to implicit coars-

ening. When enough work has been created to keep all processors busy, forks are turned into

procedure calls and joins into returns. This avoids excessive overheads due to �laments creation

and synchronization. There is a danger with pruning, however. It is possible for a processor to

traverse an entire subtree sequentially after other processors become idle. To avoid this, whenever

another processor needs work, a processor executing sequentially returns to executing in parallel

and creates new work. This is implemented by having a server thread check a ag before deciding

whether to fork �laments or call them directly.

4 Applications and Performance

This section presents the performance of the Filaments package on 8 applications: matrix mul-

tiplication, Jacobi iteration, adaptive quadrature, Mandelbrot set calculation, LU decomposition,

Tomcatv, Fibonacci numbers, and quicksort. Tests were conducted on a Silicon Graphics Iris

4D/340 multiprocessor, which has a 33 MHz clock, 64 Kbyte instruction cache, 64 Kbyte data

4

This scheme su�ces for small numbers of processors; a more scalable scheme is necessary for larger

multiprocessors.

8

CPUs 1 2 4

Filaments Time 60.20 31.95 17.20

Filaments Speedup 0.99 1.86 3.45

Coarse-Grain Time 59.38 29.80 16.82

Coarse-Grain Speedup 1.00 1.99 3.53

Sequential Time 59.30

Table 1: Matrix Multiplication, 440� 440 elements (times in seconds).

cache, and 256 Kbyte secondary data cache. The gcc compiler, version 2.5.7, was used on all

tests, with the highest possible level of optimization. For the most part, gcc-generated executables

outperform executables produced by the vendor compiler cc.

For each application, we developed a sequential program, a coarse-grain program, and a �ne-

grain (Filaments) program. To ensure fairness and accuracy (and hence the legitimacy) of the

comparison, all application code is as similar as possible. For example, the basic blocks are the

same in all programs and all programs allocate memory identically. Additionally, the sequential

programs were written without any parallel constructs, and the coarse-grain programs were written

using only vendor subroutine libraries. Only the �ne-grain programs use the Filaments package.

The performance tables in this section show execution times and speedups. The execution times

are the median of at least three test runs, as reported by gettimeofday. These times were very

consistent. The times for the �ne-grain programs include the creation time for servers and �laments.

The speedups are the ratio of the sequential program times to the other times; this explains why

some single-processor tests have a speedup of less than one.

The next three subsections give details on the performance of matrix multiplication, Jacobi

iteration, and adaptive quadrature in detail. Section 4.4 summarizes the performance of the other

applications.

4.1 Matrix Multiplication

The execution times for matrix multiplication are shown in Table 1. The coarse-grain program

creates one process per processor. Each process computes inner products for a contiguous block of

the result matrix in nested for loops. The coarse-grain program gets speedups of 1.99 and 3.53 on

2 and 4 processors.

The �ne-grain program creates and executes n

2

�laments; each �lament computes a single inner

product. The Filaments program is only slightly slower than the coarse-grain program, because

there is su�cient work per �lament (n multiplications and n�1 additions) to amortize the overhead

of creation and execution. Furthermore, because work per �lament also increases with the problem

size, Filaments overhead has less of an impact on larger problems. Consequently, the Filaments

program is 1.4% to 7.2% slower than the coarse-grain program. It also achieves good speedup

relative to the sequential program: 1.86 and 3.45 on 2 and 4 processors, respectively. Much of

the overhead in the Filaments program comes from initialization, including the creation of 193; 600

�laments.

4.2 Jacobi Iteration

Table 2 shows the performance of the Jacobi iteration programs using a 300 � 300 array. As

in matrix multiplication, the Filaments program uses one �lament per point of the solution array,

9

CPUs 1 2 4

Filaments Time 44.96 24.06 12.87

Filaments Speedup 0.98 1.84 3.44

Coarse-Grain Time 44.24 22.75 12.52

Coarse-Grain Speedup 1.00 1.94 3.53

Sequential Time 44.24

Table 2: Jacobi iteration, size 300� 300 (times in seconds).

CPUs 1 2 4

Filaments Time 61.92 31.70 16.91

Filaments Speedup 0.99 1.93 3.62

Coarse-Grain Time 61.34 30.91 16.30

Coarse-Grain Speedup 1.00 1.98 3.76

Sequential Time 61.28

Table 3: Adaptive quadrature, size 35 (times in seconds).

and the coarse-grain program uses one thread per processor. This program represents a challenge

for Filaments: there is very little work per �lament. Unlike matrix multiplication, the work per

�lament is constant, independent of the problem size. However, on one node the Filaments program

is only 1.6% slower than the sequential program. This is because of implicit coarsening and other

optimizations in the Filament package. Both the �ne- and coarse-grain programs scale well relative

to the sequential program: 1.84 and 3.44 on 2 and 4 processors for the �ne-grain program and 1.94

and 3.53 for the coarse-grain program.

Even though this is potentially a worst-case situation, the Filaments program performs better

relative to the coarse-grain program than in matrix multiplication. This is because the problem

is iterative; therefore, the Filaments package can e�ectively employ implicit coarsening. After the

�rst iteration, the arguments to the �laments are generated rather than loaded from memory. Thus

the �ne-grain program is very similar to the coarse-grain for the second and subsequent iterations.

4.3 Adaptive Quadrature

Adaptive quadrature can lead to load imbalance if the processors (servers threads) receive

unequal amounts of work, which could happen if certain intervals change more rapidly than others.

In order to stress the load-balancing mechanism, we used the function f(x) = e

x

sin x. This function

has more work at the right part of the interval because the oscillations are much sharper there.

The coarse-grain adaptive quadrature program uses the dynamic \bag-of-tasks" paradigm [CGL86,

And91] (which is not trivial to implement). In particular, there is one central bag of tasks, and

each task in the bag speci�es one subinterval. Initially, the bag contains the entire interval over

which to integrate. Each server repeatedly gets a task (an interval) from the bag and approximates

the area for the interval. It accepts the result if the approximation was good enough. Otherwise, it

keeps one subtask and puts the other back into the bag. Eventually, some server will remove this

task. The program is �nished when the bag is empty and all servers are idle. Like the Filaments

program, the bag-of-tasks program also does pruning when there is a su�cient number of tasks

already in the bag (i.e., a server uses sequential recursion on the task it keeps). The Filaments

10

Seq Filaments Coarse-Grain

CPUs 1 1 2 4 1 2 4

Mandelbrot 52.38 53.39 (0.98) 27.78 (1.89) 14.57 (3.60) 52.64 (1.00) 27.03 (1.94) 13.96 (3.75)

LU Decomp 45.02 46.53 (0.97) 24.87 (1.81) 14.79 (3.04) 45.36 (0.99) 23.79 (1.89) 13.80 (3.26)

Tomcatv 108.1 110.3 (0.98) 57.37 (1.88) 34.24 (3.16) 108.1 (1.00) 55.46 (1.95) 30.21 (3.58)

Fibonacci 48.08 48.40 (0.99) 24.89 (1.93) 12.85 (3.74) 48.08 (1.00) 24.41 (1.97) 12.41 (3.87)

Quicksort 46.10 46.77 (0.99) 24.89 (1.85) 13.75 (3.35) 46.10 (1.00) 27.57 (1.67) 16.32 (2.82)

Table 4: Other applications. Time given in seconds; speedup shown in parentheses.

program uses fork/join �laments as described in Section 2.3.

Table 3 gives the results for adaptive quadrature, using an interval on the x axis of 1 to 35. The

sequential program uses ordinary recursion. Both the coarse- and �ne-grain programs get excellent

speedup. This is because both programs prune the parallelism; when pruning is disabled, the

execution times increase dramatically. With problems such as Fibonacci (see next section), where

each �lament does very little work, pruning is vital to amortize the cost of creating, managing, and

synchronizing �laments.

Although, the bag-of-tasks program gets excellent speedup for the tests shown, our experience is

that as the number of processes accessing the bag increases, the performance dramatically decreases.

This is because access to the bag becomes a bottleneck|even with pruning.

4.4 Other Applications

We also tested �ve other applications: Mandelbrot set calculation, LU decomposition, Tomcatv,

Fibonacci numbers, and quicksort. The results are summarized in Table 4. Tests results for many

of these applications on this platform and on a Sequent Symmetry are given in [Low93].

The Mandelbrot set is in the two-dimensional plane of complex numbers [Dew85]. The points in

the Mandelbrot image take di�erent amount of work to calculate and do not depend on any other

points. Therefore, the programs can exhibit an imbalanced load and have no data locality. The

coarse-grain program assigns the rows cyclically to the processors (the ith row goes to processor

i mod p). This results in a relatively load-balanced implementation, because adjacent rows have

nearly the same amount of work. The Filaments program creates one �lament per point and also

assigns rows of �laments to processors cyclicly. There is very little di�erence in the execution times

between the �ne- and coarse-grain programs|always less than one second and at most 4.4%.

LU decomposition is used to solve the linear systemAx = b [PFTV88]. Decompose A into lower-

and upper-triangular matrices such that A = LU , and the linear system becomes A = LUx = b.

The solution, x, is obtained by solving two triangular systems Ly = b and Ux = y, using back-

substitution. For an n�n matrix, n iterations are performed. Each iteration has two phases: one to

compute a pivot value, and the other to do an elimination. In this application, the work decreases

by one row and column each iteration: (n� k + 1)

2

points are updated on the kth iteration. Thus

towards the end of the computation there is very little work, limiting the potential for parallel

speedup. Both the �ne- and coarse-grain programs do static load balancing by assigning the rows

cyclicly, yielding well-balanced programs. The Filaments program uses two pool sets, one to perform

the pivot and one the elimination. Neither program gets excellent speedup on four processors due

to the necessity of two barriers per iteration, and the coarse-grain program is slightly faster than

the �ne-grain program.

Tomcatv is an application taken from the SPEC benchmark. It is similar to Jacobi iteration;

11

however, it uses 7 n � n matrices (rather than 2), and has two phases per iteration. Like LU, the

Filaments program creates two pool sets, one for each phase. It has 2 to 4 seconds overhead relative

to the coarse-grain program, which is a 13.4% overhead on four nodes.

5

The other two applications are Fibonacci and quicksort. Both are fork/join applications. How-

ever, they are quite di�erent from each other|and from adaptive quadrature|in the amount

of work that is done before a parallel recursive call. Fibonacci does virtually no work, whereas

quicksort compares every element in the subarray to the pivot element. The poorer speedup on

quicksort is due to the lengthy, sequential partitioning phase in the �rst few �laments that are

created. Moreover, this sequential part grows with the problem size, whereas the sequential part

is Fibonacci is constant. So the potential speedup of quicksort is less than that of Fibonacci or

adaptive quadrature. Fibonacci stresses the pruning mechanism in Filaments because each �la-

ment does almost no work. For both applications, the coarse-grain programs use the bag-of-tasks

paradigm. Both Fibonacci programs achieve good speedup, with the �ne-grain program having

slightly more overhead. The �ne-grain quicksort program scales much better than the coarse-grain

program; we believe this is because of contention for the bag.

5 Related Work

There are many existing threads packages. The initial attempts to support e�cient parallelism

were lightweight thread packages such as Threads [Doe87], Presto [BLL88], �System [BS90], �C++

[BDSY92], and Sun Lightweight Processes [SS92]. We will call these standard packages because

they have a stack for each thread. The goal of standard packages is to provide the user with a

natural thread abstraction and many of the usual concurrent programming primitives; di�erent

packages provide di�erent primitives. All of the above packages support preemption to provide

fairness. However, the use of stacks requires context switching code, which is inherently machine

dependent. Most of the above packages also use a central ready queue.

Standard threads packages cannot support �ne-grain parallelism e�ciently. Consider, for exam-

ple, a Jacobi iteration program written with a thread per point. Each thread performs a handful

of instructions and suspends. Creating large numbers of threads (and stacks) wastes space and

is ine�cient. Furthermore, the work a thread does is very small, so context switching time will

constitute a large overhead. Preemption adds overhead and can cause additional context switching.

The use of central ready queues hurts locality and also a�ects cache usage. Lastly, the generality

of standard packages increases their size and overhead. Filaments is more e�cient for �ne-grain

parallelism, because it has only one stack per server thread (processor), implements inexpensive

context switching, does not preempt threads, uses local ready queues, and provides optimizations

such as implicit coarsening and pruning for applications that need them.

Several researchers have proposed ways to make standard thread packages more e�cient. An-

derson et al. [ALL89] discuss the gain from using local ready queues, and [ABLL92] shows how to

do user-level scheduling. Schoenberg and Hummel [HS91] explain how to avoid allocating a stack

per thread and switching contexts in nested parallel for loops. Markatos et al. [MB92] present a

thorough study of the tradeo�s between load balancing and locality in shared memory machines.

Keppel [Kep93] describes a portable threads package that supports e�cient barrier synchronization

and non-preemptive threads.

Many threads packages support more �ne-grain parallelism. The Uniform System [TC88], built

for the BBN Buttery, has several things in common with Filaments: There are no private stacks per

5

This is a simple application, and the Filaments program should perform well. However, for reasons we cannot

explain, it has the worst performance.

12

thread, no context switches, and threads are not preemptable. The Uniform System's synchronous

mode supports a simple form of iterative threads, and their �nalization code is equivalent to our

sequential code. However, iterative �laments are more powerful, and they need be created only

once. The Uniform System does not support fork/join �laments. It also uses a central ready

queue; in contrast, Filaments uses local ready queues, which minimizes contention and enhances

data locality. The Uniform System also employs task generators (a related collection of tasks) and

hence has a coarse-grain execution model. However, the Uniform System cannot e�ciently support

thread-per-point decompositions for problems like Jacobi, as Lin [LS90] and others have noted.

Filaments can execute the �ne-grain execution model e�ciently in many cases, and when it needs

to switch to a coarse-grain execution model, it does so at run time.

WorkCrews [VR88] supports fork/join parallelism on small-scale, shared-memory multiproces-

sors. WorkCrews introduced the concepts of pruning and of ordering queues to favor larger threads.

Filaments has borrowed these ideas in its implementation of fork/join threads.

TAM [CGSv93] is a compiler-controlled threaded abstract machine. It evolved from graph-based

execution models for dataow languages and provides a bridge between such models and the control

ow models typically employed by standard multiprocessors. TAM is oriented more for distributed-

than shared-memory machines, because threads send messages, which enable other threads, possibly

on remote machines. Threads execute from beginning to end without blocking, but they may be

preempted by message handlers (inlets in TAM). Given its dataow heritage, TAM is oriented

toward fork/join parallelism. This can be used to support iterative parallelism by turning loop

bodies into cobegin statements, but at the expense of forking and joining threads on each iteration

of the outer loop. In contrast, Filaments directly supports iterative parallelism by means of iterative

threads. In any event, the essential di�erences between TAM and Filaments are their di�erent

heritages (dataow versus imperative) and consequently their di�erent means for specifying and

implementing �ne-grain parallelism. TAM de�nes an abstract machine of self-scheduling parallel

threads, which is used as an intermediate language that is mapped to existing processors, whereas

Filaments de�nes a portable subroutine library, which is used to specify parallelism in a traditional,

imperative way.

Chores [EZ93] is similar to both Filaments and the Uniform System. Chores runs on top of

Presto on a Sequent Symmetry. It uses a central ready queue, but servers take jobs in chunks.

This amortizes the lock overhead of the central ready queue. Like Filaments, Chores has no private

stacks per thread, no context switches, and no preemption. Chores is more exible than Filaments

because user threads are run on top of system threads that have a stack, which permits blocking

if necessary. However, Filaments directly supports e�cient �ne-grain parallelism, whereas Chores

requires preprocessor support and the use of task generators in order to cluster �ne-grain tasks into

coarse-grain units.

Distributed Filaments [FLA94] implemented the �ne-grain model on a distributed-memory ma-

chine. [Shu95] and [NS95] describe later systems that allow the e�cient management of many

threads on distributed-memory machines.

6 Conclusion

This paper has shown that �ne-grain parallelism provides a simple programming model for parallel

applications and has presented an e�cient implementation for shared-memory machines. The

implementation uses the Filaments package, which is written entirely in software and has been

ported to several machines. The main techniques that make Filaments e�cient are stateless threads,

implicit coarsening of iterative �laments, and pruning and load balancing of fork/join �laments.

The Filaments package can be used as a stand-alone library, as here, or it can be used as a

13

compiler target. We have also developed an e�cient implementation of Filaments for distributed-

memory machines, including clusters of workstations [FLA94, LFA96]. The distributed imple-

mentation employs additional techniques for overlapping communication and computation and for

adaptive data placement. We are continuing to work on the project to make the approach even more

useful, portable, and e�cient. In particular, we are working to implement the package on a network

of multiprocessors and simultaneously exploit both shared- and distributed-memory parallelism.

Acknowledgements

Dawson Engler implemented the original Filaments package on the Sequent and Iris, and David

Koski implemented the current package.

References

[ABLL92] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler activations: E�ective

kernel support for the user-level management of parallelism. acmtocs, 10(1):53{79, February 1992.

[ALL89] T.E. Anderson, E.D. Lazowska, and H.M. Levy. The performance implications of thread man-

agement alternatives for shared-memory multiprocessors. IEEE Transactions on Computers,

38(12):1631{1644, December 1989.

[And91] Gregory R. Andrews. Concurrent Programming: Principles and Practice. Benjamin/Cummings,

Redwood City, California, 1991.

[BDSY92] Peter A. Buhr, Glen Ditch�eld, R.A. Stroobosscher, and B.M. Younger. uC++: concurrency in

the object oriented language C++. Software|Practice and Experience, 22(2):137{172, February

1992.

[BLL88] B.N. Bershad, E.D. Lazowska, and H.M. Levy. PRESTO: a system for object-oriented parallel

programming. Software|Practice and Experience, 18(8):713{732, August 1988.

[BS90] Peter A. Buhr and R.A. Stroobosscher. The uSystem: providing light-weight concurrency on

shared memory multiprocessor computers running UNIX. Software Practice and Experience,

pages 929{964, September 1990.

[CGL86] Nicholas Carriero, David Gelernter, and Jerry Leichter. Distributed data structures in Linda. In

Thirteenth ACM Symp. on Principles of Programming Languages, pages 236{242, January 1986.

[CGSv93] David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser, and Thorsten von Eicken. TAM|a

compiler controlled threaded abstract machine. Journal of Parallel and Distributed Computing,

18(3):347{370, August 1993.

[Dew85] A. K. Dewdney. Computer recreations. Scienti�c American, pages 16{24, August 1985.

[Doe87] Thomas W. Doeppner. Threads: a system for the support of concurrent programming. Technical

Report CS-87-11, Brown University, June 1987.

[EZ93] Derek L. Eager and John Zahorjan. Chores: Enhanced run-time support for shared memory

parallel computing. ACM Transactions on Computer Systems, 11(1):1{32, February 1993.

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Filaments: E�-

cient �ne-grain parallelism on a cluster of workstations. In First Symposium on Operating Systems

Design and Implementation, pages 201{212, November 1994.

[Fre95] Vincent W. Freeh. Writer-Owns: a new page consistency protocol for dynamically controlling

thrashing on distributed-shared memory systems. December 1995.

14

[HS91] S.F. Hummel and E. Schonberg. Low-overhead scheduling of nested parallelism. IBM Journel of

Research and Development, 35(5):743{765, September 1991.

[Kep93] David Keppel. Tools and Techniques for Building Fast Portable Threads Packages. Technical

Report UWCSE 93-05-06, University of Washington, 1993.

[LA96] David K. Lowenthal and Gregory R. Andrews. An adaptive approach to data placement. In

Proceedings of the 10th International Symposium on Parallel Processing, April 1996.

[LFA96] David K. Lowenthal, Vincent W. Freeh, and Gregory R. Andrews. Using �ne-grain threads and

run-time decision making in parallel computing. TR 96-2, The University of Arizona, January

1996.

[Low93] David K. Lowenthal. Performance experiments for the Filaments package. TR 93-13, University

of Arizona, September 1993.

[LS90] Calvin Lin and Lawrence Snyder. A comparison of programming models for shared memory

multiprocessors. ICPP, 10(1):163{170, January 1990.

[MB92] Evangelos P. Markatos and Thomas L. Blanc. Load balancing vs. locality management in shared-

memory multiprocessor. In Proceedings of the 1992 International Conference on Parallel Pro-

cessing, volume I, Architecture, pages I:258{267, Boca Raton, Florida, August 1992. CRC Press.

[NS95] Richard Neves and Robert B. Schnabel. Runtime support for execution of �ne grain parallel

code on coarse-grain multiprocessors. In Fifth Symposium on the Frontiers of Massively Parallel

Computing, February 1995.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes in C. Cambridge University Press, Cambrigde, 1988.

[Shu95] Wei Shu. Runtime support for user-level ultra lightweight threads on massively parallel distributed

memory machines. In Fifth Symposium on the Frontiers of Massively Parallel Computing, Febru-

ary 1995.

[SS92] D. Stein and D. Shah. Implementing lightweight threads. In USENIX 1992, June 1992.

[TC88] Robert H. Thomas and Will Crowther. The Uniform system: an approach to runtime support for

large scale shared memory parallel processors. In 1988 Conference on Parallel Processing, pages

245{254, August 1988.

[VR88] M. Vandevoorde and E. Roberts. Workcrews: an abstraction for controlling parallelism. Inter-

national Journal of Parallel Programming, 17(4):347{366, August 1988.

15

