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ABSTRACT
Given a string w and a pattern p, approximate pattern matching merges

traditional sequence comparison and pattern matching by asking for the
minimum difference between w and a string exactly matched by p.  We give
an O(PN2(N+logP)) algorithm for approximate matching between a string
of length N and a context free language specified by a grammar of size P.
The algorithm generalizes the Cocke-Younger-Kasami algorithm for
determining membership in a context free language.  We further sketch an
O(P5N88P) algorithm for the problem where gap costs are concave, and
pose two open problems for such general comparison cost models.
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Approximately Matching Context-Free Languages

0. Introduction.

The problems of comparing two strings [NeW70, San72, WaF74, Ukk85, Mye86] and

of finding all matches to a pattern in a text [Tho68, AhC75, McC76, BoM77, KaR87]

have been extensively studied.  Combining the notions of sequence comparison and pattern

matching lead to a natural formulation of approximate pattern matching.  Namely, given

pattern p, text t, and threshold τ, find all substrings of the text that can be aligned to some

string exactly matched by p with score not greater than τ.  This problem has two major

dimensions of variation: (1) the pattern class over which p is chosen, and (2) the notion of

sequence comparison used to assess the difference between two strings.  Some of the

simplest variations of this problem have already been extensively studied.  For example

when p is a string and the measure of difference is the number of unaligned symbols and

mismatched pairs, we have the approximate string matching problem [LaV89, CL90,

GaP90, Mye90, Ukk92, WuM92, WMM94].  In applications such as molecular biology,

one must more generally compare sequences using arbitrarily weighted mismatch costs

[DBH83], and often one must use affine or concave costs for gaps of unaligned symbols

[FiS83, Wat84, MiM88, GaG89].

Comparatively little work has been done for choices of p other than a simple string.

Myers and Miller [MyM89, Mye92] considered the problem for p a regular expression,

Sankoff and Kruskal [SaK83] considered the case of regular expressions without Kleene

closure, and Akutsu [Aku94] has considered the case of keywords with "wildcard"

symbols.  Earlier work was done on what was thought of at the time as error correction

problems: given a pattern p, say a context free language, and a string t, what is the minimal

number of corrections that transform t into a string in the language accepted by p?  A

correction corresponds to a mismatch or unaligned symbol in our comparison model and

the problem is phrased in terms of testing membership rather than performing a search.

These differences are inconsequential, but it is the case that all work on "order correction"

was done with unit costs, i.e. they were only interested in the number of corrections

required.  Wagner and Seiferas [WaS78] presented order correction algorithms for regular

expressions and counter automata.  Myers and Miller [MyM89] latter developed a much

simpler O(PN) algorithm for approximately matching regular expressions under arbitrarily

weighted mismatch and unaligned symbol costs, and Knight and Myers [KnM92] have

developed an O(PN(log2P+logN)) algorithm that permits concave gap costs.  Recall from

the abstract that P is the length of the pattern p and N is the length of the text t.

This note concerns itself with the problem of approximately matching context free

languages.  We develop a generalization of the exact matching, dynamic programming

algorithm of Cocke, Younger, & Kasami [Kas63, You67] that realizes an

O(PN2(N+logP)) algorithm for approximate matching under a weighted comparison
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model.  Earlier relevant work is by Aho & Peterson [AhP72] and Lyons [Lyo74] on order

correction for context free languages for which they devised a generalization of Early's

algorithm [Ear70] to arrive at O(N3) algorithms.  However, their results are specific and

applicable only to the unit cost comparison model and they do not consider the complexity

of their methods in terms of grammar size which as presented is O(P2).  We further show

that our algorithm extends to affine gap-cost comparison models but that when concave

gap-costs are to be modeled an appeal to the pumping lemma [HoU79, pp. 125-127] seems

necessary and leads to an O(P5N88P) algorithm that is exponential in grammar size (but not

in N).

accgatattacg

acgaggtataag

Gap Mismatch

Figure 1: An alignment.

1. Preliminaries.

An alignment between two strings 
  

w = a1a2LaN  and 
  
v = b1b2LbM  is a set of pairs of

aligned symbols such that if one were to draw lines between aligned symbols they would

not cross as in Figure 1.  Formally, alignment 
  
Τ = { (i1, j1), (i2 , j2 ),L (iL , jL ) } aligns

symbols aik
 and bjk

 for all k, and satisfies the property that ik < ik +1  and jk < jk +1  for all

k < L.  Typically alignments are assigned scores according to the pairs of symbols they

align/mismatch and the substrings of consecutive symbols, or gaps, they leave unaligned.

We will assume as input to our problems  a function δ that assigns a real-valued score,

δ (a,b) , to each aligned/mismatched pair and a score δ (u) to each gap u ∈ Σ+ .  Under this

scheme the score of alignment Τ is:

δ (aikk =1

L

∑ ,bik
)  + 

  

δ (aik +1
k =0

L

∑ aik +2Laik+1 −1) + 
  

δ
k =0

L

∑ (bjk +1bjk +2Lbjk+1 −1)

where for simplicity it is assumed that i0 = j0 = 0, iL+1 = N + 1, jL+1 = M + 1, and

δ (ε ) = 0.  Usually δ (a,a) = 0 but this need not be the case.  When comparing strings w

and v, we seek an alignment of minimal score and call the minimal score, δ (w,v), the

difference between w and v.

We have thus far left the manner in which δ scores gaps more general than it is usually

treated in the literature.  Typically gaps are attributed scores according to (1) their length,

i.e. 
  

δ (c1c2Lch ) = gap(h) , or (2) as the sum over the symbols in the gap of scores
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attributed to leaving each symbol unaligned, i.e., 
  

δ (c1c2Lch ) = σ(ck
k =1

h

∑ ) .  This paper

considers the later, symbol-dependent model in its central algorithm, and a number of

versions of the length-dependent model in its final section.  As a concrete example, the

approximate string matching and order correction problems concern the scoring scheme:

δ (a,b) =
1 if a ≠ b

0 if a = b





   and 
  

δ (c1c2Lch ) = h. (1.1)

Note that for this δ, gap scoring is an instance of both the length- and symbol-dependent

models.  While this simple scheme is useful in information retrieval and text processing

contexts, in other applications such as comparing protein sequences, producing meaningful

alignments requires the more general weighted models above.

Given a pattern p, a string w, and a scoring scheme δ, the difference δ ( p,w)  between

p and w, is min {δ (v,w) : v ∈ L( p)} where L(p) is the set of strings exactly matched by p,

also called the language accepted by p.  In this note we focus on the basic approximate

matching problem of computing the difference between a pattern and a string, analogous to

the basic problem of determining membership in the language of a pattern.  Algorithms for

variations such as determining a string v in L(p) realizing the difference and its alignment to

w follow directly from the algorithm for the basic problem.  It is also the case that our basic

algorithm for context free languages readily solves the searching variation where one is

searching a text t for all substrings whose difference from p is not greater than some

threshold.

Let G = <V,S,Σ,Π> be a context free grammar where V is the set of non-terminals,

S ∈V  is the sentence symbol, Σ is the terminal alphabet, and Π ⊂ V × (V ∪ Σ)∗ is the

production set.  We write α ⇒ β  if β  can be obtained from α with the application of one

production of Π, and α ⇒* β  if β  can be obtained via a chain of zero or more rewritings

from Π,.  In all three cases we say α derives β .  The language accepted by G, L(G) is the

set of all w ∈ Σ∗  such that S ⇒* w , i.e., the set of all terminal strings derivable from S.

We assume without loss of generality that G does not contain any useless productions

[HoU79, pp. 88-90].

We consider the size, P, of a grammar to be, Σ A→α (|α |+1), the sum of the lengths of

all productions.  For reasons of both simplicity and algorithmic complexity we must first

transform this grammar into Chomsky Normal Form (CNF) [HoU79, pp. 92-94] save for

the removal of unit productions.  Recall that the first step of the transformation sequence

replaces each occurrence of a terminal symbol a with a new non-terminal Ca  in right-hand
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sides of length two or more, and adds a new production Ca → a  to the grammar.  In the

second step one transforms each production 
  

A → B1B2KBk  with k  > 2 into the k − 1

productions: A → B1C1, C1 → B2C2 , 
  

L Ck −2 → Bk −1Bk where 
  

C1, C2 ,L Ck −2  are new,

unique non-terminals added to the grammar.  Finally, we determine all non-terminals that

can derive the empty string (see [Hou79, pp. 90-92]), remove all ε-productions (i.e.

productions of the form A → ε ), add S → ε  if S can derive the empty string, and for

every A → BC  we add the production A → B  ( A → C) if C (B) can derive the empty

string.  This leaves us with an equivalent transformed grammar ′G = < ′V ,S,Σ, ′Π >  whose

size is still O(P), but for which every production is of the form A → BC , A → B , or

A → a  where A, B,C ∈V  and a ∈ Σ , save for the one production S → ε  iff ε ∈ L(G).  We

call this form pseudo-CNF to emphasize that we have not removed unit productions (i.e.

productions of the form A → B) from the grammar.  These are normally removed as a last

step in the usual CNF transformation, but we do not do so as their removal can create a

grammar of size O(P2).

2. The Central Algorithm.

Our central result is an algorithm for computing δ (G,w) where G is a context free

grammar, 
  

w = a1a2LaN  is a string of length N, and δ is a weighted and symbol-dependent

scoring scheme with non-negative gap costs.  That is, 
  

δ (c1c2Lch ) = σ(ck
k =1

h

∑ ) , and δ (a,b)

and σ(c) ≥ 0 are real numbers.  Moreover, it is assumed without loss of generality that G

is in pseudo-CNF form as described immediately above.

Our algorithm for approximately matching context free languages extends the dynamic

programming algorithm of Cocke-Younger-Kasami [Kas63, You67] that computes the set

of non-terminals that can derive every substring 
  

wiL j = aiai+1La j  of w.  Their algorithm

can be viewed as computing a predicate, 
  

D(A,i, j) ≡ (A ⇒* wiL j ) , for all A ∈V  and

0 ≤ i − 1 ≤ j ≤ N , that is true if and only if A can derive 
  

wiL j .  Note that in the boundary

case where j = i − 1 we are assuming that 
  

wiLi−1 = ε .  In direct analogy our algorithm

computes a value C(A,i, j)for the O(PN2)  choices of A, i, and j that is the score of the best

alignment between a non-empty string derivable from A and the substring 
  

wiL j .  Formally:

  

C(A,i, j) = min {δ (v,wiL j ) : A ⇒* v ≠ ε }.

The recurrence we are about to develop for these C-values generalize those for the D-

predicates of the Cocke-Younger-Kasami algorithm and are unusual in that they form a

cyclic system of equations that preclude a straightforward application of dynamic

programming.
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Theorem 1:   C(A,i, j) = min {
A→ BC, k ∈[i−1, j ]

min C(B,i,k) + C(C,k + 1, j) , (2.1)

                                          

A→ B
min C(B,i, j) ,

A→a, k ∈[i, j ]
min δ (a,ak ) + G(i, j) − σ(ak ) ,

A→a
min σ(a) + G(i, j)

}

where  G(i, j) ≡ g( j) − g(i − 1)   and  g(i) =
0 if i = 0

g(i − 1) + σ(ai ) if i > 0





Proof:  First we show C(A,i, j) is not greater than the right-hand side.  Suppose for

some  k ∈[i − 1, j] t h a t  
  

C(B,i,k) = δ (t,wiLk ) w h e r e  B ⇒* t ,  a n d

  

C(C,k + 1, j) = δ (u,wk +1L j )  where C ⇒* u .  If A → BC ∈ Π  then A ⇒ BC ⇒* tu , and

so C(A,i, j) ≤ 
  

δ (tu,wiL j ) ≤ 
  

δ (t,wiLk ) + δ (u,wk +1L j ) = C(B,i,k) + C(C,k + 1, j) .

Similarly, if A → B ∈ Π  then one can conclude C(A,i, j) ≤ C(B,i, j) .  Next, it is easy to

see that g(i)  = Σh≤iσ(ah ) and thus that G(i, j)  = Σ i≤h≤ jσ(ah ) = 
  

δ (ε,wiL j ), the cost of

leaving 
  

wiL j  unaligned.  So if A → a ∈ Π  for a ∈ Σ  then one can conclude C(A,i, j) ≤

  

δ (a,wiL j ), but by the additivity of δ it follows that 
  

δ (a,wiL j ) is the minimum of either

  

δ (a,ε ) + δ (ε,wiL j )  = σ(a) + G(i, j) or 
  

mink δ (ε,aiLak −1) + δ (a,ak ) + δ (ε,ak +1La j ) =

mink δ (a,ak ) + G(i, j) − σ(ak ) .  We do not need to consider the possible production

S → ε   as A must derive a non-empty string.  Thus C(A,i, j) is not greater than any term

in the minimum of the right-hand side.

For the converse, suppose that A ⇒* v ≠ ε  and 
  

C(A,i, j) = δ (v,wiL j ).  Since there

must be some first step in the derivation of v from A, one of the following must be true: (1)

A ⇒ BC ⇒* v, (2) A ⇒ B ⇒* v , or (3) A ⇒ a = v .  If (1) is true then there are strings t

and u such that v = tu , B ⇒* t , and C ⇒* u .  Moreover, there must be some k∗ ∈[i − 1, j]

such that 
  

δ (v,wiL j ) = 
  

δ (t,wiLk ∗ ) + δ (u,wk ∗ +1L j ).  It then follows that C(A,i, j) =

  

δ (v,wiL j ) = 
  

δ (t,wiLk ∗ ) + δ (u,wk ∗ +1L j ) ≥ C(B,i,k∗) + C(C,k∗ + 1, j) .  Similarly, if (2) or

(3) are true then C(A,i, j) ≥ C(B,i, j) or 
  

C(A,i, j) ≥ δ (a,wiL j ), respectively.  Thus

C(A,i, j) must be greater or equal to at least one of the terms in the minimum of the right-

hand side.   ■

The recurrence of Theorem 1 expresses C(A,i, j) in terms of other C-values for which

j − i  is smaller except when i and j remain unchanged in the unit-production minimum of

(2.1) and more subtly when k = i − 1 or k = j  in the first minimum of (2.1).  Thus

C(A,i, j) may potentially depend on itself since in a recursive grammar A can derive a

string containing A.  This is even more evident in the boundary case where j = i − 1.  First

note that C(A,i,i − 1)  = G(A) for all values of i , where G(A) =
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min {δ (v,ε ) : A ⇒* v ≠ ε }.  Thus a non-asymptotic efficiency gain is possible in the

algorithm to follow by computing G(A) once instead of N + 1 times.  Specializing (2.1) to

G(A) yields the recurrence:

G(A) = min {
A→ BC
min G(B) + G(C),

A→ B
min G(B),

A→a
min σ(a)} (2.2)

whose cyclic dependencies are quite evident.  This complication did not arise in the

algorithm designed by Cocke, Younger, and Kasami as (1) they assumed the grammar G

was in strict CNF form and hence did not have unit productions, and (2) one does not need

to consider k = i − 1 or k = j  in the first minimum of (2.1) because B or C cannot match

the empty string (whereas they can approximately match it in our case).  While unit

productions could be removed, we do not do so because it would result in an algorithm

whose complexity in P would be O(P2) as noted in the preliminaries.

Using the dynamic programming paradigm, the algorithm of Figure 2 below computes

a table, C[A,i, j], of the C-values in increasing order of len = j − i + 1.  Thus when one is

about to compute C-values for a given i and j in lines 4-12, one can assume that C(B,g,h)

has been correctly computed and stored in C[B,g,h] for all B , g , and h  such that

h − g < j − i .  So it is only the terms of recurrence (2.1) not in:

known(A,i, j) = min
A→ BC, k∈[i, j −1]

min C[B,i,k] + C[C,k + 1, j] ,

min
A→κ

σ(κ ) + G(i, j) ,

min
A→a, k ∈[i, j ]

δ (a,ak ) + G(i, j) − σ(ak )



















(2.3)

that have not been computed.  Namely, C(A,i, j) depends on C(B,i, j)  iff A → BC ,

A → CB, or A → B .  Consider the following weighted graph model of these

dependencies.  There is a vertex for each non-terminal in G and a special source vertex φ .

There is an edge from φ  to every vertex A whose weight is known(A,i, j).  Also there is

an edge of weight 0 from B to A iff A → B  and an edge from B to A with weight G(C) iff

A → BC  or A → CB.  It follows directly from the construction that the value of C(A,i, j)

is the weight of a shortest path from φ  to A in this graph.  Moreover, since σ  is positive,

G(A) is positive for every non-terminal, and so every edge weight is positive.  Thus

Dijkstra's shortest path algorithm [Dij59] may be applied directly as detailed in lines 4-12

of Figure 2.
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0. Var C: array [V,1..N+1,0..N] of real

1. For   len ← 0
 
t o

 
N

 
d o

2. For   i ← 1
 
t o

 
N − len + 1

 
d o

3. { j ← i + len − 1
4. For   A ∈V

 
d o

5. C[A,i, j] ← known(A,i, j)
6. H ← heap of V (ordered by C[?,i, j])
7 While   H ≠ ∅  d o

8. { A ← extract_ min(H)
9. For   B ∈ H  and   ( B → AC ∈ Π  o r   B → CA ∈ Π ) d o

10. {   C[B,i, j] ← min {C[B,i, j], C[A,i, j] + G(C)}; reheap(H ,B) }
11. For   B ∈ H  a n d   B → A ∈ Π  d o

12. {   C[B,i, j] ← min {C[B,i, j], C[A,i, j]}; reheap(H ,B) }
13. }
14. }
15. Print " δ (G,w)  i s "   min {C[S,1, N], G(0, N) if S → ε }

Figure 2: O(PN2(N+logP)) algorithm for computing δ (G,w).

Theorem 2: After taking O(PN2(N+logP)) time the algorithm of Figure 2 concludes with

C[A,i, j] = C(A,i, j)  for all A, i, and j.  Also δ (G,w)= min {C[S,1, N], G(0, N) if S → ε }.

Proof:  With regard to correctness, the preceding paragraph presents the algorithm of

Figure 2 as a dynamic programming algorithm centering on recurrence (2.1) with an

application of Dijsktra's algorithm in the inner loop to properly handle the cyclicity induced

by the grammar.  Thus correctness follows from the correctness of (2.1) and that of

Dijkstra's algorithm.  There is, however, the subtle situation where i = 1 and j = 0, that is,

when we are computing G-values for the first time in accordance with recurrence (2.2).

Note that in this case the graph dependency model no longer holds as the weight

G(A) ≡ C[A,1,0] of some edges isn't known!  In this case one should conceptually think

of applying Dijkstra's algorithm to a hyper-graph where there is a hyper-edge of weight 0

from B and C to A whenever A → BC .  An exercise that revisits the details of the proof of

Dijkstra's algorithm reveal the correctness of the algorithm in this boundary situation.

Finally, either the empty string is closest to w (if ε ∈ L(G)) or some non-empty string is

closest to w.  By construction the former is G(0, N)  and the later is C[S,1, N].  Thus line

15 correctly reports δ (G,w)

With regards to time, observe that the outer two for-loops of lines 1 and 2 are repeated

O(N2) times.  Assuming that O(N) time is taken earlier to precompute a table of the values

g(i), a total of O(PN) time is spent each time the for-loop of lines 4&5 is executed.
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Constructing the initial heap in lines 6 takes O(P) time.  To account for the time spent in the

while-loop of lines 7-13, observe that when a non-terminal A is extracted, the number of

repetitions of the subsequent for-loops equals the number of productions involving A in

their right hand side.  Summed over all non-terminals this is P.  Each reheap is an O(logP)

operation, giving the dominant cost of O(PlogP) for the while-loop.  In summary,

O(P(N+logP)) time is spent each time lines 3-14 are executed, and these lines are executed

O(N2) time.   ■

In keeping with the dynamic programming paradigm, the algorithm computes the best

alignment between a non-empty string derivable from every non-terminal and every

substring of w, in order to efficiently compute C[S,1, N], the best alignment between a

non-empty string v derivable from S and all of w.  To obtain v, its derivation from S, and

the alignment to w achieving this minimum, one need only start at the entry C[S,1, N],

determine how its minimal value was achieved, and then recursively traceback through the

relevant terms in the table C.  This can be done in O(P(M+N)) time where M is the length

of v.

Theorem 2, our primary and fastest result, requires that G(A) ≥ 0 for all A, which is

true whenever σ(a) ≥ 0 for all a ∈ Σ .  That is, in order to apply Dijkstra's algorithm, all

that is required is that σ -values be non-negative, the alignment values δ (a,b)  of scoring

scheme δ may be arbitrary.  In applications in molecular biology, such a restriction on gap

costs is almost always reasonable.  Nonetheless, for arbitrary σ an algorithm is still

possible: rather than using Dijkstra's algorithm we can use an O(P2) algorithm (e.g.

[Bel58]) for computing shortest paths over a graph with arbitrary edge weights.  One

subtlety: if such a subprocedure detects a negative cycle then the overall algorithm should

halt and report a difference of −∞ .  Thus we also have an O(PN2(N+P)) algorithm for

approximately matching a context free language under arbitrary scoring scheme δ.

3. Generalizing Gap Costs.

We now sketch extensions to our basic result for the case where gap costs are length

dependent.  For affine gap costs, i.e., gap(h) = r + sh  for constants r and s, we show that

an easy extension gives algorithms with the same complexities as those of the previous

section.  Concave gap costs are characterized as having non-increasing forward

differences, i.e., ∆gap(h) ≥ ∆gap(h + 1) for all h ≥ 1 where ∆gap(h) =

gap(h + 1) − gap(h) .  In this case we present recurrences leading to an O(P6N88P)

algorithm and pose the open problem of designing an algorithm that is not exponential in P.
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Finally, for arbitrary functions gap(h) we pose the problem of determining if the

approximate match problem is recursive or not.

In the case of affine gap costs, the key is to develop recurrences for:

  
ν
τC (A,i, j)= min{δ (x)+δ (v,wiL j )+δ (y) : A ⇒∗ xvy ≠ ε and x τ 0 and y ν 0}

where τ,ν ∈ {=,≠}.  The idea is to compute four different C-values modulated by τ and ν
that break alignments with strings derivable from A (hereafter called A-strings) into four

cases depending on whether the alignment begins or ends with a gap of symbols of the

A-string.  For example, =
≠C (A,i, j)  is the score of the best alignment between an A-string t

with 
  

wiL j  that leaves the first symbol of t unaligned and its last symbol aligned.  Following

the logic of the previous section leads directly to the following recurrences for these

quantities.

Theorem 3: For all A ∈V , 0 ≤ i − 1 ≤ j ≤ N , and τ,ν ∈ {=,≠}:

          ν
τC (A,i, j)= min{ min

A→ BC,k ∈[i−1, j ],κ ,σ ∈{=,≠}
κ
τC (B,i,k) + ν

σC (C,k+1, j) − (r if κ =σ=' ≠' ),

          

min
A→ B

ν
τC (B,i, j),

( min
A→a,k ∈[i, j ]

δ (a,ak ) + ( j−i)s + (r if k>i) + (r if k< j) ) if τ=ν=' =' ,

( min
A→a

( j−i+2)s + 2r ) if τ ≠ ν and j ≥ i,

( min
A→a

r + s) if τ=ν=' ≠' and j < i

}

Proof:  The proof is a relatively direct extension of that for Theorem 1, so we only

make a couple of comments to assist the reader's intuition.  In the minimum over

productions A → BC , r is subtracted when κ = σ = ' ≠'  because two gaps are being

merged into one.  On the other hand, one need not be concerned with end-gaps of 
  

wiL j  as

the minimum is over all possible k.  Finally, the basis minimums over productions A → a

of (2.1) have G(i, j)  replaced with r + ( j − i + 1)s , σ(a)  replaced with r + s, and are

spread across the four choices of τ and ν, according to the underlying alignment.   ■

Gap(h) ≥ 0 for all h if and only if r + s ≥ 0  and s ≥ 0.  In this event we have a scoring

scheme with non-negative gap costs and a direct adaptation of the algorithm of Figure 2 to

the recurrence of Theorem 3 yields an O(PN2(N+logP)) algorithm for approximate

matching of context free languages with affine gap costs.  When gap(h) is negative for



-10-

some h then we can develop an O(PN2(N+P)) algorithm by an appeal to a more powerful

shortest paths algorithm as noted earlier.

In the more general case of concave gap costs we first have to be concerned with

whether or not gap(h) is non-decreasing.  If it isn't and L(G) is not finite (i.e. G  is

recursive) than the difference to w can be made arbitrarily negative by simply deriving

arbitrarily large strings.  So a first step is to screen this possibility and answer −∞  if it

arises.  Hence forward, we assume gap(h) is non-decreasing.  During the treatment under

this assumption, it will become clear that a corollary is an O(PN48P) algorithm for the case

when L(G) is finite and gap(h) is decreasing.

Under the cost model of concave, non-decreasing gap costs the key is to develop

recurrences for:

  

C(A,i, j,l,r)= min{δ (v,wiL j ) : A ⇒∗ xvy ≠ ε and x =l and y =r}

where l,r ∈[0, NP2P ].  In this case we maintain additional parameters l and r that constrain

the exact size of the end-gaps that occur in an A-string's alignment with 
  

wiL j , and the C-

value does not include the cost of these end-gaps.  The lack of additivity in scoring gaps

requires that the gap extensions modeled by aligning an A-string with the empty string be

explicitly represented in the recurrence using the auxiliary quantity:

L(t) = {A : A ⇒∗ v and v = t}

that is the set of non-terminals that can derive strings of length t ∈[1, NP2P ].  This has the

modest compensation of removing the need for the boundary case j = i − 1 since it is now

explicitly represented in the recurrence of Theorem 4.

Theorem 4: For all A ∈V , 0 ≤ i ≤ j ≤ N , and l, r ≥ 0:

C(A,i, j,l,r)= min{ min
A→ BC,i≤k <t≤ j ,m,n≥0

C(B,i,k,l,m) + C(C,t, j,n,r) + gap(t−k) + gap(m+n),

              

min
A→ BC,t ∈[1,r ],C∈L(t )

C(B,i, j,l,r − t),

min
A→ BC,t ∈[1,l ],B∈L(t )

C(C,i, j,l − t,r),

min
A→ B

C(B,i, j,l,r),

( min
A→a,k ∈[i, j ]

δ (a,ak ) + gap(k−i) + gap( j−k) ) if l=r= 0,

min
A→a

gap( j−i +1) if l+r = 1

}

where L(t) = k =1
t −1∪ {A : A→BC ∈ L(k)×L(t−k)}∪{A : A→B ∈ L(t)}∪{A : A→a and t=1}.
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Proof:  The correctness of the recurrence is established using a case-based argument

on the strings derivable from A as in Theorem 1.   ■

The one essential point that we will prove by an appeal to the pumping lemma is that it

suffices to compute the recurrence only for end-gaps up to a maximum size of NP2P , i.e.

the variables l, r, m, and n of the recurrence can be restricted to range over the interval

[0, NP2P ] without loss of generality.  To do so it suffices to show that Best(A,i, j)  =

min
l,r ∈[0, NP2 P ]

C(A,i, j,l,r)  where Best(A,i, j)  = 
  

min{δ (v,wiL j ) : A ⇒∗ xvy for some x and y}

is the best alignment between a substring of an A-string and 
  

wiL j .  Suppose that

Best(A,i, j)  = 
  

δ (u,wiL j )  and that the subsequence u∗ is the sequence of symbols in u

aligned with those of 
  

wiL j  in the optimal alignment.  In the derivation tree of u from A, let

a junction vertex be an interior vertex with two children (in CNF outdegree is one or two)

both of which derive at least one symbol in u∗.  Any subpath between two junction vertices

with more than V  vertices must have a repeated non-terminal label.  In such a case one

could produce a derivation from A with shorter gaps between symbols in u∗ by cutting out

the section between the repeated labels, a contradiction to optimality.  Thus in the derivation

of u from A, all subpaths between consecutive junction vertices must have V -or-less

vertices, and each off-child of a vertex on a subpath which is itself is not on the subpath

must produce a shortest possible string derivable from its non-terminal label.  But then

from the facts that max
A∈V

min
A⇒∗ v

v ≤ 2P−1  and 
  

u∗ ≤ wiL j ≤ N , it follows that the largest gap

in the alignment with u is not greater than the number of leftmost/rightmost subpaths

between junction vertices times their length times the length of the minimum strings derived

by an off-child, i.e. (N + 1)(P − 1)2P−1 ≤ NP2P .

Given that the recurrence of Theorem 4 need only be computed in the range of indices

proved above it follows that one needs to compute O(|V|P2N44P) entries.  The cost of

handling the cyclic dependencies introduced by the unit production terms is dominated by

the O(PAP2N44P) time needed to computed the first minimum of the recurrence, where PA

is the number of productions with A as their left-hand side.  Thus we can compute the

difference between a context free language and a string under a concave, non-decreasing

gap-penalty scoring scheme in worst-case time O(P5N88P).  Note that when L(G) is finite,

then its longest string is of length not greater than 2P−1 .  Thus in this case, the end-gap

indices need only be varied over the range [0,2P−1] and an O(PN48P) algorithm ensues

regardless of whether gap(h) is non-decreasing or not.

The immediate question is whether one can do better than above since the powers are

very high and the dependence on grammar size is exponential.  This appears very difficult.



-12-

Finally, if gap costs can be an arbitrary function of length we know of no result and ponder

whether the problem is computable by any Turing machine.
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