
Performance Experiments for the

Filaments Package

David K. Lowenthal Dawson R. Engler

TR 93-26

Performance Experiments for the Filaments Package

1

David K. Lowenthal Dawson R. Engler

TR 93-26

Abstract

Ten representative benchmarks were run on two shared-memory multiprocessors using

an e�cient, �ne-grain threads package called Filaments. This paper describes the imple-

mentation and performance of the applications and compares them to both coarse-grain

and sequential counterparts. It also analyzes the results and explains why the �ne-grain

programs were faster or slower than the coarse-grain ones.

September 2, 1993

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1

This work supported by the NSF grants under grant CCR-9108412 and CDA-8822652.

1 Introduction

The granularity of a parallel program refers to the amount of computation a process performs be-

tween synchronization and communication events. This de�nition allows granularity to be viewed

as a spectrum. The coarsest-grain program is a sequential program, as one process does all the

work (and there is no synchronization or communication). A coarse-grain parallel program creates

one process per processor, and that process works on its part of the computation. For example,

consider the problem of multiplying two n by n matrices. If one partitions the n

2

inner product

computations among p processes, where p is the number of physical processors in the system, the

result is a coarse-grain program. A �ne-grain program creates processes (threads) that each consist

of a small, independent unit of work. For matrix multiplication, each inner product can be com-

puted in parallel by a logically distinct process. In fact, the decomposition could be even �ner: a

thread could be created to compute each multiplication on each inner product (n

3

threads). How-

ever, matrix multiplication is quite unnatural and ine�cient to program in this manner, as locking

would be necessary to add the multiplications to form an inner product.

The �ne-grain program is easier to write, because it frees the programmer from the bookkeeping

involved in clustering units of work into larger tasks. This clustering causes the programmer to get

bogged down in algebraic details necessary to obtain a correct and e�cient clustering. Some parallel

programs, such as divide and conquer algorithms, do not in fact have any a priori �xed set of tasks.

In this case the coarse-grain program must be completely di�erent (and much more complicated)

than the natural �ne-grain solution. A �ne-grain program is architecture independent in the sense

that the same program could be executed on any number of processors, whereas a coarse-grain

program is typically written for some �xed number of processors. Fine-grain parallelism can also

be used to implement both explicit parallelism in imperative languages and implicit parallelism in

functional or data
ow languages. Finally, if there are more processes than processors, there is the

potential to balance the load automatically among the processors; in a coarse-grain program it is

important that each process be assigned about the same amount of work, which is not necessarily

a straightforward task.

Although �ne-grain parallelism has attractive attributes, conventional wisdom is that a coarse-

grain program will execute much more e�ciently than a �ne-grain one due to the overhead of

process creation, context switching, and synchronization. Because of the ease of programming us-

ing the �ne-grain model, we believe a small loss in e�ciency is acceptable. Our goal is to keep this

loss in e�ciency under 15%.

The Filaments package [EAL93] is a software package that assists parallel programmers in writ-

ing e�cient, �ne-grain parallel programs for shared-memory multiprocessors. In particular, Fila-

ments programs using a decomposition of a thread per point of a matrix can run competitively with

hand-coded, coarse-grain programs. In this paper we describe the performance of the Filaments

package on ten di�erent applications: matrix multiplication, Jacobi iteration, convolution, Mandel-

brot set calculation, Fast Fourier Transform, Gaussian elimination, multigrid, adaptive quadrature,

calculating �bonacci numbers, and quicksort. For each application we compare the performance

using Filaments to tuned coarse-grain programs and show that writing �ne-grain programs with

the Filaments package almost always leads to performance that is competitive with coarse-grain

programs.

1

Filaments contains three types of threads: run-to-completion, barrier (iterative), and fork/join.

Run-to-completion threads are run once; barrier threads are run some number of times, with barrier

synchronization and termination checking performed after each iteration; fork/join threads create

one or more threads, and then wait for them to complete. The implementation of Filaments is very

e�cient due to the lack of private stacks on a per �lament basis. Filaments are run by servers, one

per processor. When a �lament needs to compute local results, it uses the server's stack. The lack

of private stacks eliminates the need for costly context switches between threads, and also frees

up cache space for data. There are other mechanisms for e�ciency in Filaments, such as a lack of

preemption, automatic load balancing, pruning for fork/join computations, control of thread place-

ment for data locality, support for multiple barriers in a single thread function (continuations), and

very e�cient barrier synchronization. For further details on the Filaments package, see [EAL93]

and [Eng93].

Should the reader be interested in the Filaments package or the programs used to obtain the

results printed here, please contact the authors via email.

2 Experimental Assumptions

We used two machines in testing. The �rst was a 14 processor Sequent Symmetry 81 with a 16

MHz clock and a 64Kbyte mixed instruction and data cache. The other was a Silicon Graphics

Iris 4D/340 multiprocessor, which has a 33 MHz clock, a 64 Kbyte instruction cache, 64Kbyte date

cache, and a 256Kbyte secondary data cache.

We went to great lengths to try to ensure the tests were accurate and fair, and that all pro-

grams were e�cient. Most importantly, the Filaments, coarse-grain, and sequential programs were

implemented as similarly as possible. For example, they all declared the same variables in registers,

used the same memory allocator, and used the same timing facilities. All tests were run in single-

user mode. In order to avoid adding overhead, the sequential programs were written without any

parallel constructs and the coarse-grain programs were written using vendor-supplied subroutine

libraries.

In the times reported for experiments, we factored out the system time (which was typically

almost zero). These times, as well as all times reported below, are the average of 3 test runs. They

were normally very consistent, although occasionally tests were run again due to anomalies. In

these cases, the times reported were the average times of the second group of test runs.

In the next section we explain and give the performance of our ten applications. We give times

and speedups for Filaments and coarse-grain programs. Reported speedups are relative to the se-

quential program time. The last column includes the percentage time di�erence between Filaments

and coarse-grain programs; a positive percentage indicates that the coarse-grain program ran faster,

and a negative percentage indicates Filaments ran faster.

In choosing problem sizes, we generally strove to make the sequential program take about a

minute. This allows for the potential for good speedup on the larger numbers of processors. It

2

also allows the test runs to run in a reasonable amount of time (and we had limited single-user time).

3 Experiments

3.1 Matrix Multiplication

Consider the problem of computing the matrix product of two n by n matrices a and b. The

\natural" unit of parallelism in this problem is one inner product, and there are n

2

inner products.

Each inner product can be computed by a thread that executes once and terminates.

A program that uses the Filaments package typically has three parts: declarations of variables

that are to be located in shared memory, functions containing thread code, and a main routine

that initializes, times, and controls the computation. For the matrix multiplication problem, the

shared variables are the source and result matrices. The thread code computes an inner product.

The main routine initializes the Filaments package and the matrices, creates the �laments, and

then starts the server processes. Pseudo-code follows:

shared real a[n][n], b[n][n], c[n][n]

matrix_mult(int i, j)

real sum = 0.0 /* use local variable for cache hits */

for k = 1 to n do

sum = sum + a[i][k]*b[k][j]

c[i][j] = sum

end

main()

int server

f_initialize(num_servers)

create and initialize shared matrices

start timer

for i = 1 to n do {

server = (i*num_servers)/n /* server to use for row i */

for j = 1 to n do

f_rtc_thread(server, matrix_mult, i, j)

}

f_parallel(num_servers)

stop timer

print results

end

The call of f initialize initializes the Filaments package to use num servers server processes.

The arrays are created dynamically so that the program does not need to be recompiled when the

input size changes. The call of f rtc thread creates one thread; the �rst argument speci�es the

server that will execute the thread, the second is a pointer to the thread's code, and the others

3

are the arguments that will be passed to the thread when it is executed. Threads are assigned to

servers by \strips;" i.e., each server computes all inner products in a contiguous set of rows of result

matrix c. This provides data locality and hence good cache performance. The call of f parallel

starts the server processes; that call terminates when all threads have been executed. For this

application we use run-to-completion �laments because the �laments are only run once.

The coarse-grain program also uses a strip assignment. This program also has to determine

the starting and ending rows for each processor's strip. While this calculation is not incredibly

di�cult, any error will result in incorrect program execution. The Filaments program may not

run as e�ciently if some �laments are assigned to an incorrect processor, but will produce correct

output. The important part of the coarse-grain program is:

real sum

int startrow, endrow

startrow = pid * N/W

endrow = startrow + N/W -1

for i = startrow to endrow do {

for j = 1 to n do {

for k = 1 to n do

sum = sum + a[i][k]*b[k][j]

c[i][j] = sum

}

}

Below are the results on the Sequent and the Iris, with sizes 150 and 350, respectively.

Sequent: matrix size 150 Sequential time: 54.89 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 55.14 0.995 54.84 1.000 0.547

2 27.62 1.987 27.45 1.999 0.619

4 14.01 3.917 13.92 3.943 0.646

8 7.036 7.801 6.986 7.857 0.715

12 4.813 11.40 4.786 11.46 0.564

Iris: matrix size 350 Sequential time: 58.9 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 59.77 0.985 58.73 1.002 1.770

2 29.88 1.971 29.87 1.971 0.033

4 15.5 3.8 15.24 3.864 1.706

It is not surprising that the Filaments package is within 2% of the coarse-grain program in the

worst case. There is a reasonable amount of work per thread (n multiplications and n�1 additions),

which amortizes the Filaments overhead. The work per thread also increases with the problem size.

4

This along with the ability to assign threads to processors allows the Filaments package to perform

very well.

3.2 Jacobi Iteration

Laplace's equation in two dimensions is the partial di�erential equation

@

2

u

@x

2

+

@

2

u

@y

2

= 0:

Given boundary values for a region, its solution is the steady values of interior points. These values

can be approximated numerically by using a �nite di�erence method such as Jacobi iteration. In

particular, discretize the region using a grid of equally spaced points, and initialize each point to

some value. Then repeatedly compute a new value for each grid point; the new value for a point

is the average of the values of its four neighbors from the previous iteration. The computation

terminates when all new values are within some value EPSILON of all old values, or when some

maximum number of iterations have occurred.

Because Jacobi iteration uses two grids, all new values can be computed in parallel. If the grid

has n

2

points, this leads to the �ne-grain program shown below. For this application we use barrier

�laments, because we want to avoid thread creation on each iteration. In particular, each iteration

of the computation �rst computes new values for all grid points. Then we (sequentially) swap the

old and new values and iterate again until convergence occurs.

The grid is a dynamically allocated two-dimensional vector of matrices. Variables old and new

are used to index into this array. The boundaries of the region are stored in the edges of grid.

shared real grid[2][n+2][n+2] /* created dynamically */

shared real maxdiff = 0.0

shared int old = 0, new = 1, k = 0

Procedure jacobi contains the code executed by each thread:

jacobi(int i, j)

real temp

grid[new][i][j] = (grid[old][i-1][j] + other neighbors)/4

temp = absval(grid[new][i][j] - grid[old][i][j])

if temp > maxdiff then {

acquire lock

if temp > maxdiff then maxdiff = temp

release lock

}

end

After computing the new value of grid point (i; j), jacobi computes the di�erence between the old

and new values of that point. If the di�erence is larger than the maximum di�erence seen on this

5

iteration of the entire computation, then global variable maxdiff needs to be updated. Above we

compare temp and maxdiff twice, once before acquiring the lock and once while holding it. This

speeds up the computation because in practice very few threads will have to acquire and release

the lock.

After all grid points are updated, the following procedure is called to check for convergence and

to swap grids:

sequential_code()

k++; if (k > MAXITERS or maxdiff < EPSILON) then return DONE

old = new; new = 1-new; maxdiff = 0.0; return NOTDONE

end

This code is executed sequentially by server 0 at the end of every update phase, i.e., after every

thread reaches the barrier synchronization point.

The main procedure is:

main()

f_initialize(num_servers)

create and initialize grids

f_new_barrier(sequential_code)

for i = 1 to n do {

server = (i*num_servers)/n /* server to use for row i */

for j = 1 to n

f_bar_thread(server, jacobi, i, j)

}

f_parallel(num_servers)

end

The f new barrier indicates that the routine sequential code will be called at a barrier point.

As in matrix multiplication, �laments are again assigned in strips to maximize locality.

The coarse-grain program looks much like the coarse-grain matrix multiplication program, ex-

cept that barrier synchronization is necessary. Its pseudocode is:

int startrow, endrow

real temp, localdiff;

bool done

compute startrow, endrow

done = false

while not done do {

for i = startrow to endrow do

6

for j = 1 to n do {

grid[new][i][j] = (grid[old][i+1][j]+other neighbors)/4.0

temp = absval(grid[new][i][j] - grid[old][i][j])

if temp > localdiff

temp = localdiff

}

aquire lock

if localdiff > maxdiff

maxdiff = localdiff

release lock

barrier

if id = 0 then

if maxdiff < EPSILON then done = true

else maxdiff = 0;

barrier

}

Below are the results on the Sequent and the Iris, with sizes 150 and 300, respectively.

Sequent: jacobi size 150 Sequential time: 61.34 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 69.0 0.888 62.3 0.984 10.75

2 34.42 1.782 31.17 1.967 10.42

4 17.36 3.533 15.8 3.882 9.873

8 8.65 7.091 7.9 7.764 9.493

12 5.953 10.30 5.403 11.35 10.17

Iris: jacobi size 300 Sequential time: 16.35 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 24.46 0.668 16.71 0.978 46.37

2 12.14 1.346 8.263 1.978 46.92

4 5.983 2.732 4.116 3.972 45.35

There is very little work per thread, as each �lament only performs 3 additions, a division, a

subtraction, a comparison, and conditionally performs another comparison and a lock acquisition

and release. Also, the work per thread does not increase with the problem size; it is constant. Even

so, on the Sequent the Filaments program is consistently within 11% of the coarse-grain program.

On the Iris, the Filaments program is consistently around 45% slower than the coarse-grain

7

program. About 15% is due to Filaments overhead for the same reasons as discussed above. Most

of the other 30% time di�erence is due to the Iris compiler's ability to perform optimizations for

the coarse-grain program that it cannot perform for the �ne-grain program. To see why, consider

the important part of the coarse-grain program:

for i = startrow to endrow do

for j = 1 to n do {

grid[new][i][j] = (grid[old][i+1][j]+...)/4.0

...

}

Compare this to the important part of the �ne-grain program:

jacobi(i,j)

grid[new][i][j] = (grid[old][i+1][j]+...)/4.0

...

end jacobi

In the coarse-grain program, the compiler can eliminate common subexpressions, such as

grid[new][i], over several iterations of the inner loop. Also, constants such as 4:0 can be loaded

once and placed in a register. However, neither of these optimizations can be used in the �ne-grain

program, because the compiler has no idea in what order the threads will execute. In fact, the

generated code for the main computational chunk of this program is three times longer for the

Filaments program than for the coarse-grain program. This is a problem with �ne-grain programs

in general | it is especially pronounced in Jacobi because the thread code does not contain a

loop. (If the thread code contained a loop, then common subexpressions could be eliminated from

it.) The Filaments program on the Sequent performed nearly as well as the coarse-grain program,

because the Sequent's C compiler did not attempt to optimize the coarse-grain program.

In defense of �ne-grain programs, for problems in which threads execute in a predetermined

order (i.e. no threads migrate), a good compiler might be able to eliminate common subexpressions.

The constants can always be saved across thread executions. Also, because loops are eliminated,

more registers are freed up, which a smart compiler can take advantage of. In fact, for matrix mul-

tiplication on the Sequent, we had to annotate heavily-used variables with \register" declarations

to get the coarse-grain program to run faster than the �ne-grain program! In general, however,

coarse-grain programs have the advantage of being more amenable to compiler optimizations.

To make sure the Iris compiler's lack of optimization of the Filaments program was responsible

for the large overhead on Jacobi, we manually rewrote the Filaments program, to eliminate common

subexpressions. The resulting Jacobi program on the Iris was indeed around 15% slower than the

coarse-grain Jacobi program, which is from the overhead from Filaments. (Of course, no user would

ever want to manually eliminate common subexpressions, and usually would not do so. It just shows

that thread packages have no inherent limitation in e�ciently executing �ne-grain programs, as has

been previously claimed by many, for example [LS90]).

3.3 Convolution

Convolutions are frequently used in engineering and other areas to solve problems such as polyno-

mial multiplication [Baa88]. The convolution of two n length vectors, A and B, is the vector C such

8

that the i

th

component of C is given by C

i

=

P

n�1

j=0

A

j

B

i�j

, where the indices on the right-hand

side are taken modulo n. The algorithm is very simple; following is the code for procedure conv,

which each thread executes. A, B, and C are shared vectors that are created dynamically.

conv(int i, n)

for k = i to n*n do /* note loop starts at i, not 1, so load imbalance */

C[i] = C[i]+A[k]*B[k-i]

end

The main procedure contains the following:

main()

initialization code

for i = 0 to n*n do

f_rtc_thread(random() mod nservers, conv, i, n)

end main

This application is load imbalanced, because each thread runs a di�erent number of iterations

of a loop. Thus, the �laments program needs to balance the load to get good performance. One

method for balancing the load in such applications is to use a random assignment policy. Generally,

the drawback to this scheme is a decrease in cache hits, because processors do not work on a local

group of points. However, in this application there is very little locality, so random assignment of

run-to-completion threads, one per point, is used to provide load balancing. As there is a lot of

work, a random assignment will approximate a load balanced distribution.

The coarse-grain program divides up the work cyclically, as the computation of point i is assigned

to processor i mod P , where P is the number of processors in the system. A cyclic assignment

for this application turns out to be the best assignment to achieve a load-balanced program other

than random assignment, There is not a natural notion of random assignment for a coarse-grain

program. We tried a strip assignment; the results were predictably terrible, as the last processor

got most of the work, causing severe load imbalance. The coarse-grain program is:

for i = pid to n*n by W do

for k = i to n*n do

C[i] = C[i] + A[k] * B[k-i]

9

Below are the results of running convolution on the Sequent and the Iris, with vector sizes 40

and 100 respectively.

Sequent: conv size 40 Sequential time: 25.75 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 25.41 1.035 25.32 1.039 0.355

2 13.89 1.894 13.78 1.910 0.798

4 7.15 3.681 7.17 3.670 -0.27

8 3.736 7.044 3.596 7.319 3.893

12 2.486 10.58 2.443 10.77 1.760

Iris: conv size 100 Sequential time: 39.58 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 39.93 0.991 39.14 1.011 2.018

2 19.9 1.988 19.97 1.981 -0.35

4 10.08 3.926 10.22 3.702 -1.36

The Filaments programs obtained very good speedups, and these times were nearly identical to

the times of the coarse-grain program. The coarse-grain program bene�ts from the knowledge that

every point i will require more work than point i� 1. Thus, a cyclic assignment of work will result

in a perfectly load balanced program. In general, a cyclic assignment of work will perform very well

in a coarse-grain program, although there are load-imbalanced programs for in cyclic assignment

will perform poorly (see next section).

3.4 Mandelbrot Set Calculation

The Mandelbrot set [Dew85] is the set of complex numbers z such that (z

2

+ z)

n

is bounded as n

approaches in�nity. To compute the set, one selects a region and a resolution. The region speci�es

the range of values to test, and the resolution speci�es the distance between complex numbers to be

tested for membership (the resolution can intuitively be thought of as a mesh spacing). After each

iteration, each point is checked to see if it has exceeded a selected bound (our bound is 100). If it

has, computation of that point ceases; otherwise, another iteration is performed. This continues

until some speci�ed number of iterations are performed. At this point, all numbers that have not

exceeded the bound are in the Mandelbrot set. Because each point requires a di�erent amount of

computation, this application is load-imbalanced.

Procedure mandelbrot contains the computation for each point on the grid. All elements of

pixel done are assumed to be initialized to zero. The pixel x and pixel y arrays hold the current

value of each point. Identi�er pixel val holds the number of iterations a point took to converge

(if it converges), and BOUND is the bound.

mandelbrot(i, j)

10

real x1, x2, x, y

for iter = 1 to MAXITERS do {

if (!pixel_done[i][j]) then {

x=pixel_x[i][j];

y=pixel_y[i][j];

x1=x*x-y*y+xval[i];

y1=2*x*y+yval[j];

}

if (magnitude of this complex number > BOUND) then {

pixel_done[i][j] = 1

pixel_val[i][j] = iter

}

else {

pixel_x[i][j]=x1;

pixel_y[i][j]=y1;

}

}

end

The main procedure is virtually identical to that of matrix multiplication. A cyclic assignment

policy using run-to-completion threads was used in the Filaments program, as this typically results

in good performance for Mandelbrot (see below). The important part of the coarse-grain program

was as follows (W is the number of workers):

compute startrow, endrow

for i = startrow to endrow by W do

for j = 1 to N do

for iter = 1 to MAXITERS do

(same code as for Filaments version)

Again, the coarse-grain program used a cyclic assignment | each worker works on every W

th

row. As with the Filaments program, a cyclic assignment balances the load well for this applica-

tion. We tried a strip decomposition in the coarse-grain program, and it ran very slowly, as some

processors contained a whole strip of rows in which most points diverged very quickly.

11

Below are the results on the Sequent and the Iris, with sizes 150 and 300, respectively.

Sequent: mbrot size 150 Sequential time: 52.94 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 53.07 0.997 53.19 0.995 -0.22

2 26.59 1.990 26.63 1.987 -0.15

4 13.33 3.971 13.36 3.962 -0.22

8 6.75 7.842 6.766 7.824 -0.23

12 4.493 11.78 4.516 11.72 -0.51

Iris: mbrot size 300 Sequential time: 27.55 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 27.84 0.989 27.4 1.005 1.605

2 13.89 1.98 13.8 1.996 0.652

4 6.940 3.939 6.936 3.972 0.057

Mandelbrot is similar in style to convolution: both applications are load-imbalanced with no

locality inherent in the application. The only di�erence is that in Mandelbrot, there is no pattern

to how much work each point will require. However, since the amount of work each point performs

is completely random, the cyclic assignment worked very well on the coarse-grain program. The

Filaments program used the same assignment policy. A random assignment policy will work just

as well, but the cost of using the random function caused the Filaments program to run a little

slower than without it. (Adjoint convolution only incurs n calls to random, whereas Mandelbrot

would have incurred n

2

.) Again, it is important to note that Filaments programs can trivially use

random assignment to load balance programs that have a lot of work and a small amount of locality.

This saves the programmer from worrying about which assignment policy will perform well on a

speci�c load-imbalanced program. Also, for some applications a random assignment policy will

outperform any other static policy. It is very di�cult to program a random assignment policy with

a coarse-grain program. Thus, without writing complex code, some coarse-grain implementations

will exhibit load-imbalance.

3.5 Fast Fourier Transform

A Fourier Transform is used to approximate a function with another curve comprised of sines and

cosines. The naive way to compute a Fourier Transform takes O(n

2

) complex additions and multi-

plications. Many people simultaneously discovered that the terms use common intermediate values.

Cooley and Tuckey are usually given credit for the discovery of the Fast Fourier Transform (FFT)

[CT85]. Their FFT is called the Radix-2 FFT, and the number of complex arithmetic operations is

O(n logn). This algorithm runs for log n steps. At each step new intermediate values are computed

for each of the n elements in the vector. Each new value is computed based on two values: its

old value and one other value. This other value, which changes on each step, is determined by a

butter
y pattern. With such a pattern, element i will �rst use a value that is a distance n=2 away.

On successive steps, element i uses values that are n=4, n=8, etc. away. There are log(n) steps in

a such a butter
y-style algorithm.a

12

We run a two-dimensional FFT, which is widely used in image processing. A two-dimensional

FFT is performed by �rst performing a sequential FFT on each row, and then a sequential FFT on

each column. This program is easily parallelized in a shared-memory setting, assuming the code

for a sequential FFT is available (eg. see [CT85]). The Filaments program simply creates one

Filament per row of the matrix, and this �lament performs a sequential FFT on that row. Then

one �lament per column is created, and another sequential FFT is performed. Pseudocode follows:

shared complex **x

/* rowfft and colfft are just sequential FFT's, the only difference is that

colfft is set up to work on columns to avoid transpose */

main()

for i := 0 to N-1 do

f_rtc_thread(i*nservers/N, rowfft, x[i])

for i := 0 to N-1 do

f_rtc_thread(i*nservers/N, colfft, x, i)

end

Below are the results on the Sequent and the Iris, with sizes 32768 and 65536, respectively.

Sequent: �t size 256 Sequential time: 55.24 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 55.22 1.000 55.23 1.000 -0.01

2 27.66 1.997 27.65 1.997 0.036

4 13.85 3.988 13.84 3.991 0.072

8 6.956 7.941 6.94 7.959 0.230

12 4.8 11.50 4.793 11.52 0.146

Iris: �t size 1024 Sequential time: 57.38 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 58.52 0.980 58.26 0.984 0.446

2 30.13 1.904 29.99 1.913 0.466

4 15.46 3.711 16.3 3.520 -5.43

One can see that the Filaments programs run nearly identically to the coarse-grain programs.

A one-dimensional FFT requires a lot of work, and each �lament is performing several such FFT's.

Thus, the result is not surprising. We should mention that the two-dimensional FFT is not nearly as

straightforward on a distributed memory machine, because of the complex communication patterns.

13

3.6 Gaussian Elimination

Gaussian elimination is a classic method for solving the linear system Ax = b. For an n by n matrix,

n iterations are performed. On the j

th

iteration, column j is pivoted and normalized. The pivot

value is chosen to be the largest element (in absolute value) in the column in order to minimize

round-o� error. Then, all rows below row j are updated in an elimination phase.

The Filaments program uses one �lament per column. Because the values in the pivot row are

accessed in the elimination phase, a barrier synchronization is required after the pivot phase. In ad-

dition, the pivoting phase requires that the elimination phase be complete, which results in another

barrier after the elimination phase. Therefore, we need to not only use barrier threads, but also

allow for two barriers (as opposed to one in Jacobi iteration). We use the Filaments mechanism for

multiple barriers: multiple calls to f new barrier(), with thread creations in between these calls.

The �rst group of threads are run, then the �rst barrier is reached (and the associated sequential

code is run), then the second group of threads are run, and then the second sequential code is run,

and so on.

Gaussian elimination exhibits load-imbalance because after a column is pivoted, it is never

accessed again. In fact, on each iteration, one row and one column are accessed for the last time.

On iteration j, only an n � j + 1 by n � j + 1 submatrix is accessed. The Filaments program

achieves load balancing by assigning the columns cyclically to processors. Pseudocode follows:

shared int k; /* just the outer loop counter */

shared int N;

shared int A[N][N]; /* matrix operated on, created dynamically */

shared int pivrow; /* row in which largest value is found */

Procedure dopivot is invoked by each thread; however, only one thread actually computes the

pivot value.

dopivot(int j, n)

if (j == k-1) then { /* i am the pivoter */

pivot(k-1, &pivrow) /* procedure pivot returns the desired row */

swap(A[pivrow][k-1], A[k-1][k-1]) /* largest value now in pivot position */

for i = k to n-1 do /* eliminate my column */

A[i][j] = A[i][j] - A[k-1][j] * A[i][k-1]/A[k-1][k-1]

}

Procedure eliminate is invoked by each thread.

eliminate (int j, N)

int i;

if j >= k then { /* if column j is to the right of the current pivoting column */

swap(A[pivrow][j], A[k-1][j]) /* help complete pivot */

14

for i=k to N-1 do { /* only eliminate points to right of pivot */

A[i][j] = A[i][j] - A[k-1][j] * A[i][k-1]/A[k-1][k-1];

}

end

The sequential code run after eliminate is:

sequential_code()

if ++k < N then return NOTDONE; /* just managing the outer loop counter */

else return DONE;

end

The main procedure is somewhat di�erent here, as we have multiple barriers. It looks as follows:

main()

f_new_barrier(null_code) /* null_code just returns F_NOTDONE (simple barrier) */

for j = 0 to n-1 do

f_bar_thread(j%nservers, dopivot, j, n) /* these threads are associated with null_code */

f_new_barrier(sequential_code)

for j = 0 to n do

f_bar_thread(j%nservers, eliminate, j, n) /* these threads are associated with sequential_code */

end

Run-to-completion threads could be used here since we know how many iterations will be per-

formed, but our measurements showed that the creation overhead was slightly greater than the

overhead of checking for loop termination. As stated above, we create one �lament per column,

because that is the most natural way to code Gaussian elimination. If one wanted to code this

problem with a �lament per point, then the pivoting code would have to contain several condition-

als. To better understand this, consider that if there were a �lament per point, there would be

several actions a thread could take on a given iteration: a thread could be idle, a thread could be

responsible for the actual pivot, a thread could be responsible for helping to complete the pivot, or

a thread could be responsible for eliminating a point. Typically when one thinks of the advantages

of programming with a thread per point, one thinks of removing loops. But in this case, there is a

blowup in conditionals, so the full advantage is not gained. There is even a disadvantage, because

of increased code complexity.

We do not create one �lament per row because that forces the pivoting routine to be sequential.

Using one thread per column allows all processors to participate in the swap.

The coarse-grain program also uses a cyclic assignment. One added complexity in the coarse-

grain program arises because of the possibility of the number of workers, W , not dividing the

problem size, N . In this case, some workers are assigned N=W columns, and some are assigned

(N=W) + 1. All processors loop over the number of columns they are assigned, with a barrier

synchronization in the middle of the loop. After iteration N=W , some processors exit this loop,

and some perform one more iteration. Because all processors must participate in a barrier synchro-

nization, the processor that exit the loop must perform one extra barrier (otherwise deadlock will

15

occur). This additional complexity is an unfortunate attribute of the coarse-grain programming

model. The important part of the coarse-grain program is:

startcol := myID /* myID is which process i am */

for k = 1 to N-1 do {

for j = startcol to N-1 by W do {

if j = k-1 then {

pivot(k-1, &pivrow)

swap(A[pivrow][k-1], A[k-1][k-1])

for i = k to N-1 do

A[i][j] = A[i][j] - A[k-1][j] * A[i][k-1]/A[k-1][k-1]

}

barrier

if j >= k then {

swap(A[pivrow][j], A[k-1][j]) /* help complete pivot */

for i = k to N-1 do

A[i][j] = A[i][j] - A[k-1][j] * A[i][k-1]/A[k-1][k-1]

}

}

if (this process worked on 1 fewer column than another processor)

barrier /* see explanation above in text */

barrier

}

}

16

Below are the results on the Sequent and the Iris, with sizes 150 and 300, respectively.

Sequent: gauss size 150 Sequential time: 32.21 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 32.42 0.993 32.19 1.000 0.714

2 16.86 1.910 17.23 1.869 -2.19

4 8.956 3.596 9.313 3.458 -3.98

8 4.963 6.490 5.146 6.259 -3.68

12 3.65 8.824 3.866 8.331 -5.91

Iris: gauss size 300 Sequential time: 18.29 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 19.18 0.953 20.4 0.896 -6.36

2 12.69 1.441 17.11 1.068 -34.8

4 10.14 1.803 15.52 1.178 -53.0

We programmed Gaussian elimination in what we felt was the most natural way: by columns.

As mentioned above, because each processor works on a set of non-contiguous columns, there will

be many cache invalidations due to the row-major storage of C. On the j

th

iteration, each element

of the n � j + 1 by n � j + 1 submatrix will be written, causing an invalidation on every other

processor. For this reason, the speedup in both the Filaments and coarse-grain programs is very

poor. (When we implemented Gaussian elimination without pivoting, we were able to have each

processor work on a series of rows and achieved near-perfect speedup.) It should be noted that

another way to write this program would be �rst to transpose the matrix and then to assign rows

to processors. We chose not to do this because it deviated signi�cantly from the basic Gaussian-

elimination program.

The Filaments programs run signi�cantly faster than the coarse-grain programs on both ma-

chines. A pro�le of the code suggests that the vendor-supplied facility, called m sync() on both

the Sequent and the Iris, is highly ine�cient when processors arrive at a barrier at varied times. In

Jacobi iteration, the barriers do not a�ect program performance very much because all processors

do the same amount of work and thus reach the barrier at about the same time. In contrast,

Gaussian elimination has severe load imbalance in the pivoting code because one processor lags far

behind the other processors on each iteration.

3.7 Multigrid

In section 3.2, we described Jacobi iteration as a method for solving partial di�erential equations.

Jacobi iteration is a very straightforward algorithm but is also very slow. Each iteration involves an

averaging at each grid point (plus other operations), and hence the e�ect of points on one boundary

cannot reach points on the opposite boundary until at least n iterations. This can be completely

unacceptable for large problem sizes.

In this section we describe multigrid methods for solving partial di�erential equations. Multigrid

17

is a very complex algorithm: the code size is around 10 times larger than that of Jacobi iteration.

However, the e�ect of points on one boundary can reach points on the opposite boundary in log(n)

steps, a signi�cant improvement over Jacobi iteration.

Multigrid methods are based on what is known as a coarse grid correction, which works as

follows. First, use a relaxation technique for a few iterations. Because of the ine�ciency of such

techniques, the number of iterations should be kept to a minimum (usually two or three). Then,

restrict the result to a coarser grid, which has

1

4

the area of the original grid. This coarsening

is provided by a restriction operator R (one example of R might be to just copy certain points

on the �ne grid directly to the coarse grid, although typically a more sophisticated operator is

used). Third, solve the problem completely on the coarse grid (for example by relaxation or

direct methods). Fourth, interpolate this solution back to the �ne grid using an interpolation, or

prolongation, operator P (one example of this operator might be just to copy the points back to the

�ne grid and then average them with neighboring points). Finally, apply the relaxation technique

on the �ne grid for a couple of iterations. After the relaxation technique is applied to the �ne grid,

the values of boundary points will be a�ect far beyond the 5 points they would be normally felt

with just 5 iterations of relaxation.

The multigrid method is just a slight extension of the above. Instead of solving exactly on the

coarse grid, again relax for a few iterations, and restrict to an even coarser grid. This process is

continued until a coarse enough grid is obtained so that iterating a relaxation scheme to conver-

gence takes virtually no time. Then the interpolation step is done all the way back to the original

grid, with another relaxation step in between each interpolation.

We can improve the e�ciency of multigrid by using an algorithm known as the full multigrid

method (FMG). A large amount of time in multigrid is spent iterating on the �nest grids. Instead

of starting from the �nest grid, �rst �n the exact solution on the coarsest grid (of course, it's only

a guess initially). Second, interpolate to the next �ner grid. Then, �nd the exact solution on

this grid, by applying the regular multigrid method (relax, restrict, interpolate). Only then do we

proceed up to the next �ner grid. In this manner as little time as possible is spent on the �nest

grids. Typically only one or two iterations is needed on each grid. An example of the progression

of grids for a 3-grid FMG is given in Figure 1.

Our algorithm is an adaptation and parallelization of the FMG as explained in [PT91]. Only

certain phases (relaxation, restriction, interpolation) are parallelized. Parallelizing some phases

(such as solving directly) actually resulted in a decrease in performance. Each phase was paral-

lelized separately, and assigned �laments to processors in strips. Below we discuss the interpolation

and restriction phases. The relaxation phase is very similar to that shown in the section on Jacobi

iteration, and will be omitted.

The interpolation phase requires the use of continuations and multiple barriers. Hence, the

interpolation procedure is split into three procedures, interp1, interp2, and interp3. This inter-

polation, known as bilinear interpolation, uses the prolongation operator:

2

6

4

1=4 1=2 1=4

1=2 1 1=2

1=4 1=2 1=4

3

7

5

18

Coarsest

 Grid

Coarsest

 Grid

Grid Grid

Finer Finer

Figure 1: Example of Full Multigrid Method, 3 grids

This allows for a point on the coarse grid to have a direct e�ect on the corresponding �ne grid

point and a lesser e�ect on other neighbors.

Pseudocode follows:

interp1 (int pid, nf; double **uf, **uc) /* uf and uc are fine and coarse grids */

int jc, jf, nc = nf/2 + 1 /* nf, nc dimensions of fine and coarse grids */

if pid <= nc then /* only some processors will do the copy */

for jc = 1 to nc do {

jf = 2 * jc - 1 /* figuring out mapping between fine and coarse grid */

uf[2*pid-1][jf] = uc[pid][jc] /* do the copy */

}

end

interp2 (int pid, nf; double **uf, **uc)

int jf;

19

/* first average the points over the columns that we copied in in

procedure interp1 */

if pid mod 2 = 0 then

for jf = 1 to nf by 2 do

uf[pid][jf] = 0.5 * (uf[pid+1][jf] + uf[pid-1][jf])

end

interp3 (int pid, nf; double **uf, **uc)

int jf;

/* next average over all the rows */

for jf = 2 to nf-1 by 2 do

uf[pid][jf] = 0.5 * (uf[pid][jf+1] + uf[pid][jf-1])

end

The code to set up the parallelization is a little di�erent than we have seen so far. We use

continuations for parallelizing the interpolation function. Continuations are used when several

functions, each separated by a barrier, use the same number of threads, with the same arguments.

(In Gaussian elimination, we could not use continuations because we did not create the same number

of threads for each function.) Multiple barriers can be used to implement anything continuations

can implement, but continuations are an optimization of multiple barriers since the same argument

block is used for each function (and thus need be created only once, as opposed to several times with

multiple barriers). Below, null code just returns F NOTDONE (so is a simple barrier). Procedure

f new continuation speci�es the routines to link together. The e�ect is that all threads run

interp1, then null code is run, then all threads run interp2, etc. Because we need more than

three parameters, we have to use variable argument �laments. The string iipp indicates there

will be four parameters, 2 integers followed by 2 pointers. The function to execute is not speci�ed

because f new continuation already did so. Identi�er grid is a vector of matrices, ranging from

the �nest grid to the coarsest grid.

f_new_barrier(null_code)

f_new_continuation(interp1, interp2, interp3)

for i = 1 to fineGridSize do { /* size of grid we are interpolating onto */

server = i*nservers/fineGridSize

f_bar_threadV(server, NULL, "iipp", i, fineGridSize, grid[j], grid[j-1])

}

The code for restriction is, in a sense, the opposite of that for the interpolation. For a restriction

operator we use:

2

6

4

0 1=8 0

1=8 1=2 1=8

0 1=8 0

3

7

5

So a coarse grid point is computed by taking

1

2

of the corresponding �ne grid point and adding

to that

1

8

of the north, east, west, and south neighbors. This choice of R allows the e�ect of

20

several points on the �ne grid to a�ect points that are far away, although it does ignore half of the

neighbors. Boundary points that do not have neighbors are just copied directly onto the coarse

grid. One thread is created for each row of the coarse grid; after computing the mapping from the

�ne to coarse grid, each thread computes each point in its row.

restrict(int nc, pid; double **uc, **uf) /* nc is dimension of coarse grid */

int ic, jc, if, jf

/* copy a couple of boundary points */

uc[pid][1] = uf[2*pid-1][1]

uc[pid][nc] = uf[2*pid-1][2*nc-1]

if pid != 1 and pid != nc then

for jc = 2 to nc-1 do {

jf = jc * 2 - 1

if = 2 * pid - 1

uc[pid][jc] = 0.5*uf[if][jf] + 0.125*(uf[if+1][jf] + uf[if-1][jf] +

uf[if][jf+1] + uf[if][jf-1])

}

else

for jc = 1 to nc do

uc[pid][jc] = uf[2*pid-1][2*jc-1]

The threads are created in the same manner as in the interpolation, except that we use run-to-

completion threads in this case, because they simply do a restriction and then terminate.

Below we give a very high level outline of the entire multigrid method.

while not converged {

get initial solution on coarsest grid

while not yet at finest grid {

interpolate to next finer grid (call it G)

/* now going all the way to coarsest grid, and then back

down to the current grid */

while not at coarsest grid {

relax on current grid

restrict to next coarser grid

}

solve on the coarsest grid

while not back at current grid (G) {

interpolate to next finer grid

relax on that grid

}

21

}

}

The coarse-grain program is omitted here, because the relaxation and interpolation, and re-

striction code is similar to that of Jacobi iteration, and the restriction code is similar to that of

matrix multiplication.

Below are the results on the Sequent and the Iris, with sizes 129 and 513, respectively. (For

programming convenience, the multigrid program in [PT91] is programmed to use a �nest grid

whose size is one more than a power of two.)

Sequent: multigrid size 129 Sequential time: 46.50 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 42.09 1.104 45.68 1.017 -8.52

2 22.67 2.051 23.88 1.947 -5.33

4 13.01 3.574 12.77 3.641 1.879

8 8.093 5.745 7.323 6.349 10.51

12 6.513 7.139 5.69 8.172 14.46

Iris: multigrid size 513 Sequential time: 42.23 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

44.35 0.952 42.3 0.998 4.846

2 23.77 1.776 22.67 1.862 4.852

4 14.82 2.849 14.01 3.014 5.781

Multigrid is a very di�cult algorithm on which to get a lot of speedup, because it is quite

complex. As shown above, neither the coarse-grain nor Filaments programs got good speedup, but

the Filaments program was generally competitive. The exception to this is the twelve processor

test on the Sequent, where the Filaments program was around 15% slower than the coarse-grain

program. We cannot �gure out why this particular case ran so poorly. It does, however, motivate

us to try to �nd more complex applications in the future, as they tend to give more insight into

the (potential) ine�ciencies of �ne-grain parallelism.

3.8 Adaptive Quadrature

Consider the problem of approximating the integral

Z

b

a

f(x)dx:

One method to solve this problem is adaptive quadrature. Divide an interval in half, approximate

the areas of both halves and of the whole interval, and then compare the sum of the two halves

to the area of the whole interval. If the di�erence of these two values is not within a speci�ed

tolerance, recursively compute the area of both intervals and add them.

22

The best way to program this is to use a divide-and-conquer approach. Because subintervals

are independent, a new thread can be created to compute each subinterval. Hence this application

uses fork/join threads.

Adaptive quadrature clearly can exhibit load imbalance if certain areas of the curve will require

a lot of work and others will not, and if the processors receive an unequal amount of work. Adap-

tive quadrature is used for exactly those curves that need a very small mesh size for parts of it

and a very large mesh size for others. In turn, this leads to load-imbalance in a parallel program

and presents a challenge for the Filaments package. In order to ensure that load imbalance will

indeed occur, below we compute the area under the function f(x) = exp(x) � sin(x). This func-

tion will require more work at the right part of the interval since the oscillations will become sharper.

The computational routine for adaptive quadrature is:

quad(real a, b, fa, fb, area)

real *left, *right, fm, m, aleft, aright

compute midpoint m and areas under f() from a to m and m to b

if (close enough) then return aleft+aright

else { /* recurse, forking two new threads */

left = f_fork(quad, a, m, fa, fm, aleft)

right = f_fork(quad, m, b, fm, fb, aright)

f_join() /* wait for children to terminate */

return *left+*right

}

end

The algorithm evaluates f() just once at each point and evaluates the area of each interval just

once. Previously computed values and areas are passed to new threads.

The main routine for adaptive quadrature is:

main()

real left, right, *answer, fleft, fright, init_area

f_initialize(num_servers)

f_set_prune_threshold(MAXTHREADS)

input left and right, then compute fleft, fright, and init_area

answer = f_fork(quad, left, right, fleft, fright, init_area)

f_parallel(num_servers)

end

The call of f parallel terminates when all threads have terminated; this serves as an implicit call

of join in the main routine.

There is an option in Filaments to stop forking new threads whenever doing so will result in

poor performance. In particular, the call above of f set prune threshold speci�es a limit on how

many threads can be active at a time. When this pruning threshold is reached, a server turns a

fork (thread creation) into a recursive call. We are currently working on a dynamic mechanism to

23

adjust the pruning threshold, which would obviate the user's need to set it.

Our coarse-grain program is very di�erent from the �ne-grain one. There are at least two

ways to write the coarse-grain program, but there is no direct analog to the �ne-grain program.

One possible coarse-grain program is to divide up the intervals statically and assign intervals to

processors. Each processor than performs adaptive quadrature on its intervals. But this method

can (and likely will) exhibit load-imbalance, as early �nishing processors cannot help compute the

intervals that take more time. We take a di�erent approach. Our program creates one process

per processor and uses a shared job queue. Access to this queue is protected by a lock. Processes

remove work when they are idle. If a process creates two subproblems are it keeps one and insert

the other into the queue. To minimize contention, if there is no work on the queue, processes wait

a certain amount of time before trying again to remove a job. We keep the queue size bounded

to prevent the creation of too much parallelism; this is directly analogous to pruning. Each pro-

cess keeps its total area in a privately indexed global vector, and then the total area is obtained

when the algorithm terminates by summing this vector. Pseudocode follows for the work procedure:

work(int pid)

while true {

remove job from queue

while (no job to remove) {

increment counter to indicate this process is idle

if counter = numWorkers then

terminate program and sum total area

backoff and remove job from queue

}

compute area of whole interval and sum of both halves

if (estimates are close enough) then

sum[pid] +:= sum of both halves

else

if (too many jobs outstanding) then

sum[pid] +:= area() /* area is a sequential adaptive quadrature fn. */

else {

insert left half of interval on queue

keep right half for myself

}

}

end worker

We have left many details out of the pseudocode to make it comprehensible. One can see,

however, that this way of programming is much more di�cult than that of the simple recursive,

�ne-grain program.

24

Below are the results on the Sequent and the Iris, with sizes 27 and 30, respectively.

Sequent: quad size 27 Sequential time: 56.86 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 56.91 0.999 56.77 { {

2 28.52 1.993 28.40 { {

4 14.41 3.945 16.01 { {

8 7.196 7.901 { { {

12 4.743 11.98 { { {

Iris: quad size 30 Sequential time: 8.593 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 8.586 0.987 8.55 0.991 0.421

2 4.326 1.960 4.25 1.995 1.788

4 2.18 3.889 2.343 3.619 -7.47

The Filaments programs got near perfect speedup on small numbers of processors, which is due

to the e�cient fork/join mechanism in the Filaments package. It balances the load when neces-

sary and prunes computations when there is already enough work present. For larger numbers of

processors, we had to tune the pruning threshold to obtain good performance, but the Filaments

package makes this easy to do. With problems such as Fibonacci (see below), where each thread

does very little work, pruning is vital to get reasonable performance.

The coarse-grain program performed fairly well on smaller numbers of processors, but dropped

o� somewhat on larger numbers. This is likely due to contention for the shared queue. Also, it

is very important to note that we had to adjust the pruning threshold to get any kind of good

performance. This required a lot of tuning | much more than the tuning the Filaments program

required. The coarse-grain program seems to be much more volatile with respect to the tuning

threshold than the Filaments program.

3.9 Computing Fibonacci Numbers

Given any number n, consider the problem of recursively calculating the n

th

Fibonacci number.

The �rst two Fibonacci numbers are 1 and 1, and thereafter each Fibonacci number is the sum of

the previous two. This problem can be posed as a divide and conquer problem. To compute the

n

th

Fibonacci number, recursively and in parallel compute both the n� 1

st

and n � 2

nd

Fibonacci

numbers, then add the results. Thus, computing Fibonacci numbers is a fork/join application, like

adaptive quadrature.

Here is the pseudocode for the fib procedure:

fib(int num)

int *res1, *res2

25

if num = 1 then return 1;

else { /* recurse, forking two new threads */

res1 = f_fork(fib, num-1)

res2 = f_fork(fib, num-2)

f_join() /* wait for children to terminate */

return *res1+*res2

}

end

The code for the main program is nearly identical to that for adaptive quadrature.

The coarse-grain program is also nearly identical in style to the coarse-grain program for adap-

tive quadrature, and will be omitted.

Below are the results on the Sequent and Iris, computing the 32

nd

and 35

th

Fibonacci numbers,

respectively.

Sequent: �b size 32 Sequential time: 34.38 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 34.4 0.999 34.39 0.999 0.002

2 17.25 1.993 17.25 1.993 0

4 9.026 3.808 8.58 4.000 5.198

8 4.35 7.903 5.08 6.76 -14.37

12 2.933 11.72 3.58 9.60 -18.07

Iris: �b size 35 Sequential time: 13.99 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 14.16 0.992 14.15 0.992 0.070

2 7.06 1.990 7.09 1.981 -0.42

4 3.58 3.924 3.58 3.924 0.0

Unlike adaptive quadrature, the program to compute Fibonacci numbers creates �laments that

do virtually no actual computation: each �lament performs only an add. This problem presents

the worst case fork/join problem with respect to amount of work per thread. However, with the

Filament package optimizations (namely pruning), near perfect speedup is achieved. After just

a few forks, all processors have work, and no more forking is done. The coarse-grain program is

competitive on the Sequent until the number of processors get large. The reason for this is likely

contention for the shared job queue. For Fibonacci, the �ne-grain program is clearly superior.

3.10 Quicksort

Quicksort is another fork/join application, but it has a lot of work per �lament. Each thread will

do a partition, which consists of two loops, before making a recursive call. Pseudocode follows:

quicksort(int start, finish)

int pivot, temp

26

int left, right

if finish-start) < THRESH /* avoid quicksorting small arrays */

selectionsort(start, finish) /* selectionsort not shown */

else {

left = start

right = finish

pivot = A[(start+finish)/2]

while (left < right) {

while (A[left] < pivot) left++

while (A[right] > pivot) right--

if left <= right {

swap(A[left], A+[right])

left++; right--

}

}

/* fork two children */

if (start < right) f_fork("v",quicksort,start, right, NULL)

if (left < finish) f_fork("v",quicksort,left, finish, NULL)

f_join()

}

Again, the main procedure is similar to the other fork/join applications, and the coarse-grain

program is similar to the that of adaptive quadrature and quicksort, so both will be omitted.

27

Below are the results on the Sequent and the Iris, with sizes 100,000 and 500,000, respectively.

Sequent: qsort size 100000 Sequential time: 17.83 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 17.9 0.996 17.98 0.991 -0.44

2 9.176 1.943 9.249 1.927 -0.79

4 4.853 3.674 6.589 2.706 -35.7

8 2.946 6.052 4.279 4.166 -45.2

12 2.486 7.172 4.196 4.249 -68.7

Iris: qsort size 500000 Sequential time: 9.36 sec.

Processors Filament Time Filament Speedup CG Time CG Speedup % Slower

1 10.75 0.871 9.586 0.977 12.14

2 5.383 1.739 5.26 1.780 2.338

4 2.75 3.405 2.816 3.325 -2.4

Quicksort does not run very well on the Sequent. This application has a lot of work per �lament,

which generally makes for high performance. However, if some processors are idle, it doesn't matter

how much work each �lament performs. Because of quicksort's time-consuming partition routine,

it takes time for all processors to acquire work. For example, the initial node must partition the

array, which involves two linear loops inside another loop (as shown above). Only at this point

does the initial node fork 2 threads. lf the input size is on the order of hundreds of thousands of

numbers, this (sequential) partitioning can take a considerable amount of time. The time taken to

distribute work is too much, and speedup is poor. We believe the Iris time is relatively better than

the Sequent because of its faster processor, which allows the partition routine to be completed

faster and processors to acquire work more quickly.

The Filaments programs again outperform the coarse-grain programs. Again, the coarse-grain

program has to deal with contention for the shared bag when the number of processors is large.

Also, we also had to spend a signi�cant amount of time adjusting the pruning threshold on the

coarse-grain program.

4 Conclusion

We have shown a wide range of applications to be e�ciently implementable with the Filaments

package. Most were easily written and immediately showed good performance. The programs that

were hard to implement e�ciently were Jacobi iteration, quicksort, and multigrid.

We explained that the ine�ciency of Jacobi iteration was due to the compiler performing op-

timizations for the coarse-grain program that it could not for the �ne-grain program. In addition,

quicksort does not run e�ciently because a large part is inherently sequential. Neither of these

ine�ciences is due to ine�ciency of the Filaments package.

28

The poor performance of multigrid on the Sequent is still an open problem. Furthermore, we

had to program multigrid with a thread per row, because the version that used a thread per point

ran too slowly. Multigrid has multiple phases, each of which is often run on a very small problem

size (e.g. relaxation on a �ve by �ve grid). This tends to make �ne-grain computing ine�cient, as

a reasonable amount of work is needed to amortize the (relatively small) overhead of the Filaments

package.

Due to the relative ease of �ne-graim programming, we consider the small disadvantage in

performance of �ne-grain programs to be completely acceptable. The current state of parallel

computing is poor because applications programming is just too di�cult. We feel that �ne-grain

programming is one step in the right direction to making parallel computing easier.

We currently are porting Filaments to a distributed memory multiprocessor, where we plan

to integrate the package into a distributed shared memory system. In the future we also plan to

use Filaments as a target for a parallel programming language to be developed and as a machine-

independent intermediate form for several existing languages.

References

[Baa88] Sara Baase. Computer Algorithms: Introduction to Design and Analysis. Addison-Wesley,

1988.

[CT85] J.M. Cooley and J.W. Tuckey. An algorithm for the machine calculation of complex

fourier series. Math. Comp., pages 297{302, 1985.

[Dew85] A. K. Dewdney. Computer recreations. Scienti�c American, pages 16{24, August 1985.

[EAL93] Dawson R. Engler, Gregory R. Andrews, and David K. Lowenthal. E�cient support for

�ne-grained parallelism. Technical Report 93-13, Dept. of Computer Science, University

of Arizona, April 1993.

[Eng93] Dawson R. Engler. Filaments: the design and implementation of e�cient e�cient �ne-

grain parallelism. Technical report (in preparation), Dept. of Computer Science, Univer-

sity of Arizona, August 1993.

[LS90] Calvin Lin and Lawrence Synder. A comparison of programming models for shared mem-

ory multiprocessors. ICPP, 10(1):163{170, January 1990.

[PT91] William H. Press and Saul A. Teukolsky. Multigrid methods for boundary value problems

1. Computers in Physics, pages 514{519, September/October 1991.

29

