
Adaptive Data Placement for

Distributed-Memory Machines

David K. Lowenthal

Gregory R. Andrews

Adaptive Data Placement for Distributed-Memory Machines

1

David K. Lowenthal Gregory R. Andrews

TR 95-13

Abstract

Programming distributed-memory machines requires careful placement of data on the

nodes. This is because achieving e�ciency requires balancing the computational load

among the nodes and minimizing excess data movement between the nodes. Most

current approaches to data placement require the programmer or compiler to place

data initially and then possibly to move it explicitly during a computation. This paper

describes a new, adaptive approach to data placement. It is implemented in the Adapt

system, which takes an initial data placement, e�ciently monitors how well it performs,

and changes the placement whenever the monitoring indicates that a di�erent placement

would perform better. Using Adapt can simplify the programming of parallel systems

and simplify compilers for parallel languages such as HPF. In particular, Adapt frees

the programmer from having to specify data placements, and it frees the compiler from

having to do often complex analysis to determine a good placement. Moreover, Adapt

supports a new \variable block" placement, which is especially useful for applications

with nearest-neighbor communication but an imbalanced workload. For applications

in which the best data placement varies dynamically, using Adapt can lead to much

better performance than using any statically determined data placement. We present

the performance of Adapt on three scienti�c applications that require di�erent data

placements.

December 4, 1995

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1

This work replaces TR 94-35 and was supported by NSF grants CCR-941503 and CDA-8822652.

1

1 Introduction

Distributed-memory machines|including parallel computers and workstation clusters|are used

to achieve scalable high performance computing. Programming these machines requires specifying

both what can execute concurrently and when and how processes communicate. These two problems

are largely independent. We assume that processes have already been speci�ed|either by the

programmer or by a compiler|and we consider the problems of how data is placed initially in the

memories of the processors and how data moves during a computation.

The goal of this work is to determine data placements dynamically rather than requiring pro-

grammers or compilers to make such decisions. Most current approaches determine data placements

statically. They can generally be divided into two categories: using language primitives, such as

the ones in HPF [HPF93], or compiler analysis, such as the work reported in [AL93], [GB93],

and [KK94]. Language primitives involve the programmer in the choice of data placement; un-

fortunately, the best placement may be di�cult or impossible for the programmer to determine.

Compiler analysis also may not be able to infer the best data placement; moreover, the di�culty

of inferring placements greatly increases the size and complexity of the compiler.

This paper describes a completely dynamic approach to data placement. Our approach has

been implemented in a prototype system called Adapt, which has the following attributes:

� Given some initial data placement, Adapt monitors the e�ect of the placement (with low

overhead) and changes it to a better one if needed.

� Neither the programmer nor the compiler need be involved in the selection of the initial or

new data placements.

� Adapt supports new data placements, those with variable sized blocks, that to our knowledge

are not supported by current languages or compilers.

� Programs written using Adapt will run e�ciently on machines and networks with varying

ratios of processor speed to network speed.

Adapt is given (or chooses) some initial data placement and then monitors computation time and

communication overhead and computes delays on each node to determine if a di�erent placement

would lead to a shorter completion time for the overall computation. When it �nds a better

placement, it changes to this new placement. Adapt continues to monitor the program, and if the

characteristics of the application change, it changes the placement again. The ability to change

placements during execution is especially important for problems|such as particle-in-cell codes

[Har64]|for which the best data placement can vary over the course of the application [PAM94].

Adapt is currently implemented on a cluster of Sparc-1s and supports iterative scienti�c appli-

cations, which comprise a large subset of computational science applications. Performance on a

network of workstations is such that Adapt can outperform programs using any statically deter-

mined data placement on applications in which the bene�t of dynamically redistributing the data

outweighs the overhead of redistribution. The Adapt version of a particle simulation ran over 10%

faster than the program with the best statically determined placement when the particles tended

to cluster. Even when good placements can be statically determined, Adapt is competitive with

programs that use them; e.g., Adapt versions of Jacobi iteration and LU decomposition are only

slightly slower than the best static counterparts, ranging from the best case of 1% slower to the

worst case of 14% slower.

The remainder of the paper is organized as follows. Section 2 describes the data placement

problem and the range of possible placements. Section 3 gives an overview of Adapt and its

2

implementation. Section 4 presents performance results, and Section 5 discusses data placement

methods and describes related work. Finally, Section 6 contains concluding remarks.

2 Framework for Data Placement

A data placement is a mapping of the data elements in a program to the memories of the nodes.

There is some initial placement when a program begins execution; it can be changed, or remapped,

in the middle of execution. The ideal data placement minimizes the overall completion time of an

application. Because all nodes cooperate in order to complete an application, the completion time

of the slowest node determines the completion time of the application.

Three factors a�ect the completion time of a node: computation time, communication overhead,

and delay. Computation time is essentially the time spent executing application code, communica-

tion overhead is time spent executing low-level code that copies messages to and from the network,

and delay is time spent waiting for other nodes to complete their computation or respond to a

message. This section �rst describes our models of computation and communication and how a

data placement a�ects computation time, communication overhead, and delays. Then we discuss

the range of data placements and their relation to representative applications.

Our computational model is Single Program Multiple Data (SPMD) [HKT92], in which each

process executes the same code but references a di�erent subset of the data elements We also

require iterative computations, because placing data dynamically depends on having computations

that exhibit repeated access patterns, giving a run-time data placement method the opportunity to

detect these patterns and use them to make a placement choice. (Iterative computations comprise

a large subset of scienti�c applications.) Hence, each process contains one or more loops, with each

loop consisting of a sequence of application code/barrier pairs

1

. Data placement remappings are

made only at the last barrier point in a loop, because that is the one point at which information

exists about every code segment in the loop.

We assume that any node can reference any data element. We also assume the owner-computes

[HKT92] rule, which means each data element has an \owner" node and that is the only node that

will update the element; however, other nodes may reference the element.

The data placement a�ects both computation time and communication overhead. Because

of the owner-computes rule, the number of data elements each node owns determines the time it

spends computing. Communication (message passing) occurs when a node accesses a non-local data

element while updating a local data element; this, along with where the data elements are placed,

determines the communication overhead on a node. This communication can be implemented

implicitly (e.g. by a distributed shared memory) or explicitly (e.g. by a compiler). In either case,

communication results in overhead to transfer the data from the application process to the network,

and from the network to the application process on the receiving machine.

Both the computation time and communication overhead on a node can lead to delay. If the

total computation and overhead between the nodes is unbalanced, they will �nish at di�erent times,

causing the early �nishing nodes to block at a barrier point waiting for the others to �nish. Also,

after a node transfers a message to the network, it may need to block waiting for the reply to that

message. The key for a good data placement is balancing the computation between the nodes|

to minimize synchronization delay|while also minimizing the number of messages|to minimize

communication overhead and message delay.

The elements of a data structure can be placed on the nodes in numerous ways. However, the

goals of simultaneously balancing computational load and minimizing communication often conict,

1

A barrier is a synchronization point at which all processes must arrive before any proceed.

3

Application Jacobi iteration LU decomposition Particle Simulation ADI

Computation Balanced Unbalanced Unbalanced Balanced

Locality Important Not important Important Important

Best Placement BLOCK CYCLIC Variable Blocks BLOCKCYCLIC(x)

Static approaches work? Yes Yes No Maybe

Figure 1: Summary of application characteristics.

as there is an interaction between the two. For example, one placement extreme is to put all data

elements on one node; this will minimize communication (there is none), but it also maximizes

load imbalance (all other nodes are idle), which leads to large delays at barrier points. The other

extreme is to assign elements randomly to nodes; this will (probabilistically) balance the load, but

the lack of spatial locality will most likely lead to a large amount of communication.

Below we describe a feasible set of data placements and a representative application for each.

(Figure 1 summarizes the applications.) The best placement is dependent on both application and

machine characteristics. Application characteristics include data access patterns and computation

required to update each element, and machine characteristics include processor, memory, and com-

munication speeds. For explanatory purposes, we restrict our attention to the placement of the

elements of a single two-dimensional 16 � 16 array onto 4 nodes.

One alternative is use a block placement, which places a logically contiguous set of approximately

the same number of data elements on each node. This mapping, called BLOCK in HPF, could

distribute just one dimension of a matrix|in which case elements in the same row or column are

mapped to the same node|or it could distribute both dimensions. (For an n dimensional array, up

to n dimensions of the array could be distributed.) For example, a one-dimensional mapping places

a group of 4 contiguous rows on each node, whereas two-dimensional mapping places a square 8�8

subarray on each node

2

. Contiguous placements tend to work well for stencil-based applications

such as Jacobi iteration, because such applications have spatial and temporal locality, a balanced

workload, and regular communication between neighboring nodes.

Some applications that have locality and a regular \nearest neighbor" communication pattern

do not have a balanced workload, such as particle-in-cell codes [Har64]. It is still usually best to

use a contiguous mapping for such applications, but the mapping may need to assign each node

a di�erent number of elements in order to balance the workload. In particular, the number of

elements per node should match the distribution of particles. For example, if many more particles

reside in the top rows than in the middle or bottom rows, then a possible one-dimensional mapping

would be to map rows 0 through 2 to node 0, rows 3 through 8 to node 1, and so on. We will refer

to these placements as variable block

3

. If the workload is fairly well balanced by such a placement,

performance should be quite reasonable. Particle-in-cell is also an application where remapping can

be bene�cial, because the particles move dynamically through the array, and hence the distribution

of particles can vary dramatically over time.

Another placement method is to stripe data across the nodes. For example, a one-dimensional,

striped mapping, called CYCLIC in HPF, maps rows 0, 4, 8, and 12 to node 0; rows 1, 5, 9, and 13 to

node 1; and so on. Striped placements can handle problems with changing workloads well, because

if the amount of work per element decreases within the computation, a striped placement balances

the load without a need for remapping. (Using a variable-block mapping, such as the one described

2

Whether it is better to distribute one dimension or two is dependent on problem size, communication latency, and

communication bandwidth. In general, a one-dimensional mapping results in fewer messages than a two-dimensional

mapping, but it communicates more data per message.

3

HPF does not support such placements.

4

in the particle example, would balance the load temporarily, but as the workload decreases periodic

remapping would be needed.)

However, striped placements have fairly poor spatial locality, so they are typically useful only

when the amount of communication in an application is (relatively) independent of the data place-

ment. LU decomposition is an example of an application with a changing workload and a placement-

independent communication pattern.

A compromise between the contiguous and striped mappings is to combine the two methods

and stripe contiguous regions onto each processor. An example of such a one-dimensional mapping,

where 2 contiguous sets of elements are striped across the nodes, would be placing rows 0, 1, 8, and 9

on node 0; rows 2, 3, 10, and 11 on node 1; and so on. We denote this placement BLOCKCYCLIC(2)

4

.

(The parameter refers to the size of blocks mapped to each node, not the number of blocks.)

This kind of placement is useful when the parallelism is not perfect; i.e. the application has

dependencies that prevent full parallelization, usually resulting in pipelined code. In such appli-

cations, such as the second sweep in Alternate Direction Integration [McM86], a node must wait

for data from other nodes before starting to perform computation. Contiguous placements would

exacerbate this delay, and a fully striped placement would cause excess communication. Hence, a

combination placement can be a good compromise.

3 Adapt and its Implementation

The Adapt system chooses data placements that attempt to minimize the completion time of an

application. Adapt is given some initial data placement by the programmer or compiler and then

employs three steps. First, it acquires information at run-time about the code segments that are

in loops. Next, it uses this information to choose a data placement that tries to minimize both

communication overhead and delay by balancing the computation and minimizing the number of

messages. Finally, it e�ects the new placement and continues to monitor the computation in case

the workload changes. Regardless of the initial placement (the default is currently BLOCK), Adapt

when necessary �nds a better placement. Below we discuss how Adapt monitors the computation

(Section 3.1), determines a placement (Section 3.2), and e�ects and continues to monitor this

placement (Section 3.3).

The current implementation of Adapt is implemented in concert with the Distributed Filaments

(DF) software kernel [FLA94]. It supports multi-dimensional arrays and distributes only the �rst

dimension (rows). It relies on instrumenting a distributed shared memory (DSM) (for monitoring)

and requires that code segments in loops have the same communication pattern. We describe

possible extensions to Adapt in Sections 5 and 6.

3.1 Adapt Monitoring

Adapt gathers information about the communication pattern and computation time for each code

segment. Communication in Adapt is performed implicitly by an underlying DSM provided by DF.

Adapt uses this DSM to determine the communication pattern and number of messages. It also

uses the UNIX gettimeofday() command to estimate execution times.

The system must determine communication overhead, computation time, and both synchroniza-

tion delay and message delay. The next subsection discusses how Adapt determines communication

overhead and message delay. Subsection 3.1.2 describes how the system estimates computation

4

The HPF equivalent to this is CYCLIC(2), but we use the Fortran D notation of BLOCKCYCLIC(2) because it more

clearly denotes the combination mapping.

5

Node 0

0

j-1
j

j+1

M

j+2

Node 1

Read Copy

Read Owner

Read Owner
Read Copy

0

j-1
j

j+1

M

j+2

No Access

Access

Exclusive
No Access

Exclusive

Access

Figure 2: Portion of page table showing nearest-neighbor communication pattern. The edge sharing

is detected by observing that pages j and j+1 are readable by both nodes, with each node owning

one page.

time. Adapt does not need to measure synchronization delay, as the maximum delay (which is all

that matters) is implicit in the completion time of the slowest node.

3.1.1 Communication Monitoring

Adapt monitors communication using DSM page faults and the DSM page table. It estimates C

i

,

the time due to communication overhead and message delay on node i, using the following formula

5

:

C

i

= m

i

�D + s

i

� S

The factors m

i

and s

i

refer to the number of messages node i sends and services, respectively.

Adapt instruments the DSM to count m

i

and s

i

. On the other hand, the system determines D

and S statically by running isolated tests for each new architecture (alternatively, Adapt could

obtain them by monitoring the appropriate DSM routines, which would make the system more

self-contained). The delay, D, is the round-trip message time, which is the cumulative time for a

page request message to travel to a remote node, be serviced, and the page reply to travel back to

the requesting node. The service time, S, is the time a node spends servicing a page request.

Adapt determines the communication pattern by inspecting the pattern of page faults on each

array through the page table. Currently, Adapt recognizes two patterns: nearest-neighbor and

broadcast . In the nearest-neighbor communication pattern, node i needs to communicate values

with nodes i+1 and i�1. This pattern occurs on an array when (1) each node has a distinct subset

of exclusive-access pages of the array and (2) neighboring nodes have read access to consecutive

sets of pages of the array, with each node owning one set. A page table showing nearest-neighbor

communication between 2 nodes is shown in Figure 2.

A broadcast pattern means that one node writes a value, there is a barrier synchronization

point, and then all nodes read the value. Adapt detects a broadcast pattern on an array if there

are a pair of code segments that exhibit the following characteristics: (1) in the �rst segment one

node writes to a subset of pages of the array, (2) in the second segment each node has a distinct

subset of exclusive-access pages of the array, and (3) in the second segment all nodes read the

subset of pages that were written in the �rst segment (see Figure 3).

5

This formula is actually pessimistic, because a node could be servicing another node's message while waiting for

a reply. In addition, some of the delay can be eliminated by overlapping communication and computation, as is done

for example in [vCGS92, FLA94].

6

Node 0 Node 1 Node 2

j-1

j
j+1

M

0

j-1

j
j+1

M

0

j-1

j
j+1

M

0

Read Owner

No Access

Exclusive

Access

Exclusive

Access
No Access

Read Copy

No Access

Exclusive

Access

No Access

No Access

Read Copy

No Access

No Access

Exclusive

Access

Figure 3: Portion of page table showing broadcast communication pattern. All nodes read page j,

with node 0 the owner.

3.1.2 Computation Monitoring

Adapt instruments the code to obtain the time a node spends computing the data elements it

owns. The system uses rows as its unit of placement (i.e., it only distributes the �rst dimension),

because the granularity of elements is too small, and using any unit larger than rows would rule

out fully-striped placements. Each node computes the times spent accessing its rows; these times

are combined at the barrier synchronization point to obtain the total computation time T .

3.2 Adapt Algorithm

Adapt uses the communication and computation information to choose a placement. Adapt maps

rows to nodes. Given the total time T and the number of nodes P , T=P represents the amount of

computation each node should perform for a perfectly balanced load. Adapt maps the rows to the

nodes by a simple bin-packing procedure that is dependent on the communication pattern.

If the communication pattern is nearest neighbor, each node starts with one bin. Adapt packs

the bins so that each bin contains consecutive rows and the estimated total time on the node is

as close as possible to T=P . This forms a variable block placement

6

as described in the particle

simulation example in Section 2. Even the best possible contiguous single-bin packing may not

su�ciently balance the load. Therefore Adapt also investigates contiguous multiple-bin packings.

In this case the system packs the �rst bin on each node up to but not exceeding T=P . This results

in leftover rows in general, which are packed (contiguously) into the extra bins on each node to

bring the total time closer to T=P . Adapt adds bins until the load is su�ciently balanced.

Adapt takes into account that this better balancing of workload causes extra communication.

In particular, for the nearest-neighbor pattern, each additional bin results in 2 more messages per

node. For each number of bins, Adapt estimates the completion time on each node; the overall

completion time is the completion time of the slowest node (this is how synchronization delay is

accounted for) The system chooses the placement with smallest of these completion times (see

example below).

An example of Adapt's algorithm described above is shown below for a nearest-neighbor commu-

nication pattern, with N = 8 and P = 2. Below we show the sample computation times accessing

6

The algorithm is intended to run quickly and produce a good packing, not an optimal one.

7

each row and denote the communication overhead as .

Row 1 2 3 4 5 6 7 8

Time 2 2 6 5 1 4 2 2

The total time in this example is 24 units, so each node would compute 12 time units for a

perfect balance of work. The table below shows the estimated completion time using both one and

two bins on each node. Bins are denoted by [], with the numbers inside indicating which rows that

bin contains.

Bins/Node Node 0 Node 1 Comm. Overhead T

0

T

1

Completion Time

1 [1-3] [4-8] 10 14 14 +

2 [1-3], [8] [4-7], [] 2 12 12 12 + 2

In this example, one can see that the �rst placement leads to a completion time of 14+ units

(again, the completion time is the time of the slowest node), and the second 12 + 2 units. In this

example, if is 2, the two placements give the same completion time. If is less than 2, the second

placement is preferable, and if is greater than 2, the �rst placement is better. Of course, is

machine dependent.

If the communication pattern is broadcast, the number of messages is constant over the place-

ments considered by Adapt; each node needs to access a speci�c set of rows, independent of the

rows mapped to the node. Consequently, the communication overhead is constant over any number

of bins. Adapt uses a history of execution time to make the decision of how to pack the bins. If

the computation times on a nodes have been relatively constant over several iterations, the same

algorithm is used as in the nearest-neighbor case (start with one bin per node, and potentially add

bins for leftover rows). Di�ering computation times on a node over several iterations indicate that

the workload is increasing or decreasing. In this case Adapt uses a di�erent bin-packing procedure:

if the problem size is N , each node starts with N=P bins (instead of one) and with capacity of each

bin T=N (instead of T=P). Adapt e�ects a placement resembling CYCLIC by placing rows in the

nodes' bins in a round-robin manner. In the above example, there would be 4 bins on each node

and a capacity per bin of 3. This will �nd an appropriate placement for applications such as LU

decomposition with a decreasing workload (see Section 2).

3.3 Changing the Data Placement

Once a new data placement has been chosen, Adapt changes the data placement by reparameterizing

the code so that each node accesses di�erent data. When a node accesses data it does not own,

page faults result; the underlying DSM then implicitly moves the data. The Filaments package

provides a simple and e�cient mechanism for generating a new code parameterization (see [FLA94]

for details); however, any generation method will do. After a placement has been changed, Adapt

continues to monitor the application to detect when a di�erent placement might be better. (This

can happen when characteristics change in the middle of a loop, as described in Section 4). Instead

of monitoring page faults and timing the computation to update rows, Adapt uses a much more

coarse-grain monitoring: it gathers only the overall computation and communication times on each

node during each iteration. A large variance in the computation times suggests an imbalanced load,

which might require a placement that better balances the load. An increase in the communication

times suggests excess communication, which might require a placement with more locality. If

either is detected, Adapt noti�es the nodes before the start of the next iteration. All nodes then

re-enable the �ne-grain monitoring (time each row, etc.) and repeat the algorithm described above

to determine the new (if any) best placement.

8

Number of Nodes 1 2 4 8

Adapt Time (sec) 189 104 55.2 32.0

DF Time, BLOCK (sec) 188 104 54.6 30.4

DF Time, BLOCKCYCLIC(N=2P) (sec) 188 107 57.5 33.0

Figure 4: Jacobi iteration, 512� 512, � = 10

�3

, 70 iterations.

4 Performance

This section reports the performance of Adapt on three programs: Jacobi iteration, LU decomposi-

tion, and particle simulation. Jacobi iteration and LU decomposition are examples of applications

in which a good data placement can be determined statically. Particle simulation, on the other

hand, requires run-time support both to determine a good placement and possibly to change the

placement during the computation.

For each application we developed a program using Adapt. For an accurate comparison, we also

developed a Distributed Filaments (DF) [FLA94] program without the Adapt subsystem. The DF

program uses a statically determined data placement. For each application we present the results

of the DF program with the best statically determined data placement and compare it to the Adapt

program.

Below, we briey describe the three applications and present the results of runs on 1, 2, 4, and 8

nodes. (The one-node Adapt programs have only a few extra conditionals compared to the one-node

DF programs, so their times were virtually identical.) All tests were run on a network of 8 Sparc-1s

connected by a 10Mbs Ethernet. They use the gcc compiler with the -O ag for optimization. The

execution times reported are the median of at least three test runs, as reported by gettimeofday.

The tests were performed when the only other active processes were Unix daemons.

4.1 Jacobi Iteration

Laplace's equation in two dimensions is the partial di�erential equation5

2

(�) = 0. Given boundary

values for a region, its solution is the steady-state values of interior points. These values can

be approximated numerically by using a �nite di�erence method such as Jacobi iteration, which

repeatedly computes new values for each point, then tests for convergence.

Jacobi iteration is an example of an application that has a nearest-neighbor communication

pattern and a load that is perfectly balanced. In particular, each node needs to communicate only

with its neighbors to exchange edges, and the same amount of computation is performed on each

point of the matrix on each iteration. Hence, the best data placement for this application is BLOCK,

as all placements with less locality incur more communication with no load-balancing bene�t.

The execution times for the three versions of Jacobi iteration are shown in Figure 4. The Adapt

program initially uses BLOCK by default; after recognizing nearest-neighbor communication, Adapt

runs the bin-packing algorithm, which reproduces the BLOCK placement. (In some cases the bin-

packing algorithm does not quite produce BLOCK, because small variances in row execution times

lead to mapping some nodes one more or one fewer row.) The di�erence between this program

and the DF program that uses BLOCK is small because the placement Adapt chooses is virtually

identical to the initial placement, so remapping consumes very little (if any) time. As an example of

the e�ects of excess communication, the DF program that uses BLOCKCYCLIC(N=2P) (2 contiguous

groups of N=2P rows mapped to each node) is worse than the DF program that uses BLOCK due to

the doubling of communication overhead (again, see the �gure).

9

Number of Nodes 1 2 4 8

Adapt Time (sec) 173 107 77.2 |

DF Time, CYCLIC (sec) 172 95.0 68.2 |

DF Time, BLOCK (sec) 172 111 84 |

Figure 5: LU decomposition, 512� 512.

4.2 LU Decomposition

LU decomposition is used to solve the linear system Ax = b. First, decompose A into lower- and

upper-triangular matrices, such that A = LU . Then Ax = b becomes Ax = LUx = b, so the

solution, x, is obtained by solving two triangular systems Ly = b and Ux = y.

LU decomposition is an example of an application in which the load is not balanced. After a

row is pivoted, it is never accessed again; on iteration i, only an (n� i+1) by (n� i+1) submatrix

is accessed. The workload decreases by one row on each iteration. On each iteration, every node

must read the pivot row (row i), which is written by the owner of row i. Communication is constant

over all data placements. For these reasons, the best data placement for this application is CYCLIC.

The execution times for three versions of LU decomposition are shown in Figure 5. Near the

beginning of the computation, the work is evenly balanced, as most rows are still active. Thus,

after recognizing a broadcast communication pattern, Adapt packs the bins in the variable block

manner (see Section 3), just as in Jacobi iteration. However, Adapt quickly detects imbalanced

load, re-enabling the �ne-grain monitoring. At this point Adapt also detects a decreasing workload

and packs the bins in a cyclic manner (again, see Section 3). The di�erence between this program

and the DF program that uses CYCLIC is primarily the cost of the extra page faults necessary

to change the data placement at run time. There is also minimal load imbalance on the initial

iterations where the Adapt version uses a variable block placement. (If Adapt used CYCLIC as the

default placement instead of BLOCK, the remapping time would be very low, and the performance of

the Adapt version would be better.) To show the e�ects of an imbalanced load, we also ran a DF

program using BLOCK, which exhibits severe tail-end load imbalance. Consequently, its performance

is much worse than the CYCLIC version.

The eight node test for LU decomposition is omitted. Neither the Adapt nor DF version of the

program sped up relative to the 4 node test because the problem size is not large enough. (Our

experimental cluster of workstations could not handle a larger matrix due to its limited memory.)

However, we expect the performance of Adapt relative to the DF CYCLIC program to be about the

same on eight node tests.

4.3 Particle Simulation

Our particle simulation program models the behavior of MP3D [McD88]. (The following explana-

tion is paraphrased from [PWG91].) MP3D solves rare�ed uid ow problems, studying the ow

of molecules through a rectangular tunnel. Molecules move through the tunnel and at times collide

with other molecules | the program computes their new locations using statistically determined

probabilities. When exiting the tunnel, the molecules re-enter at the opposite end. The two main

data structures are a three-dimensional space array and a list of particles. Our version of particle

simulation mimics the behavior of MP3D but is greatly simpli�ed for experimental purposes. For

example, we use a two-dimensional grid of space cells. Also, the movement of particles is parame-

terized to facilitate experimentation. Although our implementation simpli�es the physics involved,

the computational structure is the same as MP3D.

10

Number of Nodes 1 2 4 8

Adapt Time (sec) 69.4 40.1 29.8 23.5

DF Time, BLOCK (sec) 69.1 47.5 38.4 32.4

DF Time, BLOCKCYCLIC(N=2P) (sec) 69.1 47.0 39.1 25.3

DF Time, BLOCKCYCLIC(N=4P) (sec) 69.1 48.5 34.2 26.2

DF Time, BLOCKCYCLIC(N=8P) (sec) 69.1 46.5 39.3 42.6

Figure 6: Particle Simulation, load imbalanced, grid 64� 64, 150 particles.

Nodes 1 2 4 8

Adapt Time (sec) 69.4 39.4 24.3 16.3

DF Time, BLOCK (sec) 69.1 38.7 22.1 14.6

Figure 7: Particle Simulation, load balanced, grid 64� 64, 150 particles.

We distribute the space array to the nodes as in [MSH

+

95] (as opposed to distributing the

particles to the nodes). Each space cell contains a pointer to a list of particles contained in the

cell. In each time step, the program updates the positions of each particle and collides particles

that reside in the same grid cell.

This application is representative of programs where a good data placement depends on infor-

mation available only at run time and di�erent placements might be better at di�erent time steps

of the computation. The amount of computation at each grid cell depends on how many particles

are in that cell, and the initial distribution of the particles is read in at run time. Thus, static

analysis cannot in general determine a good data placement. Furthermore, if particles cluster in

certain regions of the grid, the data placement may need to change to balance the load better.

We implemented two versions of our particle simulation. In the �rst, the application tended to

move the particles to the upper region of the grid

7

. Figure 6 shows the execution times for this

program. The Adapt version performs the best in this case, because when more particles cluster

near the top, Adapt remaps the space array to balance the number of particles (for this particular

program Adapt performed three remappings). We tested several DF programs with di�erent data

placements; using larger block sizes exacerbates the load imbalance, and using smaller block sizes

causes excess communication

8

. None of the DF programs perform as well as the Adapt version,

which uses a variable block placement. In the second version, the particles do not cluster; hence,

as expected a simple BLOCK placement works well; as in the Jacobi iteration results, the Adapt

program runs slightly slower in this case (see Figure 7).

5 Discussion and Related Work

Data placement can be supported by language-level primitives, compilers, or (less commonly) run-

time systems. With language primitives, the programmer annotates each array with a placement

(e.g. [HPF93, HKK

+

91, RSW91, ZBG88, CMZ92, TCF94]). The advantage of using language

primitives is that the programmer has full control over the program. However, the programmer

might not know the best placement; even if the programmer does, the best placement might change

7

The clustering of particles is not contrived; this kind of clustering can occur in practice [Har64].

8

The execution times using very small blocks can cause so many messages that the network bandwidth is exceeded,

slowing the program down even more than expected.

11

when executing the program on a new architecture.

With a compiler-based approach, the compiler infers a placement for each array in the source

code by inspecting loops and array accesses (e.g. [GB93, LC90, BFKK91, HA90, LC91, KLS90,

Soc91]). Hence, the programmer need not be involved in placing data. On the other hand, a

compiler may not be able to infer the best placement, and compiler approach increases its complexity

greatly.

With a run-time system approach, such as Adapt ALEXI [Who91], and the inspector/executor

[SMC91]

9

, data-placement decisions are made during execution. This approach can produce good

placements for a larger class of applications because of the increased information available at run

time, but it incurs additional overhead to do so.

This section �rst compares the relative merits of the language, compiler, and run-time data

placement methods. We do so by revisiting application classes and explaining which method works

best for each. At the end we describe ALEXI in more detail.

Jacobi iteration and LU decomposition are application kernels|they represent large classes of

applications but are not themselves complex programs. These kernels are characterized by regular

data access and computation patterns, and hence they are simple enough both for programmers

to understand and compilers to analyze in order to choose a good data placement. Adapt can

also easily analyze the communication pattern and computation load, so it too can choose a good

placement. This causes some execution-time overhead due to monitoring and possible remapping.

For simple kernels that can be easily analyzed, the language or compiler approach is generally

better than the run-time approach.

Particle simulation represents another class of application with regular data access patterns

but unpredictable workloads. Programmers and compilers cannot determine the best placement in

general without knowing both the initial distribution of the particles and the ways in which the

particles will move. Neither is usually known in advance, so unless the programmer or compiler

happens to pick a placement that balances the load, performance will su�er. The programmer

therefore must customize the program for each di�erent data set. With Adapt no program mod-

i�cation is necessary. For particle simulation and similar applications, the run-time method is

generally better than the language or compiler method.

Jacobi, LU, and particle simulation are kernels of applications. A key issue is how well the

di�erent approaches to data placement perform on larger applications that are composed of several

kernels or that have several iterative phases. With the language-based method, the programmer has

to examine a large program and predict how data structures will be used in di�erent parts of the

program. Generally an array will be updated in one part of the program and read later in another

part; it is possible that the best placement is di�erent in each part of the program. Whether a

remapping or a combination placement is best requires the programmer not only to have extensive

understanding of the application, but also of the underlying hardware [KK94]. With the compiler-

based method, determining whether to remap requires extensive analysis. (Some work has been

done in this area, such as [AL93] and [KK94].) Furthermore, larger programs are more likely to

contain procedures and aliases, hindering a compiler's e�ort.

Adapt works on some of these types of \multi-kernel" applications. Currently it can remap

data between loops, but not within loops containing code segments with di�erent communication

patterns. (These can be handled by the approach used in [KK94].) If extended, Adapt could �nd

data placements for some of these applications, but certain types of remappings, such as transpose,

would pose a problem. On balance, however, the best placement strategy for large applications

9

The inspector/executor model is similar to Adapt in the sense that it monitors a loop to determine communication

patterns. However, it is concerned with optimizing communication, whereas the goal of Adapt is to determine data

placements.

12

varies with the speci�c application; all three approaches have both advantages and drawbacks.

Adapt monitors and remaps data at run time. A related approach is ALEXI [Who91], which

employs a static cost model for language primitives|based on the cost of machine primitives|and

then uses a hill-climbing heuristic executed at run time to determine a good data placement. ALEXI

does not allow data placements to change over the course of the application. Like Adapt, ALEXI

eliminates di�culties caused by procedure calls, pointers, and run-time loop bounds. Furthermore,

the ALEXI system will always choose the best data placement from among those it considers (it does

not use run-time measurements), because the language it models has explicit parallelism and speci�c

communication costs for each statement in the language. ALEXI has the same basic philosophy as

Adapt: the best time to determine data placement is at run time. However, Adapt allows a data

placement to change over the course of an application, uses a shared-memory programming model,

and does not require a priori information on the costs of statements or machine primitives.

6 Conclusion

We have presented an approach to data placement that allows the placement to adapt to the needs

of the application. The performance of Adapt is very reasonable on applications for which a good

placement can be statically determined by the programmer or compiler. More importantly, the

performance of Adapt can be superior to any static scheme for problems that are impossible to

analyze at compile time. Furthermore, Adapt supports a larger class of problems than compiler

approaches and it requires no help from the programmer in determining a data placement.

We are working on improving the Adapt implementation. First, we are investigating the pos-

sibility of integrating Adapt into a system that provides a shared-memory model but an explicit

message-passing implementation (such as HPF). The only information that Adapt obtains from

the distributed shared memory is the number of messages and the communication pattern. If

implemented in concert with a compiler, Adapt would have access to that information, because

a compiler must insert compile- or run-time code to send and receive messages from designated

nodes. A key attribute of Adapt is that it times computation, whereas computational workload can

only be approximated in a compiler. Integrating Adapt with a compiler would allow the support of

pipelined applications, where the main issue is the size of the blocks to be communicated. We will

also add new communication patterns to those currently recognized by Adapt, such as buttery

and replicated patterns, and work on tuning some of its parameters, such as the load imbalance

threshold. To test scalability, we intend to run Adapt programs on larger machines, including 16-

and 32-node clusters.

References

[AL93] J. Anderson and M. Lam. Global optimizations for parallelism and locality on scalable

parallel machines. In Proceedings of the SIGPLAN '93 Conference on Program Language

Design and Implementation, pages 112{125, 1993.

[BFKK91] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An static performance esti-

mator to guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN

Symposium on Principles and Practices of Parallel Programming, pages 213{223, April

1991.

[CMZ92] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scienti�c

Programming, 1(1):31{50, 1992.

13

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Fila-

ments: E�cient �ne-grain parallelism on a cluster of workstations. In First Symposium

on Operating Systems Design and Implementation, pages 201{212, November 1994.

[GB93] M. Gupta and P. Banerjee. PARADIGM: A compiler for automated data distribution

on multicomputers. In Proceedings of the 1993 ACM International Conference on Super-

computing, pages 357{367, July 1993.

[HA90] David E. Hudak and Santosh G. Abraham. Compiler techniques for data partitioning of

sequentially iterated parallel loops. In Proceedings 1990 International Conference on Su-

percomputing, ACM SIGARCH Computer Architecture News, pages 187{200, September

1990.

[Har64] Francis H. Harlow. The particle-in-cell computing method for uid dynamics. In Bernie

Alder, editor, Methods in Computational Physics, pages 319{343. Academic Press, Inc.,

1964.

[HKK

+

91] Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer, and Chau-Wen

Tseng. An overview of the Fortran-D programming system. Report TR91121, CRPC,

March 1991.

[HKT92] S. Hiranandani, K. Kennedy, and C.W. Tseng. Compiling Fortran D for MIMD

distributed-memory machines. Communications of the ACM, 35(8):66{80, August 1992.

[HPF93] High Performance Fortran language speci�cation. October 1993.

[KK94] Ken Kennedy and Ulrich Kremer. Automatic data layout for High Performance Fortran.

Technical Report CRPC-TR94498-S, Rice University, December 1994.

[KLS90] K. Knobe, J. Lukas, and G. Steele Jr. Data optimization: Allocation of arrays to re-

duce communication on SIMD machines. Journal of Parallel and Distributed Computing,

8(2):102{118, February 1990.

[LC90] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between

distributed arrays. In Frontiers90: The 3rd Symposium on the Frontiers of Massively

Parallel Computation, pages 424{432, October 1990.

[LC91] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-

memory machines. Journal of Parallel and Distributed Computing, 13(4):213{221, August

1991.

[McD88] Je�rey D. McDonald. A direct particle simulation method for hypersonic rari�ed ow.

Technical Report 411, Stanford University, March 1988.

[McM86] F. McMahon. The Livermore Fortran Kernels: A computer test of the numerical perfor-

mance range. Technical Report UCRL-53745, Lawrence Livermore National Laboratory,

1986.

[MSH

+

95] Shubendu S. Mukherjee, Shamik D. Sharma, Mark D. Hill, James R. Larus, Anne

Rogers, and Joel Saltz. E�cient support for irregular applications on distributed-memory

machines. In Fifth ACM SIGPLAN Symposium on Principles and Practices of Parallel

Programming, pages 68{79, July 1995.

14

[PAM94] Dantosh S. Pande, Dharma P. Agrawal, and Jon Mauney. Compiling functional par-

allelism on distributed-memory systems. IEEE Parallel and Distributed Technology,

1(1):64{76, April 1994.

[PWG91] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Par-

allel Applications for Shared-Memory. Technical Report CSL-TR-91-469, Department of

Electrical Engineering and Computer Science, Stanford University, April 1991.

[RSW91] Matthew Rosing, Robert Schnabel, and Robert Weaver. The Dino parallel programming

language. Journal of Parallel and Distributed Computing, 13(1):30{42, September 1991.

[SMC91] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time parallelization and

scheduling of loops. IEEE Transactions on Computers, 40(5):603{612, May 1991.

[Soc91] David Grimes Socha. Supporting �ne-grain computation on distributed memory parallel

computers. PhD thesis, University of Washington, Seattle, WA 98195, July 1991.

[TCF94] Rajeev Thakur, Alok Choudhary, and Geo�rey Fox. Runtime array redistribution in

HPF programs. In Proceedings of Scalable High Performance Computing Conference 94,

pages 309{316, May 1994.

[vCGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Eric Schauser.

Active Messages: a mechanism for intergrated communication and computation. In Pro-

ceedings of the 19th International Symposium on Computer Architecture, pages 256{266,

May 1992.

[Who91] Skef Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA 15213, May 1991.

[ZBG88] H.P. Zima, H.J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD

parallelization. Parallel Computing, 6(6):1{18, January 1988.

15

