
Adaptive Data Placement for

Distributed-Memory Machines

David K. Lowenthal

Gregory R. Andrews



Adaptive Data Placement for Distributed-Memory Machines

1

David K. Lowenthal and Gregory R. Andrews

TR 94-35

Abstract

Programming distributed-memory machines requires paying careful attention to where

the data is placed. This is because for e�ciency, it is important to balance the compu-

tational load among the nodes and to minimize excess movement of data between the

nodes during the computation. Most current approaches to data placement are static,

requiring either the programmer or compiler to explicitly place or move the data. This

paper describes a new adaptive approach. It is implemented in the Adapt system,

which �nds the best data placement at run time. When necessary, Adapt automatically

changes the data placement in mid-application, so that it adapts to the needs of the

application. Adapt can be used to simplify both programming in parallel languages

such as HPF and in compilers for these languages. We test the performance of Adapt

on three applications: Jacobi iteration, LU decomposition, and Dynamic Jacobi, which

mimics the behavior of applications such as adaptive mesh re�nement. Using Adapt,

the �rst two attain performance very close to that of programs using the best static

data placement; the third application cannot be analyzed statically and ran faster using

Adapt than with any static data placement.

December 15, 1994

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1

This work was supported by NSF grants CCR-9108412 and CDA-8822652.



1 Introduction

Distributed-memory parallel computers are used to achieve scalable high performance computing.

To execute programs on these machines, it is necessary to specify both what can be executed con-

currently and when and how processes communicate. These two problems are largely independent.

In this paper, we assume that processes have been speci�ed|explicitly in the source program or in-

ferred by a compiler|and we consider the problems of how data is placed initially in the memories

of the processors and how data moves during a computation. Ultimately, on distributed-memory

machines data placement and movement have to be realized by explicit message passing. However,

a shared-memory programming model is generally agreed to be much simpler to use.

The goal of this work is to take a shared-memory programming model and then to determine

data placements adaptively rather than requiring programmers or compilers to make such decisions.

Most current approaches to data placement are static. They can generally be divided into two cat-

egories: using language primitives, such as the ones in HPF [HPF93], or inferring data placements

in compilers, such as PARADIGM [GB93]. Language approaches involve the programmer in the

choice of data placement, yet the best placement may be di�cult or impossible for the programmer

to determine. A compiler also may not be able to infer the best data placement; moreover, the

complexity involved in inferring data placements greatly increases the size and complexity of the

compiler.

In this paper we introduce a completely dynamic approach to data placement. We have created

a prototype system, called Adapt, that has the following attributes:

� Data placement is determined at run time with a small amount of overhead.

� The data placement chosen by Adapt will change if needed in the middle of an application.

� Neither the programmer nor the compiler need be involved in the selection of the data place-

ment.

� Programs written using Adapt can be ported to other distributed-memory machines with no

source code changes.

� The system is small and simple, consisting of fewer than 1000 lines of C code.

Adapt starts with some initial data placement and monitors communication (data and syn-

chronization messages) and computation to determine if there is a better placement. If so, it

e�ects a change to the new placement. Then, Adapt continues to monitor the program, and if

the characteristics of the application change, Adapt changes the placement again. The ability to

change placements during execution is especially important for problems|such as adaptive mesh

re�nement [BO84]|for which the best data placement varies over the course of the application

[PAM94].

Adapt is currently implemented on a cluster of Sparc-1s and supports iterative scienti�c appli-

cations, which comprise a large subset of computational science applications. Performance on a

network of workstations is such that Adapt outperforms programs using any static data placement

on applications in which dynamically redistributing the data is important; the Adapt version of

Dynamic Jacobi is faster than any program with a static placement. Even when good static place-

ments exist, Adapt is competitive with programs that use them; Adapt versions of Jacobi iteration

and LU decomposition are only slightly slower than their static counterparts.

The remainder of the paper is organized as follows. Section 2 gives an overview of data place-

ment. Section 3 describes the implementation of Adapt, and Section 4 gives performance results.

1



(a) (b) (c)

BLOCKCYCLIC(4) BLOCKCYCLIC(2)

(CYCLIC)

BLOCKCYCLIC(1)

(BLOCK)

Figure 1: Di�erent data placements in Adapt for the case of n = 16 and p = 4. Three di�erent

BLOCKCYCLIC placements are shown. The rows that are placed on node 0 are shaded. We will refer

to (a) as BLOCK and (c) as CYCLIC.

Section 5 describes related work. Finally, Section 6 gives a few concluding remarks and discusses

future work.

2 Overview of Data Placement

We assume there are p nodes, numbered 0, 1, : : : , p � 1. We make two simplifying assumptions

in this paper: arrays have only two dimensions, and elements in the same row are placed on the

same node (one-dimensional placements)

1

. Each node owns a subset of the data and needs to

communicate with other nodes to access any non-local data.

The data placement problem is to divide each data structure in a program among the nodes

so that the total completion time is minimized. In other words, given a set of possible data

placements D, we wish to minimize T (d), where d ranges over D. In order to minimize T (d),

there are two overheads that should be minimized: communication and synchronization delay.

Communication overhead results from nodes needing access to non-local data, while synchronization

delay results from nodes completing their work at di�erent rates. Attempts to minimize both

overheads simultaneously often con
ict, as discussed below.

The extremes of data placements for an array are SEQUENTIAL, in which the entire array is

placed on one node, and RANDOM, in which the points of the array are randomly placed on the

nodes. The SEQUENTIAL placement will minimize communication (there is none) but will have the

maximum load imbalance (all other nodes are idle). On the other hand, the RANDOM placement will

(probabilistically) balance the load, but will likely incur a large amount of communication. The

more reasonable extremes are BLOCK and CYCLIC, as shown in Figure 1. These two placements

are really a special case of the general BLOCKCYCLIC placement. We will refer to a strip as n

contiguous data elements of an array. The BLOCK placement assigns one group of n=p contiguous

strips to each node and the CYCLIC placement assigns strips to nodes in a round-robin fashion. The

BLOCK placement has the most locality and is thus the best for minimizing communication, while

1

The techniques presented here are valid for arrays of any dimension and for multi-dimensional placements. Also,

one could distribute columns rather than rows, e.g., in a Fortran compiler.

2



Application Jacobi iteration LU decomposition Dynamic Jacobi

Computation Balanced Unbalanced Unbalanced

Locality Important Not important Important

Best Placement BLOCK CYCLIC Varies

Can static approaches work? Yes Yes No

Figure 2: Summary of application characteristics.

the CYCLIC placement has less locality but is the best for balancing the load. The intermediate

placements (e.g. BLOCKCYCLIC(2), which assigns two groups of n=2p contiguous strips to each node

in a round-robin fashion) are compromises.

In this paper we choose the set D to be all possible BLOCKCYCLIC placements (which includes all

regular placements supported by Fortran D [HKK

+

91], for example). The best placement in this

set depends on the application. For applications with roughly the same amount of computation

on all parts of the matrix and for which locality is important, the BLOCK placement will be the

best because of its good locality. On the other hand, for applications with a varied amount of

computation on the matrix and for which locality is not as important, the CYCLIC placement will

be the best because of its good balance. Finally, the best placement for applications in which

both locality is important and the amount of computation varies are dependent on several factors,

including processor and communication speed.

We will discuss three applications: Jacobi iteration, LU decomposition, and a program we

call Dynamic Jacobi, which we use to mimic the behavior of algorithms such as adaptive mesh

re�nement [BO84]. The characteristics of these applications are summarized in Figure 2. The

�rst two have regular data access patterns and loop structures, so the programmer or compiler

can determine the best data placement. However, a data placement for Dynamic Jacobi cannot be

determined statically because the best one is dependent on input values. Our adaptive approach

works for all three applications. At run time, it monitors data access patterns and computation

time and determines the best data placement.

Adaptively determining a data placement involves acquiring information about a phase of an

application and then changing the placement for the next phase based on this information. Thus,

an adaptive approach can only be used on repeating phases, which we will call iterative phases.

Many scienti�c kernels and applications are comprised of iterative phases, such as PDE solvers,

linear algebra factorization routines, and molecular dynamics particle simulations. In each case, a

phase consists of computation followed by a barrier synchronization point.

A good adaptive data placement strategy has several requirements. Most importantly, it must

�nd the best data placement with a high degree of accuracy and a small amount of overhead.

Second, as iterative phases may be short lived, the best data placement must be found as quickly

as possible. Finally, after a data placement is selected, the strategy must make sure to detect when

changing characteristics might lead to a better data placement in the middle of an application;

however, it must do so with minimal overhead.

3 Implementation

We have developed Adapt, an adaptive data placement scheme. Adapt chooses a data placement

based on minimizing the completion time of the application. Figure 3 shows (a) a general strategy

for adaptively placing data and (b) the speci�c implementation used by Adapt. By default, Adapt

initially uses the BLOCK placement; however, a compiler using Adapt can generate code using

3



1. Choose an initial placement.

2. Monitor the program until a com-

munication pattern is detected.

3. Determine communication over-

heads and execution times.

4. Determine the best placement and

broadcast this to all nodes.

5. E�ect this placement.

6. Continue to monitor the applica-

tion to determine if there is a better

placement.

1. Initially use the BLOCK placement.

2. Monitor the program until a pat-

tern of page faults is detected.

3. On each node i and for each place-

ment d, compute the overhead due

to communication, C(d; i), and the

execution time due to computation,

E(d; i).

4. Collect all times and for each place-

ment d, estimate the overall exe-

cution time on each node i using

(C(d; i) + E(d; i)). Then take the

largest such time for each d and

minimize these times over all pos-

sible placements in D.

5. Change the data each node accesses

to cause page faults that will e�ect

the new placement.

6. Time only the overall computation

and communication on each itera-

tion. If there is either a large vari-

ance in computation times or an in-

crease in the communication times,

repeat 2-5.

Figure 3: General algorithm for adaptive data placement (left) and speci�c algorithm used by

Adapt (right).

a di�erent initial placement (it might obtain better knowledge through static analysis). It is

important to note that neither the programmer nor the compiler has to choose this initial placement;

Adapt will start with the BLOCK placement and then determine the best placement in D, the set of

BLOCKCYCLIC placements.

Adapt monitors each iteration. When it recognizes a communication pattern, it creates a

table. For each node i and each data placement d in D, this table contains the communication

overhead (C(d; i)) and the time to execute the computation (E(d; i)) on this iteration. Adapt then

computes (C(d; i) + E(d; i)), the estimate of the total execution time on each node. Then, for

each d, the completion time T (d) is the largest total execution time over all nodes, i.e. T (d) =

max

p�1

i=0

(C(d; i)+E(d; i)). This is because all nodes must wait at a synchronization point until every

node has arrived. The best data placement is determined by choosing the smallest T (d) in D. An

illustrative example using the above formulas to determine the best placement for Figure 1 is given

below. The completion time T (d) is computed for each placement using the sum of communication

and computation times estimated by each node (for this example, these times are arbitrary).

Placement (d) C(d; 0) +E(d; 0) C(d; 1) + E(d; 1) C(d; 2) +E(d; 2) C(d; 3) + E(d; 3) T (d)

BLOCK 2 + 2 4 + 4 3 + 8 8 + 5 13

BLOCKCYCLIC(2) 3 + 1 6 + 3 5 + 6 9 + 3 12

CYCLIC 5 + 1 7 + 3 9 + 5 11 + 2 14

The best placement in this case would be BLOCKCYCLIC(2) as it leads to completion in 12 time

4



Node 0

0

j-1
j

j+1

M

j+2

Node 1

Read Copy

Read Owner

Read Owner
Read Copy

0

j-1
j

j+1

M

j+2

No Access

Access

Exclusive
No Access

Exclusive

Access

Figure 4: Portion of page table showing nearest-neighbor communication pattern. The edge sharing

is detected by observing that pages j and j + 1 are read-shared, with each node owning one page.

units. After e�ecting the change in placement (if necessary), Adapt then continues monitoring in

case the behavior of the application changes.

Below we discuss how Adapt obtains the communication overhead (Section 3.1) and the execu-

tion times (Section 3.2). In Section 3.3 we discuss how Adapt e�ects a change in the data placement

and how it monitors the computation after this change to allow the data placement to adapt to the

needs of the application.

The Adapt system currently runs on a network of homogeneous, isolated Sparc-1s

2

. It is built

on top of Distributed Filaments (DF) [FLA94], a software kernel that implements a shared-memory

programming model on distributed-memory machines. The shared-memory programming model

is implemented by a distributed shared memory; when an attempt is made to access a remote

memory location, a page fault is incurred, and the page that is needed is brought to the faulting

node. Thus, the data accesses in essence place the data.

3.1 Communication Overhead

All communication monitoring in Adapt is performed implicitly as a result of page faults. Several

quantities are needed to estimate communication overhead. First, we need the number of page

faults, f(d; i), that occur on an iteration on node i using placement d. This is obtained through

a counter in the page fault handler. Second, we need the amounts of time taken to acquire a

remote page and service a remote request. These numbers can be estimated by monitoring the

appropriate handlers or by running isolated tests for each new architecture; currently, Adapt uses

the latter. Then the communication overhead for one iteration using placement d can be obtained

by multiplying the number of page faults by the sum of the overheads.

C(d; i) = f(d; i) �

X

overheads per fault

The above method will estimate the communication overhead of the initial placement used

(BLOCK). However, Adapt needs to determine C(d; i) for all placements in set D. A brute force

method (with very high overhead) is to try all placements and actually execute the computation to

determine how many page faults will occur with each placement. Instead, once Adapt recognizes a

communication pattern, it computes all C(d; i) using information obtained on only one iteration.

2

Adapt could be implemented in a multi-user environment with appropriate heuristics to determine whether

di�ering computation times are due to load imbalance or to other activity on the system.

5



Node 0 Node 1 Node 2

j-1

j
j+1

M

0

j-1

j
j+1

M

0

j-1

j
j+1

M

0

Read Owner

No Access

Exclusive

Access

Exclusive

Access
No Access

Read Copy

No Access

Exclusive

Access

No Access

No Access

Read Copy

No Access

No Access

Exclusive

Access

Figure 5: Portion of page table showing broadcast communication pattern. All nodes read-share

page j, with node 0 the owner.

This can be accomplished by inspecting the pattern of faults on each array. (Adapt knows what

pages are allocated to each array.) Currently, Adapt recognizes two patterns: nearest-neighbor and

broadcast . (We are working on adding new patterns, such as butter
y.)

In the nearest-neighbor communication pattern, node i needs to communicate values with nodes

i+1 and i�1. This pattern occurs on an array when (i) each node has a distinct subset of exclusive-

access pages of the array and (ii) pairs of nodes (that are neighbors) read-share consecutive sets of

pages of the array, with one node owning each set. The degenerate case with 2 nodes is shown in

Figure 4. In this case using BLOCKCYCLIC(x/2) will result in twice as many page faults and services

as using BLOCKCYCLIC(x). Thus, the communication overhead doubles with each BLOCKCYCLIC

placement that has less locality.

On the other hand, as shown in Figure 5, Adapt detects a broadcast pattern on an array if each

node has (i) a distinct subset of exclusive-access pages of the array and (ii) a common subset of

read-shared pages of the array. A broadcast pattern means that one node writes a value, there is a

barrier synchronization point, and then all nodes read the value. In this case the number of page

faults is independent of the data placement, so the communication overhead is constant over all

BLOCKCYCLIC placements.

3.2 Determining Execution Times

The execution time due to computation on node i with placement d can be determined by timing the

start and end of an iteration, then subtracting out any time the node spends performing other tasks,

such as communicating. Instead, Adapt determines all E(d; i) in one iteration. Adapt achieves this

by timing the execution of each strip (row) (Adapt uses gettimeofday for all timings). Because

the strip is the �nest unit of placement, by timing each strip Adapt can determine execution times

due to computation for each node and for each placement.

Consider again Figure 1(a). Let R

j

denote the time to execute code accessing row j. When

program execution begins (using BLOCK), node 0 will execute code that accesses rows 0 through 3,

node 1 rows 4 through 7, and so on. So E(BLOCK; 0) =

P

3

j=0

R

j

and E(BLOCK; 1) =

P

7

j=4

R

j

(and

so on). Now, with an assignment of BLOCKCYCLIC(2), node 0 would execute code that accesses

rows 0 and 1 and rows 8 and 9. Because all computation on each node is timed, Adapt can

6



estimate E(BLOCKCYCLIC(2); 0) using the formula

P

1

j=0

R

j

+

P

9

j=8

R

j

. Adapt must have access

to all times from all nodes; code accessing rows 8 and 9 was timed on node 2, not node 0. For

scalability purposes, each node computes a p� (log(n=p)+1) table (there are log(n=p)+1 di�erent

BLOCKCYCLIC placements for a problem of size n using p nodes) with its contribution to the execution

time for each placement. This table is sent along with the barrier synchronization message. Then

the tables are combined to produce E(d; i) for all d and all i.

3.3 Changing Data Placements

Once a data placement has been chosen, Adapt must e�ect this placement. This simply involves

changing the data each node accesses to cause page faults that e�ect the new placement. After

a placement has been chosen, Adapt also continues to monitor the application to detect when a

di�erent placement might be better. (This can happen when applications characteristics change

in the middle of a phase, as shown in Section 4). Instead of timing the execution of computation

accessing each row, Adapt times only the overall computation and communication times of each

iteration; each node sends these times along with each barrier synchronization message. A large

variance in the computation times suggests an imbalanced load, which might require a placement

that better balances the load. An increase in the communication times suggests excess communi-

cation, which might require a placement with more locality. If either is detected, the nodes are

noti�ed before the start of the next iteration. All nodes then enable the �ne-grain monitoring (time

the computation on each row again, etc.) and repeat the algorithm described above to determine

the new (if any) best placement.

4 Performance

This section reports the performance of three programs: Jacobi iteration, LU decomposition, and

a new one we call Dynamic Jacobi. Jacobi iteration and LU decomposition are examples of appli-

cations in which the best data placement can be determined statically. Dynamic Jacobi, on the

other hand, models applications that need run-time support to determine the best placement.

For each application we developed an Adapt program. For an accurate comparison, we also

developed a Distributed Filaments (DF) [FLA94] program without the Adapt subsystem. The

DF program uses a static data placement. For each application we present the results of the DF

program with the best static data placement and compare it to the Adapt program.

Below, we brie
y describe the three applications and present the results of runs on 2 and 4

nodes. (The one-node Adapt program has only a few extra conditionals compared to the one-node

DF program, so their times were virtually identical and are not reported.) All tests were run on

a network of 4 Sparc-1s connected by a 10Mbs Ethernet. They use the gcc compiler with the -O


ag for optimization. The execution times reported are the median of at least three test runs, as

reported by gettimeofday. The tests were performed when the only other active processes were

Unix daemons.

4.1 Jacobi Iteration

Laplace's equation in two dimensions is the partial di�erential equation5

2

(�) = 0. Given boundary

values for a region, its solution is the steady-state values of interior points. These values can

be approximated numerically by using a �nite di�erence method such as Jacobi iteration, which

repeatedly computes new values for each point, then tests for convergence.

7



Nodes 2 4

Adapt Time (sec) 161 100

DF Time, BLOCK (sec) 160 99

DF Time, BLOCKCYCLIC(2) (sec) 171 110

Figure 6: Jacobi iteration, 256� 256, � = 10

�3

, 360 iterations

Nodes 2 4

Adapt Time (sec) 99.3 68.1

Adapt Time, starting with CYCLIC (sec) 93.3 62.8

DF Time, CYCLIC (sec) 91.1 62.5

DF Time, BLOCK (sec) 118 94

Figure 7: LU decomposition, 512� 512

Jacobi iteration is an example of an application that has a nearest-neighbor communication

pattern (see Section 3) and a load that is completely balanced. In particular, each node needs to

communicate only with its neighbors to exchange edges and the same computation is performed

on each point of the matrix on each iteration. Hence, the best data placement for this application

is BLOCK, as all placements with less locality incur more communication with no additional load-

balancing bene�t.

The execution times for three versions of Jacobi iteration are shown in Figure 6. The Adapt

program (as always) initially uses BLOCK; after recognizing nearest-neighbor communication and the

balanced load, Adapt determines that BLOCK is in fact best. The di�erence between this program

and the DF program that uses BLOCK is exactly the overhead of Adapt's monitoring. The DF

program that uses BLOCKCYCLIC(2) is worse than the DF program that uses BLOCK due to the

doubling of communication overhead.

4.2 LU Decomposition

LU decomposition is used to solve the linear system Ax = b. We decompose A into lower- and

upper-triangular matrices, such that A = LU . Then Ax = b becomes Ax = LUx = b, and the

solution, x, is obtained by solving two triangular systems Ly = b and Ux = y.

LU decomposition is an example of an application in which the load is not balanced. After a

row is pivoted, it is never accessed again; on iteration i, only an (n� i+1) by (n� i+1) submatrix

is accessed. On each iteration, each node must read the pivot row (row i), which is written by the

owner of row i. Communication is constant over all data placements. For these reasons, the best

data placement for this application is CYCLIC.

The execution times for four versions of LU decomposition are shown in Figure 7. After rec-

ognizing a broadcast communication pattern and the imbalanced load, Adapt determines that the

best placement is CYCLIC. The di�erence between this program and the DF program that uses

CYCLIC is primarily the cost of changing the data placement at run time, which results from extra

page faults to e�ect the change of the data placement. This is shown by the time of the Adapt

program using an initial CYCLIC placement; the time for this program is almost the same as the

DF program using CYCLIC. To show the e�ects of an imbalanced load, we include the DF program

using BLOCK, which exhibits severe tail-end load imbalance. Consequently, its performance is much

worse than the other programs.

8



Nodes 2 4

Adapt Time (sec) 137 89.4

DF Time, BLOCK (sec) 178 103

DF Time, BLOCKCYCLIC(2) (sec) 141 94.1

Figure 8: Dynamic Jacobi, 256� 256

4.3 Dynamic Jacobi

Dynamic Jacobi (DJ) is a parameterized program that simulates the behavior of applications for

which the best data placement can be determined only at run time or for which the best data place-

ment changes over the course of the application (or both). DJ is similar to Jacobi iteration except

that an auxiliary matrix, read in and referenced at run time, determines how much computation

should be performed at each point. Thus static analysis cannot determine the best data place-

ment. Dynamic Jacobi is intended to model applications such as adaptive mesh re�nement (AMR)

[BO84] and MP3D [McD88]. AMR, for example, is similar to Jacobi iteration except that when

the convergence rate of certain regions is slow, a �ner grid is generated to cover this region. This

increases the amount of computation in these regions. We can model this with DJ by increasing

the computation performed at certain regions (we do not actually generate the �ner grids).

The parameters we used for DJ are such that adaptive mesh re�nement is modeled. The

DJ program performs 256 iterations. On the �rst 128 iterations, it performs exactly the same

computation as Jacobi iteration. On the last 128 iterations we modeled an adaptive re�nement of

the bottom half of the grid. These points perform 5 relaxations per iteration

3

. As a result, the

best data placement for the �rst 128 iterations is BLOCK, just as in Jacobi iteration. On the last

128 iterations, the best data placement is BLOCKCYCLIC(2), which completely balances the load.

The BLOCK placement will cause nodes that work on the top half of the matrix to have very little

work compared to nodes that work on the bottom half, and placements with less locality than

BLOCKCYCLIC(2) will cause excess communication.

The execution times for three versions of DJ are shown in Figure 8. After recognizing nearest-

neighbor communication, the Adapt program determines that the BLOCK placement is best because

the load is balanced, just as in Jacobi iteration. Then, after detecting the large variance in compu-

tation times during the last 128 iterations, Adapt determines that the BLOCKCYCLIC(2) placement

is best and changes to use it. The regular DF programs cannot change the data placement, so the

DF program using BLOCK performs poorly on the last 128 iterations (due to load imbalance) and

the DF program using BLOCKCYCLIC(2) performs poorly on the �rst 128 iterations (due to excess

communication).

5 Related Work

One common approach to data placement is to provide language-level primitives, such as BLOCK

and CYCLIC. This is the approach used by HPF [HPF93], Fortran D [HKK

+

91], and Dino [RSW91],

among others. The compiler uses the programmer's speci�cation of the data placement to determine

which data each node owns and when and how each node communicates. This approach has two

advantages. First, the programmer does not have to become involved with unnecessary, low-level

details of the application, such as determining starting and ending rows and columns for each

3

Most likely, after the slow converging regions are smoothed on the �ner grid, the characteristics change back to

those similar to Jacobi iteration. Adapt would then switch back to BLOCK in the same manner.

9



node. Second, the compiler can generate a program with e�cient communication, because it knows

exactly how the data is placed. However, language primitives hinder both programming ease

and program portability. In many complex programs, the programmer may not know the best

data placement. Also, when moving the program to a new architecture with a di�erent ratio of

computation to communication speed, the programmer may need to change the use of the data

placement primitives to achieve good performance.

Another approach to data placement is to build a compiler to analyze the program code and au-

tomatically determine a placement. The PARADIGM compiler [GB93] analyzes the whole program,

and based on the structure of the loops and array accesses, determines the best data placement for

each array. PARADIGM achieves this by formulating constraints on each array in the program and

then combining the constraints consistently. The Crystal compiler is similar [LC90]. Many people

have worked on methods for compiling iterative loops, such as Socha [Soc91]. Balasundaram et

al. [BFKK91] implemented a static performance estimator that uses training sets. The compiler

approach to data placement has several advantages. Most importantly, the programmer does not

have to get involved in placing data. Also, programs need not be changed to run e�ciently on new

architectures. However, this approach also has several drawbacks. There are problems for which

the best data placement can be determined only at run time, such as mesh re�nements and particle

codes [PAM94]. Furthermore, procedure calls, pointers, and loop bounds based on run-time val-

ues can hinder the compiler's e�ort to determine the best data placement for problems otherwise

amenable to static analysis. Finally, the complexity of the compiler also increases. Given that par-

allelizing compilers already have to infer parallelism and generate communication, this complexity

can be signi�cant.

A third approach, used by Wholey in the ALEXI system [Who91], is to select the data place-

ment at run time given compiler support. This is done by basing a static cost model for language

primitives on the cost of machine primitives, and then using a hill-climbing heuristic executed at

run time to determine the best from a set of data placements. Choosing a placement at run time

eliminates di�culties caused by procedure calls, pointers, and run-time loop bounds. Furthermore,

the ALEXI system will always choose the best data placement in its set because the language is

explicitly parallel with well-de�ned communication costs for each statement. ALEXI has the same

basic philosophy as Adapt: the best time to determine data placement is at run time. One signi�-

cant di�erence between the systems is that Adapt allows a data placement to change over the course

of an application. Furthermore, the explicitly-parallel programming model of ALEXI is completely

di�erent from that of Adapt; as Adapt uses a shared-memory programming model, without signif-

icant compiler support there is no way to determine the communication and computation costs of

statements. Adapt also does not depend on a machine cost model.

6 Conclusion

We have presented an approach to adaptive data placement, implemented in the Adapt system,

which places data at run time and allows the placement to adapt to the needs of the application.

The performance of Adapt is almost as good as the performance of static schemes on problems for

which a placement can be determined by the programmer or compiler. Moreover, the performance

of Adapt is superior to any static scheme for problems that are impossible to analyze at compile

time. Adapt is implemented on a cluster of Sparc-1s in less than 1000 lines of code, which makes

it much simpler than the analysis required by compilers that attempt to infer data placements.

Adapt supports a larger class of problems than any compiler approach, and it requires no help from

the programmer in determining a data placement.

Adapt currently supports iterative scienti�c applications. To test scalability, we intend to run

10



Adapt programs on larger machines, including 8- and 16-node clusters. We are also developing more

application programs, including those containing several phases, to provide a better understanding

of their common characteristics. We will add new communication patterns to those currently

recognized by Adapt, such as butter
y and replicated patterns. In addition, we are investigating

the application of the Adapt model to compilers that explicitly generate communication rather

than using a DSM.

References

[BFKK91] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An static performance estima-

tor to guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN

Symposium on Principles and Practices of Parallel Programming, pages 213{223, 1991.

[BO84] M.J. Berger and J. Oliger. Adaptive mesh re�nement for hyperbolic partial di�erential

equations. Journal of Computational Physics, 53(484):482{512, 1984.

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Fila-

ments: E�cient �ne-grain parallelism on a cluster of workstations. In First Symposium

on Operating Systems Design and Implementation, pages 201{212, November 1994.

[GB93] M. Gupta and P. Banerjee. PARADIGM: A compiler for automated data distribu-

tion on multicomputers. In Proceedings of the 1993 ACM International Conference on

Supercomputing, Tokyo, Japan, July 1993.

[HKK

+

91] Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer, and Chau-Wen

Tseng. An overview of the Fortran-D programming system. Report TR91121, CRPC,

March 1991.

[HPF93] High Performance Fortran language speci�cation. October 1993.

[LC90] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing

between distributed arrays. In Frontiers90: The 3rd Symposium on the Frontiers of

Massively Parallel Computation, October 1990.

[McD88] Je�rey D. McDonald. A direct particle simulation method for hypersonic rari�ed 
ow.

Technical Report 411, Stanford University, 1988.

[PAM94] Dantosh S. Pande, Dharma P. Agrawal, and Jon Mauney. Compiling functional par-

allelism on distributed-memory systems. IEEE Parallel and Distributed Technology,

1(1):64{76, 1994.

[RSW91] Matthew Rosing, Robert Schnabel, and Robert Weaver. The Dino parallel programming

language. Journal of Parallel and Distributed Computing, 13(1):30{42, September 1991.

[Soc91] David Grimes Socha. Supporting �ne-grain computation on distributed memory parallel

computers. PhD thesis, University of Washington, Seattle, WA 98195, 1991.

[Who91] Skef Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213, May 1991.

11


