
DISCRETE PATTERN MATCHING OVER SEQUENCES

AND INTERVAL SETS

(Ph.D. Dissertation)

James Robert Knight

TR 93-28

April 26, 1996

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

This research was supported in part by the National Institute of Health under Grant R01 LM04960, by the NSF under
Grant CCR-9002351 and by the Aspen Center for Physics.

DISCRETE PATTERN MATCHING OVER SEQUENCES AND
INTERVAL SETS

by

James Robert Knight

Copyright c
 James Robert Knight 1993

A Dissertation Submitted to the Faculty of the
DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY
In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 3

2

ACKNOWLEDGMENTS

At a time like this, who don’t you want to thank. Well, there was this one kid, back when I was
: : :, but never mind that now. Top honors should, of course, go to the people who had a direct hand
in the development of the dissertation. Beginning with my family, who got themselves involved
with my, and hence its, creation. They taught me much of what I know, and more importantly,
much of the way I think. To my advisor, Gene Myers, who among other things had the sense of
timing to return from sabbatical during my second year of grad school, just when I was looking
for a subject and advisor. To the rest of my committee, both past and present, for their helpful
suggestions and advice. And finally to the folks in the department here. I’ve heard a number
of horror stories about the trials and tribulations of other departments and companies around the
country, and it is definitely a pity that I have to go out and discover whether they are true.

3

TABLE OF CONTENTS

LIST OF FIGURES : 5

ABSTRACT : 6

CHAPTER 1: INTRODUCTION : 7

CHAPTER 2: DISCRETE PATTERN MATCHING OVER SEQUENCES: PREVIOUS
WORK : 12
2.1 Sequence Comparison : 13
2.2 Regular Expressions : 18
2.3 Extended Regular Expressions : 22

CHAPTER 3: APPROXIMATE REGULAR EXPRESSION PATTERN MATCHING WITH
CONCAVE GAP PENALTIES : 27
3.1 Generalizing the Minimum Envelopes : 28

3.1.1 Operations Value, Shift and Add : 31
3.1.2 Implementing the Candidate Lists : 33

3.2 The First Sweep Algorithm : 34
3.2.1 The Up List Construction : 37
3.2.2 The Down List Construction : 39

3.3 The Second Sweep Algorithm : 43

CHAPTER 4: EXTENDED REGULAR EXPRESSION PATTERN MATCHING : : : : : 49
4.1 Exact ERE Matching : 49
4.2 Approximate ERE Matching : 52

CHAPTER 5: SUPER-PATTERN MATCHING: INTRODUCTION : : : : : : : : : : : : 56
5.1 Basic Problem : 58
5.2 Problem Domain : 60

5.2.1 Explicit Spacing : 60
5.2.2 Implicit Spacing : 61
5.2.3 Interval Scoring : 62
5.2.4 Repair Intervals : 63
5.2.5 Affine Scoring Schemes : 63

CHAPTER 6: SUPER-PATTERN MATCHING: ALGORITHMS : : : : : : : : : : : : : 66
6.1 Sequences and Regular Expressions : 66
6.2 Extended Regular Expressions : 70
6.3 Extension Algorithms : 71

4

6.3.1 Sliding Windows : 71
6.3.2 Range Query Trees and Inverted Skylines : : : : : : : : : : : : : : : : 73
6.3.3 Minimum Envelopes and Affine Curves : : : : : : : : : : : : : : : : : 77

CHAPTER 7: CONCLUSIONS : 81

REFERENCES : 83

5

LIST OF FIGURES

1.1 The various problems and solutions on discrete pattern matching of sequences. : : 11

2.1 An alignment a) as a set of trace lines and b) in a column-oriented display. : : : : 13
2.2 The sequence vs. sequence alignment graph for A = ab and B = baa. : : : : : : 14
2.3 A minimum envelope E

i

and its list representation. : : : : : : : : : : : : : : : : 16
2.4 Constructing the NFA F for a regular expression R. : : : : : : : : : : : : : : : : 18
2.5 The regular expression alignment graph for A=ab and P=(ajb)a*. : : : : : : : : : 20
2.6 Examples of Hirst’s tree marking algorithm. : 25

3.1 The procedures Value, Shift, and Add. : 32
3.2 Adding a curve to an minimum envelope. : 33
3.3 The nesting tree construction and an example nesting tree. : : : : : : : : : : : : 35
3.4 The inductive construction of the up and down trees at each state s. : : : : : : : : 36
3.5 The up tree for the example NFA in Figure 3.3. : : : : : : : : : : : : : : : : : : 37
3.6 The example NFA’s down tree. : 39
3.7 The nesting tree from Figure 3.3 labeled with edge sets X

c

(in brackets) and the
actual EU1

�

c

sets (in parentheses). : 42
3.8 The second sweep nesting tree construction and an edge labeled example. : : : : 45
3.9 The second sweep flow graph construction. : 46
3.10 The flow graph for the innermost list. : 47
3.11 The flow graph for the second sweep down list. : : : : : : : : : : : : : : : : : : 48

4.1 Constructing the ENFA F for an extended regular expression R. : : : : : : : : : 50

5.1 Basic gene encoding structure. : 57
5.2 Pictorial description of a recognition hierarchy. : : : : : : : : : : : : : : : : : : 58
5.3 Affine scoring of a) implicit spacing for interval [i; j] and b) bounded spacers/repair

intervals. : 64

6.1 The NFA and matching graph for super-pattern P = aba and N = 6. : : : : : : : 67
6.2 The state machine and matching graph for P = (a j b) a

� and N = 4. : : : : : : : 68
6.3 View of a partially constructed range query tree (dashed and dotted lines are lp and

rp pointers). : 75
6.4 An inverted skyline. : 77
6.5 Five candidate lines and their minimum envelope. : : : : : : : : : : : : : : : : : 79

6

ABSTRACT

Finding matches, both exact and approximate, between a sequence of symbols A and a pattern
P has long been an active area of research in algorithm design. Some of the more well-known
byproducts from that research are the diff program and grep family of programs. These problems
form a sub-domain of a larger area of problems called discrete pattern matching which has been
developed recently to characterize the wide range of pattern matching problems. This disserta-
tion presents new algorithms for discrete pattern matching over sequences and develops a new
sub-domain of problems called discrete pattern matching over interval sets. The problems and
algorithms presented here are characterized by three common features: (1) a “computable scoring
function” which defines the quality of matches; (2) a graph based, dynamic programming frame-
work which captures the structure of the algorithmic solutions; and (3) an interdisciplinary aspect
to the research, particularly between computer science and molecular biology, not found in other
topics in computer science.

The first half of the dissertation considers discrete pattern matching over sequences. It develops
the alignment-graph/dynamic-programming framework for the algorithms in the sub-domain and
then presents several new algorithms for regular expression and extended regular expression pattern
matching. The second half of the dissertation develops the sub-domain of discrete pattern matching
over interval sets, also called super-pattern matching. In this sub-domain, the input consists of sets
of typed intervals, defined over a finite range, and a pattern expression of the interval types. A match
between the interval sets and the pattern consists of a sequence of consecutive intervals, taken from
the interval sets, such that their corresponding sequence of types matches the pattern. The name
super-pattern matching comes from those problems where the interval sets corresponds to the sets
of substrings reported by various pattern matching problems over a common input sequence. The
pattern for the super-pattern matching problem, then, represents a “pattern of patterns,” or super-
pattern, and the sequences of intervals matching the super-pattern correspond to the substring of
the original sequence which match that larger “pattern.”

7

CHAPTER 1

INTRODUCTION

Discrete pattern matching is a domain of exact and approximate pattern matching problems
which, in its most general form, compare an object such as a sequence of symbols and a pattern
expressing a desired set of objects, such as the sequences described by a regular expression. This
overall domain can be divided into sub-domains based on the object used in the comparison. Some
of the sub-domains currently being researched are discrete pattern matching over (1) sequences,
where the objects are sequences of symbols and patterns of symbols, (2) trees, where the objects are
trees with value containing nodes, and (3) images, also called two-dimensional pattern matching,
where the objects are two dimensional “images” made up of atomic symbols. While the objects in
the various sub-domains may differ, similar sets of problems and approximate match criteria can
be posed for those sub-domains.

Most of the research in this area has occurred in discrete pattern matching over sequences,
however research in the other sub-domains has been on the increase as the core problems for
discrete pattern matching over sequences have been efficiently solved. This dissertation presents
several new algorithms solving problems in discrete pattern matching over sequences and develops a
new sub-domain of discrete pattern matching over interval sets, also called super-pattern matching.
In this new sub-domain, the input consists of sets of typed intervals and a pattern of interval types.
Matches are formed from sequences of consecutive intervals whose types match a sequence in the
pattern.

Discrete pattern matching has matured over the last twenty years into a distinct area of research,
separate from the artificial intelligence work on pattern recognition and natural language processing
and the parsing technology used in compiler design. For the two sub-domains of interest in this
dissertation, discrete pattern matching over sequences and interval sets, the distinction rests on
three characteristics common to the problems and algorithmic solutions:

� The notion of a “computable scoring function” used in approximate matching which serves
both as a metric of similarity and as a guide for computing that metric. When comparing,
say, sequences of symbols, the scores produced by the matching of pairs of sequences give a
measure or metric identifying which sequences are similar and which are dissimilar. This is
not unlike many other pattern recognition mechanisms. However, the scoring functions used
in discrete pattern matching also identify the specific match between two sequences, out of
all the possible ways those sequences could be matched, that produces the score representing
the measure of their similarity. In doing so, the scoring function often presents the basic
outline for computing similarity scores algorithmically.

� The use of state machines and a shortest-path-graph/dynamic-programming framework to
derive the algorithms for exact and approximate matching problems. In the development of
an algorithm solving an approximate matching problem, the matching problem is recast as

8

a problem of finding either all paths or the shortest paths through a specially constructed
graph. Then, efficient dynamic programming recurrences and algorithms solve the shortest
path problem. The details of the structure of the graph and the terms in the recurrences
depend on the language given in the pattern and the specified scoring function, but follow the
guidelines of the framework. The solutions to the exact matching problems usually involve
the development of a state machine, or some close relative, which is used to scan the input
sequence for matches.

� The interdisciplinary nature of the research, particularly between computer science and
molecular biology. Many of the algorithms and applications for discrete pattern matching
have originated not in computer science, but in other fields such as molecular biology and
speech processing.

While these characteristics may limit the scope of discrete pattern matching and exclude the
more complex, context-sensitive issues in natural language processing and compiler design, the
results produced in this research area have become part of the mainstream of computer science, as
illustrated by the widespread use of utility programs such as diff and grep family. The area has also
significantly altered research in molecular biology, making computer-based sequence analysis one
of the daily activities of many biologists.

These characteristics have appeared throughout the history of discrete pattern matching. In
fact, it could be said that discrete pattern matching became a separate problem domain when nine
independent authors, by one count [SK83, Page 23-24], developed essentially the same algorithm,
an algorithm with the characteristics mentioned above. Those results were motivated by two lines of
research occurring in the mid 1960’s: (1) the creation of metrics, such as the Hamming, evolutionary
and Levenshtein distances, to describe the similarity of sequences and (2) the automatic correction
of spelling mistakes and other typing errors [Dam64, Alb67, Mor70]. The fusion of the two
produced a set of papers in computer science [NW70, WF74, Hir75], molecular biology [San72,
RCW73] and speech processing [Vin68, VZ70, SC71, Hat74] which solve two related problems
called the edit distance problem and the longest common sequence or LCS problem.

These two problems, and their relationship, are more easily described in terms of the key concept
underlying the approximate matching problems over sequences, namely an alignment between two
sequences. Informally, an alignment is a pairing of symbols of two sequences such that the lines
of the induced trace don’t cross, as in the following example:

a b c a d b b c c c

a b b b a b c c
b[a

a] [b
b] [ε

c a d] [b
b] [b

b] [ε
a] [c] [c

c] [c
c]

This figure illustrates two representations of an alignment, as a set of trace lines on the left and in
a column-based arrangement on the right. The formal alignment definition is given in Chapter 2.

The edit distance problem involves finding the minimal number of edit operations which converts
a sequence A = a

1

a

2

: : : a

M

into a sequence B = b

1

b

2

: : : b

N

, where the three edit operations are
(1) deleting a symbol, (2) inserting a symbol and (3) substituting one symbol for another. In terms
of an alignment, the solution to a edit distance problem requires an alignment with the fewest
unpaired symbols of A, unpaired symbols of B and mismatched pairs of symbols. This follows

9

because each unpaired symbol of A corresponds to a required deletion operation in the edit, each
unpaired symbol of B becomes an insertion and each mismatched pair becomes a substitution
operation. Thus, the alignment with the fewest unpaired symbols and mismatches corresponds to
the minimal set of editing operations.

The longest common subsequence of A and B asks for the longest sequence that forms a
subsequence of both A and B. For example, “tusday” is the LCS of “tuesday” and “thursday.”
Under the alignment representation, the longest common subsequence corresponds to an alignment
with the most paired symbols, where here no mismatched pairing are allowed. Since no crossing
of an alignment’s trace lines are allowed, each sequence of paired symbols forms a subsequence
of both A and B, and the sequence with the most paired symbols must be the longest common
subsequence of the two sequences. Note the relationship between the alignments for the two
problems, as alignments with fewer unpaired symbols must contain more paired symbols. In fact,
the LCS problem is the dual of the edit distance problem where no substitutions are allowed, or
alternatively where substitutions count as two edit operations.

This relationship follows through to the algorithms solving the two problems. The key observa-
tion made by those nine authors is that every alignment between A and B must end in one of three
ways: (1) by pairing a

M

with b
N

, (2) leaving a
M

unpaired, and (3) leaving b
N

unpaired. Thus, the
“optimal alignment,” i.e. the alignment corresponding to the edit distance or LCS solution, must
be (1) the optimal alignment of a

1

a

2

: : : a

M�1

and b
1

b

2

: : : b

N�1

and the pairing of a
M

and b
N

, (2)
the optimal alignment of a

1

a

2

: : : a

M�1

and b

1

b

2

: : : b

N

and an unpaired a

M

, and (3) the optimal
alignment of a

1

a

2

: : : a

M

and b
1

b

2

: : : b

N�1

and an unpaired b
N

. This leads to the following compu-

tational recurrence describing the solution to the edit distance and longest common subsequence
problems, respectively,

C

0;0

= 0

C

i;j

= minfC

i�1;j�1

+

(

0 if a
i

= b

j

1 if a
i

6= b

j

,

C

i�1;j

+ 1,
C

i;j�1

+ 1

g

C

0;0

= 0

C

i;j

= maxfC

i�1;j�1

+

(

1 if a
i

= b

j

0 if a
i

6= b

j

,

C

i�1;j

+ 0,
C

i;j�1

+ 0
g

where any terms with i < 0 or j < 0 are ignored. The value of C
M;N

, then, equals either the
minimal edit distance or the size of the LCS. Computing these recurrences involved the, then new,
technique of dynamic programming and resulted in algorithms running in O(MN) time.

From these initial two problems and their common solution, research into discrete pattern
matching over sequences has expanded into a number of different problems and algorithms, as
illustrated by Figure 1.1. Most of the research has been concerned with the matching of two
sequences, or sequence comparison, and its variations. A growing number of results have been
developed more recently for problems dealing with regular expressions and extended regular
expressions. The first half of this dissertation surveys most of the work in this area (Chapter 2)
and presents new algorithms solving (1) approximate regular expression pattern matching with
concave gap penalties (Chapter 3) and (2) exact and approximate extended regular expression
pattern matching (Chapter 4). All of these algorithms, both the previous work and the new results,
are placed in an alignment-graph/dynamic-programming framework which simplifies much of the
algorithms’ complexity and links these results back to the simple edit distance and LCS solutions.

1
0

[BM77]
[KMP77]

[Hor80]
[Sun90]
[HS91]
[Rai92]
[Smi92]

Keyword
Matching

SC w/
Extended

Operations

Sequence
Comparison

Scoring
Gap Penalty

SC w/

Exact
Reg. Exp.

Pat. Matching

Approximate
Reg. Exp.

Pat. Matching

[CHM93]
[CPM92]
[KK90]
[Epp90]
[MM89b]
[GP89]
[GG89]

[AE86a]
[Wat84a]

[Tay84]
[Got82]

[MM88a]
[MM88b]

[Wil88]

k Differences
Problem

[AE86b]
[Sel84]

[WL83]
[GK82]
[SW81]
[Sel80]

[Got87]
[WE87]
[PL88]

[AGM+90]
[HM91]

Local
Alignments

[Oom91]
[Tic84]
[LW75]

[AC75]
[CW79]
[Mey85]
[KST92]

Set of Keywords
Matching

Problem
Distance

Edit

[Vin68]
[NW70]
[VZ70]
[SC71]

[San72]
[RCW73]

[Hat74]
[Sel74a]
[SWF81]
[MM85]
[Mye86]

Longest
Common

Subsequence

[Hir75]
[AHU76]
[Hir77]
[HS77]
[NKY82]
[AG87]
[HL87]
[CP90]

[Ste92]
[Ukk85]
[Wat84b]
[Fic84]
[SK83]
[FS83]

[HD80]
[MP80]
[WC76]

[WSB76]
[WF74]

[Sel74b]

Extended
Reg. Exp.

Pat. Matching

Chapter 4
[Hir89]
[HU79]

[MM89a]
[WS78]
[Wag74]

Chapter 3

[BS86]
[HU79]
[Tho68]
[Brz64]
[MY60]
[Moo56]
[Kle56]
[Mea55]

[CP92]
[Mye88]

[GG86]
[GG88]
[LV88]
[LV89]

[LVN89]
[GL89]
[CL90]
[GP90]

[Mye90]
[JTU91]
[WM91]
[BYP92]

[CL92]
[WMM92]

Figure 1.1: The various problems and solutions on discrete pattern matching of sequences.

11

The second half of the dissertation develops a new domain of problems called super-pattern

matching, or discrete pattern matching over interval sets. It was developed for recognition problems
that are either too complex or too ambiguous to be expressed using only pattern matching over
sequences, i.e. the pattern cannot be expressed as a sequence or regular expression of the sequence
symbols. In these cases, a richer environment is needed to describe the “patterns” and to perform the
recognition of those “patterns.” Some researchers have turned to artificial intelligence techniques
and multi-step matching approaches for the problems of gene recognition [FS90, GKDS92, Sea89],
protein structure recognition [LWS87] and on-line character recognition [FCK+91]. Super-pattern
matching defines a class of problems which involve finding matches to “patterns of patterns,” or
super-patterns, given solutions to the lower-level patterns. The expressiveness of this problem class
rivals that of traditional artificial intelligence characterizations, yet polynomial time algorithms are
described for each problem in the class. Chapter 5 presents the domain of problems, containing
several language classes, output requirements and error models, and then Chapter 6 presents
algorithms solving those problems, using some of the shortest-path-graph/dynamic-programming
techniques of discrete pattern matching over sequences.

12

CHAPTER 2

DISCRETE PATTERN MATCHING OVER SEQUENCES: PREVIOUS
WORK

The sub-domain of discrete pattern matching over sequences covers a wide range of exact

and approximate pattern matching problems, spanning a number of pattern language classes and
scoring schemes. Figure 1.1 indicates the breadth of the field. Because of that breadth, most of this
chapter concentrates only on the problems and algorithms needed by the rest of the dissertation.
Specifically, this chapter presents the known solutions to the exact and up to five approximate
pattern matching problems for sequence patterns (Section 2.1), regular expressions (2.2), and
extended regular expressions (2.3). These problems make up the core of discrete pattern matching
over sequences and contain all of the results needed by Chapters 3, 4 and 6.

The exact pattern matching problem asks simply whether the input sequence A = a

1

a

2

: : : a

M

is in the language or set of sequences defined by pattern P , i.e. is A 2 L(P)? Approximate pattern
matching problems take an input sequence A, a pattern P and a scoring scheme S, and ask for the
score of an optimal alignment between A and one of the sequences in L(P), where the criterion of
optimality is defined by S. An alignment is simply a pairing of symbols between two sequences
such that the lines of the induced trace do not cross, as shown in Figure 2.1. Scoring scheme S
defines scores for each aligned pair and each contiguous block of unaligned symbols, or gap. The
score of an alignment is the sum of the scores S assigns to each aligned pair and gap, and an optimal
alignment is one of minimal score.

Formally, an alignment between sequencesA = a

1

a

2

: : : a

M

andB = b

1

b

2

: : : b

N

, over alphabet
�, is a list of ordered pairs of indices <(i

1

; j

1

); (i

2

; j

2

); : : : ; (i

t

; j

t

)>, called a trace, such that (1)
i

k

2 [1;M], (2) j
k

2 [1; N], and (3) i
k

< i

k+1

and j
k

< j

k+1

. Each pair of symbols a
i

k

and b
j

k

is said
to be aligned. A consecutive block of unaligned symbols in A or B, a

i

k

+1

a

i

k

+2

: : : a

i

k+1

�1

where
i

k+1

> i

k

+ 1, is termed a gap of length i
k+1

� i

k

� 1. An alignment, its usual column-oriented
display, and several gaps are illustrated in Figure 2.1.

Under a scoring scheme S = fpair; gapgwith functions pair and gap scoring the symbol pairs
and gaps, the score of an optimal alignment between A and B, or SEQ(A, B, fpair; gapg), equals
minf

P

t

k=1

pair(a

i

k

; b

j

k

) +
P

t

k=0

gap(a

i

k

+1

a

i

k

+2

: : : a

i

k+1

�1

) +
P

t

k=0

gap(b

j

k

+1

b

j

k

+2

: : : b

j

k+1

�1

) j <(i

1

; j

1

); (i

2

; j

2

); : : : (i

t

; j

t

)> is a valid trace g, where for sim-
plicity i

0

= j

0

= 0, i
t+1

= M and j

t+1

= N . The score of the optimal alignment between
A and a more complex pattern, such as a regular expression P , is RE(A, P , fpair; gapg) =
minfSEQ(A; B; fpair; gapg) j B 2 L(P)g.

The scoring schemes considered here consist of a symbol-based scheme and four gap penalty

scoring schemes: affine, concave, convex and arbitrary. All of these scoring schemes use an
arbitrary function �(a; b), for a; b2�, to score the aligned pairs. The difference is in the scoring of
gaps. In a symbol-based scheme, � is extended to be defined over an additional symbol " not in �,
and the score of an unaligned symbol a is given by �(a; "). The score of a gap a

i

k

+1

a

i

k

+2

: : : a

i

k+1

�1

13

a b c a d b b c c c

a b b b a b c c

a) b)
b[a

a] [b
b] [ε

c a d] [b
b] [b

b] [ε
a] [c] [c

c] [c
c]

length 3 length 1
Gap of Gap of

Figure 2.1: An alignment a) as a set of trace lines and b) in a column-oriented display.

is the sum of the scores of the individual unaligned symbols or
P

i

k+1

�1

p=i

k

+1

�(a

p

; "). The cost of gaps
in B is defined symmetrically.

For the gap penalty models, the cost of a gap is solely a function of its length (and thus symbol
independent). In such a scheme, an additional function w(k) gives the cost of a gap of length k.
The four gap penalty scoring schemes specify four different classes of w functions. In an affine
scoring scheme, w is a linear function of k, or w(k) = e � k + c for given “gap extension” and
“gap creation” constants e > 0 and c � 0. For the concave schemes, w must be concave in the
sense that its forward differences are non-increasing, or �w(1) � �w(2) � �w(3) � : : :, where
�w(k) � w(k +1)�w(k). The convex scoring schemes require convex functions whose forward
differences are non-decreasing, i.e. �w(1) � �w(2) � �w(3) � : : :. The arbitrary gap penalty
scheme allows any function w.

The solutions to all of the problems described above, for any combination of pattern language
class and scoring scheme, share a common alignment-graph/dynamic-programming framework.
This framework uses four major steps in developing the algorithm from the specific problem
definition. The first step constructs a state machine equivalent to the pattern, i.e. a machine which
accepts the same language as the pattern expression. Second, the matching problem is recast as the
problem of finding the cost of a shortest source-to-sink path in an alignment graph constructed from
the sequence/pattern input to the problem. The reduction is such that each edge corresponds to a
gap or aligned pair and is weighted according to the cost of that item. The correctness and inductive
nature of the construction follows from the feature that every path between two vertices models
an alignment between corresponding substrings/subpatterns of the inputs. In the third major step,
dynamic programming recurrences are derived from this graph which compute the shortest path
costs from the source to each vertex. In all cases we seek the shortest path cost to a designated
sink since every source-to-sink path models a complete alignment between the two inputs. Finally,
algorithms solving these recurrences are given.

2.1 Sequence Comparison

Skipping the trivial solution to the exact matching problem, the algorithm solving sequence com-
parison under a symbol-based scoring scheme, SEQ(A, B, f�g), generalizes the edit distance and
longest common subsequence algorithms presented in the introduction. This generalization was
first given by Wagner and Fischer [WF74] and Sellers [Sel74a, Sel74b] and differs from the other
algorithms only in the use of the more general � function scores, rather than the simpler 0 and
1 scores. For this problem, the state machine for A is a row of states modeling the successive
prefixes of A. The alignment graph construction takes the cross product of that state machine and
a similar state machine for B. The resulting graph forms an M+1 by N+1 grid or matrix with

14

ε][b

ε
a[]][a

ε

a
a][a

a[][b
a]

][b
b][a

b][b
a

ε][aa[]εε][aa[]ε

ε][bb[]ε
b[]εε][b

ε][b

b[]
ε

][a
ε

][a
ε

ε
a[]

ε
a[]b

b a a

a

(2,3)

(0,0)

Figure 2.2: The sequence vs. sequence alignment graph for A = ab and B = baa.

vertices denoted (i; j), for i 2 [0;M] and j 2 [0; N]. One such graph is illustrated in Figure 2.2.
For a vertex (i; j), there are up to three edges directed out of it: (1) a deletion edge to (i+1; j) (iff
i < M), (2) an insertion edge to (i; j + 1) (iff j < N), and (3) a substitution edge to (i+ 1; j + 1)

(iff i < M and j < N). These terms for the edge types stem from the edit distance problem. They
are useful here in that they distinguish the cases where symbols of A are left unaligned (deletions)
from those where symbols of B are left unaligned (insertions).

In the resulting graph, all paths from source vertex (0; 0) to sink vertex (M;N) model the set of
all possible alignments between A and B with the following simple interpretation: (1) a deletion
edge to (i; j) models leaving a

i

unaligned and has weight �(a
i

; "), (2) an insertion edge to (i; j)

models leaving b

j

unaligned and has weight �("; b
j

), and (3) a substitution edge to (i; j) models
aligning a

i

and b
j

and has weight �(a
i

; b

j

). A simple induction shows that paths between vertices
(i; j) and (k; h) (where i < k and j < h) are in one-to-one correspondence with alignments
between a

i+1

a

i+2

: : : a

k

and b
j+1

b

j+2

: : : b

h

, and their costs coincide. It thus follows that finding the
optimal alignment between A and B is equivalent to finding a least cost path between the source
and sink vertices.

The dynamic programming principle of optimality holds here: the cost of the shortest path to
(i; j) is the best of the costs of (a) the best path to (i� 1; j) followed by the deletion of a

i

, (b) the
best path to (i; j � 1) followed by the insertion of b

j

, or (c) the best path to (i� 1; j � 1) followed
by the substitution of a

i

for b
j

. This statement is formally embodied in the fundamental recurrence:

C

i;j

= minf C

i�1;j�1

+ �(a

i

; b

j

); C

i�1;j

+ �(a

i

; "); C

i;j�1

+ �("; b

j

) g (2.1)

Because the alignment graph is acyclic, the recurrence can be used to compute the shortest cost
path to each vertex in any topological ordering of the vertices, e.g. row- or column-major order of
the vertex matrix. Thus the desired value, C

M;N

, can be computed in O(MN) time.
Waterman, Smith and Beyer [WSB76] first proposed the gap penalty scoring model and solved

SEQ(A, B, f�; wg) for an arbitrary function w. Converting their solution to the alignment-
graph/dynamic programming framework, the constructed alignment graph augments the alignment
graph for SEQ(A, B, f�g) with insertion and deletion edges that model multi-symbol gaps. These
edges are needed because the cost of multi-symbol gaps is not necessarily additive in the symbols
of the gap, i.e. w(k) 6= k w(1). From a vertex (i; j), there are now M� i deletion edges to vertices

15

(i + 1; j), (i + 2; j), : : : (M; j), where an edge from (i; j) to (k; j) models the gap that leaves
a

i+1

a

i+2

: : : a

k

unaligned and has cost w(k � i). Similarly, there are N� j insertion edges to
vertices (i; j + 1), (i; j + 2), : : : (i;N), where an edge from (i; j) to (i; k) models the gap that
leaves b

j+1

b

j+2

: : : b

k

unaligned and has cost w(k�j). The inductive invariant between alignments
and paths still holds, but now the graph has a cubic number of edges.

The cost of each incoming edge, plus the cost of the best path to its tail, must now be considered
in computing the cost of the shortest path to (i; j). Thus, the recurrence becomes

C

i;j

= minf C

i�1;j�1

+ �(a

i

; b

j

); min

0�k<i

fC

k;j

+ w(i� k)g; min

0�k<j

fC

i;k

+ w(j � k)g g (2.2)

The alignment graph is still acyclic, so applying the recurrence to the vertices in any topological
order computes the correct shortest path cost to (M;N). However each application of the recurrence
requires O(M +N) time, yielding a O(MN(M +N)) algorithm.

The inefficiency of the naive dynamic programming algorithm is that, for each i and j, it takes
O(M) time to compute the “deletion” term min

0�k<i

fC

k;j

+ w(i � k)g and O(N) time for the
“insertion” term min

0�k<j

fC

i;k

+ w(j � k)g. This is the best one can do given an arbitrary gap
penalty function w. However, under a more restricted choice of w, the sequence of deletion term
minimums computed across a given column can be exploited to improve to the running time of
the algorithm as a whole. Specifically for a given column j, one needs to deliver the sequence of
deletion terms,

D

i

= min

0�k<i

fV

k

+ w(i� k)g (2.3)

where V
k

is C
k;j

. Because the algorithm computes the C
i;j

in topological order of the alignment
graph, it follows that the algorithm requires the values of the terms D

i

in increasing order of i.
Further note that while all the V

k

are not known initially, those with k < i have been computed
at the time the value of D

i

is requested. An identical, “one-dimensional” problem models the
insertion term computations along each row. Thus a more efficient comparison algorithm results if
we can compute all the D

i

in better than O(M2

) time.
Gotoh [Got82] recognized that for affine gap penalty functions w(k) = e � k + c, Equation 2.3

could be simplified to

D

i

= minf V

i�1

+ c+ e; min

0�k<i�1

fV

k

+ w(i� k)g g

= minf V

i�1

+ c+ e; min

0�k<i�1

fV

k

+ w((i� 1)� k) + eg g

= minf V

i�1

+ c+ e; D

i�1

+ e g.

Thus, the deletion and insertion terms can be computed in O(M) and O(N) time per row and
column, resulting in an O(MN) algorithm solving the overall sequence comparison problem.

For concave and convex gap penalties, two groups of papers have presented improvements over
the naive O(M2

) algorithm. The first group [MM88a, GG89, HL87] employed the concept of a
minimum envelope and its corresponding candidate list to improve the running time toO(M logM)

time. In their algorithms, the key to achieving a faster computation for Equation 2.3 is to capture
the contribution of the kth term in the minimum, called candidate k, at all future values of i. To do
so, let C

k

(x) = V
k

+w(x�k) be the candidate curve for candidate k, and let the minimum envelope

at i be the function E

i

(x) = min

0�k<i

fC

k

(x)g over domain x � i. Each curve C
k

captures the

16

α3

α1

α4

α5

α2
35 4 2 1

β5 β4 β3 β2 β1

[<α1, β1,x1>,

<α3, β3,x2>,

<α5, β5,M>]

Minimum Envelope List:

x1 x2
Mi

Figure 2.3: A minimum envelope E
i

and its list representation.

future contribution of candidate k, and the envelope E
i

captures the future contributions of the first
i candidates. Simple algebra from the definitions reveals that D

i

= E

i

(i). Thus our problem can
be reduced to incrementally computing a representation of E

i

for increasing i. That is, given a
data structure modeling E

i

, we need to efficiently construct a data structure modeling E
i+1

(x) =
minfE

i

(x); C

i

(x)g.
Observe that each candidate curve is of the form �+w(�+x) for some � and � (in the case of

C

k

(x), � = V

k

and � = �k). Thus all candidate curves are simply a translation of the curve w(x)
by � and � in the y- and x-axes, respectively. Because every candidate is a translation of the same
concave or convex curve, it follows that any pair of such curves intersect at most once, although
the intersection may occur over an interval of x values as opposed to just a single point. To see this
in the concave case, consider two curves c

1

(x) = �

1

+ w(�

1

+ x) and c

2

(x) = �

2

+ w(�

2

+ x),
where without loss of generality assume �

1

� �

2

. At any given x, curve 1 is rising faster than
curve 2 because concavity assures us that �w(�

1

+ x) � �w(�

2

+ x). (Recall that �w(k) =
w(k + 1) � w(k) is the forward difference of w.) Thus either curve 1 never intersects curve 2,
or curve 1 starts below curve 2 for small x, rises to intersect it as x increases (potentially over
an interval of x), and then stays above it for all larger x. A similar argument shows this “single
intersection” property for convex curves.

The minimum envelope at i, E
i

(x) = min

0�k<i

fC

k

(x)g, is the minimum of a collection of
variously translated copies of the same curve as illustrated in Figure 2.3. As such, the value
of E

i

at a given x is the value of some candidate curve C

k

at x, in which case we say C

k

represents E

i

at x. Because these curves intersect each other at most once, it follows that a
given candidate curve represents the envelope over a single interval of x values, if at all. Those
candidates whose intervals are non-empty are termed active. Clearly, the set of intervals of active
candidates partitions the domain of the envelope, and E

i

can be modeled by an ordered list of
these candidates, <c

1

; c

2

; : : : c

h

>, in increasing order of the right endpoints of their intervals. The
relevant information that needs to be recorded for an active candidate is captured in a record c =
<� : real; � : integer; x : integer>. Record c encodes an active candidate k and its interval as
follows: c:� = V

k

, c:� = �k, and c:x gives the largest value ofx at whichC
k

(x) = c:�+w(c:�+x)

represents the envelope. Formally, the envelope represented by such a list of records is given by:

E

i

(x) = c

j

:�+ w(c

j

:� + x) for x 2 [c

j�1

:x+ 1; c

j

:x] (2.4)

17

where for convenience we define c
0

:x = i� 1. By construction the candidates are ordered so that
c

j�1

:x < c

j

:x. In addition, observe that, for concave curves, it is also true that c
j�1

:� < c

j

:� for
all j because curves with small �’s rise more quickly than those with larger �’s. The inverse is true
for convex curves.

The equations above for D
i

and E

i+1

in terms of E
i

suggest that computationally it suffices
to have the operations (1) Value (E) which delivers the value of envelope E at i, (2) Shift (E)

which updates E for the shift from i � 1 to i, and (3) Add (E; V
i�1

) to add the effect of the new
candidate curve C

i�1

to E. Given these operations, the following algorithm computes the values
of D

i

Equation 2.3:

E []
for i 1 to M do

f E Add (Shift (E); V

i�1

)

D

i

 Value (E)

g

where [] denotes an empty candidate list.
Computationally, using a simple list data structure results in the following implementations of

Value, Shift and Add. Operation Value simply returns c
1

:�+w(c

1

:�+ i), where c
1

is the head of E.
Operation Shift removes the head of E if c

1

:x = i� 1, since that candidate becomes inactive at the
current value of i. Considering operation Add for the concave case, C

i�1

’s interval of representation
in the new envelope must either be empty or must span from i to the intersection point between
C

i�1

and the envelope modeled by E. This occurs because C
i�1

has a smaller � value, �(i� 1),
than any candidate in E and so rises faster than those candidates. C

i�1

’s interval is empty if
V

i�1

+ w(1) � c

1

:� + w(c

1

:� + i), and an unaltered E is returned in this case. Otherwise, the
following steps create a candidate list modeling the new envelope: 1) remove c

1

; c

2

; : : : ; c

h

from
E where, for all 1 � k � h, V

i�1

+ w(�(i � 1) + c

k

:x) � c

k

:� + w(c

k

:� + c

k

:x); 2) find the
intersection point x between C

i�1

and the surviving head of the list, which was c
h+1

in E; and
3) insert the record <V

i�1

; i � 1; x> as the new head. The removed candidates are now inactive
becauseC

i�1

is minimal over their intervals of representation, and the new candidate record models
C

i�1

’s role in the new envelope. Again, the inverse is true for convex curves. Testing and removing
from the tail of the list implements Add for convex curves, since a new candidate’s interval of
representation must span from the intersection point to M .

The time complexity of this algorithm is O(M) times the computation needed to find each
intersection point in operation Add, because each candidate is inserted into and deleted from the
list at most once. When the intersection point can be computed mathematically from w in O(1)

time, the algorithm runs in O(M) time. For a general concave or convex gap-cost function w, the
intersection point can be found using a O(logM) binary search over the range [i; c

h+1

:x] in the
concave case and [c

h�1

:x;M] in the convex case, assuming c
h

; c

h+1

; : : : ; c

jEj

were removed in the
convex Add. This gives an O(M logM) time bound for the algorithm.

The second group of results [Wil88, GP89, KK90, Epp90] improve the O(M2

) running time
of Equation 2.3 by employing a matrix searching technique originally presented in [AKM+87].
This technique computes a column minima problem over an upper triangular matrix where, in
essence, each row k corresponds to the future values of candidate C

k

and the minimal value

18

a SFFR

θ φ φ θ θ φ
a a R R S

ε
= == εθε

θ
RS

=φ
RSSφ

FFF
RSa ε

F
R

θ θ φ
RR

ε
= φ

F

Final Construction Step

F

F

F

R

R

S

φ

θ φ

φ

θ

θ φS

R S

R

R

R* R*

εε

εε
|

S

θR

FF

Rθ

R*R S|

R S|
φ

Inductive Construction Steps

Figure 2.4: Constructing the NFA F for a regular expression R.

along each column h corresponds to the solution for D
h

in Equation 2.3. The algorithms for
convex [Wil88, GP89] and concave curves [KK90] use this matrix searching technique to solve
the one-dimensional problem in O(M) and O(M �(M)) time respectively, where �(: : :) is the
inverse Ackermann function. Eppstein [Epp90] extends these results for piecewise convex/concave
functions w with a resulting complexity of O(MS �(M=S)), where S is the number of pieces.
These results are only mentioned here because they are not applicable to the regular expression
with concave gap penalties problem solved in Chapter 3.

2.2 Regular Expressions

We now turn our attention to problems that involve generalizingB to a regular expression P . Recall
that a regular expression over alphabet � is any expression built from symbols in � [f"g using
the operations of concatenation (juxtaposition), alternation (j), and Kleene closure (*). The symbol
" matches the empty string. For example, a (b j ") j c b* denotes the set fab; a; c; cb; cbb; : : :g.

There have been many results solving the exact matching problem. Most of these involve the
construction of a finite automaton used to perform the matching [Mea55, Moo56, MY60, Brz64,
Tho68, HU79, BS86, CP92]. The automaton construction algorithm presented below is used by
Myers and Miller [MM89a] for their approximate matching solutions and is the construction used
for the algorithms in Chapters 3, 4 and 6. Formally, this non-deterministic finite automaton, or
NFA, F = <V;E; �; �; �> consists of: (1) a set V of vertices, called states; (2) a set E of directed
edges between states; (3) a function � assigning a “label”, �

s

2 � [f"g, to each state s; (4) a
designated “source” state �; and (5) a designated “sink” state �. Intuitively, F is a vertex-labeled
directed graph with distinguished source and sink vertices. A directed path through F spells the
sequence obtained by concatenating the non-" state labels along the path. L

F

(s), the language

accepted at s 2 V , is the set of sequences spelled on all paths from � to s. The language accepted

by F is L
F

(�).
Any regular expression P of size N can be converted into an equivalent finite automaton F

with the inductive construction depicted in Figure 2.4. For example, the figure shows that F
RS

is

19

ε][a

ε
b[]

ε][a

ε][a

][a
a

ε][a

[b
a]

][a
a ε][a

a[]ε

][a
b

b
b[]

ε][b

a[]ε

ε][a

ε][b

b[]ε

ε][a

ε][a

ε
b[]

ε
b[] ε][a

[b
a]

]a
b[][b

ε

a[]ε

ε][a

a
a[]

(0,)θ

(2,)φ

ε

ε

ε

b

b

b

a

a

a

ε

ε

ε

ε

ε

ε

a

b ε

ε

ε

a

a

a

ε

ε

ε

Figure 2.5: The regular expression alignment graph for A=ab and P=(ajb)a*.

obtained by constructing F
R

and F
S

, adding an edge from �

R

to �
S

, and designating �
R

and �
S

as
its source and sink states. After inductively constructing F

R

, an "-labeled start state is added as
shown in the figure to arrive at F . This last step guarantees that the word spelled by a path is the
sequence of symbols at the head of each edge, and is essential for the proper construction of the
forthcoming alignment graph.

A straightforward induction shows that automata constructed for regular expressions by the
above process have the following properties: (1) the in-degree of � is 0; (2) the out-degree of �
is 0; (3) every state has an in-degree and an out-degree of 2 or less; and (4) jV j � 2 jN j, i.e. the
number of states in F is less than or equal to twice P ’s length. In addition, the structure of cycles
in the graph<V;E> of F has a special property. Term those edges introduced from �

R

to �
R

in the
diagram of F

R

� as back edges, and term the rest DAG edges. Note that the graph restricted to the
set of DAG edges is acyclic. Moreover, it can be shown that any cycle-free path in F has at most
one back edge. Graphs with this property are commonly referred to as being reducible [All70] or
as having a loop connectedness parameter of 1 [HU75]. In summary, the key observations are that
for any regular expression P there is an NFA whose graph is reducible and whose size, measured
in either vertices or edges, is linear in the length of P .

For the symbol-based approximate matching problem RE(A, P , f�g) solved by Wagner and
Seiferas [WS78] and Myers and Miller [MM89a], the alignment graph for A versus P consists of
M+1 copies of F , as illustrated in Figure 2.5. Formally, the vertices are the pairs (i; s) where
i 2 [0;M] and s 2 V . For every vertex (i; s) there are up to five edges directed into it. (1) If i > 0,
then there is a deletion edge from (i� 1; s) that models leaving a

i

unaligned. (2) If s 6= �, then for
each state t such that t! s is an edge in F , there is insertion edge from (i; t) that models leaving
�

s

unaligned (in whatever word of P that is being spelled). (3) If i > 0 and s 6= �, then for each
state t such that t! s, there is a substitution edge from (i� 1; t) that models aligning a

i

with �
s

.
Note that by the construction of F , there are at most two insertion and two substitution edges out
of each vertex, and O(MN) vertices and edges in the graph.

Unlike the case of sequence comparison graphs, there can be many paths modeling a given
alignment in this graph due to the fact that when �

s

= ", insertion edges to s model leaving "

20

unaligned and substitution edges to s model aligning a
i

with ". Such insertion edges insert nothing
and thus are simply ignored. The substitution edges are equivalent in effect to deletion edges.
Regardless of this redundancy, it is still true that every path from (i; t) to (j; s) models an alignment
between a

i+1

a

i+2

: : : a

j

and the word spelled on the heads of the edges in the path from t to s

in F that is the “projection” of the alignment graph path. Moreover, every possible alignment is
modeled by at least one path in the graph, and as long as null insertion edges are weighted 0 (by
defining �("; ") = 0), the cost of paths and alignments coincide. Thus the problem of comparing
A and P reduces to finding a least cost path between source vertex (0; �) and sink vertex (M;�).
It is further shown in [MM89a] that all substitution and deletion edges entering "-labeled vertices
except � can be removed without destroying the property that there is a path corresponding to every
possible alignment. These edges are removed in the example in Figure 2.5 to avoid a cluttered
graph.

As in the case of SEQ(A, B, f�g), one can formulate a recurrence for the shortest path cost to
a vertex in terms of the shortest paths to its predecessors in the alignment graph:

C

i;s

= minfmin

t!s

fC

i�1;t

+ �(a

i

; �

s

)g; C

i�1;s

+ �(a

i

; "); min

t!s

fC

i;t

+ �("; �

s

)g g (2.5)

Note that cyclic dependencies can occur in this recurrence, because the underlying alignment graph
can contain cycles of insertion edges. One may wonder how such a “cyclic” recurrence makes
sense. Technically, what we seek is the maximum fixed point to the set of equations posed by the
recurrence. For problem instances where � is such that a negative cost cycle occurs, the “optimal”
alignment always involves an infinite number of copies of the corresponding insertion gap and has
cost �1. Such a negative cycle can easily be detected in O(N) time. For the more common and
meaningful case where there are no negative weight cycles, the least cost path to any vertex must
be cycle free, because any cycle adds a positive cost to the path. Moreover, by the reducibility of
F it follows that any such path contains at most one back edge from each copy of F in the graph.

Miller and Myers used the above observations to arrive at the following row-based algorithm
where the recurrence at each vertex is evaluated in two “topological” sweeps of each copy of F :

C

0;�

 0

for s 6= � in topological order of DAG edges do

C

0;s

 min

t!s2DAG

fC

0;t

+ �("; �

s

)g

for i 1 to M do

f for s in topological order of DAG edges do

C

i;s

 minfmin

t!s

fC

i�1;t

+ �(a

i

; �

s

)g;

C

i�1;s

+ �(a

i

; ");

min

t!s2DAG

fC

i;t

+ �("; �

s

)g g

for s in topological order of DAG edges do

C

i;s

 minf C

i;s

; min

t!s

fC

i;t

+ �("; �

s

)g g

g

“The score of the optimal alignment between A and P is C
M;�

”

The set DAG in the algorithm above refers to the set of all DAG edges in F . Since F restricted
to the set of DAG edges is acyclic, a topological order for the for-loops exists. Observe that the
algorithm takes O(MN) time since each minimum operation involves at most 5 terms.

21

The algorithm sweeps the ith row twice in topological order, applying the relevant terms of the
recurrence in each sweep. This suffices to correctly compute the values in the ith row, because any
path from row i�1 to row i is cycle free and consequently involves at most one back edge in row i.
Suppose that a least cost path to vertex (i; s) enters row i at state t along a substitution or deletion
edge from row i� 1. The least cost path from t to s consists of a sequence of DAG edges to a state,
say v, followed possibly by a back edge v ! w and another sequence of DAG edges from w to
s. The first sweep correctly computes the value at (i; v), and the second sweep correctly computes
the value at (i; w) and consequently at (i; s).

Introducing gap penalty scoring schemes has an effect on the alignment graphs of RE(A, P ,
f�g) similar to that of the sequence comparison problem. The set of nodes remains unchanged,
but extra edges must be added to represent the multi-symbol gaps. The extra deletion edges in the
graphs for RE(A, P , f�; wg) are the same as in the graphs for SEQ(A, B, f�; wg), i.e. edges from
vertex (i; s) to vertices (k; s), for k 2 [i+1;M], each modeling the gap that leaves a

i+1

a

i+2

: : : a

k

unaligned. For insertion edges the problem is more complex as there can be an infinite number of
paths between two vertices in a row, each modeling the insertion of a different number of symbols.
Due to this increased generality, it appears very difficult to treat the case of arbitrary w.

Myers and Miller [MM89a] present an O(MN (M + N)) algorithm for arbitrary, monotone
increasingw, i.e. w(k) � w(k+1), and an O(MN) algorithm for affine gap costs. Beginning with
the arbitrary, monotone increasing algorithm, the monotonicity of w implies that a path between
vertices (i; t) and (i; s) corresponding to a least cost insertion gap is a path between t and s that
spells the fewest non-" symbols. Let G

t;s

, hereafter called the gap distance between t and s, be the
number of non-" labeled states on such a path. Thus, it suffices to add a single edge from (i; t) to
(i; s) of cost w(G

t;s

) for every pair of vertices such that there is a path from t to s in F , denoted
t

�

! s. Each of these insertion edges models an insertion gap of minimal cost over all gaps that
leave a word spelled on the path from t to s unaligned. Precomputing G

t;s

, for all pairs of t and s,
is a discrete shortest paths problem over a reducible graph, and hence can be done in O(N2

) time.
The recurrence for the least cost path to vertex (i; s) in the alignment graph described above is

as follows:

C

i;s

= minfmin

t!s

fC

i�1;t

+ �(a

i

; �

s

)g; min

0�k<i

fC

k;s

+ w(i� k)g; min

8t:t

�

!s

fC

i;t

+ w(G

t;s

)gg (2.6)

Note that both the recurrence and the graph construction above require the assumption that w(0) =
0, as G

t;s

can be 0 for some state pairs. The direct computation of this recurrences using the
two-sweep, node-listing algorithm described above can findC

M;�

in O(MN(M +N)) time, as the
deletion and insertion terms require O(M) and O(N) time per graph node.

In [MM89a], Myers and Miller actually restrict the allowed functions w to those that are
sub-additive, i.e. for all m and n, w(m + n) � w(m) + w(n). This restriction is included to
preclude sequences of insertion edges from consideration. When w is sub-additive, the minimal
cost insertion gap from t to s must be a single insertion of a string spelled on a path from t to s

rather than multiple insertions of smaller strings whose concatenation spells a path from t to s.
However, if a sequence of insertion edges from t to s is minimal over all such edge sequences, then
one can show that the concatenation of the paths in F corresponding to the sequence of insertion
edges must form an acyclic path in F . Since the recurrence above plus the two-sweep algorithm
consider all combinations of insertion edges which map to acyclic paths in F , two sweeps suffice

22

even when w is not sub-additive.
In order to improve this algorithm for either the affine case considered here or the concave

case presented in Chapter 3, the insertion terms min

8t:t

�

!s

fC

i;t

+ w(G

t;s

)g of Equation 2.6 must
be computed in less than O(N

2

) time. These insertion term computations along each row of the
alignment graph are captured in the following one-dimensional problem:

I

s

= min

8t:t

�

!s

fV

t

+ w(G

t;s

)g (2.7)

where V

t

is C
i;t

. For the affine case, Myers and Miller present an algorithm which effectively
simplifies this recurrence to

I

s

=

(

min

t!s

fI

t

; V

s

+ cg if �
s

= "

min

t!s

fI

t

+ e; V

s

+ c+ eg if �
s

6= "

Using this simplification, along with the Gotoh’s simplification of the deletion gap recurrence,
yields an O(MN) complexity for the two-sweep algorithm as it takes O(1) time to compute the
recurrences at each vertex in the alignment graph.

2.3 Extended Regular Expressions

Extended regular expressions, as its name suggests, extends the set of regular expression operators
with two additional operators, intersection (&) and difference (�). The matches to expressions
R&S and R � S are defined as the set intersection and set difference, respectively, of the strings
matching R and S. So for example, the expression (a

�

b

�

cc& ab

�

c

�

)� a

�

bbbb

�

c

� denotes the set of
strings facc; abcc; abbccg.

A variation of this set of operators, allowing intersection and complementation instead of
intersection and difference, formed the original operator set in the initial papers [Kle56, Brz64]
defining regular expressions. As regular expressions were originally developed to describe nerve
nets and logical circuits, the operators intersection and complementation naturally characterized the
logical AND and NOT circuits. We use the alternative version with a difference operator, because
it results in more useful expressions for the super-pattern matching in Chapters 5 and 6. The two
are essentially equivalent as R0 (complement of R) equals ��

�R and R� S equals R&S

0.
Despite its long history, few papers have tackled the matching of extended regular expressions.

One paper [BS86] actually considered the exact matching problem and then remarked that it could
not be solved using the algorithms described in the paper. Only two efficient algorithms have
appeared for the exact matching problem, one by Hopcroft and Ullman [HU79, Exercise 3.23]
and one by Hirst [Hir89]. The approximate matching problem has not been considered previously,
although Section 4.2 may shed some light on this lack of results.

Hopcroft and Ullman solve the exact matching problem between sequence A and extended
regular expressionP using anO(M3

N) dynamic programmingalgorithm. The algorithm computes
the set of substrings of A matching each sub-expression of P in a bottom-up manner. A set of
inductive recurrence rules, similar to the inductive NFA construction rules of Figure 2.4, sets the
value of C(i; j; R) to either 1 or 0 depending on whether a

i+1

a

i+2

: : : a

j

matches the expression R.
Specifically, the rules are:

23

1. C(i; j; ") = (i == j)

2. C(i; j; a) = (i+ 1 == j) ^ (a

j

== a)

3. C(i; j; R jS) = C(i; j; R) _ C(i; j; S)

4. C(i; j; RS) = 9i � k � j : C(i; k;R) ^ C(k; j; S)

5. C(i; j; R

�

) = (i == j) _ 9i � k � j : C(i; k;R) ^ C(k; j;R

�

)

6. C(i; j; R&S) = C(i; j; R) ^ C(i; j; S)

7. C(i; j; R� S) = C(i; j; R) ^ C(i; j; S)

where “==” denotes a boolean equality with true as 1 and false as 0. Sequence A matches P iff
C(0;M; P) equals 1.

The complexity of this algorithm is O(M3

N), where M and N are the sizes of A and P ,
respectively. The algorithm computes the match between each sub-expression of P and all of the
O(M

2

) substrings of A. In addition, the application of recurrences 4 and 5 take an average O(M)

time per substring of A. Curiously, with this algorithm, it is the concatenation and Kleene closure
operations that directly account for the M3 behavior, and not the new intersection and difference
operations.

Hirst improved on this algorithm, although not its worst case complexity, by building a data
structure based on the extended regular expression’s parse tree and then using that to perform the
matching. Although his specific algorithm is rather involved, the concepts and techniques used in
that algorithm can be described by a tree marking algorithm. In this algorithm, the sequence A is
scanned left to right and, for each successive symbol, the nodes of parse tree for P are annotated
with two types of marks, one marking the sub-expressions to be matched against the substring of
A not yet scanned and the other marking sub-expressions which have been completely matched
against a suffix of the substring already scanned. Figure 2.6a gives the sequence of markings for
an example sequence and simple regular expression, where the circles mark the sub-expressions to
be matched and the diamond mark the sub-expressions which have been matched. Henceforth, the
two types of marks will be denoted using the terms circle and diamond.

The algorithm begins by marking the root of the parse tree with a circle. It then follows a set of
rules to generate the rest of the markings on the tree. The rules themselves are straightforward, given
an understanding of the concatenation, alternation and Kleene closure operations (the intersection
and difference operations are discussed momentarily). For instance, three rules govern a sub-tree
whose root represents a concatenation operation: (1) when the root is marked with a circle, mark
the leftmost sub-tree with a circle; (2) when a sub-tree of the root, except the rightmost sub-tree,
is marked with a diamond, mark its right sibling with a circle; (3) when the rightmost sub-tree has
a diamond mark, mark the root with a diamond. Once the markings on the tree are complete, i.e.
no more rules apply, then the next symbol in the input is scanned and all nodes which are labeled
with that symbol and marked with a circle are now marked with a diamond. All of the previous
markings are then removed, and the rules are again applied to the new markings. This process ends
when the last symbol of the sequence has been scanned and a complete set of markings has been
generated. If the root of the tree is marked with a diamond, then the sequence A is accepted as a
sequence in the language of the extended regular expression.

When the extended regular expression contains intersection and difference operators, the sit-
uation becomes more complex. The complexity results from the requirement that, with a sub-
expression such as R&S, the matches to R and S occur with the same substring of A. In an

24

(a) Tree markings for pattern (abc | a) a* and sequence abcaa.

(Circles denote subtrees to be matched, diamonds denote matched subtrees)

(b) Duplicated subtrees for matching a
single intersection sub-expression.

(Numbers denote the start positions
of each substring match)

& & & &

4 5 9 11

2 4 5 8
& & & & &

13129 15

10

a

a

| *

b c

a

a

a

| *

b c

a

a

a

| *

b c

a

abaε

a

a

| *

b c

a

a

a

| *

b c

a

a

a

| *

b c

a

abcaaabcaabc

(c) Nested intersection and difference
duplicated subtrees, with the
extra links.

Figure 2.6: Examples of Hirst’s tree marking algorithm.

25

algorithm which scans the text from left to right, this implies that extra information must be main-
tained for the currently active matches to sub-expressions of P . This extra information is used
to guarantee that only valid matches to R&S can be computed from the matches to R and the
matches to S, and similarly for the R � S sub-expressions. For expressions containing no nested
intersection or difference operators, Hirst creates this extra state information by duplicating the
sub-tree of each intersection and difference node for each text position at which a potential match to
that sub-expression could begin. Figure 2.6b illustrates this for an expression with one intersection
operator. This duplication ensures that when the sub-tree for both R and S have been matched in
one of the duplicates, then a valid match to R&S has occurred. Similarly, a valid match for R�S
occurs when a match to R but no match to S occurs in one of the duplicates.

When nested intersection and difference operators occur in the extended regular expression, the
data structure used by Hirst’s algorithm becomes that of Figure 2.6c. Rather than blindly creating
duplicates within the duplicated sub-trees, only one duplicate of each intersection and difference
sub-tree is created per text position. Extra links connect the nested duplicates to each of the
higher level duplicated sub-trees for which a valid match to the nested sub-expression could extend
the match to the higher level sub-expression. The algorithm performs the normal tree marking
algorithm on all of the duplicated sub-trees, but reports matches to intersection and difference
sub-expressions along all of its connecting extra links.

The basic tree marking algorithm used for the regular expression operators runs in O(N) time
per symbol of A. Hirst’s actual algorithm also runs in O(N) time per symbol, but improves the
constant factor using a more efficient method for generating the marks on the tree. The complete
algorithm’s worst-case behavior results from the O(M3

N) time required to construct and maintain
the duplicate sub-trees and extra links for the intersection and difference operators. For each “row”
of duplicated sub-trees, a completed match to the intersection or difference sub-expression may
have to be reported to O(M) higher level duplicates modeling the various matches to the enclosing
intersection or difference sub-expression. Thus, the processing of each “row” can take O(M2

)

time per text position. Multiplying by the number of possible rows and text positions gives the
O(M

3

N) time bound. Note, however, that this worst-case complexity does not reflect the behavior
of the algorithm for many extended regular expressions, unlike the Hopcroft-Ullman algorithm.
The actual time taken by the algorithm depends on the structure of the extended regular expression
and the number of substrings matching each intersection and difference sub-expression. In many
cases, that time will be less than O(M3

N).

26

CHAPTER 3

APPROXIMATE REGULAR EXPRESSION PATTERN MATCHING
WITH CONCAVE GAP PENALTIES

The approximate regular expression pattern matching problem with concave gap penalties
involves finding the score of the optimal alignment between a sequence A = a

1

a

2

: : : a

M

and a
regular expression P of size N . The various alignments are scored using the concave gap penalty
scoring scheme S = f�; wg described in Chapter 2. Section 2.1 presents the O(MN(logM +

logN)) solution to SEQ(A, B, f�; wg) with concave w, i.e. the sequence comparison problem
with concave gap penalties, and Section 2.2 presents the O(MN(M +N)) solution to RE(A, P ,
f�; wg) with monotone increasing but otherwise arbitrary w. Here, N denotes the size of either B
or P . This chapter combines the techniques used in those two algorithms to solve RE(A, P , f�; wg)
with concave w in O(MN(logM + log

2

N)) time. However, this merger is not straightforward,
requiring an applicative implementation of the candidate lists used in the sequence comparison
problem (see Section 2.1) and the use of a stack of those candidate lists by the new algorithm.

The O(MN(M + N)) regular expression algorithm from Section 2.2 can be improved to
O(MN(logM+log

2

N)), whenw is restricted to a concave function, by more efficiently computing
Equation 2.6 for each node (i; s) in the alignment graph. Specifically, this improvement comes
from the insertion and deletion terms of Equation 2.6 along each row and column of the alignment
graph, isolated here in terms of the following one-dimensional problems:

D

i

= min

0�k<i

fV

k

+ w(k � i)g

I

s

= min

8t:t

�

!s

fV

t

+ w(G

t;s

)g

The sub-cubic complexity of the algorithm solving RE(A,P ,f�; wg) with concave w rests on
computing (1) theD

i

values in less thanO(M2

) time and (2) the I
s

values in less than O(N2

) time.
Note that Equation 2.6 and these one-dimensional recurrences actually only hold for the concave
gap penalty problem when w is also monotone increasing, but, as is discussed below, the concave
functions which are not monotone increasing can be treated using a variation of the solution for the
monotone increasing case.

One of the algorithms in Section 2.1 solves the deletion term recurrence above in O(M logM)

time by using minimum envelopes and their candidate list implementation. This chapter presents
an O(N log

2

N) algorithm for computing the I

s

values by combining the minimum envelope
techniques with the two-sweep, node-listing approach used in approximate regular expression
matching. Section 3.1 presents the minimum envelope characterization of the insertion term
recurrence above and reimplements the candidate list data structure in order to handle the greater
complexities of that recurrence. Sections 3.2 and 3.3 then give the algorithms for each of the two
sweeps used to compute the I

s

values. The complete algorithm solving RE(A, P , f�; wg) is the

27

two-sweep, node-listing algorithm of Section 2.2, which computes the shortest paths to each vertex
in the alignment graph row by row. For each graph row i, the algorithm uses O(M) candidate lists
to deliver the deletion and substitution terms of Equation 2.6 to the computations given in Section
3.2 and 3.3. They then deliver the final C

i;s

values, for each vertex (i; s) in the row.
In the treatment that follows, we focus only on the case wherew, in addition to being concave, is

monotone increasing. This is because the problems involving more general concavew can be solved
using the monotone increasing solution, as follows. If w is concave but not monotone increasing,
then the values of w(k) rise to a global maximum and then descend to �1 as k increases. Under
this function, a best scoring insertion gap involves either the shortest or the longest sequence of
symbols spelled on a path from t to s in F . When P contains at least one Kleene closure operator,
the Kleene closure admits arbitrarily long gaps scoring �1, and consequently such matching
problems are ill-posed. However, when P contains no Kleene closures and F is acyclic, then the
problem is always well posed and involves an additional termmin

8t:t

�

!s

fC

i;t

+w(L

t;s

)g in Equation
2.6. L

t;s

is the largest number of non-" symbols spelled on a path from t to s. The first sweep
algorithm in Section 3.2 can be modified to correctly solve for this additional term by replacing
each instance of G

t;s

with L
t;s

in the equations and algorithms of that section. The second sweep
algorithm is not needed, since there are no cycles in the alignment graph. The complete algorithm
for problems with concave but not monotone increasing w concurrently executes two versions of
the algorithms in Section 3.2, one computing with G

t;s

values and the other computing with L

t;s

values. The value of each C
i;s

is the minimum of the two computations at i and s.

3.1 Generalizing the Minimum Envelopes

For this problem, an envelope at s or E
s

captures the future contribution of s’s predecessors and is
used to expedite the computation of I-values at the successors to s. What is desired at each s is

E

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x)g

whereupon the desired C-value at each vertex is simply E
s

(0). Note that in the minimum above,
there is a single term or candidate for each state of the automaton. Because states and candidates are
in one-to-one correspondence, candidates in an envelope will often be referred to or characterized
in terms of their originating states.

These envelopes are actually arrived at in two topological sweeps of F , as part of the overall
two-sweep algorithm proceeding across each alignment graph row. In the first sweep, the envelopes
E1

s

consider only gaps whose underlying paths are restricted to DAG edges, and the second sweep
envelopes E2

s

consider the gaps whose paths have exactly one back edge. Formally,

E1

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x) j t

�

! s 2 DAG

�

g

E2

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x) j t

�

! s 2 DAG

�

�BCK �DAG

�

g

Because only cycle free paths must be considered, it follows that E
s

(x) = minfE1

s

(x); E2

s

(x)g

and C

i;s

= E

s

(0). In the remainder of this chapter, the path restriction clauses DAG

� and
DAG

�

�BCK �DAG

� in the definitions above are omitted and assumed by the use of either a 1

28

or a 2 in the name of the defined quantity. As will be seen, the envelopes E1 and E2 are actually
modeled by a collection of up to O(log P) distinct candidate lists.

Unfortunately, the more complex structure of the NFAF gives rise to a number of complications,
requiring a more general data structure modeling the minimum envelopes. First, in the simpler
sequence comparison context, it is natural to use the coordinate system of the alignment graph as
a frame of reference for x, i.e. E

i

(x) is the value E
i

contributes to the vertex in column x. The
analogous definition in the case of regular expressions is to define E

s

(x) to be the value that E
s

contributes to any state whose gap distance from the start state, �, is x. However, this fails for
regular expressions because there are automata for which two states at equal gap distance from �

are at distinct gap distances from s. It is thus essential to make s the referent of the parameter x.
Specifically, E

s

must be constructed so that E
s

(x) is the value envelope E
s

contributes to any state
whose gap distance from s is x.

Also, unlike the sequence comparison case, there are state pairs t and s whose gap distance
G

t;s

is 0. The algorithms of Sections 3.2 and 3.3 are greatly simplified when the candidates from
such states t can be included into the candidate lists at s, instead of delaying their inclusion until
some future s whose gap distance from t is non-zero. However, candidates with a �-value of 0
cannot be treated under the minimum envelope formulation of Section 2.1, because w is defined
to be concave only for values k � 1, and w(1) � w(0) might not be greater than or equal to
w(2) � w(1). The candidate list implementation must be extended to handle these zero �-valued
candidates separately.

The most significant complication arises because of the multiple paths introduced by alter-
nation and Kleene closure sub-automata. Any incremental algorithm building each E

s

from s’s
immediate predecessors must use the envelope at each �

R jS

and �

R

� at two different successors.
The construction at those two successor states, which make different alterations to the original
envelope, cannot be allowed to affect each other. The implementation of candidate lists modeling
an envelope must be made persistent or applicable, so that the construction occurring along each
path through F does not affect the construction on concurrent paths.

At each �
R jS

and �
R

� state, the candidate lists for that state’s two predecessors must be merged,
in some fashion, so that E

�

R j S

or E
�

R

�

contains the union of the candidates at the predecessors.
This could easily be done using either a merge sort style sweep through the active candidates of
the two lists or by adding the active candidates from one list into the other. However, because the
candidate lists can be of size O(N), such a merge operation at each �

R jS

and �
R

� yields an O(N2

)

time bound. Barring a more efficient merge operation, it does not appear than any algorithm using
either a single or constant number of candidate lists can compute the I

s

values in less than O(N2

)

time. Too many candidates occur in both envelopes in the merges: either 1) candidates from the
same state t occurring in the lists being merged at a single �

R jS

or �
R

�, or, more subtle duplication,
2) candidates from a state t needed in the series of final states occurring when F contains highly
nested F

R jS

and F
R

� sub-automata.
Given these complications, the algorithms solving RE(A, R, f�; wg) require a more generalized

implementation of candidate lists. Proceeding formally, let E be a candidate list data structure
modeling a minimum envelope, and let E(x) denote the value of the encoded envelope at x. The
goal is to develop applicative, i.e. non-destructive, procedures for these four operations:

29

(1) Value (E; x): returns E(x) when x � 0.
(2) Shift (E;�): returns a candidate list E0 for which E0

(x) = E(x+�)

when � � 0.
(3) Add (E;�; �): returns a candidate list for E0

(x) = minfE(x); �+ w(� + x)g

when � > 0.
(4) Merge (E1; E2): returns a candidate list E0

(x) = minfE1(x); E2(x)g.

The rest of this section shows how the first three operations above can be accomplished in loga-
rithmic time. Then, operation Merge simply uses Add to add the candidates from the shorter list
into the longer list, as follows:

Merge (E1; E2)

f if Len(E1) � Len(E2)

then E E1; E 0

 E2

else E E2; E0

 E1

for c 2 E do

E

0

 Add (E0

; c:�; c:�)

return E

0

g

Since the active candidates of E0 must also be active candidates in E1 and E2, the minimum
envelope formed from combining the active candidates ofE1 and E2 models minfE1(x); E2(x)g

for all x. The time complexity for this operation is the length of the smaller candidate list times the
logarithmic cost for each Add.

These candidate list operations, and the “frame shift” required by the regular expression algo-
rithm, generalize the one-dimensional problem of Section 2.1 in the following manner. E

i

(x) is
now defined over the domain x � 0 and equals the contribution of the envelope at i to the vertex at
column i + x (as opposed to the one at column x). Formally, E

i

(x) = min

0�k<i

fC

k

(i + x)g for
x � 0. Some straightforward algebra reveals that this new definition now implies that D

i

= E

i

(0)

and E
i+1

(x) = minfE

i

(x+1); C

i

(x+(i+1))g. As before, the envelope is modeled by an ordered
list of candidate records, but now c:� = i� k and c:x is the largest value of x at which C

k

(i+ x)

represents the envelope. With these changes, the following variation of the algorithm in Section
2.1 correctly computes the D

i

values specified by Equation 2.3:

E []
for i 1 to M do

f E Add (Shift (E; 1); V
i�1

; 1)

D

i

 Value (E; 0)

g

3.1.1 Operations Value, Shift and Add

To simplify the initial development of the operations, we first look at the effect each operator has on
the candidate listE without regard to efficiency or the method via which the list is implemented. The

30

rp(k) � E

k

:x # the rightmost point of E
k

lp(k) � if k = 1 then 0 else E
k�1

:x+ 1 # the leftmost point of E
k

RE(k)� m = 0 or E
k

(rp(k)) � � + w(� + rp(k)) # In Add, these test to see

LE(k)� m = jEj or E
k

(lp(k)) � �+ w(� + lp(k)) # if E
k

is minimal at
rp(k) and lp(k), resp.

Value (E; x)

f if jEj = 0 then return1

j Findmin(k : x � rp(k))

return E

j

(x)

g

Shift (E;�)

f if jEj = 0 then return E

j Findmin(k : � � rp(k))

F Offset (E
j::jEj

;�)

return F

g

Add (E; �; �)

f if jEj = 0 then return [<�; �;1>]

m Findmax (k : � � E

k

:�)

if RE(m) and LE(m+ 1) then return E

l Findmax (k : k � m & LE(k))

h Findmin (k : k > m & RE(k))

F Append (E
1::l

; [<�; �;1>]; E

h::jEj

)

if l > 0 then

F

l

:x Intersect (F
l

; F

l+1

)

if h � jEj then

F

l+1

:x Intersect (F
l+1

; F

l+2

)

return F

g

Figure 3.1: The procedures Value, Shift, and Add.

following operations, in addition to the typical list operations, are assumed. Their implementation
is discussed in the next section.

(1) e(x): for candidate record e, returns e:�+ w(e:� + x).
(2) Findmin (k : P (k)): returns minimal k s.t. predicate P (k) is true

(or1 if its never true).
(3) Findmax (k : P (k)): returns maximal k s.t. predicate P (k) is true

(or 0 if its never true).
(4) Intersect (e; f): for records e and f , returns the maximal x s.t. e(x) < f(x).
(5) Offset (E;�): returns E0 s.t. for all i, E 0

i

:� = E

i

:� +� and E0

i

:x = E

i

:x��.

Findmin and Findmax are used to perform searches over a candidate list E, and as such the
index k ranges over [1; jEj]. All the predicates P (k) that occur in the calls to Findmin below
are nondecreasing in that P (k) � P (k + 1) for all k, where false is considered to be less than
true. Similarly, all the predicates used in calls to Findmax are nonincreasing. Note that from an
implementation perspective, this implies that a binary search can be used. In the event that P (k) is
false for all k, the description above states that Findmin returns1. We will use1 in such contexts
to denote a number that is sufficiently large. In all cases such a number is easy to arrive at, e.g.
jEj+ 1 in the case that the predicate of Findmin is defined over list E.

Figure 3.1 presents the procedures implementing Value, Shift, and Add. The realization of
operation Value follows directly from Equation 2.4 in Section 2.1. The call to Findmin sets j to the

31

index of the candidate whose interval contains x, i.e. x 2 [lp(j); rp(j)], and then the value E
j

(x)

is returned. For the1 occurring in Value, an appropriate choice when solving RE(A, R, f�; wg) is
w(1) � (M + P) + 1.

Operation Shift must add � to each record’s �-field and subtract � from each record’s x-field,
since in the desired envelope E0

k

:� = E

k

:�+� and E 0

k

:x = E

k

:x��. However, some candidates
become inactive because the right end of their intervals become less than 0 in the new envelope.
Specifically, this is true exactly for those candidates whose x-field is less than �. Because record
in the list appear in increasing order of this field, the call to Findmin finds the leftmost candidate
which remains active. The sublist to the right of that candidate, inclusively, is extracted from E.
Then, operation Offset updates the x- and �-fields of the remaining candidates.

Add is the most complex, potentially requiring the replacement of an interior sublist of the
current envelope with the new candidate, as shown in Figure 3.2. Recall that the candidates in a
list occur in increasing order of their �-fields. Thus, the new candidate’s interval of representation,
if not empty, occurs between the candidates in E with lesser �’s and those with greater �’s. If the
new candidate is not minimal at the division point between these two sublists ofE, then its interval
is empty because it falls more slowly than the candidates with smaller �’s (moving leftward) and
rises more quickly than the candidates with larger �’s (moving rightward). The first call to Findmax

finds the index m such that 1) E
k

:� � � for all 1 � k � m and 2) E
k

:� > � for all m < k � jEj.
Let rp = rp(m) when m > 0 and 0 otherwise, and let lp = lp(m + 1) when m < jEj and 1
otherwise1. The predicates RE(m) and LE(m + 1) compare the new candidate against E

m

and
E

m+1

at rp and lp, respectively. They also include clauses “m = 0” and “m = jEj” which check
for the boundary conditions. If both RE(m) and LE(m + 1) are true, then the new candidate
cannot contribute to the left of rp or to the right of lp and its interval of representation must be
empty. In this case, Add simply returns the unaltered list E.

The alternative is that at least one of the predicates RE(m) or LE(m + 1) is false, in which
case the candidate represents the desired envelope over some interval containing either lp or rp, or
both. Thus, it suffices to find the left and right points x

l

2 [0; rp] (or x
l

= lp ifRE(m) is false) and
x

h

2 [lp;1] (or x
h

= rp if LE(m+ 1) is false) where the new candidate intersects the envelope
for E. The call to Findmax finds the rightmost candidate, l, which is less than the candidate at
the left endpoint of l’s interval. Either candidate l’s interval contains the left intersection point, or
l = m and the left intersection point is lp. The call to Findmin similarly returns the candidate,
h, containing the right intersection point. Add then replaces the candidates strictly between l

and h with the new candidate. This is correct, as the new candidate represents E 0

(x) over the
intervals of the candidates just removed. Finally, the exact location of the left and right intersection
points must be stored in the x-fields of the records for l and the new candidate, respectively. The
call, Intersect (F

l

; F

l+1

) finds the left endpoint as F
l+1

is the new candidate record, and the call
Intersect (F

l+1

; F

l+2

) finds the right endpoint.

3.1.2 Implementing the Candidate Lists

Attention is now turned to the efficient implementation of the candidate list data structure. Each
candidate list is implemented as a height-balanced tree of candidate records such that the list is

1

N suffices here as longer gap distances will not be encountered. SimilarlyM andN suffice for the one-dimensional
column and row problems posed in SEQ(A, B, f�; wg).

32

rp lp P0

m
l

h

candidates with smaller candidates with larger
-values -valuesβ β

left
intersection

point point
intersection

right

Figure 3.2: Adding a curve to an minimum envelope.

given by an inorder traversal of the tree. This well-known representation for a linear list [Knu73,
pages 463-468] permits all of the typical list operations, plus the binary search used by Findmax

and Findmin, in either constant or logarithmic time of the length of the list. In addition, Myers
[Mye84] presents an implementation for applicatively manipulating height-balanced trees at no
additional time overhead. This implementation simply modifies the standard operations to make
copies of any vertices that normally would be destructively modified. Note that this approach does
require extra space: each O(logN) operation takes O(logN) space as well.

Primitive operation (4), Intersect (e; f), involves the monotone predicate e(x) < f(x) whose
range is restricted to x 2 [0; N], because of the single intersection property of concave curves and
because N is the largest possible gap distance between any two states. Thus an O(logN) binary
search over this range implements Intersect. Operation Offset (E;�), primitive operation (5), can
be realized in O(1) time over a height-balanced tree as noted for link-cut trees [ST85]. The “trick”
is to store the � and x values for a candidate record as offsets relative to the � and x values at the
parent of the candidate in the tree. With such a scheme, E

i

:� is obtained by summing the �-offsets
of the vertices on the path from the root of E’s tree to the vertex representing candidate i. Since
this path must be traversed in order to access candidate i, the computation accrues no asymptotic
overhead. With this structure, Offset(E;�) simply involves adding and subtracting � to the � and
x values at the root.

Whenever the structure of the tree is modified by an operation, such as a height balancing
rotation, one must carefully readjust the offsets stored at each vertex. For example, consider the
rotation from x(a; y(b; c)) to y(x(a; b); c) where x(L;R) denotes a tree node x with left and right
children L and R. Then, if x.off denotes the offset before and x:off 0 denotes the offset after, it
suffices to set y:off 0 = x:off + y:off, x:off 0 = �y:off, a:off 0 = a:off, b:off 0 = b:off + y:off, and
c:off 0 = c:off in order to preserve all absolute values. These changes are made during the rotation
at no additional asymptotic overhead. Such value-preserving transforms are available for the other
necessary rotation operations. A complete description of one such schema is given in [ST85].

The final consideration is the extension of candidate lists to include candidates whose �-value
is zero. These extended lists consist of two parts: E:list, a “standard” envelope for the candidates
whose �-value is greater than zero; and E:�0, the � value of the best candidate with a � of zero.
For such a modified data structure, the routines Value +, Shift +, and Add + below give the necessary
operational extensions. To simplify the algorithm descriptions presented in the rest of the paper,

33

the + symbols will be omitted and assumed by the use of Value, Shift and Add.

Value+(E; x)

f a E:�0 + w(x)

b Value (E:list; x)

return minfa; bg

g

Shift+(E;�)

f if � = 0 then return E
E:list Shift (E:list;�)

if E:�0 6=1 then

f E:list Add (E:list; E:�0;�)

E:�0 1

g

return E

g

Add+

(E; �; �)

f if � = 0 then

E:�0 minfE:�0; �g

else

E:list Add (E:list; �; �)

return E

g

3.2 The First Sweep Algorithm

In the computation of envelope E1

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x)g at each state s in F , the

first sweep algorithm need only consider the subgraph of F restricted to DAG edges. Over this
acyclic subgraph, the set of predecessors of state s are those states t where t

�

! s, and they are
all enumerated before s in a topological sweep of F . These predecessors are partitioned into two
sets, the up predecessors and down predecessors at s, and their candidates are stored in two data
structures, called the up list and down list. This division is based on the predecessors’ position,
relative to s, in the nesting structure of F induced by Kleene closures and alternations in P . This
notion of up and down can be better illustrated by hypothetically extending the two-dimensional
NFA’s illustrations into a third dimension. The positions of states in that third dimension depend
on their position in the nesting of alternation and Kleene closure sub-automata of F . The highest
tier of states contain all of the states in F which are outside any F

R jS

or F
R

� sub-automaton. States
in successively nested sub-automata are placed in successively lower tiers, and the most deeply
nested sub-automaton’s states make up the lowest tier. The descriptive terms “up” and “down”
used in this section refer to the directions up and down in this third dimension.

To capture this nesting structure and each state’s position in the nesting, a nesting tree is
constructed from F . The formal inductive construction is specified in Figure 3.3, and an example
tree is also given. Informally, the nesting tree consists of a node corresponding to the subexpression
formed by each alternation and Kleene closure operator in P and a root node corresponding to P
itself. The edges of the tree model the immediate nesting structure of node subexpressions. A
node’s submachine is that sub-automaton in F induced by the node’s subexpression. Each node
of the nesting tree is also annotated with a node set consisting of those NFA states in the node’s
submachine except (1) its start and final states, and (2) those belonging to any descendant node.
Thus, the node sets partition the states of F , and the relative position of two states in the nesting of
submachines is mirrored in the relative position of the states in the tree. For a state s, let N

s

denote
the unique node whose node set contains s.

The up predecessors of a state s are those states t for which t
�

! s and N
s

�

! N

t

, i.e. N
s

is an
ancestor of N

t

in the nesting tree. All other predecessors of s are down predecessors. They are so
named because any NFA path from a down predecessor t to s contains edges which correspond to
moving down the nesting tree. Given the partition of predecessors into up and down types, one can

34

F is the NFA for R
T is the tree for RR

R

s
=> = Ta

.

X YU
t s

F

F
=> = T

.

X YU
F F => = T

. . .

X=> = T

R

S

R S

R R*

RS

{s}

R S|

where

. . .

X
T =

R . . .

Y
T =

S {19}

{12-16} {22,23} {24,25}

{2-11}

{17,18}

{0,1}

{t,s}

{t,s}

F

st

24
2597

6

17

19
3

22 23

21

2

0

8 10 11

1

54

20
18

12 13

15 1614

{20,21}

Figure 3.3: The nesting tree construction and an example nesting tree.

then decompose the computation of E1

s

into the computation of:

EU1

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x) j N

s

�

! N

t

g

EH1

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x) j N

s

6

�

! N

t

g

where E1

s

(x) = minfEU1

s

(x); EH1

s

(x)g. The rest of this section is devoted to presenting the
construction of the up and down list data structures, showing that these constructions model en-
velopes EU1 and EH1 respectively, and giving complexity claims for the construction algorithms.

Both the up and down lists at a state s are constructed incrementally from the lists at s’s
predecessor states. To illustrate these incremental computations, flow graphs called the up tree

and down tree are used to show the movement of candidate curves through the data structures
constructed at each state. Figure 3.4 gives the inductive construction of the flow graphs. Figures
3.5 and 3.6 give example up and down trees over an NFA. The incoming edges at each point in the
two trees describe the candidates and candidate lists which must be included in the construction
of the two data structures at each state. The up tree edges, down tree edges and connecting edges
specify the inclusion of the up or down list from a predecessor state. The candidate insertion edges
specify the insertion of that state’s candidate curve into the up list. These flow graphs are used only
for illustration, so no proofs are given for the graphs’ correctness. Such proofs, however, can be
inferred from the correctness proofs given for the up and down list constructions.

The overall structure of the construction algorithm consists of a for-loop ranging over the states
in F in topological order. At each state, a construction step is applied to construct the up and down
lists at that state. The construction step executed at a state s depends on s’s state type. There are
five state types, labeled 0 to 4 in Figure 3.4. Figure 3.4 also gives the predecessor state notation

35

R*
F

F
R S|

RS
F

Candidate insertions

t1

t t

t1
(Type 2)(Type 1)

(Type 3)

(Type 1)

(Type 1)

(Type 4)

F

F

FFF
R R

S

R S

(Type 0)

(Type 2)

F
R

F

INDEX

Connecting edgesDown tree edgesUp tree edges

Up tree list

Down tree list
NFA states

DAG edges

t2

t

t

Type 0: The start state, � (no predecessor states).
Type 1: Inner start states in F

R jS

and F
R

� (predecessor state t).
Type 2: Inner start states in F

RS

and F (predecessor state t).
Type 3: The final state of F

R jS

(predecessors t1 and t2, t = �

R jS

).
Type 4: The final state of F

R

� (predecessor t1, t = �

R

�).

Figure 3.4: The inductive construction of the up and down trees at each state s.

which is used throughout this section. The single type 0 state is the start state �, and it has no
predecessors. Type 1 states are the start states of the sub-automata F

R

and F

S

inside each F

R jS

and F

R

� sub-automaton. t denotes the single predecessor of each type 1 state. Type 2 states are
the start states of F

S

inside each F

RS

sub-automaton, and t also denotes the predecessor of each
type 2 state. Type 3 and 4 states are final states of F

R jS

and F
R

� sub-automata, respectively. The
predecessors of the type 3 states are t1 = �

R

, t2 = �

S

, and t = �

R jS

. The predecessors of the type
4 states are t = �

R

� and t1 = �

R

. These five types categorize every state in an NFA, because each
state must either be the initial state of a sub-automaton at some step in the inductive construction
or must be the final state of an alternation or Kleene closure sub-automaton (this can be seen from
Figure 3.4).

3.2.1 The Up List Construction

The up list data structure consists of a single candidate list, denoted U

s

, containing all of the
candidates needed to model EU1

s

. The construction steps for the up list are as follows:

Type 0: U

�

 Add ([]; V
�

; 0)

Type 1: U

s

 Add ([]; V
s

; 0)

Type 2: U

s

 Add (Shift (U
t

; �

s

6= "); V

s

; 0)

Type 3: U

s

 Merge (U
t1

; Shift (U
t

; G

t;s

))

U

s

 Add (Merge (U
s

; U

t2

); V

s

; 0)

Type 4: U

s

 Add (Merge (U
t1

; U

t

); V

s

; 0)

36

Figure 3.5: The up tree for the example NFA in Figure 3.3.

where [] denotes an empty candidate list and the expression �

s

6= " returns either 1 or 0 if the
expression is true or false.

LEMMA 1. For any NFA F , the up lists U
s

constructed by the algorithm model EU1
s

for every
state s 2 F .

Proof. By induction on s over the topological ordering of the states according to the DAG
edges. For the base case s = � and all type 1 states, EU1

s

(x) = V

s

+ w(x) since s itself is the
only state which can reach s and appears in the nesting sub-tree rooted at N

s

. Thus, adding s’s
candidate to an empty list constructs an envelope modelingEU1

s

. The type 2 states are analogous
to the sequence comparison recurrence in that EU1

s

(x) = minfEU1

t

((�

s

6= ")+ x); V

s

+w(x)g,
and the construction first shifts U

t

(if �
s

6= ") and then adds s’s candidate. The type 3 and 4 states
are the most interesting cases. For the type 3 states, EU1

s

can be rewritten as follows:

EU1

s

= min

8v:v

�

!s

fV

v

+ w(G

v;s

+ x) j N

s

�

! N

v

g

= minfmin

8v:v

�

!t1

fV

v

+ w(G

v;t1

+ x) j N

t1

�

! N

v

g, # states in F
R

min

8v:v

�

!t2

fV

v

+ w(G

v;t2

+ x) j N

t2

�

! N

v

g, # states in F
S

min

8v:v

�

!t

fV

v

+ w(G

v;t

+ G
t;s

+ x) j N

t

�

! N

v

g, # �
R jS

up pred.
V

s

+ w(x) g # s’s candidate
= minfEU1

t1

(x); EU1

t2

(x); EU1

t

(x+G

t;s

); V

s

+ w(x)g

because (1) all paths to s must either originate from inside F
R

and F
S

or must pass through t, (2)
G

t1;s

and G
t2;s

equal 0, and (3) N
t

= N

s

! N

t1

= N

t2

. Thus, combining U
t1

, U
t2

, a shifted U

t

,
and the candidate from s constructs a data structure modeling EU1

s

. EU1 at the type 4 states can
be rewritten similarly.

The up list construction algorithm takes O(N log

2

N) time, where N is the number of states
in F . Technically, the original pattern matching problem defines N as the length of the regular
expression P . The number of states in F , then, can range from N + 1 to 2N , depending on the

37

sub-expressions of P . However, the complexity arguments that follow are clearer when presented
using the number of states in F . Since, in terms of the order notation, the size of P and the number
of states in F are essentially equal, any complexity argument using N as the number of states in
F has an equivalent argument using N as the length of P . Henceforth, N refers to the number of
states in F .

In each construction step, the Add and Shift operations take O(logN) time, since each up list
contains at most N candidates. Lemma 2 below shows that the Merge operations at the type 3 and
4 states use no more than N blogNc Add operations over the course of the construction. Thus, the
whole algorithm uses O(N logN) Add and Shift operations and takes O(N log

2

N) time.

LEMMA 2. For any NFA F withN states, the Merge operations in the up list construction require
at most N blogNc Add operations.

Proof. Let the population of an envelope be the candidates, both active and inactive, in the
envelope. So, for example, EU1

s

’s population is the set of up predecessors of s. Recall that
Merge adds each candidate from the smaller candidate list into the larger, thereby constructing
the candidate list for the merged envelope. Term this copying a candidate from one envelope to
another. Define an operation Merge2 which copies the candidates from the candidate list whose
envelope has the smaller population into the list whose envelope has the larger population. Clearly,
Merge2 uses at least as many Add operations as Merge, and it sometimes may use more as the
smaller candidate list can model the envelope with the larger population.

The up list construction only merges envelopes with disjoint populations. This can be seen
from the structure of the up tree in Figure 3.5, which forms a tree, laying on its side, with N leaves
and a single root at the final state of F . Under Merge2, a particular state s’s candidate is copied
during a merge only when it appears in the envelope with smaller population. Thus, each time s’s
candidate is copied, the merged envelope’s population must be at least twice the size of the input
envelope containing s. Since the size of any up list’s population is at most N , s’s candidate can
be copied at most blogNc times. This argument holds for each state in F , so at most N blogNc
Add operations are used by Merge2 over the course of the construction. Therefore, no more than
N blogNc Adds can be used under operation Merge.

3.2.2 The Down List Construction

The down list data structure uses up to blogNc+1 candidate lists to hold all of the candidate curves
in EH1. Informally, the down list incorporates the candidates from the up lists at the predecessor
of each type 1 state as the sweep passes into each alternation and Kleene closure sub-automaton.
These incorporations construct a data structure modeling EH1 because the down list at each s

contains the candidates which move “up and then down” to s. When moving down at the type 1
states, the candidates which have moved up to predecessor state t (namely the candidates in the up
list at t) must now be included in the down list at s.

A simple construction algorithm uses only a single candidate list and calls operation Merge

at the type 1 states to incorporate each of the incoming up lists. This algorithm takes O(N2

)

time however, because too many of the up lists can contain O(N) active candidates. Instead, our
algorithm uses up to blogNc+ 1 candidate lists and incorporates each up list in one of two ways,
either (1) merging the up list into a designated candidate list H

0;s

or (2) pushing the up list onto a

38

Figure 3.6: The example NFA’s down tree.

stack of unmerged up lists H
1;s

;H

2;s

; : : : ;H

k

s

;s

, where k
s

is a top of stack pointer. By performing
a “balancing act” between the cost of merging into H

0

and the height of the stack, the overall time
bound of the construction can be kept under O(N log

2

N). The down list construction steps are as
follows:

Type 0: The start state, �.
k

�

 0

H

0;�

 []

Type 1: �

R

and �
S

in F
R jS

and F
R

� .
k

s

 k

t

for i 0 to k
s

do

H

i;s

 Shift (H
i;t

; �

s

6= ")

if COPY1(t) then

H

0;s

 Merge (H
0;s

; Shift (U
t

; �

s

6= "))

else

f k

s

 k

s

+ 1

H

k

s

;s

 Shift (U
t

; �

s

6= ")

g

Type 2: �

S

in F
RS

and �
R

in F .
k

s

 k

t

for i 0 to k
s

do

H

i;s

 Shift (H
i;t

; �

s

6= ")

Type 3: The final state of F
R jS

.
k

s

 k

t

for i 0 to k
s

do

H

i;s

 Shift (H
i;t

; G

t;s

)

Type 4: The final state of F
R

�.
k

s

 k

t

for i 0 to k
s

do

H

i;s

 H

i;t

In the construction, COPY1(t) denotes the decisions, called copy decisions, of whether to incor-
porate t’s up list candidates by copying into H

0

or by pushing t’s up list on the stack. A copy
decision is made at the start state of each alternation and Kleene closure sub-automaton. That
decision governs the construction at each of the successor type 1 states. As can be seen from the
construction, these decisions do not affect the correctness of the algorithm, since the same set of
candidates is added to the down list along each branch of the if. The procedure for making the
copy decisions is presented later in this section during the complexity proof.

39

LEMMA 3. For any state s in an arbitrary NFA F , the candidate lists H
0;s

; H

1;s

; : : : ; H

k

s

;s

correctly model EH1

s

in that EH1

s

(x) = minfH

0;s

(x);H

1;s

(x); : : : ;H

k

s

;s

(x)g.

Proof. By induction on the topological ordering of the states. At �, EH1

�

contains no
candidates (N

�

is the root). For the type 2, 3 and 4 states, EH1

s

(x) = EH1

t

(G

t;s

+ x), so shifting
the candidate lists from the predecessor states constructs the correct lists. At the type 1 states, EH1

s

contains all of the predecessors to s except s itself, since all of the states in the sub-tree rooted at N
s

appear in the submachine for which t is the start state. Any state which can reach t (and hence reach
s) must occur elsewhere in the nesting tree. Thus, EH1

s

= minfEH1

t

(G

t;s

+x); EU1

t

(G

t;s

+x)g,
and combining the up and down lists at t creates a data structure modeling EH1

s

.

The down list construction algorithm consists of three components at each state s: (1) construct-
ing H

0;s

from a predecessor state; (2) constructing the stack of unmerged lists H
1;s

;H

2;s

; : : : ;H

k

s

;s

from a predecessor; and (3) computingEH1

s

(0) = minfH

0;s

(0); H

1;s

(0); : : : ;H

k

s

;s

(0)g. Compo-
nents 2 and 3 take O(logN) time multiplied by the height of the stack at each state. The time spent
for component 1 is O(N logN) plus the cost of the Merge operations. The actual time bounds for
these components depend on the copy decisions made at each type 1 state. If the copy decisions
can be made such that (1) the stack of unmerged lists contains no more than blogNc lists at any
state and (2) the Merge operations used to construct H

0

require no more than O(N logN) Add

operations, then the algorithm’s complexity is O(N log

2

N). Thus, the O(N log

2

N) time bound
hinges on this copy decision problem.

The procedure solving the copy decision problem uses the nesting tree to make the decisions.
The tree has two properties which can be used to simplify the copy decision problem. First, every
node c except the root corresponds to an alternation or Kleene closure sub-expression in P , so each
edge b! c corresponds to the copy decision made at the start state of c’s submachine. Denote this
start state �

c

and note that N
�

c

= b. Second, the sequence of edges on a path through the nesting
tree mirrors the sequence of copy decisions along the corresponding path through the down tree.
These properties allow the definition of an abstract version of the copy decision problem, called the
label removal problem, whose solutions can be applied to the copy decision problem. The input to
the label removal problem is an edge-labeled nesting tree T with jT j nodes. Each edge b ! c in
the tree is labeled with an edge set X

c

= fs j b

�

! N

s

& c 6

�

! N

s

g, i.e. the states in the sub-tree
rooted at b minus the states in the sub-tree rooted at c. Figure 3.7 gives the labeled tree for the
example NFA being used in this section. The label removal problem is the following:

Remove a subset of the edge sets labeling T such that (1) no path in the resulting tree
is labeled with more than blog jT jc edge sets and (2) no state s 2 F appears in more
than blog jT jc+ 1 of the removed edge sets.

Observe from the figure that each edge set X
c

is actually a superset of the states in EU1
�

c

, since
EU1

�

c

’s state set only contains states s for which s
�

! �

c

. This more general formulation of the
label removal problem is needed for the second sweep, as another down tree is used there. However,
each edge set X

c

does contain all of the states in EU1
�

c

, and Lemma 4 shows that a solution to the
label removal problem can be applied to the problem of making the correct copy decisions.

LEMMA 4. For any NFA F and its nesting tree T , the solutions produced by a correct procedure
for the label removal problem on T can be applied to the copy decision problem for the down list
construction algorithm for F .

40

14
2 3

0

12
18

13

1619

22 23

15

20 21

1

10 11
25

24

98

5 64

7

17

{2-11}

{0,1}

{24,25}{22,23}{20,21}{12-16}

{17,18} {19}

{2-23}

{0,1}

{2-21,24,25}

(7)

{2-19,22-25}

(2-5,12-19)

{2-11,17-25}

{12-16,19} {12-18}

(12) (14)

(2,3)

(7-9,22-23)

(0)

Figure 3.7: The nesting tree from Figure 3.3 labeled with edge sets X
c

(in brackets) and the actual
EU1

�

c

sets (in parentheses).

Proof. Let the fate of edge set X
c

, labeling a tree edge b ! c, represent the copy decision
needed at state �

c

as follows. The removal of X
c

represents setting COPY1(�
c

) = true and merging
U

�

c

into H
0

. Retaining X

c

represents setting COPY1(�
c

) = false and pushing U
�

c

onto the stack.
The tree edges and copy decisions are in one-to-one correspondence, and each path through the
tree corresponds to the sequence of copy decisions made on a path through the down tree. Thus,
(1) if every path in the final tree has no more than blog jT jc edge sets, then no path through the
down tree can push more than blog jT jc � blogNc up lists onto the stack. (2) If no state occurs in
more than blog jT jc+ 1 removed edge sets, then at most blogNc + 1 Add operations can be used
to merge a particular state intoH

0

, resulting in an overall bound ofO(N logN) Add operations.

The procedure used to solve the label removal problem [copy decision problem] is as follows:
Let L

b

be the maximum number of edge sets labeling any path from node b. Let c
1

; c

2

; : : : ; c

k

always denote the children of a node b, and let M
b

= maxfL

c

1

, L
c

2

; : : : ; L

c

k

g. In a bottom-up
manner, compute L

b

for each node b in T and determine which edge sets to remove as follows:

1. k = 0 (b is a leaf). Set L
b

= 0.

2. k > 1 and 9 i; j : [i 6= j and L

c

i

= L

c

j

= M

b

] (b has two or more maximal children). Set
L

b

= L

c

i

+ 1 and retain all edge sets [COPY1(�
c

) = false for all c 2 fc
1

; c

2

; : : : ; c

k

g].

3. k � 1 and 9 i : [L
c

i

=M

b

& 8j 6= i : L

c

i

> L

c

j

] (b has one maximal child, c
i

). Set L
b

= L

c

i

,
remove X

c

i

[COPY1(�
c

i

) = true] and retain the other edge sets [COPY1(�
c

j

) = false for all
j 6= i].

41

The two lemmas below show that this procedure satisfies both conditions of the label removal
problem for any labeled nesting tree T . Lemma 5 shows that L

root

, which bounds the number of
edge sets remaining on any path through T , is no greater than blog jT jc. Lemma 6 then shows that
no state s appears in more than L

root

+ 1 of the removed edge sets.

LEMMA 5. For all nodes b in a nesting tree T , L
b

� blog jbjc where jbj is the size of the sub-tree
rooted at b.

Proof. By induction using the three cases above. (1) L
b

= 0 = blog 1c. (2) L
b

= L

c

i

+ 1 �

blog(minfjc

i

j; jc

j

jg)c + 1, since L
c

i

= L

c

j

and the induction hypothesis holds for c
i

and c

j

. But
this equals blog(2 �minfjc

i

j; jc

j

jg)c � blog(jc

i

j+ jc

j

j)c � blog jbjc. (3) L
b

= L

c

i

� blog jc

i

jc �

blog jbjc.

LEMMA 6. For any state s and node b where b
�

! N

s

, if R
s

(b) is the number of times s occurs in
edge sets removed from the sub-tree rooted at b, then R

s

(b) � L

b

+ 1.

Proof. Let b
1

; b

2

; : : : ; b

h

denote the nodes on the path from root to N

s

where b
1

= root and
b

h

= N

s

. The proof is by induction on the nodes b
h

; b

h�1

; : : : ; b

1

. Since s can only appear on
outgoing edges from ancestors to N

s

, no other part of T can affect the values of R
s

. Each step in
the induction consists of the three cases from the label removal procedure.
The base case, i = h and b

i

= N

s

.

(1) Trivial. (2) No edge set on the outgoing edges from b

i

are removed, so R
s

(b

i

) = 0.
(3) R

s

(b

i

) = 1 since s appears in all outgoing edge sets and so occurs in the removed
edge set. But R

s

(b

i

) � L

b

i

+ 1 since L
b

� 0 for any b.

The inductive step is for h > i � 1,

(1) Not possible. (2) No outgoing edges’ edge sets are removed, so R
s

(b

i

) = R

s

(b

i+1

)

and by induction R
s

(b

i

) = R

s

(b

i+1

) � L

b

i+1

+ 1 � L

b

i

+ 1. (3) If b
i+1

is the maximal
child of b

i

and L

b

i+1

= M

b

, then R

s

(b

i

) = R

s

(b

i+1

) � L

b

i+1

+ 1 � L

b

i

+ 1 since s
does not occur in X

b

i+1

by definition. Otherwise, if L
b

i+1

is not the maximum, then
s was removed and R

s

(b

i

) = R

s

(b

i+1

) + 1. But in this case L
b

i

> L

b

i+1

, since some
other child of b

i

is maximal. So, R
s

(b) = R

s

(b

i+1

) + 1 � L

b

i+1

+ 2 � L

b

i

+ 1.

Summary. To recapitulate, by the correspondence established in Lemma 4, the maximum down
list stack height is bounded by L

root

and any state s’s candidate is added to H
0

at most R
s

(root)

times over the down list construction. Lemma 5 shows that L
root

is O(logN), and Lemmas 6 and
5 show that R

s

(root) is O(logN) for any state s. Therefore, the height of the stack at any state is
O(logN), no more than O(N logN) Add operations are used in the construction of H

0

, and the
overall time bound for the down list construction is O(N log

2

N).

3.3 The Second Sweep Algorithm

The second sweep algorithm computes the minimum over the insertion edges whose paths corre-
spond to a path containing exactly one back edge, as embodied in the following equation:

E2

s

(x) = min

8t:t

�

!u!v

�

!s

fV

t

+ w(G

t;u

+G

u;v

+G

v;s

+ x) j u! v 2 BCKg

42

Henceforth, let u ! v generically denote a back edge of some F

R

� in F , and let F
R

be the
sub-automaton for which u = �

R

and v = �

R

.
The paths t

�

! u ! v

�

! s which can contribute to the values of E
s

are restricted by two
properties. First, states t and s must appear “inside” u! v, i.e. they must be states in F

R

. If either
t or s appear elsewhere in F , then the path t

�

! u! v

�

! s must contain a cycle by the inductive
NFA construction. This can be seen from the graphical rules of Figure 2.4. Second, the back edge
u ! v for which G

t;s

= G

t;u

+ G

u;v

+ G

v;s

, if such a back edge exists, must be the innermost

surrounding back edge to t and s. A surrounding back edge is one where the states appear inside it.
The innermost surrounding back edge is the most deeply nested of those back edges. Again by the
NFA construction, a path from t to s using any other back edge u0 ! v

0 must also pass through the
states connected by the innermost surrounding back edge, or t

�

! u

�

! u

0

! v

0

�

! v

�

! s. Those
paths must contain at least as many non-" states.

These restrictions simplify the algorithm for the second sweep in the following ways. First,
the up lists from the first sweep contain the candidates needed at each back edge by the second
sweep, as EU1

u

(x) = min

8t:t

�

!u

fV

t

+ w(G

t;u

+ x) j t is inside u ! vg. Second, those up lists
are only needed “downwards” in F , because the candidates coming over each back edge can only
contribute toE2

s

when s is inside that back edge. And finally, at state s, only the innermost version
of each state t’s candidate is needed for the computation of E2

s

. Other versions coming from
non-innermost surrounding back edges to s can be safely ignored by the data structures since, by
the presence of the candidate from the innermost surrounding back edge, those versions can never
contribute to a value to E2.

The second sweep algorithm follows along the same lines as the first sweep. The candidates in
E2

s

are partitioned into two sets, the innermost predecessors and the down predecessors, and are
stored in two data structures, an innermost list and another down list. The innermost predecessors
are those states in the up list coming from the innermost surrounding back edge of s. The other
predecessors to s are considered down predecessors. Informally, the innermost list is used to
propagate each up list to the states inside the corresponding back edge, but outside all nested back
edges. At those nested back edges, a copy decision is made and that innermost list is incorporated
into the down list to make way for the new up list coming over the nested back edge. The advantage
to this algorithm is that the down list only needs to incorporate the innermost list candidates which
don’t have better versions coming over the nested back edge. This incorporation of only a subset
of the innermost list’s candidates permits another “balancing act” to be used by the second sweep
down list construction. The rest of this section presents the formal algorithm resulting from this
idea, highlighting only the points which differ from the first sweep.

The partition of the innermost and down predecessors uses a second sweep nesting tree, given
in Figure 3.8. This second sweep tree differs from that of the first sweep in that it only contains
nodes for each of P ’s Kleene closure sub-expressions. Figure 3.8 presents the formal nesting tree
construction, along with an example NFA and its labeled nesting tree. Let N

s

now denote the node
in the second sweep nesting tree whose node set contains state s.

The set of states inside the innermost surrounding back edge of a state s exactly corresponds to
the set of states in the node sets of the sub-tree rooted at N

s

, as can be seen from the Kleene closure
rule in Figure 3.8. So, envelopes EI2 and EH2 model the innermost and down predecessors:

EI2

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x) j N

s

�

! N

t

g

43

F is the NFA for R
R

T is the tree for RR

0

2

9

5

1

3 4

18

{0,1}

where

. . .

X
T =

R . . .

Y
T =S

{2-14}

{2-14,17-24}

. . .
=>

st

= TF
R

{t,s}

X R*

141110
13

17

20

1915

24

16

21 22

.=>
F
S

t
= T

YF
R

s

XU U
R S|

{t,s}

s
=> = T{s}

a

.=> = T
R

F F
S RS

XUY

76 8

1223

{23,24}{17-19}{15,16}

{20-22}

{2-22}{2-16,23-24}

{}

{17-19}

Figure 3.8: The second sweep nesting tree construction and an edge labeled example.

EH2

s

(x) = min

8t:t

�

!s

fV

t

+ w(G

t;s

+ x) j N

s

6

�

! N

t

g

With this division, E2

s

(x) = minfEI2

s

(x); EH2

s

(x)g, since the nesting tree partitions the states
in F .

Figure 3.9 defines the construction of flow graphs for the innermost and down lists, along with
the second sweep state types. Figures 3.10 and 3.11 depict the complete flow graphs for an example
NFA. The innermost list data structure consists of a single candidate list I

s

, while the down list
again uses up to blogNc + 1 candidate lists, H

0;s

, H
1;s

, : : :, H
k

s

;s

. The construction steps for the
two lists are:

44

F

F
R

t (Type 2)

(Type 0)

Innermost edges Connecting edgesDown tree list
NFA nodes
Innermost list

Down tree edgesNFA edges

INDEX

F
R*

F
RS

R S|
F

R
F

F
S

F
R

F
SF

R

from 1st sweep
Up list node t

tt

t1

(Type 2)(Type 2)

(Type 2)

(Type 3)

(Type 1)

(Type 4)

Type 0: The start state, � (no predecessors).
Type 1: Inner start states in F

R

� (DAG edge pred. t, back edge pred. t1).
Type 2: Inner start states in F , F

RS

and F
R jS

(predecessor state t).
Type 3: The final state in F

R jS

(corresponding start state t).
Type 4: The final state in F

R

� (corres. start state t, other predecessor t1).

Figure 3.9: The second sweep flow graph construction.

Type 0: The initial state, �.
I

�

 []
k

�

 0

H

0;�

 []

Type 1: Inner initial state of F
R

�.
I

s

 Shift (U
t1

, �
s

6= ")
k

s

 k

t

for i 0 to k
s

do

H

i;s

 Shift (H
i;t

; �

s

6= ")
if COPY2(t) then

H

0;s

 Merge (H
0;s

; Shift (J
t

; �

s

6= "))

else

f k

s

 k

s

+ 1

H

k

s

;s

 Shift (I
t

; �

s

6= ")

g

Type 2: The other inner init. states.
I

s

 Shift (I
t

, �
s

6= ")
k

s

 k

t

for i 0 to k
s

do

H

i;s

 Shift (H
i;t

; �

s

6= ")

Type 3: Final state of F
R jS

.
I

s

 Shift (I
t

, G
t;s

)
k

s

 k

t

for i 0 to k
s

do

H

i;s

 Shift (H
i;t

; G

t;s

)

Type 4: Final state of F
R

� .
I

s

 I

t

k

s

 k

t

for i 0 to k
s

do

H

i;s

 H

i;t

where the five state types are those shown in Figure 3.9 and COPY2(t) gives the second sweep
copy decisions. For the construction step at the type 1 states, the use of I and a new candidate list
J is described momentarily.

The construction of the innermost list at each state and the construction of the down list at

45

Figure 3.10: The flow graph for the innermost list.

all but the type 1 states are straightforward, and so are not considered further. The interesting
case occurs in the down list construction at the type 1 states. At such a state s, EH2

s

=

minfEH2

t

(G

t;s

); EJ2

t

(G

t;s

+ x)g where EJ2
s

is the following:

EJ2

t

= min

8v:v

�

!t

fV

v

+ w(G

v;t

+ x) j N

t

�

! N

v

& N

s

6

�

! N

v

g:

In other words, EJ2
t

is the subset of candidates in EI2

t

which do not originate from inside the
incoming back edge to s. The candidates in EI2

t

which do originate from inside the back edge
to s are not needed at s, because the new innermost list I

s

contains better candidates from those
states.

The sole purpose of the innermost list in this algorithm is to delay the incorporation of each back
edge’s up list into the second sweep down list. A simpler algorithm would immediately incorporate
each up list. The delay provided by the innermost list is necessary to ensure that the “balancing act”
and the label removal problem can be used for the second sweep down list. The relevant properties
needed in this case are (1) the candidates incorporated into the down list at �

c

, for tree edge b! c,
match the states in the corresponding edge set X

c

, and (2) X
c

= fs j b

�

! N

s

& c 6

�

! N

s

g. These
properties do not hold when the up lists are immediately incorporated into the down list. For the
same reason, at the type 1 states, the candidate list I

t

cannot be blindly incorporated into the down
list. Another candidate list correctly modeling EJ2 is needed at those states.

Unfortunately, a candidate list exactly modeling EJ2 cannot be constructed at every type 1
state inO(N log

2

N) time. However, the down tree construction only needs a candidate list exactly
modeling EJ2 when the copy decision at the type 1 state is to merge into H

0

. At the type 1 states
where the copy decision is to push onto the stack, candidate list I

t

can be used without sacrificing
the complexity or correctness of the second sweep algorithm. The O(N log

2

N) complexity still
holds, because only the number of candidate lists pushed onto the stack affects the complexity,
not the number of candidates appearing in that list. And, while the “extra” candidates from I

t

may cause some incorrect values to be computed for EH2, those incorrect values never affect the
correctness of E2. For example, at a type 1 state s with predecessor t, all of the extra candidates
in I

t

have dominating candidates in I

s

which come from the more deeply nested, incoming back
edge to s. Thus, whenever the computed down list value at a state v is less than EH2

v

because of
those extra candidates, the value of EI2

v

is always less than both that computed value and EH2

v

.

46

Figure 3.11: The flow graph for the second sweep down list.

Thus, the ultimate value of E2

v

is never affected by these extras.
For each state t = �

R

� where COPY2(t) = true, a candidate list J
t

modeling EJ2

t

can be
constructed in O(N log

2

N) time. The key observation is that, for any node in the nesting tree, the
copy decision procedure decides to copy on at most one outgoing edge from that node. In terms of
the construction, this implies that, for each Kleene closure sub-automaton in F , the construction
algorithm copies intoH

0

at the start start of at most one nested Kleene closure sub-automaton. Thus,
a first sweep candidate list can be constructed for each back edge which contains only the candidates
needed by the down list at that one nested back edge where COPY2(t) = true. Specifically, for
each t = �

R

� where COPY2(t) = true and t’s innermost surrounding back edge is u ! v, the
candidate list at u must model EJ1

u

= min

8x:x

�

!u

fV

x

+ w(G

x;u

+ x) j N

u

�

! N

x

& N

t

6

�

! N

x

g.
The construction steps for such a candidate list J1 are the following, using the state types from the
first sweep, but the copy decisions from the second sweep:

Type 0: J1

�

 Add ([]; V
�

; 0)

Type 1: J1

s

 Add ([]; V
s

; 0)

Type 2: J1

s

 Add (Shift (J1
t

; �

s

6= "); V

s

; 0)

Type 3: J1

s

 Merge (J1
t1

; Shift (J1
t

; G

t;s

)) # t = �

R jS

, t1 = �

R

,
J1

s

 Add (Merge (J1
s

; J1

t2

); V

s

; 0) # and t2 = �

S

Type 4: J1

s

 Add (J1
t

; V

s

; 0)

if not COPY2(t) then

J1

s

 Merge (J1
s

; U

t1

)

At the Kleene closure sub-automaton final states, when the second sweep copy decision for that
sub-automaton is true, then the candidates inside that back edge are not added to J1 so that those
candidates won’t appear at the innermost surrounding back edge. When the decision is false, U

t1

(not J1
t1

) is used to include the candidates inside that back edge.
The resulting J1 candidate lists are then propagated during the second sweep to the necessary

type 1 states as follows:

47

Type 0: J

�

 []

Type 1: J

s

 Shift (J1
t1

; �

s

6= ") # t1! s is the incoming back edge
Type 2: J

s

 Shift (J
t

; �

s

6= ")

Type 3: J

s

 Shift (J
t

; G

t;s

)

Type 4: J

s

 J

t

This list J is used by the second sweep construction algorithm.
The time needed to construct I and J at each state is O(N logN), since a single candidate

list is incrementally constructed from predecessor states. J1 can be constructed in O(N log

2

N)

time as its construction algorithm is based on the up list construction from the first sweep. The
down list construction is such that lemmas similar to those given in Section 3.2.2 hold, and the
label removal procedure in that section can be used to make the second sweep copy decisions. So,
again the height of the stack at any state is bounded by O(logN) and no more than O(N logN)

candidates can be added into H
0

, giving an overall time complexity of O(N log

2

N) for the down
list construction.

48

CHAPTER 4

EXTENDED REGULAR EXPRESSION PATTERN MATCHING

The operations which set extended regular expressions apart from simple regular expressions
have been around for quite some time, however few solutions have appeared that solve the range of
exact and approximate pattern matching problems. In particular, none of the previous algorithms
fit into the state machine, alignment-graph/dynamic-programming framework which characterizes
the solutions to pattern matching of sequences and regular expressions. Although it appears that the
O(M

3

N) worst-case complexity of exact matching cannot be improved upon, except possibly by a
theoretically better but impractical O(M2:81

) matrix multiplication reduction, Section 4.1 presents
the construction of an extended NFA or ENFA which accepts extended regular expressions and
builds on the NFA state machine construction and simulation for regular expressions. Section 4.2
then goes on to consider the approximate matching of extended regular expressions. As is discussed
in that section, the formal notion of an approximate match must be redefined, as the traditional
definition of an optimal alignment does not yield an efficient algorithm. Under this new recursive

match definition, where matches between any A and P are based on the matches to substrings
of A and sub-expressions of P , an alignment-graph/dynamic-programming style algorithm using
ENFA’s can solve ERE(A,P ,f�g) in O(M3

N) time.

4.1 Exact ERE Matching

For any extended regular expression P , an extended NFA or ENFA F accepting L(P) can be
constructed using an extension of the NFA construction. The construction algorithm employs the
same inductive rules as the NFA construction (Figure 2.4), but with additional rules in Figure 4.1
for the intersection and difference operators. The formal definition of F consists of an nine-tuple
<V; V

re

; V

�

; V

&

; V�; E; �; �; �> where V , E, �, � and � are as defined for NFA’s. The new state
sets V

re

, V
�

, V
&

and V
�

form a partition of the complete state set V . V
re

contains all of the states
introduced using the regular expression construction rules, V

�

contains the set of �
R&S

and �

R�S

states, V
&

contains the set of �
R&S

states, and V

�

contains the �

R�S

states. The states of the
last three sets must be distinguished from the states in V

re

, because different computations will be
required at those states.

As with regular expressions and NFA’s, the language accepted at s 2 V , L
F

(s) is the set of
sequences spelled on all “paths” from � to s, and L

F

(�) defines the language accepted by F .
However, a new definition of a “path” is required, more than simply any sequence of edges through
F , to maintain the equivalence between L

F

(�) and L(P). This new definition is recursive, using
the following cases (where the quoted “path” refers to the new definition):

1. Any sequence of edges in F which does not pass through both the start and final state of
an F

R&S

or F
R�S

sub-automaton is considered a “path”. Thus, when no such sub-automata

49

F

FR

S F

FR

S

φ

θ θ

θ

θ

φ

φ

φ
R - S

RR

R - S

S SS

R

R & S

φ
ε ε ε ε

FF

φ
R & S

θR

Sθ

R & S R - S

Inductive Construction Steps

Figure 4.1: Constructing the ENFA F for an extended regular expression R.

occur in F , the new “paths” through F are simply the old paths through F as defined for
NFA’s. Note that this case includes sequence of edges which pass through F

R&S

and F
R�S

start states but do not pass through the corresponding final states.

2. For a sub-graphF
R&S

, a “path” from �

R&S

to �
R&S

consists of a pair of “paths,” �
R&S

!�

R

�

!

�

R

! �

R&S

and �

R&S

! �

S

�

! �

S

! �

R&S

, which spell the same sequence. L

F

R&S

(�

R&S

)

is simply the set of sequences for which these “path” pairs exist. This is equivalent to the
language restriction that a sequence in L(R&S) must occur in both L(R) and L(S).

3. For a sub-graph F
R�S

, the “paths” through F
R�S

are the “paths” �
R�S

! �

R

�

!�

R

!�

R�S

for which no “path” spelling the same sequence exists throughF
S

. This satisfies the language
restriction that a sequence in L(R � S) must be in L(R) but not in L(S).

4. Finally, in general, the “paths” from � to a state s consist of the sequence of edges outside
any nested F

R&S

or F
R�S

sub-automaton combined with the “paths” through those nested
F

R&S

and F
R�S

sub-automata.

L

F

(s), then, is the set of sequences spelled on “paths” from � to s, and L

F

(�) is the language
accepted by F . From this point on, we drop the quotes from the term path, and so path now refers
to this new recursive definition. Also, let the phrase sub-machines in F denote the set of F

R&S

and
F

R�S

sub-automata occurring in F .
Additional computation, beyond the NFA state simulation, is required to support this new

definition of a path. Given an input string A = a

1

a

2

: : : a

M

, the recurrences below define the state
simulation computation at position i and state s. They satisfy the new path definition by maintaining
partial path information for the sub-machines in F . A partial path for a sub-machine is a path
which passes through the sub-machine’s start state and ends at a state “inside” the sub-machine.
This information takes the form of the first positions, in A, of the substrings of A being spelled
on the partial paths from each �

R&S

and �
R�S

to s. Thus, as the simulation progresses and partial
paths are extended to include a �

R&S

[�
R�S

] state, only those pairs of paths which spell the same
sequence from �

R&S

[�
R�S

] through F

R

and [not] through F

S

are extended. Because the state
simulation is solving the language acceptance problem, the sequence being spelled on all paths in

50

the simulation is A. Thus, it suffices to extend those pairs of paths whose first position values for
the corresponding �

R&S

[�
R�S

] state are equal.
Different recurrences are defined for different states, based on the five-part partition of V . The

recurrences for the states in V
re

compute S
i;s

sets for each position i in [0::N] and state s 2 V
re

, as
follows:

(1) s = �:

S

i;s

=

(

f0g if i = 0

; otherwise

(2) s 2 V
re

� f�g:

S

i;s

=

8

>

<

>

:

S

fS

i;t

j t! sg if �
s

= "

S

fS

i�1;t

j t! sg if �
s

6= ", i > 0 and �
s

= a

i

; if �
s

6= " and either i = 0 or �
s

6= a

i

These sets contain the beginning positions k, for 0 � k < i, of matches between a
k+1

a

k+2

: : : a

i

and the partial path through the innermost enclosing sub-machine of s. The innermost enclosing
sub-machine of a state s is the most deeply nestedF

R&S

orF
R�S

sub-automaton for which s 2 V
R&S

(or s 2 V
R�S

).
The partial path information for the other sub-machines enclosing a state s are kept in a series

of mapping tables associated with each state in V
�

. These tables are used to perform the mapping
between the valid paths in �

R&S

’s or �
R�S

’s sub-machine and the valid paths of their innermost
enclosing sub-machine.

(3) s 2 V
�

:

T

i;s

=

8

>

<

>

:

S

fS

i;t

j t! sg if �
s

= "

S

fS

i�1;t

j t! sg if �
s

6= ", i > 0 and �
s

= a

i

; if �
s

6= " and either i = 0 or �
s

6= a

i

S

i;s

=

(

fig if T
i;s

6= ;

; if T
i;s

= ;

The T

i;s

values which make up the mapping table for s collect and store the first positions k
of the matches between a

k+1

a

k+2

: : : a

i

and the partial path from the innermost enclosing sub-
machine’s start state to s. These tables are retained throughout the computation and are used at
the corresponding final states to extend the valid paths through the sub-machine. The value of
S

i;s

here injects a new first position into the matching of the start state’s sub-machine. Its value is
either empty or contains the single position i, depending on whether a match between a prefix of
a

i+1

a

i+2

: : : a

N

and the sub-machine could result in an overall match between A and F .
The recurrences forV

&

andV
�

, the sub-machine final states, first compute the valid paths through
the F

R&S

or F
R�S

sub-machine and then perform the mapping back to the valid paths through their
innermost enclosing sub-machine. At a state s 2 V

&

[or V
�

], the recurrence determines those first
positions k for which paths exist through F

R

and F
S

[or through F
R

but not through F
S

] spelling
a

k+1

a

k+2

: : : a

i

. It then unions the T
k;t

sets, where t is the start state �
R&S

[�
R�S

] corresponding
to s. This extends the partial path information for the enclosing sub-machine. Thus, the partial

51

path information for �
R&S

[�
R�S

] is extended to �
R&S

[�
R�S

] using the valid paths through F
R&S

[F
R�S

].

(4) s 2 V
&

:
S

i;s

=

S

fT

k;t

j k 2 S

i;t1

& k 2 S

i;t2

g

for t1! s, t2! s and t = �

R&S

corresponding to s = �

R&S

.
(5) s 2 V

�

:
S

i;s

=

S

fT

k;t

j k 2 S

i;t1

& k 62 S

i;t2

g

for t1! s, t2! s and t = �

R�S

corresponding to s = �

R�S

.

Finally, the simulation accepts if S
N;�

= f0g and rejects if S
N;�

= ;.
The actual algorithm performing the state simulation uses the same two-sweep technique

described in Section 2.2 for regular expressions, taking the union of the sets computed during the
two sweeps. Since F is reducible, the same arguments given for the regular expression matching
hold here. For an input string A of size M and an extended regular expression P of size N , the
time complexity for this algorithm is O(M3

N) in the worst case. Each of the S
i;s

and T
i;s

sets can
be of size O(M), and the computation at the V

&

and V

�

states merges jS
i;s

j of the T
i;s

sets. So,
O(M

2

N) time may be required for each text position i, and O(M3

N) time overall.
However, this worst-case complexity does not hold for many patterns, and a tighter, match-

sensitive complexity can be derived. First, isolate each intersection and difference sub-expression
of P , and let I denote the size of the largest set of substrings of A which match one of those
sub-expressions. Let L denote the length of the longest substring of A which matches any prefix
of a string in L(P). The running time of the algorithm above can be bounded by O((M + I)NL),
because the size of the S

i;s

and T
i;s

sets is bounded by L, and O(IL) bounds the time needed to
union the T

i;�

R&S

or T
i;�

R�S

sets at each �

R&S

or �
R�S

state. Note that for an extended regular
expression containing no Kleene closure operations, the values of I and L are limited to O(MN)

and O(N) respectively, giving a complexity bound of O(MN

3

).

4.2 Approximate ERE Matching

As with symbol-based approximate matching of sequences and regular expressions, ERE(A, P ,
f�g) involves finding the best “match” between sequence A = a

1

a

2

: : : a

M

and pattern P , using
function � to score symbol pairs and unaligned symbols. However, the set-theoretic definition of an
approximate match used for sequences and regular expressions does not lend itself to an efficient
algorithm for extended regular expressions. Under the set-theoretic definition, an approximate
match between A and P is an optimal alignment between A and a specific sequence B 2 L(P).
When P contains intersection and difference sub-expressions, the matches to those sub-expressions
are required to use a common sequence fromL(R)\L(S) orL(R)\L(S). In a worst-case example,
the expression aba& acb could never match a sequence since language it represents is empty, despite
the fact that the two strings “aba” and “acb” are each only one insertion from a common string
“acba.”

This commonality restriction does not fit well with the “bottom-up” style of computations
presented in Section 2.3 and the previous section. In those algorithms, the matches to the R and
S sub-expressions are computed separately, then those matches are used to derive the matches

52

for the intersection or difference sub-expression. The restriction that a common sequence from
L(R) and L(S) must be used for the intersection and difference matches means that the bottom-up
algorithms cannot be extended to handle the approximate matching case, as was done for sequence
and regular expression patterns. In fact, the only solutions to the approximate matching problem
under the set-theoretic definition appear to include either a cross-product technique, i.e. taking the
cross-product of the state sets as in [Brz64], or a generative technique where the matches to the
sub-expressions are generated in order of score. Both of these techniques contain an exponential
time factor.

Under a slightly less restrictive, recursive definition of an approximate match, where the
substrings of A match the sub-expressions of P without requiring a common alignment to a
single sequence, a polynomial algorithm exists and is presented below. This recursive definition is
embodied formally in the following function, score (w, R), which returns the score of the best match
between sequencew = w

1

w

2

: : :w

k

and extended regular expressionR. It uses the following rules:

1. If R � ", then score (w; ") =
P

k

i=1

�(w

i

; ")

2. If R � a, then score (w; a) =

(

�(w; a) if jwj � 1

1 otherwise
3. If P � R S, then score (w;R S) =

min

0�i�k

fscore (w
1

w

2

: : : w

i

; R) + score (w
i+1

w

i+2

: : :w

k

; S)g.
4. If P � R j S, then score (w;R j S) = minfscore (w;R); score (w;S)g.
5. If P � R

�, then score (w;R�

) =

(

0 if jwj = 0

min

0<i�k

fscore (w
1

w

2

: : :w

i

; R) + score (w
i+1

w

i+2

: : : w

k

; R

�

)g if i 6= j

6. If P � R&S, then score (w;R&S) = F

R&S

(score (w;R); score (w;S))

where F
R&S

can be a general function (see below).
7. If P � R� S, then score (w;R � S) = F

R�S

(score (w;R); score (w;S))

where F
R�S

can be a general function (see below).

For sequence and regular expressions, this definition coincides with the set-theoretic definition,
since both compute the minimum sum of the paired symbols and unaligned symbols. However,
the rules for the intersection and difference sub-expressions relax the set-theoretic requirement
that the matches to R and S be made with a common sequence B in L(R) \ L(S). Here, the
matches to sub-expressions R and S can occur separately and to possibly distinct sequences (or,
given nested operators, to whole sets of sequences formed by the multiple matches to the nested
sub-expressions).

In order to more closely capture the spirit of “intersection” and “difference” under this recursive
definition, the rules also allow general functions F

R&S

and F
R�S

to determine the best match of
an intersection or difference sub-expression. More complex scoring methods are needed because
using the “minimal sum of scores” criterion of optimality, where F

R&S

and F

R�S

are defined as
the min function, reduces the intersection and difference operations to that of alternation. For
the intersection operation, scoring schemes such as taking the maximal, average, or sum of the
scores can give a more realistic score of the match to R&S, under the assumption that finite or
thresholded scores for both R and S exist. For an expression R � S, the scoring scheme which

53

most preserves the essence of the difference operation is the following function:

F

R�S

(x; y) =

(

x if y > t

1 if y � t

This function returns the score of the match to R if the score of S’s match is above a defined
threshold t, and otherwise returns infinity. The general functions allowed here permit a wide range
of scoring schemes, and in particular include all of the examples cited here as well as the traditional
“minimal sum of scores.”

The algorithm solving ERE(A, P , f�g), under the recursive match definition, combines the
alignment-graph/dynamic programming framework with the ENFA’s described in the previous
section. The alignment graph is formed from M + 1 copies of the ENFA F constructed from P .
Substitution, insertion and deletion edges are added just as in the approximate regular expression
problem with substitution edges from (i � 1; t) to (i; s), for each t ! s, deletion edges from
(i � 1; s) to (i; s) and insertion edges from (i; t) to (i; s) for t ! s. The values computed by
the recurrences consist of a pair <c; k> combining the best score c with the ENFA first position
information k. When such a pair occurs in the data computed at vertex (i; s), it specifies that the
best match between a

k+1

a

k+2

: : : a

i

and a partial path from s’s innermost enclosing sub-machine
to s has a score of c. The recurrences themselves are very similar to the exact matching case.
Beginning with the states in V

re

,

1) s = �

C

0;�

= fh0; 0ig

C

i;�

= fhc+ �(a

i

; "); 0i j hc; 0i 2 C

i�1;�

g

2) s 2 V
re

� f�g

C

i;s

= minf fhc+ �(a

i

; �

s

); ki j 9 t! s s.t. hc; ki 2 C
i�1;t

g

fhc+ �(a

i

; "); ki j hc; ki 2 C

i�1;s

g

fhc+ �("; �

s

); ki j 9 t! s s.t. hc; ki 2 C
i;t

g g

Operation “min” here and below is a element-wise, set minimum operation which picks the
minimum scoring pair for each position k appearing in the set of pairs, i.e. fhc; ki j 6 9hc0; k0i : k0 =
k & c

0

< cg.
For the three state sets introduced by the intersection and difference operators, V

�

, V
&

and V
�

,
the recurrences are as follows:

3) s 2 V
�

T

i;s

= minf fhc + �(a

i

; �

s

); ki j 9 t! s s.t. hc; ki 2 C
i�1;t

g

fhc + �(a

i

; "); ki j hc; ki 2 T

i�1;s

g

fhc + �("; �

s

); ki j 9 t! s s.t. hc; ki 2 C
i;t

g g

C

i;s

=

(

h0; ii if T
i;s

6= ;

; otherwise
4) s 2 V

&

[V

�

PRED

t1

= minf fhc+ �(a

i

; �

s

); ki j hc; ki 2 C

i�1;t1

g

fhc+ �("; �

s

); ki j hc; ki 2 C

i;t1

g g

PRED

t2

= minf fhc+ �(a

i

; �

s

); ki j hc; ki 2 C

i�1;t2

g

54

fhc+ �("; �

s

); ki j hc; ki 2 C

i;t2

g g

C

i;s

= minf fhc; ki j 9k

0

; c

0

: hc1; k

0

i 2 PRED

t1

& hc2; k

0

i 2 PRED

t2

&

hc

0

; ki 2 T

k

0

;t

& c = c

0

+ F (c1; c2)g;

fhc+ �(a

i

; "); ki j hc; ki 2 C

i�1;s

g g

where F here generically refers to the F
R&S

or F
R�S

function defined for each intersection and
difference sub-expression. These recurrence assume that all possible substrings/sub-expressions
can be aligned with some score, so that the same recurrence can be used for both the intersection
and difference sub-automata. In practice however, threshold values typically limit the alignments
between substrings and sub-expressions, so the recurrence above must be changed for the states in
V

�

to handle the case of non-existent, infinite scoring pairs.
As in the regular expression case, the alignment graph is reducible along each column, so

the two-sweep, node-listing algorithm of Myers and Miller can be used to correctly compute the
recurrences. The complexity of the algorithm is O(M3

N), since each C
i;s

and T
i;s

set can contain
O(M) pairs and the V

&

and V
�

recurrences merge jC
i;s

j of the T
i;s

sets. Note that the worst-case
complexity is also the expected complexity, unless a threshold cutoff is used to eliminate some of
the substring/sub-expression matches.

55

CHAPTER 5

SUPER-PATTERN MATCHING: INTRODUCTION

Super-pattern matching forms a domain of discrete pattern matching, akin to that of approximate
pattern matching over sequences, where the input consists not of a sequence and a pattern of
symbols, but of (1) a finite number of types of features, (2) for each feature, a set of intervals

identifying the substrings of an underlying sequence having the feature, and (3) a super-pattern

that is a pattern of features types. The objective is to find a sequence of adjacent feature intervals
over the underlying sequence such that the corresponding sequence of feature types matches the
super-pattern. The string spanned by the sequence of feature intervals is then identified as a match
to the super-pattern. Such meta-pattern problems, i.e. a pattern of patterns, have traditionally been
categorized in the realm of artificial intelligence and been solved using AI techniques such as
backtracking and branch-and-bound search. Super-pattern matching’s characterization is such that
the dynamic programming techniques of discrete pattern matching can be used to derive practically
efficient and worst-case polynomial time algorithms.

The concepts behind super-pattern matching were originally motivated by the gene recognition
problem, now of great importance to molecular biologists because of the advent of rapid DNA
sequencing methods. The problem is to find regions of newly sequenced DNA that code for protein
or RNA products, and is basically a pattern recognition problem over the four letter alphabet
fa; c; g; tg. Molecular biologists [Ld90] have developed an initial picture of the gene encoding
structure, illustrated in Figure 5.1. Such a region consists of a collection of major features or
“signals,” constrained to be in certain positional relationships with each other. An important aspect
is that the features are not linearly ordered, but frequently coincide or overlap each other. Referring
to the figure, a sequence of exons and introns form the main components of a gene encoding. It
is the sequence appearing in the exons, between the start and stop codons, that actually encodes
the relevant protein or RNA structure. The introns, whose function is not currently known, are
interspersed regions which do not contribute directly to the gene product. Overlapping these major
components are smaller signals which (1) distinguish exon/intron boundaries (3’ and 5’ splice
sites), (2) determine endpoints of the actual gene sequence (the start and stop codons) or the
encoding structure (the CAAT and TATA boxes and POLY-A site), and (3) play significant roles in
gene transcription (the lariat points). This view is by no means a complete description, and is still
developing as biologists learn more.

At the current time, much work has been done on building recognizers for individual features
using, for example, regular expressions [AWM+84], consensus matrices [Sto88], and neural nets
[LBB+89]. Libraries of these component recognizers are currently being used to recognize either
pieces of gene encodings or complete encodings. One gene recognition system, GM [FS90], uses
eighteen “modules” in its gene recognition procedure.

Less work has been done on integrating these subrecognizers into an overall gene recognizer.
The current methods involve hand coded search procedures [FS90], backtracking tree-search al-
gorithms [GKDS92], and context-sensitive, definite clause grammars [Sea89]. These techniques

56

CAAT/TATA box:

intron exonexon exonintron
Exon/Intron Seq.:

CAP/Poly-a Sites:

Start/Stop Codon:

3’5’ 5’ 3’
5’/3’ Splice Sites:

Lariat Points:

CAAT <0,300> TATA <0,30> (Exon & (CAP <0,*> Start <0,*> 5’ss))

[(Intron & (5’ss <0,*> Lariat <12,40> 3’ss)) (Exon & (3’ss <0,*> 5’ss))]*

(Intron & (5’ss <0,*> Lariat <12,40> 3’ss)) (Exon & (3’ss <0,*> Stop <0,*> Poly-A))

Pattern Expression:

Signals:

exon intron exon intron exon

0 or more times

Pictorial pattern:

DNA sequence

Figure 5.1: Basic gene encoding structure.

either lack sufficient expressiveness or contain potentially exponential computations. Super-pattern
matching attempts to provide the expressiveness needed to search for these patterns while keeping
within polynomial time bounds in the worst case and performing efficiently in practice.

This multi-step approach to pattern matching has also appeared for such problems as protein
structure prediction [LWS87] and on-line character recognition [FCK+91]. In general terms, the
matching procedure forms a recognition hierarchy, as depicted in Figure 5.2, where successively
larger “patterns” are matched at higher and higher levels in the hierarchy. Super-pattern matching
characterizes an isolated recognition problem in such a general recognition hierarchy and is defined
in such a way as to facilitate the construction of multi-problem, super-pattern matching, recognition
hierarchies.

This chapter introduces the formal concept of super-pattern matching and defines the domain of
super-pattern matching problems. Section 5.1 presents the basic super-pattern matching problem,
with several variations using different super-pattern expressions and output requirements. Section
5.2 then expands this basic problem into a problem class through a series of extensions, ranging
from allowing flexible matches using spacing specifications to introducing scoring mechanisms and
the notion of an approximate match. The next chapter then develops a matching-graph/dynamic-
programming framework, similar to the alignment-graph/dynamic-programming framework of
Chapters 2, 3 and 4, which characterizes all of the algorithmic solutions.

5.1 Basic Problem

The input to a basic super-pattern matching problem consists of the following:

57

TEXT SEQUENCE

an SPM problem

Figure 5.2: Pictorial description of a recognition hierarchy.

� A one-dimensional space, [0::N].

� An alphabet � = fa; b; c; : : :g of interval types.

� An interval set I
a

for each interval type a 2 �. I
a

is some subset of f[i; j] j 0 � i � j � Ng.

� Super-pattern P . A sequence, regular expression or extended regular expression defined
over �.

For a substring search solving a gene recognition problem, the one-dimensional space represents the
underlying DNA sequence A = a

1

a

2

: : : a

N

, and the interval types in � are names identifying the
recognizers providing input to the super-pattern search. Each of the recognizers constructs an inter-
val set consisting of the intervals [i; j] that correspond to the recognized substrings a

i+1

a

i+2

: : : a

j

.
Finally, the super-pattern describes the gene encoding structure using the interval types identifying
the recognizers.

The actual matching occurs between the sub-intervals of the one-dimensional space and the
sub-expressions of the super-pattern. A set of recursive matching rules, similar to those in Section
4.2 on approximate extended regular expression pattern matching, defines the intervals matching
an expression P in terms of the matches to P ’s sub-expressions. Formally, an interval [i; j]matches

P if and only if

1. If P � a where a 2 �, then [i; j] 2 I

a

.

2. If P � ", then i = j.

3. If P � R S, then 9 i � k � j : [i; k] matches R and [k; j] matches S.

4. If P � R j S, then [i; j] matches R or [i; j] matches S.

58

5. If P � R

�, then i = j or 9 i < k � j : [i; k] matches R and [k; j] matches R�.

6. If P � R & S, then [i; j] matches R and [i; j] matches S.

7. If P � R � S, then [i; j] matches R, but does not match S.

The intervals matching an expression P are called the matching intervals of P . The set of input
intervals used in the match between interval [i; j] and P is called the interval sequence matching
[i; j] and P .

One reason for defining the matches recursively is that the intersection and difference operators
again cause computational problems for the set-theoretic definition of a match, where an interval
sequence <[i; i

1

]; [i

1

; i

2

]; : : : ; [i

k

; j]> aligns with a sequence B = b

1

b

2

: : : b

k+1

in L(P) using rule
1 above. It’s an open question under the set-theoretic definition whether an algorithm exists which
is polynomial in the size of the super-pattern, whereas the next chapter presents such a polynomial
solution under the recursive definition.

However, a more practical reason exists with super-pattern matching for using the recursive
definition. Under that match definition, the intersection and difference operators provide a natural
method for specifying overlapping signals, one not permitted under the set-theoretic definition. For
example, given a super-pattern ABA&AC and intervals [0; 10]; [40; 50] 2 I

A

, [10; 40] 2 I

B

and
[10; 50] 2 I

C

, the interval [0; 50] matches both ABA and AC and so can be reported as a match to
ABA&AC under the recursive definition. The set-theoretic definition of a match does not permit
this, since the language described by ABA&AC contains no common sequences. Figure 5.1
presents a more potent example of using this recursively-defined intersection operator to describe
overlapping patterns of signals. Thus, this recursive definition results in a much more expressive
and useful form of intersection and difference, while retaining an efficient solution.

The default type of output for the basic problem reports the matching intervals to the super-
pattern. With this output, hierarchical recognition problems can be constructed by connecting the
inputs and outputs of isolated super-pattern matching problems. Oftentimes however, different
types of output are desired for truly isolated problems, particularly when the output can affect the
complexity of the algorithms. We consider four levels of output, characterized by the following
four problems. The output to the decision problem consists of a yes or no answer as to whether any
interval in [0::N] matches the super-pattern. In the optimization problem, the output reports the
matching interval which best fits some criteria, such as longest, shortest or best scoring interval. The
scanning problem requires the optimal matching intervals ending at each position j, for 0 � j � N .
Finally, the instantiation problem asks for the complete set of matching intervals.

5.2 Problem Domain

The domain of super-pattern matching problems extends from the basic problem in a number
of directions, two of which have already been discussed (varying the super-pattern and required
output). The other extensions introduce a positional flexibility in the interval matching and account
for errors occurring in the input. Specifically, the five extensions are 1) explicit spacing in the
super-pattern to model context free substrings occuring between recognized signals, 2) implicit

spacing associated with input intervals which corrects for errors in the reported endpoints, 3)
interval scores to represent significance levels of the lower-level recognition, 4) repair intervals

59

used to construct interval sequences in the presence of errors allowing intervals to be missed and
5) affine scoring schemes to more realistically model endpoint reporting errors and missing input
intervals. The rest of this section details the effect of each extension on the basic problem.

5.2.1 Explicit Spacing

Explicit spacing introduces spacer pattern elements, or simply spacers, into the super-pattern to
model unrecognizable substrings of a certain size occurring between recognized signals. The only
interesting property of these substrings is their size, and often their sole purpose is to separate the
surrounding signals. One interesting example of this is the “space” of size 12 to 40 occurring in
the gene encoding structure of Figure 5.1 between the lariat point and the 3’ splice site of each
intron. After a copy of the DNA containing the gene has been made, each intron is then edited
out of that copy. This editing process involves RNA molecules which attach at the 5’ splice site,
3’ splice site and lariat point of the copy. They then splice the intron out and connect the ends
of the surrounding exons. In order to perform the splicing, the RNA molecules attached to the
lariat point and 3’ splice site must also attach to each other. Since these molecules are of a certain
size, the distance between attachment points on the DNA (and thus on its copy) must also be of a
certain size. The specific DNA sequence appearing between the points, however, is not particularly
relevant. Spacers provide a simple method for specifying these types of signals.

The super-pattern in Figure 5.1 illustrates the two forms of the spacer considered here, bounded

(<12; 40>) and unbounded (<0; �>). Each spacer specifies a size range of matching intervals. In
terms of the recursive definition, the following additional rules capture this property:

8. If P � <l; h>, then l � j � i � h

9. If P � <l; �>, then l � j � i

We only consider spacers whose lower and upper bounds are non-negative, i.e. l � 0. Allowing
the use of negative spacers such as <�20;�5> involves the redefinition of an interval to include
intervals of negative length, such as [100; 97]. The algorithms in Chapter 6 for regular expression
and extended regular expression super-patterns depend heavily on the property that all intervals have
a non-negative length. The introduction of negative length intervals invalidates those algorithms
(which are based on the dynamic programming of Section 2.2 and Chapter 4) and requires more
general path-finding algorithms to be used.

5.2.2 Implicit Spacing

Implicit spacing defines neighborhoods around the reported endpoints of each input interval which
can be used in matches to the super-pattern. Some recognition algorithms can identify the presence
or absence of a feature, but have difficulty pinpointing the exact endpoints of the feature. An
example of this occurs in gene recognition. Exonic DNA regions are identified by sliding a
fixed-width window along the DNA and feeding each window’s sequence to a trained neural net
([LBB+89]). The raw output of this recognizer is a sequence of values, each between 0 and 1,
giving a likelihood measure that the sequence in each window is an exon:

60

0
N0

1

0.5

This output can be transformed into a set of intervals by thresholding the raw values and treating
contiguous regions above the threshold as recognized intervals. In doing so, the general areas of
exons are accurately predicted, but the endpoints of those intervals typically do not match the true
ends of the exons. The use of implicit spacing, in combination with an accurate exon boundary
recognizer, transforms this from an exonic region recognizer to an exon recognizer while still
limiting the number of reported intervals.

We consider three types of implicit spacing, a fixed or proportional space specified for an
interval type a and applied to the intervals in I

a

, or a per-interval space reported for each input
interval. Each type defines the neighborhoods of allowed matches around each input intervals’ left
and right endpoints, <i + lmin; i+ lmax> and <j + rmin; j + rmax> for interval [i; j]. The
fixed and per-interval spacing specify absolute lmin, lmax, rmin and rmax values for an interval
type a or a particular input interval [i; j], respectively. The proportional spacing defines two factors,
lprop

a

and rprop
a

for interval type a, which are multiplied with the length of each interval in I
a

to
get the desired ranges.

In terms of the recursive matching rules, rule 1 (for P � a) now becomes the following for (1)
fixed, (2) proportional or (3) per-interval spacing:

1’. If P � a, then 9 [i0; j0] 2 I
a

such that
(1) i

0

+ lmin

a

� i � i

0

+ lmax

a

& j

0

+ rmin

a

� j � j

0

+ rmax

a

(2) i

0

� ldist � i � i

0

+ ldist & j

0

� rdist � j � j

0

+ rdist,
where ldist = (j

0

� i

0

) � lprop

a

and rdist = (j

0

� i

0

) � rprop

a

(3) i

0

+ lmin

[i

0

;j

0

]

� i � i

0

+ lmax

[i

0

;j

0

]

& j

0

+ rmin

[i

0

;j

0

]

� j � j

0

+ rmax

[i

0

;j

0

]

Negative values for lmin, lmax, rmin and rmax are permitted here with the restriction that the two
neighborhoods of any input interval cannot overlap, i.e. for all [i0; j0] 2 I

a

, i0+ lmax � j

0

+ rmin.
The reasons for this are the same as given for negative-length explicit spacers.

5.2.3 Interval Scoring

Associating scores with input intervals provides a method for modeling errors and uncertainty at the
lower-level recognizers. The scores can give a significance or likelihood measure about the validity
of an interval, such as the mean neural net value occurring in each interval reported by the neural
net exonic recognizer. The use of these scores changes the matching problem from one of finding
matching intervals of a super-pattern to that of finding the best scoring matching intervals. The
algorithms presented in this paper assume that all scores are non-negative and that the best scoring
matching interval is the one with minimal score, except as described below for intersections and
differences. They could be altered to allow negative scores and to solve maximization problems.

61

The recursive rules defining a match between [i; j] and P now become rules in a function
score([i; j]; P) which computes the best score of a match between [i; j] and P . Specifically,
score([i; j]; P) is

1. If P � a, then score ([i; j]; a) =

(

� if [i; j] 2 I
a

with score �
1 otherwise

2. If P � ", then score ([i; j]; ") =

(

0 if i = j

1 if i 6= j

3. If P � R S, then score ([i; j]; R S) = min

i�k�j

fscore ([i; k]; R) + score ([k; j]; S)g.

4. If P � R j S, then score ([i; j]; R j S) = minfscore ([i; j]; R); score ([i; j]; S)g.
5. If P � R

�, then score ([i; j]; R�

) =

8

<

:

0 if i = j

min

i<k�j

fscore ([i; k]; R) + score ([k; j]; R�

)g if i 6= j

6. If P � R & S, score ([i; j]; R& S) = F

R&S

(score ([i; j]; R); score ([i; j]; S))

where F
R&S

can be a general function (see below).
7. If P � R � S, score ([i; j]; R� S) = F

R�S

(score ([i; j]; R); score ([i; j]; S))

where F
R�S

can be a general function (see below).

As with approximate extended regular expression pattern matching, this function computes the
“minimal sum of scores” for the regular expression operations and allows general functions, such as
the sum, minimum, maximum, : : :, to be defined for the intersection and difference sub-expressions.

The scoring of interval sequences changes the output requirements for the four problems
described at the beginning of the chapter, as well as the specification of explicit and implicit
spacing. The decision problem becomes that of reporting the best score of a matching interval,
rather than the existence of a matching interval. For the other three problems, the scores of
matching intervals are reported along with the intervals themselves, either the matching interval
with the best score (the optimization problem) or the set of matching intervals and their best scores
(the instantiation problem). The use of explicit and implicit spacing again require new rules 8 and
9 and the rewriting of rule 1, respectively. Some fixed cost c � 0 is now incorporated into those
rules and either reported as the score of an explicit spacer’s match or added to the score for each
input interval when computing score([i; j]; a).

5.2.4 Repair Intervals

Repair intervals are a mechanism for inserting intervals, not appearing in the input, into the
construction of interval sequences. Few recognition algorithms for complex features can correctly
identify every “true” instance of that feature in a sequence. Even using interval scores to report
possible matches, many recognizers are designed to achieve a balance between sensitivity and
specificity. They allow a few true intervals to be missed (a sensitivity rate close to, but under,
100%) so that the number of false intervals reported does not explode (thus keeping the specificity
rate high). These missed intervals, however, can disrupt the match to an entire interval sequence
in the super-pattern matching problems described so far. Repair intervals are used to complete the
construction of interval sequences in the face of small numbers of missing intervals.

62

min max

cost

sizei j
distance

cost cost

(a) (b)

j+rmaxj+rmini+lmaxi+lmin

bp*(j-i)

Figure 5.3: Affine scoring of a) implicit spacing for interval [i; j] and b) bounded spacers/repair
intervals.

A repair interval specification is given for an interval type. It consists of a non-negative size
range, l to h, and a fixed cost c for using a repair interval in an interval sequence. Given such a
specification for interval type a, each instance of a in the super-pattern can be matched with any
interval [i; j] where l � j � i � h. That match then contributes an additional cost c to the score
of the resulting interval sequence. In terms of the recursive definition, this results in the following
new rule for P � a:

1. If P � a, then score([i; j]; a) = min

8

>

<

>

:

� if [i; j] 2 I
a

with score �
c if l � j � i � h

1 otherwise

assuming here that interval scores are being used and that no implicit spacing has been defined for
the intervals in I

a

.

5.2.5 Affine Scoring Schemes

The fixed range implicit spacing, explicit spacing and repair intervals often provide an unrealistic
measure of the size distribution of endpoint errors, missing intervals and context free spaces. For
some recognizers, a majority of the incorrectly reported endpoints may differ only slightly from the
true endpoints, while a small but significant number are off by greater distances. At other times, no
fixed bounds can be computed for either the endpoint errors or sizes of missing intervals. In these
cases, a fixed cost, bounded range scoring scheme does not correctly model the distributions of
sizes or error distances in the input. Affine scoring schemes for implicit spacing, explicit spacing
and repair intervals are distance-based models where a match’s score grows as the distance from
a desired range grows, whether the distance is from a reported endpoint’s position or an interval’s
size.

In its most complex form, the affine specification for an interval type’s implicit spacing consists
of the five-tuples <lcl

a

; lmin

a

; lc

a

; lmax

a

; lcr

a

> and <rcl

a

; rmin

a

; rc

a

; rmax

a

; rcr

a

> for the
left and right endpoints of intervals in I

a

, plus a boundary proportion bp
a

used to separate the left

63

and right endpoint neighborhoods. The graphical representation of the scoring scheme is shown
in Figure 5.3a. For the left endpoint, the values of lmin

a

and lmax

a

specify a fixed size range
in which the cost of implicit spacing within that neighborhood is lc

a

. The values of lcl
a

and lcr
a

give the incremental cost for extending the implicit spacing to the left and right of the fixed space
range. The right endpoint scoring is similar. The boundary between the two neighborhoods is
given as a proportion on the length of each interval in I

a

, and is necessary to avoid introducing
negative-length intervals.

The score of a match between interval [i; j] and the expression P � a is the minimum, over all
intervals [i0; j0] 2 I

a

, of the score associated with [i

0

; j

0

] (assuming interval scores are being used),
plus the cost of the implicit spacing at the two endpoints. In terms of the matching rules, this results
in the following for P � a:

score([i; j]; a) = minfleft
[i

0

;j

0

]

+ � + right
[i

0

;j

0

]

j [i

0

; j

0

] 2 I

a

scores �g

where

left
[i

0

;j

0

]

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

lc

a

+ lcl

a

� ((i

0

+ lmin

a

)� i) if i < i

0

+ lmin

a

lc

a

if i0 + lmin

a

� i < i

0

0 if i = i

0

lc

a

if i0 < i � i

0

+ lmax

a

lc

a

+ lcr

a

� (i� (i

0

+ lmax

a

)) if i0 + lmax

a

< i � i

0

+ (j

0

� i

0

) � bp

a

right
[i

0

;j

0

]

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

rc

a

+ rcl

a

� ((j

0

+ rmin

a

)� j) if i0 + (j

0

� i

0

) � bp

a

� j < j

0

+ rmin

a

rc

a

if j0 + rmin

a

� j < j

0

0 if j = j

0

rc

a

if j0 < j � j

0

+ rmax

a

rc

a

+ rcr

a

� (j � (j

0

+ rmax

a

)) if j > j

0

+ rmax

a

This assumes no repair interval specifications for a.
The affine specification for repair intervals and bounded spacers is a three part curve defined

for non-negative size values and is shown in Figure 5.3b. Considering only the repair intervals,
the numerical information consists of a similar five-tuple <cl

a

;min

a

; c

a

;max

a

; cr

a

> with a (now
non-negative) size range min

a

to max
a

, fixed cost c
a

for that size range, and incremental costs cl
a

and cr
a

for extending to the left and right of the size range. The cost of using a repair interval is
computed from the size of that interval, as follows:

score([i; j]; a) = min

8

>

>

>

<

>

>

>

:

� if [i; j] 2 I
a

with score �
c

a

if min
a

� j � i � max

a

c

a

+ cl

a

� (min

a

� (j � i)) if j � i < min

a

c

a

+ cr

a

� ((j � i)�max

a

) if j � i > max

a

where no implicit spacing is defined here. Including both affine implicit spacing and affine repair
intervals simply requires combining the above two rules. The rule for computing an affine scored
spacer uses the bottommost three terms of the repair interval rule.

64

CHAPTER 6

SUPER-PATTERN MATCHING: ALGORITHMS

The solution to each of the super-pattern matching problems defined in the previous chapter
employs a matching-graph/dynamic-programming framework similar to that developed for the
approximate pattern matching of Chapters 2, 3 and 4. The framework for super-pattern matching
involves four major steps common for all of the algorithmic solutions. The first step constructs
a state machine equivalent to the super-pattern, i.e. a machine which accepts the same language
as the super-pattern expression. Second, the matching problem is recast as a graph traversal
problem by constructing a matching graph from the state machine. The construction is such
that the graph edges correspond to input intervals and paths through the graph correspond to
interval sequences matching the super-pattern’s sub-expressions. The third step derives dynamic
programming recurrences which compute the paths (and hence the interval/sub-expression matches)
to each vertex in the graph. Finally, algorithms solving these recurrences are developed.

Sections 6.1 and 6.2 present the four steps solving the scanning and instantiation problems, with
interval scoring, for a sequence, regular expression and extended regular expression. The inclusion
of interval scoring results in more interesting algorithms, since the graph traversal problem becomes
the more complex problem of finding shortest paths through the graph, rather than just the existence
of paths. The solutions to problems with no interval scoring or for the decision and optimization
problems are simple variations of the algorithms presented below. Section 6.3 then presents the
algorithmic extensions which solve for the explicit and implicit spacing, repair intervals and affine
scoring schemes defined in Section 5.2.

6.1 Sequences and Regular Expressions

The solution to the super-pattern matching problem with a sequence or regular expression super-
pattern P uses the same NFA construction as the approximate pattern matching solution described
in Section 2.2. Reviewing the basic definitions, the NFA F = <V;E; �; �; �> consists of: (1) a set
V of vertices, called states; (2) a set E of directed edges between states; (3) a function � assigning
a “label”, �

s

2 � [f"g, to each state s; (4) a designated “source” state �; and (5) a designated
“sink” state �. The inductive construction is given in Figure 2.4. Intuitively, F is a vertex-labeled
directed graph with distinguished source and sink vertices. A directed path through F spells the
sequence obtained by concatenating the non-" state labels along the path. L

F

(s), the language

accepted at s 2 V , is the set of sequences spelled on all paths from � to s. The language accepted

by F is L
F

(�). The key properties of this construction are that 1) for any sequence P of size M
there is an acyclic NFA containing M + 1 states and 2) for any regular expression P of size M
there is an NFA whose graph is reducible and whose size, measured in either vertices or edges, is
O(M).

65

I = { [0,2], [1,2], [2,5], [3,3], [5,6] }

I = { [0,1], [1,1], [2,3], [3,5], [4,6] }b

a
aba

F

a

ε

a

b

0 1 2 3 4 5 6

b

a

a

Figure 6.1: The NFA and matching graph for super-pattern P = aba and N = 6.

The matching graphs for these super-patterns consist of N + 1 copies of the NFA for P , where
N is the size of the one-dimensional space defined in the matching problem. Examples for a
sequence and regular expression are shown in Figures 6.1 and 6.2. In this matrix-structured graph,
the vertices are denoted using pairs (s; j) where s 2 V and j 2 [0::N]. Weighted edges are added
in a row-dependent manner, considering the vertices (s; 0); (s; 1); : : : ; (s;N) as a “row.” For a
vertex (s; j), if the label of state s, �

s

, is some symbol a 2 �, incoming edges are added from each
vertex (t; i) where t ! s is an edge in F and [i; j] 2 I

�

s

. The weights on those edges equal the
scores associated with the corresponding intervals in I

�

s

. This models the matches of symbol �
s

to the intervals in I

�

s

. When �

s

is ", vertex (s; j) has incoming edges with weight 0 from each
vertex (t; j) where t! s. These edges model the match between the " symbol and the zero-length
interval [j; j]. A straightforward induction, using the recursive matching rules from Chapter 5.2.3,
can show the correspondence between paths and matching intervals.

For the scanning problem with interval scoring, the dynamic programming recurrences compute
the shortest paths from row � to row � in the graph, where the shortest path is the one whose sum
of edge weights is minimal. The recurrence for sequences and regular expressions is

C

�;j

= h0; ji

C

s;j

=

(

minfhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

minfC

t;j

j t! sg if �
s

= "

This recurrence finds the position pairs hc; ki for each vertex (s; j), such that c is the best score
of a match between interval [k; j] and the path in F from � to s. The “min” operation returns
the position pair with the minimal score c, breaking ties using an optimality criterion such as the
smallest or largest k. Thus, the C

�;j

values give the score and left endpoint position for the best
scoring matching interval whose right endpoint is j.

66

I = { [0,0], [1,3], [3,4] }a

I = { [0,2], [2,3], [2,4] }b

0 1 2 3 4

F

a

ε

ε

ε

ε

ε

b

(a | b) a*

b a b a b a b

aaaa

a b a

a

a

Figure 6.2: The state machine and matching graph for P = (a j b) a

� and N = 4.

The recurrence for the instantiation problem is very similar, except that each C
s;j

value is a set
of these position pairs, as follows:

C

�;j

= fh0; jig

C

s;j

=

(

S

min

fhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

S

min

fC

t;j

j t! sg if �
s

= "

The “
S

min

” operation computes the best scoring match to each interval [k; j] by taking the union
of the minimum scoring position pairs for each position k, i.e.

S

min

(S) = fhc; ki j hc; ki 2 S &6

9 hc

0

; k

0

i 2 S : k = k

0

& c > c

0

g. The position pairs occurring in the C
�;j

sets identify the set of
matching intervals of the super-pattern, or f[k; j] scoring c j 0 � j � N & hc; ki 2 C

�;j

g.
A naive dynamic programming algorithm can solve the recurrences for sequence super-patterns,

since the matching graph is acyclic. The decision, scanning and optimization solutions run in
O((N + I)M) time where I is the size of the largest I

a

, because there are O(NM) vertices and
O(IM) edges. The following solves the instantiation problem, using 0::M to reference states in F
and [] to denote ordered lists:

for j 0 to N do

f C

0;j

 [h0; ji]

for m 1 to M do

f C

m;j

 []

for i; � [i; j] 2 I

�

m

scores � do

C

m;j

 Merge (C
m;j

;Add (C
m�1;i

; �))

g

g

67

Operation Merge implements the
S

min

operation for two ordered lists by merging the lists according
to left endpoint position k and by removing any non-optimal position pairs. Add(L,v) produces
a new ordered list in which v is added to each position pair in L. The time complexity for this
algorithm is O((N +I)ML), where L is the length of the longest matching interval to any prefix of
P . A more practical, and stricter, bound for L is the number of differently sized matching intervals
to any prefix of P (which more closely reflects the C

m;j

sizes). But the longest matching interval
bound gives a cleaner definition to the complexity measure. In the worst case where I is O(N2

)

and L is O(N), this time complexity is O(N3

M).
The regular expression algorithm is more complex as cyclic dependencies can occur in the

dynamic programming recurrences, mirroring cycles in the matching graph. However, these cycles
occur when the edges corresponding to zero-length input intervals and "-labeled states link the
vertices of Kleene closure sub-automata in a column’s copy of F . Since no negative length
intervals (or extensions resulting in negative length intervals) are permitted, these cycles can occur
only down columns of the graph. Furthermore, the matching graph is acyclic except for the cycles
along particular columns of the graph. Since each column of the graph has the same structure as F ,
the graph is reducible along each column and the two-sweep, node-listing technique from Section
2.2 can be used. The variation of that technique which solves for the instantiation problem is as
follows:

for j 0 to N do

f C

�;j

 [h0; ji]

for s 6= � do

C

s;j

 []

for sweep 1 to 2 do

f for s in topological order of DAG edges do

if �
s

6= " then

for t; i; � where t! s and [i; j] 2 I

�

s

scores � do

C

s;j

 Merge(C
s;j

;Add(C
t;i

; �))

else

for t where t! s do

C

s;j

 Merge(C
s;j

; C

t;j

)

g

g

Since F restricted to the DAG edges is acyclic, a topological order of the states exists. The
complexity of the algorithm is O((N + I)ML), since the recurrence is computed twice for each
graph vertex and there are at most 2 I M edges in the graph.

6.2 Extended Regular Expressions

For extended regular expression super-patterns, we use the extended NFA state machine, denoted
as an ENFA, described in chapter 2.3 as the state machine accepting the language denoted by the
super-pattern. As with the matching graphs for sequences and regular expressions, the matching
graph for an extended regular expression super-pattern P consists of N + 1 copies of the ENFA

68

F constructed from P . The graph edges are added just as in the previous section for regular
expressions, considering for the moment the intersection and difference sub-automata as alternation
sub-automata.

The dynamic programming recurrences incorporate the details of the more complex ENFA
simulation, defining different computations for each of the four subsets of states, V

re

, V
�

, V
&

and
V

�

. One simplifying factor in this incorporation is that the partial path information computed
by the ENFA simulation is identical to the matching interval, left endpoint information computed
by the instantiation problem. Thus, the recurrences use the same position pairs hc; ki to perform
valid ENFA path extensions and to maintain the set of matching intervals. Because the position
pairs are required by the ENFA simulation, the solutions to the decision, optimality and scanning
super-pattern matching problems are essentially the same as for the instantiation problem, and so
are not considered here.

Beginning with the states in V
re

, i.e. the states introduced by regular expression operators:

C

�;j

= fh0; jig

C

s;j

=

(

S

min

fhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

S

min

fC

t;j

j t! sg if �
s

= "

The computations at the intersection and difference sub-automata start states, s 2 V
�

, use mapping
tables T

s

to hold the partial path information for the enclosing sub-machine:

T

s;j

=

(

S

min

fhc+ �; ki j t! s & [i; j] 2 I

�

s

scores � & hc; ki 2 C

t;i

g if �
s

2 �

S

min

fC

t;j

j t! sg if �
s

= "

C

s;j

=

(

fjg if T
s;j

6= ;

; if T
s;j

= ;

And the recurrences for states in V

&

and V

�

use those mapping tables to extend matches across
each final state’s sub-machine:

C

s;j

=

S

min

fhc+ F

R&S

(c1; c2); ki j hc; ki 2 T

t;i

& hc1; ii 2 C

t1;j

& hc2; ii 2 C

t2;j

g

where t1! s, t2! s and t = �

R&S

corres. to s = �

R&S

C

s;j

=

S

min

fhc+ F

R�S

(c1; c2); ki j hc; ki 2 T

t;i

& hc1; ii 2 C

t1;j

&

c2 =

(

c2

0 if hc20; ii 2 C
t2;j

1 if hc20; ii 62 C
t2;j

g

where t1! s, t2! s and t = �

R�S

corres. to s = �

R�S

As with the instantiation problems for sequences and regular expressions, the values in C

�;j

for
0 � j � N give the left endpoints of the matching intervals of P .

The algorithm computing these recurrences is another column-based, two-sweeps per column
algorithm, since the matching graph is again reducible. The time complexity is O((N + I)ML),
where L is defined as before but I is the size of either the largest input interval set or the largest
number of different intervals matching an intersection or difference sub-expression of P .

69

6.3 Extension Algorithms

The four extensions described in Section 5.2, 1) explicit spacing, 2) implicit spacing, 3) repair
intervals and 4) affine scoring, can be solved using extensions to the algorithms presented in
the previous section. In addition, these algorithmic extensions require no major changes to the
previous sections’ algorithms and are independent of the super-pattern language, i.e. whether the
super-pattern is a sequence, regular expression or extended regular expression. This occurs because
the effects on the matching graphs from the extensions below can be thought of as “horizontal”
changes along particular graph rows, whereas the algorithms of the previous section affect only
the “vertical” structure along each column of the graph. Because of this fact, the extensions can
be individually presented for a representative row of the matching graph. The overall algorithm
for any combination of super-pattern and set of extensions is developed by starting with one of the
base algorithms given in the previous two sections, and then applying the appropriate algorithmic
extension to the relevant rows of the matching graph.

The descriptions that follow concentrate on the three additional algorithms used to solve these
extensions. The first sub-section gives the application of a sliding window algorithm to bounded
spacers, fixed range implicit spacing and fixed range repair intervals. The next sub-section describes
a range query tree/inverted skyline solution for the proportional and per-interval implicit spacing.
Finally, the third subsection presents a solution to the affine scoring scheme which employs
minimum envelopes to efficiently model the contributions of the affine curves along a row. The
unbounded spacer solution is not given as it can be solved using a running minimum as the overall
algorithm progresses along row s where �

s

= <l; �>.
The description in each of the sub-sections isolates a particular row s of the matching graph,

appropriately labeled, and solves the decision problem with interval scoring for that row. Also, it
assumes that state s is labeled �

s

= a, unless otherwise noted, and has only one predecessor state
t in F . The solutions to the other problems, and states with two predecessors, are straightforward
variations of the algorithms below.

6.3.1 Sliding Windows

The bounded spacers, implicit spacing and repair intervals all involve the computation of values in
fixed width windows, whether along the predecessor row of vertices or associated with the input
intervals. Treating the bounded spacers<l; h> first, the spacer is considered as an alphabet symbol
in the construction of the state machine, resulting in one state s 2 V where �

s

= <l; h>. The
edges from row t to row s in the graph connect each vertex (t; i), where 0 � i � N � l, to the
vertices (s; i+ l); (s; i+ l + 1); : : : ; (s;maxfN; i + hg). These edges model the match between
intervals whose size is between l and h and the spacer. Looking at the incoming edges to a vertex
(s; j) results in the following recurrence:

C

s;j

= minfC

t;i

j t! s & maxf0; j � hg � i � maxf0; j � lgg

where “min” here is the traditional minimum operation. From this point on, the “maxf0; : : :g”
boundary conditions are omitted and assumed in the equations and algorithms below.

Similar edges are added for fixed range repair intervals, but these edges are included in ad-
dition to the normal edges corresponding to input intervals. These new edges give the following
recurrence, where the second term in the minimum reflects the repair intervals:

70

C

s;j

= minfminfC

t;i

+ � j [i; j] 2 I

a

scores �g;
minfC

t;k

+ c

a

j j � h

a

� k � j � l

a

g g

In each of the two cases above, the value ofC
s;j

is the minimum over a window of h� l C
t;i

values.
The fixed implicit spacing is more complex, because the fixed width windows are the neigh-

borhoods occuring at both ends of each input interval. Along row s of the matching graph, the
edges corresponding to each input interval [i; j] 2 I

a

are replaced with (1) a new vertex (s; [i; j])

representing the interval, (2) edges connecting vertices (t; i + lmin

a

), (t; i + lmin

a

+ 1), : : :,
(t; i+lmax

a

) to vertex (s; [i; j]) and (3) edges connecting vertex (s; [i; j]) to vertices (s; j+rmin
a

),
(s; j + rmin

a

+ 1), : : :, (s; j + rmax

a

). The edges model the implicit spacing defined for each
endpoint of [i; j], and the additional vertex is needed to keep the number of edges proportional to
the size of the implicit spacing. These changes result in the following two recurrences for the C

s;j

values:

C

s;[i;j]

= minfC

t;k

+ � j [i; j] 2 I

a

scores � & i+ lmin

a

� k � i+ lmax

a

gg

C

s;j

= minfC

s;[i

0

;j

0

]

j [i

0

; j

0

] 2 I

a

& j

0

+ rmin

a

� j � j

0

+ rmax

a

g

assuming no repair intervals have been specified for interval type a. These recurrences present
two different algorithmic problems, the “front end” problem of computing each C

s;[i;j]

from the
array of scores along row t, and the “back end” problem of computing the row ofC

s;j

values as the
minimum of the applicable C

s;[i

0

;j

0

]

values.
Naive dynamic programming algorithms computing these recurrences have a complexity of

O(NW) for explicit spacers or repair intervals, whereW = h�l, and a complexity ofO((N+I)W)

for implicit spacing, where W = maxflmax

a

� lmin

a

+ 1; rmax

a

� rmin

a

+ 1g. More efficient
algorithms use a “sliding window” technique for computing the sequence of minimums in O(N)

and O(N + I) time. This technique computes a recurrence such as D
j

= min

j�w�i�j

fE

i

g by
incrementally constructing a list of indices [i

1

; i

2

; : : : ; i

k

] for each j. Index i
1

denotes the minimum
value in the current window, index i

2

denotes the minimum value to the right of i
1

, index i
3

gives
the minimum to the right of i

2

, and so on until i
k

which always denotes the rightmost value in the
window. The formal algorithm is as follows:

L []

for j 0 to N do

f if L
1

< j � w then

L DeleteHead (L)
while jLj > 0 and E

L

jLj

> E

j

do

L DeleteTail (L)
L Append (L; [j])

D

j

 E

L

1

g

using basic list operations DeleteHead, DeleteTail and Append. The list is updated as the window
advances by 1) removing the head of the list if the window has slid past its value, 2) removing
successive values from the tail of the list if the new value in the window is smaller and 3) inserting
the new value at the tail of the list. The complexity of this isO(N), since the value for each position
j is inserted and deleted once from the list.

71

This algorithm directly applies to the explicit spacing and repair interval recurrences above,
since the recurrence computingC

s;j

is simply a shifted version of the recurrence forD. The implicit
spacing’s front end problem can be solved by using the sliding window algorithm to precompute
minfC

t;k

j i + lmin

a

� k � i + lmax

a

g for each position 0 � i � N . Then, C
s;[i;j]

equals the
precomputed value at i plus the score associated with [i; j]. Note that the precomputed value needed
byC

s;[i;j]

generally is not available when the overall algorithm is at position i, since the window for
i cannot be computed untilC

t;i+lmax

a

is available. But, since the implicit spacing ranges for the left
and right endpoints cannot overlap, C

s;[i;j]

can be safely computed at any time between i+ lmax

a

and j + rmin

a

.
The application to the implicit spacing’s back end problem is not as direct. In this case, there

are possibly overlapping windows of size rmax
a

� rmin

a

+ 1 where particular values hold, and
the object is to find the minimum of the values holding at each position j. This can be solved
using the data structure employed by the sliding window technique. As the overall algorithm
progresses to each vertex (s; j), the values of each C

s;[i

0

;j

0

]

where j0 + rmin

a

= j are inserted into
the sliding window data structure. They are deleted either when dominated by another value or
when j

0

+ rmax

a

< j. Since the neighborhoods of each C

s;[i

0

;j

0

]

are the same size, a dominated
value can be safely removed from the list as it can never again contribute to a futureC

s;j

value. With
this algorithm, the value needed for each C

s;j

always appears at the head of the sliding window’s
list at j.

The use of this sliding window technique results in bounded spacer and repair interval com-
putations taking O(N) time per graph row and in implicit spacing computations taking O(N + I)

time per graph row.

6.3.2 Range Query Trees and Inverted Skylines

The sliding window algorithms cannot be applied to proportional and per-interval implicit spacing
because neighborhood widths vary between the input intervals in I

a

. The matching graph changes
and recurrences are similar to that of fixed width spacing:

C

s;[i;j]

= minfC

t;k

+ � j [i; j] scores � & i+ lmin � k � i+ lmaxg

C

s;j

= minfC

s;[i

0

;j

0

]

j [i

0

; j

0

] 2 I

a

& j

0

+ rmin � j � j

0

+ rmaxg

where lmin, lmax, rmin and rmax henceforth generically denote the neighborhoods for the
relevant input interval. Again, there are the “front end” and “back end” problems of computing
C

s;[i;j]

from the values along row t and computing each C

s;j

as the minimum of the applicable
C

s;[i

0

;j

0

]

.
For the front end problem, the algorithm computing the C

s;[i;j]

values must be able to satisfy
general range queries over the values along row t. These range queries ask for the minimum score
over an arbitrary range x to y, orminfC

t;x

; C

t;x+1

; : : : ; C

t;y

g. The solution is to build a range query

tree from the values along row t and use it to answer the queries. A range query tree is a binary
tree with N leaves, corresponding to the C

t;i

values, and with additional pointers pointing up the
tree. An example is depicted in Figure 6.3. Each node X in the tree contains seven values, denoted
X.l, X.h, X.value, X.left, X.right, X.lp and X.rp. The first three values specify X’s range and the
minimum value over that range, i.e. X.value = minfC

t;X:l

; C

t;X:l+1

; : : : ; C

t;X:h

g. X.left and X.right

point to the left and right children of X in the binary tree. X.lp and X.rp point to ancestors in the

72

Ct,0 C C C C C Ct,1 t,2 t,3 t,4 t,5 t,6

0 1 2 3 4 5 6

0,1 2,3 4,5

4,7

6,7

0,3

0,7

stack of unfinished
sub-trees

Level 0:

Level 1:

Level 2:

Level 3:

Figure 6.3: View of a partially constructed range query tree (dashed and dotted lines are lp and rp

pointers).

tree. Specifically, Y.rp = X and Y.lp = X.lp for a left child Y of X , and Z.lp = X and Z.rp = X.rp for
a right child Z of X .

The lp and rp pointers are used to answer the range queries x; y, as follows:

X Leaf
x

X Leaf
y

v

l

 X:value v

r

 X.value

while X.rp 6= nil and X.rp.h < y do while X.lp 6= nil and X.lp.l > x do

f X X.rp f X X.lp

v

l

 minfv

l

;X.right.valueg v

r

 minfv

r

;X.left.valueg

g g

“minfv

l

; v

r

g is the minimal value of C
t;x

; C

t;x+1

; : : : ; C

t;y

”

where Leaf
x

is the leaf of the tree containing C

t;x

. The two traversals begin at Leaf
x

and Leaf
y

and move up the tree, using successive rp and lp pointers. The traversals end at the least common
ancestor of the two leaves, which can be determined using the ranges stored at each node. The
first traversal computes the minimum of the C

t;i

’s from x to the midpoint of the LCA’s range. The
second traversal computes the minimum from the LCA’s midpoint to y. This can be shown in a
simple inductive proof, not given here, whose core argument uses the lemma below to show that
each move up an lp or rp pointer extends the range of the minimum computation contiguously to
the left or right of the current range, respectively.

The time taken by the query is O(logW), where W = y � x, since the range of X.lp and X.rp

is at least twice as large as the range of each node X in the traversal and the range of the LCA is
� 2W . Thus, arbitrary range queries can be satisfied in time logarithmic to the width of the range.

LEMMA 7. For a node X in a range query tree, 1) if X.lp 6= nil, then X.lp.left.h = X.l �1 and 2)
if X.rp 6= nil, then X.rp.right.l = X.h +1.

Proof. We give only the proof for X.lp. There are two cases. First, if X.lp.right = X (X is
the right child of X.lp), then X.lp.left and X must be the two children of X.lp. Then, X.lp.left.h

must equal X:l � 1, since the two children of a node divide that node’s range in half. Second, if
X.lp.right 6= X (implying that X.rp.left = X), then applying this proof inductively to X.rp yields that

73

X.rp.lp.left.h = X.rp.l �1. But X.lp = X.rp.lp by the range query tree definition. And X.l = X.rp.l,
since X is the left child of X.rp and so the leftmost leaf in both their subtrees must be the same
node. Thus, X.lp.left.h = X.l �1.

The construction of the range query tree occurs incrementally as the overall matching algorithm
produces values ofC

t;i

. It uses a stack of hnode,level i pairs to hold the roots of unfinished trees and
their levels in the tree. Figure 6.3 shows the state of the construction for i = 6. The construction
step for i > 0 is

Z New () ; Z.value C

t;i

hA;Li Pop (Stack)
if L > 1 then # The new leaf is a left child, so create and push its parent
f X New () ; X.left Z ; X.lp Top (Stack).node

Z.rp X ; Z.lp X.lp

Push (Stack, hA;Li) ; Push (Stack, hX; 1i)
g

else # L = 1 and the new leaf is a right child, so find the root of the largest
now finished sub-tree, create and push its parent, and then set the
rp pointers for the rightmost nodes of the finished sub-tree

f A.right Z ; Z.lp A

Z A # In the loop, Z points to the finished sub-trees’ roots
while Size (Stack) > 0 and Top (Stack).level = L+ 1 do

f hA;L

0

i Pop (Stack)

A.value minfA.left.value, A.right.valueg

A.l A.left.l ; A.h A.right.h

A.right Z ; Z.lp A

Z A ; L L0

g

X New () # The new unfinished sub-tree root
Z.rp X ; X.left Z

if Size (Stack) > 0 then X.lp Top (Stack).node

Push (Stack, hX;L + 1i)
for i L� 1 down to 1 do

f Z Z.right ; Z.rp Z.lp.rp g

g

Operations Push, Pop, Top and Size are the basic stack operations and New creates a new tree node.
The construction at i = 0 is equivalent to the case above where the new leaf is a left child.

When the new leaf storing C
t;i

is a left child in the tree, it suffices to construct its parent and
push the unfinished parent on the stack. When the new leaf is a right child, the construction is
finished for the roots R

1

; R

2

; : : : ; R

k

of each sub-tree whose rightmost leaf is the new leaf. The
completion involves first an upwards pass through these roots, setting the pointers and minimum
values for each R

l

. After the root of the new sub-tree whose left child is R
k

has been created, an
downward pass is made setting each of the rp pointers to that new root. This construction takes

74

infinity

0

0 N

Figure 6.4: An inverted skyline.

O(N) time for matching graph row t, since each value in a node is computed once and the size of
the tree is 2N � 1.

The back end problem for proportional and per-interval spacing takes the form of an inverted

skyline problem and can be solved using a binary search tree. If the possible C
s;[i

0

;j

0

]

values which
can contribute to various C

s;j

are plotted graphically, the picture takes the form of Figure 6.4.
Each horizontal line represents the contribution of one C

s;[i

0

;j

0

]

to the C
s;j

values (the values of j
form the x-axis of the figure). The actual values of the C

s;j

are those found on the lowest line at
each position j in 0::N . Thus, the various contributions of the C

s;[i

0

;j

0

]

form the “buildings” of the
inverted skyline.

The solution to this problem is to keep a balanced binary search tree, ordered by score, that
holds the C

s;[i

0

;j

0

]

values applicable at each position j. Thus at j, C
s;j

is the minimal value in the
tree. The value of each C

s;[i

0

;j

0

]

is inserted and deleted from the tree at j 0+rmin and j0+rmax+1,
respectively. By applying one efficiency “trick,” the time taken by this algorithm can be bounded
by O((N + I) logW), where W is the width of the widest neighborhood. The trick is that when
a value C

s;[j

0

;j

0

]

is being inserted into the tree, a query is made for any value in the tree which is to
be removed at j0 + rmax+ 1. If no such value exists, the new value is inserted into the tree. If
such a value exists, only the lower scoring value is kept in the tree, since the higher score cannot
contribute to a future C

s;j

. The use of this trick bounds the size of the tree at W nodes. Thus, all
queries, insertions and deletions take O(logW) time.

The result of the algorithms described in this section is that proportional and per-interval implicit
spacing can be computedO((N +I) logW) time, whereW is the size of the widest input interval’s
neighborhood.

6.3.3 Minimum Envelopes and Affine Curves

In this section, we consider only the linear extension pieces to the affine-scored implicit spacing,
bounded spacers and repair intervals. The fixed range sections of these affine scoring schemes
can be handled separately by the algorithms of Sections 6.3.1 and 6.3.2. For explicit spacers and
repair intervals, extra incoming edges must be added to vertex (s; j) from vertices (t; 0), (t; 1),
: : :, (t; j �max� 1) and from (t; j �min+ 1), (t; j �min+ 2), : : :, (t; j). The following two

75

recurrences capture the new computations required for those edges.

L

s;j

= minfC

t;k

+ cl � (k � (j �min)) j j �min < k � jg

R

s;j

= minfC

t;k

+ cr � ((j �max)� k) j 0 � k < j �maxg

With these recurrences for an explicit spacer, C
s;j

= minfL

s;j

+ c; R

s;j

+ c; : : :the fixed range
recurrence: : :g where c is the fixed range spacer cost. The repair interval case is similar, except the
recurrences dealing with the input intervals must also be included.

The extra edges for affine scored implicit spacing correspond to the the four affine curves given
in the specification and can be derived from the following four recurrences:

LL

s;[i;j]

= minfC

t;k

+ lcl

a

� ((i+ lmin)� k) j 0 � k < i+ lming

LR

s;[i;j]

= minfC

t;k

+ lcr

a

� (k � (i+ lmax)) j i+ lmax < k � bg

RL

s;j

= minfC

s;[i

0

;j

0

]

+ rcl

a

� ((j

0

+ rmin)� j) j [i

0

; j

0

] 2 I

a

& b � j < j

0

+ rming

RR

s;j

= minfC

s;[i

0

;j

0

]

+ rcr

a

� (j � (j

0

+ rmax)) j [i

0

; j

0

] 2 I

a

& j

0

+ rmax < j � Ng

where lmin, lmax, rmin, rmax and b generically denote the neighborhoods and boundary point
for an interval. With these recurrences, the computations for implicit spacing become

C

s;[i;j]

= minfLL

s;[i;j]

+ lc

a

+ �; LR

s;[i;j]

+ lc

a

+ �; : : : the fixed range comp. : : :g
C

s;j

= minfRL

s;j

+ rc

a

; RR

s;j

+ rc

a

; : : : the fixed range computation : : :g

where lc
a

and rc
a

are the base implicit spacing costs and � is the score associated for input interval
[i; j].

The rest of this section presents the algorithms for the six recurrences above by grouping them
into three sets, 1)R, LL andRR, 2) L and LR and 3)RL, based on the algorithms used to compute
the recurrences. For each group, abstract forms of the recurrences are constructed which simplifies
the recurrences and better illustrates their commonality. Then, the solution for one representative
abstract form (per group) is presented, along with the complexity for the resulting algorithm. The
mapping back to the original recurrences is straightforward, and so not explicitly described.

The R, LL and RR recurrences can be abstracted as D1

i

= min

0�k<i

fE

k

+ c � (i � k)g for
R and LL and D2

i

= minfE

[i

0

;j

0

]

+ c � (i � k) j k = j

0

+ rmax < ig for RR. In this abstract
form, each D

i

is the minimum of the candidates, f(m) = e

k

+ c � (m � k) from each position
k < i, that are evaluated at i. The difference between the two forms is that multiple candidates
can occur with the same k value in the second form. All of the candidates involved in the D1

i

(or D2

i

) equations have the same slope c. Because lines with different origins and the same slope
must intersect either zero or an infinite number of times, the minimum candidate at a position i

must remain minimum over the candidates from k < i at every i0 > i. Therefore, only the current
minimum at i is needed to compute futureD

i

0 values, and the recurrence for eachD can be rewritten
as D1

i

= minfD

i�1

+ c; E

i

g and D2

i

= minfD

i�1

+ c; minfE

[i

0

;j

0

]

j j

0

+ rmax = igg. These
recurrences can be computed in O(N) and O(N + I) time for 0 � i � N .

The L and LR recurrences take the abstract forms D
i

= min

l�k�i

fE

k

+ c � (k � l)g and
D

[i;j]

= min

l�k�b

fE

[i;j]

+ c � (k � l) j l = i+ lmin& b = (j � i) � bp

a

g. The D
i

form is a special
case ofD

[i;j]

, where only one value is needed for any position i (rather than values for each [i; j]) and
where all of the widths i� l are of equal size (instead of the varying b� l). Only the solution to the
more complicated D

[i;j]

is presented here. Each D
[i;j]

is the minimum, at position l, of candidates,

76

dotted line indicates
minimum envelope

0

0 b

Figure 6.5: Five candidate lines and their minimum envelope.

f(m) = y + c � (x�m), whose origin on the x-axis is somewhere between l and b. Considering
the D

[i;j]

recurrence from the viewpoint of a particular position b, multiple D
[i;j]

values might be
required at b, each with (j � i) � bp = b and with differing l values. The solution is to construct
a data structure at each position b which stores 8 0 � m � b : min

m�k�b

fE

k

+ c � (k � m)g.
Graphically, this is illustrated in Figure 6.5 as the minimum envelope of the candidate lines for
0 � m � b. The value of D

[i;j]

is then computed by searching the data structure at b = (j � i) � bp

for the minimal value at m = i+ lmin.
The data structure constructed at each position b is an ordered list of the candidates in the

minimum envelope and the sub-ranges of 0::b in which each candidate is minimal. Since the
candidates ordered by their minimal sub-ranges are also ordered by their origin positions k and
since each candidate is minimal over a contiguous region of 0::b by the zero or infinite intersection
property, constructing the list at b+ 1 from the list at b involves 1) removing candidates at the tail
of the list which are eliminated by the new candidate with origin position at b+ 1 and 2) inserting
the new candidate at the tail of the list. Implementing the list with a balanced search tree yields an
O(N logN) construction algorithm and O(logN) searches for the I D

[i;j]

values.
The solution to the RL recurrence is essentially the inverse of the LR algorithm. The abstract

RL recurrence takes the form of D
j

= minfE

[i

0

;j

0

]

+ c � (h � j) j [i

0

; j

0

] 2 I

a

where b � j < h =

j

0

+ rming. Graphically, the picture looks like that of Figure 6.5 again except that the range is
j::N , not 0::b, and the intervals are not evenly distributed at each position, but occur according
to the individual j0 + rmin values. The algorithm is the inverse of the previous algorithm for
the following two reasons. First, only the value at i must be retrieved from the data structure
constructed at i, unlike the previous algorithm in which queries could vary over the range 0::b.
Second, new candidates at j, i.e. the candidates from each interval [i0; j0] where (j0 � i

0

) � bp = j,
can have origin positions, j0 + rmin, anywhere from j to N . So, those candidates can be inserted
anywhere into the minimum envelope of j. The construction of the list at j +1 from the list at j in
this case involves 1) removing the head of the list if that candidate’s origin position j0+ rmin = j,
2) inserting the new candidates, where (j 0� i0)�bp = j+1, which will now appear in the minimum
envelope at j + 1 and 3) removing the candidates from the list at j which are eliminated from the
minimum envelope by the insertion of the new candidates at j + 1. Steps 2 and 3 are equivalent
to the procedure described in the last paragraph for inserting new candidates into the LR data
structure, except that the insertion uses only the sub-list of the current envelope which is minimal
from j+1 to j0+ rmin, instead of the whole list, and the candidate currently minimal at j0+ rmin

77

is not necessarily removed from the list, as it may still be minimal to the right of j 0 + rmin.
Implementing this using a balanced binary search tree gives an O((N + I) logN) time complexity
to the algorithm, since the three construction steps use a constant number of list operations.

Taken together, these four algorithms compute the linear extensions to the affine scored explicit
spacers, implicit spacers and repair intervals in O((N + I) logN) time per matching graph row.

78

CHAPTER 7

CONCLUSIONS

This dissertation considers the problems and algorithms of discrete pattern matching over
sequences and interval sets, presenting a coherent framework and new algorithms for discrete
pattern matching over sequences and developing the sub-domain of discrete pattern matching
over interval sets. Much of the work in discrete pattern matching over sequences has focused
on specific problems and the techniques required to solve those specific problems. Despite 20
years of research, the range of algorithms for pattern matching over sequences have never really
been characterized in a framework similar to that presented in this dissertation, although the use
of such a framework has been implicit in many papers. Even the survey papers either attempt
no such framework, or concentrate only on smaller regions of the domain (i.e. the keyword, set
of keyword and k differences triangle or the edit distance, LCS, sequence comparison triangle).
Chapter 2 presents the elements of a alignment-graph/dynamic-programming framework for this
sub-domain of discrete pattern matching which are required by the later chapters of the dissertation.
The structure of the framework appears to be general enough, however, to capture the rest of the
sub-domain’s algorithms.

Using this framework, Chapter 3 presents the first sub-cubic algorithms for approximate regular
expression pattern matching with concave gap penalties. The use of the framework greatly simplifies
the algorithm’s description, since the computations of the insertion and deletion gaps, which are the
cause of the cubic-time behavior for the naive algorithm, are characterized easily in terms of two
“one-dimensional” problems. However, the final solution requires mechanisms and computations
above and beyond the straightforward dynamic programming algorithms in order to achieve the
improvement in the complexity bound. The most significant of those are the applicative candidate
lists used to model minimum envelopes and the use of a “balancing act” between the cost of
maintaining multiple candidate lists throughout the algorithm and the cost of merging separate
candidate lists.

Chapter 4 develops the alignment-graph/dynamic-programming framework for extended regular
expressions and presents new algorithms for their exact and approximate matching. The framework
and algorithms for these patterns are not obvious extensions to those of regular expressions, but
require new assumptions about the notion of a path through the alignment graph and the definition
of an approximate match between a sequence and an extended regular expression.

And finally, Chapters 5 and 6 develop the sub-domain of discrete pattern matching over interval
sets, or super-pattern matching. This problem formulation is useful for those applications where
a simple sequence or regular expression of symbols cannot characterize the desired “pattern” and
a more general recognition hierarchy is required. The two chapters cover a wide range of exact
and approximate matching problems for this sub-domain and develop a matching-graph/dynamic-
programming framework to describe the algorithms for that range of problems. And, as with the
regular expression problem of Chapter 3, the more complicated matching problems are solved

79

using techniques beyond naive dynamic programming, such as the sliding window, range tree and
inverted skyline algorithms.

There are still a number open problems in discrete pattern matching over sequences. However,
most of these appear to be of a more theoretical vein. A number of questions exist involving
extending sequence comparison solutions to approximate pattern matching of regular expressions,
extended regular expressions and even for context-free grammars. The most notable open problems
for regular expressions are (1) using the Four Russians approach to produce a sub-quadratic
approximate matching algorithm, (2) an O(ND) approximate matching algorithm under the edit
distance scoring model, where D is the optimal alignment score, (3) extending the work on
approximate matching from fragments and (4) approximate regular expression pattern matching
with non-monotone increasing convex gap penalties. One very interesting open problem for
extended regular expressions and context-free grammars is approximate matching with concave or
convex gap penalties. For CFG’s, the best algorithm appears to be an O(N5

) or O(N6

) algorithm,
whereas for ERE’s it is not clear whether an optimal match can be defined (as the recursive match
definition and the gap penalty scoring model are not easily merged).

For super-pattern matching, one major question left unaddressed is its efficiency in practice.
While the theoretical complexity bounds do give pattern and input dependent limits to the running
time for specific problems, the actual behavior of the algorithms for common super-pattern matching
problems has not been explored. How fast does it really run on realistic problems? Second to that,
and related to it, is the question of incorporating context-sensitive information into the matching.
The information in many of the problems requiring recognition hierarchies and AI techniques cannot
easily be modeled using only intervals and interval types. One example of this is on-line handwriting
recognition, where the one-dimensional space can model the passing of time and the interval sets
can represent the drawn lines and arcs, but there is no easy way to represent the geographic
relationship between those lines and arcs using only intervals. A mechanism for incorporating this
context-sensitive information greatly simplifies the description of the problem. However, including
that information into the problem description invalidates the polynomial complexity bounds for the
algorithms. Despite the worst-case exponential behavior resulting from allowing this information,
can the super-pattern matching algorithms do “well enough” for realistic problems, in terms of
either the end user’s perception of the speed of the algorithm or by comparison with other artificial
intelligence approaches. Apart from those two questions, the other open problems for super-pattern
matching are the completion of the range of corresponding problems and sub-cases forming the
domain of approximate pattern matching over sequences, such as extending the affine scoring
scheme to allow concave or convex functions. This dissertation developed the core of the domain,
and covered the problems with practical applications. However, the more theoretical problems
from discrete pattern matching over sequences were left unanswered for super-pattern matching.

80

REFERENCES

[AC75] Alfred V. Aho and Margaret J. Corasick. “Efficient String Matching: An Aid to
Bibliographic Search.” C. ACM 18,6 (June 1975), 333–340.

[AE86a] S. Altschul and B. W. Erickson. “Optimal Sequence Alignments Using Affine Gap
Costs.” Bull. Math. Biol. 48 (1986), 606–616.

[AE86b] Stephen F. Altschul and Bruce W. Erickson. “Locally Optimal Subalignments Using
Nonlinear Similarity Functions.” Bull. Math. Biol. 48,5/6 (1986), 633–660.

[AG87] Alberto Apostolico and C. Guerra. “The Longest Common Subsequence Problem
Revisited.” Algorithmica 2 (1987), 315–336.

[AGM+90] S. Altschul, W. Gish, Webb Miller, Eugene W. Myers, and D. Lipman. “A Basic
Local Alignment Search Tool.” J. Mole. Biol. 215 (1990), 403–410.

[AHU76] Alfred V. Aho, Daniel S. Hirschberg, and Jeffery D. Ullman. “Bounds on the
Complexity of the Longest Common Subsequence Problem.” J. ACM 23,1 (January
1976), 1–12.

[AKM+87] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter Shor, and Robert Wilber.
“Geometric Applications of a Matrix-Searching Algorithm.” Algorithmica 2 (1987),
195–208.

[Alb67] C. N. Alberga. “String Similarity and Misspellings.” C. ACM 10,5 (May 1967),
302–313.

[All70] F. E. Allen. “Control Flow Analysis.” SIGPLAN Notices 5 (1970), 1–19.

[AP72] Alfred V. Aho and Thomas G. Peterson. “A Minimum Distance Error-Correcting
Parser for Context-Free Languages.” SIAM J. Computing 1,4 (December 1972),
305–312.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques and Tools. Addison-Wesley, Reading, Mass. (1986).

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and

Compiling, Vol. 1, Parsing. Prentice-Hall, Englewood Cliffs, NJ. (1972).

[AWM+84] R. M. Arbarbanel, P. R. Wieneke, E. Mansfield, D. A. Jaffe, and D. L. Brutlag.
“Rapid Searches for Complex Patterns in Biological Molecules.” Nucl. Acids Res.

12,1 (1984), 263–280.

[BM77] Robert S. Boyer and J. Strother Moore. “A Fast String Searching Algorithm.”
C. ACM 20,10 (October 1977), 762–772.

[Brz64] J. A. Brzozowski. “Derivatives of Regular Expressions.” J. ACM 11 (1964),
481–494.

81

[BS86] Gerard Berry and Ravi Sethi. “From Regular Expressions to Deterministic Au-
tomata.” Theo. Comp. Sci. 48,1 (1986), 117–126.

[BYP92] Ricardo A. Baeza-Yates and Chris H. Perleberg. “Fast and Practical Approximate
String Matching.” In LNCS 664: Proc. 3rd Symp. Combinatorial Pattern Matching

(1992), 185–192.

[CHM93] Kun-Mao Chao, Ross C. Hardison, and Webb Miller. “Constrained Sequence Align-
ment.” Bull. Math. Biol. 55,3 (1993), 503–524.

[CL90] William I. Chang and Eugene L. Lawler. “Sublinear Expected Time Approximate
String Matching and Biological Applications.” In Proc. 31st FOCS (October
1990), 116–124.

[CL92] William I. Chang and Jordan Lampe. “Theoretical and Empirical Comparisons
of Approximate String Matching Algorithms.” In LNCS 664: Proc. 3rd Symp.

Combinatorial Pattern Matching (1992), 175–184.

[CP90] Francis Chin and C. K. Poon. “A Fast Algorithm for Computing Longest Common
Subsequences of Small Alphabet Size.” Tech. Report TR-90-08. Univ. of Hong
Kong, Dept. of Computer Science (July 1990).

[CP92] Chia-Hsiang Chang and Robert Paige. “From Regular Expressions to DFA’s Us-
ing Compressed NFA’s.” In LNCS 664: Proc. 3rd Symp. Combinatorial Pattern

Matching (1992), 90–110.

[CPM92] Kun-Mao Chao, William R. Pearson, and Webb Miller. “Aligning Two Sequences
within a Specified Diagonal Band.” CABIOS 8,5 (1992), 481–487.

[CW79] B. Commentz-Walter. “A String Matching Algorithm Fast on the Average.” In
Proc. 6th Int. Colloq. Automata, Lang., and Prog. (July 1979), 118–132.

[Dam64] F. J. Damerau. “A Technique for Computer Detection and Correction of Spelling
Errors.” C. ACM 7,3 (March 1964), 171–176.

[Ear70] Jay Earley. “An Efficient Context-Free Parsing Algorithm.” C. ACM 13,2 (Febru-
ary 1970), 94–102.

[Epp90] David Eppstein. “Sequence Comparison with mixed Convex and Concave Costs.”
J. Algorithms 11 (1990), 85–101.

[FCK+91] T. Fujisaki, T. E. Chefalas, J. Kim, C. C. Tappert, and C. G. Wolf. “Online Run-On
Character Recognition: Design and Performance.” Inter. J. Pat. Rec. and Art. Intell.

5 (1991), 123–137.

[Fic84] James W. Fickett. “Fast Optimal Alignment.” Nucl. Acids Res. 12,1 (1984),
175–179.

[FS83] W. M. Fitch and Temple F. Smith. “Optimal Sequence Alignments.” Proc. Nat.

Acad. Sci. U. S. A. 80 (1983), 1382–1386.

[FS90] C. A. Fields and C. A. Soderlund. “gm: A Practical Tool for Automating DNA
Sequence Analysis.” CABIOS 6,3 (1990), 263–270.

82

[GG86] Zvi Galil and Raffaele Giancarlo. “Improved String Matching with k Mismatches.”
SIGACT News 17,4 (1986), 52–54.

[GG88] Zvi Galil and Raffaele Giancarlo. “Data Structures and Algorithms for Approximate
String Matching.” J. Complexity 4 (1988), 33–72.

[GG89] Zvi Galil and Raffaele Giancarlo. “Speending Up Dynamic Programming with
Applications to Molecular Biology.” Theo. Comp. Sci. 64 (1989), 107–118.

[GHR80] S. Graham, M. Harrison, and W. Ruzzo. “An Improved Context-Free Recognizer.”
ACM TOPLAS 2,3 (July 1980), 415–462.

[GK82] Walter B. Goad and Minoru I. Kanehisa. “Pattern Recognition in Nucleic Acid
Sequences. I. A General Method for Finding Local Homologies and Symmetries.”
Nucl. Acids Res. 10,1 (1982), 247–263.

[GKDS92] Roderic Guigó, Steen Knudsen, Neil Drake, and Temple F. Smith. “Prediction of
Gene Structure.” J. Mole. Biol. 226 (1992), 141–157.

[GL89] R. Grossi and F. Luccio. “Simple and Efficient String Matching with k Mismatches.”
Info. Proc. Let. 33 (1989), 113–120.

[Got82] Osamu Gotoh. “An Improved Algorithm For Matching Biological Sequences.”
J. Mole. Biol. 162 (1982), 705–708.

[Got87] Osamu Gotoh. “Pattern Matching of Biological Sequences with Limited Storage.”
CABIOS 3,1 (1987), 17–20.

[GP89] Zvi Galil and Kunsoo Park. “A Linear-Time Algorithm for Concave One-
Dimensional Dynamic Programming.” Info. Proc. Let. 33 (1989), 309–311.

[GP90] Zvi Galil and Kunsoo Park. “An Improved Algorithm for Approximate String Match-
ing.” SIAM J. Computing 19,6 (December 1990), 989–999.

[Hat74] J. P. Haton. “Practical Application of a Real-Time Isolated-Word Recognition Sys-
tem using Syntactic Constraints.” IEEE Trans. Acoustics, Speech and Signal Pro-

cessing 22,6 (1974), 416–419.

[HD80] Patrick A. V. Hall and Geoff R. Dowling. “Approximate String Matching.” Comp.

Surveys 12,4 (December 1980), 381–402.

[Hir75] Daniel S. Hirschberg. “A Linear Space Algorithm for Computing Maximal Common
Subsequences.” C. ACM 18,6 (June 1975), 341–343.

[Hir77] Daniel S. Hirschberg. “Algorithms for the Longest Common Subsequence Problem.”
J. ACM 24,4 (October 1977), 664–675.

[Hir89] Stephen Hirst. “A New Algorithm Solving Membership of Extended Regular Ex-
pressions.” Univ. of Syndey, Dept. of Computer Science. Draft Copy (1989).

[HL87] Daniel S. Hirschberg and Lawrence L. Larmore. “The Least Weight Subsequence
Problem.” SIAM J. Computing 16,4 (August 1987), 628–638.

83

[HM91] Xiaoqiu Huang and Webb Miller. “A Time-Efficient, Linear-Space Local Similarity
Algorithm.” Adv. Appl. Math. 12 (1991), 337–357.

[Hor80] R. N. Horspool. “Practical Fast Searching in Strings.” Software - Pract. Exper. 10
(1980), 501–506.

[HS77] James W. Hunt and Thomas G. Szymanski. “A Fast Algorithm for Computing
Longest Common Subsequences.” C. ACM 20,5 (May 1977), 350–353.

[HS91] Andrew Hume and Daniel M. Sunday. “Fast String Searching.” Software - Pract.

Exper. 21,11 (November 1991), 1221–1248.

[HU75] Matthew S. Hecht and Jeffrey D. Ullman. “A Simple Algorithm for Global Data
Flow Analysis.” SIAM J. Computing 4,4 (December 1975), 519–532.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, Reading, Mass. (1979).

[JTU91] Petteri Jokinen, Jorma Tarhio, and Esko Ukkonen. “A Comparison of Approximate
String Matching Algorithms.” Tech. Report A-1991-7. Univ. of Helsinki, Dept. of
Computer Science (1991).

[Kas65] T. Kasami. “An Efficient Recognition and Syntax-Analysis Algorithm for Context-
Free Languages.” Tech. Report AFCRL-65-758. Air Force Cambridge Research
Laboratory (1965).

[Kil85] J. Kilbury. “A Modification of the Earley-Shieber Algorithm for Direct Parsing with
ID/LP-Grammars.” In Informatik-Fachberichte 103: Proc. 8th German Workshop

on AI, J. Laubsch (ed.). Springer-Verlag, Berlin. (1985), 39–48.

[KK90] Maria K. Klawe and Daniel J. Kleitman. “An Almost Linear Time Algorithm for
Generalized Matrix Searching.” SIAM J. Disc. Math. 3,1 (February 1990), 81–97.

[Kle56] S. C. Kleene. “Representation of Events in Nerve Nets and Finite Automata.” In
Automata Studies, C. E. Shannon and J. McCarthy (eds.). Princeton University Press.
(1956), 3–41.

[KMP77] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. “Fast Pattern Matching
in Strings.” SIAM J. Computing 6,2 (June 1977), 323–350.

[Knu73] Donald E. Knuth. Sorting and Searching: The Art of Computer Programming, Vol.

3. Addison-Wesley, Reading, Mass. (1973).

[KST92] Jong Yong Kim and John Shawe-Taylor. “Fast Multiple Keyword Searching.” In
LNCS 664: Proc. 3rd Symp. Combinatorial Pattern Matching (1992), 41–51.

[LBB+89] Alan S. Lapedes, Christopher Barnes, Christian Burks, Robert M. Farber, and Karl M.
Sirotkin. “Application of Neural Networks and Other Machine Learning Algorithms
to DNA Sequence Analysis.” In Computers and DNA, SFI Studies in the Sciences

of Complexity, Vol. VII, George Bell and T. Marr (eds.). Addison-Wesley, Redwood
City, CA. (1989).

84

[Ld90] Lectures and discussions. Workshop on Recognizing Genes. Aspen Center for
Physics, (May 1990).

[LV88] Gad M. Landau and Uzi Vishkin. “Fast String Matching with k Difference.”
J. Comp. Sys. Sci. 37,1 (August 1988), 63–78.

[LV89] Gad M. Landau and Uzi Vishkin. “Fast Parallel and Serial Approximate String
Matching.” J. Algorithms 10 (1989), 157–169.

[LVN89] Gad M. Landau, Uzi Vishkin, and Ruth Nussinov. “Fast Alignment of DNA and
Protein Sequences.” Tech. Report CS-TR-2199 or UMIACS-TR-89-20. Univ. of
Maryland, Inst. for Adv. Computer Studies, Dept. of Computer Science (1989).

[LW75] Roy Lowrance and Robert A. Wagner. “An Extension of the String-To-String Cor-
rection Problem.” J. ACM 23,1 (April 1975), 177–183.

[LWS87] Richard H. Lathrop, Teresa A. Webster, and Temple F. Smith. “Ariadne: Pattern-
Directed Inference and Hierarchical Abstraction in Protein Structure Recognition.”
C. ACM 30,11 (November 1987), 909–921.

[Mea55] G. H. Mealy. “A Method for Synthesizing Sequential Circuits.” Bell System Tech-

nical Journal 34 (September 1955), 1045–1079.

[Mey85] Bertrand Meyer. “Incremental String Matching.” Info. Proc. Let. 21 (1985),
219–227.

[MM85] Webb Miller and Eugene W. Myers. “A File Comparison Program.” Software -

Pract. Exper. 15 (1985), 1025–1040.

[MM88a] Webb Miller and Eugene W. Myers. “Sequence Comparison with Concave Weight-
ing Functions.” Bull. Math. Biol. 50,2 (1988), 97–120.

[MM88b] Eugene W. Myers and Webb Miller. “Optimal Alignments in Linear Space.”
CABIOS 4,1 (1988), 11–17.

[MM89a] Eugene W. Myers and Webb Miller. “Approximate Matching of Regular Expres-
sions.” Bull. Math. Biol. 51,1 (1989), 5–37.

[MM89b] Eugene W. Myers and Webb Miller. “Row Replacement Algorithms for Screen
Editors.” ACM TOPLAS 11,1 (January 1989), 33–56.

[Moo56] E. F. Moore. “Gedanken Experiments on Sequential Machines.” In Automata

Studies, C. E. Shannon and J. McCarthy (eds.). Princeton University Press. (1956),
129–153.

[Mor70] Howard L. Morgan. “Spelling Correction in System Programs.” C. ACM 13,2
(February 1970), 90–94.

[MP80] William J. Masek and Michael S. Paterson. “A Faster Algorithm for Computing
String Edit Distances.” J. Comp. Sys. Sci. 20,1 (1980), 18–31.

[MY60] R. McNaughton and H. Yamada. “Regular Expressions and State Graphs for Au-
tomata.” IRE Trans. on Elect. Computers 9,1 (March 1960), 39–47.

85

[Mye84] Eugene W. Myers. “Efficient Applicative Data Types.” In Proc. 11th Symp. POPL

(1984), 66–75.

[Mye86] Eugene W. Myers. “An O(ND) Difference Algorithm and Its Variations.” Algo-

rithmica 1 (1986), 251–266.

[Mye88] Eugene W. Myers. “A Four-Russians Algorithm for Regular Expression Pattern
Matching.” Tech. Report TR-88-34. Univ. of Arizona, Dept. of Computer Science
(1988).

[Mye90] Eugene W. Myers. “A Sublinear Algorithm for Approximate Keyword Searching.”
Tech. Report TR-90-25. Univ. of Arizona, Dept. of Computer Science (1990).

[NKY82] Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. “A Longest Common
Subsequence Algorithm Suitable for Similar Text Strings.” Acta Info. 18 (1982),
171–179.

[NS83] Andrew S. Noetzel and Stanley M. Selkow. “An Analysis of the General Tree-
Editing Problem.” In Time Warps, String Edits, and Macromolecules: The Theory

and Practice of Sequence Comparison, David Sankoff and Joseph B. Kruskal (eds.).
Addison-Wesley, Reading, Mass. (1983), Chapter 8, 237–263.

[NW70] Saul B. Needleman and Christian D. Wunsch. “A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins.” J. Mole. Biol.

48,3 (March 1970), 443–453.

[Oom91] B. John Oommen. “String Editing with Substitution, Insertion, Deletion, Squashing
and Expansion Operations.” Tech. Report SCS-TR-194. Carleton Univ., School of
Computer Science (September 1991).

[PL88] William R. Pearson and David J. Lipman. “Improved Tools for Biological Sequence
Comparison.” Proc. Nat. Acad. Sci. U. S. A. 85 (April 1988), 2444–2448.

[Rai92] Timo Raita. “Tuning the Boyer-Moore-Horspool String Search Algorithm.” Soft-

ware - Pract. Exper. 22,10 (October 1992), 879–884.

[RCW73] T. A. Reichert, D. N. Cohen, and A. K. C. Wong. “An Application of Information
Theory to Genetic Mutations and the Matching of Polypeptide Sequences.” J. Theo.

Biol. 42 (1973), 245–261.

[San72] David Sankoff. “Matching Sequences Under Deletion/Insertion Constraints.”
Proc. Nat. Acad. Sci. U. S. A. 69,1 (January 1972), 4–6.

[SC71] H. Sakoe and S. Chiba. “A Dynamic-Programming Approach to Continuous Speech
Recognition.” In 1971 Proc. Inter. Cong. Acoustics (1971), Paper 20 C 13.

[Sea89] David B. Searls. “Investigating the Linguistics of DNA with Definite Clause Gram-
mars.” In Proc. North Amer. Conf. Logic Prog., Vol. 1 (1989), 189–208.

[Sel74a] Peter H. Sellers. “An Algorithm for the Distance Between Two Finite Sequences.”
J. Comb. Theo. Series A,16 (1974), 253–258.

86

[Sel74b] Peter H. Sellers. “On the Theory and Computation of Evolutionary Distances.”
SIAM J. Appl. Math. 26,4 (June 1974), 787–793.

[Sel80] Peter H. Sellers. “The Theory and Computation of Evolutionary Distances: Pattern
Recognition.” J. Algorithms 1,1 (March 1980), 359–373.

[Sel84] Peter H. Sellers. “Pattern Recognition in Genetic Sequences by Mismatch Density.”
Bull. Math. Biol. 46,4 (1984), 501–514.

[SK83] David Sankoff and Joseph B. Kruskal (eds.). Time Warps, String Edits, and Macro-

molecules: The Theory and Practice of Sequence Comparison. Addison-Wesley,
Reading, Mass. (1983).

[Smi91] P. D. Smith. “Experiments with a Very Fast Substring Search Algorithm.” Software

- Pract. Exper. 21,10 (October 1991), 1065–1074.

[ST85] Daniel Sleator and Robert Endre Tarjan. “Self-Adjusting Binary Search Trees.”
J. ACM 32,3 (July 1985), 652–686.

[Ste92] Graham A. Stephen. “String Search.” Tech. Report TR-92-gas-01. Univ. College
of North Wales, School of Elect. Eng. Sci. (October 1992).

[Sto88] Gary D. Stormo. “Computer Methods for Analyzing Sequence Recognition of Nu-
cleic Acids.” Rev. Biophys. Chem. 17 (1988), 241–263.

[Sun90] Daniel M. Sunday. “A Very Fast Substring Search Algorithm.” C. ACM 33 (1990),
132–142.

[SW81] Temple F. Smith and Michael S. Waterman. “Identification of Common Molecular
Subsequences.” J. Mole. Biol. 147 (1981), 195–197.

[SWF81] Temple F. Smith, Michael S. Waterman, and W. M. Fitch. “Comparative Biosequence
Metrics.” J. Mole. Evol. 18 (1981), 38–46.

[Tay84] Philip Taylor. “A Fast Homology Program for Aligning Biological Sequences.”
Nucl. Acids Res. 12,1 (1984), 447–455.

[Tho68] Ken Thompson. “Regular Expression Search Algorithm.” C. ACM 11,6 (June
1968), 419–422.

[Tic84] Walter F. Tichy. “The String-to-String Correction Problem with Block Moves.”
ACM Trans. on Computer Systems 2,4 (November 1984), 309–321.

[Tom86] Masaru Tomita. Efficient Parsing for Natural Languages. Kluwer Academic Pub-
lishers. (1986).

[Ukk85] Esko Ukkonen. “Algorithms for Approximate String Matching.” Info. and Control

64 (1985), 100–118.

[Vin68] T. K. Vintsyuk. “Speech Discrimination by Dynamic Programming.” Cybernetics

4,1 (1968), 52–57.

[VZ70] V. M. Velichko and N. G. Zagoruyko. “Automatic Recognition of 200 Words.”
Inter. J. Man-Machine Studies 2 (1970), 223–234.

87

[Wag74] Robert A. Wagner. “Order-n Correction of Regular Languages.” C. ACM 17,5
(May 1974), 265–268.

[Wat84a] Michael S. Waterman. “Efficient Sequence Alignment Algorithms.” J. Theo. Biol.

108 (1984), 333–337.

[Wat84b] Michael S. Waterman. “General Methods for Sequence Comparison.”
Bull. Math. Biol. 46,4 (1984), 473–500.

[WC76] C. K. Wong and Ashok K. Chandra. “Bounds for the String Editing Problem.”
J. ACM 23,1 (January 1976), 13–16.

[WE87] Michael S. Waterman and M. Eggert. “Letters to the Editor: A New Algorithm
for Best Subsequence Alignments with Applications to tRNA-rRNA Comparisons.”
J. Mole. Biol. 197 (1987), 723–728.

[WF74] Robert A. Wagner and Michael J. Fischer. “The String-To-String Correction Prob-
lem.” J. ACM 21,1 (January 1974), 168–173.

[Wil88] Robert Wilber. “The Concave Least-Weight Subsequence Problem Revisited.”
J. Algorithms 9 (1988), 418–425.

[WL83] W. J. Wilbur and David J. Lipman. “Rapid Similarity Searches of Nucleic Acid and
Protein Data Banks.” Proc. Nat. Acad. Sci. U. S. A. 80 (February 1983), 726–730.

[WM91] Sun Wu and Udi Manber. “Fast Text Searching With Errors.” Tech. Report TR-91-
11. University of Arizona, Department of Computer Science (1991).

[WMM92] Sun Wu, Udi Manber, and Eugene W. Myers. “A Sub-quadratic Algorithm for
Approximate Limited Expression Matching.” Tech. Report TR-92-36. Univ. of
Arizona, Dept. of Computer Science (1992).

[WS78] Robert A. Wagner and Joel L. Seiferas. “Correcting Counter-Automaton-
Recognizable Languages.” SIAM J. Computing 7,3 (August 1978), 357–375.

[WSB76] Michael S. Waterman, Temple F. Smith, and W. A. Beyer. “Some Biological Se-
quence Metrics.” Adv. Math. 20 (1976), 367–387.

[You67] Daniel H. Younger. “Recognition and Parsing of Context-Free Languages in Time
Nˆ3.” Info. and Control 10,2 (1967), 189–208.

