
One-Pass, Optimal Tree Parsing | With Or Without Trees

Todd A. Proebsting Benjamin R. Whaley

TR 95{10

Abstract

This paper describes the theory behind and implementation of wburg, a code-generator

generator that accepts tree grammars as input and produces a code generator that

emits an optimal parse of an IR tree in just a single bottom-up pass. Furthermore,

wburg eliminates the need for an explicit IR tree altogether. The generated parser

emits optimal code, and can do so without retaining an entire IR tree during its single

pass. The grammars that wburg-generated parsers can parse are a proper subset of

those that the two-pass systems can handle. However, analysis indicates that wburg

can optimally handle grammars for most major instruction sets, including the SPARC,

the MIPS R3000, and the x86.

September 22, 1995

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1 Introduction

Compilers often use intermediate representation (IR) trees to represent expressions. A compiler's

front end generates an IR tree, and the back end walks the tree, emitting appropriate assembly

language instructions and operands.

Several automatically generated code generators perform pattern matching on IR trees to emit

optimal code. The code-generator generator consumes a cost-augmented tree grammar with as-

sociated semantic actions. The resulting code generator requires two passes over the IR tree to

determine a least-cost parse and to execute the associated semantic actions. Code-generator gen-

erators based on this model include BEG [ESL89], twig [AGT89], burg [FHP92b, Pro92], iburg

[FHP92a], and lburg [FH95].

This paper describes the theory behind and implementation of wburg, a code-generator gen-

erator that accepts tree grammars as input and produces a code generator that emits an optimal

parse of an IR tree in just a single bottom-up pass. Furthermore, wburg eliminates the need for

an explicit IR tree altogether. The generated parser emits optimal code, and can do so without

retaining an entire IR tree during its single pass. The grammars that wburg-generated parsers

can parse are a proper subset of those that the two-pass systems can handle. However, analysis

indicates that wburg can optimally handle grammars for most major instruction sets, including the

SPARC, the MIPS R3000, and the x86.

Our system has the advantage of not requiring a dynamically allocated IR tree, but sometimes

su�ers from its small amount of additional bookkeeping. Preliminary experiments indicate that

wburg's one-pass parsers run over 30% faster than two-pass burg-generated parsers that use malloc

and free. Even when the overhead of dynamic allocation is completely factored out, the one-pass

parsers ranged from over 50% faster to 3% slower than burg's parsers.

2 Related Work

Many code-generator generators use cost-augmented instruction patterns to produce code gen-

erators that optimally parse IR trees. The resulting code generator uses tree pattern matching

and dynamic programming to �nd least-cost instruction sequences for realizing the given IR tree's

computations. The various code-generator generators di�er in the pattern-matching technology

they use, and in when they perform dynamic programming. Pattern-matching techniques vary

widely in theoretical e�ciency [HO82]. Previous code generators have employed many of these

pattern-matching technologies, ranging from the slowest, naive [ESL89, FHP92a, FH95], to top-

down [AGT89], to the fastest, bottom-up [FHP92b, Pro92, BDB90, PLG88]. Most systems perform

dynamic programming at compile-time [ESL89, AGT89, FHP92a, FH95]; those based on BURS

technology do all dynamic programming at compile-compile time [FHP92b, Pro92, BDB90, PLG88].

Previous tree-pattern matching systems required two passes over the IR tree: one for labeling the

tree with dynamic programming information, and another for selecting the least-cost parse based on

that information. To enable two tree walks, this design requires allocating and building an explicit

IR tree. In contrast, wburg's parsers can �nd an optimal parse in a single pass. Surprisingly,

an explicit IR tree is not needed at all. The procedure invocations necessary to build a tree in

a bottom-up fashion form a trace of the tree's structure | much like a recursive-descent parser

traces out a parse tree | which is all that is necessary for our system to produce optimal code.

The Oberon compiler's code generator works in a single pass without the bene�t of an explicit IR

tree [WG92]. In order to generate complex addressing modes, the code generator retains a constant

amount of information to guide subsequent instruction selection decisions. wburg's parsers must

1

stmt: ASGN(addr, reg) = 1 (1);

addr: ADD(reg, con) = 2 (0);

addr: reg = 3 (0);

reg: ADD(reg, con) = 4 (1);

reg: con = 5 (1);

con: CONST = 6 (0);

Figure 1: A burg-Style Grammar, G

also retain a constant amount of information for subsequent decisions. Oberon's code generator,

however, does not generate optimal code for all expressions, and is not automatically generated.

3 burg Automata

burg is a code-generator generator that accepts a cost-augmented tree grammar as input and

automatically produces a tree-parser that gives an optimal parse of an IR tree using a two-pass

algorithm [FHP92b]. burg does all dynamic programming at compile-compile time and creates

a state machine for guiding all subsequent pattern matching and instruction selection decisions.

Rules in a burg grammar have the form

nonterminal : rule = rule number (cost);

Consider the burg grammar, G, in Figure 1. The fourth rule speci�es that the result of adding

an immediate value to a value held in a register can be placed in a register at the cost of one. The

second rule in Figure 1 corresponds to the \register-o�set" addressing mode supported by many

architectures, which is free. A burg grammar describes the operations and addressing modes of a

particular architecture. Rules in a burg grammar have one of two forms. A chain rule has only a

single nonterminal on its right-hand side, while a base rule always has a terminal on its right-hand

side. In Figure 1, rules 3 and 5 are the only chain rules.

We restrict our analysis to grammars in normal form [BDB90]. A grammar is in normal form

if all patterns are either chain rules, or base rules of the form n

0

! op(n

1

; : : : ; n

k

) where n

i

are all

nonterminals and op is an operator. Normal-form grammars are no less expressive than other tree

grammars, and this restriction greatly simpli�es our discussion.

Parsers produced by burg use a two-pass algorithm to give an optimal (least-cost) parse of a

tree. The �rst, bottom-up pass over the tree labels each node with a state. A state encodes, for

each nonterminal in the grammar, the rule to apply at the current node to derive that nonterminal

at least cost. The second, top-down pass �nds the least-cost parse based on those states. This

second pass reduces the tree by applying the appropriate rules at nodes in the tree.

Figure 2 shows the set of burg-generated states for grammar G (Figure 1). State 1 encodes

the fact that an ADD node labeled with state 1 is reduced to an addr nonterminal using rule 2 and

to a reg using rule 4. State 3 represents the label for all CONST nodes. CONST nodes are reduced

directly to a con nonterminal via rule 6, but require the application of chain rules for addr and

reg nonterminal reductions. Note that reducing a CONST node to an addr would require two chain

rule applications (rules 3 and 5) followed by the base rule 6. All reductions at a state follow this

pattern of zero or more chain rules followed by exactly one base rule. (Bottom-up reductions would

reverse that order.) The application of a base rule at a node with children will cause those children

2

State 1 Nonterminal Rule #

(op = ADD) stmt (none)

addr addr : ADD(reg, con) = 2

reg reg : ADD(reg, con) = 4

con (none)

State 2 Nonterminal Rule #

(op = ASGN) stmt stmt: ASGN(addr, reg) = 1

addr (none)

reg (none)

con (none)

State 3 Nonterminal Rule #

(op = CONST) stmt (none)

addr addr: reg = 3

reg reg: con = 5

con con: CONST = 6

Figure 2: The burg States for G

to be reduced to the nonterminals on the right-hand side of the base rule.

4 One-Pass Tree Parsers

A two-pass system defers all reduction decisions until labeling is complete. Because every node in

the tree contains a label, an unbounded amount of information must be retained prior to starting

the reduction process. If reductions could be done during the bottom-up labeling pass, any subtree

that is reduced could be discarded since reduction is the last phase of pattern matching. The labeler

would only retain unreduced subtrees until they could be reduced.

(Note: Reducers normally apply rules in a top-down order, but the semantic actions associated

with those rules typically are applied in bottom-up order | the order in which code is emitted.

From this point forward, we will assume that reducers reduce trees bottom-up.)

For some states, optimal reductions can be made during the bottom-up labeling pass. Because

rule 1 is the only rule in state 2, it must be used to reduce any node labeled with state 2. Therefore,

the labeling pass can immediately apply rule 1 to any node it labels with state 2. wburg creates an

array, reduce now[], that is indexed by state numbers. Whenever a state contains only one base

rule, wburg places the appropriate nonterminal (the nonterminal appearing on the left-hand side

of that base rule) into the table.

Reducing a node via a base rule will cause all descendents of that node to be reduced, and thus

no longer needed. Although not true for state 2, applying a base rule does not always completely

reduce the given node. Subsequent reductions of ancestor nodes may require the application of

chain rules at this node in order to derive a nonterminal other than the left-hand side of the base

rule. Therefore, the node itself must be retained for the possible chain-rule applications later.

Now consider state 1, which contains two base rules, 2 and 4. The labeler cannot immediately

determine the appropriate reduction when it reaches such a node. Therefore, wburg must mark

3

state 1 2 3

nonterminal ? stmt con

Figure 3: Array reduce now for Grammar G

left nt Parent's State

1 2 3

Left 1 reg addr ?

Child's 2 ? ? ?

State 3 con con ?

right nt Parent's State

1 2 3

Right 1 ? reg ?

Child's 2 ? ? ?

State 3 con con ?

Figure 4: Arrays left nt and right nt for Grammar G

state 2's entry in reduce now[] as unknown (?). Figure 3 gives reduce now[] for grammar G.

Formally,

reduce now[S] � N i� state S contains only one base rule, N ! �(: : :).

Although state 1 contains two base rules, and a decision about which to apply depends on

reductions at ancestor nodes, the state does contain enough information to guide the reductions

of its children. Both base rules have the same vector of nonterminals | (reg, con) | on the

right-hand side. Therefore, any node labeled with state 1 can immediately reduce its left child to

reg and its right child to con. This fully reduces its children. The labeler must defer reductions of

the state 1 node, however.

wburg could generate vectors like reduce now[] to map states to the nonterminals to which

their children should be reduced. Instead, we generalize this notion and create tables that guide

child reductions based on the states of both the child and the parent. Two two-dimensional arrays,

left nt[][] and right nt[][], hold the nonterminals to which a node's children should be reduced.

left nt[B][A] holds the nonterminal to which a node labeled with B should be reduced if it is the

left child of a node labeled with A.

An entry is put in left nt[B][A] if every left-most nonterminal on the right-hand side of every

base rule in A derives from the same base rule in B via zero or more chain rules. Under these

conditions, the nonterminal on the left-hand side of B's base rule, N , is put in the table. This

condition ensures that wburg knows which base rule in B ultimately will be applied when B is the

left child of A. right nt is similar. Formally,

left nt[B][A]�N i� X ! �(Y;�) 2 A implies N ! �(: : :) 2 B and Y

�

) N in B.

right nt[B][A]�N i� X ! �(�; Y) 2 A implies N ! �(: : :) 2 B and Y

�

) N in B.

Figure 4 gives the tables for G. A \?" indicates that no immediate reduction is possible.

4.1 Characteristic burg Graph

For each cost-augmented tree grammar, burg generates a function burm state that computes the

state of a particular node given its operator and the states of its children.

burm state : operator � state

left

� state

right

! state

4

Left Right

RightLeft Left Right

Left

State 3
[CONST]

State 2
[ASGN]

State 1
[ADD]

Figure 5: Transition Graph for burg States of Grammar G

Using burm state, we can generate a characteristic directed graph to represent states and state

transitions. Nodes represent states, and edges represent possible state transitions. Edges are

annotated with either left or right, depending on whether the target node represents the left or

right child of the source node. Formally,

A

left

�! B i� 9�; x such that burm state(�; B; x) � A

A

right

�! B i� 9�; x such that burm state(�; x; B) � A

Figure 5 shows the characteristic graph for G. This characteristic graph generates all trees

described by G. In general, the characteristic graph can generate a superset of the trees that a

grammar describes because not all combinations of left and right-labeled arcs leaving a particu-

lar state can actually be combined to generate that state. Only cyclic graphs generate trees of

unbounded size.

A bound on the sizes of the trees generated by an acyclic graph is simply the size of the largest

tree in the graph. Therefore, this bound is the maximum amount of information that must be

retained between passes of a two-pass parser.

4.2 Arc Pruning

Analysis of the characteristic graph leads to a method of doing one-pass parsing that retains only a

constant amount of information about the reduction of any labeled node and the subtree it roots.

wburg will prune an arc from the graph if the arc corresponds to a state transition for which a

correct base-rule reduction of the child node is known. The remaining arcs represent the reductions

that the analysis cannot immediately determine and therefore must postpone until the parser can

safely reduce an ancestor. If the pruned graph is acyclic, then only a bounded number of nodes

must ever be retained for subsequent reduction. Because the original graph (Figure 5) is cyclic,

one-pass parsing with grammar G is not possible without arc pruning.

Arcs leaving state 2 may be pruned because the parser can immediately reduce the left and

right children of a state 2 node. After the parser reduces the children of a state 2 node, the parser

would retain those nodes, but not their children (the node's grandchildren). The children may

require subsequent chain-rule reductions, but the grandchildren will be completely reduced at this

point. (The condition for pruning arcs only guarantees that one of the child's base rules can be

applied immediately | application of the child's chain rules may be deferred, and so it is necessary

to record the last nonterminal to which the child was reduced.)

5

The entries in left nt and right nt correspond directly to the pruned arcs. An arc A

left

! B may be

pruned if left nt[B][A] 6= ? because the labeler can immediately reduce B to the given nonterminal,

which forces the reduction by its base rule.

If, after applying the arc pruning rule, the resulting graph contains no cycles, then the grammar

can be parsed optimally during the single, bottom-up labeling pass while retaining only a constant

number of unreduced nodes at any given point. A conservative upper bound on the number of

unreduced nodes is the size of the largest tree generated by the pruned graph plus information

about deferred chain rule reductions of the nodes just o� the leaves of that tree.

If the pruning rule removes all directed edges from the graph (as it will for grammar G), then

the largest subtree whose reduction may have to be deferred consists of a tree node and its children.

Its children will lack, at most, chain-rule applications.

5 A Code-Generator Generator

5.1 One-Pass, Optimal Parsing of IR Trees

If the application of the pruning rule creates an arc-free graph, then labeling and reducing the

tree can be done in a single-pass while deferring at most three nodes worth of reductions at the

most recently labeled node: the reductions at that node, and possible chain rule reductions at its

children. All descendents further down the tree must be completely reduced.

wburg is a system for generating optimal, single-pass tree-parsers for grammars for which the

characteristic graph can be completely pruned of arcs. Note that this is the same class of grammars

for which wburg can �ll all entries in left nt and right nt that correspond to valid state transitions.

Because the reductions induced by wburg's reduce now, left nt, and right nt tables are identical

to the reductions that burg's parser would apply, both systems �nd identical least-cost parses.

Consider the procedure Compose in Figure 6, which creates a new node from an operator and

two child nodes. Compose labels a node and attaches that node to its children. Then, it initializes

the node's nonterminal �eld to zero, indicating that the current node has not yet been reduced. The

procedure checks the array reduce now to see whether the node itself can be reduced immediately.

If so, Compose will immediately reduce the entire subtree rooted at this node (except, of course,

previously reduced nodes).

If reduce now cannot help, the parser consults left nt and right nt to obtain the appropriate

nonterminals to which the children should be reduced and performs those reductions. In this case,

Compose does no reductions at node itself, but it does invoke reductions of its children. The node's

reductions and the children's chain rule reductions must wait until this node's parent is labeled

and causes subsequent reductions.

Figure 7 gives the code for reduce, which performs reductions. Nodes previously reduced to the

desired nonterminal will terminate the reduction. arity(rule) gives the number of nonterminals on

the right-hand side of rule, which represents the number of subsequent reductions this rule must

invoke. For chain rules, kids[] simply holds node; for base rules, it is a vector of the node's children.

nts[][] is a table of the nonterminals to which the kids[] should be reduced based on the rule

number.

5.2 One-Pass, Optimal Parsing Without Trees

Because burg and other tree-parsing algorithms require two-passes over the IR tree, the IR tree

must be retained until the second pass is complete. Because a tree may be of arbitrary size, the

tree nodes must be dynamically allocated and deallocated. Since wburg's parsers parse an IR tree

6

procedure Compose(node ptr node, int op, node ptr left child, node ptr right child)

node.left = left child // Assemble tree.

node.right = right child

node.state = burm state(op, left child.state, right child.state) // Label tree.

node.nt = 0 // Node is not reduced.

if (reduce now[node.state] 6= ?) then

reduce(node, reduce now[node.state]) // Reduce immediately.

else

left nt = left nt[left child.state][node.state]

right nt = right nt[right child.state][node.state]

reduce(left child, left nt) // Reduce children's base rules.

reduce(right child, right nt)

end if

end procedure

Figure 6: Compose Procedure

procedure reduce(node ptr node, int nt)

if nt = node.nt then return // Previously reduced.

rule = burm rule(node.state, nt) // Find rule to apply.

for i 1 to arity(rule) do

reduce(kids[i], nts[rule][i]) // Invoke subsequent reductions.

end for

// Invoke semantic action for rule here.

node.nt = nt // Record reduction.

end procedure

Figure 7: Procedure reduce

in a single bottom-up pass it is possible for the parser to eliminate the explicit creation of the IR

tree altogether. Furthermore, since the maximum number of retained nodes is three, the parser

can use the run-time stack to store the retained nodes.

Consider the modi�ed Compose procedure, Compose

0

, in Figure 8. Compose

0

invokes reduce

whenever possible. Nodes retain all necessary information for the deferred reductions of their

children. The node retains the summary of its state (node.self) and the retained state of its children

(node.retain left and node.retain right) | the pruning analysis guarantees that this is su�cient for

one-pass parsing. Each node maintains pointers (left and right) to its children to give the reducer

the illusion of an actual tree. Compose

0

must maintain these pointers, invoke the reducer when

possible, and copy the states of the children into the root node when necessary. (Note that the

left and right children of node.retain left/right are never accessed because the only rules they may

defer are chain rules.)

If the array reduce now indicates that an immediate reduction of the current node can be made,

then pointers to the two children are copied into the node, and the entire subtree rooted at the

current node is reduced. If the reduction of the current node must be deferred, the left and right

children are reduced, and their root nodes are copied into node.retain left and node.retain right for

7

procedure Compose

0

(node ptr node, int op, node ptr left child, node ptr right child)

node.self.state = burm state(op, left child.self.state, right child.self.state)

node.self.nt = 0

if (reduce now[node.self.state] 6= ?) then

node.self.left = left child.self // Create (tiny) tree for

node.self.right = right child.self // immediate reduction of this

reduce(node.self, reduce now[node.self.state]) // node (and its children).

else

left nt = left nt[left child.self.state][node.self.state]

right nt = right nt[right child.self.state][node.self.state]

reduce(left child.self, left nt) // Reduce children.

reduce(right child.self, right nt)

node.retain left = left child.self // Retain children for later

node.retain right = right child.self // chain rule applications.

node.self.left = addressof node.retain left // node represents 3-node tree.

node.self.right = addressof node.retain right

end if

end procedure

Figure 8: Compose

0

Procedure

later chain-rule reductions. The node's left and right pointers are set to point to those �elds.

Compose

0

constructs nodes and invokes parsing reductions. Each node retains all the informa-

tion necessary for any deferred reductions at, or below, itself. Therefore, the nodes from which it

was built are no longer needed. Bottom-up tree building may require maintaining multiple nodes

that each represent the unreduced portion of an entire subtree. Fortunately, such nodes can often

be kept on the run-time stack.

Appendix A contains a complete one-pass parsing example.

6 Implementation

wburg is an extension of burg. wburg and burg, therefore, have identical speci�cation languages.

wburg uses the output of burg to build and prune the characteristic graph. For suitable grammars,

it creates reduce now, left nt, and right nt tables.

6.1 Experimental Results

While the set of grammars that can be parsed optimally using wburg's parsers is a proper subset

of the grammars that can be parsed optimally using burg's, analysis indicates that most useful

grammars, including those describing the SPARC, the MIPS R3000, and the x86 architectures, fall

within this subset.

We compared the speed of wburg's one-pass parsers with burg's two-pass parsers. To the best

of our knowledge, burg produces faster two-pass parsers than any other parser-generator system.

We present speeds for burg's parsers both with and without dynamic memory allocation. For

dynamic allocation, we use malloc and free. We also present wburg's parsers both with explicit

trees (using Compose) and without trees (using Compose

0

). wburg's parsers with trees do not do

8

Platform Grammar System

burg burg wburg wburg

w/ alloc w/o alloc w/ trees w/o trees

Alpha SPARC 19.1 13.5 13.6 13.9

x86 22.3 17.7 16.6 17.1

SPARC SPARC 258.6 192.5 125.8 124.9

x86 321.5 249.9 151.3 159.7

Table 1: Speeds of Parsers (in sec.).

dynamic memory allocation. Tests utilized modi�ed versions of lcc grammars for the SPARC and

the x86 [FH95].

The tests consisted of labeling and reducing the 1,234 unique trees lcc generates when it

compiles itself. Each test parsed a set of 1,234 trees (a total of 11,587 nodes) 500 times. The tests

were performed on lightly loaded DEC Alpha and Sun SPARCstation workstations. The times in

Table 1 were measured using the system clock.

Clearly, wburg's parsers without trees are faster than burg's when burg's trees are allocated

via malloc and free.

When both burg and wburg parsers operate on trees and do no dynamic memory allocation,

wburg's parsers must do bookkeeping to avoid redundant reductions that burg's do not need to

do. wburg's parsers avoid a second tree walk, but occasionally must visit a node a second time to

do deferred chain-rule reductions. When measured with pixie on the Alpha, the number of cycles

executed for wburg's parsers was only 1{2% greater than those for burg's. The di�erence in actual

running time ranged between +3% and �7%, and we believe this is due to cache-e�ects, which are

not measured by pixie.

On the SPARC, wburg's parsers were over 50% faster than burg's even though they were saddled

with additional bookkeeping to avoid redundant reductions. While very pleased by these results,

we cannot currently explain them other than to speculate. Possible explanations include reduced

register-window spilling from only one recursive tree walk and bene�cial cache-e�ects.

The relative speeds of burg's parsers and wburg's parsers appear to be independent of grammar,

which is what we expected. Because of the overhead of copying child states into parent nodes,

wburg's parsers without trees are slower than those with trees.

6.2 lcc Grammars

The lcc grammars are written for the lburg code-generator generator, and we modi�ed them for

burg. lcc grammars allow rule costs to be determined at run-time, which burg cannot handle, so

we had to alter the grammar to use constant costs. We also put lcc grammars into normal form.

After the changes, all three grammars met the su�cient restrictions for one-pass optimal code

generation without further modi�cation. lcc puts all trees in a canonical form (e.g., all constant

operands appear as the right child of commutative operators), and this greatly simpli�es the code

generation grammars. Tests demonstrate, however, that wburg can handle non-canonical grammars

for all possible permutations of complex addressing modes.

9

7 Conclusion

We have developed the theoretical basis for optimal, one-pass tree pattern matching. Using this

theory, we have developed wburg, a code-generation system based on optimal tree-pattern matching

that has two important advantages over previous systems: the code generator does labeling and

reducing in a single parsing pass, and the code generator does not need to build an explicit IR tree.

Both advances result in time and space advantages.

References

[AGT89] Alfred V. Aho, Mahedevan Ganapathi, and Steven W. K. Tjiang. Code generation

using tree matching and dynamic programming. ACM Transactions on Programming

Languages and Systems, 11(4):491{516, October 1989.

[BDB90] A. Balachandran, D. M. Dhamdhere, and S. Biswas. E�cient retargetable code gen-

eration using bottom-up tree pattern matching. Computer Languages, 15(3):127{140,

1990.

[ESL89] Helmut Emmelmann, Friedrich-Wilhelm Schr�oer, and Rudolf Landwehr. BEG|a gen-

erator for e�cient back ends. In Proceedings of the SIGPLAN '89 Conference on Pro-

gramming Language Design and Implementation, pages 227{237, New York, 1989. ACM.

[FH95] Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler: Design and

Implementation. Benjamin/Cummings, Redwood City, California, 1995.

[FHP92a] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a

simple, e�cient code-generator generator. ACM Letters on Programming Languages

and Systems, 1(3):213{226, September 1992.

[FHP92b] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG| fast optimal

instruction selection and tree parsing. SIGPLAN Notices, 27(4):68{76, April 1992.

[HO82] Christoph M. Ho�mann and Michael J. O'Donnell. Pattern matching in trees. Journal

of the ACM, 29(1):68{95, January 1982.

[PLG88] Eduardo Pelegri-Llopart and Susan L. Graham. Optimal code generation for expression

trees: An application of BURS theory. In Proceedings of the 15th Annual Symposium

on Principles of Programming Languages, pages 294{308, New York, 1988. ACM.

[Pro92] Todd A. Proebsting. Simple and e�cient BURS table generation. In Proceedings of

the SIGPLAN '92 Conference on Programming Language Design and Implementation,

pages 331{340, New York, June 1992. ACM.

[WG92] N. Wirth and J. Gutknecht. Project Oberon, the Design of an Operating System and

Computer. Addison Wesley, 1992.

A Example One-Pass Parsing

We will outline the one-pass construction and reduction of the seven-node tree given in Figure 9.

This example utilizes the grammar and tables described throughout this paper. burg states appear

underneath the operators in the tree. burg's left-to-right, bottom-up reduction of the example tree

10

appears in Figure 10. Each rule in the reduction is annotated with the node at which the rule was

applied.

Figure 11 gives the necessary calls for building and reducing the example tree using a wburg-

derived one-pass parser. A{G are the tree nodes being composed, which correspond to the labels

in Figure 9. The �nal call to reduce guarantees that the root node is fully reduced to the goal

nonterminal, stmt.

Figure 12 gives the (nearly identical) calls for reducing the same tree, only without actually

constructing the tree. Note that the nodes X{Z are reused after they serve as children in a prior

composition | this is a bene�t of one-pass parsing without trees.

Figure 13 outlines the actions that a one-pass parser takes during the eight function calls given in

Figure 11. (The reductions induced by the calls in Figure 12 are identical.) The Nonterminal column

indicates which of the one-pass parsing tables (reduce now, left nt, or right nt) is determining the

reductions.

The reductions at node A demonstrate the subtleties of one-pass parsing. Note that visits to

A for possible reductions occur as a consequence of actions at nodes A, C, and E. When visiting

A for the �rst time, reduce now causes a reduction to con, which results in the application of rule

\con: CONST." Then, A's parent node, C, uses left nt to determine that A should be reduced to

con. Since A was previously reduced to con, this visit by reduce does not cause another reduction.

At this point, the parser has not applied a base rule at C. Finally, E uses left nt to determine

that C must be reduced to reg, which causes an application of rule \reg: ADD(reg, con)" at C.

Before making that reduction, A must be revisited, and reduced via chain rule \reg: con" because

the base rule at C requires A be reduced to a reg.

wburg-derived parsers do not produce a simple left-to-right reduction order because of the way

reductions are deferred. The reductions do, however, maintain a bottom-up ordering.

11

ASGN [2]

ADD [1] CONST [3]

CONST [3]ADD [1]

CONST [3] CONST [3]

A
B

C

D

E F

G

Figure 9: Example IR Tree With State Labels

Reductions Node

con: CONST A

reg: con A

con: CONST B

reg: ADD(reg, con) C

con: CONST D

addr: ADD(reg, con) E

con: CONST F

reg: con F

stmt: ASGN(addr, reg) G

Figure 10: burg's left-to-right, bottom-up re-

duction.

Compose(A, CONST, |, |)

Compose(B, CONST, |, |)

Compose(C, ADD, A, B)

Compose(D, CONST, |, |)

Compose(E, ADD, C, D)

Compose(F, CONST, |, |)

Compose(G, ASGN, E, F)

reduce(G, stmt)

Figure 11: One-Pass Parsing With a Tree.

Compose

0

(X, CONST, |, |)

Compose

0

(Y, CONST, |, |)

Compose

0

(Z, ADD, X, Y)

Compose

0

(X, CONST, |, |)

Compose

0

(Y, ADD, Z, X)

Compose

0

(X, CONST, |, |)

Compose

0

(Z, ASGN, Y, X)

reduce(Z, stmt)

Figure 12: Parsing Without a Tree.

Statement Nonterminal Reductions Node

Compose(A, CONST, |, |) reduce now[3] � con) con: CONST A

Compose(B, CONST, |, |) reduce now[3] � con) con: CONST B

Compose(C, ADD, A, B) left nt[3][1] � con) (Previously reduced) A

right nt[3][1] � con) (Previously reduced) B

Compose(D, CONST, |, |) reduce now[3] � con) con: CONST D

Compose(E, ADD, C, D) left nt[1][1] � reg) reg: con A

reg: ADD(reg, con) C

right nt[3][1] � con) (Previously reduced) D

Compose(F, CONST, |, |) reduce now[3] � con) con: CONST F

Compose(G, ASGN, E, F) reduce now[2] � stmt) addr: ADD(reg, con) E

reg: con F

stmt: ASGN(addr, reg) G

reduce(G, stmt) (Previously reduced) G

Figure 13: One-Pass Reductions

12

