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Abstract

This report is a discussion of various techniques for representing type information in dynamically

typed languages, as implemented on general-purpose machines (and costs are discussed in terms

of modern RISC machines). It is intended to make readily available a large body of knowledge

that currently has to be absorbed piecemeal from the literature or re-invented by each language

implementer. This discussion covers not only tagging schemes but other forms of representation as

well, although the discussion is strictly limited to the representation of type information. It should

also be noted that this report does not purport to contain a survey of the relevant literature. Instead,

this report gathers together a body of folklore, organizes it into a logical structure, makes some

generalizations, and then discusses the results in terms of modern hardware.
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1 Introduction

In a statically typed language it is not a problem that each oating point number has a representation that

is identical to the representation of some integer, because the type of representation is known at compile

time and the compiler can generate the right code to deal with the representation. In a dynamically

typed language however, the machine representations of data objects cannot, in general, be determined

at compile time because there is nothing in the syntax of the language to tell the compiler what type of

data object is being represented. In such languages, it is necessary to include information at runtime to

distinguish every value from every other value. Theoretically, the only requirement for dynamic typing is

that each representation must represent a unique value, regardless of type. Practically, the representation

must be such that it is possible to e�ciently convert between machine representations and the uniform

representation, and to quickly determine what sort of object is being represented.

This report is a general discussion of representation schemes |tagging and otherwise| and the

various trade-o�s that are available. Speed is the major concern, but portability, space requirements, and

register usage are also discussed. This is not a theoretical treatment, but a down-and-dirty discussion

of real machines and real costs of real implementations. Dynamic type operations are frequent enough

that a trick to save just one machine cycle can have noticeable e�ects on the performance of a set of

benchmarks, and so this paper deals seriously with such tricks. Be aware that since this is a discussion

of implementations, the word \type" is used here to mean an implementation type (an encoding of some

set of abstract values into machine words) and not an abstract type.

One should also be aware that there is no general agreement in terminology about representational

issues. This document introduces and de�nes many terms, but it should not be understood from such

a de�nition that the term being de�ned is actually used that way in all of the relevant literature. In

fact several new terms have been introduced to talk about things that previously had no names. Also,

those terms that are used in the literature are often de�ned to make it easy to talk about a speci�c

implementation or a speci�c language, and as such they tend to be unnecessarily restricted. In several

such cases, this document o�ers a generalized de�nition of the term that leaves its meaning unchanged in

its previous incarnations and at the same time makes it useful for more general discussions. A glossary

is provided at the end.

The process of converting from a statically typed representation of a value to a dynamically typed

representation is referred to as \wrapping" the value, and the process of converting back to a statically

typed representation is referred to as \unwrapping". The representation of a wrapped value is called

a \wrapper". Actually the wrapper is only the minimal representation used to encode a piece of data

|the part that is passed to procedures, returned from procedures, etc. If the data value needs a large

amount of memory to represent, then it is usually encoded in a special block of memory allocated for

it, and the wrapper only contains a reference to this block of memory. Values that are represented in

this way are said to be represented \indirectly" and are called \indirect" values. Other values are said

to be represented \directly" and are called \direct" values

1

. In some of the literature, the operation of

creating an indirect wrapper to a number is called \boxing". For example, an integer is boxed if it is

represented by a tagged pointer to an integer, it is not boxed if it is represented directly. We will avoid

this terminology to avoid possible confusion between the meanings of \wrap/unwrap", \tag/untag", and

\box/unbox".

Given a data element of n bits, it is possible to represent 2

n

di�erent values. It is important to

note that this means 2

n

di�erent values total, not 2

n

di�erent values of each type. The technique of

implementing objects indirectly (by pointers) does not actually increase the number of objects that can

be represented at one time, rather it has the e�ect of de�ning these representations dynamically. That is,

the same data element can represent di�erent values at di�erent times because it is a pointer to a block

1

Direct values should not be confused with immediate values which are compile-timeconstants represented in themachine

code.
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that can change.

There are several broad categories of techniques for wrapping data:

Tagged Words. Machine words are divided into a tag �eld and a data �eld. For indirectly represented

objects, the value that is represented in the machine word is a pointer to the object.

Partitioned Words. The set of bit patterns that a word can represent is divided up among the types so

that each type must restrict its values to those that can be represented by the bit patterns allocated

to the type.

Object Pointers. A wrapped value is simply a pointer to a self-identifying block in memory (usually

on the heap) and the type of the block is encoded in the block itself (for example the �rst word of

every block might be an integer type code).

Large Wrappers. A wrapper consists of two or more words so it is large enough to represent a full-sized

machine value as well as a type code.

Typed Locations. The type of a value is determined by where the value is stored. Static typing is a

special case of this technique.

Hybrid Representations. A combination of the above techniques.

This paper discusses these representation strategies, their costs, and the various implementation

tricks that can be used to reduce or redistribute the costs. Costs are discussed in terms of three generic

operations performed on wrapped values:

is_T(v)| test a dynamically typed value v to see if it is of type T. This is probably the most common

operation, but it does not fully reect the cost of identifying dynamic types. Section 8, \Dispatch-

ing on Dynamic Type" discusses this in more detail. If t is a type name, then we use t_T to

name the integer type code for that type (if there is such a code).

wrap_T(v) | given a machine representation v of some value, produce the appropriate dynamically

typed value of type T.

unwrap_T(V) | given a dynamically typed value V with type T, produce the machine representa-

tion of V. This operation should be the inverse of wrap_T so that wrap T(unwrap T(V)) = V and

unwrap T(wrap T(v)) = v, as long as V and v are in the appropriate domains.

Operations are described as C macros, so the term \produce" as used above has two meanings. When

viewed as a C macro, a value is produced by making it the result of evaluating the macro. Viewed at

a lower level, a value is \produced" simply by putting it into a register. One extension has been added

to C for the purposes of this paper: binary numbers are given in the form 0bn where n is a sequence of

binary digits (0 and 1) representing a binary number. To increase readability, the macros are written

without the extra parentheses that are needed in C.

The cost of an operation is the number of machine cycles that would be required to execute the

operation on a generic RISC machine. Logical and arithmetic instructions are assumed to operate on

registers and to require one cycle. Loads and stores take two cycles: one to load or store the word,

and one to fetch and decode the load/store instruction itself (we ignore cache a�ects). The values being

operated on are assumed to be in registers both before and after the operation. A general comparison

is two cycles, one instruction to set a condition code and a second instruction to test the condition and

(maybe) branch.

Many RISC machines have delayed branches that execute one or more instructions in the normal

instruction stream after encountering a branch, before actually branching. These extra instruction posi-

tions after a branch are called \delay slots", and they complicate cost analysis considerably, because if
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these slots can be �lled with instructions that are useful for the case where the branch fails as well as

for the case where the branch succeeds, then the branch only costs one cycle. On the other hand if this

slot cannot be �lled with such an instruction, then the branch costs more. If a branch has a nop (for \no

operation") instruction in a delay slot, then an extra cycle should be added to the cost of the branch. If

a delay slot contains an instruction that is useful in one case but not another, then some fraction of a

cycle should be added to the cost, depending on the frequency of the cases. For the is_T() macros we

will assume that the success case is \expected" (if success is not expected, then the test is probably part

of a dispatch, which is discussed in section 8). In this case the delay slot can generally be �lled with an

instruction from the expected control path, and so we assume it is �lled. For other sorts of branches such

as numeric tests we do not make this assumption.

A \word" is the size of object that �ts in a general-purpose register, and the examples all assume that

a word is 32 bits. An immediate operand that has non-zero bits in the upper half of the word adds a cost

of 1 cycle if all bits in the lower half of the word are zero and 2 cycles otherwise. Such an operand is too

big to �t in the instruction word with the other operands, so it either must be constructed at run-time or

it must be fetched from the instruction stream after the current instruction, requiring another memory

fetch cycle. Generally such constants are constructed by using a special \load-high" instruction that sets

the high bits of a word, and then adding the low bits with an add instruction. If the constant has all

zero bits in the lower half of the word, then it can be constructed with a single load-high instruction so it

is given a cost of one cycle (which is also correct for a machine with full word-sized immediates). If the

constant has non-zero bits in the lower half then it requires two cycles to construct on machines without

full word-sized immediates and this is the cost used. This cost is correct for most RISC machines but not

for machines that have full word-sized immediates. One RISC architecture, the SPARC, only has 13-bit

immediates (less than half a word), but the costs given in this discussion are still applicable to SPARC

machines.

Some systems speed up the use of large constants by dedicating general-purpose registers to hold

them, but such techniques will not be considered in this report. The reason is that these techniques make

one speci�c job faster at the cost of adding an overhead to the rest of the execution. In this case the

implementor is taking a known cost (the cost of building a constant at runtime), associated with a known

operation, and amortizing that cost over all of the rest of the execution by restricting register availability.

Subsequently, the code that pays the cost of using these large constants may have nothing to do with

them, and a particular program that makes little or no use of the constants still pays the cost of having

them available. It is quite di�cult to measure the cost of this technique, and quite di�cult to show that

it is actually an optimization.

Bits in a word are numbered from most signi�cant to least signi�cant. In other words, the most

signi�cant (or sign) bit is numbered 0, and the least signi�cant bit is numbered 31 (in a 32-bit word).

The least signi�cant end of the word is called the \low" end, and the most signi�cant end is called the

\high" end.

A \cons cell" is a pair of words used to implement a linked list. Cons cell operations are common in

Lisp and Prolog, and so this type is used frequently in examples.

2 Tagged Words

The most commonway to represent dynamically typed data in Lisp and Prolog implementations is by the

use of a tag �eld. In this representation each wrapped value is a single machine word and each machine

word is viewed as a sequence of bits. The sequence of bits is divided up into one or more tag �elds for

encoding the type and (usually one) value �eld for encoding the data. This means that each value must

be represented in a smaller number of bits than there are available in a machine word, so that in general,

not all unwrapped values can be represented as wrapped values. However this technique leads to very

compact representations and fairly good access times.
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Another restriction of tagging is that the number of types must be severely restricted in order to leave

enough value representations of each type. This is not a problem if there are only a few built-in types,

but most modern languages provide for user-de�ned types

2

, and there can be arbitrarily many of these.

Tagged word representations generally allocate one tag to represent all user de�ned types together, and

use the object pointer method (section 4) to distinguish among them. This 2 stage representation has

additional overheads which should be taken into account.

Typically there is one �eld for the value and one �eld for the tag (some systems add a few more

�elds for garbage collection, cdr-coding, and such things). The operation of extracting the value �eld of

a tagged word is referred to as \untagging", and the operation of constructing a tagged value by setting

the tag and value portions of a word is referred to as \tagging" the value. In some cases (un)tagging is

identical to (un)wrapping and in some cases it is not.

In the following, examples will generally assume a 4-bit tag �eld, and shifts are always unsigned unless

indicated otherwise.

2.1 Tagged Pointers

There are di�erent concerns when tagging di�erent types of objects such as pointers, other unsigned

values, integers, and oats. The di�erence between pointers and other unsigned values is minor so these

two types are discussed together, but integers and oats are discussed separately in their own sections.

The tag �eld can either be placed in the high (most signi�cant) or low end of a word, and there are

advantages to each choice. Suppose the machine has a 32-bit word and an address space of 2

32

bytes.

If we restrict our pointers to the lower 2

28

bytes of memory, then the upper four bits of the pointers

will always be 0 so we can use these bits for tags. The following C macros might be used for wrapping,

unwrapping, and testing:

#define is_T(v) (v>>28) == t_T

#define wrap_T(v) v | (t_T<<28)

#define unwrap_T(v) (v << 4) >> 4

where v is the value to be wrapped or unwrapped, and t_T is the tag code associated with the type T.

Testing the type costs 1 cycle for the shift and 2 cycles for the compare for a total of 3 cycles.

Given that t_T is a constant, so is (t_T<<28), so the cost of wrapping would appear at �rst to be

1 cycle, since the only runtime operation is the the bitwise-or. However, the constant (t_T<<28) is too

large to be represented in a 16-bit integer, so it adds a cost of one cycle for the load-high (as discussed

above) and wrapping costs 2 cycles.

Unwrapping is done with two shifts for a cost of 2 cycles. The alternative implementation

#define unwrap_T(v) v & 0x0FFFFFFF

costs 3 cycles on most RISC machines because 0x0FFFFFFF is constructed in two cycles with a load-high

followed by an addition. On a machine that has full word-sized immediate operands, the cost of this

method is the same as two shifts.

Instead of putting the tags directly in the upper four bits, we can use a 4-bit shift and put the tags

in the lower four bits. The macros would look like this:

#define is_T(v) (v & 0b1111) == t_T

#define wrap_T(v) (v << 4) | t_T

#define unwrap_T(v) v >> 4

The costs for these operations are listed in table 1, which compares the costs of the using low bits vs.

using high bits for the tag. From this table it appears that it is better to use the low end of the word for

2

The functor and arity of a Prolog terms is considered here a sort of \user de�ned" type.
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Tag Operation Low-bits Tag High-bits Tag

is_T 3 3

wrap_T 2 2

unwrap_T 1 2

Table 1: Costs of High End vs. Low End Tags

a tag �eld, but there are more considerations. In particular, the numbers in the table are for operations

on general type codes but there are various optimizations for special type codes. For example, tags in

the low end that have only one non-zero bit can be tested in only two cycles by masking with the tag

value and then comparing to zero, assuming that comparison to 0 can be done in one cycle:

#define is_T(v) (v & t_T) != 0

For high-end tag �elds, the pointer that is given the tag 0b0000 does not need to be wrapped and

unwrapped because the tagged representation is the same as the untagged representation. This cannot

always be done if tags are kept in the lower end of the word; since the word must be shifted for tagging

there is never a type of tagged value that is identical to its untagged representation. However, many

machines and many implementations have alignment restrictions on certain kinds of pointers, and in

such cases some number of the least-signi�cant bits will always be 0b0. These lower bits can be used for

tagging without shifting the value, and the one tag of all zeros can be tagged and untagged for free. For

example, on byte-addressable 4-byte-per-word machines the lower two bits of an aligned word pointer are

always equal to 0b00 and these two bits can be used for up to four tags.

An implementation can enforce additional alignment restrictions to increase the size of this �eld. For

example in Monaco [4], a concurrent implementation of FGHC, values are represented with two words,

one for a tagged value and one for a semaphore (to prevent race conditions on changing the value). Since

all values need two words anyway, the Monaco system loses nothing by allocating all values on two word

boundaries, so they can use a 3-bit tagging scheme with no need to shift pointer values. Some Lisp

implementations (for example [16]) enforce a two word allocation boundary for this reason even though

it wastes some space. Instead of enforcing new alignment restrictions, an alternative is to just represent

a few pointer types without shifting, and to shift the rest (see section 2.4).

Many machines have an addressing mode that will automatically add a small constant to an address

(register) as part of a load or store. In this case, pointers that are tagged without shifting can be

untagged for free as long as the unwrapped value is only used to access memory, and as long as this is

done immediately after unwrapping the value. For example if word-aligned cons cells are given the 2-bit

tag 0b01, then the operations to access the �elds of a cons cell can be de�ned as

#define get_car(v) *(word*)((char*)v-1)

#define get_cdr(v) *(word*)((char*)v+3)

In these macros, v is �rst cast to a byte-pointer so that the addition is not scaled. After the addition the

pointer is re-cast to a pointer to a word. If the machine has load and store indirect-with-immediate-o�set

instructions, then the above instructions each take only two cycles (fetching and decoding the instruction

is one cycle, loading the value from memory is another cycle). Compare this to

#define get_car(v) *(v>>2)

#define get_cdr(v) *((word*)(v>>2)+1)

which takes 3 cycles for each instruction (fetch and decode, shift, load value). If the machine does not

have the load and store indirect-with-immediate-o�set instruction, then the tag value can be chosen such

that when the wrapped value is viewed as a pointer, it points to the most frequently accessed �eld.
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The scheme that puts the tag �eld in the low end of the word, then, can get free wrapping and

unwrapping for one value, and sometimes-free unwrapping for several other values. The restricted size of

the tag �eld for this technique can be a problem, but this can be handled by having a staged representation

(section 2.4).

2.1.1 Machine Values

If a value has a representation that the hardware machine can load into a register and operate on with

special instructions (such as integers and oating point values) then this value is a \machine value". Since

the operations of wrapping and unwrapping involve translating from and to machine representations, if

such a value is represented by a tagged pointer instead of a direct wrapped value, then wrapping and

unwrapping incur costs for referencing memory. If a tagged pointer references such a machine value, then

the operation of unwrapping the tagged pointer involves not only untagging the pointer, but loading the

referenced value into a register. Wrapping such a value requires allocating storage for it and storing it to

memory as well as tagging a pointer to the newly allocated location. The operations are

#define wrap_T(v) (alloc_T, *new = v, tag_T(new))

#define unwrap_T(v) *(T*)untag_T(v)

where tag_T() and untag_T() are macros to tag and untag pointers, and incur the costs for these

operations as given above. There is a potential confusion in this terminology. For example, if the machine

values being wrapped are integers, then the operation of \unwrapping" an integer involves untagging a

tagged pointer to the integer and then loading the integer. In other words, untagging is not the same as

unwrapping in this instance. This is because a wrapped integer is represented by a tagged pointer to an

(unwrapped) integer.

The reason it is important to distinguish between machine values and other sorts of values in this way is

because it is possible to wrap machine values directly (thereby restricting the range of those values). Since

direct representations can encode these values without allocating extra storage or referencing memory, it

is necessary to discuss all techniques in such a way that the extra costs are taken into consideration.

2.2 Tagged Integers

Integers are often represented as direct wrapped values. However, (signed) integers are more di�cult to

represent this way than pointers or unsigned values because the upper bits all depend on the sign of the

integer (at least on two's complement machines, which are now almost universal). Consequently, it is not

possible to just restrict the range of integers in order to get zero bits at the high end of the word as it is

for unsigned values. Because most machines provide a signed shift, it is still possible to put integer tags

in the lower end of the word. All that is needed is to make sure the unwrap_int() macro does a signed

shift, that is a shift where the sign bit is shifted in from the left. Many C compilers for machines that

have a signed-left-shift instruction will do a signed shift on a signed quantity. However neither K&R nor

the ANSI C standard requires that a shift on a signed value be a signed shift [11], so the following macros

cannot be considered portable.

Words are unsigned, so to get signed shifts (from cooperative compilers) we cast the wrapped value

to a signed quantity before shifting:

#define unwrap_int(v) (int)v >> 4

This will cause the sign bit to be shifted in from the left, reversing the e�ect of the tagging operation,

given that the integer is within the restricted range. If a signed shift costs no more than an unsigned

shift, the cost of operations will be the same for signed quantities as for unsigned quantities (for a tag

�eld in the low end). Also, if integers are given a two-bit code 0b00, then they can be added to word
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pointers directly to get o�set addresses. By contrast, integers in machine representation must be shifted

two bits to the left before doing address arithmetic on word pointers.

It is more complicated to put integer tags in the high end of the word, the operations would look

something like this:

#define wrap_int(v) ((unsigned)(v << 4) >> 4) | (t_int<<28)

#define unwrap_int(v) (int)(v << 4) >> 4

where t_int is the 4-bit tag for integers. The wrap_int() macro works by �rst shifting the upper four

bits to 0b0000, then attaching the t_int tag, for a cost of 4 cycles. Unlike pointers, it is not legitimate to

assume the upper four bits are already 0b0000 because if the integer is negative, the upper four bits will

be 0b1111. If the tag 0b1111 or 0b0000 is used for integers, then the shifting can be avoided, reducing

the cost to 2 cycles (one load-high and one bitwise-or or bitwise-and). However this makes the special

tag unavailable for other objects, and since it is a specialization it will be discussed separately. The left

shift in the unwrap_int() operation has two e�ects: it removes the t_int tag by shifting it out, and it

moves the sign bit of the tagged integer into the position of the sign bit for the word. Then a signed right

shift is done to shift in the correct sign bits.

One way to reduce the cost of wrapping and unwrapping integers in the high end of the word is

to use the same representation for tagged integers as for untagged integers. Unfortunately, this requires

assigning two di�erent tags to integers, since non-negative integers have zeros in the high bits and negative

integers have ones in the high bits. This scheme is \tagging integers by sign extension" and the pair of

tags is referred to collectively as the \sign extension tag". Note that this scheme also rules out the use

of 0b0000 as a pointer tag.

The problem with tagging integers by sign extension is that it makes the is_int() operation more

expensive. There are several possible implementations ([20] discusses some options not discussed here).

The most obvious one is to test the two in sequence:

#define is_int(v) (v>>28) == 0b0000 || (v>>28) == 0b1111

The cost of this is 1 for the right-shift (assume that this is done once and the result is cached in a register)

and 1 for the �rst conditional branch (assuming the machine has a jump-if-zero instruction, the delay

slot is �lled with the compare for the second test) and another 2 cycles for the second conditional branch

if the �rst is not taken. The total is 4 cycles (if v is not an integer the cost is 2 cycles, but this is not the

expected case).

An alternative is to sign-extend v and see if the result is equal to v:

#define is_int(v) ((int)(v<<4) >> 4) == v

The cost of this is 4 cycles, which is equal to the worst-case time of the previous technique. But if

the machine has no jump-if-zero instruction (for example, the i860 and the SPARC), then the 2-jump

technique costs more. A third option that takes only three cycles but appropriates the sign bit is discussed

in section 3.1.1.

Table 2 summarizes the costs of the various integer tagging schemes.

2.3 Arithmetic on Tagged Integers

Table int-tag-costs does not fully reect the costs of using tagged integers because many uses of tagged

integers are in arithmetic operations, and the cost of these operations may vary depending on the tagging

scheme. In general, when doing arithmetic on tagged integer values, it is not necessary to fully untag the

operands and to tag the result. The macro to do addition in this naive way would look like this:

#define ti_add(i,j) wrap_int(unwrap_int(i) + unwrap_int(j))
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Tag Operation Low-bits Low-bits High-bits High-bits Sign

Any Zero Any Zero Extension

is_int() 3 2 3 2 4

wrap_int() 2 1 4 2 0

unwrap_int() 1 1 2 2 0

Table 2: Costs of Integer Tag Operations

Machine integers that come from tagged integers have fewer bits than machine integers, but generally

the machine does arithmetic on full-sized machine integers. There are two ways to do an n-digit integer

operation with integers that are �xed to have n + m digits (m > 0), and to get an n digit result. The

\excess-precision" method is to do the arithmetic normally, and if the result requires more than n digits,

then there has been an overow. This technique requires that the overow be handled explicitly. An

alternative is the \scaled " arithmetic method, which involves scaling the integers before the operation

such that an overow of the n-digit operation will result in an overow in the (n+m)-digit operation as

well. The advantage of this approach is that overow is handled implicitly.

It assumed that one of two things is done when an operation overows: either the overowing digits

are truncated, or an exception is raised. In either case, if an arithmetic operation causes an overow of

the machine word, then it is assumed that the machine does the right thing (either truncates or causes

an interrupt), and that there is no cost in cycles to test for an overow. In this case overow is said

to be \handled implicitly". If arithmetic is done in the low end of the machine word, and if the result

requires too many bits to be represented as a tagged integer, then some speci�c check must usually be

taken after every operation that might overow, and the cost of these checks must be added to the cost

of arithmetic. In this case overow is said to be \handled explicitly".

2.3.1 Arithmetic on Integers with High-End Tags

If the tag �eld is in the high end of the word, then the integer itself is already in the low end of the

word. All that is needed to implement excess-precision arithmetic is to remove the tag. Of course this is

the advantage of tagging integers by sign extension |no masking is necessary. However it is necessary

to check for overow explicitly, with an is_int test, and this is a rather expensive test as shown above.

The cost of each arithmetic operation that might overow is 4 cycles plus the cost of the operation itself.

This adds 4 cycles to the cost of addition, subtraction, and multiplication.

Scaled addition on high-end tags can be done with

#define ti_add(i,j) wrap_int(((i<<4) + (j<<4)) >> 4)

which saves one right shift by not shifting the two arguments back to the right, but shifting the result

instead. This macro also provides for overow to be handled implicitly, saving that overhead. Recall that

tagging an integer with an arbitrary high-end tag is expensive (4 cycles) because the upper bits have to

be shifted out �rst. However, the result in this case starts out in the high end of the word and must

be right-shifted to position. If this right shift is unsigned, then zeros will be shifted in and no mask is

necessary. So the above can be further optimized to

#define ti_add(i,j) ((unsigned)((i<<4) + (j<<4)) >> 4) | (t_int<<28)

where t_int is the integer tag. This operation costs 6 cycles. If t int = 0 then the constant (t_int<<28)

need not be constructed and the mask need not be done, so the cost is only 4 cycles. If integers are tagged

by sign extension then the �nal right shift is done with a signed shift, and no masking is needed. Again,

the cost is 4 cycles. The same reasoning applies to subtraction as to addition, so the costs are the same.
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When integers are tagged by sign extension, integer negation is done with a machine integer negation,

so the cost is 1 cycle. For other tags in the high end of the word, it is not necessary to unwrap a tagged

integer before negation, but the result must be re-wrapped as an integer. The cost of this is 1 cycle plus

the cost of wrapping an integer.

For an integer i represented with a tag in the high end, left-shifting by n bits (where n at least as large

as the number of bits in the tag �eld), produces a machine representation of the untagged integer 2

n

i.

This fact and the identity that (2

n

i)j = 2

n

(ij) says that to do scaled multiplication, it is not necessary

to fully untag both operands, one of them can just be left-shifted:

#define ti_mul(i,j) wrap_int(((i<<4) * unwrap_int(j)) >> 4)

This operation costs two shifts in addition to the one tag operation, one untag operation, and the

multiplication. If integers are tagged by sign extension or with the tag 0b0000, then the wrap_int is not

necessary as long as the correct sort of right shift is used (signed or unsigned).

For division, note that (16i=16j) = i=j, so the implementation is

#define ti_div(i,j) wrap_int((i<<4) / (j<<4))

In this case, the wrap_int can only be avoided if integers are tagged by sign extension since there is no

right shift done at the end.

The �nal integer operation considered is signed comparison. A test for equal or not-equal is always

the same, regardless of representation (assuming all representable integers have just one wrapped repre-

sentation), but the cost of testing for less-than, less-than-or-equal, greater-than, or greater-than-or-equal

depends on the representation. Let us refer to these comparisons collectively as inequalities. Clearly,

if integers are tagged by sign extension then integer inequality tests can be done directly with machine

inequality tests. As mentioned above, we assume one instruction to set a status bit and one to branch

conditionally, for 2 cycles (we will ignore delay slots when discussing inequality tests since the di�erent

techniques will not a�ect how they can be �lled). If integers are given any single tag in the high end

of the word, then the most e�cient way to do an inequality test on two tagged integers is to shift them

both to the high end of the word for a scaled comparison. In this case there are two extra cycles for the

shifts, giving a total of 4 cycles.

2.3.2 Arithmetic on Integers with Low-End Tags

Like high-end tags, low-end tags can be optimized for arithmetic also, but there seems to be no trick for

doing excess-precision arithmetic in such a way that saves cycles over the naive method of untagging the

operands and tagging the result. Since excess-precision also requires an explicit overow test at the end,

it is more expensive than scaled arithmetic, so it will not be considered.

If integers are given a tag of all 0's in the low end of the word, then scaled addition and subtraction

are free, and multiplication and division have only one cycle of overhead:

#define ti_add(i,j) i + j

#define ti_sub(i,j) i - j

#define ti_mul(i,j) i * (j>>4)

#define ti_div(i,j) (i/j)<<4

If a di�erent tag is used, then the C operation (i<<4)+t int is arithmetically equivalent to 16i+t int.

So, since

�(16i + t int) + 2t int = 16(�i) + t int

negation can be implemented by

#define ti_neg(i) -i + 2*t_int
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as mentioned in [19]. Similarly, since

(16i+ t int) + (16j + t int)� t int = 16(i+ j) + t int

addition can be implemented by

#define ti_add(i,j) i + j - t_int

and since

(16i+ t int)� (16j + t int) + t int = 16(i� j) + t int

subtraction can be implemented by

#define ti_sub(i,j) i - j + t_int

Note that 2*t_int is a compile-time constant. The �rst ti_add and ti_sub given in this section are just

special cases (t int = 0) of the ones given here.

If i < j then mi+ b < mj + b for any positive number m and any number b. Since tagging in the low

end is arithmetically equivalent to multiplying by a positive number and adding a number, comparisons

can be done on the tagged integers without unwrapping them �rst, so comparison on wrapped integers

is done directly with a machine comparison at a cost of 2 cycles.

The costs of integer arithmetic for the various tagging schemes are summarized in Table 3. The

Operation Low-bits Low-bits High-bits Sign

Any Zero Zero Extension

negate 2 1 3 1

add/subtract 2 1 4 4

multiply 4 +C

m

1 + C

m

4 +C

m

2 + C

m

divide 4 + C

d

1 + C

d

5 +C

m

2 + C

d

inequality 2 2 4 2

Table 3: Costs of Tagged Integer Operations

constants C

m

and C

d

are the numbers of machine cycles needed for a multiply and a divide, respectively.

From tables 1, 2 and 3 it appears that there is a noticeable advantage to tagging values in the low end

of the word rather than the high end.

2.3.3 Testing After the Operation

It has been suggested [20] that addition of tagged integers can be improved by using an integer tag such

that when two tagged integers are added directly, the result is the correctly tagged integer result of the

operation (tagging integers by sign extension or by all zeros in the low end) and choosing the other tags

in such a way that when adding two tagged values that are not integers, the result cannot look like an

integer. This scheme allows the compiler to add two numbers without checking their types �rst, and to

�nd out if they were integers after the fact by checking the type of the result. In the (supposedly most

common) case where both operands where integers, this is a bit faster. On the other hand, it requires at

least one more bit added to the tag �eld, and this technique will make addition of other numeric types

more expensive. In order to be e�ective, this technique seems to require that integer addition be an

extremely common operation, that type-checking integers be expensive, and that addition on other types

be rare.
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2.4 Staged Tags

A staged tagging scheme uses tags of di�erent sizes for di�erent types. For example it is possible to use

three di�erent 2-bit tags, as long as at least one 2-bit code is reserved to be a \staging tag". The other

2-bit codes are called \�rst-stage" tags, and any value that has a lower two bits equivalent to a �rst-stage

tag has the type associated with that tag. A tagged value that has the �rst two bits equal to a staging

tag has a second-stage (or higher) tag. Suppose that 0b11 is used for the staging tag, and that the larger

tags use three bits in addition to the two used in the smaller (�rst stage) tags. There are then two classes

of tagged values, which might be diagrammed like this (All X's and 1's represent bits):

XXX11

XX

second-stage value:

�rst-stage values:

A tagging scheme that does not have di�erent stages is called \1-stage", or \unstaged". A scheme

that has more than one stage is called \staged", and if there are n stages then it is an n-stage tagging

scheme. A 2-stage tagging scheme that uses m bits for the �rst-stage tag and another n bits for the

second stage tag is called an m+n-bit tagging scheme, and similarly for schemes with more stages. Note

that there could be more than one staging tag at a given level. For example, both of the 2-bit tag codes

0b10 and 0b11 might be staging tags that signal that more bits are used in the tag.

The 2 + 3-bit scheme outlined above removes 5 bits from the address space of second-stage tags, and

this may be considered excessive. If so, second-stage word pointers can be tagged by shifting just three

places to take advantage of the two bits in the lower end of a word pointer that are always 0b00. The

cost of this technique is that untagging the pointer is now done with a 3-bit right shift, and this does not

shift out all of the tag bits (except for the pointers that have tags of the form 0b00xyz) so these tag bits

must be subtracted or shifted out. If the pointer is being untagged just for dereferencing, then this extra

step is subsumed in the store- or load-indirect-with-o�set.

The most serious problem with staged tagging schemes is that extracting the tag as a separate value

is expensive: in the worst case the cost is one mask (1 cycle) for each stage and one test (2 cycles) for

each stage except the last, for a total cost of s+2(s� 1) = 3s� 2 cycles where s is the number of stages.

In the scheme outlined above, s = 2 so the cost to extract a tag is as high as 4 cycles, which is four times

the cost with a 1-stage tagging scheme.

The major reason to extract a tag as a separate value is to \dispatch" on the type; that is, to branch

to a di�erent address for each di�erent type. For example a test to determine the equality of two values

needs to compare di�erent types of value in di�erent ways. By contrast an operation to extract the

car of a wrapped value representing a cons cell only needs to distinguish between the case where the

wrapped value actually represents a cons cell and the case where it does not. For a test that only needs

to determine if the type is T or not, the operation is_T() can be used, and this is no more expensive for

staged tags than for unstaged tags. For example, if cons cells have the second-stage tag 0b10111 in the

low end of the word (where 11 is the staging tag, as discussed above) then the implementation would be

#define is_cons(v) (v & 0b11111) == 0b10111

for a cost of 3 cycles. This is the same cost as testing an unstaged tag in the low end of the word because

there is no need to check the staging tag separately.

So the penalty for using a staged tagging scheme depends on the dynamic distribution of tests in

executions of programs in a language. If most tests are of the is_T variety, then there is little overhead for

staged tags. If most tests are of the dispatching variety, then the overhead depends on the implementation

of the tests. This in itself is a topic worthy of its own section (8), and is discussed later.
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2.4.1 The Sign Bit as a Tag Field

For most bits in the top half of a machine word, on many machines, testing whether the bit is on or

o� requires 3 cycles: mask or shift out all of the other bits (2 cycles) and jump-if-zero. In contrast, the

sign bit can often be tested in one or two cycles. This suggests the possibility of using the sign bit in a

staged tagging scheme where one data type could be given a tag based on the sign bit [17]. For example,

if the staged tag �elds are in the high end of the word, cons cells might be given the 1-bit tag 0b0 in

the highest bit, and all other types would be assigned 4-bit tags of the form 0b1xyz. Then the test for

is_cons would take only 1 or 2 cycles instead of 3, and wrapping and unwrapping cons cells would be

free.

In this example, if the tag 0b1111 is given to a pointer, that pointer can be tagged and untagged by

negation instead of by shifting and masking. For instance, if the tag is given to unbound variables, the

operations would be

#define wrap_var(p) -p

#define unwrap_var(v) -v

In order for this to work it is necessary to ensure that negating a pointer will always produce 0b1111

in the high four bits of the word. Taking the two's complement negative of a 32-bit signed number i

is equivalent to subtracting i from 2

32

as an unsigned operation, so the condition can be satis�ed by

ensuring that 2

32

� p � 0xF0000000 or that p � 2

28

. Since the upper four bits are being used for a tag

�eld, pointers are limited to this range anyway.

2.5 Distributed Tag Fields

There is no a priori reason why the tag �eld (or the data �eld for that matter) needs to be contiguous,

and there are a number of interesting strategies that have one tag �eld in the low end of the word and

another tag �eld in the high end. For example, the implementation of NIL described in [5, pp 54{57]

uses a tagging scheme where integers are given the tag 0b00 in the low end of the word and the other

three 2-bit codes in the low end of the word represent staging tags. The second stage tags all use the 2

low bits as well as the three high bits in the word. Since the high three bits are not used to tag integers,

integers can be tagged and untagged by shifting alone, and arithmetic on integers is as described above

for tagged integers that use a tag of all zeros in the low end of the word. With this scheme, three more

pointer types can be given a distributed 5-bit tag with 0b000 in the upper end of the word, and these

pointers can be dereferenced without untagging by using a store- or load-indirect-with-o�set.

However type-checking is quite expensive with this technique. The simple type test

#define is_T(v) (v & 0xE0000003) == t_T

for types other than integers costs 7 cycles, because both the constants 0xE0000003 and t_T each cost 2

cycles to construct. Alternatively, the two separate tests can be done:

#define is_T(v) (v & 0b11) == t_T1 && ((v>>29) & 0b111) == t_T2

At a cost of 6 cycles (on success, the delay slot of the �rst jump is �lled by the shift). The constants

t_T1 and t_T2 are the two parts of the tag. When either �eld has just one non-zero bit then that �eld

can be tested in 2 cycles, so some values can be tested with costs of 4 and 5 cycles. The tag could be

smashed into a small constant for comparison by shifting the top three bits down:

#define is_T(v) ((v>>30)&0b11100) | (v&0b11) == t_T

but the cost is still 6 cycles. One masking cycle can be saved by taking advantage of the zeros that get

shifted in. This requires reversing the 2 low bits with the three high bits:
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#define is_T(v) ((v>>29)|(v<<2)) == t_T

and the cost is 5 cycles. This test reduces the maximumcost for testing these distributed tags to 5 cycles.

Table 4 compares the two-ended two-stage tagging scheme with a one-ended two-stage tagging scheme.

All columns in the table represent a 2-stage scheme with 2+3-bit tags where integers get the tag 0b00

Tag Operation Low-bits Low-bits Two-ended

Shift 5 Shift 3

is_int() 2 2 2

wrap_int() 1 1 1

unwrap_int() 1 1 1

is_T() 3 3 5

wrap_T() 2 2 4 (2)

unwrap_T() 1 2 (1) 3 (1)

address bits 27 29 29

Table 4: Costs for 2-stage Tagging Schemes

and the other three 2-bit codes are staging tags. In the �rst column, word pointers get shifted 5 bits

for tagging, in the second column they only get shifted 3 bits. The �rst two columns assume that all 5

tag bits are in the low end of the word, the last column has a 2-bit tag �eld in the low end of the word

and a 3-bit tag �eld in the high end. The operations is_T, wrap_T, and unwrap_T are for non-integer

types. The row labeled \address bits" tells how many bits are available for representing word pointers.

The numbers in parentheses are the costs for the three special word pointers that have code of 0b000 for

their upper three bits.

2.6 Tagged Floats

Floating point numbers present several special problems to tagged-word schemes. First, the IEEE stan-

dard requires the use of all bits in a 32-bit word, so if any bits are discarded to make room for tags, then

the implementation does not adhere to the standard. Second, in the IEEE format (and most others)

the only bits that can reasonably be discarded are in the low end of the word. This is in contrast to all

other values where the discardable bits are in the high end of the word. Third, it may seem that most

programs do not use oating point arithmetic, but for those that do use it the performance of the oating

point arithmetic is often critical to the performance of the program. This leaves the implementer with

the choice of optimizing for the common case at the expense of making the compiler unacceptable for a

large class of important programs, or of burdening the common-case programs with overheads intended

to improve the performance of relatively rare cases.

Wrapped oats can be represented by tagged pointers to unwrapped oating point numbers as de-

scribed in section 2.1.1. In this case wrapping oats requires an allocate and a store, and unwrapping

oats requires a load, but it is possible to use full unabridged machine oats. In particular, this allows

IEEE compliance on machines that comply.

If wrapped oats are represented by tagging the oat number directly, then the implementation cannot

claim compliance with the IEEE oating-point standards on 32-bit machines that comply. Furthermore,

the costs for tagging and untagging oats are di�erent than for anything else because the discardable bits

are in the low end. This makes the decision of which end of the word to tag a bit more complex. The

operations to tag and untag oats in the high end are

#define wrap_float(x) (x>>4) + (t_float<<28)

#define unwrap_float(x) x<<4

13



at costs of 3 cycles and 1 cycle

3

. This makes wrapping oats more expensive than wrapping other types

and unwrapping oats cheaper.

If oats are tagged in the low end of the word, then the operation

#define wrap_float(x) (x & 0xFFFFFFF0) + t_float

will tag them at a cost of 2 cycles. Note that although 0xFFFFFFF0 looks like a large constant, it is

really just �15 so it can be included as an immediate operand on a machine that sign-extends immediate

operands to logical operations. Otherwise, something like

#define wrap_float(x) (x | 0b1111) - (0b1111 - t_float)

can be used.

Float values can be untagged by shifting out the lower bits:

#define unwrap_float(x) (x>>4) << 4

at a cost of 2 cycles.

As another complication, note that on many machines the oats must be tagged and untagged in an

integer register (because bit operations are only allowed in such registers) but arithmetic must be done

in a oat register. This will involve extra register moves in some situations.

2.6.1 Using IEEE NaN Codes

The IEEE oating point standard de�nes a large set of encodings for NaN values, where \NaN" stands for

\Not a Number". These encodings are those that have an exponent of all ones and a non-zero signi�cand.

The standard basically allows these codes to be used for anything, so they can be used to encode non-oat

values in a tagged-word scheme where all values except oats have 0xFF in bits one through eight of a

32-bit word [19, page 96]. This restricts other data types to 24-bit representations, but it allows full

IEEE oating point compliance.

For example, 0b011111111 can be used as a 9 bit tag in the high end for a non-zero object pointer

(see section 7.1), and 0b111111111 can be used to tag integers. All other 9 bit tags represent IEEE

oating pointer numbers. There is a problem with this representation in that the integer 0 also encodes

the IEEE value of negative in�nity and the object pointer that points to byte 0 is positive in�nity. There

are various ways to get around this problem: bit 9 could always be set for pointers and integers, thereby

reducing the representation spaces of these types even further, or there could be special tests before and

after each oating point operation that would recode the in�nite results into some other representation.

Either option is rather expensive.

3 Partitioned Words

As mentioned earlier, the essential requirement to implement wrapped values in a single word is to

partition the set of possible bit patterns of a machine word among the various types, so that a type can

be determined by examining the bit pattern. This can be done by dividing the words into a separate

tag �eld and value �eld as discussed in section 2, or it can be done by allocating each type a certain

subset of the available bit patterns. In other words, the available representations are divided up among

the types in such a way that each type is restricted to representing those values that it can represent

in the bit patterns allocated to it. This strategy is di�erent from using a tag �eld because with the tag

�eld technique, only the value �eld of a word is a legitimate value, while with partitioned words the

3

In fact, this C code does not do what is wanted since conversion between oats and ints changes the representation. To

do this in C, it would be necessary to declare a tagged value as a union.

14



entire word is a legitimate value in a format that the machine uses. This strategy, like tagging, makes it

impossible to represent all one-word unwrapped values as direct wrapped values.

Generally, words are partitioned by the magnitude of the number they represent in the machine

representation of (signed or unsigned) integers, and this special case will be referred to as \partitioning

words by magnitude". For example a word of 32 bits can be used to represent the natural numbers from

0 to 2

32

� 1 and this set of numbers can be divided up into ranges based on magnitudes. The numbers

#define INT_START 0x0

#define ARRAY_START 0x40000000

#define CONS_START 0x80000000

#define ATOM_START 0xC0000000

can be used to de�ne the ranges for four types of data: integers, arrays, cons cells, and atoms (symbolic

constants). Arrays and cons cells are implemented as pointers to blocks on the heap. Array pointers are

restricted to the range of addresses from ARRAY_START to CONS START � 1, so all array blocks must be

allocated between those addresses. Likewise, cons cell pointers are restricted to the range of addresses

between CONS_START and ATOM START � 1. Atoms may or may not be implemented as pointers, but

however they are implemented, every atom must be represented by a bit pattern that represents a natural

number larger than or equal to ATOM_START. Of course the acceptability of these addresses depends on

the virtual memory system. If virtual memory is not large enough, or if the operating system requires

virtual memory to be allocated contiguously, then this scheme becomes much less practical.

The representation above has no support for negative integers, but this problem can be remedied by

making use of the two's complement representation of integers. In two's complement, a negative integer

�i is represented by subtracting the absolute value i from 2

b

(where b is the number of bits in the word).

This means that a negative integer with a small absolute value is represented as a positive integer with

a very large value, so it is necessary to reserve the largest numbers for negative integers. For example

#define POS_INT_START 0x0

#define ARRAY_START 0x20000000

#define CONS_START 0x60000000

#define ATOM_START 0xA0000000

#define NEG_INT_START 0xE0000000

gives us a sort of \wrap-around" integer range that includes both positive and negative integers.

The beguiling characteristic of partitioning words by pattern is that there is no direct cost for wrapping

and unwrapping data. Every object that is represented by a pointer is simply allocated in the right place

so that its type can be identi�ed by location alone, and tagged integers look exactly like untagged integers.

However the integer representation in this scheme is the same as tagging integers by sign extension, and

there are extra costs of that arithmetic as discussed in section 2.3. Also, there may be a hidden cost in

the constraints that this scheme imposes on memory allocation: the requirement for multiple memory

regions can translate into more overhead for storage management.

For example, for a simple allocation method where space is allocated merely by incrementing a heap

pointer, allocation can be made faster by keeping the heap pointer in a register; but if there are multiple

memory regions then multiple heap pointers are needed, and all registers used to hold the pointers become

unavailable for other uses. If the implementer decides not to keep the heap pointers in registers because

there are too many of them, then the extra cost of allocation must be partly ascribed to the tagging

scheme. Similarly, if the allocation system uses a free list allocation instead of a heap pointer, and

if the tagging scheme is part of the reason for using this slower allocation method, then the overhead

of maintaining and allocating from free lists should be partly ascribed to the tagging strategy. The

consequences of a particular representation can be far-reaching, and the costs can be hidden behind other

features of an implementation.
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The requirement to allocate structures in certain places may cause other problems depending on how

much space is allocated and how the virtual memory system works. In particular, many operating systems

do not allow allocation of arbitrary regions in the middle of virtual memory without also allocating all

of the virtual memory between that section and one end of the virtual memory space. Also, if data is to

be shared with programs written in other languages there may be restrictions on where the data must

be allocated.

3.1 Testing Ranges

Another problem with partitioning words by magnitude is the large cost of testing the type of a wrapped

value. For example, the C macros to test the types would look like this

#define is_int(x) x >= NEG_INT_START || x < ARRAY_START

#define is_array(x) x >= ARRAY_START && x < CONS_START

#define is_cons(x) x >= CONS_START && x < ATOM_START

#define is_atom(x) x >= ATOM_START && x < NEG_INT_START

where the cost of a successful test is 6 cycles (each test involves 2 comparisons with 2 large immediates

values and 2 branches. The delay slots are �lled with instructions from the \success" branch). The

integer test can succeed with just one branch, and it might be advisable to switch the order of the tests

since non-negative integers are probably more common than negative integers.

Range tests can be optimized by using a trick based on the two's complement representation of integers

and the fact that most machines have both signed and unsigned comparison. If C is a positive constant

and x is a signed two's complement integer variable, then consider the e�ect of casting x to an unsigned

quantity before comparison

(unsigned)(x) < C

This has no e�ect if x is greater than 0. But since negative signed integers test as very large unsigned

integers, if x is less than 0 (meaning that it is also less than C) then this test will fail. In other words,

(unsigned)(x) < C is equivalent to

x < C && x >= 0

This fact can be used to optimize range tests. For example, suppose the desired range test is

x < B && x >= A

where x is a variable and A and B are non-negative constants such that A<B. Subtract A from each side of

each inequality to get

x-A < B-A && x-A >= 0

which is equivalent to

(unsigned)(x-A) < B-A

as shown above. Consequently, the previous range tests can be changed to

#define is_int(x) (unsigned)(x-ARRAY_START) >= NEG_INT_START-ARRAY_START

#define is_array(x) (unsigned)(x-ARRAY_START) < CONS_START-ARRAY_START

#define is_cons(x) (unsigned)(x-CONS_START) < ATOM_START-CONS_START

#define is_atom(x) (unsigned)(x-ATOM_START) < NEG_INT_START-ATOM_START

at a cost of 5 cycles for each test.

The integer range test was formulated by �rst negating the original test to
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#define is_int(x) !(x < NEG_INT_START && x >= ARRAY_START)

transforming to

#define is_int(x) !((unsigned)(x-ARRAY_START) < NEG_INT_START-ARRAY_START)

and then simplifying. If positive integers occur with a great enough frequency then it might be better to

use the two-test method for integers, testing for positive integers �rst, since the best case on that test is

just 2 or 3 cycles (depending on how the delay slot is �lled).

3.1.1 Negative Integer Encoding

Testing for integers can be further optimized by assigning the range of all values that represent negative

machine integers to negative wrapped integers, and keeping the range of all integers contiguous. In other

words, every negative machine integer represents the same integer as a wrapped value, and every non-

negative machine integer in a range from 0 to some n represents the same integer as a wrapped value.

This allocates half of the available representations to negative integers, but the test for integers can be

done with a single signed comparison against the maximum representable positive integer:

#define is_int(x) x <= MAX_POS_INT

The cost of this test is 3 cycles (assuming MAX_POS_INT is too large to represent as an immediate). Note

that this same technique could be used to test integers that are tagged by sign extension.

3.2 Segmented Ranges

Let us call a range in the form 0b�000:::0 to 0b�111:::1 where � is any initial sequence of bits, a

\segmented range" or a \segment". Segmented ranges have the useful property that membership in the

range 0b�000:::0 to 0b�111:::1 can be determined by testing the upper j�j bits to see if they match �. If

words are partitioned by magnitude into segments, then testing the type of a wrapped value is identical

to testing the type of word tagged in the high bits.

In a segmented scheme, wrap-around integers become identical to integers tagged by sign extension,

with the testing overheads involved in that, but the scheme outlined above in section 3.1.1 still works.

For example

#define POS_INT_START 0

#define ARRAY_START 0x20000000

#define CONS_START 0x40000000

#define ATOM_START 0x60000000

#define NEG_INT_START 0x80000000

provides a set of constants that could use the tests

#define is_int(v) ((int)v) < 0x20000000

#define is_array(v) (v>>29) == 0b001

#define is_cons(v) (v>>29) == 0b010

#define is_atom(v) (v>>29) == 0b011

This scheme costs 3 cycles for each test. Because of the extra cycle required for large constants, it would

cost 5 cycles to mask out the lower bits and then compare with the upper ten bits.

17



3.2.1 Dynamically Typed Segments

Several lisp implementations

4

use a dynamic variant of segmented ranges by assigning type codes to

ranges dynamically. This is done by setting aside a large range for all pointers, and then partitioning

this range into many segments. Each segment is given a type code dynamically, and the types of values

that are allocated in a particular segment is recorded in a table of segments called the BIBOP (for BIg

Bag Of Pages). Given segments of 2

10

bytes the macro to test the type is

#define is_T(v) *(type_table+(v>>10)) == t_T

Assuming that the address type_table is kept in a register (but keep in mind the costs of having one

less register available for local computation), the cost of this operation is 6 cycles: one to shift v, one to

add the address of the table, two to load the type, one compare, and one conditional branch. Testing

is slower with this strategy than with statically partitioned segments, but it can be used even if virtual

memory must be allocated contiguously.

Types that are represented directly in the word |instead of by a pointer| are sometimes given special

tags so that only pointer types are looked up in the table. This is essentially a staged representation

scheme, where the highest stage tag is an index for the BIBOP.

Instead of keeping the type information in a table, it can be kept in the segment itself. For example

if the information is kept in the �rst word of the segment, type extraction would be implemented as

#define is_T(v) *(v&0xFFFFF000) == t_T

at a cost of 5 cycles. Note that the constant 0xFFFFF000 is actually -4096 so it can be an immediate

constant. This scheme is faster than the BIBOP method and does not need a reserved register, but it does

reserve the �rst record in each block. It also requires a staged representation to represent non-pointer

types, whereas this is optional with the BIBOP method.

4 Object Pointers

In the object pointer scheme, each wrapped value is simply a machine pointer to a block of memory, and

the block contains all type information. This representation has been used in a relatively pure form in

Smalltalk

5

[3, 6], Prolog [21], and functional languages [14].

Although the word \object" has a special meaning in some other contexts, it is used here to mean

simply a block with a structure that contains enough information to identify what type of value the block

represents (and how it represents that value). One simple way to accomplish this is to simply have the

�rst word of every object be an integer type code. In this case, testing the type of an object pointer

requires a reference to memory to load the type:

#define is_T(p) p->type_code == t_T

at a cost of 4 cycles.

Wrapping and unwrapping is a bit more complicated since the cost depends on whether the data type

is already a pointer to a block or is represented directly in machine registers. Wrapping a pointer to a

block is done by assigning a type code to the correct �eld in the block that the pointer references

#define wrap_T(p) p->type_code = t_T

4

For example, MacLisp [15] and [5, pp 31{33]; Franz Lisp [5, pp 51{53]; Interlisp-VAX [19, page 29].

5

Smalltalk implementations sometimes represent values with an extra level of indirection between the object pointer and

the block. This representation is not motivated by the need to represent dynamic types, so it will be ignored here.
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This requires 1 cycle to load the constant t_T into a register (assuming the machine does not have an

instruction to store an immediate value), 1 cycle to fetch and execute the store instruction, and 1 cycle

to store the value, for a total of 3 cycles.

Unwrapping is free, because the pointer itself is the unwrapped value:

#define unwrap_T(p) p

For non-pointer types such as integers, wrapping is done by creating an object on the heap, storing

the value, and storing the tag:

#define wrap_T(x) (alloc_T, new->type_code = t_T, new->val = x, new)

at a cost of 5 cycles plus the cost of allocation. Allocation can cost as little as one cycle if hardware

interrupts are used to detect allocation beyond the heap boundary and if the heap pointer is used to

reference the newly allocated memory [9].

Unwrapping a non-pointer value requires fetching the value from memory:

#define unwrap_T(p) p->val

at a cost of 2 cycles.

4.1 Executable Type Descriptions

Instead of putting an integer code in the �rst word of an object, it is possible to place there a piece of

executable code. Then determining the type of the object is done by jumping to the code. For example

the executable code fragment for each type T might be a subroutine that sets a condition code if its �rst

argument is t_T, the integer type code for T. Then type checking is done with

#define is_T(v) (*v)(t_T)

Wrapping and unwrapping is the same for this scheme as for the previous one. On a machine with

the shortest possible calling sequences, this method requires at least two more cycles than the in-line

test: one for the call and one for the return. Another problem is that it requires a separate piece of

executable code to be allocated with each object. This can get expensive in space, so it is more practical

to put in the object a pointer to the executable type description, and to execute it via an indirection at

a cost of at least one more cycle. However, for programming languages where objects frequently have

to be \executed" (such as object-oriented languages or languages with lazy evaluation), executable type

descriptions help avoid some extra tests by providing a piece of code speci�c to the type.

There are many possible variations on the notion of executable type descriptions. For example, instead

of the is_T operation as given above, the type dispatching might be combined with unwrapping. Another

variation is to handle the conditional jump in the type description rather than just setting a condition

code. These two notions can be combined with the additional indirection discussed above as follows:

#define check_T(v,lbl) (**v)(v,t_T,lbl)

If v has the type represented by t_T, then the value is unwrapped into some �xed register and control

returns normally to the instruction after the call. If v does not have type t_T then there is a return

to lbl instead of the instruction immediately following the call. The executable type description for an

integer would look something like this:

int_code:

compare r1,t_Int

branch-eq return-lbl

load r0, r0[4]

jump r2
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Here, r0, r1, and r2 are the input argument registers and r0 is the output argument register that contains

the unwrapped integer after a successful test. The label of the instruction after the call is stored in the

register return-lbl (presumably by the call instruction). The execution of this code takes 3 or 4 cycles,

which must be added to the cost of the dereferencing and the call which is at least 3 cycles.

Another variation is to have multiple fragments of code associated with an executable type description.

The multiple code fragments can be used for di�erent purposes (for example, garbage collection). They

can also be used in several di�erent ways for dispatching on the type. For example, a value might be

de�ned as an object pointer to a block b that contains several function pointers:

b->test(code,lbl)| return to lbl if b has type code code, otherwise return normally.

b->eq(v,lbl)| return to lbl if b is equal to v, otherwise return normally.

b->jump(tbl) | return to the address tbl+code where code is the type code of b. This is used

for jump-table dispatching on b.

Of course this is an open-ended technique and it is possible to come up with any number of useful

procedures. In fact in an \object oriented" language that �xes all possible message names at compile time,

it is possible to do all operations on objects by jumping to addresses in the executable type description.

However, these tables can get large, and even small ones add considerably to the size of small objects

such as ints and oats. So to save space, the type codes are generally implemented with an extra level of

indirection, so that all values of a given internal type references the same table of functions. Of course

this further level of indirection reduces speed even further.

4.2 Hooked Values

Object pointer representations and executable type descriptions are convenient for representing hooked

values. A hooked value is a value that causes special things to happen when it is accessed. For example,

in Icon [8] there is a hooked variable

6

&pos that must have an integer value in a restricted range. An

attempt to assign a value outside of this range to &pos causes a piece of code to be executed that does

something special. Icon has other hooked values as well. For example an Icon substring expression s[i:j]

creates a hooked value that evaluates to a normal substring if it is dereferenced, but this hooked value

can be assigned to, in which case it executes a special piece of code that changes the value of s.

In languages with concurrent constraint evaluation (for example: [9, 4]), a procedure evaluation can

suspend when it needs the value of an unbound variable and it must be woken up when the variable gets

assigned a value. One way to implement this behavior is by assigning a hooked value to the unbound

variable, with the behavior that when there is an assignment to the hooked value, the suspended process

gets woken up.

Hooked values also arise in languages with lazy evaluation. Lazy evaluation of an expression means

(more or less) that the expression is not evaluated until the value of the expression is actually needed.

Lazy evaluation is implemented by creating hooked values for unevaluated expressions. The hooked value,

when accessed, will evaluate the expression and then replace itself with the value of the expression.

The Spineless Tagless G-machine [14] is a virtual machine for implementing functional languages with

lazy evaluation. It represents all wrapped values with object pointers (hence the name \tagless"), where

the type of the object is encoded in a piece of executable code as described above. Whenever the value

of an object is needed, the code component is executed, and this code fragment puts a type code and the

unwrapped value someplace accessible. This makes for a very elegant model, but the cost of accessing

non-hooked values is relatively high. We assume a very light procedure call that has an overhead of 2

cycles for call and return: the call instruction loads the return address in a register and jumps in one

cycle |the delay slot is �lled with an instruction from the jump target. The return instruction takes

6

The Icon literature uses the term \trapped variable"
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one cycle also and the delay slot for this instruction can almost always be �lled with an instruction from

the called procedure. We assume that executable type descriptions are shared among di�erent values so

the address being jumped to must be loaded from memory at a cost of 2 cycles. Finally, the value being

tested needs to be moved to the �rst argument register at a cost of 1 cycle. The total overhead of doing

a hookedness and type check is 5 cycles.

In a system that uses non-executable type codes, each point in the program that accesses a possibly-

hooked value must insert special code to test for hooked values. Typically, the code to test for hookedness

is immediately followed by code to verify the type. If hooked values are the \unusual" case then it may

be best to test for expected types �rst and delay the test for a hooked value. Now we assume that the

tag must be extracted regardless of the hookedness test, because other type tests need to be made. So

the cost of doing a hookedness test �rst is just the cost of a compare and jump. If the value is not

hooked then the overhead of the test is just 2 cycles (we assume that the delay slot can be �lled with an

instruction from the not-hooked continuation). If the value is hooked then the test costs 3 cycles (because

the instruction in the delay slot is wasted), and the call to handle the hooked value is 5 cycles, so the

total overhead in case the value is hooked is 3 + 5 = 8 cycles.

When the hookedness test is done second, there is no overhead if the value is not hooked. If the value

is hooked, there must be a call to handle it. After return from the handling code the type test must be

made again. For example, if v is the value being tested then the code might look like this

lbl:

t = extract_type(v)

if (t==int_t) {/* execute normal case */ }

else if (t==hooked_t) {

v = handle_hook(value);

goto lbl;

}

The overhead if v is hooked involves not only the hookedness test (3 cycles) and the call (5 cycles), but

also another tag extraction (1 cycle, say) and another type test (2 cycles). So the total overhead for

hooked values is 11 cycles.

Table 5 presents a summary of the relative costs under the assumptions given above. The table shows

Technique Not Hooked Hooked

executable type code 5 5

test hookedness �rst 2 8

test type �rst 0 11

Table 5: Costs of Hooked Values

that the choice of which is the best scheme depends on what percentage of values are found to be hooked

at run time. These �gures are partially con�rmed by the experiments reported in [10] where there is also

a discussion of re-introducing tags to speed up the case where the value is not hooked.

Note that the techniques of executable type descriptions are not restricted to object pointer schemes.

Such type descriptions could be used quite easily with large wrappers, and any representation with type

codes can use the type codes as indexes into a table of addresses of executable type descriptions. However

it is often the case that a hooked value wants to modify itself (usually into a non-hooked value) when it is

evaluated and object pointers are better for this than are other techniques that have direct representations

of some values. The reason is that if the representation is direct, then there may be no good way to

modify all of the instances of a value since there may be copies of it. With object pointers, all \copies"

of an object are pointers to the same block.
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4.3 Preboxing

One of the more serious problems with object pointers is that they require all values to be heap allocated.

In order to reduce the overhead of heap allocating small objects like integers, some Lisp systems use

a technique called preboxing. This involves preallocating some of the values, say those integers from

�1000 to 1000 and then using these preboxed values instead of wrapping new ones. For example each

arithmetic operation might include a test to see if the result is in the range �1000 to 1000 and if so, it

produces the preboxed value rather than wrapping a new integer. A modi�cation of this scheme is to

use special addresses to represent these values without actually ever allocating them. Of course these

schemes are not limited to object pointer representations |it is generally applicable whenever integers

are represented indirectly.

5 Large Wrappers

It is not necessary to restrict data representations to a single word as the above schemes do. An alternative

is to simply use wrappers that are large enough to represent the type information and a complete machine

value as well. Keeping a large wrapped value in registers requires more registers than schemes that use a

single word, but with modern machines this is less of a problem than it once was. Similarly, large wrappers

require more memory than single word wrappers, but memory sizes today are very large and getting

rapidly larger. The most serious problem with these representations is that loading and storing wrapped

values takes longer than for single-word representations, but there are several techniques for reducing

these costs, and there are some time optimizations available with large wrappers that are not available

with single-word wrappers. Consequently, multi-word representations deserve careful consideration.

If wrappers are restricted to representing word-sized values (which means using pointers for larger

values) and if the number of types is restricted to the number of word representations, then wrapped

values can be represented in two words: one for the type encoding and one for the value encoding. The

implementations of Icon described in [8] and [22] both represent dynamically-typed data in such pairs

(with some extra information in the type word). In the following, such two-word representations are

called \double wrappers".

5.1 Double Wrappers

Since double wrappers have the type code and the value code in di�erent registers, the operations of

unwrapping and extracting the tag are essentially free (but recall that there is an extra cost in loading

the two registers in the �rst place). In the following, let v represent a pair of general purpose registers,

and let v.type refer to one of the pair and v.val refer to the other. Then the operations on double

wrappers might be described in C by

#define is_T(v) v.type == t_T

#define wrap_T(v.val) (v.type = t_T, v)

#define unwrap_T(v) v.val

This notation is a little convoluted because it attempts to maintain a uniform framework with the other

representation techniques. The de�nition of is_T says that to test the type code of a pair of registers

v, representing a double wrapper, simply compare against the register that contains the type code. If

t_T is a small immediate, then this costs 2 cycles. The de�nition of wrap_T says that to construct a

double wrapper for a value in register v.val, simply load the type code into v.type and the double

wrapper is then the register pair represented by v. Note that if t_T is shifted to the high end of the

word (for reasons discussed later) this operation costs no extra for the load-high, because then the load-

high replaces a load-immediate. The de�nition of unwrap_T says that the machine representation of the
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value in the two-register pair v is in register v.val. This notation assumes some uniform arrangement of

registers into value registers and their corresponding type registers.

5.2 Quali�ers

Sequences with statically unknown lengths can be represented in several ways. Assuming that the se-

quence is stored in a contiguous array, the minimal requirement for the representation is that it is possible

to easily determine the beginning and end of the contiguous array. The beginning of the array is generally

represented by a pointer. The end can be represented by another pointer, by a length, or by having a

special end-of-sequence object at the end of every sequence (such as the '\0' character at the end of

C strings). The end-of-sequence marker is not a good implementation since it requires a special value

that cannot appear in sequences and it requires traversing the entire sequence to �nd the length of the

sequence. The choice of whether to mark the end with a pointer or a length depends on how the sequence

is used. The pointer representation is probably a bit better as a general rule, but it is more common to

use a length, so we will assume this representation.

Given that the sequence is represented with a pointer and a length, it is necessary to decide how the

length is to be encoded. There are two common approaches. One approach is to put the length just

before the contiguous array of data. Then the pointer to the sequence is all that is needed to encode the

entire sequence. Another approach is to allocate a \quali�er", a two-word block that contains a length

and a pointer to the contiguous array of data. The quali�er representation is more versatile since it

allows the same contiguous array of data to be shared by several di�erent sequence representations. For

example, if strings are represented with a quali�er, then it is possible to create a substring of the string

s just by creating a new quali�er that references a subrange of the array of characters used to represent

s; it is not necessary to copy any characters. Of course this assumes that sequences are immutable or

that it is acceptable for side-e�ects on one sequence to change the elements of another sequence. The

disadvantage of the quali�er representation is that it may require an extra allocation to create a sequence

that is represented with a quali�er, and accessing the elements of the sequence requires an extra level of

indirection.

However, since a quali�er only requires two words of storage, it can be represented within a single

double wrapper (after removing a few bits for tagging). In this case, there is no extra overhead for the

quali�er representation beyond the overhead of accessing double wrappers. A quali�er is implemented in

a double wrapper by keeping either the length or the pointer in the value word of the double wrapper

and keeping the other in the type word. Of course the set of type codes must be distinguishable from any

length or pointer kept in the type �eld (to allow dynamic type checking). In many ways, the problem of

how to encode a length or pointer in the type word of a double wrapper is very similar to the problem of

how to tag words, and many of the same considerations apply. For example, one might limit the upper

magnitude of representable pointers or lengths in the type �eld of double wrappers, and choose type

codes larger than the largest magnitude. This is analogous to the technique of partitioning words by

magnitude.

The problem with this encoding of types is that the type codes are all immediate values too large to

�t in a half-word, and therefore they must be constructed at run-time. It was said previously that this

is not a problem in the double wrapper representation, because the type codes do not have to be used as

bit-masks, they are simply loaded directly into the type word and it makes no di�erence whether they are

loaded with a load-immediate or a load-high. However, if some type of double wrapper requires the type

word to contain other data (like a sequence length) along with the type code, then this type of double

wrapper requires that the type code be used as a bit-mask. This strategy is about the same as using a

tag �eld in the high end of the word.

Alternatively, the type word can be divided up into a tag �eld and length/pointer �eld, and the tag

�eld can be in either the high end of the word or the low end. As might be expected, there are advantages

and disadvantages to either method. The following examples will discuss some of the options, assuming
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a 4-bit tag �eld and a 28-bit �eld for quali�er lengths in the type word. If the type code is put in the low

end of the type word and the length is put in the high end, then all non-quali�er types can be operated

on without masking:

#define is_T(v) v.type == t_T

#define wrap_T(v.val) (v.type = t_T, v)

#define unwrap_T(v) v.val

The costs are: 2 cycles for is_T, 1 cycle for wrap_T, and 0 cycles for unwrap_T.

Quali�er operations must be masked in general:

#define is_T(v) (v.type & 0b1111) == t_T

#define wrap_T(v) (v.type = (v.type<<4) & t_T, v)

#define unwrap_T(v) (v.type = v.type>>4, v)

Here it is assumed that unwrapped quali�ers are kept in the same register pairs as double wrappers, with

the length �eld of the quali�er replacing the type word of the double wrapper and the pointer of the

quali�er replacing the value word. The operation is_T operates on the double wrapper representation

and costs 3 cycles; wrap_T begins with a quali�er representation and converts to a double wrapper

representation at a cost of 2 cycles; and unwrap_T begins with the double wrapper representation and

converts to the quali�er representation at a cost of 1 cycle.

If the tag �eld is kept in the high end of the word, then both quali�ers and non-quali�ers must shift

the type word (or construct large constants at run-time). The implementation for non-quali�ers is

#define is_T(v) (v.type>>28) == t_T

#define wrap_T(v) (v.type = t_T<<28, v)

#define unwrap_T(v) v.val

The costs are: 3 cycles for is_T, 1 cycle for wrap_T (recall that t_T<<28 can be constructed and loaded

at the same time with a single load-high instruction), and 0 cycles for unwrap_T.

Quali�ers have the same is_T operation but the other two operations have to take care of the length

representation:

#define wrap_T(v) (v.type = v.type & (t_T<<28), v)

#define unwrap_T(v) (v.type = (v.type<<4)>>4, v)

The costs are: 3 cycles for wrap_T and 2 cycles for unwrap_T. If one type of quali�er is given the tag

0b0000, then this type of quali�er gets free wrapping and unwrapping. Likewise, if one type of quali�er

is given the tag 0b1111, then this type can be wrapped and unwrapped just by negating the type word

at a cost of 1 cycle each.

If there is only one type of quali�er, then the sign bit can be used to distinguish this value from all

of the other types. If negative words are used for type codes the operations for non-quali�ers are

#define is_T(v) v.type == -t_T

#define wrap_T(v) (v.type = -t_T, v)

#define unwrap_T(v) v.val

The expression -t_T is a compile-time constant small enough to use for an immediate operand (assuming

sign extension of immediate operands) so the costs are: 2 cycles for is_T, 1 cycle for wrap_T and 0 cycles

for unwrap_T.

For the single quali�er type the double wrapper representation is the same as the quali�er represen-

tation, so the operations are
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#define is_T(v) v.type <= 0

#define wrap_T(v) v

#define unwrap_T(v) v

and the costs are: 1 cycle for is_T (assuming a branch-if-le-0 operation), and 0 cycles for the other two.

5.3 Double Wrapper Optimizations

There are several ways to reduce the extra costs of loading and storing double wrappers, beginning with

the technique of passing parameters in registers instead of on the stack (which is a good idea anyway).

This avoids the need for pushing double wrappers on to a stack and popping them o� for every call and

eliminates a large number of memory references. The two major remaining sources of memory tra�c are

saving values on the stack between procedure calls and accessing double wrappers in aggregate objects

like lists. These memory accesses can be reduced considerably by using local unwrapped values, passing

unwrapped values as parameters, and storing unwrapped values in aggregates (sections 7.4 and 9.1).

Since double wrappers can represent quali�ers so e�ciently, it may be worthwhile for a language that has

arrays and represents values with double wrappers to have special representations, where the contiguous

array of data contains unwrapped values.

It is also possible to avoid storing one word of a double wrapper when it is known that the word

is already correct. For example, an Icon expression i +:= 1 to destructively update the number i will

produce a value that has the same type as i (in the absence of overow). In this case it is only necessary

to store the new value of i in the value word of the double wrapper, the type word does not need to

be updated. Similarly, the Icon expression s := s[1:-1] to remove the last character from the string

s might be implemented by subtracting one from the length �eld of the double wrapper/string-quali�er

without touching the pointer �eld.

Double wrappers can be used to optimize the representation of 32-bit IEEE oating point numbers,

which must be allocated on the heap with other methods. If data is being represented with double

wrappers, then a oat can be represented directly in the value word of the double wrapper.

Double wrappers can also be used to directly represent types of data that might otherwise be repre-

sented with two-word heap blocks. For example, there could be a special type code for directly represented

cons cells. The type word of the double wrapper could represent a pointer to the car as well as the type,

and the value word would be a pointer to the cdr. This encoding might save space, but it would not

save any cycles by shortening reference chains because the car and cdr of the cons cell are no longer

represented directly in the cons cell. For example, if the cons cell were represented as a pointer p to a

pair of elements on the heap, then it would take one memory access to reference the cdr at *(p+1). With

the encoding suggested above, the cons cell is directly represented in the pair of registers v, but the cdr

is represented as a pointer in register v.val so it take one memory access to reference the cdr at *v.val.

Since there are a very large number of type codes available, user-de�ned types can be represented in a

double wrapper with a type code and a pointer rather than using the object-pointer representation. This

makes type checking more e�cient for these objects. In Prolog, terms could be represented similarly with

a functor in one word and a pointer to the args in another word, this could save a few cycles in unifying

terms, since the functors would already be in registers.

6 Typed Location

There are several ways to type values based on where they are stored. Note that this refers to where

the data element is stored, not to where it points. For example if the data element is a pointer and the

type is determined by the region of memory which the pointer references, then the type is encoded in

the representation of the pointer, not in the location of the pointer. This is an example of a partitioned

word representation, not of a typed location. With a typed location the type of the pointer is known
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just because the pointer was found in a certain place on the stack, or in a certain register, or something

similar; it does not matter where the pointer points.

In a pure statically typed language the type of any value is known because of its stack or register

location at a given point in the program. In a sense, it is the locations that have types rather than the

values. But there are more dynamic versions of typed locations where types are encoded by a type code,

but the value and the type code are kept in separate places. For example a stack frame may contain a

sequence of bytes containing type codes followed by a sequence of local variables, and the type of value in

local variable i is given by the type code in byte i. Type codes that are kept separately from the values

they refer to are \segregated type codes". Segregated type codes have costs that are mostly identical to

the costs of double wrappers, the only di�erences are in how the type is located once the data element is

known and in the fact that segregated type codes can be smaller than a word. If type and data are kept

together, then the sum of their sizes should add up to a natural size for the machine, but with segregated

type codes this is not necessary.

Typed locations are common in languages with statically typed values that need dynamic type in-

formation for purposes such as storage management and debugging. In such languages it is often not

necessary to keep the type information as separate codes at all. Instead, the type can be \hardwired"

into special functions for doing storage management and debugging. In other words, each user-de�ned

function has a �xed pattern of static types in its stack frame. For each such pattern of static types it is

possible to compile a specialized function for garbage collecting or debugging that stack frame, and this

function does not need to deal with type codes since it knows what type is at each stack slot by static

criteria [7].

7 Hybrid Techniques

Representation schemes can be combined in various ways to trade o� the various advantages and disad-

vantages. Sometimes it is possible to merge two schemes so that they share representations. For example

an implementation might use tagged words to represent everything except integers, and use partitioning

by magnitude for integers. This is essentially what tagging integers by sign extension amounts to.

More commonly, two techniques are combined by nesting one representation inside another one. In

other words, there is one speci�c representation scheme that is used for all wrapped values. But some of

the \types" of these wrapped values are in fact dynamically typed values using another representation

(which may or may not use the same technique as the �rst representation). This sort of scheme is

called a staged representation, which should be distinguished from a staged tagging scheme. A staged

tagging scheme is a particular form of staged representation where all stages use tags. There are certain

optimizations possible for staged tags (especially involving dispatching) that do not apply to staged

representations in general.

7.1 Tagged Object Pointers

Object pointers and tagged words are often combined with each other in a staged representation scheme.

Pure object-pointer schemes are rare because there are some sorts of values (such as integers) that are

small enough to be represented in one word, and so common that it might be impractical to allocate them

all on the heap. Pure tagged word schemes are rare because tag �elds do not provide a large enough range

of type codes for all of the types that are needed |especially in languages that provide for user-de�ned

types.

Objects are typically word-aligned and on most machines the lower two bits of an object pointer

are available for \free" tagging. This suggests a staged representation scheme where the �rst stage is a

tagging scheme using the lower two bits of the word, and the second stage is a general object-pointer
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scheme. Operations on the three �rst-stage types are as described in section 2. The operations on object

pointers are:

#define is_object_T(v) (v & 3) == t_object && *(v-t_object) == t_T

#define wrap_T(v) (*v = t_T, v+t_object)

#define unwrap_T(v) v-t_object

The number t_object represents the �rst-stage staging code (it is assumed that addition and subtraction

treat v as an integer instead of scaling t_object, otherwise the necessary casts would make the expressions

very complicated). The cost to test the type of a value is 7 cycles if v is any type represented by a tagged

object, 3 cycles if it is represented by a direct tag. It is presumed that one load-indirect instruction is

generated for the expression *(v-t_object), so this expression is only charged two cycles. By choosing

the tag appropriately, the cost of testing that the wrapped value is an object pointer can be reduced one

cycle (see section 2.1) to get a total cost of 6 cycles.

Wrapping an object requires storing the type code in the object (3 cycles, see section 4) and adding

the tag to the pointer (1 cycle) for a total of 4 cycles. Unwrapping an object only requires subtracting the

staging tag for a cost of 1 cycle (except for values with machine representations that are not represented

directly). Unwrapping pointers is unlikely to be a common operation since it is possible to access the

�elds of the object by o�setting from the tagged pointer as e�ciently as o�setting from the untagged

pointer.

7.2 Tagged Words and Partitioning by Magnitude

If a set of words is partitioned by magnitude into segments that are distinguished by the upper n bits of

the word, then these n bits can also be viewed as a tag �eld. In this case, some type of values can be

represented by an n-bit tag in the upper part of the word while others are represented by a word that

have a �xed n-bit segment. Recall that the di�erence between tagging and partitioning is that for tagged

words the value must be extracted from the value �eld while for partitioned words the whole word is a

legal value. Clearly it is possible to mix up these these two strategies, using a value �eld to represent

some types of unwrapped values and using the whole word to represent other types.

7.3 Tagged Words and Double Wrappers

To some extent, the representations described in sections 5.2 and 5.3 are hybrids between tagged words

and double wrappers, but since those representations are a part of the bene�t of using double wrappers

in the �rst place, they are treated as part of the double wrapper representation rather than a hybrid

scheme. However, it is possible to have a true hybrid scheme if the implementer is willing to give up the

property that all wrapped values have the same size. This allows a representation where some values are

tagged words and others are double wrappers. For example integers and a couple of pointer types could

be represented with two bits in the low end of the word, and the fourth tag value could be used as a

staging tag that informs the runtime system that there is more to the value. The remainder of the value

would be in di�erent places in di�erent situations.

For example, if parameters are passed by register, then if argument register i is tagged with the

staging tag this would indicate that register i represents the type word of a double wrapper and that the

value word is in another register, say i + x where x is the maximum number of argument registers. On

machines with special oating-point registers there might be a special staged tag that indicates the value

is a oat in a oat register. If a wrapped value is loaded from the stack, and it has the staging tag, then

this would indicate that the value word is the next word on the stack. Of course the problem with this is

that it is not possible to save the registers on the stack without examining each one to see if it requires

saving another register. This might be very expensive for programs that use a lot of procedure calls.

27



This representation causes problems in representing aggregate objects also. For example if a word

in an array on the heap is tagged with the staging tag, then this indicates that there is another word

somewhere that contains the value. It is di�cult to implement such aggregates e�ciently without using

double the space, and in this case there is not much bene�t of this method over a pure double wrapper

strategy.

7.4 Hybrids With Typed Locations

It is often the case that aggregate structures have elements of all the same type of object. In such

cases it is often possible to avoid including dynamic type information with the elements themselves,

since their type is known by the fact that they occur in a particular place. This is particularly useful in

tagging representations |where it allows one to avoid the costs of tagging and untagging elements of the

aggregate| and in double wrapper representations |where it allows one to save space and to avoid the

cost of storing type a type code for each element of the aggregate.

8 Dispatching on Dynamic Type

In the following, a \type" is a variable, the dynamic type of a variable value. A \type code" is a constant,

a number or bit-pattern used to represent a type at runtime. To dispatch on a type means to select a

piece of code to execute based on the type code that represents the type. As mentioned earlier, many

type tests are of the \is or is not" variety, which can be done e�ciently by the is_T macros as presented

throughout this document. However a sequence of is_T macros is seldom an e�cient way to implement

a more general dispatch. The best way to dispatch on a type is to extract the type to a register and then

do one of the following:

� A sequence of equality comparisons on the register.

� A binary search on the value in the register.

� Indexing into a jump table and then jumping to the correct piece of code.

� A combination of the above.

When doing a sequential or binary search, let d be the number of tests done that compare the type

to a type code (this includes all failed tests as well as the successful test). The value d depends on the

order in which the tests are generated as well as the statistical properties of the value v being tested. For

example, if at one point in the program, v is dynamically seen to be a wrapped integer n% of the time

then by testing for t_int �rst, the cost of the dispatch will be the cost of a single test n% of the time.

8.1 Sequential Search

For a sequential search the total cost is the cost of extracting the type plus the cost of d comparisons on

the type. For a representation that uses two-bit tags in the low end, the dispatch would look something

like this:

t = v&3

if (t==0) {/* type 0 case */ ...}

else if (t==1) {/* type 1 case */ ...}

else if (t==2) {/* type 2 case */ ...}

else {/* type 3 case */ ...}
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The delay slot of each test except the last can be �lled with a compare instruction for the next test,

so as long as a jump is to the next test it only costs 2 cycles. However for the jump that exits the chain

the compare instruction in the delay slot will not be useful, so that jump costs 3 cycles (unless it is the

last jump in the static sequence, but we will ignore this one). So the cost is 2 cycles per jump plus 1

extra cycle for the �nal jump, giving a cost of 2d+ 1. Let E be the cost of extracting the type from the

wrapped value; then the cost of the dispatch is E + 2d+ 1. The maximum value of d is one less than the

total number of type codes.

8.2 Staged Tags

For most staged representations, a dispatch on the type will contain branches to second-stage dispatching

code for the second-stage types. However, staged representation schemes that use bit patterns in the word

for the types can make use of special optimizations. In the following we will assumed staged tags, but

many of these comments apply to types partitioned by magnitude as well.

For a 2-stage tagging scheme the cost of extracting the type is larger than for a 1-stage scheme since

a test is needed to �nd whether the value has a �rst or second stage tag. But the test that tells the

stage also reduces the search space for the other tests, much like a binary search comparison would do.

In other words, if the type code is a second-stage tag, then there is no need to test against �rst-stage

tags. Let E

i

be the cost of extracting a tag at stage i. Then the cost of a sequential search for 2-stage

tags is E

1

+ 2d+ 3 for �rst-stage types and E

1

+ 2 + E

2

+ 2d for second-stage types. In either case, the

worst case value of d is one less than the number of non-staging tags at one level. In particular, if there

is only one non-staging tag at the �rst level, then d = 0 for that stage. The above assumes that either

there is only one staging code at the �rst level or only one non-staging code so that testing if a code is

a �rst-stage code only takes 2 cycles. If there are multiple staging and multiple non-staging codes, then

they can usually be arranged in such a way that stages can be identi�ed with a 2-cycle test.

If the most likely tags are all in the �rst stage, then it might be more e�cient to �rst extract the type

code for that stage and compare against the most likely types before testing for the stage of the tag.

8.3 Binary Search

If the set of type codes is representable as a sequence of machine integers, then dispatching can be done

by a binary search. For example if wrapped values are words tagged by the lower four bits, a dispatch

might be done like this:

t = v&0b1111

if (t <= 7)

if (t <= 3)

if (t <= 1)

if (t == 0) {/* type 0 case */ ...}

else {/* type 1 case */ ...}

else

if (t == 2) {/* type 2 case */ ...}

else {/* type 3 case */ ...}

...

Delay slots can be �lled here as for the sequential search, but it cannot be predicted how many jumps

will make use of the compare in the delay slot and how many will ignore it, so the worst case cost is

E + 3d � 1 and the best case is E + 2d; but d is logarithmic in the number of type codes rather than

linear. The type code is selected by ruling out all other type codes (that is, one settles on type code t_T

because it has been determined that the type is either greater or less than all other type codes). At each

branch, half of the type codes are ruled out, so that the number of tests d is always either dlog

2

ne or
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blog

2

nc, where n is the number of type codes. In the following, we will assume that n is a power of two

so that oors and ceilings can be ignored.

To reduce the expected value of d (possibly based on frequency distributions of tags) it is possible to

insert equality tests among the inequality tests. For example, the search above might be changed to

if (t == 7) {/* type 7 case */ ...}

else if (t <= 7)

if (t == 3) {/* type 3 case */ ...}

else if (t <= 3)

if (t == 1) {/* type 1 case */ ...}

else if (t <= 1) {/* type 0 case */ ...}

else {/* type 2 case */ ...}

...

In the worst case, each three-way test only cuts the search space in half except at the leaves where one

less test is needed, giving (log

2

n) � 1 three-way tests. Each three-way test requires two branches so in

the worst case, d = (2 log

2

n) � 2; which is worse than the previous strategy, but the best case is d = 1.

Each branch is either 2 or 3 cycles, giving a cost of E + 2d to E + 3d� 1.

Another variation is to do the equality test second rather than �rst. For example the fragment above

might be changed to

if (t <= 7)

else if (t == 7) {/* type 7 case */ ...}

if (t <= 3)

else if (t == 3) {/* type 3 case */ ...}

if (t <= 1)

else if (t == 1) {/* type 1 case */ ...}

else {/* type 0 case */ ...}

else {/* type 2 case */ ...}

...

Here, the worst case for d is the same as previously, but only two type codes require the worst-case

number of tests (in this case they are the type codes 1 and 0). If t � 7 then the three-way test on 7

requires one compare and two branches, otherwise it just requires one compare and one branch. So in

one direction there is a test that costs one cycle and in the other direction there is not. Binary searches

can also be done with a mixed strategy, using two-way branches at some points and three-way branches

at other points, mixing the two forms of three-way branches as well. The optimal strategy depends on

the dynamic distribution of type codes.

8.4 Jump Table

A jump table is an array of addresses. It can be used for dispatching on the value of an integer i by

storing at each position c the address of the code that should be executed if i = c. Dispatching on i is

done by jumping to the i

th

address of the the jump table. In general it is not safe to index an array

without �rst checking the range of the index variable, and this holds true for jump tables as well, so most

jump table dispatches require a range check before indexing the table. However if the index is known to

be a type code, and type codes have a small �xed range, then this check can be avoided. If a range check

is needed it can usually be done in no more than 3 cycles using the range testing method described in

section 3.1 (but here the constants are both assumed to be small enough to be immediates, so 2 cycles is

subtracted from the range test).

The code for dispatching on the value of a tag variable t is something like this
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t <<= 4 /* scale to word size */

addr = jump_table /* get address of jump table (2 cycles for large immediate) */

addr = addr[t] /* load the code address (2 cycles) */

goto addr; /* jump (2 cycles, delay slot is not filled) */

for a total cost of E + 7 cycles (where E is the cost to extract the type code).

For staged tags it is not necessary to determine the stage of the tag to extract it. Instead, it is

possible to extract just the largest-size tag and for smaller tags, to �ll several slots in the jump table. In

an n + m bit staged tagging scheme, each n-bit type code t_T gets m slots in the jump table, one for

each (n +m)-bit number that has the lower n bits equal to t_T. For example consider a 2+1 staged tag

scheme in the low end of the word with the tags

#define INT 0b00

#define FLT 0b01

#define CONS 0b10

#define ARR 0b011

#define NUM 0b111

For such a scheme, a jump table would be implemented something like this:

switch (v & 0b111) {

case 0b000: goto int_case;

case 0b001: goto flt_case;

case 0b010: goto cons_case;

case 0b011: goto arr_case;

case 0b100: goto int_case;

case 0b101: goto flt_case;

case 0b110: goto cons_case;

case 0b111: goto num_case;

}

Note that a similar table of type codes could be written to extract the tag as a value. In other words,

it would be possible to construct an array indexed by (n+m)-bit numbers that has for each element the

corresponding (n+m)-bit tag.

An implementation ought to pick a good method for dispatching on the type of a variable [1], given

the expected value of d, and ought to order the tests in such a way as to minimize d. If this is done, then

the overhead of using staged representations is often small enough that the staging is useful.

When writing a test in C, the switch statement should not be used if speed is very important. Although

a good compiler will generate dispatch code intelligently, the C compiler cannot know about type code

frequencies, and this can seriously a�ect the best method. Also, few C compilers are smart enough to

notice that the range test is not needed.

8.5 Testing with Traps

Some percentage of type tests are merely to verify the applicability of a certain operation. For example,

before taking the car of a tagged cons cell, it is necessary to con�rm that the tagged value is, in fact, a

cons cell. In some cases it is possible to avoid a speci�c test by arranging that the operation will cause a

machine interrupt if the value is not as expected. For example, some machines will trap if a word access

is done with an address that is not word-aligned. On such a machine, one pointer type can be given

the tag 0b00 and this pointer type can be dereferenced without checking its type, as long as the trap is

caught and handled correctly when the type is not correct. Of course this method can be generalized for

type-checking situations where it is not an error for the type to be other than as expected, but the costs
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of interrupts on modern machines are so expensive [13], that this technique is unlikely to be cost e�ective

in other cases.

9 Miscellaneous Considerations

9.1 Avoiding Operations on Dynamic Representations

There are a number of ways to avoid dynamic type operations altogether, and it is probably these tech-

niques that will eventually make dynamically typed languages as e�cient as statically typed languages.

For example, within a procedure, it is often possible to infer the types that values will have. If so, then

these values can be manipulated in the unwrapped state, there is no need to wrap them. This applies

not only to numbers (as in several implementations of Lisp, Scheme, and Prolog), but to addresses as

well. For example, a tagged sequence type that is represented by a contiguous array on the heap can be

manipulated by getting a pointer to the array on the heap and using that directly [9].

There is an optimization |or rather a class of optimizations| called \call forwarding" [2] that

skips unnecessary instructions at the beginning of a call, including conditional branches (and it can be

generalized to skip instructions at other points as well). This optimization is particularly e�ective at

skipping type checks in a program that uses types in a consistent manner. Also, if a single value is used

multiple times in di�erent branches of a procedure, then (in some languages) it is possible to test the type

just once, at the beginning of the procedure, and unwrap the value immediately. Then call forwarding

can often skip the test and sometimes even the unwrapping. The resulting code is very close to what

would be produced in a statically typed language.

If global type inference is done, then it is sometimes possible to pass unwrapped parameters and

return unwrapped values. This is especially important in functional and logic languages that rely heavily

on recursion (since these languages use recursion instead of loops, local unwrapped values will have a

limited usefulness). Of course the presence of unwrapped values in a dynamically typed language can

cause di�culties for garbage collection.

9.2 Language Design

There are some language design choices that can seriously impact the e�ectiveness of type inference,

and thereby the e�ectiveness of tag optimizations. For example, separate compilation makes global

type inference much less e�ective unless type inference is delayed to the linking phase or the language

has typed import declarations. Doing type inference at link-time tends to defeat the main purpose of

separate compilation |to speed up compilation time by avoiding the need to re-compile modules that

have not changed| because global type inference is typically responsible for a substantial fraction of

compilation time. If typed import declarations are required for external procedures, then this tends to

defeat the purpose of having a dynamically typed language. But if these declarations are optional then

they can make global optimizations work much better for programs that use them. Of course it may still

be necessary to do some link-time or run-time checking to ensure that the declarations are correct.

If the type system is set up such that there is arbitrary conversion between integers and oats, then

type inference cannot do as well at inferring the types of numbers, and unwrapped arithmetic cannot be

used as often. On the other hand, if the language provides explicit conversions from oats to ints and

requires integer operands in places where integers are needed (as an array index, for example), then this

provides more information for type inference. For example if the variable I is used as an array index, and

I is constructed from the expression I=K*N, then this gives the information that not only I, but K and N

are going to be required to be integers. This allows the tests to be moved early in the function (and then

frequently skipped by call forwarding). The only burden this places on the programmer is that in the
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(unusual) case where it is really intended that an array index be formed from a oating point number,

one of the explicit oat-to-integer conversions must be used.

Arbitrary-precision arithmetic is a performance problem since it requires either that all arithmetic

be done in the less e�cient arbitrary-precision format or that there be (at least) two di�erent types of

integers (the same comments apply to arbitrary arithmetic on other sorts of numbers). Type inference

is not likely to be able to infer that a value is a \small" integer as opposed to just an integer, so this

language feature makes it practically impossible to use unwrapped numbers without actually producing

two di�erent copies of the code |one for unwrapped numbers, and one for arbitrary precision numbers.

9.3 Machine Considerations

With an instruction set that sets condition codes on logical operations, it is sometimes possible to save a

cycle in the common sequence where a tag is �rst tested then extracted. For example, suppose cons cells

are tagged with the tag 0b0110 in the low end of the word. The normal test and untag sequence needed

to get the pointer would take 4 cycles. But this can be optimized with a sequence like

#define test_get_cons(v,lbl) (w = v-0b0110, (v & 0b1111) != 0 ? goto lbl : w)

This sequence costs just 3 cycles because the test (v & 0b1111) != 0 can be done in two cycles.

The MIPS machine has single instructions for equality and disequality tests [12], and this changes

some of the costs, possibly changing the preferred strategies in some cases.

The SPARC has some special arithmetic instructions that are intended to work with 2-bit integer

tags of 0b00 in the low end of the word [12, 13]. There are instructions taddcc and tsubcc to add or

subtract such integers and set the overow ag if either operand did not have the lower two bits equal to

0b00. The related instructions taddcctv and tsubcctv are similar but also cause a trap if the lower two

bits are not 0b00. This is intended to support tagged-integer arithmetic, and may be useful if (1) it is

practical to use two-bit tags, (2) it is practical to use 0b00 for integers, and (3) the integer case is common

enough to overcome the extra cost of handling the other cases. The non-trapping instructions can be

used to test operands after the operation (section 2.3.3) at a cost of only one cycle (and no extra tag

bits). The trapping instructions can be used to test the types of arithmetic operands with traps (section

8.5). There are several special-purpose architectures with support for tagging, but such machines are

outside the scope of this paper.

If a machine has \circular" shift instructions that shift bits out one end of the word and into the other

end (instead of just shifting in 0b0 or the sign bit), it is possible to have tags bits in both the high and

low end of the word, and to shift them all to the low end for masking in two cycles. This would save one

cycle from the cost given in section 2.5 for testing distributed tags.

The M88000 has support for manipulating bit �elds. These may have some impact on the choice of

a tagging scheme for that machine.

Some machines, including the M88000 and SPARC have instructions to load and store two words at

once. These instructions take 3 cycles instead of 4 to load and store double wrappers, which may make

this representation more attractive.

It is only realistic to count a memory access as one cycle if the memory word being accessed is in

the cache. For words of machine code, this is generally reasonable, but for data it is less applicable, and

depends a great deal on the access patterns of individual programs. In particular the times given to wrap,

unwrap, and test data for the object-pointer strategy will be much worse if the program does not access

data in a favorable sequence. Also, the extra memory used by the method of double wrappers may make

cache behavior worse. Of course similar comments apply to the caching of virtual memory in physical

memory.

On machines that always have 0b00 as the lower two bits of a word pointer, if integers are given

0b00 as a tag, then the garbage collector can traverse a stack that contains machine pointers (such as

return-addresses and stack pointers) and ignore everything that has a 0b00 in the lower two bits. There
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is no need to tag these machine addresses or otherwise distinguish them from wrapped values. Note that

this only applies to correctly initialized locations (not to arbitrary registers for example), and only applies

if the code is not relocated during garbage collection.

On segmented architectures like the Intel 80x86 family, many di�erent addresses can specify the same

location. On these machines, the technique of partitioned word representations can be used without

breaking up the allocation space. The lower half-word of the pointer just has to be chosen so that it

points to the right space, given the tag in the upper half-word. Similarly, some machines have a word with

more bits than are needed to address the addressable memory and ignore bits above those needed. These

extra bits can be used in a partitioned word scheme with no restriction on where objects are allocated.

9.4 Automatic Choice of Representation

Clearly the choice of the best representation scheme involves complex cost analysis; but given a �nite

number of possible representations, it looks like something that could be automated. In other words, it

looks like one could write a heuristic that would take a machine description and some sort of description

of type frequencies and produce a good representation scheme. Of course the number of representations

is exponential in several parameters, so asking for an optimal scheme is probably not reasonable. There

has been a program written [19, 18] that actually implements a great deal of this suggestion for a subset

of the possible representations ([19] contains an excelent summary of data representations used in many

language systems). This program is intended to help decide on representations for a given implementation

of a runtime system, but there is no reason in principle why such an automatic choice of representation

cannot be made for each individual program. The trade-o� is that the runtime system must be compiled

uniquely for each representation.
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Glossary

alignment restrictions. Machine restrictions on the addresses of objects stored in memory, based on

the size of the object.

BIBOP. an abbreviation for Big Bag of Pages. A technique for representing values with dynamically

typed segments using a table of memory pages associated with types (section 3.2.1).

boxing a number. allocating space for a number, copying it to memory, and and representing it with

a wrapper containing a pointer to the value.

cycle. On a machine in which most instructions take the same amount of time to fetch and execute, a

cycle is the time required to fetch and execute one of these instruction.
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delay slot. an instruction position after a jump that will have its instruction executed whether the jump

is taken or not.

direct representation. a representation of a wrapped value that is entirely within the wrapper |no

part of the value is kept elsewhere. The most common type to have a direct representation is a

small integer.

dispatching on the type. branching to one of several locations depending on the type of a dynamically

typed value.

double wrapper. a large wrapper consisting of two machine words (section 5.1).

excess-precision arithmetic. integer arithmetic done in such a way that the result might have more

precision than can be handled in the �nal representation. This requires a overow check when the

�nal representation is constructed from the result (section 2.3).

hooked value. a value that requires special handling when it is referenced (section 4.2).

hybrid representation. a representation using two or more of the basic representational techniques

(section 7).

immediate value. a constant used in a machine instruction that is encoded in the instruction itself.

machine value. a type of value that is supported directly by machine operations.

large wrapper. a wrapper consisting of more than one machine word (section 5).

object. a block of memory that contains the information needed to determine what sort of value the

block represents. In the literature this term has widely varying meanings and seldom (if ever) means

what it does here.

object pointer. a representation of a dynamically typed value where the wrapper contains a machine

pointer to an object, a block of memory that can be identi�ed by its structure (section 4).

partitioned word. a representation of a dynamically typed value where the set of possible bit patterns

of a machine word is divided up among the various types (section 3).

partitioned word (by magnitude). a partitioned word representation where each type is given a se-

quential range of integers for its representation.

preboxing. boxing some numbers before the start of the program and using these boxed values whenever

they are needed, instead of boxing new versions of them (section 4.3).

quali�er. a representation of a sequence that makes use of a pointer and a length or two pointers, both

separate from the sequence itself. Elsewhere this term has various other meanings.

range test. testing a number to see if it is in a given range (section 3.1).

scaled arithmetic. integer arithmetic done in such a way that the result will have exactly the precision

that can be handled in the �nal representation, although the result may not be positioned correctly

for the �nal representation (section 2.3).

segment. a range of numbers in a segmented range. In the literature this term is often used in other

ways.
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segmented ranges. a partitioning of a set of natural numbers by magnitude such that membership in

a range is decidable by some subsequence of the higher-order digits in the binary representation

(section 3.2)

segregated type codes. a typed location representation where the type code is encoded dynamically,

but separately from the value (section 6).

sign-extension tag. a tag of either all ones (for negative integers) or all zeros (for non-negative integers)

used to tag integers.

signi�cand. the part of a oating point representation that encodes the mantissa.

stage. a single level of representation in an overall staged representation scheme.

staged representation. a representation where one or more of the type codes are shared among several

types that are distinguished from one another by another representation scheme.

staged tags. a staged representation where all stages use tagged words.

tag �eld. a section of a tagged word that is used to represent type information.

tag. a type code in a tagged representation.

tagged word. a representation of a dynamically typed value where the wrapper contains a single word

divided into separate �elds for representing the type and value.

tagging. setting the tag �eld of a word.

type. a set of values and a set of representations for those values at the implementation level. Elsewhere,

this term has various other meanings.

type code. an integer (or bit pattern) used to represent a speci�c type.

typed location. a representation of a dynamically typed value where the type of the value is known by

the location of the value.

unbound variable. a variable that has not yet had a value assigned to it. This term applies especially

to languages where it is legal and well-de�ned (in some way) to refer to the value of a variable

before the value is assigned (eg: Prolog).

unwrapping. converting a wrapped value to an unwrapped value.

untagging. removing the tag from a tagged word. This may or may not be equivalent to unwrapping a

tagged value.

value �eld. the part of a tagged word that represents the value.

word. either a unit of memory of the same size as a machine register, or the set of values representable in a

machine register or memory word. For example \word" in \tagged word" refers to the representable

values of registers and memory words.

wrapping. converting an unwrapped value to a wrapped value.

wrapper. the part of the representation of a wrapped value that is copied from place to place when the

value is passed from one procedure to another, returned from a procedure, assigned to a variable,

etc. This does not include any portion of the representation that is accessed indirectly (say through

a pointer) and does not move around when the value is moved around. In most representation

schemes the wrapper is a single machine word.
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wrapped value. a dynamically typed value encoded with type information.
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