
Filter Fusion

Todd A. Proebsting Scott A. Watterson

TR 95-11

Abstract

Filters are a common data-manipulation abstraction that read data from a sin-

gle source and write data to a single destination. In �lter applications, data

ows from a source to a sink through intermediate �lters. Logically, �lters are

separate, modular entities. We present a new compiler optimization, Filter Fu-

sion, that eliminates the overhead of a modular design of independent �lters.

Our algorithm automates the integration of arbitrary, independently designed

�lters. FFC, our Filter Fusion compiler, composes �lters and produces code that

is as e�cient as hand-integrated code. The optimized code can achieve up to a

two-fold improvement over independent �lters.

September 22, 1995

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1 Introduction

Filters are a common data-manipulation abstraction in networking, operating systems, and

simulation software. Filters read data from a single source and write data to a single des-

tination. In �lter applications, data
ows from a source to a sink through intermediate

�lters. Logically, �lters are separate, modular entities. Modular implementations unfor-

tunately su�er a substantial performance penalty relative to integrated implementations.

Where performance matters most, systems programmers will sacri�ce the modular design

for the greater speed of an integrated design.

We present a new compiler optimization, Filter Fusion, that eliminates the overhead

of a modular design of independent �lters. Our algorithm automates the integration of

arbitrary, independently designed �lters. FFC, our Filter Fusion compiler, composes �lters

and produces code that is as e�cient as hand-integrated code. The optimized code can

achieve up to a two-fold improvement over independent �lters.

Network protocol layers are often �lters. Typically, each protocol layer performs some

data manipulation by traversing the message from beginning to end. Programmers have

traditionally merged these �lters by hand to produce e�cient code. Integrating �lters allows

data to be read once, manipulated many times, and then stored once | thus avoiding

loads and stores for each �lter's manipulations. Excessive memory accesses cripple the

performance of network code. Filter Fusion eliminates unnecessary memory accesses.

Manually integrating �lters is a time-consuming, error-prone process. In addition, hand-

integrated programs are di�cult to maintain and modify because small changes in a single

�lter can result in global changes in the integrated program. FFC automates the integration

process and therefore eliminates this concern. Furthermore, automatic integration enables

the maintenance of a library of useful �lters (protocol layers) that can be composed freely

to develop specialized protocols. Each library component is maintained separately, and yet

integration and optimization is automatic. The programmer designs and optimizes in a

modular fashion, without sacri�cing performance in the �nal composition.

While Filter Fusion is well suited for systems software applications, no assumptions

about its problem domain are made. FFC places few restrictions on the �lters it integrates

| it handles arbitrary control
ow and data manipulations within each each �lter.

2 Background

FFC is part of the compiler suite of the Scout project [MMO

+

95]. Scout aims to deliver high-

performance systems software | especially communications-oriented operating systems.

The Scout compilers do non-traditional optimizations, like Filter Fusion, to increase software

performance and to liberate the programmer from tedious, error-prone tasks [OPM94].

Network applications often require many simple manipulations of each network packet.

These manipulations form the protocol stack. Redundant memory access can dominate

the processing time for these applications. A technique called Integrated Layer Processing

(ILP) optimizes these data manipulations [CT90]. ILP, a generalization of loop jamming

or loop fusion, does increase performance [CT90, CJRS89, DAPP93].

Clark and Tennenhouse report dramatic performance improvements from ILP [CT90].

Based on their results, they argue for less modular programming | when e�ciency is

1

critical and sequential data manipulations are too costly, the programmer must abandon

abstraction and merge protocols. By automating ILP, Filter Fusion allows the programmer

to retain modular design without sacri�cing performance.

Abbot partially automated ILP for network applications [Abb93]. His system has two

signi�cant drawbacks, however: it cannot handle arbitrary control-
ow within a �lter, and

it assumes the typical network data layout that partitions header and data. His protocols

had three stages: initial, data manipulation, and �nal. The integrated code performed the

initial and �nal stages serially with only the data manipulation stages truly integrated. Not

all protocols (e.g., message re-assembly), and certainly not all �lters, �t into this framework.

Filter Fusion has no such restrictions.

Filter Fusion is similar to deforestation [Wad90]. Deforestation transforms functional

programs to eliminate intermediate trees; Filter Fusion transforms �lters to eliminate inter-

mediate arrays of data. Unlike deforestation, Filter Fusion operates on imperative programs.

These prior implementations have proven the e�cacy of ILP, but they have not fully

generalized or automated the optimization. Thus, a tension exists between modular soft-

ware design and integrated high-performance implementation. FFC, an implementation of

Filter Fusion, provides a solution. While maintaining a clean, intuitive model for protocol

construction, it provides both modularity and performance.

3 Filters

A linear composition of �lters speci�es the path data will follow from source to sink:

Source ! Filter

1

! Filter

2

! � � � ! Filter

N

! Sink

In a modular implementation, the source produces all of the data before passing it to the

�rst �lter. That �lter then processes all the data before passing it to the next �lter. This

continues until the sink ultimately consumes the data. Unfortunately, this implementation

requires that each �lter read and write data. It is much more e�cient to merge these �lters

to perform all the data manipulations at once.

3.1 Filter Speci�cations

A �lter speci�cation is simply a parameterless procedure extended by three operations: put,

get, and FILTER. A put produces data for the next �lter, and a get retrieves data from

the previous �lter. (Filter Fusion will merge �lters so that matching put's and get's can be

replaced by assignments.) FILTER is a special predicate that guides Filter Fusion. FILTER

guards statements that either require more input or may produce more output. FILTER is

explained further in section 5.

The �rst �lter of a composition, the source, cannot contain any get's. The last �lter,

the sink, cannot contain any put's. Figure 1 contains source and sink �lters for simple array

reading and writing.

Data manipulation �lters exist between the source and the sink. Typical �lters may

do encryption, compression, checksumming, or data marshaling (e.g., byte swapping). In

addition, glue �lters are useful for combining �lters that may require special invariants. For

instance, the simple �lter for swapping pairs of adjacent bytes, 2ByteSwap, requires an even

2

Filter ReadFromArray

Decls

int i;

Code

i = 0;

while (i < 10000)

put input[i];

i++;

end-while

End-Filter

Filter WriteToArray

Decls

int j;

Code

while FILTER

get output[j];

j++;

end-while

End-Filter

Figure 1: Source and Sink Filters

Filter Evener

Decls

int c, k;

Code

k = 0;

while FILTER

get c;

put c;

k++;

end-while

if (k%2)

put 0;

End-Filter

Filter 2ByteSwap

Decls

int x, y;

Code

while FILTER

get x;

get y;

put y;

put x;

end-while

End-Filter

Figure 2: Sample Filters

number of bytes as input. The Evener is a glue �lter that always writes an even number of

bytes by simply copying its input to its output and conditionally appending a single zero.

Thus, the Evener typically precedes 2ByteSwap to ensure proper functioning. Figure 2 gives

the speci�cations for 2ByteSwap and Evener. Lightweight �lter design encourages modular

design and separation of concerns.

Typical network protocols such as CRC32 checksum and MD-5 encryption are also

�lters. Other functions we have implemented as �lters include Run-length Decoding and

Run-length Encoding, simple checksumming, and data marshaling. Filter Fusion allows the

programmer to create arbitrarily complex compositions of these independently developed

�lters; FFC will integrate them into a single optimized function.

E�ciency and modularity are advantages of using FFC. Without FFC, reorganizing a pro-

tocol stack requires re-integrating the stack by hand. With FFC, reorganizing a stack simply

requires changing the individual �lters (if necessary) and specifying a new composition.

3

4 Sample Fusion

Filter Fusion is an optimization based on a symbolic execution of the �lters. Filter Fusion

integrates two �lters | a producer and a consumer | at a time. The goal is to match the

put's of the producer with the get's of the consumer and to replace them with assignments.

Using dynamic programming, Filter Fusion follows all possible control
ow paths through

both �lters while tracking the
ow of values via the put's and get's. Filter Fusion composes

the control-
ow graphs of the �lters into new, larger graph. Where necessary, Filter Fusion

replicates �lter code.

As an example, we will merge the Evener and the 2ByteSwap �lters in Figure 2. Figure 3

gives their control-
ow graphs. Rectangles denote nodes from 2ByteSwap throughout this

example; ovals denote Evener nodes.

The �nal control-
ow graph is composed of nodes from the two original graphs, except

that the appropriate put's and get's are replaced with assignments to temporary variables.

Basically, the dynamic programming executes each �lter symbolically | alternating be-

tween the producer and consumer at put's and get's, respectively. For each node that is

symbolically executed, a copy of that node is placed into the fused graph. Bookkeeping

information maintained at each node of the �nal graph controls the composition. Each

added node is annotated with three pieces of information: the last node executed in the

producer, the last node executed in the consumer, and which �lter this node came from.

This information is a con�guration. Two nodes are equal if their con�gurations are identical.

The producer symbolically executes until it reaches a put or end operation. After

reaching a put in the producer, execution switches to the consumer, which must execute

until it reaches a get (or end). The put that suspended the producer is matched with the

consumer's get for subsequent replacement by an assignment. This alternating execution

continues until all possible execution paths are exhausted.

The FILTER predicate will represent a conditional node in a control
ow graph of either

the producer or the consumer. The state of a suspended producer determines the value of a

consumer's FILTER predicate. If a consumer is executing while the producer is suspended at

a put, then FILTER evaluates to true; if the producer is suspended at its end, then FILTER

evaluates to false. FILTER predicates in the producer remain undetermined.

1

Figure 4 depicts the control
ow of the fused �lter after the producer has followed all

possible paths to put's or end's. Symbolic execution must now switch to the consumer.

When expanding the consumer (2ByteSwap), the �rst node to be executed is a FILTER

predicate. Thus, all three paths will add a FILTER node. On the left-most path, the producer

had suspended at a end, but on the center and right-most paths, the producer suspended

at a put. Therefore, consumer will continue along the false branch when expanding the

left-most path, and it will continue along the true branch when expanding the others.

Along the left-most path, the consumer immediately encounters an end node. This path

is complete. Along the other paths, the consumer, following the true branch, immediately

hits a get. The get matches the suspended put of the producer, so execution suspends at

the consumer and resumes at the producer along both paths. Figure 5 gives the
ow graph

1

This discussion assumes that the producer is driving Filter Fusion. If the consumer were driving Filter

Fusion, then the FILTER predicates in the producer would be determined by whether or not the consumer

were suspended at a get.

4

k = 0

filter

get c

put c

k++

put 0

end

(k%2)

True

False

filter

get x

True

end

False

get y

put y

put x

begin

Evener

begin

2ByteSwap

True False

Figure 3: Original Control Flow Graphs

end

filter

get c

True

(k%2)

False

k = 0

put cput 0

begin

Figure 4: Stage 1

end

filter

filter

get c

True

(k%2)

False

k = 0

put c

filter

get x get x

put 0

filter

False True

end

False True True

begin

Figure 5: Stage 2

at this point.

The producer must now resume execution by exploring all possible control paths from

its suspended put. Control continues to switch back and forth until no more progress can be

made. A con�guration labels each new node. Prior to adding a new node, its con�guration

is checked against the nodes already in the new graph | upon a match, the existing node is

used rather than the new node. An existing node is re-used by having control
ow directly

to that node rather than to the new node.

Figure 6 shows the graph resulting from this composition. Filter Fusion is not �nished

at this point, however. Some paths reach a get without a corresponding put. These paths

are removed from the control
ow, since they make no sense. Trimming often creates

a conditional for which only one branch remains | in these cases, we may remove the

5

begin

k =0

filter

get c

put c

put y put y

put x

filter

get c

put c

filter

filter

end

put c

get y

k++

get x

end

get y

filter

TRUE

 (k%2)

FALSE

end

FALSE

put 0

TRUE

end

get x

k++

filter

get c

get y

put y

put x

TRUE

 (k%2)

FALSE

FALSE

put 0

TRUE

TRUE

 (k%2)

FALSE

FALSE

put 0

TRUE

put x

Figure 6: Untrimmed Control Graph

begin

k =0

FILTER

end

FILTER

get c

put c

put y

get c

put c

FILTER

end

put c

get y

k++

FILTER

TRUE

 (k%2)

FALSE

end

FALSE

get x

k++

FILTER

get c

get y

put y

put x

TRUE

 (k%2)

FALSE

FALSE

TRUE

 (k%2)

FALSE

put 0

TRUE

put x

Figure 7: Final Control Graph

begin

k =0

FILTER

end

FILTER

get c

tfer = c

put y

get c

tfer = c

FILTER

end

tfer = c

y = tfer

k++

FILTER

TRUE

 (k%2)

FALSE

end

FALSE

x = tfer

k++

FILTER

get c

y = tfer

put y

put x

TRUE

 (k%2)

FALSE

FALSE

TRUE

 (k%2)

FALSE

tfer = 0

TRUE

put x

Figure 8: Assignment Substitution

6

conditional too. In general, trimming conditionals is an unsafe optimization. If, however,

�lters are properly composed such that put's must always reach get's (as they do here), the

optimization can be both safe and e�ective. The nodes to be safely trimmed have double

borders in Figure 6. Figure 7 gives the trimmed graph.

The �nal step of Filter Fusion is transforming the matched put's and get's into assign-

ments to and reads from a temporary, respectively. The temporary is unique to a particular

�lter composition. Each suspended put that is copied into the composition graph becomes

a write to the temporary, and all get's become reads of the temporary. Figure 8 highlights

the transformed nodes in the resulting graph with double borders.

5 Algorithm

Filter Fusion is done pairwise, starting with the source and its immediate consumer. Because

the composition of a source and a general �lter is itself a source, this method can compose

arbitrarily many �lters. (Filter Fusion can operate in the opposite direction too, but giving

the less general algorithm here is simpler.)

FFC implements Filter Fusion with a work-list algorithm. Elements of the work-list

represent con�gurations that have been added to the control-
ow graph (CFG), but whose

successors have not. The algorithm is responsible for computing the successors and adding

them to the CFG and the work-list, when necessary. No computed con�guration already

in the CFG will be added to the work-list, since the previous instance can be reused in its

place. This ensures termination. It also bounds number of nodes in the fused graph by the

product of the number of nodes in the input graphs. (In practice, the code size will not

increase to this maximum, particularly when merging �lters with the same size data units.)

Figure 9 gives the algorithm. Let x be a CFG node. Its con�guration is de�ned by

x.orig[producer], x.orig[consumer], and x.tag. x.orig[producer] and x.orig[consumer] repre-

sent the last nodes visited in the two �lters when this node was generated. x.tag indicates

which �lter generated this node. Additional attributes of x, insn and successors, denote

the node's actual instruction and its CFG successors.

The algorithm begins by adding a start con�guration that represents the initial nodes

of each of the input graphs to both the CFG and the work-list. start will be the beginning

node of the resulting graph. While elements remain in the work-list, they are removed one

at a time, to compute their successors. Recall that successor nodes may or may not come

from the same control
ow graph as a node, x, itself (e.g., the successor of a put in the

producer comes from the consumer, but the successor of a simple statement in the producer

would also come from the producer). trigger[producer] represents the set of nodes that

cause control to switch from the producer to consumer, put and end. trigger[consumer] is

a set consisting only of get. \not tag" alternates between producer and consumer.

After computing the source of x 's successors, the algorithm simply follows the control

ow from the last executed statement in that source graph to �nd the actual successor in-

structions. Each successor has a con�guration that is checked against the CFG to determine

if it already exists. If the con�guration already exists, the control
ow arc out of x simply

points to the existing con�guration. If the con�guration is new, it is added to the CFG and

the work-list. The new con�guration is also the target of the arc from x.

7

Procedure Fusion()

start.orig [producer] := producer's start node // Initialize start node's con�guration

start.orig [consumer] := consumer's start node

start.tag := producer

start.insn := empty instruction

CFG := f start g // Seed CFG and worklist.

worklist := f start g

repeat

x := Pop(worklist)

if x.insn 62 trigger[x:tag] then // fput,endg for producer; fget,endg for consumer.

this := x.tag // Stay with current �lter.

other := not x.tag

else // Switch to other �lter.

this := not x.tag

other := x.tag

endif

8i 2 x.orig [this].successors do // Follow all paths.

node := new node

node.orig [this] := i // Store current nodes.

node.orig [other] := x.orig [other]

node.tag := this // Tag which �lter derived node.

node.insn := i.insn

if node 62 CFG then

CFG := CFG [node

Append(worklist; node)

x.successors := x.successors [node

else // Reuse existing node.

x.successors := x.successors [CFG[node]

endif

end 8

until worklist = �

end Fusion

Figure 9: Algorithm

The algorithm describes the steps to compute the untrimmed graph. Trimming the

graph of dangling put nodes is straightforward. Also, a little additional bookkeeping is

necessary to transform put's and get's into assignment and reads of temporaries.

6 Experimental Results

FFC is a 200 hundred line Icon program [GG90]. FFC is a preprocessor that generates C

code from a compact speci�cation language. We tested FFC's code against modular and

hand-integrated implementations on a variety of platforms and compilers. Because gcc

8

Program C size Alpha Binary Size Sparc Binary Size

(in lines) (in bytes) (in bytes)

Modular Implementation 36 2,784 1,955

Hand Integrated 28 2,592 1,898

Filter Fusion 197 2,976 2,323

Fused & Tuned 144 3,040 2,127

Table 1: Code Size

consistently produced worse code than the vendor compilers, we aborted its use. (gcc had

di�culty re-ordering basic blocks to avoid chains of jumps. It also did not handle copy

propagation and dead-code elimination as well as the vendor compilers.)

To test FFC-generated code, we create the following composition.

ReadFromArray ! Evener ! 2ByteSwap ! CRC32 ! WriteToArray

These �lters (1) read bytes from an array, (2) pad the output, (3) swap bytes, (4) compute

CRC32 checksumming, and �nally, (5) write the bytes to another array. Appendix A

contains the speci�cation for CRC32 and the composition. Figure 10 gives the �nal
ow

graph. Note that some chunks of code are replicated multiple times and that the graph is

quite complicated given the simple nature of its constituent �lters. Table 1 shows the size

of several fused �lters on both a DEC Alpha and the Sun SPARCsystem 10. Since FFC may

replicate the same code multiple times, the �nal fused �lter may contain a great amount of

C code. Although the C code produced by the Filter Fusion compiler was much larger than

that of the modular and hand-integrated implementations, the object code sizes were very

nearly comparable. Compiler optimizations eliminate much of the redundancy.

FFC-generated code must be optimized because of its heavy reliance on temporary vari-

ables and arbitrary control
ow. The code particularly stresses | and �nds de�ciencies

in | a compiler's copy propagation and dead code elimination optimizations. Unfortu-

nately, in many cases, all of the available compilers failed to eliminate useless counters or to

propagate copies. In addition, the compilers did not appear to unroll unstructured loops.

Therefore, FFC-generated code's performance su�ered. To determine how well FFC's code

would do if properly optimized, we performed these optimizations by hand on the generated

code. (We only performed optimizations that we thought any optimizing compiler should

have done.) We timed four di�erent implementations of the �ve-�lter composition: modu-

lar, hand-integrated, FFC-generated integration, and hand-tuned FFC integration. Table 2

gives the results of running these �lters 10,000 times over a 10,000 element array. All tests

were run on four di�erent architectures using the vendor's C compilers.

FFC-generated output is always superior to modular code. FFC-generated output typi-

cally is slower than hand-integrated code, but only because of the C compiler's shortcomings.

Filter Fusion allows the programmer to maintain a modular design and implementation

without sacri�cing performance.

This exhaustive computation of all possible execution paths is tedious and error-prone

when done by hand. Fortunately, an implementation of Filter Fusion automates this trans-

formation. Filter Fusion allows the programmer to forget about this complex work, and

9

Architecture Fusion Technique

No Hand Filter Filter Fusion

Integration Integration Fusion with Tuning

DEC/Alpha 21.9 8.3 10.3 8.3

Sun/Sparc 26.2 12.0 18.5 12.1

HP/700 38.5 19.9 31.0 20.0

Mips R2000A 66.7 33.9 46.9 34.1

Table 2: Experimental Results (in sec.)

focus on optimizing independent �lters in a modular fashion.

References

[Abb93] Mark B. Abbott. A Language-Based Approach to Protocol Implementation.

PhD thesis, University of Arizona, 1993.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[CJRS89] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An analysis

of tcp processing overhead. IEEE Communications Magazine, June 1989.

[CT90] David D. Clark and David L. Tennenhouse. Architectural considerations for a

new generation of protocols. In Proceedings of the SIGCOMM '90 Symposium,

pages 200{208, September 1990.

[DAPP93] Peter Druschel, Mark B. Abbott, Michael A. Pagels, and Larry L. Peterson.

Network subsystem design: A case for an integrated data path. IEEE Network

Magazine, July 1993.

[GG90] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language.

Prentice Hall, 1990.

[MMO

+

95] A. B. Montz, D. Mosberger, S. W. O'Malley, L. L. Peterson, and T. A. Proebst-

ing. Scout: A communications-oriented operating system. In HOTOS95, pages

58{61. IEEE Computer Society Press, may 1995.

[OPM94] Sean O'Malley, Todd A. Proebsting, and A. Brady Montz. USC: A universal

stub compiler. In Proceedings of SIGCOMM 94 Conference on Communications

Architectures, Protocols and Applications, pages 295{306, August 1994.

[Wad90] Philip Wadler. Deforestation: Transforming programs to eliminate trees. The-

oretical Computer Science, 73:231{248, 1990.

10

A Five-Filter Speci�cation

The FFC speci�cations of the Evener, 2ByteSwap, ReadFromArray, and WriteToArray. are

given in the paper. The speci�cation below describes CRC32, as well as for the composition

used in the timings. Figure 10 shows the composition's
ow graph.

Compose prodeven ReadFromArray Evener

Compose prodevenBS prodeven Byteswap

Compose prodevenBSCRC prodevenBS CRC32

Compose fulltest prodevenBSCRC WriteToArray

Filter CRC32

Decls

unsigned long crc = 0;

unsigned char idx;

int tx = 0;

unsigned char CRC32temp;

Code

while filter

get CRC32temp

tx += 1;

idx = (CRC32temp ^ crc);

idx &= 0xff;

crc �= 8;

crc ^= crctable[idx];

put CRC32temp

endwhile

put crc & 0xff

put (crc � 8) & 0xff

put (crc � 16) & 0xff

put (crc � 24) & 0xff

End-Filter

11

begin
x = 0;

 x<SIZE

tfer_prodeven = in[x];
j=0;

c = tfer_prodeven;
x++;

TRUE

j =0;
tfer_fulltest = crc & 0xff;

i = 0;

FALSE

arr[i] = tfer_fulltest;
CRC32temp = tfer_prodevenBSCRC;

tx += 1;
idx = (CRC32temp ^ crc);

idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i++;
arr[i] = tfer_fulltest;

tfer_fulltest = crc & 0xff;
i++;

arr[i] = tfer_fulltest;
tfer_fulltest = (crc >> 8) & 0xff;

i++;
arr[i] = tfer_fulltest;

tfer_fulltest = (crc >> 16) & 0xff;
i++;

arr[i] = tfer_fulltest;
tfer_fulltest = (crc >> 24) & 0xff;

i++;
arr[i] = tfer_fulltest;

i++;
end

arr[i] = tfer_fulltest;
CRC32temp = tfer_prodevenBSCRC;

bsx = tfer_prodevenBS;
j++;

tfer_prodevenBS = 0;
bsy = tfer_prodevenBS;

tfer_prodevenBSCRC = bsy;
tx += 1;

idx = (CRC32temp ^ crc);
idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i++;
arr[i] = tfer_fulltest;

CRC32temp = tfer_prodevenBSCRC;
tfer_prodevenBSCRC = bsx;

tx += 1;
idx = (CRC32temp ^ crc);

idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i++;

tfer_prodeven = in[x];
tfer_prodevenBS = c;

tfer_prodevenBSCRC = bsy;
tx += 1;

idx = (CRC32temp ^ crc);
idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i++;
arr[i] = tfer_fulltest;

CRC32temp = tfer_prodevenBSCRC;
tfer_prodevenBSCRC = bsx;

tx += 1;
idx = (CRC32temp ^ crc);

idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i++;

arr[i] = tfer_fulltest;
CRC32temp = tfer_prodevenBSCRC;

bsx = tfer_prodevenBS;
j++;

c = tfer_prodeven;
x++;

 x<SIZE

 x<SIZE

tfer_prodevenBS = c;
bsx = tfer_prodevenBS;

j++;
tfer_prodevenBS = 0;

bsy = tfer_prodevenBS;

FALSE

tfer_prodeven = in[x];
tfer_prodevenBS = c;

bsx = tfer_prodevenBS;
j++;

c = tfer_prodeven;
x++;

TRUE

tfer_prodevenBSCRC = bsy;
CRC32temp = tfer_prodevenBSCRC;

tfer_prodevenBSCRC = bsx;
tx += 1;

idx = (CRC32temp ^ crc);
idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i = 0;

tfer_prodevenBS = c;
bsy = tfer_prodevenBS;

j++;

FALSE

tfer_prodeven = in[x];
tfer_prodevenBS = c;

bsy = tfer_prodevenBS;
j++;

c = tfer_prodeven;
x++;

TRUE

 x<SIZE

TRUE

tfer_prodevenBS = c;
tfer_prodevenBSCRC = bsy;

tx += 1;
idx = (CRC32temp ^ crc);

idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i++;
arr[i] = tfer_fulltest;

CRC32temp = tfer_prodevenBSCRC;
tfer_prodevenBSCRC = bsx;

tx += 1;
idx = (CRC32temp ^ crc);

idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i++;

FALSE

 x<SIZE

tfer_prodeven = in[x];
tfer_prodevenBS = c;

bsy = tfer_prodevenBS;
j++;

c = tfer_prodeven;
x++;

TRUE

tfer_prodevenBS = c;
bsy = tfer_prodevenBS;

j++;

FALSE

 x<SIZE

tfer_prodeven = in[x];
tfer_prodevenBS = c;

tfer_prodevenBSCRC = bsy;
CRC32temp = tfer_prodevenBSCRC;

tfer_prodevenBSCRC = bsx;
tx += 1;

idx = (CRC32temp ^ crc);
idx &= 0xff;

crc >>= 8;crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i = 0;

TRUE

tfer_prodevenBS = c;
tfer_prodevenBSCRC = bsy;

CRC32temp = tfer_prodevenBSCRC;
tfer_prodevenBSCRC = bsx;

tx += 1;
idx = (CRC32temp ^ crc);

idx &= 0xff;
crc >>= 8;

crc ^= crc_table[idx];
tfer_fulltest = CRC32temp;

i = 0;

FALSE

Figure 10: Final Composition

12

