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Abstract

To add time support to the relational model, both �rst normal form (1NF) and non-

1NF approaches have been proposed. Each has associated di�culties. Remaining

within 1NF when time support is added may introduce data redundancy. The non-

1NF models may be incapable of directly using existing relational storage structures or

query evaluation technologies.

This paper describes a new, conceptual temporal data model that better captures

the time-dependent semantics of the data, while permitting multiple data models at the

representation level. This conceptual model e�ectively moves the distinction between

the various existing data models from a semantic basis to a physical, performance-

relevant basis.

We de�ne a conceptual notion of a bitemporal relation where tuples are stamped

with sets of two-dimensional chronons in transaction-time/valid-time space. Next, we

describe �ve representation schemes that support both valid and transaction time; these

representations include both 1NF and non-1NF models. We use snapshot equivalence

to relate the representational data models with the bitemporal conceptual data model.

We then consider querying within the two-level framework. To do so, we de�ne an

algebra at the conceptual level. We then map this algebra to the representation level

in such a way that new operators compute equivalent results for di�erent representa-

tions of the same bitemporal conceptual relation. This demonstrates that all of these

representations are faithful to the semantics of the conceptual data model, with many

choices available that may be exploited to improve performance.
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1 Introduction

Adding time to the relational model has been a daunting task [BADW82, McK86, SS88, Soo91].

More than a dozen extended data models have been proposed over the last decade [Sno92, JS92].

Most of these models support valid time, that is, the time a fact was valid in the modeled reality.

A few, notably [BZ82, BG89, Sno87, Sno93], have also supported transaction time, the time a fact

was recorded in the database; such models are termed bitemporal because they support both kinds

of time [JCG

�

92].

While these data models di�er in many dimensions, perhaps the most often stated distinction

is that between �rst normal form (1NF) and non-1NF. A related distinction is between tuple times-

tamping and attribute-value timestamping. Each has associated di�culties. Remaining within

1NF (an example being the timestamping of tuples with valid and transaction start and end times

[Sno87]) may introduce redundancy because attribute values that change at di�erent times are

repeated in multiple tuples. The non-1NF models, one being timestamping attribute values with

sets of intervals [Gad88], may not be capable of directly using existing relational storage structures

or query evaluation techniques that depend on atomic attribute values.

It is our contention that focusing on data presentation (how temporal data is displayed to

the user), on data storage, with its requisite demands of regular structure, and on e�cient query

evaluation has complicated the primary task of capturing the time-varying semantics. The result

has been a plethora of incompatible data models and query languages, and a corresponding surfeit

of model speci�c database design approaches and implementation strategies.

We advocate instead a very simple conceptual data model that captures the essential semantics

of time-varying relations, but has no illusions of being suitable for presentation, storage, or query

evaluation. We instead rely on existing data model(s) for these tasks, by exploiting equivalence

mappings between the conceptual model and the representational models. This equivalence is

based on snapshot equivalence, which says that two relation instances are equivalent if all their

snapshots, taken at all times (valid and transaction), are identical. Snapshot equivalence provides

a natural means of comparing rather disparate representations. Finally, while not addressed here,

we feel that the conceptual data model is the appropriate location for database design and logical

query optimization [JSS92].

In essence, we advocate moving the distinction between the various existing temporal data

models from a semantic basis to a physical, performance-relevant basis, utilizing our proposed

conceptual data model to capture the time-varying semantics.

The paper has the following outline. In the next section, the conceptual model is de�ned.

We then examine �ve representational data models that have been previously proposed. These

representational models can be classi�ed as either tuple timestamping (e.g., [BZ82, NA89, Sad87,

Sar90, Sno87, Sno93]), backlog-based (e.g., [Kim78, JMRS92]), or attribute-value timestamping

(e.g., [CC87, Tan86, Gad88, LJ88, MS91]). We provide mappings between the conceptual model

and these representational models. We also discuss covering functions that trade space e�ciency

for operator simplicity and execution time e�ciency.

Having presented both the conceptual data model and the representational data models, Sec-

tion 4 presents an overview of the interaction among the data models. Snapshot equivalence is the

subject of Section 5. Ironically, while de�nitions of snapshot equivalence are particular to individ-

ual data models, the de�nitions rely on model-speci�c operations because the notion of snapshot

equivalence allows us to relate relation instances, as well as operators, of di�erent representations,

and also allows us to relate representations to the semantics ascribed to the conceptual model. Sec-

tion 6 is devoted to generalizing algebraic operators of the relational model to apply to objects in

the bitemporal conceptual model as well as one of the tuple-timestamped representational models.

As with data instances, we demonstrate correspondence of these operators.
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After summarizing, we outline the next steps to be taken in utilizing the conceptual model

to integrate existing temporal data models.

2 Bitemporal Conceptual Relations

The primary reason for the success of the relational model is its simplicity. A bitemporal relation

is necessarily more complex than a conventional relation. Not only must it associate values with

facts, as does the relational model, it must also specify when the facts were valid in reality, as well

as when the facts were current in the database. Since our emphasis is on semantic clarity, our

aim is to extend the conventional relational model as small an extent as necessary to capture this

additional information.

2.1 De�nition

Tuples in a bitemporal conceptual relation instance are associated with time values from two

orthogonal time domains, namely valid time and transaction time. Valid time is used for capturing

the time-varying nature of the portion of reality being modeled, and transaction time models the

update activity associated with the relation. For both domains, we assume that the database

system has limited precision, and we term the smallest time unit a chronon. As we can number

the chronons, the time domains are isomorphic to the domain of natural numbers.

In general, the schema of a bitemporal conceptual relation, R, consists of an arbitrary number

of explicit attributes, A

1

, A

2

, : : : , A

n

, encoding some fact (possibly composite) and an implicit

timestamp attribute, T. Thus, a tuple, x = (a

1

; a

2

; : : : ; a

n

j t

b

), in a bitemporal conceptual relation

instance, r(R), consists of a number of attribute values associated with a timestamp value.

An arbitrary subset of the domain of valid times is associated with each tuple, meaning that

the fact recorded by the tuple is true in the modeled reality during each valid-time chronon in the

subset. Each individual valid-time chronon of a single tuple has associated an arbitrary subset

of the domain of transaction times, meaning that the fact, valid during the particular chronon, is

current in the relation during each of the transaction time chronons in the subset. Thus, associated

with a tuple is a set of so-called bitemporal chronons (\tiny rectangles") in the two-dimensional

space spanned by valid time and transaction time. Such a set is termed a bitemporal element

1

,

denoted t

b

. Because no two tuples with mutually identical explicit attribute values (termed value-

equivalent) are allowed in a bitemporal relation instance, the full time history of a fact is contained

in a single tuple.

Example: Consider a relation recording employee/department information, such as \Jake works

for the shipping department." We assume that the granularity of chronons is one day for both

valid time and transaction time, and the period of interest is the month of June 1992.

Figure 1 shows how the bitemporal element in an employee's department tuple changes. The

x-axis denotes transaction time, and the y-axis denotes valid time. Employee Jake was hired by

the company as temporary help in the shipping department for the interval from June 10th to

June 15th, and this fact is recorded in the database predictively on June 5th. This is shown in

Figure 1(a). The arrows pointing to the right signify that the tuple has not been logically deleted;

it continues through to the transaction time until changed (UC ). On June 10th, the personnel

department discovers an error. Jake had really been hired from June 5th to June 20th. The

database is corrected on June 10th, and the updated bitemporal element is shown in Figure 1(b).

On June 15th, the personnel department is informed that the correction was itself incorrect; Jake

1

This term is a generalization of temporal element, used to denotes a set of single dimensional chronons [Gad88].

Alternative, equally desirable terms include time period set [BZ82] and bitemporal lifespan [CC87].
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really was hired for the original time interval, June 10th to June 15th, and the database is corrected

the same day. This is shown in Figure 1(c). Lastly, Figure 1(d) shows the result of three updates

to the relation, all of which take place on June 20th. While the period of validity was correct,

it was discovered that Jake was not in the shipping department, but in the loading department.

Consequently, the fact (Jake, Ship) is removed from the current state and the fact (Jake, Load) is

inserted. A new employee, Kate, is hired for the shipping department for the interval from June

25th to June 30th.

-
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Figure 1: Bitemporal Elements

We note that the number of bitemporal chronons in a given bitemporal element is the area en-

closed by the bitemporal element. The bitemporal element for (Jake, Ship) contains 140 bitemporal

chronons.

The example illustrates how transaction time and valid time are handled. As time passes,

i.e., as the computer's internal clock advances, the bitemporal elements associated with current

facts are updated. For example, when (Jake, Ship) was �rst inserted, the six valid time chronons

from 10 to 15 had associated the transaction time chronon UC . At time 5, the six new bitemporal

chronons, (5; 10); : : : ; (5; 15), were appended. This continued until time 9, after which the valid

time was updated. Thus, starting at time 10, 16 bitemporal chronons are added at every clock

tick.

The actual bitemporal relation corresponding to the graphical representation in Figure 1(d) is

shown below. This relation contains three facts. The timestamp attribute T shows each transaction

time chronon associated with each valid time chronon as a set of ordered pairs.
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Emp Dept T

Jake Ship f(5; 10); : : : ; (5; 15); : : : ; (9; 10); : : :; (9; 15);

(10; 5); : : : ; (10; 20); : : : ; (14; 5); : : :; (14; 20);

(15; 10); : : : ; (15; 15) : : :; (19; 10); : : :; (19; 15)g

Jake Load f(UC ; 10); : : : ; (UC ; 15)g

Kate Ship f(UC ; 25); : : : ; (UC ; 30)g

ut

2.2 Update

We consider the three forms of update, insertion, deletion, and modi�cation, in turn.

An insertion is issued when we want to record in bitemporal relation instance r that a currently

unrecorded fact (a

1

; : : : ; a

n

) is true for some period(s) of time. These periods of time are represented

by a valid-time element, i.e., a set of valid-time chronons, t

v

. When the fact is stored, its valid-time

element stamp is transformed into a bitemporal-element stamp to capture that, until its explicit

attribute values are changed, the fact is current in the relation. This is indicated with a special

transaction time value, UC .

The arguments to the insert routine are the relation into which a fact is to be inserted, the

explicit values of the fact, and the set of valid-time chronons, t

v

, during which the fact was true

in reality. The Insert routine returns the new, updated version of the relation. There are three

cases to consider. First, if (a

1

; : : : ; a

n

) was never recorded in the relation, a completely new tuple

is appended. Second, if (a

1

; : : : ; a

n

) was part of some previously current state, the tuple recording

this is updated with the new valid time information. Third, if (a

1

; : : : ; a

n

) is already current in

the relation, a modi�cation is required, and the insertion is rejected. (In the following, we denote

valid-time chronons with c

v

and transaction-time chronons with c

t

.)

insert(r; (a

1

; : : : ; a

n

); t

v

) =

8

>

>

>

<

>

>

>

:

r [ f(a

1

; : : : ; a

n

jfUCg � t

v

)g if :9 t

b

((a

1

; : : : ; a

n

j t

b

) 2 r)

r � f(a

1

; : : : ; a

n

j t

b

)g

[f(a

1

; : : : ; a

n

j t

b

[ ffUCg � t

v

g)g if 9 t

b

((a

1

; : : : ; a

n

j t

b

) 2 r ^ :9 (UC ; c

v

) 2 t

b

)

r otherwise

The insert routine adds bitemporal chronons with a transaction time of UC .

As time passes, new chronons must be added. We assume that a special routine ts update is

applied to all bitemporal relations at each clock tick. This function simply updates the timestamps

to include the new transaction-time value. The timestamp of each tuple is examined in turn. When

a bitemporal chronon of the type (UC ; c

v

) is encountered in the timestamp, a new bitemporal

chronon (c

t

; c

v

), where time c

t

is the new transaction-time value, is made part of the timestamp.

ts update(r; c

t

) :

for each x 2 r

for each (UC ; c

v

) 2 x[T ]

x[T]  x[T][ f(c

t

; c

v

)g;

Deletion concerns the (logical) removal of a complete tuple from the current valid-time state

of the bitemporal relation. We distinguish between the case when there is a tuple to delete and

the case when no tuple matching the one to be deleted is current.
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delete(r; (a

1

; : : : ; a

n

)) =

(

r � f(a

1

; : : : ; a

n

j t

b

)g [ f(a

1

; : : : ; a

n

j t

b

� uc ts(t

b

))g if 9 t

b

((a

1

; : : : ; a

n

j t

b

) 2 r)

r otherwise

where uc ts(t

b

) = f(UC ; c

v

) j (UC ; c

v

) 2 t

b

g.

Finally, a modi�cation of an existing tuple may be de�ned by a deletion followed by an

insertion as follows.

modify(r; (a

1

; : : : ; a

n

); t

v

) = insert(delete(r; (a

1

; : : : ; a

n

)); (a

1

; : : : ; a

n

); t

v

)

Example: The sequence of bitemporal elements shown in Figure 1 is created by the following

sequence of commands, invoked at the indicated transaction time.

Command Transaction Time

insert(dept,("Jake","Ship"),[6/10,6/15]) 6/5

modify(dept,("Jake","Ship"),[6/5,6/20]) 6/10

modify(dept,("Jake","Ship"),[6/10,6/15]) 6/15

delete(dept,("Jake","Ship")) 6/20

insert(dept,("Jake","Load"),[6/10,6/15]) 6/20

insert(dept,("Kate","Ship"),[6/25,6/30]) 6/20

ut

Valid-time relations and transaction-time relations are special cases of bitemporal relations

that support only valid time or transaction time, respectively. Thus a valid-time tuple has associ-

ated a set of valid-time chronons (termed a valid-time element and denoted t

v

), and a transaction-

time tuple has associated a set of transaction-time chronons (termed a transaction-time element

and denoted t

t

). For clarity, we use the term snapshot relation for a conventional relation. Snapshot

relations support neither valid time nor transaction time.

3 Representation Schemes

A bitemporal conceptual relation is structurally simple|it is a set of facts, each timestamped

with a bitemporal element which is a set of bitemporal chronons. In this section, we examine �ve

representations of bitemporal relations that have been previously proposed. These representations

constitute all relational bitemporal data models proposed to date. For each, we brie
y specify

the objects de�ned in the representation, provide the mapping to and from conceptual bitemporal

relations to demonstrate that the same information is being stored, and show how updates of

bitemporal conceptual relations may be mapped into updates on relations in the representation.

3.1 Snodgrass' Tuple Timestamped Representation Scheme

In the conceptual model, the timestamp associated with a tuple is an arbitrary set of bitemporal

chronons. As such, a relation schema in the conceptual model is non-1NF, which represents

di�culties if directly implemented. We describe here how to represent conceptual relations by

1NF snapshot relations, allowing the use of existing, well-understood implementation techniques

[Sno87].
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Let a bitemporal relation schema R have the attributes A

1

; : : : ; A

n

;T where T is the times-

tamp attribute de�ned on the domain of bitemporal elements. Then R is represented by a snapshot

relation schema R as follows.

R = (A

1

; : : : ; A

n

;T

s

;T

e

;V

s

;V

e

)

The additional attributes T

s

, T

e

, V

s

, V

e

are atomic-valued timestamp attributes containing a

starting and ending transaction-time chronon and a starting and ending valid-time chronon, re-

spectively. These four values represent the bitemporal chronons in a rectangular region, the idea

being to divide the region covered by the bitemporal element of a tuple in a conceptual relation

into a number of rectangles and then represent the conceptual tuple by a set of representational

tuples, one for each rectangle.

There is a multitude of possible ways of covering a bitemporal element. We require that any

function that covers a bitemporal element x[T] of a bitemporal tuple x satisfy two properties.

1. Any bitemporal chronon in x[T] must be contained in at least one rectangle.

2. Each bitemporal chronon in a rectangle must be contained in x[T].

Apart from these requirements, the covering function is purposefully left unspeci�ed|an imple-

mentation is free to choose a covering with properties it �nds desirable. For example, a set of

covering rectangles need not be disjoint. Overlapping rectangles may reduce the number of tuples

needed in the representation, at the possible expense of additional processing during update. We

will revisit the topic of covering functions in Section 3.6.

Example: The 1NF relation corresponding to the conceptual relation in Figure 1(d) is shown

below.

Emp Dept T

s

T

e

V

s

V

e

Jake Ship 6/5 6/9 6/10 6/15

Jake Ship 6/10 6/14 6/5 6/20

Jake Ship 6/15 6/19 6/10 6/15

Jake Load 6/20 UC 6/10 6/15

Kate Ship 6/20 UC 6/25 6/30

Here we use a non-overlapping covering function that partitions the bitemporal element by trans-

action time. ut

Throughout the paper, we will use R and S to denote relation schemas. Relation instances

are denoted r, s, and t, and r(R) means that r is an instance of R. Attributes are denoted A

i

,

B

i

, and C

i

. For brevity, we let A denote the set of all attributes A

i

. For tuples we use x, y, and z

(possibly indexed), and the notation x[A

i

] is de�ned to be the A

th

i

attribute value of tuple x. As

a shorthand, we de�ne x[V] to be the closed interval from x[V

s

] to x[V

e

] (a set of one-dimensional

valid-time chronons), and similarly for x[T], a set of transaction-time chronons.

The following functions convert between a bitemporal conceptual relation instance and a

corresponding instance in the representation scheme. The second argument, cover, of the routine

conceptual to snap is a covering function. It returns a set of rectangles, each denoted by a set

of bitemporal chronons.

6



conceptual to snap(r

0

, cover):

s ;;

for each x 2 r

0

z[A]  x[A];

for each t 2 cover(x[T])

z[T

s

]  min 1(t); z[T

e

]  max 1(t);

z[V

s

]  min 2(t); z[V

e

]  max 2(t);

s s [ fzg;

return s;

snap to conceptual(r):

s ;;

for each z 2 r

r  r � fzg;

x[A]  z[A];

x[T]  bi chr(z[T];z[V]);

for each y 2 r

if z[A] = y[A]

r  r � fyg;

x[T]  x[T] [ bi chr(y[T];y[V]);

s s [ fxg;

return s;

The functions min 1 and min 2 select a minimum �rst and second component, respectively, in a

set of binary tuples. The function max 1 returns the value UC if encountered as a �rst component;

otherwise, it returns a maximum �rst component. The function max 2 selects a maximum second

component. The function bi chr computes the bitemporal chronons covered by the argument

rectangular region.

The conceptual to snap routine generates possibly many representational tuples from each

conceptual tuple, each generated tuple corresponding to a rectangle in valid/transaction-time space.

The snap to conceptual routine merges the rectangles associated with a single fact into a single

bitemporal element.

Note that the functions are the inverse of each other, i.e., for any conceptual relation instance

r

0

,

snap to conceptual(conceptual to snap(r

0

; cover)) = r

0

:

For the update routines, the most convenient covering functions partition on either valid or

transaction time and do not permit overlaps. The current transaction time is c

t

.

insert(r;(a

1

; : : : ; a

n

); t

v

; cover

v

):

cvr cover

v

(t

v

);

for each x 2 r

if x[A] = (a

1

; : : : ; a

n

) and x[T

e

] = UC

for each t 2 cvr

if x[V] \ t 6= ;

cvr  (cvr� t) [ (t� x[V]);

for each t 2 cvr

z[A] (a

1

; : : : ; a

n

);

z[T

s

] c

t

; z[T

e

] UC ;

z[V

s

] t[s]; z[V

e

] t[e];

r  r [ fzg;

return r

delete(r;(a

1

; : : : ; a

n

)):

for each x 2 r

if x[A] = (a

1

; : : : ; a

n

) and x[T

e

] = UC

x[T

e

] c

t

;

return r

The function cover

v

in the insert routine returns a set of valid-time intervals (each a set of

contiguous valid-time chronons). The routine �rst reduces the valid time elements, produced by

the covering function, to avoid overlap with the valid times of existing tuples that have a transaction

time extending to UC and that are value equivalent to the one to be inserted. Then, one tuple

is inserted for each of the remaining valid-time intervals. The delete routine simply replaces the

transaction end time with the current time, c

t

.

As for the conceptual data model, modify is simply a combination of delete and insert.
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3.2 Jensen's Backlog-Based Representation Scheme

The previous representation scheme presented a very natural and frequently used way of repre-

senting a bitemporal relation by a snapshot relation.

In the backlog-based representation scheme, bitemporal relations are represented by backlogs,

which are also 1NF relations [Kim78, JMRS92]. The most important di�erence between this and

the previous schemes is that tuples in backlogs are never updated, i.e., backlogs are append-only.

Therefore, this representation scheme is well-suited for log-based storage of bitemporal relations,

and it opens the possibility of using cheap write-once optical disk storage devices. This is highly

desirable since the information content of bitemporal relations is ever-growing, resulting in very

large relations.

A bitemporal relation schemaR = (A

1

; : : : ; A

n

jT) is represented by a backlog relation schema

R as follows.

R = (A

1

; : : : ; A

n

;V

s

;V

e

;T;Op)

As in the previous representation scheme, the attributes V

s

and V

e

store starting and ending valid-

time chronons, respectively. Attribute T stores the transaction time when the tuple was inserted

into the backlog. Tuples, termed update requests, are either insertion requests or deletion requests,

as indicated by the values, I , and D, of attribute Op. The fact in an insertion request is current

starting at its transaction timestamp and until a matching deletion request with the same explicit

and valid-time attribute values is recorded. Modi�cations are recorded by a pair of a deletion

request and an insertion request, both with the same T value.

Example: The backlog relation corresponding to the conceptual relation in Figure 1(d) is shown

below.

Emp Dept V

s

V

e

T Op

Jake Ship 6/10 6/15 6/5 I

Jake Ship 6/10 6/15 6/10 D

Jake Ship 6/5 6/20 6/10 I

Jake Ship 6/5 6/20 6/15 D

Jake Ship 6/10 6/15 6/15 I

Jake Ship 6/10 6/15 6/20 D

Jake Load 6/10 6/15 6/20 I

Kate Ship 6/25 6/30 6/20 I

ut

Next, we consider the conversion between a bitemporal relation and its backlog representation.

The �rst function, conceptual to back, takes a conceptual relation as its �rst argument. The

second argument is an arbitrary covering function as described in Section 3.1. The result is a

backlog relation. Each conceptual tuple, x, is treated in turn. For each rectangle of bitemporal

chronons in the cover of the timestamp of x, an insertion request is appended to the result. Further,

if the rectangle has an ending transaction time di�erent fromUC then a deletion request is inserted.
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conceptual to back(r

0

, cover):

r  ;;

for each x 2 r

0

for each t 2 cover(x[T])

z[A] x[A];

z[V

s

] min 2(t); z[V

e

] max 2(t);

z[Op]  I; z[T] min 1(t);

r  r [ fzg;

if max 1(t) 6= UC

z[Op]  D; z[T] max 1(t);

r  r [ fzg;

return r;

back to conceptual(r):

r

0

 ;;

for each z

1

2 r

if z

1

[Op] = I

a z

1

[V

s

]; b z

1

[V

e

];

c z

1

[T]; d c

t

+ 1;

x

1

[A] z

1

[A];

r  r � fz

1

g;

for each z

2

2 r

if z

2

[A] = z

1

[A] and z

2

[V ] = z

1

[V ] and

z

2

[Op] = D and z

1

[T] < z

2

[T] < d

d z

2

[T];

z

3

 z

2

;

if d 6= c

t

+ 1

r  r � fz

3

g;

x

1

[T] bi chr([c; d]; [a; b]);

if d = c

t

+ 1

x

1

[T] (x

1

[T][ fUC g)� fa; : : : ; bg;

for each x

2

2 r

0

if x

2

[A] = x

1

[A]

x

1

[T] x

1

[T] [ x

2

[T];

r

0

 r

0

� fx

2

g;

r

0

 r

0

[ fx

1

g;

return r

0

;

The second function, back to conceptual, is the inverse transformation. It is rather complex

because not only is information about a single fact spread over a set of update requests, but, as

we just saw, one element in a covering may also be recorded in two change requests. The change

requests in the argument backlog relation are treated in turn. First, an insertion request is located,

and its attribute values are recorded as appropriate. It is initially assumed that the information

recorded by the insertion request is still current, indicated by the ending transaction-time value,

c

t

+1. Then, in the second loop, the backlog is scanned for a matching deletion request with a larger

transaction time. If more than one exists, the earliest is chosen. Now, the correct rectangular region

of bitemporal chronons has been computed, and this can be recorded in the bitemporal conceptual

relation. If other chronons have already been computed and recorded for the same fact, the two

sets of chronons are simply merged.

As expected, insertion into backlogs, where tuples are never changed, is straightforward.

For each set of consecutive valid-time chronons returned by the argument covering function, an

insertion request with the appropriate attribute values is created. The current transaction time is

assumed to be c

t

.

Deletion follows the same pattern, the only complication being that a deletion request can

only be inserted if a value-equivalent, previously entered and so far undeleted insertion request is

found. First, the backlog is scanned to locate a matching insertion request. Second, it is ensured

that the located insertion request has not previously been deleted. For every undeleted, matching

insertion request that is found, a deletion request is inserted.
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insert(r;(a

1

; : : : ; a

n

); t

v

; cover

v

):

for each t 2 cover

v

(t

v

)

r  r [ f(a

1

; : : : ; a

n

;min(t);max(t); c

t

; I)g;

return r;

delete(r;(a

1

; : : : ; a

n

)):

r

0

 r;

for each x

1

2 r

if x

1

[A] = (a

1

; : : : ; a

n

) and x

1

[Op] = I

found  TRUE;

for each x

2

2 r

if x

2

[A] = x

1

[A] and x

2

[V ] = x

1

[V ] and

x

2

[OP] = D and x

2

[T ] > x

1

[T ]

found  FALSE;

if found

r

0

 r

0

[ f(a

1

; : : : ; a

n

; x

1

[V

s

]; x

1

[V

e

]; c

t

;D)g;

return r

0

;

3.3 Gadia's Attribute Value Timestamped Representation Scheme

Non-1NF representations group all information about an object within a single tuple. As such,

attribute-value timestamped representations have become popular for their 
exibility in data mod-

eling. We describe here how to represent conceptual relations by non-1NF attribute-value time-

stamped relations [Gad92].

Let a bitemporal relation schema R have the attributes A

1

; : : : ; A

n

;T, where T is the times-

tamp attribute de�ned on the domain of bitemporal elements. Then bitemporal relation schema

R is represented by an attribute-value timestamped relation schema R as follows.

R = (f([T

s

;T

e

] [V

s

;V

e

] A

1

)g; : : : ; f([T

s

;T

e

] [V

s

;V

e

] A

n

)g)

A tuple is composed of n sets. Each set element a is a triple of a transaction-time interval [T

s

;T

e

],

a valid-time interval [V

s

;V

e

], representing in concert a rectangle of bitemporal chronons, and an

attribute value, denoted a:val. As shorthand we will use T to denote the transaction time interval

[T

s

,T

e

], and, similarly, V for [V

s

,V

e

], and will refer to them as a:T and a:V, respectively.

Example: In an attribute value timestamped representation, the grouping of information within

a tuple can be based on the value of any attribute or set of attributes. For example, we could

represent the conceptual relation in Figure 1(d) by grouping on the employee attribute. Then all

information for an employee is contained within a single tuple, as shown below.

Emp Dept

[20,UC ] � [25,30] Kate [20,UC ] � [25,30] Ship

[5,9] � [10,15] Jake [5,9] � [10,15] Ship

[10,14] � [5,20] Jake [10,15] � [5,20] Ship

[15,19] � [10,15] Jake [15,19] � [10,15] Ship

[20,UC ] � [10,15] Jake [20,UC ] � [10,15] Load

A tuple in the above relation shows all departments for which a single employee has worked. A

di�erent way to view the same information is to perform the grouping by department. A single

tuple then contains all information for a department, i.e., the full record of employees who have

worked for the department.

Emp Dept

[20,UC ] � [10,15] Jake [20,UC ] � [10,15] Load

[5,9] � [10,15] Jake [5,9] � [10,15] Ship

[10,14] � [5,20] Jake [10,14] � [5,20] Ship

[15,19] � [10,15] Jake [15,19] � [10,15] Ship

[20,UC ] � [25,30] Kate [20,UC ] � [25,30] Ship
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Grouping by both attributes would yield three tuples, (Jake, Load), (Jake, Ship), and (Kate, Ship).

ut

Next we consider the conversion between a conceptual relation and an attribute-value times-

tamped representation. The �rst function, conceptual to att, takes three arguments, r

0

, a con-

ceptual relation, cover, a covering function, and group, a grouping function. Argument r

0

and

cover are as described for the other representation schemes. Argument group partitions r

0

into

disjoint subsets where all tuples in a subset agree on the values of a particular attribute or set

of attributes, as illustrated in the above example. Each group of conceptual tuples produces one

representation tuple.

conceptual to att(r

0

,cover,group):

s ;;

G  group(r

0

);

for each g 2 G

z  (;; : : : ; ;);

for each x 2 g

for each t 2 cover(x[T])

for i 1 to n

z[A

i

] z[A

i

] [

f([min 1(t);max 1(t)] `�'

[min 2(t);max 2 (t)] x[A

i

])g;

s s [ fzg;

return s;

att to conceptual(r):

s ;;

for each z 2 r

for i 1 to n

g[i] ;;

for each y 2 z[A

i

]

t bi chr(y:T,y:V);

z[A

i

] z[A

i

]� fyg;

for each y

0

2 z[A

i

]

if y:val = y

0

:val

t t [ bi chr(y

0

:T,y

0

:V);

z[A

i

] z[A

i

]� fy

0

g;

g[i] g[i] [ f(y:val; t)g;

for each (a

1

; a

2

; : : : ; a

n

) 2 facts(g)

t a

1

:t;

for i 2 to n

t t \ a

i

:t;

if t 6= ;

for i 1 to n

x[A

i

] a

i

:val;

x[T] t;

s s [ fxg;

return s;

The second function, att to conceptual, performs the inverse transformation. Given an

attribute-value timestamped representation, it produces the equivalent conceptual relation. If we

regard the transaction/valid times associated with an attribute value as rectangles, then the func-

tion simply constructs these rectangles for each attribute value in a tuple and then uses intersection

semantics to determine the equivalent tuple timestamp. In this transformation, the grouping is

ignored.

In the above, the facts function computes, for an array of attribute value/rectangle sets, all

combinations of facts that can be constructed from those attribute values.

facts(g) = f((a

1

; t

1

); (a

2

; t

2

); : : : ; (a

n

; t

n

)) j 8i 1 � i � n((a

i

; t

i

) 2 g[i])g

As before the function bi chr computes the bitemporal chronons represented by a given rectangle.

Insertion of a fact into an attribute-value timestamped relation can result in either of two

actions. Either the new information is merged into an existing tuple x 2 r or no such x exists and

the creation of an entirely new tuple is required.

The former case occurs when r is grouped so that x matches the explicit attribute values

in exactly the grouping attributes, G. Placing the new information into x preserves the grouped

structuring of relation. For any given attribute value x[A

i

], some or all of the information being

inserted may already be present in x[A

i

]. A triple y containing such information must match
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the information being inserted in the explicit attribute value a

i

, be current in the database, and

overlap in valid-time. We remove all such overlapping valid-times chronons, perform a covering of

the remaining chronons, and insert triples into x[A

i

] for each element of the covering.

In the latter case, no tuple with matching grouping attributes is found. The new information

cannot be merged into an existing tuple without violating the grouped structure of the relation.

Therefore, a new tuple containing only the added information is created.

insert(r;(a

1

; : : : ; a

n

); t

v

; cover

v

):

found FALSE;

for each x 2 r

if x[G] = (a

1

; : : : ; a

n

)[G];

found TRUE;

for i 1 to n

t

0

 t

v

;

for each y 2 x[A

i

]

if y:val = a

i

and y:T[e] = UC

t

0

 t

0

� fy:Vg;

for each t 2 cover

v

(t

0

)

x[A

i

] x[A

i

][ f([c

t

;UC ] `�' [min(t);max(t)] a

i

)g;

if found = FALSE

for each t 2 cover

v

(t

v

)

r  r [ ff([c

t

;UC ] `�' [min(t);max(t)] a

1

)g : : : f([c

t

;UC ] `�' [min(t);max(t)] a

n

)gg;

return r;

Deletion is more complicated. Removing a fact (a

1

; : : : ; a

n

) from an attribute-valued times-

tamped relation r involves locating the tuple x containing the fact, if such an x exists, and altering

x to re
ect that the fact is no longer current. As we are interested only in current information, i.e.,

when (a

1

; : : : ; a

n

) is current in the database, the triples in the attribute values of x that can partic-

ipate in producing the fact must all have an ending transaction time of UC . The function current

produces tuples from x representing the current information contained in x. It selects triples from

each x[A

i

], 1 � i � n, with an ending transaction time of UC and performs a Cartesian product,

resulting in a relation whose tuples have attribute values each containing a single triple.

current(x) = f((t

1

v

1

a

1

); (t

2

v

2

a

2

); : : : ; (t

n

v

n

a

n

)) j 8i 1 � i � n((t

i

v

i

a

i

) 2 x[A

i

] ^ UC 2 t

i

)g

Each tuple y potentially has information that must be deleted from the current database state.

This is the case if the explicit-attribute values of y match (a

1

; : : : ; a

n

), and y contains a rectangle

in bitemporal space where each of the triples (t

i

v

i

a

i

), 1 � i � n, overlap. For each such y, we

insert triples indicating that the fact has been deleted from the current database state, and, with

the help of a covering function, reinsert una�ected information back into the relation.

delete(r;(a

1

; : : : ; a

n

); cover

v

):

for each x 2 r

z[A

i

] ;; : : : z[A

n

] ;;

for each y 2 current(x)

if y[A

1

]:val = a

1

and : : : and y[A

n

]:val = a

n

t

1

 bi chr(y[A

1

]:T; y[A

1

]:V); : : : t

n

 bi chr(y[A

n

]:T; y[A

n

]:V);

t t

1

\ : : : \ t

n

;

if t 6= ;

for i 1 to n

x[A

i

] x[A

i

]� fy[A

i

]g;

x[A

i

] x[A

i

] [ f([min

1

(t); c

t

� 1] `�' [min

2

(t);max

2

(t)] y[A

i

]:val)g;

for each t

0

2 cover

v

(t

i

� t)

x[A

i

] x[A

i

] [ f([min

1

(t

0

);max

1

(t

0

)] `�' [min

2

(t);max

2

(t)] y[A

i

]:val)g;

return r;

As before, modify is simply a combination of insert and delete.
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3.4 McKenzie's Attribute Value Timestamped Representation Scheme

Like the representation of the previous section, McKenzie's data model uses non-1NF attribute-

value timestamping [McK88, MS91].

In McKenzie's model, a bitemporal relation is a sequence of valid-time states indexed by trans-

action time. Tuples within a valid-time state are attribute-value timestamped. The timestamps

associated with each attribute value are sets of chronons, i.e., valid-time elements. In addition,

the model does not assume homogeneity|attributes within the same tuple may have di�erent

timestamps.

A bitemporal relation schema R = (A

1

; : : : ; A

n

j T) is represented by an attribute valued

timestamped relation schema R as follows.

R = (T;VR)

where VR is a valid-time relation, and T is the transaction time when VR became current in the

database. Stepwise-constant semantics are assumed.

The schema of the valid-time state VR is as follows.

VR = (A

1

V

1

; : : : ; A

n

V

n

)

Here A

1

, : : : , A

n

are explicit attribute values. Associated with each A

i

, 1 � i � n, is a valid-time

element V

i

denoting when A

i

was true in the modeled reality.

Example: The sequence of valid-time states indexed by transaction time corresponding to the

conceptual relation in Figure 1(d) is shown below.

T VR

0 ;

5 f(Jake f10,: : : ,15g, Ship f10,: : : ,15g)g

10 f(Jake f5,: : : ,20g, Ship f5,: : : ,20g)g

15 f(Jake f10,: : : ,15g, Ship f10,: : : ,15g)g

20 f(Jake f10,: : : ,15g, Load f10,: : : ,15g), (Kate f25,: : : ,30g, Ship f25,: : : ,30g)g

Notice that for each tuple in each valid-time state, the timestamps associated with the attribute

values in a tuple are identical, i.e., the timestamps are homogeneous. As mentioned above, this is

not required by the model, but in our example the values of the attributes Emp and Dept change

synchronously, hence the timestamps associated with each are identical. ut

Next, we consider the conversion between a bitemporal relation and its representation as

a sequence of valid-time states in McKenzie's data model. As before, we exhibit two functions.

The �rst maps conceptual instances into representational instances, and the second performs the

inverse transformation.
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conceptual to att2(r

0

):

r  ;;

uc present FALSE;

for each x 2 r

0

for each (t; v) 2 reduce(x[T]);

if t = UC

uc present TRUE;

else

for i 1 to n

z[A

i

] x[A

i

];

z[T

i

] v;

r  r [ f(t; fzg)g;

if not uc present

r  r [ f(c

t

; ;)g;

r  r [ f(0; ;)g;

r  group(r);

return r;

att2 to conceptual(r):

for each (t; vr) 2 r

vr  homogenize(vr);

reverse sort(r);

r

0

 ;;

(t; vr) next(r);

for each y 2 vr

z[A] y[A];

z[T] bi chr(ft::c

t

� 1;UCg; y[V]);

r

0

 r

0

[ fzg;

t

last

 t; (t; vr) next(r);

while (t; vr) 6=?

for each y 2 vr

found FALSE;

for each z

0

2 r

0

if z

0

[A] = y[A]

z

0

[T] z

0

[T] [ bi chr(ft::t

last

� 1g; y[V]);

found TRUE;

if not found

z[A] y[A]

z[T] bi chr(ft::t

last

� 1g; y[V]);

r

0

 r

0

[ fzg;

t

last

 t; (t; vr) next(r);

return r

0

;

The �rst function, conceptual to att2, takes a conceptual relation as its �rst argument and

returns a sequence of valid-time relations, indexed by transaction time, in McKenzie's data model.

A conceptual tuple x can contribute possibly many tuples to the result, with the generated tuples

residing in possibly many di�erent valid-time states. For example, the �rst tuple in the conceptual

relation of Section 2.1 would contribute three tuples, (Jake f10..15g, Ship f10..15g), (Jake f5..20g,

Ship f5..20g), (Jake f10..15g, Ship f10..15g), in the valid-time states associated with transaction

times 5, 10 and 15, respectively. Value-equivalent tuples with identical valid-timestamps but at

intermediate transaction times, e.g., (Jake f10..15g, Ship f10..15g) at transaction time 6, are not

generated.

We accomplish this by deriving for each conceptual tuple x a set of stepwise constant states

from its bitemporal element x[T]. The result is a set of pairs (t,v), the �rst element being a

transaction time and the second being a valid-time element. E�ectively, each (t,v) denotes the

state of x[A] as being valid during the set v at the transaction time t. Intermediate states are not

included in the computed set of pairs, e�ectively preserving the stepwise constant assumption.

The set of stepwise constant states is computed by the function reduce shown below. For the

above example, reduce returns the set f(5,f10..15g), (10,f5..20g), (15,f10..15g)g. The function

next state is called by reduce; it examines each bitemporal chronon in the timestamp and derives

a state (t,v) where t is the earliest transaction time present in the timestamp, and v is the set

containing exactly those valid-time chronons associated with t.

reduce(T):

T

0

 ;;

while T 6= ;

(t; v) next state(T );

T

0

 T

0

[ f(t; v)g;

T  T � bi chr(ftg; v);

t

0

 t+ 1;

while (t

0

; v) = next state(T )

T  T � bi chr(ft

0

g; v);

t

0

 t

0

+ 1;

return T

0

;

next state(T):

v ;;

t UC ;

for each b 2 T

if b:T < t

v  fb:Vg;

t b:T;

else

if b:T = t

v  v [ fb:Vg;

return (t; v);
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For a given pair (t,v), a tuple is generated and placed in a valid-time state indexed by the

transaction time t. The end result is a set of pairs of single tuple valid-time states indexed at the

given by a transaction time.

Finally, the function group collapses all pairs with identical transaction-time components into

a single valid-time state, indexed at the given transaction time.

group(r):

S  ;;

for each (t; vr) 2 r;

found FALSE;

for each (t

0

; vr

0

) 2 S

if t = t

0

S  S � (t

0

; vr

0

);

S  S [ f(t

0

; vr

0

[ vr)g;

found TRUE;

if not found

S  S [ f(t; vr)g;

return S;

The second function, att2 to conceptual, performs the inverse transformation. It takes a

sequence of valid-time states r, indexed by transaction time, and produces the equivalent conceptual

relation.

As the valid-time states of r may contain tuples with non-homogeneous timestamps, we

�rst transform each input valid-time state into an equivalent tuple-timestamped relation. This is

the purpose of function homogenize shown below. For each tuple x 2 vr, homogenize generates

possibly many result tuples, one for each valid-time chronon present in a timestamp associated with

an attribute value of x. The function determines the maximal set of attribute values simultaneously

valid during that chronon, and generates a result tuple, whose tuple-timestamp contains the single

chronon.

homogenize(vr):

vr

h

 ;;

for each x 2 vr

for i 1 to n

for each v 2 x[V

i

]

z[A

1

] ?; : : : z[A

n

] ?;

z[A

i

] x[A

i

];

z[V] v;

for j  1 to n

if j 6= i and v 2 x[V

j

]

z[A

j

] x[A

j

]

vr

h

 vr

h

[ fzg;

return coalesce(vr

h

);

coalesce(vr):

vr

0

 ;;

for each x 2 vr

vr  vr � fxg;

for each y 2 vr

if x[A] = y[A]

x[V] x[V][ y[V];

vr  vr � fyg;

vr

0

 vr

0

[ fxg;

return vr

0

;

As many value-equivalent tuples may be produced, function coalesce is used to collapse

such tuples into a single tuple. The timestamps of matching tuples are unioned into a single result

tuple.

The valid-time states of r are then processed from latest to earliest in transaction time order;

the pairs (t; vr) 2 r are sorted into descending order of t, and a function next returns the next

(t; vr) in the sorted order. The current valid-time state is treated specially to accommodate the

stepwise constant semantics between the time the state was stored, the current transaction time,

and UC .

The remaining valid-time states are converted as follows. For a tuple x 2 vr, its bitemporal

timestamp is generated using the appropriate range of transaction-time and valid-time element
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associated with the tuple. However, since value-equivalent tuples may be present in di�erent valid-

time states, we must consolidate the information in such tuples within one resulting conceptual

tuple. If a value-equivalent tuple z

0

is already present in the result, we augment its timestamp

with the generated bitemporal element. Otherwise, a new tuple is inserted.

We now show how the semantics of bitemporal update are supported within this representa-

tion. Insertion of a fact into the database involves the creation of a new current state containing

the fact and the time that it was valid. This state is constructed in one of two ways. If the valid-

time state current at the time of the insertion contains a value-equivalent tuple, the timestamps

of that tuple are augmented to re
ect the new information. Otherwise a new tuple is inserted. In

both cases, the updated valid-time state is inserted into r indexed by the current transaction time,

c

t

. We assume the function rollback returns the valid time state current during the argument

transaction time.

insert(r;(a

1

; : : : ; a

n

); t

v

):

vr  rollback(r; c

t

);

found FALSE;

for each x 2 vr

if x[A] = (a

1

; : : : ; a

n

)

for i 1 to n

x[T

i

] x[T

i

] [ t

v

;

found TRUE;

if not found

vr  vr [ (a

1

t

v

; : : : ; a

n

t

v

);

r  r [ f(c

t

; vr)g;

return r;

delete(r;(a

1

; : : : ; a

n

)):

vr  rollback(r; c

t

);

for each x 2 vr

if x[A] = (a

1

; : : : ; a

n

)

t x[T

1

] \ : : : \ x[T

n

];

if t 6= ;

for i 1 to n

x[T

i

] x[T

i

]� t;

if x[T

1

] = ; and : : : and x[T

n

] = ;

vr  vr� fxg;

r  r [ f(c

t

; vr)g;

return r;

Deletion of a fact involves the removal of the fact from the current valid-time state if it exists, and

no action otherwise. A fact to be deleted is present in a tuple x, if the explicit attribute values of

x match (a

1

; : : : ; a

n

) and the intersection of the valid-time elements associated with the attribute

values of x is non-empty. We delete from each timestamp the computed intersection, and remove

the entire tuple if all resulting timestamps are empty.

3.5 Ben-Zvi's Tuple Timestamped Representation Scheme

Like the representational model in Section 3.1, Ben-Zvi's data model is a 1NF tuple-timestamping

model. Appended to each tuple are �ve timestamp attributes [BZ82].

Let a bitemporal relation schema R have the attributes A

1

; : : : ; A

n

;T where T is the times-

tamp attribute de�ned on the domain of bitemporal elements. Then R is represented by a relation

schema R in Ben-Zvi's data model as follows.

R = (A

1

; : : : ; A

n

;T

es

;T

rs

;T

ee

;T

re

;T

d

)

In a tuple, the value of attribute T

es

(e�ective start) is the time when the explicit attribute

values of the tuple start being true. The value for T

rs

indicates when the T

es

value was stored.

Similarly, the value for T

ee

(e�ective end) indicates when the information recorded by the tuple

ceased to be true, and T

re

contains the time when the T

ee

value was recorded. The last implicit

attribute T

d

indicates the time when the information in the tuple was logically deleted from the

database.

It is not necessary that T

ee

be recorded when the T

es

value is recorded (i.e., when a tuple is

inserted). The symbol `{' indicates an unrecorded T

ee

value (and T

re

value). Similarly, the symbol

`{', when used in the T

d

�eld, indicates that a tuple contains current information.
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Example: The Ben-Zvi relation corresponding to the conceptual relation in Figure 1(d) is shown

below.

Emp Dept T

es

T

rs

T

ee

T

re

T

d

Jake Ship 6/10 6/5 6/15 6/5 6/10

Jake Ship 6/5 6/10 6/20 6/10 6/15

Jake Ship 6/10 6/15 6/15 6/15 6/20

Jake Load 6/10 6/20 6/15 6/20 {

Kate Ship 6/25 6/20 6/30 6/20 {

In the example, the timestamps T

es

and T

ee

are stored simultaneously, hence the registration

timestamps associated with the e�ective timestamps are identical within each tuple. As facts are

corrected, the deletion timestamp T

d

is set to the current transaction time, e�ectively outdating

the given fact, and a new tuple without a deletion time is inserted. As only two facts are current

when all updates have been performed on the database, only two tuples with no deletion times

remain. ut

In the conversion functions presented next, the functions min 1 and min 2 select a minimum

�rst and second component, respectively, in a set of binary tuples. The function max 1 returns

the symbol `{' if UC is encountered as a �rst component; otherwise, it returns a maximum �rst

component. The function max 2 selects a maximum second component. The function bi chr may

accept the symbol `{' as a transaction-time end value, in which case the symbol is treated as the

current time. Bitemporal chronons with UC as �rst component are then generated. When `{' is

encountered as a valid-time end, it is treated as the maximum valid-time value, c

1

vt

. Analogously,

when `{' is encountered as a transaction-time value, it is treated as the current transaction time,

c

t

, as well as the value UC .

The �rst conversion function is very similar to the corresponding function in Section 3.1.

The routine conceptual to snap2 constructs an output tuple for each rectangle in a covering of

a bitemporal element. The e�ective-start and e�ective-end timestamps are set to the minimum

and maximum valid-time chronons in the rectangle, respectively. We set the times when the valid

timestamps were stored to the minimal transaction time chronon in the rectangle. The deletion

time of the tuple is set to the maximal transaction time of the rectangle (possibly UC ), thereby

denoting when the fact was last current in the relation.

conceptual to snap2(r

0

, cover):

s ;;

for each x 2 r

0

z[A]  x[A];

for each t 2 cover(x[T])

z[T

rs

]  min 1(t);

z[T

re

]  z[T

rs

];

z[T

d

]  max 1(t);

z[T

es

]  min 2(t);

z[T

ee

]  max 2(t);

s s [ fzg;

return s;

snap2 to conceptual(r):

s ;;

for each z 2 r

r  r � fzg;

x[A]  z[A];

x[T] make ts(z[T

es

]; z[T

rs

]; z[T

ee

]; z[T

re

]; z[T

d

]);

s s [ fxg;

return coalesce(s);

The function snap2 to conceptual performs the inverse transformation. It constructs one

conceptual tuple for each set of value-equivalent tuples in the representation. Initially, each repre-

sentational tuple is examined, and a conceptual tuple corresponding to that representational tuple

is generated.

The function make ts constructs a bitemporal element from the �ve timestamps in the rep-

resentational tuple. There are three cases to consider. In each case, we construct a bitemporal

element representing a rectangle or union of rectangles bounded by the argument time values.
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First, if the e�ective-time start and e�ective-time end values were stored simultaneously,

the associated element corresponds to a rectangular region bounded in valid time and possibly

unbounded in transaction time. Similarly, if the values were not stored simultaneously, it may be

the case that the e�ective-end time was never stored. This corresponds to a rectangular region

that is unbounded in valid time and possibly bounded in transaction time, depending on if the

tuple has been deleted.

Otherwise, both the e�ective-time start and the e�ective-time end values have been stored,

and are unequal. The resulting region is unbounded in valid time between the times when the

e�ective-time start and e�ective-time end were stored, and possibly bounded in transaction time,

depending on if the tuple has been deleted.

Finally, function coalesce collapses each set of value-equivalent tuples in the result into a

single tuple.

make ts(t

es

; t

rs

; t

ee

; t

re

; t

d

):

if t

rs

= t

re

t bi chr(ft

rs

::t

d

g; ft

es

::t

ee

g);

else

if t

re

= `{'

t bi chr(ft

rs

::t

d

g; ft

es

::c

1

vt

g);

else

t bi chr(ft

rs

::t

re

g; ft

es

::c

1

vt

g) [

bi chr(ft

re

::t

d

g; ft

es

::t

ee

g);

return t;

coalesce(r):

r

0

 ;;

for each x 2 r

r  r � fxg;

for each y 2 r

if x[A] = y[A]

x[T] x[T][ y[T];

r  r � fyg;

r

0

 r

0

[ fxg;

return r

0

;

For the update routines, the most convenient covering function partitions on transaction time,

and does not permit overlap.

insert(r;(a

1

; : : : ; a

n

); t

v

; cover

v

):

for each t 2 cover

v

(t

v

)

for each x 2 r

if x[A] = (a

1

; : : : ; a

n

) and x[T

d

] = `{' and

x[T

es

;T

ee

] \ t 6= ;

r  r � fxg;

x[T

d

] c

t

;

z[A] x[A];

z[T

es

] min(x[T

es

] [ t);

z[T

ee

] min(x[T

ee

] [ t);

z[T

d

] `{';

r  r [ fx; zg;

return r;

delete(r;(a

1

; : : : ; a

n

)):

for each x 2 r

if x[A] = (a

1

; : : : ; a

n

) and

x[T

d

] = `{'

x[T

d

] c

t

;

return r;

3.6 Covering Functions

In Sections 3.1 to 3.5, we used covering functions when using sets of rectangles to represent bitem-

poral elements of conceptual tuples. Any covering function that covered every bitemporal chronon

in an argument bitemporal element and did not cover bitemporal chronons not in the bitemporal

element was permitted. In this sense, the results presented in this paper are independent of partic-

ular covering functions. Here, we brie
y present some examples of covering functions to illustrate

the range of possibilities.

Figure 2 illustrates three ways of covering the bitemporal element associated with the fact

(Jake, Ship) in Figure 1(d). We may distinguish between those covering functions that partition

the argument set into disjoint rectangles and those that allow overlap between the result rectangles.

Figure 2(a) and Figure 2(b) are examples of partitioned coverings while the covering in Figure 2(c)

has overlapping rectangles.
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Figure 2: Example Coverings of a Bitemporal Element

Figure 2(a) illustrates a type of covering where regions are partitioned by transaction time.

Maximal transaction-time intervals are located so that each transaction time in an interval has

the same interval of valid times associated. In the �gure, the transaction-time interval (5,9) is

maximal, and the associated valid-time interval is (10,15). Thus, the rectangle with corners (5,10)

and (9,15) is part of the result. Similarly, the two rectangles with corners ((10,5), (14,20)), and

((15,10), (19,15)) are in the result. Due to the semantics of transaction time [JMRS92], this is

perhaps the most natural choice of covering [Sno87]. Indeed, all the examples of representations

of the employee bitemporal relation use covering functions that partition by transaction time.

Figure 2(b) illustrates the symmetric partitioning by valid time. Here, three rectangles are

created with corners at ((5,10), (19,15)), ((10,5), (14,10)), and ((10,15), (14,20)).

Figure 2(c) exempli�es a type of covering that allows overlaps. The two rectangles in this

covering have corners at ((5,10), (19,15)) and ((10,5), (14,20)). The overlap of these rectangles

means that two tuples will express the fact that Jake was in the shipping department from June

10th to June 15th, recorded as current information from June 10th to June 14th.

The last example demonstrates that a covering function that allows overlap may result in a

smaller number of covering rectangles, and therefore may yield a more compressed representation

than a covering function that partitions. However, this repetition of information makes some

updates more time consuming, as many more tuples may now be a�ected by a single update.

3.7 Summary

We introduced �ve representations of bitemporal relations and showed how instances in the bitem-

poral conceptual data model (BCDM) can be mapped to instances in each of these representations.

In addition, we devised reverse mapping functions, from representational instances to BCDM in-

stances. The established correspondence between representations and the conceptual model is

central to our work|the BCDM forms a unifying link between disparate bitemporal models. The

mapping functions assign semantics to instances in the �ve representations and allows us to mean-

ingfully compare instances of diverse models.

In the next section, we discuss in more detail the role of the BCDM with respect to data

model uni�cation. Subsequent sections provide a detailed examination of the concept of equivalence

among the data models.

4 Data Model Interaction

The previously proposed representations arose from several considerations. They were all exten-

sions of the conventional relational model that attempted to capture the time-varying nature of
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both the enterprise being modeled and the database, and hence incorporated support for both

valid and transaction time. They attempted to retain the simplicity of the relational model; the

two tuple-timestamping models were perhaps most successful in this regard. They attempted to

present all the information concerning an object in one tuple; the attribute-value timestamped

models were perhaps best at that. And they attempted to ensure ease of implementation and

query evaluation e�ciency; the backlog representation may have advantages here.

Logical

Database

Design

Conceptual

Bitemporal

Data Model

Query
Optimization

Tuple−timestamping

Attribute−value

Timestamping

Backlogs

Sequence of 

Five timestamps

Display Formats

Format
1

Format n

Representational Data Models

Physical

Database
Design

Valid−time States
Logical

Figure 3: Interaction of Conceptual and Representational Data Models

It is clear from the number of proposed representations that meeting all of these goals simul-

taneously is a di�cult, if not impossible task. We therefore advocate a separation of concerns.

The time-varying semantics is obscured in the representation schemes by presentation and

implementation considerations. We feel that the bitemporal conceptual data model proposed in

this paper is a more appropriate basis for expressing this semantics. This data model is notable

in its use of bitemporal chronons to stamp facts. Clearly, in most situations, this is not the most

appropriate way to present the stored data to users, nor is it the best way to physically store the

data. However, since there are mappings to other representations that, in many situations, may

be more amenable to presentation and storage, those representations can be employed for those

purposes, while retaining the semantics of the conceptual data model.

Figure 3 places the bitemporal conceptual data model with respect to the tasks of logical

and physical database design, storage representation, query optimization, and display. It indicates

that logical database design produces the conceptual relation schemas, which are then re�ned

into relation schemas in some representational data model(s). The query language itself would be

based on the conceptual data model. Query optimization may be performed on the logical algebra,

parameterized by the cost models of the representation(s) chosen for the stored data. Finally,

display presentation should be decoupled from the storage representation.

Section 3 gave �ve di�erent representations of the example conceptual relation introduced

in Section 2.1. Each of these may be an appropriate presentation under some circumstances,

independent of how the relation is stored. For example, the backlog presentation is quite useful

during an audit, and the �rst attribute-value timestamped presentation is suitable when the history

of an employee is desired.

Note that this arrangement hinges on the semantic equivalence of the various data models. It

must be possible to map between the conceptual model and the various representational models,

as discussed next.
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5 Semantic Equivalence

The previous section claimed that many semantically equivalent representations of the same con-

ceptual relation may co-exist. In this and the next section, we explore the nature of this relationship

between the conceptual data model and the representational data models. We focus next on the

equivalence among the objects in the models; a following section will examine equivalence when

operations on these objects is also considered.

5.1 Snapshot Equivalence

We use snapshot equivalence to formalize the notion of relation instances having the same infor-

mation content.

Snapshot equivalence makes use of transaction and valid timeslice operators. We initially

de�ne these operators for conceptual relations, then for relations in each of the representational

models.

The transaction-timeslice operator, �

B

, takes two arguments, a bitemporal relation and a time

value, the latter appearing as a subscript. The result is a valid-time relation. In order to explain

the semantics of �

B

, we describe its operation on a bitemporal conceptual relation. Each tuple is

examined in turn. If any of its associated bitemporal chronons have a transaction time matching

the argument time, the explicit attribute values, along with each of the valid-time chronons paired

to a matching transaction time, become a tuple in the result. The transaction-timeslice operator

may also be applied to a transaction-time relation, in which case the result is a snapshot relation.

The valid timeslice operator, �

B

, is very similar. It also takes two arguments, a bitemporal

relation and a time value. The di�erence is that this operator does the selection on valid time

and produces a transaction-time relation. The valid-timeslice operator may also be applied to a

valid-time relation, in which case the result is a snapshot relation.

Definition: De�ne a relation schema R = (A

1

; : : : ; A

n

j T), and let r be an instance of this

schema. Let t

2

denote an arbitrary time value and let t

1

denote a time not exceeding the current

time. Then the transaction-timeslice and valid-timeslice operators may be de�ned as follows for

the conceptual data model.

�

B

t

1

(r) = fz

(n+1)

j 9x 2 r (z[A] = x[A] ^ z[T

v

] = ft

2

j (t

1

; t

2

) 2 x[T]g ^ z[T

v

] 6= ;)g

�

B

t

2

(r) = fz

(n+1)

j 9x 2 r (z[A] = x[A] ^ z[T

t

] = ft

1

j (t

1

; t

2

) 2 x[T]g ^ z[T

t

] 6= ;)g

ut

The transaction-timeslice operator for transaction-time relations (�

T

) and the valid-timeslice

operator for valid-time relations (�

V

) are straightforward special cases.

We can now formally de�ne snapshot equivalence so that it applies to each representational

data model for which the valid-timeslice and transaction-timeslice operators have been de�ned.

Definition: Two relation instances, r and s, are snapshot equivalent, r

S

� s, if for all times t

1

not exceeding the current time and all times t

2

,

�

V

t

2

(�

B

t

1

(r)) = �

V

t

2

(�

B

t

1

(s)): ut

The concept of snapshot equivalence is due to Gadia and was �rst de�ned for valid-time

relations [Gad86] and was later generalized to multiple dimensions [GY88]. We have chosen to

avoid the original term weakly equivalent to avoid confusion with the di�erent notion of weak
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equivalence over algebraic expressions (e.g., [Ull82]). Disambiguating the original term by pre�xing

with \temporally" is awkward. In the next section, we will discuss how snapshot equivalence may

also be applied to pairs of instances when the instances belong to diferent models.

The following theorem states that identity and snapshot equivalence coincide for the concep-

tual model. It is a major source of semantic clarity that two instances have the same information

content exactly when they are identical.

Theorem 1 Let r and s be conceptual relations over the same schema. Then r

S

� s if and only

if r = s.

Proof: First assume that r

S

� s. We show that for each x 2 r, x = (a

1

; : : : ; a

n

j t

x

) there exists a

y 2 s, y = (a

1

; : : : ; a

n

j t

y

), with t

x

= t

y

.

By the de�nition of snapshot equivalence there exist tuples y

i

, i = 1; : : : ; m, in s so that for

all t

1

, t

2

, where t

1

does not exceed the current time, �

V

t

2

(�

B

t

1

(fxg)) = �

V

t

2

(�

B

t

1

(fy

1

; : : : ; y

m

g)). The

de�nitions of the involved operators demand that each of the y

i

must have a

1

; : : : ; a

n

as explicit

attribute values. Further, the operators demand that t

x

= [

i

t

y

i

. By de�nition of the BCDM,

no two tuples with the same explicit attribute values may exist in an instance. Thus, i = 1 and

y

1

= y, proving the claim. As a result, each tuple in r has an exact match in s. By the symmetrical

argument, each tuple in s has a match in r, and the two instances are consequently identical.

In the other direction, assuming that r = s, clearly 8t

1

, t

2

where t

1

does not exceed the

current time, �

V

t

2

(�

B

t

1

(r)) = �

V

t

2

(�

B

t

1

(s)). ut

5.2 Rollback and Timeslice Operators

We now de�ne the timeslice operators for each of the �ve representational models. These de�nitions

extend the notion of snapshot equivalence to the corresponding representation. In the de�nitions,

let t denote an arbitrary time value and let t

0

be a time value not exceeding the current time.

Definition: (Snodgrass' Tuple Timestamped Data Model). De�ne a relation schema R =

(A

1

; : : : ; A

n

; T

s

, T

e

, V

s

, V

e

), and let r be an instance of this schema.

�

B

t

0

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[V] = x[V] ^ t

0

2 x[T])g

�

B

t

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[T] = x[T]^ t 2 x[V])g

ut

Definition: (Jensen's Backlog DataModel). De�ne a relation schemaR = (A

1

; : : : ; A

n

;V

s

;V

e

;T;

Op), and let r be an instance of this schema.

�

B

t

0

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[V] = x[V] ^ x[T] � t

0

^ x[Op] = I^

(:9y 2 r (y[A] = x[A] ^ y[V] = x[V] ^ y[Op] = D ^ x[T] � y[T] � t

0

)))g

�

B

t

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[T] = x[T] ^ z[Op] = x[Op]^ t 2 x[V])g

In the de�nition of transaction timeslice, an insertion request contributes to the result if it was

entered before the argument transaction time t

0

and if it was not subsequently countered by a

deletion request before t

0

. The non-symmetry of these two de�nitions underscores the emphasis

accorded transaction time in this model. ut
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Definition: (Gadia's Attribute Value Timestamped Data Model).

�

B

t

0

(r) = fz

(n)

j 9x 2 r (8i (i 2 1; : : : ; n^8a 2 x[A

i

](t

0

2 a:T) (a:V a:val) 2 z[A

i

])^

8b 2 z[A

i

](9a 2 x[A

i

](t

0

2 a:T ^ b:val = a:val ^ b:V = a:V))))g

�

B

t

(r) = fz

(n)

j 9x 2 r (8i (i 2 1; : : : ; n^ 8a 2 x[A

i

](t 2 a:V) (a:T a:val) 2 z[A

i

])^

8b 2 z[A

i

](9a 2 x[A

i

](t 2 a:V ^ b:val = a:val ^ b:T = a:T))))g

For each operator, the �rst line ensures that no chronon is left unaccounted for, and the second

line ensures that no spurious chronons are introduced. ut

Definition: (McKenzie's Attribute Value Timestamped Data Model). De�ne a relation schema

R = (T;VR), with T being a transaction timestamp and VR = (A

1

V

1

; : : : ; A

n

V

n

), where the A

i

,

1 � i � n, are explicit attributes and the corresponding V

i

are valid-time elements. An instance

of this schema is a sequence of valid-time states indexed by transaction times as. Let r be such an

instance.

�

B

t

0

(r) = fz

(n)

j 9(t; vr) 2 r (t

0

� t ^ :9(t

00

; vr

00

) 2 r (t

0

� t

00

< t) ^ z 2 vr)g

�

B

t

(r) = f(t

00

; S) j 8s 2 S (9t

00

((t

00

; vr) 2 r ^ 8x 2 vr (8i 1 � i � n ((t 2 x[V

i

]) s[A

i

] = x[A

i

])^

(t 62 x[V

i

]) s[A

i

] = ?)) ^ 9i 1 � i � n (t 2 x[V

i

]))))g

The �rst operator extracts the valid time relation with the greatest transaction timestamp before

t

0

. The second returns a rollback relation, a sequence of snapshot states such that each tuple in

each snapshot state was valid at valid time t for all attributes. Some, but not all, attribute values

in the tuples in the snapshot states may be null values. ut

Definition: (Ben-Zvi's Tuple Timestamped DataModel). De�ne a relation schema R = (A

1

; : : : ;

A

n

;T

es

;T

ee

;T

rs

;T

re

;T

d

), and let r be an instance of this schema.

�

B

t

0

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A]^z[T

es

] = x[T

es

] ^ x[T

rs

] � t

0

^ (x[T

d

] 6= `{') t

0

� x[T

d

])^

((x[T

re

] 6= `{') t

0

� x[T

re

])) z[T

ee

] = `{')^

((x[T

ee

] 6= `{'^ x[T

re

] � t

0

)) z[T

ee

] = x[T

ee

])g

�

B

t

(r) = fz

(n+2)

j 9x 2 r (z[A] = x[A] ^ z[T

rs

] = x[T

rs

] ^ (

(((x[T

es

] � t) ^ (x[T

ee

] 6= `{') t � x[T

ee

]))) z[T

re

] = x[T

d

])_

((x[T

ee

] 6= `{'^ t � x[T

ee

] ^ x[T

rs

] 6= x[T

re

])) z[T

re

] = x[T

re

])))g

In the �rst operator, the complexity arises in computing T

ee

for the resulting tuples; the other

implicit attribute, T

es

, is trivial. Two possibilities for T

ee

exist, `{' and x[T

ee

], depending on the

value of x[T

re

]. For the second operator, the complexity is in determining z[T

re

], which can also

assume two possible values, x[T

d

] and x[T

re

], depending primarily on the value of x[T

ee

]. ut

For each of the �ve schemes, the transaction-timeslice operator for transaction-time relations

(�

T

) and the valid-timeslice operator for valid-time relations (�

V

) are straightforward special cases

of these de�nitions. Note that the rollback and timeslice operators in the various representations

all have the same names, �

B

t

and �

B

t

.

The existence of the timeslice operators for the representational models has important im-

plications, as we discuss in the following. Rather than providing theorems and proofs for each

representational model, the theorems and proofs in the remainder of this section are limited to

a single model only. Speci�cally, the model introduced in Section 3.1 is used due to its straight-

forward structure. Corresponding results hold for the remaining models; proofs may be similarly

obtained.
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There is no reason to apply � before � in the de�nition of snapshot equivalence, as the

following theorem states.

Theorem 2 Let r be a temporal relation. Then for all times t

1

not exceeding the current time

and for all times t

2

,

�

V

t

2

(�

B

t

1

(r))

S

� �

T

t

1

(�

B

t

2

(r)):

Proof: Let x 2 �

V

t

2

(�

B

t

1

(r)); then there is a tuple y in �

B

t

1

(r) with y[A] = x[A] and t

2

2 y[V]. This

implies the existence of a tuple z in r so that z[A] = y[A], z[V] = y[V], and t

1

2 z[T]. As t

2

2 z[V],

there is a tuple u in �

B

t

2

(r) for which u[A] = z[A] and u[T] = z[T]. As t

1

2 u[T], there is a tuple

v in �

T

t

1

(�

B

t

2

(r)) with v[A] = u[A]. By construction, v = x. Thus, a tuple on the lhs (left hand

side) is also on the rhs (right hand side). Proving the opposite inclusion is similar and omitted.

Combining the inclusions proves the equivalence. ut

Snapshot equivalence precisely captures the notion that relation instances in the chosen rep-

resentation scheme have the same information content. More precisely, all representations of the

same bitemporal conceptual relation are snapshot equivalent, and two bitemporal relations that

are snapshot equivalent represent the same bitemporal conceptual relation.

In the proof of the following theorem, the notion of snapshot subset is utilized.

Definition: A temporal relation instance, r, is a snapshot subset of a temporal relation instance,

s, r

S

� s, if for all times t

1

not exceeding UC and all times t

2

,

�

V

t

2

(�

B

t

1

(r)) � �

V

t

2

(�

B

t

1

(s)):

More generally, a temporal query expression Q

1

is a snapshot subset of a temporal query expression

Q

2

, Q

1

S

� Q

2

, if all instantiations of Q

1

are snapshot subsets of the corresponding instantiations

of Q

2

. ut

Theorem 3 Snapshot equivalent temporal relations represent the same conceptual temporal

relation.

1. If conceptual to snap(r

0

; cover

1

) = r

1

and conceptual to snap(r

0

; cover

2

) = r

2

,

then r

1

S

� r

2

.

2. If s

1

S

� s

2

then snap to conceptual(s

1

) = snap to conceptual(s

2

).

Proof: We prove the two implications in turn. To prove that r

1

and r

2

are snapshot equivalent,

we prove that r

1

is a snapshot subset of r

2

, and conversely. We need to show that for all times

t

1

and t

2

that if x 2 �

V

t

2

(�

B

t

1

(r

1

)) then also x 2 �

V

t

2

�

B

t

1

(r

2

)). Let tuple x be in �

V

t

2

(�

B

t

1

(r

1

)). By the

de�nitions of transaction and valid timeslice, a set of tuples x

i

exist in r

1

with x

i

[A] = x and

t

1

2 x

i

[T] and t

2

2 x

i

[V]. By the premise and the de�nition of conceptual to snap, a single

tuple x

0

exists in r

0

with x

0

[A] = x

i

[A] and so that x

0

[T] contains exactly the bitemporal chronons

covered by the x

i

. Further, the bitemporal chronon (t

2

; t

1

) must be in x

0

[T]. Independently of a

particular covering function, an application of conceptual to snap to x

0

will then result in a set

of tuples y

j

, each with y

j

[A] = x

0

[A]. For at least one of the y

j

, it must be true that t

1

2 y

j

[T] and

t

2

2 y

j

[V] (the �rst requirement). Therefore, tuple y = x

0

[A] must be in �

V

t

2

(�

B

t

1

(r

2

)). Since y = x,

r

1

is a snapshot subset of r

2

. Due to symmetry, proving the reverse is similar.

To prove the second implication, pick an arbitrary tuple x in some snapshot of s

1

and let

(t

i

; t

j

) be the set of pairs of valid and transaction times so that x is in �

V

t

i

(�

B

t

j

(s

1

)). (This is simply
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the bitemporal element in s

1

corresponding to the fact x.) By the premise and the de�nition of

snapshot equivalence, the set of pairs (t

0

i

; t

0

j

) such that x is in �

V

t

0

i

(�

B

t

0

j

(s

2

)) must be identical to

the set (t

i

; t

j

). In general, these sets of pairs are covered by di�erent sets of rectangles in s

1

and

s

2

. However, the function snap to conceptual simply accumulates the covered pairs (correspond-

ing to bitemporal chronons) in sets, rendering the particular covering by rectangles immaterial. ut

This theorem has important consequences. For each representation and for any covering

function, snapshot equivalence partitions the relation instances into equivalence classes where each

instance in an equivalence class maps to the same bitemporal conceptual relation instance. The

semantics of the representational instance is thus identical to that of the corresponding conceptual

instance. This correspondence provides a way of converting instances between representations: the

conversion proceeds through a snapshot equivalent conceptual instance.

Finally, the correspondence provides a way of demonstrating that two instances in di�erent

representations are semantically equivalent, again by examining the conceptual instance(s) to which

they map. For example, it may be shown that the representation instances given in Sections 3.1

through 3.5 are semantically equivalent to the bitemporal conceptual relation given in Section 2.1,

and are thus semantically equivalent to each other.

6 Algebras and Equivalence

We now examine operational aspects of the data models just introduced. A major goal is to

demonstrate the existence of the operational counterpart of the structural equivalence established

in the previous section.

In Section 5.1, we de�ned two algebraic operators, the transaction-and valid-timeslice opera-

tors, on conceptual relations. We now de�ne the remaining conceptual algebraic operators. Then

the corresponding operations on the chosen tuple-timestamped representation (see Section 3.1)

were de�ned. Each of the remaining four representations could have been used instead. We prove

that the operators preserve snapshot equivalence and are natural generalizations of their snapshot

counterparts. Finally, we examine two transformations that manipulate coverings in representa-

tions of bitemporal-relation instances.

6.1 An Algebra for Bitemporal Conceptual Relations

De�ne a relation schema R = (A

1

; : : : ; A

n

j T), and let r be an instance of this schema. Let t

2

denote an arbitrary time value and let t

1

denote a time not exceeding the current time.

Let D be an arbitrary set of jDj non-timestamp attributes of relation schema R. The projec-

tion on D of r, �

B

D

(r), is de�ned as follows.

�

B

D

(r) = fz

(jDj+1)

j 9x 2 r (z[D] = x[D])^ 8y 2 r (y[D] = z[D]) y[T] � z[T])^

8t 2 z[T] 9y 2 r (y[D] = z[D] ^ t 2 y[T])g

The �rst line ensures that no chronon in any value-equivalent tuple of r is left unaccounted for,

and the second line ensures that no spurious chronons are introduced.

Let P be a predicate de�ned on A

1

; : : : ; A

n

. The selection P on r, �

B

P

(r), is de�ned as follows.

�

B

P

(r) = fz j z 2 r ^ P (z[A])g

To de�ne the union operator, [

B

, let both r

1

and r

2

be instances of R.
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r

1

[

B

r

2

= fz

(n+1)

j (9x 2 r

1

9y 2 r

2

(z[A] = x[A] = y[A] ^ z[T] = x[T][ y[T]))_

(9x 2 r

1

(z[A] = x[A] ^ (:9y 2 r

2

(y[A] = x[A]))^ z[T] = x[T]))_

(9y 2 r

2

(z[A] = y[A] ^ (:9x 2 r

1

(x[A] = y[A]))^ z[T] = y[T]))g

The �rst clause handles value-equivalent tuples found in both r

1

and r

2

; the second clause handles

those found only in r

1

; and the third handles those found only in r

2

.

With r

1

and r

2

de�ned as above, relational di�erence is de�ned as follows.

r

1

�

B

r

2

= fz

(n+1)

j 9x 2 r

1

((z[A] = x[A])^

((9y 2 r

2

(z[A] = y[A] ^ z[T] = x[T]� y[T]))_

(:9y 2 r

2

(z[A] = y[A])^ z[T] = x[T])))g

The last two lines compute the bitemporal element, depending on whether a value-equivalent tuple

may be found in r

2

.

In the bitemporal natural join, two tuples join if they match on the join attributes and

have overlapping bitemporal-element timestamps. De�ne r and s to be instances of R and S,

respectively, and let R and S be bitemporal relation schemas given as follows.

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

l

j T)

S = (A

1

; : : : ; A

n

; C

1

; : : : ; C

m

j T)

The bitemporal natural join of r and s, r 1

B

s, is de�ned below. As can be seen, the timestamp

of a tuple in the result is the intersection of the timestamps of the two tuples that produced it.

r 1

B

s = fz

(n+l+m+1)

j 9x 2 r 9y 2 s (x[A] = y[A] ^ x[T]\ y[T] 6= ;^

z[A] = x[A] ^ z[B] = x[B] ^ z[C] = y[C]^

z[T] = x[T]\ y[T])g

We have only de�ned operators for bitemporal relations. The similar operators for valid-time

and transaction-time relations are special cases. The valid and transaction time natural joins are

denoted 1

V

and 1

B

, respectively; the conventional snapshot natural join is denoted 1

S

. The

same naming convention is used for the remaining operators.

6.2 An Algebra for Snodgrass' Tuple Timestamped Representation Scheme

For each of the algebraic operators de�ned in the previous section, we now de�ne counterparts

for the �rst of the �ve representation schemes. Throughout this section, R and S denote tuple

timestamped bitemporal relation schemas, and r and s are instances of these schemas. Initially, R

is assumed to have the attributes A

1

; : : : ; A

n

;T

s

;T

e

;V

s

; and V

e

.

We de�ne in turn projection, selection, union, di�erence, and natural join. The timeslice

operators were de�ned in Section 5.2.

To de�ne projection, let D be an arbitrary set of jDj attributes among A

1

; : : : ; A

n

. The

projection on D of r, �

B

D

(r), is de�ned as follows.

�

B

D

(r) = fz

(jDj+4)

j 9x 2 r (z[D] = x[D] ^ z[T] = x[T]^ z[V] = x[V])g

Next, let P be a predicate de�ned on A

1

; : : : ; A

n

. The selection P on r, �

B

P

(r), is de�ned as

follows.

�

B

P

(r) = fz

(n+4)

j z 2 r ^ P (z[A]))g

To de�ne the union operator, [

B

, let both r

1

and r

2

be instances of schema R.

r

1

[

B

r

2

= fz

(n+4)

j 9x 2 r

1

9y 2 r

2

(z = x _ z = y)g

With r

1

and r

2

de�ned as above, relational di�erence is de�ned using several functions intro-

duced in Section 3.1.
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r

1

�

B

r

2

= fz

(n+4)

j 9x 2 r

1

(z[A] = x[A]^

9t 2 cover(bi chr (x[T]; x[V])�

fbi chr (y[T]; y[V]) j y 2 r

2

^ y[A] = x[A]g)^

z[T

s

] = min 1 (t) ^ z[T

e

] = max 1 (t)^

z[V

s

] = min 2 (t) ^ z[V

e

] = max 2 (t))g

The new timestamp is conveniently determined by set di�erence on bitemporal elements.

To de�ne the bitemporal natural join, we need two bitemporal relation schemas R and S with

overlapping attributes.

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

l

;T

s

;T

e

;V

s

;V

e

)

S = (A

1

; : : : ; A

n

; C

1

; : : : ; C

m

; ;T

s

;T

e

;V

s

;V

e

)

In the bitemporal natural join of r and s, r 1

B

s, two tuples join if they match on the join

attributes and overlap in both valid time and transaction time.

r 1

B

s = fz

(n+l+m+4)

j 9x 2 r 9y 2 s (z[A] = x[A] = y[A] ^ x[T]\ y[T] 6= ; ^ x[V] \ y[V] 6= ;^

z[B] = x[B] ^ z[C] = y[C]^

z[T] = x[T]\ y[T]^ z[V] = x[V] \ y[V])g

As for the previous model, corresponding operators for valid-time and transaction-time rela-

tions may be de�ned as special cases of the operators already de�ned.

6.3 Equivalence Properties

We have seen that a bitemporal conceptual relation is represented by a class of snapshot equivalent

relations in the representation scheme. We now de�ne the notion of an operator preserving snapshot

equivalence.

Definition: An operator � preserves snapshot equivalence if, for all parameters X and snapshot

relation instances r and r

0

representing bitemporal relations,

r

S

� r

0

) �

X

(r)

S

� �

X

(r

0

):

This de�nition may be trivially extended to operators that accept two or more argument relation

instances. ut

In the snapshot relational algebra, an operator, e.g., natural join, must return identical results

every time it is applied to the same pair of arguments. In the framework presented here, only

preservation of snapshot equivalence is required. Thus, we add 
exibility in implementing the

bitemporal operators by accepting that they return di�erent, but snapshot equivalent, results

when applied to identical arguments at di�erent times.

We proceed by showing that the operators preserve snapshot equivalence. That is, given

snapshot equivalent operands each operator produces snapshot equivalent results. This ensures

that the result of an algebraic operation is correct, irrespective of covering.

Theorem 4 The algebraic operators preserve snapshot equivalence. Speci�cally, let r

S

� r

0

and

s

S

� s

0

. Then

r 1

V

s

S

� r

0

1

V

s

0

r 1

B

s

S

� r

0

1

B

s

0
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�

B

P

(r)

S

� �

B

P

(r

0

)

�

B

D

(r)

S

� �

B

D

(r

0

)

r [

B

s

S

� r

0

[

B

s

0

r �

B

s

S

� r

0

�

B

s

0

:

Proof: As before, we proceed by demonstrating snapshot subsets. To prove the �rst equivalence,

let tuple x be in the lhs. By the de�nition of 1

V

there exists a set of tuples x

i

2 r with x

i

[AB] =

x[AB] and so that [

i

x

i

[V] � x[V]. Similarly, there exists a set of tuples x

j

2 s with x

j

[AC] = x[AC]

and so that [

j

x

j

[V] � x[V]. Next, by the de�nition of

S

� , for each x

i

2 r the exists a set of tuples

x

i

k

2 r

0

with x

i

k

[AB] = x

i

[AB] and so that [

k

x

i

k

[V] � x

i

[V]. The set x

i

k

covers x

i

. For each j a

similar set x

j

l

exists that covers x

j

. Applying 1

V

to the sets of tuples x

i

k

2 r

0

and x

j

l

2 s

0

yields

a set of tuples x

m

with x

m

[ABC] = x[ABC] and so that [

m

x

m

[V] � x[V]. This proves that any

tuple in a snapshot made from the lhs will also be present in the same snapshot made from the

rhs. By symmetry, the reverse is also true, and the equivalence follows.

The proofs of the other equivalences are similar. ut

The next step is to combine the transformation functions with the representation level oper-

ators to create corresponding conceptual-level operators. Given a representation level operator, �,

its corresponding conceptual-level operators, �

c

, is de�ned as follows.

�

c

X

(r

0

) = snap to conceptual(�

X

(conceptual to snap(r

0

)))

Theorems 3 and 4 in combination make this meaningful and ensure that the conceptual-level oper-

ators behave like the snapshot relational algebra operators|with identical arguments, they always

return identical results. This is required because, like snapshot relations, bitemporal conceptual

relations are unique, i.e., two conceptual relations have the same information content if and only

if they are identical.

Now, we have two sets of operators de�ned on the bitemporal conceptual relations, namely the

directly de�ned operators in Section 6.1 and the induced operators. In fact, we have constructed the

two sets of operators to be identical. Put di�erently, the operators in Section 6.1 are the explicitly

stated conceptual-level operators, induced from the representation level operators (Section 6.2)

and the transformation algorithms in Section 3.1. This is formalized in the following theorem.

Theorem 5 The induced algebraic operators preserve snapshot equivalence.

Proof: Let �

c

X

be an induced conceptual operator, and suppose that conceptual relations r

and s are snapshot equivalent. By Theorem 1, r = s, and therefore, conceptual to snap(r)

S

�

conceptual to snap(s). By Theorem 4, �

X

(conceptual to snap(r))

S

� �

X

(conceptual to snap(s)).

Finally, by Theorem 3, snap to conceptual(�

X

(conceptual to snap(r)))

S

� snap to conceptual

(�

X

(conceptual to snap(s))). ut

Next we show how the operators in the various data models, snapshot, transaction-time,

valid-time, and bitemporal, are related. Speci�cally, we show that the semantics of an operator

in a more complex data model reduces to the semantics of the operator in a simpler data model.

Reducibility guarantees that the semantics of simpler operators are preserved in their more complex

counterparts.

For example, the semantics of the transaction-time natural join reduces to the semantics of

the snapshot natural join in that the result of �rst joining two transaction-time relations and then
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transforming the result to a snapshot relation yields a result equivalent to that obtained by �rst

transforming the arguments to snapshot relations and then joining the snapshot relations. This is

shown in Figure 4 and stated formally in the �rst equivalence of the following theorem.

-

-

??

Snapshot relationsTransaction-time relations

1

S

1

T

�

T

t

�

T

t

�

T

t

(r 1

T

r

0

)

S

� �

T

t

(r) 1

S

�

T

t

(r

0

)r 1

T

r

0

�

T

t

(r), �

T

t

(r

0

)r, r

0

Figure 4: Reducibility of Transaction-time Natural Join to Snapshot Outer Natural Join.

Theorem 6 Let t denote an arbitrary time that, when used with a rollback operator, does not

exceed the current time. In each equivalence, let r and s be relation instances of the proper types

for the given operators. Then the following hold.

�

T

t

(r 1

T

s)

S

� �

T

t

(r) 1

S

�

T

t

(s)

�

V

t

(r 1

V

s)

S

� �

V

t

(r) 1

S

�

V

t

(s)

�

B

t

(r 1

B

s)

S

� �

B

t

(r) 1

T

�

B

t

(s)

�

B

t

(r 1

B

s)

S

� �

B

t

(r) 1

V

�

B

t

(s)

Proof: An equivalence is shown by proving its two inclusions separately. The non-timestamp

attributes of r and s are AB and AC, respectively, where A, B, and C are sets of attributes and

A denotes the join attribute(s).

We prove the fourth equivalence. The proofs of the remaining equivalences are similar and

are omitted. Let x

00

2 lhs. Then there is a tuple x

0

2 r 1

B

s such that x
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[ABC] = x

00

and t 2 x
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Now assume x
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2 rhs. Then there exists tuples x
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6.4 Covering Transformations

When a bitemporal conceptual relation is mapped to a representation scheme, a covering function

is employed to represent bitemporal elements by sets of rectangles. The mappings were used in

Sections 3.1 to 3.5, and di�erent types of covering functions were discussed in Section 3.6. We now
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de�ne two transformations that can change the covering in a representation without a�ecting the

results of queries, as the transformations preserve snapshot equivalence. Both are generalizations

of simpler transformations used in-valid time data models.

The �rst transformation is termed coalescing. Informally, it states that two temporally over-

lapping or adjacent, value-equivalent tuples may be collapsed into a single tuple [Sno87]. Coalescing

may reduce the number of tuples necessary for representing a bitemporal relation, and, as such, is a

space optimization. We formally de�ne coalescing and show that it preserves snapshot equivalence.

Definition: Coalescing . Let x = (a

1

; : : : ; a

n

; t

1

; t

2

; v

1

; v

2

) and x

0
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; : : : ; a
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3

; t

4

; v

3

; v

4

) be

two distinct tuples belonging to the same bitemporal relation instance.

First, if x[T] = x

0

[T] and x[V] [ x

0

[V] = [min(v

1

; v

3

);max(v

2

; v

4

)], the two tuples may be
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1

; : : : ; a

n

; t

1

; t

2

;min(v

1

; v

3

);max(v

2
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4

)). Second, if x[V] =

x

0

[V] and x[T] [ x

0

[T] = [min(t

1

; t

3

);max(t
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)], the two tuples may be coalesced into the single
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; : : : ; a
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; t

4

); v

1

; v

2

).

A bitemporal relation instance is coalesced if no pair of tuples may be coalesced. ut

The proof of the next theorem utilizes a subtle requirement on null values in bitemporal

relations. Speci�cally, we require that null information not con
ict with non-null information. If

one tuple states that the value of an attribute is null then another, temporally concurrent tuple

that contains non-null information for that attribute must not exist. More formally, we de�ne this

property as follows.

Definition: Consistency of null information. Let two tuples x and x

0

, both belonging to a

relation instance r, be given by x = (a

1

; : : : ; a

n

; t) and x

0
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0

1

; : : : ; a

0
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0
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g(a

i

= a

0

i

). The last elements, t and t

0

, of the

two tuples denote bitemporal elements. If, for all such tuple pairs in r, it is the case that t\ t

0

= ;

then the null information in r is consistent. ut

Theorem 7 Coalescing preserves snapshot equivalence.

Proof: Let r be a relation instance containing x and x

0

as given in the de�nition of coalescing.

In the �rst of the two cases, let relation s be identical to r, but with x and x

0

replaced by the

tuple y as given in the de�nition. We must prove r and s snapshot equivalent. The tuples x

and x

0

result in exactly the tuple (a

1

; : : : ; a

n

) being present in all snapshots of r with a transac-

tion time in [t

1

; t

2

] and a valid time in [min(v

1

; v

3

);max(v

2

; v

4

)]. Similarly, the tuple y results in

(a

1

; : : : ; a

n

) being part of all snapshots of s with a transaction time in [t

1

; t

2

] and a valid time in

[min(v

1

; v

3

);max(v

2

; v

4

)]. The requirement that null information be genuine ensures this even in

the case when there are nulls among the a

i

. The proof for the second of the two cases is similar. ut
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Figure 5: Coalescing

Coalescing of overlapping, value-equivalent tuples is illustrated in Figure 5. The �gure shows

how rectangles may be combined when overlap or adjacency occurs in transaction time (a) or
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valid time (b). Note that it is only possible to coalesce rectangles when the result is a bitemporal

rectangle. Compared to valid-time relations with only one time dimension, this severely restricts

the applicability of coalescing.

We now formalize the notion that a relation may have repeated information among tuples.

Definition: A bitemporal relation instance r has repetition of information if it contains two

distinct tuples x = (a

1

; : : : ; a

n

; t

1

; t

2

; v

1

; v

2

) and x

0

= (a

1

; : : : ; a

n

; t

3

; t

4

; v

3

; v

4

) such that x[T] \

x

0

[T] 6= ; ^ x[V] \ x

0

[V] 6= ;. A relation with no such tuples has no repetition of information. ut

While coalescing may both reduce the number of rectangles and reduce repetition of infor-

mation, its applicability is restricted. The next equivalence preserving transformation may be

employed to completely eliminate temporally redundant information, possibly at the expense of

adding extra tuples. We �rst de�ne the transformation and then describe its properties.

Definition: Elimination of repetition. With x and x

0

as in the de�nition above, the information

in tuple y, de�ned below, is contained in both x and x

0

.
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; : : : ; a

n

;max(t
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3

);min(t

2

; t

4
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; v

3

);min(v

2

; v

4

))

The repetition incurred by x and x

0

may be eliminated by replacing tuples x and x

0

by the set of

tuples, s, de�ned below.

1 s = fz

(n+4)

j z[A] = x[A] ^ ((z[T] 2 cover
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t

(x[T]� x

0
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t
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0

[V])_

3 (z[T] = x[T]\ x

0

[T]^ z[V] = x[V] [ x

0

[V]))g

The function cover

max

t

transforms an argument set of transaction-time chronons into a set of

maximal intervals of consecutive chronons. ut

Theorem 8 The elimination of repetition transformation has the following properties.

1. It eliminates repetition among two argument tuples.

2. The result, s, has at most three tuples.

3. It is equivalence preserving.

4. Repeated application produces a relation instance with no repetition of information.

Proof: There is no repetition of information between the resulting tuples as they do not overlap

in transaction time.

Let x and x

0

be given as in the de�nition of elimination of repetition and de�ne T

x

=

cover

max

t

(x[T] � x

0

[T]) and T

0

x

= cover

max

t

(x

0

[T] � x[T]). Tuples x and x

0

are replaced by at

most three tuples. Line 3 results in one tuple. Lines 1 and 2 collectively result in two tuples, for

the following reasons. The set T

x

has two elements when x

0

[T] contains no endpoints of x[T]. In

this case T

0

x

is empty. The sets T

x

and T

0

x

have both one element when x

0

[T] contains exactly one

of the endpoints of x[T]. Lastly, T

x

is empty when x

0

[T] contains both endpoints of x[T]. In this

case T

0

x

has two elements.

Being similar to that for coalescing, the proof of equivalence preservation is omitted.

The process of eliminating repetition is terminating because the new tuples that result from

one transformation step cover strictly smaller intervals in the transaction-time dimension. In ad-

dition, two tuples that cover only a single transaction time and have repeated information may be

coalesced into a single tuple that would not be further partitioned. ut
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The transformation partitions the regions covered by the argument rectangles on transaction

time. The symmetric transformation, which partitions on valid time, may also be included. These

transformations are illustrated in parts (a) and (b), respectively, of Figure 6.
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� -
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-

(b)(a)

VT VT VT

TT TT TT

Figure 6: Eliminating Representational Repetition of Information

The elimination of repetition of information may increase the number of tuples in a represen-

tation. The transformation may still be desirable because subsequent coalescing may be possible

and, more importantly, because certain updates are simpli�ed.

7 Summary and Future Research

In this paper, we de�ned the bitemporal conceptual data model which timestamps facts with bitem-

poral elements, which are sets of bitemporal chronons.

We showed that it is a unifying model in that conceptual instances could be mapped into

instances of �ve existing bitemporal representational data models: a �rst normal form (1NF) tuple-

timestamped data model, a data model based on 1NF timestamped change requests recorded in

backlog relations, a non-1NF data model in which attribute values were stamped with rectangles

in transaction-time/valid-time space, a non-1NF model where valid-time states are indexed by

transaction time, and a 1NF model where each tuple is accorded �ve timestamp values. We

also showed how extensions to the conventional relational algebraic operators could be de�ned in

a representational data model and then be meaningfully mapped to analogous operators in the

conceptual data model.

An important property of the conceptual model, shared with the conventional relational

model, but not held by the representational models, is that relation instances are semantically

unique, each models a di�erent reality and thus has a distinct semantics. We employed snapshot

equivalence to relate instances in these six models. It was demonstrated that equivalent algebras of

snapshot perserving operators could be de�ned for di�erent models. Further, the operators were

shown to be natural extension of the snapshot operators. Finally, we discussed covering functions

at di�erent points along the space-time tradeo�, and presented two types of transformations that

alter coverings of bitemporal relation representations.

We advocate a separation of concerns. Each of data presentation, storage representation, and

time-varying semantics should be considered in isolation, utilizing di�erent data models. Semantics,

speci�cally as determined by logical database design, should be expressed in the conceptual model.

Multiple presentation formats should be available, as di�erent applications require di�erent ways

of viewing the data. The storage and processing of bitemporal relations should be done in a data

model that emphasizes e�ciency.

Additional research is needed in database design, utilizing the conceptual data model. It

appears that normal forms may be more conveniently de�ned in this model than in the represen-

tational models. We are currently investigating this topic [JSS92]. Also, more work is needed in

mapping existing temporal query language proposals into the conceptual data model.
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The results in this paper employ snapshot equivalence to formalize the notion of relation

instances having the same information content. Other equivalences, such as strong equivalence

[CCT93], capture a di�erent notion of identical information content. It would be illuminating

to attempt to demonstrate mappings among the existing temporal models, to de�ne equivalent

algebras, and to de�ne normal forms, using these other equivalences.
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