
A Comparison of Implicit and

Explicit Parallel Programming

Vincent W. Freeh

TR 93-30a

A Comparison of Implicit and

Explicit Parallel Programming

Vincent W. Freeh

TR 93-30b

Abstract

The impact of the parallel programming model on scienti�c computing is examined. A

comparison is made between Sisal, a functional language with implicit parallelism, and

SR, an imperative language with explicit parallelism. Both languages are modern, high-

level, concurrent programming languages. Five di�erent scienti�c applications were

programmed in each language, and evaluated for programmability and performance.

The performance of these two concurrent languages on a shared-memory multiprocessor

is compared to each other and to programs written in C with parallelism provided by

library calls.

August 1, 1994

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1

A version of this paper will appear in the Journal of Parallel and Distributed Computing.

2

This research was supported by NSF grants CCR-9108412 and CDA-8822652

1 Introduction

With most scienti�c computing applications, tension exists between the size of the problem (or the

precision of the solution) and the amount of computational time required. This forces evaluating a

smaller problem or calculating a less precise solution in order to obtain timely results. The extra

processing power of parallel computers relieves some of this tension, and today parallel computers

are common and relatively cheap. Thus, we can expect more and more scientists to turn to parallel

computing.

There are three main approaches to programming parallel computers: parallelizing compilers,

implicit parallel programming languages, and explicit parallel programming languages [Cof90].

A parallelizing compiler creates a parallel program from sequential source code. Thus, existing

sequential programs become parallel programs, and the programmer need not learn a new language.

Unfortunately, this approach has two major drawbacks. First, the compiler usually cannot discover

all the available parallelism in a program. Second, the best parallel solution to a problem often

di�ers from the best sequential solution [Cof90].

An implicit parallel programming language, such as Id or Sisal, relies on a compiler to exploit

the parallelism inherent in a program. These languages have no constructs to create and manage

parallelism, and hence, program design and development is generally simpler than in an explicit

parallel language. However, like a parallelizing compiler for a sequential language, a compiler for an

implicit parallel language has to create and manage parallelism. Thus, like in the above approach,

the compiler may not discover all the parallelism available [Cof90].

An explicit parallel programming language provides constructs, such as cobegin, that allow the

programmer to create and manage concurrency. Modern concurrent languages, such as Ada and SR,

have parallel constructs integrated into the language. Others take an existing sequential language,

such as C or Pascal, and add library routines to manage concurrency. Because parallelism is explicit,

the programmer can write an e�cient program and tune it for peak performance. However, the

need to code parallelism explicitly makes this approach more di�cult than either of the other

approaches [Cof90].

This paper compares using an implicit parallel language, Sisal, to using an explicit parallel

language, SR. Sisal(Streams and Iteration in a Single Assignment Language) is a general purpose

functional language [FCO90]. It is implemented using a dataow model, meaning program execu-

tion is determined by the availability of the data, not the static ordering of expressions in the source

code. The compiler can schedule the execution of expressions in any order, including concurrently,

as long as it preserves data dependencies. Appendix A contains a brief overview of Sisal.

SR (Synchronizing Resources) is a general purpose imperative language with processes, com-

munication, and synchronization integrated into the language [AOC

+

88, AO93]. It has shared

variables, semaphores, synchronous and asynchronous message passing, remote procedure call, and

rendezvous. Sequential, shared-memory, and distributed programs can be written in SR. Ap-

pendix B contains a brief overview of SR.

We evaluate Sisal, because it is one of the few applicative languages that has respectable

performance on a general-purpose machine, and SR, because it is powerful, exible, and easy to

use and understand. Furthermore, both are public domain and have implementations on many

di�erent machines. We compare the two approaches for programmability and performance. For

programmability, we evaluate the ease of expressing an algorithm and compiling and debugging a

program. We compare the performance of Sisal and SR programs to each other and to a hand-

tuned program written in C with parallelism provided by library calls.

Section 2 describes Sisal and SR programs that solve �ve scienti�c problems and compares the

performance of those programs. Section 3 compares of the programmability of the two approaches.

1

Application Work Load Data Sharing Synch.

1 Matrix Multiplication Static Light None

2 Jacobi Iteration Static Medium Medium

3 Adaptive Quadrature Dynamic None Medium

4 LU Decomposition Static Heavy Heavy

5 Mandelbrot Dynamic Light None

1. Only synchronization is termination detection. All shared data is read-only.

2. Edge sharing with neighbors. Compute maximum change between iterations.

3. Fork/join parallelism. No data sharing.

4. Decreasing work. Every iteration disseminate values to all.

5. Variable amount of work.

Figure 1: Applications evaluated and comments about each.

Section 4 contains a summary and some conclusions. Appendices A and B briey describe Sisal and

SR, respectively. Appendix C contains Jacobi iteration programs written Sisal and SR. Finally,

Appendix D compares the sizes of the programs evaluated in this paper.

2 Applications, Programs, and Performance

In order to compare Sisal and SR, we wrote programs for �ve applications: matrix multiplica-

tion, Jacobi iteration, adaptive quadrature, LU decomposition, and Mandelbrot. Ideally, the two

languages would be evaluated using many large applications. However, the evaluation of a single

large application requires more expertise and time then is available to us; furthermore, the results

are likely to be speci�c to that application only. Nonetheless, the results presented here show the

avor, strengths, and weaknesses of the languages. Moreover, in a large application most of the

time is spent executing a small portion of the code [Knu71]; thus, our performance results provide

an indication of the expected performance of a larger application. We compare the performance of

these programs to each other and to equivalent C programs, which provide a performance baseline

and show the overheads introduced by Sisal and SR.

Each subsection below describes one scienti�c programming problem, discusses the implemen-

tation in both Sisal and SR, and compares the performance of programs written in Sisal, SR,

and C. Figure 1 summarizes the �ve applications and shows three properties of each: work load,

data sharing, and synchronization. Work load is a characterization of whether the number of tasks

or the amount of work per task can be determined statically at compile time or whether it has

to be determined at run time. Data sharing is a measure of the extent to which data is shared.

Synchronization is a measure of the amount of interprocess synchronization.

The programs evaluated in this paper are e�cient in the sense that they are representative

of production-quality programs. For example, in matrix multiplication (C = A � B), the inner

product uses a row of A and a column of B. Because the C programming language stores matrices

in row-major order, accessing a matrix column-wise results in poor cache utilization. Therefore,

all matrix multiplication programs transpose the B matrix to improve cache e�ciency. Other

programs use similar optimizations.

Both SR and C have explicit parallelism; consequently, the C programs solve the problem

in essentially the same way as the SR programs. Although the C programs are very similar to

2

the SR programs, they were signi�cantly harder to develop. This paper does not discuss the

programmability of the C programs because its focus is languages speci�cally design for parallelism.

Testing Details

All performance tests were conducted on a Silicon Graphics Iris 4D/340 shared memory multi-

processor. It has four 33-Mhz MIPS processors, 64 Mbytes of main memory, 64 Kbytes of data

cache, 64 Kbytes of instruction cache, 256 Kbytes secondary data cache, runs Irix V4.0.1, and has

MIPS oating-point units. The Sisal compiler used is osc 1.2 V12.9.2. The SR compiler used

is sr V2.2.2. The C compiler used is /bin/cc; the parallelism for C programs is provided through

library calls to the Silicon Graphics mpc library. Both osc and sr generate C code, which is also

compiled by /bin/cc.

The Sisal compiler we had available does not have function call or recursive parallelism, even

though this is a natural aspect of the language. We added it by modifying the compiler back

end to generate code for the Filaments package, which supports e�cient �ne-grain parallelism on

shared-memory multiprocessors, distributed-memory multicomputers, and clusters of workstations

[EAL93, FLA94].

The performance results presented in this paper are the median of at least three separate

executions. The reported time reects only the performance of the applications; it does not include

any initialization or �nalization of the run-time systems. Performance tests were conducted in

multi-user mode when the machine was very lightly loaded. Even so, there are some Unix daemons

running in the background competing for the processors. Some tests were made in single-user mode

to determine what e�ect this has on the multi-user times. Single- and multi-user times were the

same for the cases with 1, 2, or 3 processors; however, the multi-user times were slightly higher

occasionally on four-processor tests.

2.1 Matrix Multiplication

Matrix multiplication solves C = A�B, where A, B, and C are n� n matrices. For each point in

C, we compute the inner product

c

i;j

=

n

X

k=1

a

i;k

� b

k;j

:

The A and B matrices are read-only; C is write-only. If each process computes distinct elements

of C, there is no contention when writing these elements. Therefore, the algorithm requires no

interprocess coordination, and synchronization is needed only to detect termination.

All programs (Sisal, SR, and C) transpose the B matrix before multiplying, as discussed above.

(The times for the non-transposed programs are 2-5 times greater on a 500� 500 matrix.)

2.1.1 Sisal Program

The Sisal program consists of a parallel for loop in two dimensions that returns the values of

elements of C. The body of each loop contains another for loop that computes the inner product.

Another 2-dimensional for loop transposes the B matrix. Figure 11 in Appendix A contains a

Sisal matrix multiplication program.

2.1.2 SR Program

Because parallelism is explicitly coded in SR, the SR program must create processes and distribute

the work among them. However, the decomposition is simple because the work load is regular: every

3

400� 400 500� 500 600� 600

CPUs Sisal SR C Sisal SR C Sisal SR C

1 34.5 60.5 28.2 66.9 118. 56.2 115. 215. 95.6

2 17.7 30.7 14.6 34.5 60.0 29.3 59.6 114. 52.9

3 12.3 20.8 10.2 23.7 40.8 21.2 40.9 77.8 38.0

4 9.12 16.0 8.73 19.2 31.1 16.7 31.9 60.4 29.7

Figure 2: Matrix multiplication (in seconds).

point in C requires the same amount of work. Therefore, to balance the load, each process will

compute an equal number of points. Furthermore, to minimize the data needed by each process and

to improve caching, the program distributes the entire rows to one process. The program assigns

a horizontal strip of C to each process, which will read the corresponding strip of A and every

element of B.

The SR matrix multiplication program is simple. First, create the A and B matrices. Then,

create a process for each horizontal strip, which computes its portion of C in a two-dimensional fa

(for-all) loop. After the processes are �nished, the SR run time system calls the �nal code block

1

,

which can process the resulting matrix.

2.1.3 Performance Comparison

For matrix multiplication the Sisal program is usually 10-20% slower than the C program. The

time of the SR program is almost twice that of Sisal. Most of the overhead in Sisal and some

of the overhead in SR are due to the complicated C codes that are generated by osc and sr. The

generated code is necessarily more complicated because Sisal and SR are much higher-level than

C, and hence the codes generated are less e�cient the what can be written directly in C.

The performance of the sr-generated executable is much worse than the osc-generated exe-

cutable, primarily because the compilers handle array dereferencing di�erently. Although both

compliers generate a complex expression, consisting of multiple pointer dereferences and index or

o�set calculations, osc optimizes this expression when it is in a loop. It \caches" a pointer to the

array data in a local variable, which achieves two performance gains. First, each array reference in

the loop is now a simple pointer dereference, instead of a complex expression (this is called common

sub-expression elimination). Second, at the end of each iteration, (if possible) the pointer is incre-

mented so it points to the \next" element, saving the cost of re-evaluating the complex expression

on each iteration (this is called strength reduction). Consequently, for code that accesses arrays in

a loop, the performance of osc is comparable to cc. In contrast, sr generates a complex expression

for every array access and is not comparable to cc.

2.2 Jacobi Iteration

Jacobi iteration is a technique for solving Laplace's equation. In two dimensions with constant,

uniform boundaries, Laplace's equation is:

@

2

u

@x

2

+

@

2

u

@y

2

= 0:

1

In SR the user may specify a �nal code block, which will be executed when the program shuts down. The �nal

code, if it exists, is always the last block of user code that is executed.

4

CPUs ijac bjac brjac

1 66.5 62.4 58.6

2 35.2 38.0 36.7

3 27.6 28.8 26.3

4 23.3 24.1 21.5

Figure 3: Sisal Jacobi iteration (100� 100, in seconds).

The region of interest is discretized onto a 2-dimensional mesh, U . Jacobi iteration uses the following

equation to compute the (k + 1)th approximation of U from the kth approximation:

u

(k+1)

i;j

=

1

4

(u

(k)

i�1;j

+ u

(k)

i+1;j

+ u

(k)

i;j�1

+ u

(k)

i;j+1

): (1)

The algorithm iterates until the solution converges; i.e., until the maximum change (�

MAX

) that

occurs at any point is less than some threshold (�).

Like matrix multiplication, the work load for Jacobi iteration is static and regular. However,

processes share the data that are on the boundary of each partition; therefore, synchronization is

required to ensure that neighboring processes are �nished accessing the boundary data before it

is over-written. This synchronization can be accomplished with a barrier, which ensures that all

processes have arrived before any are allowed to proceed.

2.2.1 Sisal Programs

In order to explore performance trade-o�s, three distinct Jacobi iteration programs were written

in Sisal (Figure 3). The �rst Sisal program (ijac: interior Jacobi) creates an n � n array and

updates each point using one of nine di�erent equations. The primary function call takes an array

and returns both the maximum change of any point and an updated array. If the maximum change

is greater than the threshold (�

MAX

> �), then another iteration (function call) is performed.

Because (1) is only de�ned for the interior points, it is necessary to decide if each point is adjacent

to the boundary: If it is in the interior, Equation (1) is used, otherwise a special equation is used.

For example, the following equation computes the new values of the top row (the north

j

's are the

constant values of the top boundary):

u

(k+1)

1;j

=

1

4

(north

j

+ u

(k)

2;j

+ u

(k)

1;j�1

+ u

(k)

1;j+1

):

Similar equations are needed to compute the points adjacent to the south, east, and west bound-

aries, and slightly di�erent equations are needed for the four corner points. A complex if expression

determines which of the nine equations to use. This expression is expensive because it is compa-

rable to the computation required to update a point, which otherwise contains only 4 additions, a

multiply, and a compare.

The second program (bjac: boundary Jacobi) eliminates the complex if expression in ijac by

using an (n+2)� (n+2) array that contains a boundary on each edge. Equation (1) updates each

of the n� n interior points because all have four neighboring points. First, the new interior points

are computed, and then the boundary is appended to the array. The appending of arrays in bjac

involves (logically) copying 4n+ 4 boundary elements.

2

2

The osc compiler recognizes that the north and south boundaries rows do not change, and \appends" the top

5

75� 75 100� 100 150� 150

CPUs Sisal SR C Sisal SR C Sisal SR C

1 24.6 117. 22.9 58.6 209. 51.3 178. 772. 162.

2 12.5 59.8 11.4 36.7 105. 25.0 90.9 381. 76.0

3 11.1 39.2 7.47 26.3 70.8 16.8 70.2 254. 47.4

4 8.54 30.5 5.82 21.5 53.4 12.5 52.8 196. 35.5

Figure 4: Jacobi iteration (in seconds).

The third program (brjac: boundary, rows only) is a hybrid of the �rst two approaches. Only the

east and west boundaries are appended to the array, reducing the amount of data that is needed

and copied at the expense of an if expression. The if expression in this program is much less

expensive than the one in ijac because it is simpler (three versus nine arms) and is only evaluated

once per row (n times) rather than once per point (n

2

times). The brjac program is the fastest of

the Sisal programs tested.

2.2.2 SR Program

For the SR Jacobi iteration program, the design and development were straightforward. The

program consists of initialization and �nalization code, plus the Jacobi iteration kernel that is

executed by the worker processes parallel. Initialization consists of reading run time parameters,

creating data structures, and forking processes. Finalization consists of printing the solution after

the workers �nish. In the worker code, new values are computed every iteration, the maximum

di�erence is updated, and the processes synchronize. The synchronization is done with two barriers.

Between the barriers one process checks for convergence. The SR program uses a boundary around

the array, so there is no complicated if statement.

The SR program uses a static decomposition because the work load is known at compile time.

Additionally, processes are given entire rows to compute in order improve the cache performance.

Each process works on approximately n=p rows, where p is the number of worker processes (and

the number of processors); processes are given contiguous rows because it is simpler and there is

no performance advantage a�orded by a more complicated scheme.

The maximum change (�

MAX

) is maintained locally by each process, instead of using a single

variable global to the program. This eliminates the contention that would occur when the global is

accessed concurrently. However, after every iteration, one process has to \reduce" the local maxima

into the global and check for convergence (�

MAX

< �). Although this improves performance while

updating the points, it requires an extra barrier per iteration. In particular, the reduction cannot

be done until all processes �nish updating their points (the �rst barrier), and it must be completed

before any process start updating points for the next iteration (the second barrier).

2.2.3 Performance Comparison

The times for the Jacobi iteration programs are shown in Figure 4. Those for Sisal are from the

best program (brjac). All tests were run with a convergence tolerance of 10

�4

.

The C program is e�cient and scales very well; sometimes it gets better-than-linear speedup.

and bottom rows by copying a pointer to these rows. Thus the appending of the boundary actually requires only

2n + 4 copies.

6

function quad(a,b: real) returns A: real

c := (a+ b)=2:0 # calculate mid point

compute three areas using trapezoidal (or similar) rule

A

full

:= area(f(a); f(c); c� a)

A

halves

:= area(f(c); f(b); b� c) + area(f(a); f(b); b� a)

if jA

full

� A

halves

j < � then A := A

halves

else A := quad(a; c) + quad(c; b)

end

Figure 5: Adaptive quadrature algorithm.

Each process accesses O(n

2

=p) elements; therefore, as the number of processes increases, the size of

the data required by each process decreases. If the data �ts in the cache, there is a huge increase

in performance, which accounts for the better-than-linear speedup.

The osc compiler was able to build the new array in place even though it is created concurrently

by distinct processes. Additionally, in bjac and brjac the append operations are performed in place.

These optimizations are absolutely necessary for the Sisal program to run e�ciently. However,

unlike C, osc does not reuse arrays. Consequently, the fastest Sisal program, brjac, is 5-15%

slower than the C program on a single processor.

SR is again much slower than C, even though the C and SR programs reuse the arrays by

changing their roles after each iteration (old becomes new and new becomes old). There are six

array accesses per point on every iteration, and there is very little work per point. Therefore, the

array accessing overhead is signi�cant.

2.3 Adaptive Quadrature

Numeric quadrature computes the de�nite integral of a function over an interval (

R

b

a

f(x)dx)

by dividing the interval into subintervals. The area of each subinterval is approximated (using a

method like the trapezoidal rule), then the approximations of the subintervals are added together

to obtain the approximation for the entire interval. In adaptive quadrature the subintervals are

determined dynamically. A function estimates the area of a subinterval and the areas of the right

and left halves of this subinterval. If the di�erence between the sum of the two smaller areas and

larger area is small enough, the approximation is returned. Otherwise the function recursively (and

in parallel) computes the areas of the left and right subintervals and returns the sum of the two

subareas. Figure 5 contains pseudocode for this algorithm.

In order for the function to be integrated by adaptive quadrature, it must be continuous and

computable everywhere on the interval. Our programs use f(x) = e

x

, because the slope varies

throughout. This ensures an irregular work load; therefore, the amount of work is not known at

compile time. Furthermore, it is easy to verify the results analytically.

2.3.1 Sisal Program

The recursive program in Figure 5 is quite simple to write in Sisal. However, osc does not

parallelize function calls. This is unfortunate because recursion is the simplest and most natural

way to express many algorithms.

To provide function call parallelism, the osc compiler was modi�ed to produce Filaments code.

The modi�ed compiler, fsc, links the generated code with the Filaments run time library, which

provides e�cient �ne-grain parallelism, and in particular, fork/join or function call parallelism

7

SISAL SR C

CPUs osc fsc bag prune

1 26.7 23.7 25.8 18.2 7.79

2 12.1 15.3 9.10 3.87

3 8.17 13.3 6.07 2.61

4 6.65 22.5 5.64 2.18

Figure 6: Adaptive quadrature (interval: 1.0 to 20.0, in seconds).

[FLA94]. Modi�cations were made to the osc run time system and to the code generation phase

of the back end. Because the modi�cations to the back end of the compiler were con�ned to the

code generator, fsc retains the optimizations performed by osc [FA95].

2.3.2 SR Programs

We wrote three di�erent adaptive quadrature programs in SR. The simplest SR program, co, uses

the SR co (cobegin) statement to invoke the two recursive calls in parallel (the next to last line

in Figure 5). Because this statement creates a process for each call, it results in an explosion of

processes.

The second program, bag , uses a bag of tasks , which contains all tasks to be done, and worker

processes, which continuously remove and execute tasks [And91]. In this algorithm, we create work

by inserting a task (describing the work) into the bag; eventually a worker removes and executes

this task. Instead of forking two processes as is done in the co program, bag places one task

(subinterval) in the bag and continues working on the other task. Because a task may be executed

by any worker, the bag balances the work among the workers. Additionally, there is no explosion

of processes, like occurs in the co program. This program uses local partial totals of the area to

avoid contention at a global variable. Each worker accumulates it own partial total of the area of

all the intervals it has evaluated. When all the work is done, these partial areas are summed in the

�nal code block to obtain the total area.

The third program, prune, also uses a bag of tasks, but limits the number of tasks inserted into

the bag to improve performance. Because there is very little work required per task, the overhead

of inserting and removing tasks is considerable. A worker does not insert a task into the bag if

there is su�cient parallelism already. It inserts a task only if T

in

�T

out

< �, where T

in

(T

out

) is the

number of tasks inserted (removed) by the worker, and � is a parameterized limit. In this case a

small � ensures that su�cient tasks are inserted to balance the load; this program uses � = 3p.

In SR a bag-of-tasks program is easy to implement because SR both provides powerful message

passing primitives and detects termination. In SR message passing is many-to-many, so a message

queue su�ces as a global bag: A worker simply sends a message to insert a task and receives a

message to remove a task. An SR program will terminate when all processes are blocked receiving

a message and there are no more messages to be delivered. At which point the final code block

is called, which adds the partial areas to obtain the �nal result.

2.3.3 Performance Comparison

As noted above, the Sisal compiler did not expose any parallelism in the programs we wrote, so

only the single processor time is reported. Furthermore, it is 47% slower than prune. In addition,

the non-pruning SR program, bag, is as fast as the Sisal program, even though bag inserts and

removes every task (resulting in more than 122,000 sends and receives). The Sisal program uses

8

recursive calls, it is a poor implementation; a recursive SR program �nishes in 18.1 seconds|as

fast as prune and 32% faster than the Sisal program.

The times shown in the fsc column of Figure 6 were obtained using fsc, a modi�ed Sisal

compiler [FA95]. The speedup is nearly perfect and on a single processor it is better than Sisal.

The Filaments library performs pruning, which explains the excellent speedup and the good single

processor performance.

The co program is not very e�cient. It took 8 times longer (7.08 versus 0.85 seconds) than

bag on a small interval [1; 10]. Therefore, it was not tested on the full interval. In the SR program

bag, contention for the bag increases as the number of workers increases, causing the performance

to deteriorate to the point where with four workers it runs 70% slower than with three workers.

This is because the bag is simultaneously accessed by many processes, and these accesses must be

serialized. The program prune limits the number of tasks that are inserted, which both reduces

contention and eliminates some insertions and deletions.

2.4 LU Decomposition

LU decomposition solves the linear system: Ax = b [PFTV88], by decomposing A into lower-

and upper-triangular matrices, such that A = LU . Then the linear system becomes A = LUx = b

and the solution, x, is obtained by solving two triangular systems Ly = b and Ux = y, using

back-substitution. We use Doolittle's method to calculate L and U , which is de�ned as follows:

u

ij

=

(

a

ij

�

P

i�1

k=1

l

ik

u

kj

i � j

0 i > j

(2)

l

ij

=

8

>

<

>

:

1

u

jj

�

a

ij

�

P

j�1

k=1

l

ik

u

kj

�

i > j

1 i = j

0 i < j

(3)

The n

2

equations in (2) and (3) depend on one another. In particular, the kth row of U depends

on the �rst k � 1 rows of U and the the �rst k � 1 columns of L. Similarly, the kth column of L

depends on the �rst k rows of U and the �rst k � 1 columns of L. A single-pass algorithm for LU

decomposition is:

do k := 1 to n!

parallel do j := k to n! compute u

kj

od # using (2)

parallel do i := k to n! compute l

ik

od # using (3)

od

This algorithm requires storage for L, U , and A. Because L and U are triangular, the storage

requirement is 2n

2

elements.

There is also an incremental algorithm that can create L and U in the same storage provided

for A. It computes the summations in (2) and (3) one term at a time (incrementally) and stores

the intermediate results in place. The �rst row of U is identical to the �rst row of A, so it is

unchanged. Similarly, the �rst column of L only needs to be be normalized by u

11

(a

11

). The

following pseudocode shows the main loop of incremental algorithm:

do k := 2 to n!

parallel do i := k to n; j := k to n!

a

ij

:= a

ij

� a

ik

a

kj

od

9

parallel do i := k + 1 to n! a

ik

:= a

ik

=a

kk

od

od

On each iteration of the sequential do loop, the elements in row i and column j obtain their

�nal values, leaving (n � k)

2

\active" elements remaining in the lower right corner of the matrix.

According to (3) each element l

ij

; i > j; is divided by u

jj

(a

jj

); as shown in the pseudocode above.

The incremental algorithm has three advantages over the single-pass algorithm: less synchro-

nization, �ner parallelism, and better data locality. First, there is one less phase per iteration;

consequently, there is one less barrier. Second, the parallelism is �ner, and therefore, more scal-

able. On the kth iteration in the single-pass algorithm at most (n � k) values can be updated in

parallel; in the second algorithm at most (n � k)

2

values can be updated in parallel. Lastly, there

is little locality between iterations in the single-pass direct algorithm, because a process accesses a

di�erent set of data each iteration. In the incremental algorithm, however, all updated points were

accessed on the previous iteration.

In both algorithms the last operation in computing the elements of L is a division by u

jj

. If u

jj

is close to zero, roundo� errors can be introduced. The usual way to reduce the e�ect of roundo�

error is to pivot: interchange the rows (or columns) so that the largest element is moved to the

diagonal. Because we are solving a linear system, rows (or columns) can be interchanged without

a�ecting the solution.

2.4.1 Sisal Programs

Both algorithms were programmed in Sisal. The single pass program, slu, is a simple translation

of equations (2) and (3) into Sisal code. Because two-dimensional arrays in Sisal do not have

to be rectangular, slu creates L and U as triangular matrices, saving space without having to use

a complicated indexing scheme. The L matrix is transposed, because it is created and accessed

column-wise. This way, on each iteration, the program concatenates a column to the previously

computed columns of L.

A second program, slup, uses the single-pass algorithm and also performs pivoting. After

determining the rows to pivot, the A matrix and what has been created of the L matrix are

pivoted. The U matrix does not need to be pivoted because the rows that are exchanged have

not yet been computed and appended to U . Pivoting the A matrix involves exchanging two rows,

which can be accomplished by exchanging pointers to the rows. However, because the L matrix is

stored in column major order, pivoting involves exchanging two elements in each row of L.

The ilu program implements the incremental algorithm. This program, a modi�ed version of

one that came with the Sisal distribution, is not as natural or elegant as the slu program. Although

the active portion of the matrix decreases, ilu always creates a new n�n matrix. On iteration k all

active elements are updated and copied to the new array: a

0

ij

:= a

ij

� a

ik

a

kj

; the inactive elements

are simply copied to the new matrix as is: a

0

ij

:= a

ij

; and active elements below the diagonal in

column k, are normalized: a

00

ik

:= a

0

ik

=a

0

kk

. There is tremendous copying of inactive values from the

old matrix to the new matrix. Additionally, this program performs pivoting.

2.4.2 SR Program

Only the incremental algorithm was programmed in SR, because it is the more e�cient algorithm.

Two aspects of the program are interesting. First, the work load decreases with every iteration,

so a block decomposition does not yield a balanced work load; hence, the program uses a cyclic

decomposition. In particular, a worker updates the elements in n=p rows, in a cyclic or modulo

10

CPUs slu slup ilu

1 188. 534. 154.

2 112. 232. 85.7

3 84.3 170. 65.1

4 71.7 141. 57.4

Figure 7: Sisal LU decomposition (500� 500, in seconds).

400� 400 500� 500 600� 600

CPUs Sisal SR C Sisal SR C Sisal SR C

1 82.3 27.5 18.0 154. 53.5 36.6 279. 92.7 61.5

2 47.1 19.0 8.94 85.7 37.2 18.5 154. 64.2 32.2

3 36.1 12.7 6.66 65.1 25.1 12.6 117. 46.2 22.8

4 31.6 9.65 4.19 57.4 22.0 9.62 101. 39.8 17.7

Figure 8: LU decomposition (in seconds).

pattern (worker w is assigned rows w+ ip; 0 � i < n=p). This results in a work load that is almost

evenly balanced throughout the computation.

The second interesting aspect is pivoting, which requires synchronization. On the kth iteration,

�rst, the process that is assigned the kth row scans the active values in the row and selects the

largest element as the pivot; this determines the column that will be pivoted with column k. Then

all processes perform the pivot by exchanging the elements in the kth and the pivot column in

parallel. A barrier occurs before and after the �rst step in pivoting to ensure correctness: The

pivoting process must wait for the other processes to �nish updating on the previous iteration, and

the other processes cannot start updating this iteration until the pivot column has been selected.

Because the other processes need the new values of the kth row to update their points, the pivoting

process updates row k while it is selecting the pivot.

2.4.3 Performance Comparison

The SR program is much faster than the Sisal programs, even though the performance of the SR

program is hampered by ine�cient array accessing. The ilu program performs poorly because the

Sisal program builds the same-sized matrix each time, and the problem size shrinks at each step.

The single-pass programs, slu and slup, su�er because more memory is needed and there is little

data locality. Due to a memory optimization bug in osc, we had to use rectangular arrays for L and

U instead of triangular arrays; therefore, slu and slup used 3 times as much memory as ilu (instead

of just twice as much). Unfortunately, slup does not exchange two elements in place during the

pivot; therefore, it must copy all n elements in each row to a newly allocated row, performing the

pivot while copying.

2.5 Mandelbrot

The Mandelbrot set is in of the two-dimensional plane of the complex numbers [Dew85]. When

the operation in Figure 9 is applied to complex numbers, the ones outside the Mandelbrot set grow

11

function point (c: complex) returns count: integer

var z: complex := c

count := 0

do count < limit ^ jzj < 2:0

count := count+ 1

z := z

2

+ c

od

end

Figure 9: Function which calculates the value of points in Mandelbrot.

to in�nity very quickly. The Mandelbrot set is visualized by setting the value of point (x; y) (or

equivalently, c = x + yi) to the value of count returned by the function point in �gure 9. Points

that are not in the Mandelbrot set diverge quickly and receive a value near 0. Points that are in

the set do not diverge and receive the value of limit . The interesting parts of the image are at the

boundaries of the set, points with values between 0 and limit . The parameter limit determines the

number of unique values that will be in the image.

To create an image of the Mandelbrot set, one selects a region and a resolution. The region is

any rectangle containing some of the Mandelbrot set, which extends approximately from �2�1:25i

to 0:5 + 1:25i. Choosing the above region selects the entire Mandelbrot set, whereas choosing the

region from �0:75+0i to 0:5+1:25i zooms in on the upper-right quarter of the Mandelbrot set. The

resolution determines the number of points in the resulting image. The value of a point depends

only on its x and y coordinates; therefore, each point can be calculated independently.

This problem was chosen because it has an irregular, dynamic work load, requires no synchro-

nization other than termination detection, and has no data sharing. Because of the dynamic work

load, a block decomposition of the problem will likely be unbalanced|with di�erent amounts of

work required in each partition.

2.5.1 Sisal Program

The Sisal function that creates the Mandelbrot image was called from a C language program.

This application uses the foreign language interface of osc, because Sisal does not have any I/O

native to the language.

3

The Sisal Mandelbrot function returns a 2-dimensional array that is the

image. The C program writes this array to a �le in an image format, so that it can be view using

a standard viewer.

Because the operation in Figure 9 is so simple, there is only one way to code the Mandelbrot

function in Sisal. The Sisal Mandelbrot function consists of a two-dimensional for-all loop over

all the points in the image. In the body of the loop is a while loop (called a for-initial loop in

Sisal) that performs the operation in Figure 9.

2.5.2 SR Program

The SR program uses a worker process per processor and a bag of tasks. In previous problems the

bag was used because the work grows dynamically. In this program the bag balances the problem

3

The Fibre system (described in Appendix A) provides limited I/O using the Fibre format only. If a di�erent

format is required, a user must either translate to and from Fibre, or write a program that will read or write the

data and invoke Sisal from inside this program. We chose the latter approach.

12

600� 600 image 700� 700 image 1000� 1000 image

CPUs Sisal SR C Sisal SR C Sisal SR C

1 25.5 36.3 23.2 34.6 50.1 31.8 69.1 75.3 40.4

2 12.9 18.3 11.8 17.5 24.9 16.0 35.0 37.7 20.1

3 8.57 12.1 7.96 11.7 16.6 9.69 23.5 25.1 13.0

4 6.49 9.13 5.84 8.80 12.4 7.71 17.9 18.9 9.91

Figure 10: Mandelbrot (255 gray-levels, in seconds).

because the amount of work per task varies. The program initially inserts N tasks into the bag, one

for each row. The workers continuously remove tasks from the bag. Because all tasks are initially in

the bag, the workers never insert a task. For each task received from the bag, the worker computes

the values for all points in the corresponding row. This algorithm was very simple to write in

SR because the worker code is trivial and the bag of tasks is easy to program in SR. There is no

pruning, because there is no explosion of tasks.

2.5.3 Performance Comparison

The times for the three Mandelbrot programs on The SR program is much slower than C on one

processor; again, this is because of the array accessing overhead.

The Sisal program is competitive with C and scales well. By default a Sisal program partitions

the work into the same number of pieces as there are workers. However, this partitioning is

unbalanced and the speedup is poor, because the overall time is the time of the slowest process.

Using the run-time ags provided by osc, the work is partitioned into many more partitions than

there are workers. Similar to the bag-of-task programs, the workers repeatedly get new partitions

until there are no more.

3 Programmability Comparison

This section compares the ease of programming implicit and explicit parallelism. Sisal and SR

use the functional and imperative models, respectively. Although the model primarily de�nes the

approach, the language also has a tremendous impact on programmability. Moreover, a compiler

determines not only the quality of code, but a�ects the usability of the language. We compare

Sisal and SR in terms of the model, the language, and the compiler. Although a feature can have

an impact on more than one level, it is mentioned only in the most appropriate subsection.

3.1 Models: functional versus imperative

The functional model provides a very high level of abstraction. In particular, a functional language

program does not depend on the underlying architecture, and it is deterministic (in a correct

program, a speci�c input produces the same output every time). On the other hand, the abstraction

provided by the imperative model is at a comparatively low level. It is characterized as having a

program state (i.e., variables) that is explicitly manipulated by the program.

In the functional model, the value of a \variable" does not change once it is de�ned and the

result of a function does not depend on the context in which the function is called. In other words,

a functional language has no side e�ects and is referentially transparent . Therefore, expressions can

13

be evaluated in any order, and a variable can be replaced by its value (and vice-versa), providing

exibility in the order of execution of the expressions [Hug90]. Furthermore, it is easier to reason

about and make assertions of a program that is referentially transparent|helping greatly in pro-

gram veri�cation. Moreover, debugging is much simpler in a deterministic language [Bac78, AE88].

The functional model has two signi�cant handicaps: no state and no asynchrony. Without state,

some applications, such as data bases, cannot be written. Furthermore, because of determinism,

asynchronous programs (such as interrupt-driven device drivers) also cannot be written.

Because the imperative model is lower level than the functional model, the programmer has

greater exibility in expressing an algorithm and tuning the program for e�ciency. However, the

programmer also has greater responsibility. For example, because imperative languages have side

e�ects, statements cannot be arbitrarily rearranged by the compiler; therefore, the programmer

must ensure that the statements are ordered e�ciently. Furthermore, because of asynchrony im-

perative programs are generally not deterministic, so the programmer has to ensure correctness by

employing mechanisms that avoid race conditions.

3.2 Languages: Sisal versus SR

Although a language owes much of its character to the underlying model, every language is designed

for a speci�c purpose and has its own strengths and weaknesses. Sisal is designed primarily for

parallel scienti�c applications (it is intended to be used instead of FORTRAN). SR is a general

purpose concurrent programming language that supports both distributed- and shared-memory

parallel programs, as well as sequential programs.

The high level of abstraction provided by Sisal has two major bene�ts. First, every Sisal

program executes correctly on every machine (that is supported by the compiler). Second, because

parallelism is implicit, there is no parallel code in Sisal programs. There no need for the program-

mer to manage processes or to communicate because the compiler (or run-time system does this).

Moreover, the programmer does not need to partition and load balance a problem.

4

Therefore,

the functional abstraction provides portability and simplicity. However, the major disadvantage

of Sisal is the same as its major advantage: implicit parallelism. The programmer must rely on

the compiler and its parallelization, even if a better solution is known. For example, very e�cient

algorithms are known for both Jacobi iteration and LU decomposition; however, neither algorithm

is expressible in Sisal.

Two other limitations of Sisal are the lack of input/output

5

and the lack of globals. Because

there is no I/O, all parameters must be passed into the main function at the beginning of execution,

and all results must be returned by this function when the program terminates. Input cannot be

read interactively, and all output data must be kept in memory until the program terminates. The

lack of globals forces the programmer to pass all information using function parameters. Both of

these limitations increase the number of parameters to a function, which can be become very large.

For example, the main function to the Australian Weather Kernel that has 43 input and 12 output

parameters [Ega93].

The primary advantage of the explicit mechanism in SR is that the programmer has complete

control over the parallelism. This provides exibility and does not require, nor rely, on compiler

analysis. However, there are three major disadvantages. First, the programmer must control

the parallelism, even if control is not desired. This not only means more code must be written

and debugged, but, because it involves concurrency, the code can be problematic. For example,

4

Although there is no need (or ability) to partition or load balance a problem at the language level, the compiler

may require some hints from the programmer to accomplish this e�ciently.

5

Although not native to Sisal, limited I/O is provided by osc through Fibre, see Appendix A.

14

often shared data must be modi�ed only in critical sections, which then must be identi�ed and

protected. Fortunately, SR minimizes this di�cultly by providing clean syntax and semantics for

parallel constructs. The second disadvantage is that the programmer must decompose the problem.

Although this is often trivial, as in matrix multiplication and Jacobi iteration, it can be very di�cult,

as in adaptive quadrature. The third disadvantage is that SR programs are not independent of

the machine architecture. The programs described in this paper are for shared-memory machines;

signi�cant editing and testing are necessary to port them to a distributed-memory machine.

3.3 Compilers: osc versus sr

A compiler is an implementation of a language, which ultimately is responsible for the usability of

the language. The optimizing Sisal compiler (osc) supports high-performance, parallel scienti�c

applications. Consequently, the primary focus is to be competitive with parallelizing FORTRAN

compilers (i.e., e�cient for-all parallelism). The SR compiler (sr) focuses on e�ciently implement-

ing the concurrent constructs of the SR language on many di�erent platforms. Because Sisal has

implicit parallelism and other exotic features, any Sisal compiler has to perform many complex

analyses, such as extracting parallelism. In contrast, SR is an imperative language with explicit

parallelism, so sr is a relatively straightforward compiler with no exotic techniques.

Two major features of osc deserve mention because they greatly e�ect the performance of osc

executables. First, the osc compiler uses three techniques to eliminate excess copying: scheduling

expressions, updating in-place, and building in-place. Only one program we tested (slup) proved

too di�cult for osc to analyze and subsequently optimize. The second major feature of osc is

partitioning. The compiler makes an estimate of the cost of executing each function; this cost

determines the static partitioning of the problem. Consequently, the programmer does not have to

partition the problem.

Two minor features of osc also deserve mention. First, it employs many standard compiler

optimizations, such as inlining, loop unrolling, and strength reduction. This improves the quality

of the generated code and, consequently, the osc-executable. Secondly, tokens are inserted if osc

�nds a syntax error in the program source. This helps a novice user learn the language, because

the correct token is almost always inserted.

Two drawbacks to osc also deserve mention. First, static estimating cannot always produce a

partition that evenly balances the load. Consequently, the user must evaluate the program and tune

it through the various compile- and run-time parameters, defeating a major advantage of implicit

parallelism. Second, osc does not parallelize function calls, even though this parallelism is implicit

in the language, limiting the problems that Sisal and osc e�ectively solve.

The sr compiler translates SR source into C that is linked with the sr run-time system. Be-

cause SR has explicit parallelism and is an imperative language, sr does not partition the problem

or schedule expressions; rather, the programmer does. Furthermore, sr lacks some standard op-

timizations, such as code hoisting, which explains some of the ine�ciency of sr relative to osc.

Consequently, sr is much simpler than osc. The sr compiler is robust, fast, and fully featured.

Although, the performance of sr-executables, especially array-intensive codes, can be poor, sr

e�ciently implements the concurrent aspects of SR, such as multi-threading and message passing.

4 Summary and Conclusions

There are two primary trade-o�s between Sisal and SR. The �rst is implicit versus explicit par-

allelism. In Sisal the compiler automatically implements the parallelism, whereas in SR the pro-

grammer manually implements it. Clearly, implicit parallelism is better only if the compiler creates

15

an e�cient program. On the other hand, explicit parallelism is better when there is a big improve-

ment in performance. When the performance of the approaches is similar, the ease of programming

favors implicit parallelism.

The second trade-o� is the ease of programming versus the exibility to control the program

execution. Although the implicit parallelism of Sisal allows codes to be shorter and simpler, it

comes at the expensive of control. For example, in Jacobi iteration the Sisal programs were shorter

and simpler than the SR program. However, the SR program uses only two arrays, whereas the

Sisal programs allocate and de-allocate an array on each iteration. The programmer knows that

the array can be re-used on the next iteration; however, this cannot be expressed in Sisal. Two

of the implementors of Sisal have reached the same conclusion; [BO94] states that some Sisal

programmers \have found that they need greater freedom to express algorithms."

Sisal provides a high-level abstraction that hides many details from the programmer. Because

the osc compiler schedules expressions and partitions the problem based the result of its analysis,

small changes to Sisal source can result in huge changes to the osc output. As a result, the

programmer must view osc is a \black box," because the e�ect of source code modi�cations is

unpredictable. In contrast, in sr output is very similar to SR source; therefore, sr is predictable,

which makes tuning for e�ciency simpler in SR than in Sisal.

We make three conclusions. First, although osc is mature and well-developed, there is no reason

to expect it to get better. It may not represent the limit of implicit parallelism, but a project this

mature cannot be expected to produce dramatic new results. Furthermore, it indicates that new

gains in this area using similar approaches will not likely be forthcoming.

Conversely, we expect improvements in SR. The biggest drawback to SR is its performance.

However, it is sequential aspects of the code that are ine�cient. Many of these aspects are e�ciently

implemented by osc; therefore, sr's e�ciency can be improved with techniques that are used in

osc.

The third conclusion is that Sisal is very good for its limited problem domain, which is almost

exclusively \loop-parallel" applications. For example, Sisal does not support applications that are

interactive or asynchronous; nor does it support applications that require state, input, or output.

5 Acknowledgements

Greg Andrews provided many organizational, technical, and grammatical suggestions and spent

countless hours reading and editing the drafts of this paper. Dawson R. Engler provided the C

versions of Mandelbrot and LU decomposition. David Lowenthal provided the SR version of LU

decomposition and the matrix multiplication, adaptive quadrature, and Jacobi iteration programs

in C. He also provided many good technical suggestions. David Mosberger helped get osc up and

running on our machines. Finally, Gregg Townsend provided assistance with the SR compiler.

References

[AE88] Arvind and Kattamuri Ekanadham. Future scienti�c programming on parallel machines.

J. Par. and Dist. Comp., 5:460{493, 1988.

[And91] Gregory R. Andrews. Concurrent Programming: Principles and Practice. Ben-

jamin/Cummings, Redwood City, California, 1991.

[AO93] Gregory R. Andrews and Ronald A. Olsson. The SR Programming Language. Ben-

jamin/Cummings, Redwood City, California, 1993.

16

[AOC

+

88] G. Andrews, R. Olsson, M. Co�n, I. Elsho�, K. Nilsen, T. Purdin, and G. Townsend. An

overview of the SR programming language and implementation. TOPLAS, 10(1):51{86,

January 1988.

[Bac78] Jim Backus. Can programming be liberated from the von Neumann style? CACM,

21(8), August 78.

[BO94] A. P. W. B�ohm and R. R. Oldehoeft. Two issues in parallel language design. Transac-

tions on Programming Languages and Systems, 16(6):1675{1683, November 1994.

[Cof90] Michael H. Co�n. Par: An Approach to Architecture-Independent Parallel Program-

ming. PhD thesis, University of Arizona, Tucson, AZ 85721, August 1990.

[Dew85] A. K. Dewdney. Computer recreations. Scienti�c American, pages 16{24, August 1985.

[EAL93] Dawson R. Engler, Gregory R. Andrews, and David K. Lowenthal. Shared Filaments:

E�cient support for �ne-grain parallelism on shared-memory multiprocessors. TR 93-13,

Dept. of Computer Science, University of Arizona, April 1993.

[Ega93] G. K. Egan. Implementing the kernel of the Australian region weather prediction model

in SISAL. In John T. Feo, editor, SISAL '93, pages 11{17, Livermore, CA, October

1993. Lawrence Livermore National Laboratory, Computer Research Group.

[FA95] Vincent W. Freeh and Gregory R. Andrews. fsc: a Sisal compiler for both distributed-

and shared-memory machines. In A. P. W. B�ohm and John T. Feo, editors, Proceedings

of the High-Performance Functional Computing Conference, pages 164{172. Lawrence

Livermore National Laboratory, April 1995.

[FCO90] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the SISAL language

project. J. of Par. and Dist. Computing, 10(4):349{366, December 1990.

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Fila-

ments: E�cient �ne-grain parallelism on a cluster of workstations. In First Symposium

on Operating Systems Design and Implementation, pages 201{213, November 1994.

[Hug90] John Hughes. Why functional programming matters. In David A. Turner, editor, Re-

search Topics in Functional Programming, pages 17{42, Reading, MA, 1990. University

of Kent, Addison-Wesley.

[Knu71] Donald E. Knuth. An empirical study of Fortran programs. Software|Practice and

Experience, 1(2):105{33, April-June 1971.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes in C. Cambridge University Press, Cambrigde, 1988.

[SY88] Stephen Skedzielewski and Robert Kim Yates. Fibre: an external format for SISAL and

IF1 data objects. Report M-154, Lawrence Livermore National Laboratory, April 1988.

17

A Sisal

Sisal is a functional dataow language intended for use on general purpose multiprocessors of

all architectures. It has been implemented on shared memory multiprocessors, vector processors,

and a variety of uniprocessors. The goals of the language are to support both general purpose

computing and large scale scienti�c computing, and to generate highly e�cient code [FCO90].

Sisal is expression-based, deterministic, and lacks side-e�ects.

A Sisal program primarily consists of functions and for loops. There are two types of loops in

Sisal: the parallel for-all and the sequential for-initial . The expressions in the body of a for-all

loop might be executed in parallel and, therefore, must be independent. The Sisal code fragment

in Figure 11 illustrates for-all parallelism. The function multiply returns the product of the two

2-D matrices A and B. The returns clause may contain reduction operations. For example, the

innermost for expression contains the following clause:

returns value of sum A[i,k] * B[k,j].

All n products are added together and a single scalar value is returned. The returns clause in

outer for-all expression reduces the n

2

Cij's into a 2-D array.

The other form of the for loop, the for-initial, is a sequential while loop. The function in

Figure 12 computes the factorial of n using a for-initial loop. The keyword old refers to the value

of the variable in the previous iteration.

Fibre [SY88] is an external data representation for Sisal, which only uses the ASCII character

set. The input to a Sisal program is the arguments to the entry function; the output is the

return parameters from the entry function. Fibre input must all occur before any of the Sisal user

functions are invoked; furthermore, all the output occurs at the end, after all the user code has

been executed. Consequently, there is not interactive I/O in Sisal; all input must occur before the

program is started and all output must occur after the program has terminated. In [SY88], the

authors state:

Fibre is not designed to be the primary form for input and output in IF1; it is intended

to be used as a tool for the early developers of Sisal programs.

Unfortunately, Fibre is the only form for input and output available with the current Sisal compiler.

% Multiply A[1..n, 1..n] and B[1..n, 1..n].

%

function multiply(n: integer; A, B: RealArray2D returns RealArray2D)

for i in 1, n cross j in 1, n

Cij := for k in 1, n

returns value of sum A[i,k] * B[k,j]

end for

returns array of Cij

end for

end function % multiply

Figure 11: Matrix multiplication function in Sisal.

18

function fact (n: integer returns integer)

for initial

i := 1

f := 1

while i < n repeat

f := old f * old i;

i := old i + 1

returns

value of f

end for

end function

Figure 12: Iterative factorial function in Sisal.

function quicksort (Data : IntArray returns IntArray)

function Split (Data : IntArray returns IntArray, IntArray, IntArray)

for E in Data

returns array of E when E < Data[1]

array of E when E = Data[1]

array of E when E > Data[1]

end for

end function

% routine body

%

if array_size(Data) > 2 then

let

L, Middle, R := Split(Data)

in

Main(L) || Middle || Main(R)

end let

else

Data

end if

end function % quicksort

Figure 13: Recursive quicksort in Sisal.

19

B SR

The SR programming language is a general purpose concurrent language. SR has many high-level

and parallel programming constructs. The code fragment in Figure 14 shows matrix multiplica-

tion. The fragment illustrates some of the sequential programming aspects of SR. The fa is the

for-all statement; this statement is similar to the FORTRAN do statement. Parallelism can be

accomplished through process creation or through the co (concurrent) statement. Each arm of the

co is executed in parallel; the process blocks at the matching oc until every arm is �nished. The

code fragment in Figure 15 shows three co statements. The �rst starts two processes: a producer

and a consumer. The second starts N identical processes, each with its own parameter. The last

co statement computes the N

2

innerproducts in matrix multiplication in parallel.

SR also includes several message passing constructs. Messages can be sent using send or

call and serviced with a receive statement or by a proc (procedure or process). The combi-

nation of these four allows the user to do asynchronous message passing (send/receive), ren-

dezvous (call/receive), procedure call, possibly remote (call/proc), and dynamic process cre-

ation (send/proc).

var sum: real

var A, B, C: [N][N] real

fa i := 1 to N, j := 1 to N ->

C[i,j] := 0.0

fa k := 1 to N -> C[i,j] +:= A[i,k] * B[k,j] af

af

Figure 14: Sequential matrix multiplication in SR.

co producer() // consumer() oc

co (i := 1 to N) worker(i) oc

co (i := 1 to N, j := 1 to N) innerproduct(i,j) oc

Figure 15: Examples of SR co statements.

20

C Jacobi Iteration Codes

This appendix shows some of the di�erences between programming in Sisal and SR. The source

for all of the Sisal and SR programs used in this paper is available at the following URL:

http://www.cs.arizona.edu/people/vin/programs.tar.gz

C.1 Sisal Jacobi Iteration

The Jacobi code for the Sisal program bjac is shown in this section. There are four functions in

this program: main, jacobi, jac row, and jac point. First, the function main creates the initial

(N + 2) � (N + 2) array and invokes jacobi. The function jacobi iteratives until the solution

converges. Each iteration it invokes N instances of jac row, which returns an N+ 2 element array.

These arrays are concatenated together, along with the constant top and bottom rows to create

the new, updated (N+ 2)� (N+ 2) array. Similarly, jac row invokes N instances of jac point and

concatenates the constant left and right points before returning the updated row. The function

jac point computes the new value of a point, using a 4-point stencil.

define main

type OneD = array[double_real];

type TwoD = array[OneD];

type edges = record [n, s, e, w: double_real];

%

% Calculate the new value of A[i,j] using a 4-point stencil

% Return new value and difference

%

function jac_point(A: TwoD; i, j: integer returns double_real, double_real)

let

Mij := (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1])/4.0d0

in

Mij, abs(Mij - A[i,j])

end let

end function

%

% Update a row of A.

% Return an updated row (with m+2 elements) and the maximum difference

%

function jac_row(A: TwoD; i, m: integer returns OneD, double_real)

let

Rj, dj := for j in 1,m

Rij, dij := jac_point(A, i,j)

returns array of Rij

value of greatest dij

end for;

in

array_addl(array_addh(Rj, A[i,m+1]), A[i,0]), dj

21

end let

end function

%

% Perform Jacobi iteration until convergence (delta < eps)

%

function jacobi(n,m: integer; A: TwoD; eps: double_real returns TwoD,double_real)

for initial

C := A;

delta := eps

while delta >= eps repeat

Cis, delta := for i in 1, n

Ci, di := jac_row(old C, i, m);

returns array of Ci

value of greatest di

end for;

C := array_addl(array_addh(Cis, A[n+1]), A[0])

returns value of C

value of delta

end for

end function

%

% Create the initial array and call jacobi

%

function main(n, m: integer; start, eps: double_real returns TwoD, double_real)

let

B := record edges[n:1.0d0; s:0.0d0; e:1.0d0; w:1.0d0];

A := for i in 0, n+1 cross j in 0, m+1

Aij := if i = 0 then B.N

elseif i = n+1 then B.S

else

if j = 0 then B.W

elseif j = m+1 then B.E

else start

end if

end if

returns array of Aij

end for

in

jacobi(n,m,A,eps)

end let

end function

22

C.2 SR Jacobi Iteration

The key components of SR are resources and globals . A resource is the main unit of encapsulation

in SR; it is similar to a module in other languages. A program contains one or more resources. A

global is a collection of objects in an address space; it is basically an instance of a unparameterized

resource.

The SR code to perform Jacobi iteration has four components: params, Arrays, barrier,

and Jacobi. The �rst global is params, which is used to read values on the command line. It is

used in this program purely for convenience: the run time parameters are given default values, and

command-line parsing is outside of the main routines.

global params

var N, M: int

var W := 1

var North := 1.0, South := 0.0, East := 1.0, West := 1.0

var Start := 0.0, Epsilon := 0.000001

var verb := false

body params

getarg(1,N); getarg(2,M)

getarg(3,W)

getarg(4,Start); getarg(5,Epsilon)

getarg(6,verb)

getarg(7,North); getarg(8,South); getarg(9,East); getarg(10,West)

end params

The second global declares and initializes the two grids. It imports the global params, so the

variables declared in params are visible.

global Matrices

import params

var A, B: [0:N+1,0:M+1] real

body Matrices

initialize the matrix A

fa i := 1 to N, j := 1 to M ->

A[i,j] := Start

af

fa i := 1 to N ->

A[i,0] := West

A[i,M+1] := East

B[i,0] := West

B[i,M+1] := East

af

fa j := 0 to M+1 ->

A[0,j] := North

A[N+1,j] := South

B[0,j] := North

23

B[N+1,j] := South

af

end Matrices

A third global implements a dissemination barrier using a 2-dimensional array of ags. This

component exports two operations: initBarrier() and barrier().

global bar

op initBarrier(w : int) {call}

op barrier(who : int) {call}

body bar

var W := 0

var flag : [*][*]int

var logW : int

proc initBarrier(w)

W := w

fa i := 1 to log(W,2), j:= 0 to W-1 -> flag[i,j] := 0 af

logW := int(log(W,2))

end

proc barrier(id)

var partner: int

var dist := 1

fa i := 1 to logW ->

partner := (id + dist) mod W

do flag[i,id] != 0 -> skip od

flag[i,id] := 1

do flag[i,partner] = 0 -> skip od

flag[i,partner] := 0

dist *:= 2

af

end

end # global bar

The last component is the main resource. An instance of this resource is created when the

program is started. This resource imports three globals, so one instance of each of those components

is created when Jacobi is created. The body of the main resource initializes the barrier, records

the start time, and creates W worker processes. Jacobi contains three sections of code: the body,

the worker process, and the �nal section. The main Jacobi iteration loop has been unrolled once

to both improve e�ciency and to change to rolls of the A and B matrices (in the top half of the

loop B is updated from A; in the bottom half A is updated from B).

24

resource Jacobi

import params, Matrices, bar

external startwatch(val i: int)

external stopwatch(val i: int)

op go()

body Jacobi()

var which: int

var deltas[0:W-1]: real

initBarrier(W)

var start := age()

process worker(id := 0 to W-1)

var startrow := id * N/W + 1

var endrow := (id+1) * N/W

var temp: real

var delta: real

if verb -> write("worker", id, startrow, endrow) fi

do true ->

delta := 0.0

fa i := startrow to endrow, j := 1 to M ->

temp := (A[i,j-1] + A[i,j+1] + A[i-1,j] + A[i+1,j])/4.0

delta := max(abs(temp - A[i,j]), delta)

B[i,j] := temp

af

deltas[id] := delta

barrier(id)

if id = 0 ->

fa i := 1 to W-1 ->

delta := max(deltas[i], delta)

af

if delta < Epsilon ->

which := 0

deltas[0] := delta

stop

fi

fi

barrier(id)

delta := 0.0

fa i := startrow to endrow, j := 1 to M ->

temp := (B[i,j-1] + B[i,j+1] + B[i-1,j] + B[i+1,j])/4.0

delta := max(abs(temp - B[i,j]), delta)

A[i,j] := temp

25

af

deltas[id] := delta

barrier(id)

if id = 0 ->

fa i := 1 to W-1 ->

delta := max(deltas[i], delta)

af

if delta < Epsilon ->

which := 1

deltas[0] := delta

stop

fi

fi

barrier(id)

od

end

final

var et := age() - start

write("Time:", et)

write("Converges to ", deltas[0])

if verb ->

if which = 1 ->

fa i := 1 to N ->

fa j := 1 to M -> writes(A[i,j], " ") af

write()

af

[] else ->

fa i := 1 to N ->

fa j := 1 to M -> writes(B[i,j], " ") af

write()

af

fi

fi

end

end Jacobi

26

D Comparison of Code Sizes

Sisal SR C

Matrix Multiplication 19 51 92

Jacobi Iteration 58-62 136 296

Adaptive Quadrature 36 62-99 210

LU Decomposition 49-76 105 195

Mandelbrot 31 90 123

Total 235-266 549 1142

Figure 16: Lines of code.

Figure 16 summarizes the size of the programs in each of the languages. The count does not

include blank lines and comments. As expected, the higher-level the language, the fewer the lines

of code. The Sisal source is 2-3 times smaller than the SR source, which is 2-3 times smaller than

the C source.

Sisal is smaller for three reasons: no variable declarations, no I/O code, and implicit parallelism.

Variables are implicitly declared in Sisal, and they are explicitly declared in the other two language;

variable declarations account for between 5 and 20 lines. The lack of I/O in Sisal is not an

advantage, so while the code is smaller, the program is not as exible or powerful. The e�ect of

implicit parallelism is discussed in Section 2 of the paper.

27

