
A LANGUAGE-BASED APPROACH

TO PROTOCOL IMPLEMENTATION

(Ph.D. Dissertation)

Mark Bert Abbott

TR 93-24

August 10, 1993

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This research was sponsored in part by DARPA Contract DABT63-91-C-0030.

A LANGUAGE-BASED APPROACH
TO PROTOCOL IMPLEMENTATION

by

Mark Bert Abbott

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 3

ACKNOWLEDGMENTS

I gratefully acknowledge my advisor, Larry Peterson, for his creative ideas, uncanny
sense of research significance, relaxed attitude, and confidence in my abilities.

I thank the faculty, especially Greg Andrews, Mary Bailey, Saumya Debray, Norm
Hutchinson, and Rick Schlicting, for their guidance, and their ability to balance technical
excellence with concern for people. I also thank our outstanding lab and office staffs for a
level of support that I am unlikely to see equaled. I thank Wendy Swartz for her friendship
as well as for helping me navigate bureaucratic hurdles.

I thank all the members of the Network Subsystems Research Group for providing a
fertile and supportive research community. I am particularly indebted to Peter Druschel
for both the benefit of his exceptional technical abilities and his moral support.

I thank my fellow graduate students, Larry Brakmo, Curtis Dyreson, Clint Jeffery,
Nick Kline, Jim Knight, Dave Lowenthal, Shamim Mohamed, Michael Pagels, Mike Soo,
and Vic Thomas, for their friendship. I am especially grateful to Tyson Henry and Mudita
Jain for all they have done for me. And, like every U. of A. Computer Science graduate
student, I owe a debt of gratitude to Patrick Homer, unofficial mayor of CS graduate
students, for all he does to make that community cohesive and enjoyable.

I thank John Peterson for first putting Arizona on my map, and later sharing climbing
adventures.

Finally, I thank my parents for their constant love and support.

TABLE OF CONTENTS

LIST OF FIGURES : 11

LIST OF TABLES : 13

ABSTRACT : 15

CHAPTER 1: INTRODUCTION : 17
1.1 Introduction to Network Software : 17
1.2 Network Software is Evolving : 20
1.3 Existing Support for Network Software Development : : : : : : : : : : : 21

1.3.1 Protocol Frameworks : 21
1.3.2 Formal Techniques : 22

1.4 New Strategies for Supporting Protocol Development : : : : : : : : : : : 23
1.4.1 Simplifying Protocol Development by Imposing Constraints : : 24
1.4.2 Language Support for Protocol Development : : : : : : : : : : 25

1.5 Morpheus : 26
1.5.1 Abstraction : 26
1.5.2 Modularity : 27
1.5.3 Software Reuse : 29
1.5.4 Performance : 30
1.5.5 Scope and Limitations : 30

1.6 Dissertation Overview : 31

CHAPTER 2: MORPHEUS PROTOCOL ABSTRACTIONS : : : : : : : : : : : 33
2.1 Morpheus Objects : 33

2.1.1 Utility Objects : 34
2.1.2 Protocol Component Objects : : : : : : : : : : : : : : : : : : : 34

2.2 Protocol Shapes : 41
2.2.1 Worker Protocols : 42
2.2.2 Multiplexor Protocols : 44
2.2.3 Router Protocols : 47

2.3 Flow and Congestion Control : 50
2.4 Feasibility of a Morpheus Compiler : 53
2.5 Comparison with the x-kernel Uniform Protocol Interface : : : : : : : : : 55

2.5.1 Control Operations : 55
2.5.2 Multiplexing : 57

CHAPTER 3: LATENCY OPTIMIZATIONS : 61
3.1 Specific Techniques : 62

3.1.1 Dedicated Message Registers : : : : : : : : : : : : : : : : : : 63
3.1.2 Short-Circuit Return : 64
3.1.3 Procedure Cloning : 64
3.1.4 Language Constructs for Frequent Tasks : : : : : : : : : : : : : 66
3.1.5 Eliminating Header Bounds Checking : : : : : : : : : : : : : : 66

3.2 Experimental Results : 67
3.2.1 Instruction Counts : 67
3.2.2 Timing Measurements : 68

3.3 Discussion : 70

CHAPTER 4: THROUGHPUT OPTIMIZATION : : : : : : : : : : : : : : : : : : 73
4.1 Integrated Layer Processing : 73

4.1.1 Four ILP Problems : 75
4.1.2 Related Work : 76
4.1.3 Morpheus ILP : 77

4.2 Accommodating Awkward Data Manipulations : : : : : : : : : : : : : : 78
4.2.1 Word Filters : 79
4.2.2 Word Filter Implementation : : : : : : : : : : : : : : : : : : : 81

4.3 Measurements and Analysis : 83
4.3.1 Experimental Platforms : 83
4.3.2 Case Study : 84
4.3.3 Scalability : 86
4.3.4 Performance Prediction Model : : : : : : : : : : : : : : : : : : 88
4.3.5 Code Space : 90

4.4 Reconciling Different Views of Data : 91
4.5 Satisfying Ordering Constraints : 94

4.5.1 Ordering Constraints on Tasks : : : : : : : : : : : : : : : : : : 95
4.5.2 A Task Ordering Discipline : : : : : : : : : : : : : : : : : : : 96
4.5.3 Performance of Integrated Protocols : : : : : : : : : : : : : : : 98

4.6 Integration by Compiler : 100
4.7 Barriers to Integration : 103

4.7.1 Control Transfer Barriers : 104
4.7.2 Reassembly Barrier : 106
4.7.3 Random Access Barriers : 107
4.7.4 Buffering for Retransmission : : : : : : : : : : : : : : : : : : 107
4.7.5 Runtime Protocol Path Barriers : : : : : : : : : : : : : : : : : 108

4.8 Tradeoffs Between Performance and Abstraction : : : : : : : : : : : : : 110
4.8.1 Trading Abstraction for Performance in Protocol Integration : : 110
4.8.2 Separate Latency-Optimized and Throughput-Optimized Oper-

ations : 111

CHAPTER 5: CONCLUSIONS : 115
5.1 Summary of Constraints : 115
5.2 Contributions : 116
5.3 Future Work : 117
5.4 Concluding Remarks : 118

APPENDIX A: C VERSION OF SEQUENCER PROTOCOL : : : : : : : : : : : 119

REFERENCES : 123

LIST OF FIGURES

1.1 A Protocol Graph : 19

2.1 Protocols as Refinements : 35
2.2 The Base Classes : 36
2.3 Sap and Session Objects : 37
2.4 Sessions : 38
2.5 The Shapes : 42
2.6 A worker protocol program : 43
2.7 A multiplexor protocol program : 45
2.8 Routers in a Protocol Graph : 47
2.9 A Router Protocol Program : 49
2.10 Flow Control Protocol Fragments : 53

4.1 For-Loops : 74
4.2 Checksum Word Filter : 79
4.3 PES Word Filter : 80
4.4 PES Flush : 80
4.5 Combined Filters : 82
4.6 Incremental Performance On DecStation : : : : : : : : : : : : : : : : : 87
4.7 Relative Increase in Throughput due to Integration : : : : : : : : : : : : 90
4.8 Message Abstractions : 92
4.9 Execution Sequence of Integrated Protocol Stages : : : : : : : : : : : : : 97
4.10 Checksum deliverThruput Initial Stage : : : : : : : : : : : : : : : : : : 98
4.11 Checksum deliverThruput Final Stage : : : : : : : : : : : : : : : : : : 98
4.12 Checksum deliverThruput : 101
4.13 Integrated Protocol Synthesis : 102

LIST OF TABLES

2.1 Object Operations : 39

3.1 Instruction Counts : 68

4.1 Serial vs Integrated When Data in Cache. : : : : : : : : : : : : : : : : : 84
4.2 Serial vs Integrated When Data Not in Cache. : : : : : : : : : : : : : : : 85
4.3 Bandwidth Improvement due to Integration. : : : : : : : : : : : : : : : : 85
4.4 Comparison of Integration Savings. : 86
4.5 Improvement Factor at Knee of the Integration Curve. : : : : : : : : : : : 88
4.6 Estimated Cycles to Manipulate One Data Word : : : : : : : : : : : : : : 90
4.7 Each Task Must Be Executed In The Corresponding Stage : : : : : : : : 97
4.8 Serial vs Integrated sendThruputs. : 99
4.9 CKSUM deliverThruput C Code Fragments : : : : : : : : : : : : : : : 103

ABSTRACT

This thesis explores two strategies for supporting the development of network com-
munication software: imposing constraints on protocol design at the specification level,
and using a special-purpose language for protocol implementation. It presents a protocol
implementation language called Morpheus. Morpheus utilizes the new strategies to pro-
vide a higher level of abstraction, finer grain modularity, and greater software reusability
than previous approaches.

Morpheus is able to provide a high level of abstraction because of built-in knowledge
about its problem domain. It has a narrow problem domain—network protocols—that
is further narrowed by the application of specification-level constraints. One particular
constraint—the shapes constraint, which partitions protocols into three basic kinds—is
particularly effective in raising the level of abstraction.

Morpheus’s support for modularity and, indirectly, software reuse hinges on reducing
the performance penalty for layering. When protocol layering entails a high performance
cost, developers are motivated to build complex monolithic implementations that are hard
to design, implement, debug, modify, and maintain. Morpheus reduces the performance
costs of layering by applying optimizations based on common patterns of protocol exe-
cution. If the degree of modularity is held fixed, then the optimizations simply improve
performance. An optimization based on Integrated Layer Processing is particularly note-
worthy for its dramatic contribution to network throughput while preserving modularity.

CHAPTER 1
INTRODUCTION

Computer networks are systems of interconnected computers. Interconnecting com-
puters makes it possible to share resources such as data, programs, and specialized hard-
ware. Communicating data between programs and between people has grown to rival
computation as the primary function of computing systems. Computer networks also
offer increased reliability, through redundant hardware and replicated data and programs,
and price advantages relative to large mainframe computers of comparable computing
power.

The computers in a network are connected by software as well as hardware. Just as
an operating systems provides a virtual machine built on top of a raw physical machine,
network software builds sophisticated communication services on top of the primitive
communication provided by network hardware. This software is quite complex because
of its explicitly distributed nature with the potential for partial failures, because of the
heterogeneity of the hardware technologies used to interconnect computers (even within
a single network), and because of the variety of distributed applications that must be
efficiently supported. Network software is also frequently revised as a result of changing
hardware technology, new applications with new communication service requirements,
the integration of communications services, and the exponential growth in the number of
computers that are networked together.

This dissertation introduces a new approach that supports the development of this
complex, performance-critical, frequently revised software.

1.1 Introduction to Network Software

Network software is responsible for data communication and synchronization between
processors connected by hardware links. In the context of networking, such processors are
referred to as hosts. A hardware network typically provides a primitive communication
service that is subject to data corruption or loss, and connects only a modest number of
hosts. Network software builds more sophisticated communication services on top of the
hardware, with better failure characteristics and extended connectivity.

Communication services are most often one-to-one or unicast services; communication
is from one entity to another. There are also multicast or group communication services
in which communication from one member of a group goes to all the other members of
the group.

Communication services sometimes implement a Remote Procedure Call (RPC) or
Request-Reply service in which the initiator of a peer-to-peer communication is blocked

until it receives a reply message, thereby providing a procedure call model for communi-
cation. More often, communication services provide simple message passing services in
which each one-way communication is independent.

Network software is generally structured as a hierarchy of layers. Each layer builds a
more sophisticated communication service on top of the communication service provided
by the lower layers. Layering is a technique for managing the complexity of network
software, and also exposes intermediate communication services for direct use.

Each layer represents a network protocol. A protocol is a convention for the exchange
of messages. Abstractly, a message is a finite series of bits. Messages can contain data
which is relayed on behalf of higher protocol layers or applications, as well as control
information meaningful to the current layer.

The implementation of a protocol on a host, called a protocol entity, follows the
protocol’s message exchange convention to exchange messages with entities of the same
protocol on other hosts, called peers. Collectively, the entities of a given protocol
implement a protocol layer. One-way communication is implemented using an asymmetric
protocol, in which there are two kinds of entities, sending entities and receiving entities.
Two-way communication is implemented using a symmetric protocol, in which all the
entities implement the same functionality. Symmetric entities are by far the more common.

Each layer transmits its messages via a lower level communication service. The
composition of a protocol layer on top of a communication service results in a new
communication service. Underneath the lowest protocol layer is a network hardware
which provides the lowest level communication service.

The hierarchy of protocol layers need not be linear. A given protocol layer may support
multiple higher-level protocols, each of which provides a different communication service.
Furthermore, a given protocol layer may use several lower-level communication services,
such as when the lower-level services correspond to different local area networks. Hence
the protocols on a host form a protocol graph as depicted in Figure 1.1.

Protocols are defined by specifications. A specification prescribes the format or
syntax of a protocol’s messages. Messages generally include control information that
is interpreted by the receiving peer, and often include data from higher level protocols
or applications. The message syntax determines the layout of these elements. Control
information is generally affixed at the beginning of higher level data and called a header;
occasionally it is affixed at the end and called a trailer. The specification also prescribes the
behavior of an entity in response to events such as the reception of a given type of message,
or a request from a higher level layer to transmit a message. Protocol specifications are
critical for interoperability—correct interaction between peers—because peers may be
implemented on different host machine architectures, in the context of different operating
systems, in different languages, by different organizations, and by different programmers.

The two primary metrics of network performance are latency and throughput. These
have somewhat different meanings depending whether they are applied to the hardware
level, or the protocol level.

At the hardware level, a message is a series of uninterpreted bits. Latency is the time

= a protocol

= "uses"

Figure 1.1: A Protocol Graph

elapsed from the sending of a message until the arrival of the first bit of the message at its
destination. Intuitively, latency represents a notion of distance, the length of the “pipe”
between the source and the destination. Throughput (or, at this level, bandwidth) is the
rate at which the bits of a message arrive once the first bit has arrived. If latency is the
length of a communication pipe, then throughput is the bore or caliber of the pipe.

Still at the hardware level, the time to transfer a complete message involves both
latency and throughput: how long does it take for the first bit to arrive (latency), plus how
long does it take for the remaining bits to arrive (the length of the message divided by the
throughput). Hence either latency or throughput may dominate depending on the size of
the message, latency dominating for short messages, and throughput dominating for long
messages.

Latency and throughput have different though analogous meanings at the protocol
level. Unlike hardware, protocols distinguish between the different bits of a message,
taking different amounts of time to process each of its different parts. The time taken by a
protocol to process a message may be modeled as consisting of two components: time to
process the header, which may be treated as constant; and time to process the data, which
may be treated as linear in the amount of data (the factor is zero for protocols that do not
process the data).

At the protocol level, latency is the time elapsed from the sending of a message
consisting solely of headers until the arrival of the message at its destination; it captures the
component of message transfer time that is independent of message length. Throughput
is the average rate at which the bits of long messages arrive; it captures the message

length dependent component of message transfer time. In this dissertation, latency and
throughput are used in their protocol level senses.

More specialized computer network concepts will be introduced in Chapter 2.

1.2 Network Software is Evolving

Network software is changing in response to new network hardware, new application
requirements, the integration of previously disjoint communication systems, and the
changing scale of networks.

� Changing network hardware changes the communication services at the foundation
of a network architecture. The new hardware may have different failure character-
istics, different performance, or a different addressing scheme. It may or may not
support different communication models much as multicast. Changing the hardware
characteristics generally changes the implementation tradeoffs in higher network
software, even in cases where it is possible to nominally provide the same com-
munication services while confining software changes to the software that directly
interfaces with the network hardware. For example, a reduction in the rate of bit
errors in messages may make it more efficient to check for such errors only in the
host for which a message is ultimately destined, rather than checking at each inter-
mediate host that relays the message. Hence, changing the hardware can directly
motivate changing the software.

� New applications such as multimedia motivate changes in network software by
introducing new communication service requirements. Again network software
tradeoffs would change even in cases where it might be possible to confine the
software changes outside the network software by building new communication
functionality into the application. Hence, network software must adapt to provide
the appropriate services.

� Voice and data communication, which were previously provided by disjoint net-
works, are in the process of being integrated. Network software must change to
reconcile these two dissimilar styles of networking.

� The number of networks in existence continues to grow. Many small scale homo-
geneous networks are interconnected to form internetworks which are themselves
networks, but large scale and heterogeneous. The foremost internetwork is a global
internetwork known as the Internet [Com88]. The Internet is experiencing expo-
nential growth that will require network software changes in addressing and routing
algorithms.

Thus, developing and modifying network software is an ongoing process. For this

reason, and because of the complex, performance-critical nature of the software, there is a

potentially large payoff for investing in tools to support protocol development. The goal

of this research is to make it easier to develop high performance network software.

1.3 Existing Support for Network Software Development

Network software is usually developed with little or no networking-specific program

development support, but this is changing. The two forms of protocol development

support that have been explored are protocol frameworks and formal techniques.

1.3.1 Protocol Frameworks

One form of support for protocol development is the protocol framework. According to

[GNI92], a protocol framework

defines an implementation and execution environment for communication

protocols. There are two parts to the service provided by the framework.

The first part is a set of structural guidelines which determine protocol im-

plementation details. [...] Common examples of structural guidelines include

the format of communication between protocol modules or layers, and the

structure of the protocol state machines. The second part of any protocol

framework service is a set of library routines to perform common protocol

functions.

System V Streams [TT87] was perhaps the first protocol framework, although it lacks

the library routines for common protocol functions. Streams was originally designed to

support character I/O, and later extended to support protocols. All protocols provide the

same interface to adjacent protocols. This interface is block-oriented: all parameters of

an operation, including the identity of the operation itself, are buffered in a block that

is passed to the protocol module. The parameters to some operations can include user

data, in which case a block corresponds to a message. Each protocol module includes two

queues for outstanding blocks, one queue for blocks from higher protocols, and one for

blocks from lower protocols. Normally, blocks are queued before being processed by a

protocol, but a given protocol may process blocks without any queueing. The arrangement

of adjacent protocols is established, and can be modified, at runtime.

The x-kernel [HP91] is a full-fledged protocol framework. It began life as an operating

system, but is now a networking subsystem that can be installed in other operating systems.

As opposed to Streams’s block-oriented protocol interface, thex-kernel’s uniform protocol

interface is call-oriented: an operation is invoked by calling the corresponding function

with appropriate parameters. Operations involving message transfer take a message as one

of the parameters. Messages are represented by an abstract data type whose operations are

library routines or macros provided as part of the x-kernel. Also provided are countdown

timers, which are used to determine whether a message has been lost, and hash tables,

which are used to demultiplex message streams.

Avoca [OMa90] is a variant of the x-kernel. The most significant difference is a novel

multiplexing scheme to which all Avoca protocols must adhere, which is discussed in

Chapter 2.

The Parallel Protocol Framework [GNI92] emphasizes support for parallel protocol

execution. In addition to a framework like that of the x-kernel, it provides routines for

mutual exclusion management of critical sections, ordering mechanisms for protocols that

expect implicit event ordering, and sequence number generation routines to support the

ordering mechanisms.
The advantages of a protocol framework are:

Code reuse. This takes two forms. The first is reuse of the support routines, which are
used by many or all protocols in the framework. The second is reuse of a given
protocol implementation, since a uniform protocol interface allows it to be flexibly
composed with different adjacent protocols in different contexts.

Consistency. The consistent structure imposed on protocols makes it easier to develop
new protocols and maintain or modify existing protocols.

Performance. Performance of protocols in the framework is promoted by a protocol
structure designed for efficiency and use of carefully designed and tuned support
routines.

Protocol portability. If all protocol access to operating system functions is mediated by the
framework, then all the protocols are portable to any system where the framework
has been installed.

1.3.2 Formal Techniques

Formal techniques also offer some support for protocol development. However, these

mainly focus on aspects of protocol specification. Specifications are expressed using

Formal Description Techniques (FDTs) such as Estelle, LOTOS, or SDL [vB87]. For-

mal specification of protocols is desirable because it makes requirements precise and

unambiguous for everyone involved in the design and implementation process, includ-

ing automated tools. It also makes it possible to manipulate, analyze, and predict the

behavior of the system during the design stage and prior to implementation. FDTs fall

into two general categories, state models and sequence models [Pia83]. In state model

FDTs, the input/output behavior of a system is defined indirectly by specifying a state

machine with input and output. In sequence model FDTs, the input/output behavior of a

system is defined directly. Most FDTs cannot fully specify a protocol, so usually some

of the specification is informal, and sometimes multiple FDTs are used. The form of the

specification determines what formal techniques are applicable in subsequent phases.

A protocol specification may be checked for two kinds of correctness properties.

General properties are properties that are desirable for every protocol, such as being

deadlock-free and not having unexecutable code. Specific properties are properties that

are related to the functional objective of a particular protocol, such as delivering messages

in order. There are a variety of techniques (Protocol Verification Techniques) for checking

correctness of a specification. Some are fully or partially automated. In general, a given

technique is only applicable to certain FDTs, and can only be used to check certain kinds

of properties [Saj85].

There are techniques for estimating the performance of a protocol based on its spec-

ification. These are based on simulation models generated from the specification, and

queuing theory analysis driven by the specification [Rud85].

Compared with protocol specification and verification, there has been less investigation

of formal techniques to support protocol implementation [Cho85]. However, some FDTs,

particularly state model FDTs, give strong guidance to implementation. Certain FDTs

have associated automatic synthesizers that can output part of a protocol implementation

based on the specification. These are relatively low level, implementation-oriented FDTs,

and the generated implementation takes the form of a skeleton which must be completed

with programmer code.

RTAG [And85] represents a different sort of formal technique. In RTAG, protocols are

specified using an attributed grammar. The grammar is directly executable via an RTAG

parser, resulting in the appropriate behavior for the protocol. Again, some explicit code

is needed. RTAG’s performance is not competitive with conventional implementations.

1.4 New Strategies for Supporting Protocol Development

This dissertation proposes two new strategies for supporting protocol development: con-

straining protocol specifications, and using a special-purpose programming language.

1.4.1 Simplifying Protocol Development by Imposing Constraints

I view protocol frameworks as deriving their power from constraints. They constrain

the structure and interfaces of protocols, and in effect constrain many of the low-level

implementation details by providing support routines. They preempt a class of implemen-

tation decisions from the implementer—those decisions that can be based on knowledge

of protocols in general, and do not depend on the particular protocol. Constraining proto-

cols to advantage is possible because of the underlying regularity in the problem domain.

Theoretically, a protocol could have an arbitrary structure, use arbitrary interfaces, and

apply arbitrary algorithms; but in practice, and with experience, patterns and consensus

have emerged regarding good solutions that hold across protocols.

Stated another way, there are two motivations for the constraints imposed by protocol

frameworks. First, they are intended to enforce a good design discipline. It has been

argued that the development of a new engineering discipline often happens in two phases

[Hol91]. In the first phase, the capabilities of tools are expanded to cope with the growing

set of problems. In the second phase, tools impose a carefully selected set of constraints

on the engineer in order to enforce a design discipline based on accumulated experience.

Protocol frameworks reflect their designers’ ideas of a good design discipline for protocols.

The second motivation for protocol framework constraints is that it makes possible a

more powerful tool. In effect, the more the user is constrained, the more the framework

knows about what the user wants to do, and can help the user do it with support routines,

for example.

A framework could derive more power by imposing more fundamental constraints,

constraints that apply to protocol specifications. Doing so would further narrow the

design space, thereby simplifying the problem domain. One example of such a constraint

would be a constraint on message header formats. Header formats are not implementation

decisions; they must be given in a specification because different implementations of a

given protocol must agree on the header format in order to interoperate.

Specification-level constraints preempt design choices not only from the final im-

plementors of protocols, but also from designers and standards committees. Thus, a

constraint imposed at the specification level might exclude some existing protocols, even

standardized protocols. Note however that excluding a particular specification need

not mean excluding the equivalent functionality—constraints should allow the equivalent

functionality to be realized in the form of other protocols or collections of protocols.

Existing protocol frameworks restrict their constraints to implementation internals,

thereby limiting their power, in order to support existing and conventional protocol spec-

ifications. Avoca [OMa90] is an exception; all Avoca protocols must adhere to a novel

multiplexing scheme that impacts protocol specifications. Avoca does not, however, use

specification-level constraints as a general strategy.

Imposing constraints on protocol specifications is one of the two high-level strategies

explored in this dissertation.

1.4.2 Language Support for Protocol Development

The second new strategy explored in this dissertation is the use of a special-purpose

language for implementing protocols. This research focuses not on language design

and implementation, but rather on protocol abstractions and protocol-oriented compiler

optimizations.

This strategy essentially embeds a protocol framework in a language. Protocol frame-

works support protocol development through support for code consistency, performance,

code reuse, and portability. A protocol implementation language can potentially extend

and add to those advantages in the following ways:

A high level of abstraction. A language can present a seamless, high-level model ap-
propriate for thinking about and concisely expressing protocols. In a protocol
framework, much of the implementation detail is exposed and must be specified by
the programmer.

Protocol-oriented compiler optimizations. A compiler can perform optimizations based
on specific common behaviors of protocols.

Fine-granularity integrated support routines. The support routines that are imple-
mented as functions and macros in protocol frameworks can be an integral part
of a language. They can be implemented as language primitives, or in some cases,
not visible at the source code level but instead automatically applied where needed.
They can have a granularity as fine as an assembler instruction.

Constraint enforcement. A language is the perfect medium for enforcing constraints:
satisfying the constraints is equivalent to being a legal protocol program, and any
implementation choices below the source language level are in the hands of the
compiler. In contrast, the user of a protocol framework can circumvent its implicit
constraints, for example by using his or her own algorithm in the place of a support
routine.

Portability. Portability of protocols implemented in a protocol framework depend on the
programmer adhering to the discipline of allowing all system support to be mediated

by the framework. A compiler can ensure that protocols never directly make system
calls, they just use the language’s runtime system. A compiler and runtime system
is provided for each system.

Language-level debugging. Protocol-oriented debugging support can be incorporated in
the compiler.

Transparent multiprocessing. A compiler for a protocol implementation language might
be able to generate the appropriate locking transparently, so that protocol source
code is independent of the degree and style of multiprocessing.

Protection. The boundaries between protocol modules can be enforced using techniques
such as static analysis and runtime type checking. This would afford greater flex-
ibility to the mapping of protocols onto address spaces, since arbitrary protocols
could be co-located in privileged address spaces. This could in turn lead to higher
performance by reducing the frequency with which messages must cross address
space boundaries.

1.5 Morpheus

This dissertation presents Morpheus, a model for protocol implementation that is intended

to be realized as a programming language. My thesis is that the combination of the

two novel strategies employed by Morpheus—constraining protocol specifications, and

using a special-purpose language—provides powerful program development support for

network software. As evidence, this dissertation will show how these strategies allow

Morpheus to support three well-established principles of software development: abstrac-

tion, modularity, and software reuse.

1.5.1 Abstraction

Morpheus provides high level abstractions for protocols. A high level of abstraction

makes it easier to develop protocols in the following ways.

� There is a seamless model for thinking about protocols. The fundamental network
abstractions such as messages and connections are an integral part of the language.
In protocol frameworks, many low level implementation details are visible, making
it difficult to design at a high level.

� The programmer has fewer implementation details to specify. Morpheus hides the
implementations of the abstractions. In a protocol framework, the programmer must
make more low level implementation decisions.

� The protocol abstractions embody a design discipline. The programmer is protected
from hanging himself or herself with bad implementation choices because those
choices are preempted by Morpheus. Protocol frameworks are more limited in
terms of the implementation choices they can preempt, and the programmer has
more latitude to reject the provided implementations and use his or her own.

� The programs implementing protocols are concise in the sense that protocols are
expressed with fewer statements and declarations. This notational economy makes
protocol programs easier to understand, write, debug, and modify. Unlike a densely
coded APL program, which is hard to understand, Morpheus reduces verbiage by
hiding implementation details, which makes a program easier to understand. In
a protocol framework much implementation detail is an explicit, visible part of a
protocol program.

� The decomposition of functionality into simpler protocols is encouraged by the
elimination of redundant programming at each layer. Any protocol behavior that can
predictably associated with every protocol is provided by the protocol abstractions
instead of being specified by the programmer.

1.5.2 Modularity

A software system is modular if it is structured as a collection of parts, called modules, that

interact only through well-defined interfaces. The advantages of modularity derive from

the high degree of independence of the modules. Individual modules can be designed,

implemented, and modified independently of each other, possibly in parallel by different

people. The software can be better understood, and consequently better designed, because

it can be understood one module at a time.

Unfortunately, protocol modules entail performance costs. One source of overhead is

control transfer between protocols. For example, if each protocol were implemented as

a process, passing a message from one layer to the next would involve a context switch.

The protocol frameworks described above all use an upcall structure [Cla85] in which

layers interface to each other via function calls within a common address space. While

much more efficient than a context switch, this still entails some overhead.

A less obvious but more significant source of performance cost is information hiding.

The best criterion for the decomposition of software systems into modules is the hiding of

design decisions [Par72]. Unfortunately, this has two potential pitfalls for performance.

First, potentially useful global information may not be available to any of the protocol

modules. For example, each protocol might have to test whether there is enough space

left in a message data structure for the protocol to add its header. If instead all the

protocols were combined into a single protocol with a single large header, this test would

be performed only once, or perhaps avoided altogether by allocating sufficient header

space. Second, one layer may have information that could be useful at another, but

the second layer must do without, or perhaps recompute the information, because the

information that can be passed between layers is restricted by an interface. For example,

two adjacent protocols may both manipulate message data, iterating through the data in a

message performing some computation. If one protocol knew what data manipulation the

other needed to perform, it could combine it with its own data manipulation, eliminating

redundant memory accesses and loop overhead.

Conventional network software is limited to coarse-grain modularity because of the

performance penalties for layering. Performance costs discourage the hiding of design

decisions in separate protocols. Instead, design decisions are combined in large, complex

protocols that are hard to design, implement, debug, modify, and maintain.

Clark has argued for even less modularity in network software [Cla82, CT90]. Because

protocol specifications leave flexible the exact nature of the interface between adjacent

protocols, it is entirely feasible to combine the implementation of adjacent protocols into a

single module, as long as their behavior is consistent with the layered specification. Clark

has advocated the use of this technique to improve performance.

In theory, the performance penalties for layering should make highly modular network

software slower than less modular software; in practice, however, highly modular network

software has performed comparably with less modular software [HPAO89, OP92]. What

this demonstrates is that the software development support provided by protocol frame-

works buys enough performance to compensate for performance losses due to modularity.

In other words, there are two main factors determining performance: the performance that

could potentially be obtained given a particular degree of modularity, and the development

support (increasing with modularity) that determines how close the programmer will come

to an implementation that achieves the theoretical potential. Low-modularity software

tends to fall far short of its potential due to the difficulty of developing the software;

but highly modular, framework-supported software comes much closer to attaining its

somewhat lower potential. In summary, modularity seems to pay back part of its own

performance cost by contributing to better implementations.

Morpheus promotes modularity of network software by using constraints and compiler

optimizations to reduce the performance penalty for protocol layering.

1.5.3 Software Reuse

Morpheus supports two forms of software reuse. The first is the reuse of system-provided

software in the form of object code that a Morpheus compiler generates beyond the

behavior explicitly specified by the programmer. This is the Morpheus equivalent of

protocol framework utility routines, but makes up more of the low-level implementation

of a protocol than can be supplied by utility routines. This reused software is a consequence

of Morpheus’s high level of abstraction; the higher the level of abstraction, the greater

the portion of the executable implementation is implicitly provided by the compiler, and

hence reused in different protocols.

Morpheus also supports reuse of individual protocol implementations. Morpheus

protocol modules may be flexibly composed with different adjacent protocols in different

contexts, allowing them to be reused in different protocol graphs. This is made possible

by Morpheus’s uniform protocol interface (UPI) and its support for a high degree of

modularity.

Protocol reuse requires a UPI so that arbitrary protocols are syntactically composable.

The x-kernel on which Morpheus is based imposes a UPI, but this interface admits a num-

ber of loopholes that interfere with syntactic composability. The Avoca UPI [OMa90] is a

revision of the x-kernel UPI that increases the likelihood of syntactic composability. The

Morpheus UPI is likewise a revision of the x-kernel UPI, in part to increase composability,

but it incorporates different solutions to the x-kernel’s composability problems.

Protocol reuse also requires a high degree of modularity. If a protocol module performs

a combination of functionalities motivated by a particular context of adjacent protocols,

that module is not likely to be appropriate in other contexts. If, on the other hand, a

protocol module encapsulates a single, “atomic” function, then that module is more likely

to be useful in other protocol graphs. As described above, Morpheus promotes modularity

by using constraints and compiler optimizations to reduce the performance penalty for

protocol layering.

Fine granularity of reusable modules has an additional requirement beyond a low

performance penalty: the uniform interface must accommodate fine grain decomposition.

If reusability were not a concern, each interface between modules could be customized to

the particular decomposition; but where reusability is a requirement, all the modules have

identical interfaces. The design of this interface determines the kinds of decompositions

that are possible. For example, if the uniform protocol interface does not support the

sharing of flow control information, then flow control cannot be encapsulated in separate

protocol modules, and instead each protocol must implement its own flow control or

do without. By accommodating sharing of flow and congestion control information,

Morpheus’s uniform protocol interface supports finer grain decomposition than the x-

kernel or Avoca.

I refer to the decomposition of network software into simple, reusable protocol modules

as the building-blocks approach to developing network software. Such protocol modules

can be used as building-blocks, composed to implement the same communication services

that might have been implemented using a few, large protocols. This approach has been

advocated previously [HPAO89, OMa90, OP92], but Morpheus contributes new support

through its reduction of the performance penalty for layering and its protocol interface.

1.5.4 Performance

From the point of view of supporting network software development, Morpheus’s perfor-

mance optimizations reduce the performance penalty for layering. Since the performance

cost per module is less, it is practical to decompose network software into finer-grain mod-

ules. This increased modularity makes it easier to develop and reuse network software.

There is an equally valid alternative view of Morpheus’s optimizations: that they

simply improve performance. If applied to a given protocol design with a fixed number

of protocol modules, they will result in improved performance over an unoptimized

implementation.

In other words, the performance payoff of Morpheus’s optimizations is like money; it

can be invested in greater modularity, or it can be banked as a performance improvement.

1.5.5 Scope and Limitations

The research presented in this dissertation is exploratory. It explores the potential of some

new strategies for supporting the development of network software. It does not address a

neatly circumscribed problem or provide a complete solution. In order to better focus on

the potential of Morpheus’s strategies, tangential concerns have been left incomplete.

The Morpheus problem domain has been limited to the asynchronous, one-to-one

(unicast) protocols. This is the primary class of network communication, and includes

TCP, IP, and UDP, as well as the low-level protocols that underlie other varieties of

communication service. Synchronous communication (such as Remote Procedure Call)

and multicast communication, while clearly important, are not addressed in this research.

The design and implementation of Morpheus has been left incomplete wherever it

is not directly related to support for protocols. Consequently, there is no compiler, no

formal semantics, and no grammar. The focus of this research is not language design

and implementation, but rather on protocol abstractions and protocol-oriented compiler

optimizations. The syntax and semantics of Morpheus protocol abstractions are presented

informally, and the feasibility and performance of a compiler, including the optimization

techniques, is argued indirectly.

Morpheus is designed for uniprocessor execution. Multiprocessing might well moti-

vate different protocol abstractions and performance optimizations.

The use of specification-level constraints effectively limits Morpheus to supporting

future protocols. Future protocols may be specified within the new constraints, but it is

too late to constrain existing protocols. The particular constraints imposed by Morpheus

are identified in the course of this dissertation and summarized in Chapter 5.

1.6 Dissertation Overview

Chapter 2 shows how Morpheus provides a high level of abstraction. The Morpheus

uniform protocol interface is presented in that chapter. Chapter 3 shows how Morpheus

reduces the latency penalty for layering, and Chapter 4 shows how Morpheus reduces

the throughput penalty for layering. Chapter 5 summarizes Morpheus’s constraints and

makes some concluding remarks.

CHAPTER 2

MORPHEUS PROTOCOL ABSTRACTIONS

Morpheus’s protocol abstractions support protocol development in two ways. First,

they provide a high level of abstraction. This supports protocol development by providing

a seamless model for thinking about protocols and relieving the programmer of making

and expressing low-level design decisions. Second, these abstractions present a uniform

protocol interface well-suited to decomposition. This permits reuse of simple protocol

modules, the building-blocks approach.

This chapter begins by presenting the protocol abstractions, which are represented as

objects. The high level of these abstractions is demonstrated by comparison with their

low-level implementation. The uniform protocol interface is presented in the course of

describing the protocol abstractions. A case is then made for the feasibility of imple-

menting a Morpheus compiler. Finally, the protocol interface is contrasted with that of

the x-kernel Uniform Protocol Interface on which it is based. The Morpheus protocol

interface is shown to have greater syntactic composability and support a greater degree of

decomposition.

2.1 Morpheus Objects

Morpheus represents the fundamental protocol abstractions as objects. The Morpheus

model of protocols partitions state information such that each action operates on a specific

body of state information. Object-oriented programming fosters this way of thinking by

packaging data together with related procedures.

Morpheus provides two kinds of pre-defined objects. Utility objects are instantiated

directly to provide services of use to many protocols. Protocol component objects are

refined by the programmer to derive objects specific to a given protocol.

It is irrelevant to this research whether or not programmers can also define their own

completely new objects. In the examples that appear in this dissertation it will be assumed

that Morpheus does not support user-defined objects. Rather, objects representing protocol

abstractions are embedded in an otherwise C-like language.

2.1.1 Utility Objects

Morpheus provides utility objects to perform some common services for protocols. In

protocol frameworks, such utilities are implemented as library routines. The utility objects

are Messages, Maps, and Events [HMPT89].

Maps provide a generic mapping service, mapping values of one type into values of

another (possibly identical) type. They provide operations for entering, looking up, and

deleting mappings from one value to another. They are useful for mapping from one type

of address into another. A Map is implemented as a hash table.

Events provide a mechanism for scheduling the future execution of a specified function.

Events may be scheduled or cancelled. Protocols can use them to send periodic “I am

alive” messages, or to take recovery actions if a message is not acknowledged within the

expected interval, for example. Events are implemented in the Morpheus runtime system,

using operating system timing support.

Messages are Morpheus’s most interesting utility object due to several novel features.

First, header fields are always word aligned, making access more efficient. This is made

possible by a constraint on protocol specifications that requires that headers and data each

be an integral number of words and that individual header fields be word aligned relative

to the start of the header.

Second, byte ordering conversions for header fields are performed automatically. Byte

ordering of data is handled differently; this is discussed in Chapter 4. The byte ordering

supported by a host machine may not match the byte ordering that a protocol specifies

for its message header. Morpheus simplifies programming and increases portability

by transparently resolving the potential mismatch. The byte ordering specified by the

protocol is explicitly declared in a Morpheus protocol program. Hence, a Morpheus

compiler knows both the protocol’s byte order and the byte order for the compiler’s target

machine, so it can generate the appropriate object code for accessing header fields.

The last novel aspect of Messages is the segregated message abstraction. Segregated

messages expose some message structure that is not exposed by the conventional message

abstraction. Segregated messages are motivated and discussed in Chapter 4.

2.1.2 Protocol Component Objects

The Morpheus programmer implements a protocol by refining built-in base classes, thereby

deriving subclasses that are specific to the protocol, as illustrated in Figure 2.1. A subclass

is derived from a base class by adding new state information (declaring additional instance

variables) and extending the base class behavior (defining additional procedure code that

augments the base class procedures). A protocol implementation consists of object

subclasses rather than object instances because a protocol entity generally comprises

multiple instances of its objects; each instance of a protocol (each entity) is made up of

objects that are instances of that protocol’s subclasses. Furthermore, there can be more

than one instance of a given protocol within the protocol graph of a single host.

a base class

a subclass
used in protocol A

a subclass
used in protocol B

Figure 2.1: Protocols as Refinements

Morpheus defines base classes corresponding to the fundamental elements of Mor-

pheus’s model of protocols. These base classes—Protocol, OverSap, UnderSap, Over-

Session, and UnderSession—are schematically depicted in Figure 2.2. OverSaps and

UnderSaps are components of Protocols, and OverSessions are components of OverSaps,

while UnderSessions are components of UnderSaps.

A protocol entity is an instance of a protocol implementation. In Morpheus, a protocol

entity is represented by a Protocol object.

A Service Access Point (SAP) is an interface between a communication service and a

user of that service—it is the interface by which a service user accesses a communication

service. The users of a communication service may be treated as protocols, and often are in

fact higher level protocols implementing higher level communication services. Likewise,

a communication service consists of a protocol at the top of a directed graph of lower

level protocols. Thus, since a SAP is an interface between a communication service and

a user of that service, it is also, more concretely, an interface between protocol entities.

The using protocol is refered to as being on top of, or being a higher level protocol of, the

the top protocol of the communication service. The top protocol of the communication

Protocol

UnderSap UnderSession

OverSap
OverSession

Figure 2.2: The Base Classes

service is refered to as underlying, or being a lower level protocol of, the using protocol.

An entity associates a unique address with each SAP to a higher level entity. There

may be multiple such SAPs because an entity may serve more than one higher level entity.

This address or multiplexing key associated with a SAP is used to tag messages so that

outgoing messages from multiple higher level protocol entities can be multiplexed and

arriving messages can be demultiplexed to the corresponding destination entities. An

entity may also have multiple SAPs to lower level entities in order to use the different

communication services (such as access to different local area networks) represented by

the different lower level entities.

In Morpheus, a SAP is represented by a pair of objects, with one of the objects

belonging to one of the involved Protocols, and one belonging to the other. An OverSap

object represents a SAP shared with a higher level Protocol, and an UnderSap object

represents a SAP shared with a lower level Protocol (an object is “over” or “under”

with respect to the Protocol of which it is a component). The operations provided by

an OverSap or UnderSap are invoked by the adjacent Protocol. For each OverSap or

UnderSap object belonging to a Protocol, the other Protocol sharing the object has a

corresponding object, an UnderSap or OverSap respectively, which provides operations

invoked by the first Protocol. Thus a SAP, which is a two-way interface, is represented as

an OverSap-UnderSap pair, as illustrated in Figure 2.3.

A conversation is the exchange of logically related messages between a pair of SAPs—

Protocol
A

Protocol
B

UnderSession

OverSession

UnderSap

OverSap

Figure 2.3: Sap and Session Objects

effectively, between a pair of peers. (In a multicast model, a conversation would involve

a group of SAPs.) The interfaces to different conversations are treated as distinct from

the SAP interface. The interface at one end of a particular conversation is a session.

Operations on a session do not specify the pertinent conversation because that is implicit

in the session. There are two addresses associated with a session: the address of the SAP

at “this end” of the conversation, and the address of the SAP at “the other end.”

There is an alternative to the session approach, which treats distinct conversations

as having distinct interfaces. Instead, the sending and receiving of messages at one end

of a conversation could be considered as part of the overall SAP interface. Operations

involving a conversation would specify the pertinent conversation as an argument to the

operation.

Morpheus takes the session approach, distinguishing the interfaces to different conver-

sations. This is simpler and more efficient since it avoids specifying the pertinent conver-

sation with every operation on the conversation. Since sessions, like SAPs, are two-way

interfaces, Morpheus again uses a pair of objects to represent a session. OverSession-

UnderSession pairs are illustrated in Figure 2.4.

The complexity of OverSap-UnderSap and OverSession-UnderSession pairs is con-

cealed by Morpheus. For the programmer it is as if a pair were combined into a single

object, with some of its operations implemented by one protocol and some implemented

by the other. For example, instead of invoking an operation on a lower level protocol’s

OverSap, a protocol invokes the operation on its own corresponding UnderSap. The

Over/Under distinction is maintained, however, since the operations a protocol provides

Conversation

Figure 2.4: Sessions

for its OverSaps and OverSessions are different from those it provides for its UnderSaps

and UnderSessions.

The operations supported by Morpheus objects make up the Morpheus protocol in-

terface. These operations are not the same as the operations programmed by the object

implementor. The operations supported by an object—the operations that one protocol in-

vokes to get another protocol to do something—are called external operations. In contrast,

internal operations are the operations programmed by the object implementor.

The gap between the external operations and the internal operations is both syntactic

and semantic. There is a syntactic gap because one protocol has no way to invoke

operations on, or even refer directly to, Sap or Session objects belonging to another

protocol. Instead it invokes an operation on one of its own objects, which results in

the operation being performed by the corresponding object with which it is transparently

paired. For example, an external operation on an UnderSap would be realized as an

internal operation on the corresponding OverSap.

There is also a semantic gap between some external and internal operations because

the Morpheus implementation provides some of the semantics. The object implementor

programs internal operations that are specific to a particular protocol, and the Morpheus

compiler augments these internal operations with generic protocol behavior to make up

complete external operations. A compiler can implement external operations in terms

of the corresponding internal operations using a variety of techniques, including code

generation, inheritance, and shared infrastructure routines.

The object operations are summarized in Table 2.1. For purposes of research, I have

selected a minimal functional set of protocol operations; a practical system would require

some additional operations, such as for terminating conversations.

EXTERNALLY CORRESPONDING

INVOKED OPERATIONS INTERNAL OPERATIONS

createProtocol(protocolClass,links) protocol.addOverSap(overSap)

protocol.initProtocol(underSaps)

underSap.getLocalAddr() overSap.getLocalAddr()

underSap.enableUpwardSessionCreate() overSap.enableUpwardSessionCreate()

underSap.createUnderSession(hostAddr) depends on the two shapes involved

overSap.createOverSession(hostAddr) depends on the two shapes involved

underSession.sendThruput(msg) overSession.sendThruput(msg)

underSession.sendLatency(msg) overSession.sendLatency(msg)

overSession.deliverThruput(msg) underSession.deliverThruput(msg)

overSession.deliverLatency(msg) underSession.deliverLatency(msg)

overSession.grantSends(number) underSession.grantSends(number)

underSession.grantDelivers(number) overSession.grantDelivers(number)

Table 2.1: Object Operations

These operations perform the following activities:

createProtocol(protocolClass, links) This external operation is unique in that it is not
an operation on an object, and it is not invoked by a protocol. It creates a new proto-
col entity that is an instance of the protocol implementation given by protocolClass.
The links arguments provide information for creating one or more UnderSaps, as
explained later in this chapter. An integral part of the identity of a protocol en-
tity is the set of underlying communication services to which it is attached via its
UnderSaps, since these (together with the protocol itself) determine the commu-
nication service provided by the protocol entity. This createProtocol operation is
used repeatedly to create Protocols on top of previously created Protocols, thereby
incrementally constructing the graph of protocols on a given system.

The internal operation protocol.initProtocol(underSaps) initializes the newly
created Protocol. The internal operation protocol.addOverSap(overSap) adds a
newly created OverSap (corresponding to the newly created Protocol) to the set of
OverSaps belonging to an existing Protocol.

underSap.getLocalAddr() This external operation returns the address of the host
on which this SAP resides. The corresponding internal operation over-
Sap.getLocalAddr() implements the address lookup.

underSap.createUnderSession(hostAddr), overSap.createOverSession(hostAddr)
These external operations create an OverSession-UnderSession pair. The pair rep-
resents the local end of a conversation between the SAP specified by underSap or
overSap on which the operation is invoked, and the corresponding remote SAP on
the host identified by hostAddr. The corresponding internal operations depend on
the shapes of the protocol involved.

underSap.enableUpwardSessionCreate() This external operation grants permission
to the underlying protocol to open a conversation by creating an OverSession-
UnderSession pair between the invoker and the underlying protocol. The
corresponding internal operation overSap.enableUpwardSessionCreate() sim-
ply records that permission was granted, in case a message arrives for the
specified SAP. The underlying protocol would then be allowed to invoke over-
Sap.createOverSession(addr). This makes it possible for a remote peer to initiate
a conversation. Without this permission, the local peer is not subject to uninvited
messages; a remote peer must wait until the local peer initiates a conversation via
underSap.createUnderSession(addr).

underSession.sendThruput(msg), underSession.sendLatency(msg) There are two
operations for sending messages because one is optimized for latency and the other
for throughput, and the optimizations show through at the source code level. These
external operations pass a message to a lower level protocol to be transmitted to
the session at the remote end of the conversation whose local end is represented by
underSession. The corresponding internal operations, overSession.sendThruput(
msg) and overSession.sendLatency(msg) respectively, transmit the message in
accordance with their protocol. The two operations are semantically identical, but
differ in their syntax and implementation. SendLatency is structured as an ordinary
function and optimized for latency. SendThruput is structured as a collection of
functions that share some data structures; this structure provides the necessary hooks
for Morpheus’s throughput optimization. This situation is motivated and discussed
in Chapters 3 and 4. The remainder of this chapter is presented as though there
were a single unified send in order to simplify the exposition.

overSession.deliverThruput(msg), overSession.deliverLatency(msg) As was the
case for sendThruput and sendLatency, there are two operations because one is
optimized for latency and the other for throughput, and the optimizations show
through at the source code level. These external operations deliver an arriving mes-
sage to a higher level protocol. The message is part of a conversation whose local
end is represented by overSession. Note that a lower protocol initiates delivery
of a message to a higher protocol, rather than a higher protocol initiating recep-
tion of a message from a lower protocol. The corresponding internal operations,
underSession.deliverThruput(msg) and underSession.deliverLatency(msg)
respectively, accept delivery of the message, possibly delivering it in turn to a yet

higher level protocol. This existence of two sets of delivery operations is motivated
and discussed in Chapters 3 and 4. The remainder of this chapter is presented as
though there were a single unified deliver in order to simplify the exposition.

overSession.grantSends(number) This external operation grants permission to a
higher protocol to send some number of messages as part of the conversation
represented by overSession. It is a primitive for implementing flow and congestion
control, which is discussed in greater detail below. The corresponding internal
operation underSession.grantSends(number) records or acts on this permission.

underSession.grantDelivers(number) This external operation grants permission to a
lower protocol to deliver some number of messages as part of the conversation
represented by underSession. It is a primitive for implementing flow and congestion
control, which is discussed in greater detail below. The corresponding internal
operation overSession.grantDelivers(number) records or acts on this permission.

2.2 Protocol Shapes

Morpheus supports three kinds, or shapes, of protocols. Morpheus partitions protocol

functionality into three categories, and each shape provides functionality from just the

corresponding category. For example, one shape is responsible for any multiplexing. Ar-

bitrary protocol functionality is implemented by composing protocols of possibly different

shapes. Shapes constitute a constraint on protocol specifications; protocol specifications

are not allowed to mix functionality from more than one of the categories.

The benefit of shapes is that they are particularly effective in raising the level of

abstraction. In more concrete terms, they make it possible for a Morpheus compiler to

automatically supply more of the code and data structures that the programmer would

otherwise have to specify. A protocol’s shape is declared in its Morpheus program.

This declaration gives Morpheus extra information about a protocol because a protocol’s

shape determines much of what the protocol will do, and the data structures it will need.

In contrast, much less can be inferred about the structure of a protocol of unrestricted

functionality.

Shape conveys so much information about a protocol because it captures several

characteristics that are tied together. The simplest explanation is that the partition is based

on “plumbing:” does the protocol support multiple higher level protocols, or just one,

and does it use multiple lower level protocols, or just one? The three shapes, multiplexor,

router, and worker, are schematically depicted in Figure 2.5.

multiplexor

router

worker

Figure 2.5: The Shapes

Multiplexor protocols multiplex messages being sent from different sessions, and de-

multiplex those messages to the corresponding sessions when they are delivered. Router

protocols make runtime decisions regarding which lower level conversation (UnderSes-

sion) to use to send a message. The decision could be made on a per-message basis or

a per-OverSession (higher level conversation) basis. Hence, Morpheus routers are more

general than is usually suggested by the term “router” (e.g. IP); they determine not only

the series of links that a message follows through a hardware network, but also the series

of protocol entities that a message traverses within the protocol graph on a host. Worker

protocols do what might be described as “the real work” such as error detection, buffering

for retransmission, and detecting lost, reordered, or duplicated messages. In particular,

any manipulations of message data are performed by workers.

2.2.1 Worker Protocols

A worker protocol is essentially a message filter. It has just one higher level protocol and

just one underlying protocol. The correspondence between OverSessions to the higher

protocol and UnderSessions to the underlying protocol is one-to-one and fixed. Hence,

a worker focuses on some message processing function without being encumbered by

routing, multiplexing, or the processing of any sort of addressing information.

The code in Figure 2.6 is the Morpheus program for a worker protocol called SE-

QUENCER. SEQUENCER’s function is to reject any duplicate or out-of-order packets.

SEQUENCER’s function does not include any guarantee that every message sent is deliv-

ered; in the building-blocks approach fostered by Morpheus, that would be the function

of one or more other protocol layers.

Worker SEQUENCER /* protocol SEQUENCER has shape “worker” */

LittleEndian Header f unsigned seqNum; g /* declare header format */
Protocol f unsigned sendSeqNum; g /* declare Protocol state variables */
UnderSession f unsigned receiveSeqNum; g /* declare UnderSession state variables */

/* no programmer-declared state variables needed for the other classes */

initProtocol(underSaps) f sendSeqNum = 1; g

initUnderSession() f receiveSeqNum = 0; g

send(msg)
f

/* header prepended implicitly */
msg.hdr.seqNum = sendSeqNum++;
underSession.send(msg); /* underSession: inherited state variable */

g

deliver(msg)
f

if(msg.hdr.seqNum > receiveSeqNum)f
receiveSeqNum = msg.hdr.seqNum;
/* header stripped implicitly */
overSession.deliver(msg); /* overSession: inherited state variable */

g
gelse

grantDelivers(1); /* restore 1 credit since message dropped */
g

Figure 2.6: A worker protocol program

The primary point of this example is that SEQUENCER’s Morpheus program con-

sists exclusively of information that is specific to SEQUENCER. In contrast, the imple-

mentation of a protocol in a general purpose language inevitably involves considerable

“boilerplate” code that is the same for many or all protocols, because the general purpose

language does not know about protocols. For example, consider the C implementation

of SEQUENCER in Appendix A. It includes data structure declarations and code for

creating and assembling the component objects, connecting SEQUENCER to the adjacent

protocol layers, creating conversations, and adding and deleting message headers. Using

Morpheus, these routine aspects of a worker protocol are all implemented implicitly. The

SEQUENCER Morpheus program is succinct because one need express only those design

choices that are specific to SEQUENCER, not those that can be made in advance for

arbitrary worker protocols.

Morpheus implicitly provides data structures such as the state variables underSession

and overSession. To understand what they represent and why they should be implicitly

provided, consider the nature of a worker. Since a worker does no routing or multiplexing,

there is a fixed, one-to-one correspondence between OverSessions to the higher protocol

and UnderSessions to the underlying protocol. Hence each OverSession uses the state

variable underSession to identify its corresponding UnderSession for use in relaying a

message; and similarly in the reverse direction.

Morpheus also implicitly provides code, or behavior, such as the initialization of the

aforementioned state variables overSession and underSession. Morpheus provides other

data structures which are not explicit in worker protocol programs because they are used

exclusively by implicitly provided code.

SEQUENCER incidentally illustrates how message header byte order is specified. The

keyword LittleEndian indicates the byte order with which fields in the header (seqNum in

this case) are to be represented. The Morpheus compiler uses this information to generate

the appropriate code for accessing header fields, even though they might use a byte order

different from the native byte order of the host machine.

2.2.2 Multiplexor Protocols

A Multiplexor protocol implements the sharing of conversations. A multiplexor supports

a variable number of higher level protocols, represented by OverSaps, but uses just one

underlying protocol, represented by an UnderSap. It provides a potentially large number

of conversations from higher level protocols by combining, or multiplexing them in con-

versations provided by the underlying protocol. Incoming messages are demultiplexed,

or separated into the appropriate higher level conversations, on the basis of the messages’

headers. A pair of multiplexing keys in the header identify each message’s source and

destination. The source multiplexing key identifies the source SAP relative to its underly-

ing multiplexor entity, and the destination multiplexing key identifies the destination SAP

relative to its underlying multiplexor entity.

Since multiplexors implement the sharing of conversations, they must implement a

policy for sharing conversations. This amounts to a policy for the scheduling of outgoing

messages from competing higher level conversations. This is the dimension along which

multiplexors vary. The simplest multiplexor transmits messages first-come-first-serve.

More sophisticated multiplexors transmit messages in an order based on priority or quality

of service considerations, as permitted by flow control.

The Morpheus program for a multiplexor protocol expresses only the policy for

scheduling outgoing messages; Morpheus implicitly provides the rest of the implementa-

tion. This is illustrated by the multiplexor FCFS shown in Figure 2.7. FCFS stands for

First-Come-First-Serve, the simplest policy; when a message is passed to FCFS via send,

it passes the message directly to the underlying protocol via send. Morpheus provides

FCFS with an implementation of the basic tasks performed by every multiplexor such as

creating connections, appending message headers that identify the source and destination

of a message, and demultiplexing messages based on their headers. For comparison, one

C implementation of FCFS included over 180 lines of C source code, despite calling a

variety of library routines.

Multiplexor FCFS /* protocol FCFS has shape "multiplexor" */

send(msg)
f

underSession.send(msg);
g

Figure 2.7: A multiplexor protocol program

One reason that Morpheus is able to provide so much of a multiplexor’s implementation

is that a multiplexor’s function is narrowly defined. Multiplexors vary in their scheduling

of outgoing messages, but otherwise they all do the same thing.

The other reason that Morpheus is able to provide so much of a multiplexor’s imple-

mentation is that it eliminates gratuitous design alternatives by imposing constraints on

multiplexor protocol specifications. Potentially, each multiplexor protocol could use dif-

ferent types for its multiplexing keys. Morpheus mandates a single, universal multiplexor

key type. Again potentially, a multiplexor could use a single multiplexing key that must

be the same for both source and destination. This is sufficient in the case where all the

peers that make up a protocol layer can use the identical multiplexing key. Morpheus

mandates independent source and destination multiplexing keys, which covers the single

multiplexing key case as a degenerate case. Since the multiplexing key type is the same

for every multiplexor, and all multiplexors have independent source and destination keys,

it is easy for a Morpheus compiler to generate the object code that deals with multiplexing

keys.

In Morpheus, the multiplexing key values used to identify specific SAPs are determined

when the protocols are composed into a graph; the key values are not hard-coded into any

protocol. When a higher level protocol is composed with a multiplexor, the SAP linking

them is labeled with the corresponding multiplexing keys. The keys are selected by

neither the higher level protocol nor the multiplexor; rather they are selected by whatever

software commanded the composition. The composition is specified by a command

createProtocol(protocolClass, link1, ... linkn)

Each link argument identifies a protocol entity and, if that entity is a multiplexor, a pair

of multiplexing keys. The information in each link is used to create an UnderSap for

the newly created protocol. The form of a link argument depends on the underlying

protocol’s shape. If the underlying protocol is a multiplexor, then the link argument is

a tuple of the form (theMultiplexorEntity, key1, key2). If the underlying protocol is a

worker or router, the link argument consists solely of the underlying entity, without any

keys. Hence multiplexing keys are specified as part of the act of creating/composing the

protocol entities.

Morpheus is at odds with more traditional protocol models that assume that multi-

plexing is a basic part of every protocol. There are two strong justifications for dropping

this assumption. First, Morpheus is intended to support simple building-block protocols.

Functionality that would have been combined in a single conventional protocol is instead

decomposed into a collection of Morpheus protocols. To the extent that a single level

of multiplexing is appropriate for a conventional protocol, the equivalent collection of

Morpheus protocols need provide only a single level of multiplexing.

The second reason that multiplexing is not a basic part of every Morpheus protocol is

that layered multiplexing is “considered harmful” [Fel90, Ten89]. One level of multiplex-

ing per host is required to share the network hardware. Logical or layered multiplexing

at additional levels in the protocol graph is not strictly necessary and has significant

disadvantages, among them:

� Conversations that have been merged cannot be distinguished for purposes of quality
of service.

� Multiplexing at multiple layers hurts performance by duplicating effort.

� Multiplexing is a barrier to the propagation of flow and congestion control informa-
tion between protocol layers.

� Multiplexing complicates application of optimizations based on Integrated Layer
Processing [CT90].

Morpheus does not assume any logical multiplexing; a Morpheus protocol graph may

have a single multiplexor at the bottom. Furthermore, Morpheus’s inclusion of a flow

control interface between layers is predicated on the assumption that relatively few layers

multiplex.

2.2.3 Router Protocols

Router protocols use multiple underlying communication services and make runtime

decisions regarding which one should be used to transmit a given message. The decision

may depend on either the individual message or the higher level conversation. Hence,

Morpheus routers are more general than is usually suggested by the term “router” (e.g. IP),

in that it includes not only determining a path through the hosts on a hardware network, but

also determining a path through the protocol graph on a host, as illustrated in Figure 2.8.

= a router protocol

= path traversed by message

Figure 2.8: Routers in a Protocol Graph

Router protocols can vary drastically, limiting the part of their implementation that

Morpheus can implicitly provide. Routers can vary even in their plumbing. For example,

the relationship between OverSessions and UnderSessions depends entirely on the partic-

ular router. Since routers vary so significantly, Morpheus can predict only relatively little

of a router’s structure; routers are the shape for which the programmer must specify the

most information.

The code in Figure 2.9 is the Morpheus program for a router protocol called SIZER.

SIZER is so called because it uses the size of each outgoing message to determine which of

two underlying communication services to use. SIZER could be used to build a protocol

graph in which messages requiring fragmentation and reassembly follow one path through

the graph (e.g., one which includes a fragmentation/reassembly protocol), while smaller

messages follow a different path, with the two paths rejoining via a multiplexor at a lower

level.

Router SIZER

/* SIZER is a "virtual protocol," i.e. it has no header */

Protocolf
UnderSap smallUnderSap;
UnderSap bigUnderSap;

g;

OverSessionf
UnderSessn smallUnderSessn;
UnderSessn bigUnderSessn;

g;

#define MAX SMALL MSG SZ 1000 /* max msg size accepted by small srvc*/

send(msg)f
if(msg.len <= MAX SMALL MSG SZ)f

smallUnderSessn.send(msg);
gelsef

bigUnderSessn.send(msg);
g

g

deliver(msg)f
overSession.deliver(msg);

g

initProtocol(underSaps)f
smallUnderSap = underSaps[0];
bigUnderSap = underSaps[1];

g

getLocalAddr()f
/* assumes both small and big srvcs use identical addr space */
return(bigUndrSap.getLocalAd());

g

enableUpwardSessionCreate()f
bigUnderSap.enableUpwardSessionCreate();
smallUnderSap.enableUpwardSessionCreate();

g

initOverSessionDown(addr)f
bigUnderSessn = bigUnderSap.createUnderSession(addr);
bigUnderSessn.overSessn = self;
smallUnderSessn = smallUnderSap.createUnderSession(addr);
smallUnderSessn.overSessn = self;

g

initUnderSessionUp(addr)f
overSessn = overSap.createOverSession(addr);
if(underSap == bigUnderSap)f

overSessn.bigUnderSessn = self;
overSessn.smallUnderSessn = smallUnderSap.createUnderSession(addr);
overSessn.smallUnderSessn.overSessn = overSessn;

gelsef
overSessn.smallUnderSessn = self;
overSessn.bigUnderSessn = bigUnderSap.createUnderSession(addr);
overSessn.bigUnderSessn.overSessn = overSessn;

g

g

Figure 2.9: A Router Protocol Program

initOverSessionDown and initUnderSessionUp are internal operations provided by

router protocols corresponding to the external operations underSap.createUnderSession
and overSap.createOverSession respectively. initOverSessionDown is an OverSession

internal operation that is executed when a higher level protocol invokes the external

operation underSap.createUnderSession on a SAP that it shares with SIZER. initUn-
derSessionUp is an UnderSession internal operation that is executed when a lower level

protocol invokes the external operation overSap.createOverSession on a SAP that it

shares with SIZER.

In contrast with previous examples, SIZER is dominated by plumbing code. The

plumbing for workers and multiplexors is more constrained, and hence more of it is

provided by Morpheus.

In general, a router protocol has to define its own space of host addresses (more

accurately, a space of identifiers for the router and its peer entities) since the space of host

addresses provided by the underlying communication services may differ. SIZER is an

exception because it is designed for the case where the two underlying communication

services use the same addresses, and so SIZER can let the underlying space of host

addresses show through as its own. A router that defines its own space of host addresses

must know how to translate between its space and those implemented by the underlying

communication services, so that it knows which underlying service to use to reach a

destination host address. Knowing how to translate addresses is also necessary for a

router entity to learn its own identity; it uses getLocalAddr to determine its address

with respect to an underlying communication service, which it must then translate into an

address with respect to its own space.

To the extent that routers incorporate specific addressing information, they are less

reusable and more specific to a particular composition of protocols than are the other

shapes. Workers and multiplexors do not incorporate any specific addressing information

internally. Their only interaction with host addresses is to relay getLocalAddr requests

to the next lower layer until it reaches a router or the software that interfaces between the

Morpheus protocol subsystem and the underlying network hardware. Multiplexing keys

are not hard-coded into protocol code, but instead specified externally when protocols

are composed. In contrast, routers should perhaps be regarded as part of the information

that determines the composition of a protocol graph; they have to incorporate information

about the host address spaces of the protocols with which they are composed.

2.3 Flow and Congestion Control

Flow and congestion control are common protocol functions. Flow control is responsible

for ensuring that a protocol entity does not transmit messages to a peer faster than the

destination peer can process the incoming messages; flow control synchronizes the sender

with the receiver. One common approach to flow control involves a sliding window, in

which the receiving peer indicates, in the form of a window of message sequence numbers,

how many messages it is currently willing to accept from the sender. Congestion control is

responsible for avoiding situations in which the capacity of one hardware link is exceeded

by the aggregate message traffic from a collection of conversations that are all routed over

the same link. Congestion control can involve routing decisions as well as the throttling

of message transmission. The information on which it is based can take many forms, for

example the rate at which messages are lost, since this is most often due to congestion.

If all protocols in a protocol graph multiplex, then each protocol must implement its

own flow and congestion control or go without. The information on which control is

based cannot be shared between layers because control information applies to individual

conversations, and multiplexing combines multiple conversations into one (when sending)

and separates one conversation into many (when delivering).

In contrast, wherever layers do not multiplex, there is the potential to encapsulate flow

or congestion control in a separate protocol module because the same conversations that

flow through that protocol also flow through some number of adjacent protocols.

Morpheus supports the encapsulation of flow and congestion control in modules sep-

arate from other protocol functionality by providing a flow and congestion control inter-

face. The interface consists of the underSession.grantDelivers(numberOfMessages)
and overSession.grantSends(numberOfMessages) operations. grantSends propagates

information to the next higher level protocol, and grantDelivers to the next lower level

protocol. Both operations express control information in terms of permission to pass

the specified number of messages. Although control information is expressed in terms

of permission to pass messages, any enforcement is implemented by protocols, not by

the Morpheus language. In other words, Morpheus provides the mechanism for sharing

flow and congestion control information, but the flow and congestion control policies

are determined by the particular protocols. Different policies are appropriate in different

circumstances, and at different points in a protocol graph. Furthermore, a protocol’s send
policy may well differ from its deliver policy. The Morpheus approach is to implement

the policies as protocols, and reuse the protocols wherever the policies are appropriate.

Policies fall into three general categories. The first two categories include policies used

by protocols that are not actively involved in flow or congestion control. The first category

consists of a single policy: the bypass policy. In this case, the protocol simply relays

the flow control information to the next protocol, and relies on that protocol to comply.

This is likely to be appropriate for protocols where there is a one-to-one relationship

between messages passed to the protocol and messages it passes on. The second category

of policies likewise consists of a single policy: the “no flow control” (or “infinite credit”)

policy. Under this policy, the protocol behaves as if it had infinite credit to pass messages.

Furthermore, it does not relay flow control information, nor does it expect to receive such

information. This policy makes sense for a protocol that relies on a subsequent protocol

to enforce flow control, e.g. by dropping messages when credit is unavailable.

The third category of policies includes all the “real” policies: those that receive flow

control information, and comply with it by either enforcing control on other layers or

propagating their own flow control information to other layers. Since Morpheus protocols

are decomposed into the simplest possible elements, a protocol whose policy falls in this

category should either have flow control as its sole function, or have a primary function

with which flow control is inherently intertwined, such as horizontal flow control, or

multiplexing on the basis of quality of service.

In conventional protocols, flow control is combined with many other functions in

a single protocol, and it provides synchronization between peer instances of only that

protocol. In Morpheus, a flow control protocol should perform no other function, and

it should propagate flow control information to provide flow control between peers in

higher layers. Suppose a protocol entity needs to control the flow of messages from a

peer. It uses grantDelivers to throttle the delivery of messages from lower layers. This

information propagates down to a flow control protocol, which translates the information

into a message that propagates the information to its peer. The flow control protocol peer

then uses grantSends to propagate the information up to the peer of the original protocol.

Since this peer, the source of the messages, sends messages only after first receiving

credit to do so, flow control is achieved. Figure 2.10 shows the pertinent routines from

an example flow control worker protocol. This protocol is designed for the case where

the underlying service is reliable, so control information is transmitted in the form of a

number of message credits (as opposed to, for example, a window of sequence numbers).

The vertical propagation of flow control in either direction cannot continue through a

multiplexing layer. This is because flow control information applies to one data stream,

and a multiplexor always combines multiple streams into one (when sending) or separates

one stream into many (when delivering). Therefore a multiplexor must in effect grant

infinite credit in both directions; that is, the adjacent layers should assume that they have

infinite credit to pass messages to the multiplexor. Although a multiplexor does not

propagate flow control, it is essential that the multiplexor be informed of send credit.

This allows the multiplexor to block or discard sent messages when credit is lacking, and

resume blocked sends, distinguishing between messages on the basis of quality of service

requirements.

A multiplexor could comply with flow control information regarding deliveries by

blocking threads or dropping messages. This has the major drawback that all of the

component streams get the same delivery flow control policy. A better approach is for

each of the component streams to have its own delivery flow control policy implemented

at higher levels, while the multiplexor applies the “infinite credit” policy to deliveries.

This has the additional advantage of decoupling the deliver policy protocol from the

send policy protocol, so that they may be varied independently by composing different

protocols.

deliv(msg)
f

if(msg.hdr.msgKind == DATA MSG)f
/* just pass it on up */
overSessn.deliv(msg);

gelse if(msg.hdr.msgKind == CREDIT MSG)f
/* propagate the credits as vertical flow control info */
overSessn.grantSends(msg.hdr.numCredits);
msg.destroy();

gelse if(msg.hdr.msgKind == OPEN MSG)f
/* msg already completed its mission
* when it caused sessns to be created
*/
msg.destroy();

g
g

grantDelivs(numCredits)
f
Msg msg;

/* create and send a credit msg */
msg.create();
msg.hdr.msgKind = CREDIT MSG;
msg.hdr.numCredits = numCredits;
undrSessn.send(msg);
msg.destroy();

g

Figure 2.10: Flow Control Protocol Fragments

2.4 Feasibility of a Morpheus Compiler

I have not implemented a Morpheus compiler because that would involve a great deal of

effort only indirectly related to my thesis. The focus of this research is not language de-

sign and implementation, but rather protocol abstractions and protocol-oriented compiler

optimizations.

However, Morpheus’s protocol abstractions have naturally been designed to be com-

pilable. Compilability essentially means that there is enough information in a program

for a compiler to generate an object code implementation. Morpheus has been designed

to provide just enough expressiveness for the programmer to provide the information

that is unique to a given protocol. That information is sufficient, when combined with

a compiler’s built-in information about Morpheus’s constrained variety of protocols, to

produce a low level implementation.

The gap between Morpheus source code and its object code implementation reflects

Morpheus’s high level of abstraction, and arguments regarding the feasibility of imple-

menting the abstractions have been presented as they were introduced. To recapitulate,

the parts of a low-level, object code implementation of a Morpheus protocol that are

not explicitly specified in the Morpheus source code are nonetheless determined, by the

following means:

Constraints. Constraints, both at the specification level and below, make it possible to pre-
determine specific implementations for many features, regardless of the particular
protocol.

Shape. Implementations can be predetermined for the features that are characteristic of
each shape, and each protocol program begins by declaring its shape.

Other declarations. Declarations such as the message header byte order result in addi-
tional object code that is not explicit in the Morpheus source code.

Morpheus’s design was guided by a non-compiler prototype implementation. First, the

Morpheus protocol interface was implemented in a protocol framework called x-prime,

derived from the x-kernel. Support for shapes was then added in the form of source code

templates, with one template for each shape. Each template consisted of C source code

appropriate for the corresponding shape, except that a number of references to undefined

macros appeared in the text. Programming a protocol consisted of defining the macros

with data structures and code corresponding to the particular protocol. A template and

a particular set of macro definitions could then be compiled into the object code for a

protocol.

A Morpheus compiler could parallel this technique. The source program would be

analogous to the macros, but instead of explicit macro definitions, parsing allows the

information to be expressed in a more intuitive and flexible syntax. The compiler’s code

generation routines would be analogous to the templates and framework infrastructure,

completing implementation details not specific to a particular protocol. A compiler

only adds more options to the way in which various protocol features can be realized:

conventional code generation, shared routines, or even object inheritance.

The protocol-framework-and-templates approach can duplicate some Morpheus fea-

tures but falls short of others. Its syntax is crude and inflexible. It cannot mix programmer-

specified code with implicitly provided code at a fine granularity. Finally, it cannot use

compiler optimizations to reduce the the performance penalty for layering. Reducing this

penalty is important for not only modularity, and through it reusability, but also abstrac-

tion, since Morpheus’s high level of abstraction depends in part on shapes, which in turn

require a high degree of decomposition.

Another approach that can duplicate some Morpheus features but falls short of others

is adding predefined object classes to a general purpose object oriented language (OOL)

such as C++ [Str86]. In this approach, an OOL would be augmented with a collection

of predefined object classes for Morpheus objects, and subclasses of those classes for

each shape. However, like frameworks, general purpose OOLs would lack compiler

optimizations that reduce the performance penalty for layering. Since the predefined

classes would be written in the OOL source language just like any other classes, they

would be unable to perform actions below the source language level transparently. Since

the predefined classes would use the same general-purpose inheritance mechanism used

for any classes, they would be unable to support fine-granularity mixing of inherited code

with programmer-supplied code.

2.5 Comparison with the x-kernel Uniform Protocol Interface

Morpheus’s protocol abstractions are descended from the x-kernel protocol framework,

which has the basic goal of facilitating the development of high performance protocols.

Thus, Morpheus has a second-generation model of protocols, based on experience with

the x-kernel.

The Morpheus Uniform Protocol Interface supports a greater degree of decomposition

than the x-kernel UPI due to Morpheus’s flow control interface, which permits flow and

congestion control to be encapsulated in their own protocol modules.

The Morpheus UPI also eliminates some of the x-kernel UPI’s barriers to syntactic

composability. These are the x-kernel’s control operations and multiplexing scheme.

2.5.1 Control Operations

The x-kernel UPI’s control operation is an escape hatch, like Unix’s ioctl, that allows un-

restricted interaction between protocols. One of its arguments is an opcode that identifies

the true operation, and another argument is a pointer to a buffer in which a request or reply

of arbitrary type can be passed. The control operation’s purpose is to permit protocol

operations that are supported by some but not all protocols.

The Morpheus protocol interface does not include a control operation because control

operations limit syntactic composability. The problem is that a protocol that uses a

particular control operation can only be composed with protocols that implement that

particular control operation.

One use of the control operation is to set protocol options. This allows a single

protocol entity to provide different communication services. For example, the User

Datagram Protocol, UDP, can checksum the contents of its messages, or not, depending

on an option. Requiring a single implementation to provide multiple services complicates

the implementation and can adversely impact its performance. Each of the communication

services could be implemented more simply by its own protocol.

Morpheus prohibits options. This constitutes a constraint on protocol specifications.

Morpheus takes the position that, instead of one protocol with options, there should be

a distinct protocol for each value of the options—a different communication service is

implemented by a different protocol. The sharing of code between closely related variants

of a protocol should be managed at compile time, not implemented by sharing object

code at runtime. In those cases where the choice of appropriate variant depends on

runtime information, a router protocol can be used to select the appropriate protocol on a

per-session basis at conversation open time, or a per-message basis at send time.

Morpheus also eliminates the use of the x-kernel’s control operation to learn the

maximum packet size supported by the underlying communication service. This operation

is used by x-kernel fragmentation/reassembly protocols to determine the size of the

fragments into which outgoing messages must be fragmented. This situation is like

protocol options in that it can be resolved at compile time, with each value of the maximum

packet size made a constant in a distinct protocol.

Morpheus eliminates another common use of the x-kernel control operation, that of

learning the addresses of the two ends of a conversation. In Morpheus, the address of

the local end of a conversation can be learned by invoking the explicit getLocalAddr
operation. The address of the remote end of a conversation is reported to a protocol when

the conversation is created, and is easily recorded in a programmer-defined state variable

in the corresponding UnderSession, if needed. In the x-kernel, a session is represented by

a single (informal) object that is a component of the lower level protocol, so the higher

level protocol does not have a convenient way to record the remote address.

Morpheus increases composability by eliminating control operations, but Avoca

[OMa90] uses a different approach called inherited controls. Avoca provides a con-

trol operation interface, and Avoca protocols are responsible for implementing a control

operation that, depending on the opcode of the particular operation, either performs the

itself, if possible, or in turn invokes the same control operation on lower level protocols.

Inherited controls retain the flexibility of control operations while increasing the likelihood

that a composition of protocols will be compatible, since the control operation used by

one need not be provided by an immediately adjacent lower level protocol. However, this

is still not as composable as Morpheus since there must still be some lower level protocol

that implements the control operation. Also, inherited controls require a mechanism for

assigning globally unique opcodes, so that control operations are not misinterpreted by

intervening protocols.

2.5.2 Multiplexing

Multiplexing involves the assignment of identifiers called multiplexing keys to SAPs. A

multiplexor marks each message with source and destination SAP multiplexing keys,

thereby identifying the higher level conversation of which the message is a part.1 This

identification is the basis for demultiplexing received messages to the appropriate higher

level conversations. Hence, a multiplexor must know the multiplexing keys that identify

each of the higher level conversations it supports. There are various schemes by which a

multiplexor might come to know these keys.

In the x-kernel design on which Morpheus is based (a newer x-kernel design is

discussed below), multiplexors learn keys by a scheme which limits the reusability of

protocols. The multiplexing key identifying a SAP is hardwired into the higher level

protocol, which it communicates to the underlying multiplexor when it opens a conver-

sation. This multiplexing key must be of a type determined by the multiplexor, and must

be different from all other keys used by the multiplexor. Hence the higher level protocol

cannot be reused in situations where the key type or assignment of keys to protocols is

different.

Morpheus avoids this problem by explicitly associating the multiplexing key with the

SAP that connects the two protocols, rather than having one protocol communicate it to

the other. The assignment of a key to a SAP is made in the composition specification, not

in any protocol. Each key is stored as state in the corresponding OverSap, so a multiplexor

learns multiplexing keys for each SAP when the SAPs are created and installed.

This addressing scheme is sufficient to increase composability by eliminating mul-

tiplexing key mismatches, but Morpheus goes further to simplify multiplexing. Some

protocols, such as IP, identify both ends of a conversation using the same multiplexing

key—in effect, limiting protocols to conversations with other instances of themselves.

1Some non-Morpheus multiplexors require the SAPS at both ends of a conversation to have identical
multiplexing keys. Their use of a single value to identify both ends of a conversation is a special case.

Other protocols, such as TCP, require that multiplexing keys be specified for both ends

of a conversation, allowing clients to communicate with servers, for example. Morpheus

imposes the constraint that all multiplexors require distinct keys (with possibly identical

values) to be specified for each end of a conversation. This accommodates the shared

key situation as a special case, and ensures greater uniformity of Morpheus multiplexors.

Morpheus also constrains all multiplexors to use the same data type for multiplexing

keys, again for uniformity. These constraints contribute to the high level of abstraction

of Morpheus’s multiplexor shape, by allowing Morpheus to implicitly provide more of a

multiplexor’s implementation with a minimum of programmer specification.

Avoca [OMa90] approaches the composability problems of x-kernel addressing in a

different way. Avoca assigns each protocol a globally unique multiplexing key which it

uses regardless of the underlying multiplexor. This eliminates the problems of mismatched

key types, since all keys have the same type, and key clashes (except for one situation),

since keys are globally unique. All implementations of a given protocol specification share

the same identifier. This approach has the awkward shortcoming that multiple instances

of the same protocol cannot be composed on top of the same multiplexing protocol since

their keys would be identical. This would seem to support my contention that multiplexing

keys are properly thought of as an attribute of the composition, not the protocol.

In Avoca, the higher level protocol is responsible for some of the work normally

performed by the multiplexor. The higher level protocol marks outgoing messages with

the destination multiplexing key and removes the key from incoming messages. (It is

unclear which protocol is responsible for adding or removing source multiplexing keys.)

This seems to offer negligible advantage since it could as well be performed by the

multiplexor. Furthermore, it has the disadvantage that each protocol does the work of

adding and removing multiplexing keys even if it is not on top of a multiplexing protocol.

I have pointed out two drawbacks of Avoca’s multiplexing: multiple instances of

the same protocol cannot be composed over a given multiplexor, and protocols do the

work of adding and removing multiplexing keys even when they are not composed over a

multiplexor. If it were assumed that every protocol multiplexes, then these drawbacks do

not arise. However, this assumption limits decomposition into simple protocol modules,

which is central to Avoca’s (and Morpheus’s) support for protocol development. Fur-

thermore, as already discussed, there are strong arguments against layered multiplexing

[Fel90, Ten89].

Avoca imposes a constraint on protocol specifications. It requires all protocol head-

ers to begin with the destination multiplexing key and makes the higher level protocol

responsible for adding and removing the key. Starting each header with its multiplexing

key makes it possible to share that field with the multiplexor that uses it to demultiplex,

a dubious benefit. This constraint allegedly serves the additional purpose of supporting

protocol independent tools, such as a debugger perhaps; the protocol identifier is analo-

gous to the return address in an activation record. Note however that without additional

information, a tool would only be able to use the first such multiplexing key/protocol

identifier in a message, because it would be unable to locate the protocol identifiers in

higher level headers nested inside the message. A possible solution would be to constrain

all protocols to also include a header length field at a fixed offset from the start of their

headers. To continue the activation record analogy, this would be like a stack or frame

pointer.

This constraint in Avoca is the only case of which I am aware, outside of Morpheus,

of imposing specification-level constraints to support protocol development. However,

Avoca does not use specification-level constraints as a general strategy.

A new version of the x-kernel, more recent than the design of Morpheus, uses a new

multiplexing scheme. Configuration information supplies each protocol instance with

a string identifier, although instances of the same protocol get the same identifier. A

higher level protocol passes its identifier to a multiplexor. The multiplexor accesses other

configuration information which maps the identifiers of the higher level protocol and the

multiplexor into integer identifiers en route to mapping the pair into a multiplexing key,

which is then cast into the appropriate type by the multiplexor.

The net effect is that the multiplexing key is determined by the composition specifi-

cation, as in Morpheus. The indirection between protocol pairs and multiplexing keys is

intended to support two coexisting strategies for assigning multiplexing keys: either an

explicitly specified assignment, or, the default, the identify function applied to the higher

level protocol’s numeric identifier, as in Avoca. However, two anomalies follow from

assigning the same string identifier to instances of the same protocol. First, there cannot

be two instances of the same higher level protocol over the same multiplexor. Second, if

there is more than one pair of instances of a given higher level protocol and multiplexor,

then each such pair must use the same multiplexing key, even if the key is not the integer

identifier of the higher level protocol.

In the x-kernel and in Avoca, the multiplexing key that identifies the remote end of a

conversation is supplied, unless it can be inferred from the local key, by an application

or high level protocol. The remote keys are passed to protocols along a path through

the graph when the application or higher level protocol creates a conversation that will

follow that path. The remote keys are not specified in the composition information; they

may be hardwired into the protocols and application, or obtained from name services, or

a combination of the two. In Morpheus, the multiplexing key that identifies the remote

end of a conversation is also specified in the composition information and used to label

the SAP. This is possible because within the protocol subsystem, the multiplexing keys

by which a protocol identifies its destinations do not to vary across conversations; an

entity always communicates with an identical peer or an opposite server/client aspect in

the case of an asymmetric protocol. Greater flexibility is needed only at the application

level, which is outside the protocol subsystem implemented by Morpheus. The interface

between applications and the protocol subsystem is not specified in this research.

CHAPTER 3

LATENCY OPTIMIZATIONS

Reducing the performance penalty for protocol layers is a cornerstone of Morpheus’s

support for protocol development. Reducing this penalty makes fine-grain protocol mod-

ules practical. When performance penalties for layering are high, protocol developers are

motivated to write large, complex, multi-shape, non-reusable protocols like conventional

protocols.

Morpheus reduces the layering penalty by using compiler optimizations based on

common patterns of protocol execution. Protocol-oriented optimizations would not be

appropriate in general purpose languages, since those languages are intended for a much

wider variety of programs that do not behave like protocols.

Latency and throughput are the coins in which layer penalties are paid. Unfortunately,

Morpheus’s throughput optimization tends to make latency worse. This seems to reflect a

fundamental tension between latency and throughput. Morpheus resolves the competing

demands of throughput and latency by splitting the message path in two, one path for

throughput-dominant traffic and one for latency-dominant traffic. Messages are catego-

rized as one or the other based on their length, since message length independent costs

(latency) dominate for short messages, and message length dependent costs (throughput)

dominate for long messages. Since messages tend to be either fairly short or fairly long,

any reasonable choice of a threshold length for defining “short” versus “long” will work

well.

The Morpheus programmer codes distinct operations for the latency-dominant and

throughput-dominant paths. Send and deliver are split into two operations each: send-
Latency and deliverLatency process short messages, and sendThruput and deliver-

Thruput process long messages. The programmer must provide code for each path

because the optimizations show through at the source code level. Chapter 4, which

presents Morpheus’s throughput optimization, concludes with a discussion of possible

alternatives to the two-path scheme described in the preceding paragraphs.

The latency optimizations presented in this chapter all support the dynamic config-

uration of a protocol suite at runtime. Fixing the protocol suite before runtime would

limit the extent to which communication services can be tailored to the needs of specific

applications, since those applications arise at runtime. Furthermore, runtime configura-

tion opens the possibility of runtime negotiations between a client and a server to select,

from their local libraries of protocols, a set of protocols that both have available and that

satisfies their joint communication service requirements.

This chapter presents the latency optimizations, reports experimental results regarding

their effectiveness, and concludes with a discussion of alternative optimizations suitable

for compile-time configuration.

3.1 Specific Techniques

There are five latency optimization techniques employed by Morpheus. The first three

are compiler optimizations in the conventional sense. The fourth, while not a compiler

optimization, is a direct consequence of using a domain-specific compiler. The fifth could

be performed at the source code level of a general purpose language.

The latency optimizations are applied to sendLatency and deliverLatency. For

clarity, the techniques are described in terms of sendLatency; they apply equally to

deliverLatency.

Morpheus’s latency optimizations are based on the common patterns of protocol

execution. Consider the characteristics of the sendLatency operation. SendLatency
takes a message as its argument. Since it is an operation on an OverSession object, there

are in effect two arguments, the message and the OverSession. The typical sendLatency

does some computation, accessing the object for state and other information, and using

the built-in utilities; prepends a header to the message; and passes the message to the next

lower layer via the sendLatency operation of another OverSession. This is repeated as

the message passes through “many” layers. Morpheus optimizes for this common case.

Now consider how sendLatencys of adjacent layers interact at the object code level.

SendLatency is implemented as a function at the object code level as well as the source

code level. Morpheus protocols share the same address space, and hence interact via

function calls. Function call conventions for modern RISC architectures are as follows1.

The caller function places the calling arguments in registers designated for that purpose.

If there are many arguments, the excess arguments are passed via the stack. The caller

then executes a jump-to-subroutine instruction, which moves the return address into a

designated register and transfers control to the callee function. The callee then updates the

1This assumes no register windows.

stack pointer to leave enough space on the stack for local variables, temporary variables,

registers saved by the callee, and arguments to be passed to procedures called by the

callee. Any registers that need to be saved, including the return address register, are then

saved on the stack. By convention, certain registers (callee save registers) must have their

contents saved and restored by the callee if it uses them; certain other registers (caller

save registers) may be used freely, but must be saved and restored around a call site by the

caller if they are to hold a live value across the call. In preparation for returning, the callee

puts the result in a designated register. It then restores any saved registers, including the

return address register, restores the stack pointer, and jumps to the return address.

3.1.1 Dedicated Message Registers

SendLatency’s message parameter fits in a register because it is implemented as a pointer.

If sendLatency calls any procedures, the message has to be saved so that another argument

can be passed in the argument-passing registers (unless the called procedure takes the

message as an argument, and in the same order in the argument list). Ultimately it

must be restored to its original argument-passing register to be passed to the next layer’s

sendLatency. Morpheus modifies the parameter passing convention by setting aside a

register specifically to pass the message. This register is selected from among the callee

save registers. This way it is efficiently accessible in a register, and furthermore, that

register need not be freed across subsequent calls to either the next layer’s sendLatency

or any other procedures.

The most heavily accessed part of a control message is its header. A pointer to the

message header is used to access or modify fields in the header, and is incremented or

decremented to prepend or strip headers. Morpheus optimizes for this by designating a

callee save register for passing the header pointer explicitly along with the message object

of which it is a part. This eliminates memory accesses otherwise necessary to read or

write the header pointer state variable in the message object, and does so using a register

that need not be saved across calls.

Message and header registers are initialized when the message is created, either to be

sent or because it was just received via a network device. Also, the original contents of the

two registers used are saved at that same time, and restored upon return. This overhead

is amortized over the number of layers in the sendLatency, resulting in an insignificant

per-layer cost. The message and header registers can be reallocated within a sendLatency

if registers are in sufficiently short supply or if a second message must be passed, but this

case is the exception. This optimization could be described as a second procedure calling

convention that coexists with a primary calling convention.

All these implementation details are concealed from the Morpheus programmer, who

sees only operations on a Message object.

3.1.2 Short-Circuit Return

Most often, the last action taken in a sendLatency is to invoke the next layer’s sendLa-

tency. When the lower sendLatency returns, the original sendLatency is done and also

returns. Morpheus short-circuits such returns in a manner similar to optimizations for

tail recursion, so that sendLatencys with no further work are bypassed in the sequence

of procedure returns. Before calling the lower sendLatency, the current sendLatency

restores all registers including the stack pointer. It then jumps to the lower sendLatency,

but instead of giving a return address in the current sendLatency, it gives the return

address provided by the current sendLatency’s caller.

This short-circuit return optimization in itself saves relatively little—a single jump

assembler instruction per layer on a typical RISC processor. However, it contributes to

another, conventional optimization that is more significant. If there are no procedure calls

in a sendLatency operation, then that function can omit saving and restoring the return

address register and updating and restoring the stack pointer. For this purpose, the short-

circuit return effectively eliminates a procedure call. After applying short-circuiting, a

significant number of sendLatency operations qualify as having no procedure calls. This

occurs frequently since the typical Morpheus protocol is relatively simple.

This optimization is not implemented for general purpose languages because the

benefit for the average general purpose program is small. In contrast, the Morpheus

sendLatency and deliverLatency operations present a highly specialized domain, one

that can be expected to benefit significantly from this optimization.

A variation on this optimization takes advantage of knowledge about the likelihood

of executing various branches in object code that corresponds to a high level abstraction

rather than being specified by a programmer. Suppose a procedure call were part of a

branch that was known to be infrequently taken. Then instructions to manage the return

address and stack pointer registers—i.e. a “lazy stack”—could be inserted just in that

infrequent branch, so that they would be executed only if necessary.

3.1.3 Procedure Cloning

SendLatency nearly always accesses instance variables in its OverSession objects since

these hold connection state information and other information such as the appropriate

lower level UnderSession object. It also frequently accesses instance variables of the

Sap and Protocol objects to which the Session object belongs. Most of the instance

variables that are used internally are known to be constant because they have to do with

connecting layers together, e.g. the OverSap corresponding to a UnderSap, or the source

and destination host addresses in a multiplexor OverSession. User-declared instance

variables are often constant as well.

Morpheus optimizes for this by generating a customized version of the sendLatency
object code for each OverSession. At compile time, Morpheus generates a template for

each protocol’s sendLatency. When an OverSession object is created at runtime, a copy

of the template is created and filled in—i.e. object code is modified—using the addresses

of the Session, Sap, and Protocol objects and the values of those instance variables that

are known to be constant. User-declared instance variables can be flagged as constant

by a keyword. Chains of indirect pointers through memory are collapsed; for example,

the address of the next layer’s sendLatency replaces a chain of pointers that leads to it

through the current layer’s UnderSession and the next layer’s OverSession. This also

eliminates the need to pass the OverSession object as a parameter.

The end result of the technique is that constants are hardwired into the code. The

constants could not be hardwired into an uncloned procedure because they are different

for each clone. This hardwiring reduces the number of instructions executed for each

clone, eliminating some memory accesses in the process.

This technique is a variation on procedure cloning [Coo83]. A procedure can be

cloned to partition calls to it based on interprocedural constants information, or more

generally, the solution to any forward interprocedural data-flow problem [Hal91]. Instead

of a single procedure that must satisfy all calls, each clone is specialized to more efficiently

handle its subset of the calls. The cloning practiced by Morpheus could not be arrived

at by interprocedural analysis because the necessary information—the Session object for

which the procedure is being cloned—is not available at compile time, since Sessions are

created at runtime.

Morpheus’ technique could also be classified as runtime code generation. The Synthe-

sis kernel [PMI88] achieves exceptional performance using a similar technique. However,

in contrast to Synthesis, which generates specialized kernel code, Morpheus generates

specialized versions of protocol operations that are written by Morpheus programmers.

Morpheus’ cloning has time and space costs. There is the time cost, paid at runtime,

of making a copy of the template and filling in the appropriate constants. Although

this occurs at runtime, it is part of communication channel creation—not in the time-

critical sendLatency path. The space cost is an extra copy of the sendLatency code for

each OverSession; that is, one for each communication channel currently provided by a

protocol. There is already a space cost associated with each channel—a context-state. In

Morpheus this is the OverSession object. The corresponding sendLatency clone could be

considered a part of that state. Note also that each clone uses less space than an uncloned

version of a procedure because of the simplifications enabled by the cloning. The increase

in code space can be bounded by simply ceasing cloning once a code space threshold has

been reached, as proposed in [Hal91]. This would require keeping one uncloned version

of each sendLatency procedure to operate on any OverSessions that were not allocated

their own clones.

The increased object code size due to cloning could conceivably have a negative

effect on caching and virtual memory. Inlining results in a similar but greater increase in

object code size, but inlining apparently has little effect on caching and virtual memory.

[CHT91] found no obvious evidence of either thrashing or instruction cache overflow due

to inlining, and cited previous reports of similar results. While these studies involved

inlining, they suggest that increased object code size due to cloning would likewise be

free of significant performance penalties.

3.1.4 Language Constructs for Frequent Tasks

Operations on Morpheus’s built-in Message, Map, and Event objects are implemented as

inline object code. This is more efficient than implementing this support in the form of a

library of utility routines because procedure linkage code is eliminated and more context

is exposed for conventional optimization. While similar results could be obtained using

inline substitution of support routines (given a compiler which supported it), since these

operations are language constructs in Morpheus, there is greater potential for optimization

because the compiler has more information about the code being optimized. The costs

of implementing support utilities as language constructs (as opposed to procedures) are

increased compile time and increased object code size. These costs are held to reasonable

limits in Morpheus because the set of utilities is fixed and small.

3.1.5 Eliminating Header Bounds Checking

The most frequent utility operations are pushing (prepending) and popping (stripping)

headers. Although pushing a header usually amounts to incrementing a pointer, it can

involve considerable bounds checking even in the case where no bounds are exceeded.

Morpheus optimizes this away by allocating sufficient header space to each message as it

is created, thereby ensuring that the header will not overflow. This is possible because the

runtime system can determine the largest combined header that can possibly to prepended

to a message based on the headers declared by the protocols in the current protocol graph.

3.2 Experimental Results

To study the impact of these latency optimizations in the absence of a compiler, I simulated

generation of object code. This was accomplished by writing protocols in C according to

the structure of Morpheus protocols; then compiling the C code using gcc into assembler

language for the MIPS R3000 architecture; and finally applying the optimizations by hand

at the assembler language level. I then performed two experiments to quantify the effect

of Morpheus’ optimization strategy: counting instructions and measuring end-to-end

latency.

3.2.1 Instruction Counts

The effect of a given optimization depends on both the particular procedure and the

other optimizations present. Therefore I have selected a particular protocol to use as an

example, and report the effects as each optimization is applied in turn. The protocol is SE-

QUENCER, which was presented in Chapter 2. I focus on SEQUENCER’s sendLatency
operation. When SEQUENCER’s sendLatency is invoked, it pushes a header onto the

message. The header is filled in with a sequence number obtained from a Protocol state

variable, which is then incremented. The message is then passed to the next protocol’s

sendLatency.

The results of the optimizations are summarized in Table 3.1. The first row of the table

refers to the original, unoptimized version of the code, which consists of 45 assembler

instructions. The final, optimized version consists of seven instructions.

Replacing the header push procedure with inline code reduces the common path by

seven instructions—essentially the code for procedure linkage with the header push pro-

cedure. Eliminating header bounds checking eliminates an additional fifteen instructions.

It also eliminates all conditional branches, so the common path is also the only path.

Dedicating registers for passing the message and its header eliminates an additional

four instructions. This optimization generally gives a greater benefit in cases where there

are procedure calls before calling the next layer’s sendLatency (SEQUENCER has no

CUMULATIVE INSTRUCTIONS REMAINING

OPTIMIZATIONS ELIMINATED INSTRUCTIONS

ORIGINAL VERSION - 45

INLINE UTILITIES 7 38

ELIM BOUNDS CHECK 15 23

DEDICATED REGS 4 19

CLONING 7 12

SHORT-CIRCUIT 5 7

Table 3.1: Instruction Counts

such intermediate calls after applying the preceding optimizations); intermediate calls

prohibit the message from remaining in an argument-passing register because that register

is also used to pass arguments at the intermediate calls.

Cloning sendLatency eliminates another seven instructions. Several pointer indirec-

tions are short-circuited, and one less parameter is passed to the next sendLatency (i.e.,

its OverSession). Cloning and dedicated registers also each owe some of their benefit in

this case to reducing by one the number of callee save registers needed.

Short-circuiting the return from the subsequent sendLatency results in the elimination

of five more instructions. Short-circuiting the return makes it unnecessary to save the

return address, which in turn makes it unnecessary to allocate stack storage.

The fully optimized SEQUENCER sendLatency consists of seven instructions: one to

increment the header pointer, five to do “the real work” (increment the sequence number

for outgoing messages and write it into the header of this message), and one to jump

to the next layer. But not all assembler instructions are equal. Loads and stores can

take much more than the single cycle used by other instructions, just how much time

being determined by the current state of the cache. The original, unoptimized version of

SEQUENCER’s send includes 12 loads and seven stores; the optimized version has one

load and two stores, all in “the real work”. This reduction in the number of loads and

stores is roughly proportionate to the overall reduction in the number of instructions, a

factor of about six.

3.2.2 Timing Measurements

I also compared the performance of an implementation of UDP in the x-kernel with

an equivalent protocol stack in Morpheus. Because UDP cannot be implemented in

Morpheus—it performs functions belonging to two different shapes—the Morpheus equiv-

alent consists of two protocols: a multiplexor performing first-come-first-serve multiplex-

ing, and a worker that records in the message header the length of a sent message and trims

each received message to the length recorded in its header. Omission of the checksumming

function is discussed below.

The purpose of this experiment was to verify whether Morpheus’s purported perfor-

mance advantages would result in measurably high performance. The x-kernel was used

as the standard for comparison because I could obtain timing measurements for the x-

kernel’s UDP on the same processor (Decstation 5000/200), and because the x-kernel is

known to support high performance protocol implementations [HP91]. UDP was used as

the basis for comparison because, while fairly simple, it qualifies as a “real protocol,” and

because it has a clear Morpheus equivalent.

I measured the end-to-end latency contribution of the two versions of UDP—the

time it takes UDP to send and receive one message, independent of all other protocol or

hardware layers. The measurement was made by sending and receiving ten million,1-word

messages, and dividing the elapsed time by ten million. The x-kernel implementation

took 24.57 microseconds, while the Morpheus equivalent took only 1.48 microseconds, a

factor of 16 difference.

Two qualifications apply to this result. First, there is the issue of the accuracy of

microbenchmarks and their susceptibility to cache effects. In these experiments, all

messages were transmitted over the same data stream with no intervening messages, with

source and destination sharing the same processor, and no flushing of the cache. This

should represent a best case performance, with very little data cache effect.

Second, the figure quoted for the x-kernel is not strictly latency but also includes

the time to return control through the protocol graph on both the receiving and sending

sides. This returning of control would normally occur either in parallel with message

transmission, or after the message has been received, but took place serially in my

experiment because source and destination shared the same processor. In this particular

experiment, the additional time is relatively insignificant because it only involves a total of

three procedure returns. This was not a factor for the Morpheus time because Morpheus’s

short-circuit return optimization avoids the cost of returning for the layers being measured.

Despite these qualifications, the magnitude of the difference argues strongly for a

Morpheus performance advantage. The difference is not attributable solely to Morpheus’

optimizations, however; two other aspects of Morpheus also figure prominently.

First, even though UDP’s checksum option was not used in the test, the x-kernel

version still set the checksum field to zero on the sending side, and tested it for equality

to zero on the receiving side. The Morpheus equivalent did not have this overhead.

This is a legitimate advantage, attributable to building-blocks protocols approach used

by Morpheus. In a protocol graph composed of many, simple protocols, the option of

having a checksum is implemented by having two paths through the graph, one with the

checksumming layer and one without it.

Second, accessing message headers is a far more elaborate process for the x-kernel

than for Morpheus. Because compound data types such as C structures conform to

alignment restrictions that may not be satisfied by the space allocated to a message header,

x-kernel protocols read and write from temporary headers that are copied to and from

messages by protocol-specific functions that account for potential alignment differences.

Byte swapping, if necessary, is performed at the same time. Header manipulations in

Morpheus are more efficient for two reasons. First, Morpheus ensures that header fields

in messages satisfy its alignment restrictions. This is accomplished by padding a header

internally so that individual fields are aligned with respect to the start of the header, and

padding a header externally to maintain the invariant that each header starts on a word

boundary. Second, any byte-swapping is performed by in-line code generated by the

compiler for assignments that appear in the source language program. Hence, no function

calls are required for either alignment or byte order; message headers may be read and

written directly as if they were ordinary records, with any necessary byte swapping taking

place invisibly and efficiently.

3.3 Discussion

Morpheus’s dedicated message registers, short-circuit return, and procedure cloning op-

timizations are interprocedural in nature, but cannot be duplicated by interprocedural

optimization of a general purpose language. Since it is not determined until runtime

which protocol will be layered on top of which other protocol, it is unknown at com-

pile time which callee procedure corresponds to a call site. Even if these optimizations

could be duplicated using general interprocedural optimization, it would involve con-

siderable interprocedural analysis at compile time. Furthermore, if separate compilation

were to be supported, there would be additional compile time overhead to keep track of

interprocedural dependences between separately compiled modules. Morpheus’s latency

optimizations, which supports separate compilation, avoid these compile time penalties.

In effect, the interprocedural analysis took place at language design time.

Suppose instead that the protocol configuration were fixed at compile time, as protocol

integration assumes. It would be possible to inline sendLatencys or deliverLatencys from

a series of layers into a single function. A function call interface between layers would

be needed only at interfaces where the sequence of layers is not fixed, e.g. demultiplexing

from a multiplexor to any one of a number of higher level protocols. The dedicated

message registers and short-circuit return optimizations would apply only at these function

call interfaces. Interprocedural analysis could conceivably arrive at similar optimization

of these function call interfaces, but would require compile time analysis. Morpheus’s

procedure cloning optimization would still not be duplicatable by interprocedural analysis,

since the Sessions on which the clones are based are created at runtime.

CHAPTER 4

THROUGHPUT OPTIMIZATION

This chapter presents Morpheus’s sole throughput optimization. Combining this

optimization with Morpheus’s latency optimizations makes fine-grain protocol modularity

practical by reducing the performance penalty for protocol layers.

Morpheus’s throughput optimization is applied only to sendThruput and deliver-
Thruput, not the latency-optimized operations sendLatency and deliverLatency. The

conclusion of this chapter discusses the possible alternatives to having distinct operations

optimized for latency versus throughput.

Morpheus’s throughput optimization is a compile time optimization that utilizes pro-

tocol configuration information, so it requires that the protocol configuration be bound at

compile time. This contrasts with Morpheus’s latency optimizations, all of which support

runtime configuration. One way to obtain most of the benefits of both runtime configu-

ration and optimizing throughput would be to configure at compile time a core protocol

graph which could be optimized for throughput, and configure any additional protocols

needed at runtime without the benefit of the throughput optimization.

4.1 Integrated Layer Processing

Data manipulation—e.g., encryption, presentation formatting, compression, computing

checksums—is one of the costliest aspects of data transfer [CJRS89, CT90, DAPP93].

This is because reading, and possibly writing, each byte of data in a message involves

memory loads or stores, which are relatively slow operations on modern RISC architec-

tures. Load and store operations typically ranged from 8 to 32 clock cycles per memory

access in 1990 [HP90], in contrast to other operations that complete in a single cycle

on modern RISC architectures. Furthermore, the discrepancy between processor and

memory performance is expected to get worse.

Caches offer only a partial solution to this problem. While caches are very effective in

reducing memory accesses for many computations, the characteristics of strictly layered

message processing are such that caching is not as effective [DAPP93]. Furthermore,

there is still a cost for accessing the cache—typically 1 to 4 clock cycles in 1990 [HP90].

This cost must be paid by every data manipulation protocol, for every word of data. In

addition, there are delay slots following each read access which may not all be fillable.

Clark and Tennenhouse [CT90] suggest a strategy called Integrated Layer Processing

(ILP) for optimizing data manipulation. In this dissertation, I refer to ILP as protocol

integration, or simply integration. Integration generalizes the compiler optimization

known as loop fusion, as illustrated in Figure 4.1. The for-loops in Figure 4.1(a) model

a strictly layered, serial implementation of two data manipulations, and the for-loop in

Figure 4.1(b) models an integrated implementation of the same two data manipulations.

msgData[i]++; /* LOAD, ADD, STORE */

for(i = 0; i < 10000; i++)

for(i = 0; i < 10000; i++)

msgData[i] = ~msgData[i];

for(i = 0; i < 10000; i++){

temp = msgData[i]; /* LOAD */
temp++; /* ADD */
temp = ~temp;
msgData[i] = temp; /* STORE */

}

(a) Two For−Loops

(b) Integrated For−Loops

/* LOAD, COMPLEMENT, STORE */

/* COMPLEMENT */

Figure 4.1: For-Loops

When the C code in the examples is compiled to run on a RISC architecture, the data

manipulation steps result in the machine instructions noted in the comments (assuming

the variable temp is implemented as a register). In the serial for-loops, each time a word

of data is manipulated, it is loaded and stored. In the integrated for loop, in contrast, each

word is loaded and stored only once, even though it is manipulated twice. This is possible

because the data word remains in a register between the two data manipulations. Hence,

integrating the for-loops results in the elimination of one load and one store per word of

data.

Abstractly, this situation can be described as follows. Memory hierarchies are opti-

mized for locality of reference. Integration restructures a computation with poor temporal

locality of data reference into one with good locality. The compiler takes advantage of

this increased locality by leaving the data word in a register between manipulations.

Clark and Tennenhouse [CT90] quantify the potential advantage of this technique

by fusing some simple data manipulation loops. They report a 48% improvement in

throughput when combining checksum and copy, and a 7% improvement when combining

ASN.1 integer conversion and checksum. These results must be qualified by noting that

first, the measurements represent isolated data manipulations and not complete protocols;

second, they assume, unrealistically, that no data is cached between manipulations in the

serial case; and third, they measured unrolled loops.

4.1.1 Four ILP Problems

As described, ILP is more an implementation strategy than an applicable technique.

Applying ILP to a protocol suite involves solving a number of implementation problems.

I have identified four basic problems, although a particular protocol suite need not present

all four. The problems are:

Accommodating awkward data manipulations. Some protocol data manipulations may
not fit the for-loop model. Different manipulations may require different sized units
of data, and some can change the quantity of data.

Reconciling different views of data. A single message looks different at different layers
in a series of protocols, as layers add or remove headers. Hence, adjacent protocols
do not share a common definition of what data to manipulate—one protocol’s data
is another protocol’s header, and is nonexistent to a third protocol.

Satisfying ordering constraints. Protocol processing includes tasks other than data ma-
nipulations. These include reading and writing headers, updating connection state,
and sending control messages. There are constraints on the ordering of these tasks
relative to data manipulation that rule out simply extracting the data manipulations
and integrating them.

Preserving modularity. Mixing code from different protocol layers compromises the
modularity of protocol implementations. This makes it harder to design, imple-
ment, modify, maintain, debug, and reuse protocol implementations.

4.1.2 Related Work

The obvious approach to applying ILP is to customize an implementation for each par-

ticular suite of protocols, perhaps with different implementations for different types of

machine. Solutions to the four ILP problems can be based on the characteristics of the

particular protocols and machine, and, in particular, protocol modularity can be sacrificed.

Before this research, the four general ILP problems had not been identified as such because

researchers thought in terms of the particular form taken by those problems in the context

of particular protocol suites.

In several working TCP/IP implementations, checksumming and copying have been

integrated [CJRS89]. This is a degenerate case of ILP in that the two data manipula-

tions belong to the same protocol. Hence the problems of reconciling different views of

messages, satisfying ordering constraints, and preserving modularity do not arise. Fur-

thermore, the particular data manipulations involved are regular enough to allow them to

be combined in a simple for-loop.

Gunningberg, et al. [GPSV91] investigated integrating some more interesting data

manipulations, and incorporated message header writing. The three data manipulations

they considered were a simple presentation encoding, checksumming, and DES (Data

Encryption Standard) encryption [Tan88]. These data manipulations offer some compli-

cations: the presentation encoding increases the quantity of data by inserting bytes, and

DES inherently processes eight byte units. In the integrated form, the first layer (the

presentation encoding) reads from a message buffer until it can output eight bytes; the

data is subsequently passed between layers eight bytes at a time, in a pair of registers. A

message header was generated by a technique customized to these particular data manip-

ulations. The integrated version was compared with a strictly layered version in which

the cache was flushed between data manipulations. The integrated version gave only a

0.5% increase in bandwidth over the strictly layered version on a Sun SPARC station. The

authors reason that the relative improvement was small because the DES algorithm is so

slow (less than 1% of the bandwidth of each of the other two data manipulations) that it

dominated the overall bandwidth.1

The performance comparisons in the Gunningberg et al. paper, as well as those reported

in [CT90], assume that no message data remains cached between data manipulations in

the strictly layered case. In practice however, while caches are not highly effective for

1Unlike DES, most data manipulations have a low processing-to-memory ratio. Furthermore, compu-
tationally intensive data manipulations such as DES can be expected to benefit more from integration as
processor speeds increase relative to memory speeds.

message processing, neither are they completely ineffective. To account for a range of

possible cache effectiveness, my performance experiments consider integration at both of

the extremes: when all the data remains cached, and when none remains cached.

The generality of the above techniques is very limited since they are tailored to

particular protocol suites. Morpheus incorporates a general ILP technique.

4.1.3 Morpheus ILP

If one’s goal were to apply ILP to a particular suite of protocols on a particular type of

machine, then one could use customized solutions to the four ILP problems based on the

characteristics of the particular protocols and machine. In contrast, the building-blocks

approach supported by Morpheus requires very general solutions to these problems. If

protocol implementations are to be reusable in different contexts, the solutions to the

four ILP problems must work in the different contexts. Morpheus’s solutions, briefly

described, are as follows:

Accommodating inconvenient data manipulations. Each data manipulation is expressed
as a function called a word filter which manipulates a single machine word. Word
filters use state variables and control constructs to accommodate non-word units
and changes in the quantity of data. For performance reasons, word filters are not
implemented as functions at the object code level, but are instead combined in a
single function.

Reconciling different views of data. Morpheus integrates the manipulation of just that
data that all the layers agree is data—application data. Protocol layers can identify
the application data portion of a message because it is exposed by a new abstract
data type for messages called a segregated message.

Satisfying ordering constraints. Each message processing operation is executed in three
stages: an initial stage, a data manipulation stage, and a final stage. The initial
stages of a series of layers are executed in sequence, then the integrated data
manipulations take place in one shared stage, and then the final stages are executed
in sequence. The ordering constraints are satisfied by executing the various message
processing tasks in the appropriate stages.

Preserving modularity. Morpheus preserves modularity by automating the integration
process. Morpheus protocol programs are independent of each other, but combined
by the compiler into a single object code level implementation. This allows protocols
to be designed, implemented, modified, and maintained independently of each other.
Protocols may be reused by configuring them in different combinations, and a
protocol may be debugged by integrating it “by itself.”

The generality of this integration technique involves a trade-off with performance:

for a given protocol suite and machine, it is probably possible to customize ILP for that

suite and machine in such a way as to outperform the technique presented in this chapter.

This is the same trade-off that exists between programming in a high-level language and

programming in assembler language: the code generated by a compiler is generally not

as efficient as the code that could be directly programmed in assembler language, but the

small performance loss is more than offset by the advantages of high-level languages.

Part of the Morpheus integration technique involves a more complicated representation

of the internal sendThruput and deliverThruput operations than the one described in

Chapter 2 for send and deliver. Instead each is expressed as a set of functions with

some shared data structures. The individual functions are presented as they arise in the

presentation of the Morpheus integration technique, and summarized after they have all

been introduced.

4.2 Accommodating Awkward Data Manipulations

The example in the introduction to this chapter models data manipulations as for-loops,

combining two for-loops into a single integrated for-loop. This is possible because the

two artificial data manipulations involved both operate on the same sized unit of data, and

both process data in a one-in-one-out fashion.

Data manipulations are not always so regular. Data manipulations may process differ-

ent units. DES, for example, processes 64 bits at a time—it is not defined for any smaller

quantity. On the other hand, TCP checksumming is based on 16-bit units.

A thornier problem is that data manipulations such as data compression or presentation

formatting can change the total quantity of data. More generally, a data manipulation could

produce data at a rate different from that at which it consumes it, even if the total quantity

of data remains constant. This rules out the for-loop approach.

The requirement to support differing consumption and production rates is suggestive

of Unix pipes, but this is misleading. The primary purpose of pipes is to decouple the rate

of production at one end of a pipe from the rate of consumption at the other end. This is

the opposite of what is wanted for integrated data manipulations. In terms of pipes, I want

to use a very small pipe buffer—just one word—so that the buffer can be implemented

as a register. Moreover, the output rate of one data manipulation must be coupled to the

input rate of the next to avoid any synchronization cost.

4.2.1 Word Filters

My solution involves expressing each data manipulation as a function called a word filter

that processes a single machine word of data, commonly 32 bits, each time it is invoked.

(For performance reasons, word filters are not implemented as conventional functions;

their implementation is described below.) A word filter is invoked repeatedly to process

the data in a message one word at a time. In the common case, a word filter outputs

one word each time a word is input, but it could instead output zero or multiple words.

“Outputting” a word consists of invoking the next data manipulation’s word filter with

that output word as its input. Figure 4.2 shows a word filter for computing a checksum.

filterData(dataWord)
f

sum += (dataWord & 0x0000FFFF) + (dataWord >> 16);
output(dataWord);

g

Figure 4.2: Checksum Word Filter

Word filters accommodate data unit discrepancies and data rate changes by using

control constructs and state variables. This is illustrated in Figure 4.3 using a data

manipulation called PES as an example. PES (for Pseudo Encryption Standard) is an

artificial data manipulation based on DES. DES exhibits interesting data manipulation

characteristics but is so slow that, unlike other data manipulations, the time to perform

the data manipulation itself dominates the data access time. PES is my vehicle for

investigating the data access characteristics of DES without the extensive computation.

PES replaces DES’s extensive computation with a simple transformation of the data.

PES is like DES in that it must have 64 bits—two 32-bit machine words—at a time to

perform its manipulation. The PES word filter uses a state variable as a flag to indicate

whether the next word will be the first or the second of a pair. It uses a control construct,

an if-statement, to vary its behavior based on the flag. When it is invoked with a first

word, it does not output any words, but instead saves the input word in a state variable,

and toggles the flag so that it will recognize the next input word as the second of a pair.

When it is invoked with a second word, it encrypts that word together with the first word,

outputs the two resulting encrypted words, and toggles the flag so that it will recognize

the next input word as the first of a pair.

filterData(dataWord)
f

if(! awaitingSecondWordOfPair)f
/* dataWord IS THE FIRST WORD OF A PAIR */
firstWord = dataWord;
/* DON’T OUTPUT ANYTHING */
awaitingSecondWordOfPair = TRUE;

gelsef
/* dataWord IS THE SECOND WORD OF A PAIR */
output((firstWord & 0xF0F0F0F0) | (dataWord & 0x0F0F0F0F));
output((firstWord & 0x0F0F0F0F) | (dataWord & 0xF0F0F0F0));
awaitingSecondWordOfPair = FALSE;

g
g

Figure 4.3: PES Word Filter

The use of internal state by a word filter has the consequence that a filter may end

up with some output implicit in its state when there is no more input. For example, if

the PES word filter is given an odd number of data words, it will not produce any output

corresponding to its last input word. To handle this, such data manipulations must also

have a flush function that outputs any output left implicit in state variables. This flush

function is invoked when there is no more input data. Figure 4.4 shows how this might

be implemented for PES.

flush()
f

if(awaitingSecondWordOfPair)f
/* EXPECTED A SECOND WORD WE NEVER GOT; USE A BOGUS VALUE */
output((firstWord & 0xF0F0F0F0) | (0x12345678 & 0x0F0F0F0F));
output((firstWord & 0x0F0F0F0F) | (0x12345678 & 0xF0F0F0F0));

g
g

Figure 4.4: PES Flush

Each word filter invokes the next filter when it has a word to output. The first filter

gets its input from a loop that reads the data from a message data structure, invoking the

filter once per word. The last filter in the series outputs its data to a routine that looks like

a filter, but simply writes its input into an output message data structure.

Note that although different units of data are optimal for different data manipulations,

the word filter approach compromises by imposing a single fixed unit—the machine

word—for passing data between layers. This has the advantage of simplifying the interface

between protocols and avoids any runtime interpretation entailed by passing variable

units. The resulting common interface for data manipulations makes it straightforward to

automatically combine code from different protocols, as explained later in this chapter. The

machine word is the obvious choice for the fixed unit, both because machine architectures

are optimized for words, and because most data manipulations can efficiently process

words. By processing a word at a time, a data manipulation whose natural unit is a byte

or half-word effectively processes multiple units in parallel.

This design imposes the specification-level constraint that the data being manipulated

always consists of an integral number of words. One alternative design would accommo-

date fractions of a word by adding “byte filters” that would be invoked on the odd bytes

at the end of the data. This alternative is analogous to bcopy implementations.

Host machines on a network may unfortunately have different word sizes. In this case,

each host would still manipulate data in units of its own native word size, but message

data would be constrained to consist of an integral number of units whose size is the least

common multiple of the host word sizes. If this least common multiple were excessively

large (e.g. if word sizes were not all powers of two), then the alternative design using byte

filters should be used.

4.2.2 Word Filter Implementation

Logically, word filters are functions, and are expressed as functions in the Morpheus

source code, but implementing them as functions at the object code level would have two

performance problems. The first is function call overhead: a function call is too high a

price to pay each time a word of data is passed from one data manipulation to the next.

The second problem has to do with implementing word filter state variables. In general,

a filter’s state must persist across the invocations corresponding to a particular message.

For example, a checksum’s partial sum must be accumulated across invocations of the

checksum filter until an entire message has been processed. Variables that persist across

invocations of a function—globals, or statics—are invariably implemented in memory

instead of registers. Implementing such state variables as registers would make word

filters more efficient.

Morpheus solves these problems by merging adjacent word filters into a single object

code level function. This is like inlining, except that inlining would not implement

static local variables as registers. This avoids function call overhead, and it permits the

implementation of state variables as registers since those variables are now all local to a

single object code level function.

Filters are merged into a single function at the object code level, not the source code

level, but I illustrate the effect of merging by presenting an analogous source code level

merging in Figure 4.5. This example uses three data manipulations: BSWAP, PES, and

CKSUM. BSWAP reverses byte ordering, and CKSUM computes a checksum. Note that

the combined filters would be embedded in a for-loop or other iterative construct.

if(! awaitingSecondWord){ /* DataWord is first word of a pair */
firstWord = DataWord;
awaintingSecondWord = TRUE;

secondWord = DataWord;
awaitingSecondWord = FALSE;
DataWord = (firstWord & 0xF0F0F0F0) | (secondWord & 0x0F0F0F0F);

DataWord = (firstWord & 0x0F0F0F0F) | (secondWord & 0xF0F0F0F0);

}

DataWord = *inputBuffer++;

/* BSWAP */
DataWord = ((DataWord & 0x00FF00FF) << 8) | ((DataWord & 0xFF00FF00) >> 8);

/* PES */

/* CKSUM */
sum += (DataWord & 0xFFFF) + (DataWord >> 16);

/* WRITE A WORD OF OUTPUT */
*outputBuffer++ = DataWord;

/* READ A WORD OF INPUT */

/* CKSUM */
sum += (DataWord & 0xFFFF) + (DataWord >> 16);

/* WRITE A WORD OF OUTPUT */
*outputBuffer++ = DataWord;

}else{ /* DataWord is second word of a pair */

Figure 4.5: Combined Filters

The common case for data manipulations is the one-word-in, one-word-out behavior

required by a for-loop. As more of the data manipulations in a series fit this common case,

the implementation of the integrated word filters comes to more closely approximate a

basic for-loop. The integrated word filter implementation is in some sense a generalized

for-loop. It has the performance of a for-loop in the common case, but is flexible enough

to accommodate more awkward data manipulations.

4.3 Measurements and Analysis

This section reports the results of experiments comparing serial data manipulations to

data manipulations integrated using word filters, and investigates the limits of integra-

tion. These experiments involve only isolated data manipulations; experiments involving

complete protocols are reported later in this chapter.

The following experiments are based on data manipulations written in C. To simulate

a Morpheus compiler’s merging of word filters at the object code level, the integrated

implementations consist of word filters merged into a single function at the C source code

level. A data word is passed from one filter to the next at the C level by leaving it in

a variable that is shared by the filters, and the C compiler implements the variable as a

register. It also implements the word filter state variables, which are local to the combined

function, as registers. Hence the object code generated for integrated data manipulations

by a C compiler gives a close approximation to the object code that would be generated

by a Morpheus compiler.

Data manipulation performance depends heavily on cache effects, i.e. whether or not

the loads and stores actually result in memory accesses. My experiments accounted for

this by measuring performance at each of the two extremes: when all the message data

is in the cache, and when none is in the cache. Thus, the actual performance in any

particular situation must be within the range specified by the pair of measurements. To

obtain cache hits, the data was accessed before beginning data manipulations, and the data

manipulations were run back-to-back with no concurrent processing, using buffers sized

and situated so as to avoid collisions in the cache. Note that in this cache hit case, even the

first data manipulation of a series found all the data in cache. To obtain cache misses the

pertinent part of the cache was flushed between data manipulations, and the time to flush

was subtracted out. Cache behavior also depends on the particular data manipulations, so

I have measured several combinations of data manipulations.

4.3.1 Experimental Platforms

Cache behavior also depends on the particular machine architecture. Each experiment

was conducted on three different machines—the DecStation 5000/200, the HP 720, and

the SPARCstation 1—to verify that the word filter technique is not specific to a particular

machine or cache design. On all three machines, the experiments used the native C

compiler with the highest level of optimization.

The MIPS R3000-based DecStation 5000/200 has separate 64-KByte instruction and

data caches. The caches are direct mapped using physical addresses, and cache lines are

16 bytes. Loading a word from cache costs one cycle, and entails a one cycle delay slot.

Storing a word normally takes a single cycle since the data cache is write-through, with a

write buffer that can buffer stores for up to six pending writes and retire writes within the

same page once per cycle. It takes 13 cycles to load a cache line from memory, but the

processor can access the first word after ten cycles.

The HP 720 has a 128-KByte instruction cache, and a 256-KByte copyback data cache.

The caches are direct mapped and virtually addressed, and cache lines are 32 bytes. Filling

a cache line takes 18 cycles if the replaced line is clean, 23 cycles if it is dirty. Storing to

an uncached location takes 23 cycles if the replaced line is clean, 27 cycles if it is dirty.

Loads or stores of cached words execute in a single cycle.

The SPARCstation 1 has a 64-KByte combined write-through cache. It is virtually

addressed, with a line size of 16 bytes. If the referenced line is in cache, loading a single

word takes two cycles, and storing a single word takes three cycles. Several stores in

succession will cause a stall once the memory write buffers fill, even if the target addresses

are all cached. If the referenced word is not in cache, a single word load takes 14 cycles,

and a single word store takes six cycles.

4.3.2 Case Study

I timed three combinations of CKSUM, BSWAP, and PES. These data manipulations were

chosen because they are representative of actual protocols, and they provide examples

of both read-only and read-write data manipulations, and of both simple and convoluted

filters.

Tables 4.1 and 4.2 give the results when the data is and is not cached, respectively.

These tables show, for example, that on the DecStation 5000, integrating CKSUM and

BSWAP increases bandwidth from 44.7 Mbps to 54.4 Mbps if it is cached, and from 29.3

Mbps to 39.6 Mbps if all message data is uncached.

DS5000 HP720 Sparc1
Serial Integrated Serial Integrated Serial Integrated

(Mbps) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps)
CKSUM+BSWAP 44.7 54.4 84.2 101.0 24.0 30.0
BSWAP+PES 33.9 43.5 72.1 101.0 17.1 25.0
BSWAP+PES+CKSUM 25.8 35.4 54.1 79.7 13.6 21.1

Table 4.1: Serial vs Integrated When Data in Cache.

The throughput improvements resulting from integration are summarized in Figure 4.3.

The table shows, for example, that the integrated implementation of CKSUM and BSWAP

DS5000 HP720 Sparc1
Serial Integrated Serial Integrated Serial Integrated

(Mbps) (Mbps) (Mbps) (Mbps) (Mbps) (Mbps)
CKSUM+BSWAP 29.3 39.6 42.4 55.8 19.3 26.1
BSWAP+PES 23.4 34.0 33.1 56.2 14.6 22.2
BSWAP+PES+CKSUM 17.5 29.0 26.2 48.9 11.3 19.0

Table 4.2: Serial vs Integrated When Data Not in Cache.

on the DecStation has 22% to 35% higher bandwidth than the serial implementation. The

low end of each range (22% in this example) applies when all of the message data is

cached, while the high end applies when none is cached. The improvement achieved in

any particular situation would necessarily fall between these two numbers.

DS5000 HP720 Sparc1
(percent) (percent) (percent)

CKSUM+BSWAP 22 – 35 20 – 32 25 – 35
BSWAP+PES 28 – 45 40 – 70 46 – 52
BSWAP+PES+CKSUM 37 – 66 47 – 87 55 – 68

Table 4.3: Bandwidth Improvement due to Integration.

Several factors contribute to integration improving throughput. Most obviously, inte-

gration eliminates the load and store instructions themselves. This not only saves the time

to transfer data between memory and the cache, but also saves the time to load the data

from the cache and store data to the cache or a write buffer. Another major factor is the

reduced loop overhead, since integrated data manipulations share a single loop through

the data instead of iterating through the message data once for each data manipulation.

Since there are fewer load and store instructions and they occur in an inner loop containing

more instructions, the delay slots after loads are more likely to be filled, and on machines

with write-through caches and write buffers, stores are less likely to fill a write buffer.

Finally, integration eliminates some buffer allocations and deallocations since data which

would have been buffered between data manipulations is now streamed directly from one

to the next.

To verify that the most important factors have been accounted for, I compared the time

saved by integrating to the time taken by loops that simply load and/or store one word of

data per iteration. Table 4.4 presents the results for the DecStation. The measurements are

given in units of seconds per MByte. These particular combinations of data manipulations

give one example each of eliminating a load, a load and a store, and two loads and a store.

The table shows, for example, that integrating CKSUM and BSWAP reduces the time to

process one MByte of data by about 0.071 seconds if none of the data is cached, which

is roughly equal to the 0.082 seconds it takes to load one MByte of data from main

memory. Context-dependent factors, such as unfilled delay slots, could account for the

small discrepancy.

Cache Hit
Improvement Comparison

(sec/MB) (sec/MB)
CKSUM+BSWAP .032 Load=.042
BSWAP+PES .052 Load+Store=.053
BSWAP+PES+CKSUM .084 2�Load+Store=.095

Cache Miss
Improvement Comparison

(sec/MB) (sec/MB)
CKSUM+BSWAP .071 Load=.082
BSWAP+PES .107 Load+Store=.097
BSWAP+PES+CKSUM .180 2�Load+Store=.179

Table 4.4: Comparison of Integration Savings.

4.3.3 Scalability

The preceding experiments show the effects of integrating two or three data manipulations.

When greater numbers of layers are integrated, register pressure becomes a factor because

combining multiple data manipulations in a single function increases the demand for the

registers for heavily accessed variables and constants. Consequently, integrating many

layers may spill registers more than serial implementations where each data manipulation

has the entire register set to itself.

I investigated how integration scales by combining varying numbers of layers, where

each layer performed the identical data manipulation but used its own two local variables.

The data manipulation is intended to represent a “typical” data manipulation. The results

for the DecStation are presented in Figure 4.6.

The vertical dimension is in units of seconds per MByte instead of Mbps in order to

expose linear behavior; Mbps would result in exponential decay curves, obscuring the

knee in the integrated implementation plots. The plots are otherwise linear because each

additional layer adds the same amount of time to the processing of a MByte of data.

The knees in the integrated implementation plots occur at the point where the number

of variables exceeds the available registers. Each layer of data manipulation uses its

0.0

0.4

0.8

1.2

1.6

1 3 5 7 9 11 13 15

sec/MByte

Number of Layers

CACHE HIT CASE

serial 3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

integrated +

+ + + + + + + +
+

+
+

+
+

+
+

0.0

0.4

0.8

1.2

1.6

2.0

2.4

1 3 5 7 9 11 13 15

sec/MByte

Number of Layers

CACHE MISS CASE

serial 3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

integrated +

+ + + + + + + +
+

+ +
+

+
+

+

Figure 4.6: Incremental Performance On DecStation

own two local variables. When only a few layers are integrated, these variables are all

implemented as registers. As additional layers are integrated, the additional variables

must be implemented on the stack. Hence, the cost of an additional layer is smaller when

there are still registers available for variables, and greater when there are more variables

than usable registers.

At the knee in the DecStation case (eight layers), the integrated version runs 2.2

times faster than the serial in the cached case, and 3.0 times faster in the uncached case.

Table 4.5 reports where the knee occurs and the associated improvements factors for the

three machines I tested. Notice that the difference in the improvement factor in the cached

and uncached case becomes more dramatic as the processor becomes faster—in this case,

the HP720 is faster than the DS5000, which is faster than the Sparc1.

DS5000 HP720 Sparc1
Knee (number of layers) 8 7 5
Improvement (� faster) 2.2 – 3.0 2.0 – 3.8 2.6 – 2.8

Table 4.5: Improvement Factor at Knee of the Integration Curve.

The location of the knee, and the slope beyond the knee, both depend on the ratio of

local variables to layers. Given a high ratio and large number of layers, an integrated

implementation could perform worse than a serial implementation. However, one would

not integrate this many layers all in one series; instead one would break off integration

whenever the knee is reached, and start a new integrated series, resulting in smaller

integrated series that do not exhaust the register set. This results in performance that

is invariably better that serial implementations. Nonetheless, a larger register set would

support even better performance by allowing more layers to be integrated before hitting

the knee. As the discrepancy between processor and memory performance widens, even

applications may recast an increasing number of their data transformations into a form

that can be integrated.

4.3.4 Performance Prediction Model

Having reported the performance of integration on existing machines, I now present a

model for predicting its performance on future machines. The potential performance of

integration on future machines will depend not only on processor and memory speeds, but

also on the sizes, speeds, and number of caches. Processor and memory speeds of the near

future are reasonably predictable because they tend to improve at fairly constant rates, but

caches are more difficult to predict, in part because they change in response to changes

in the ratio of processor speed to memory speed. Any model predicated on a particular

cache design would be highly questionable. Therefore the model presented here does not

predict cache performance, but instead captures it in a variable parameter, allowing the

reader to make performance projections based on his or her own best guess about future

hardware.

The model counts the cycles taken by the three components of a data manipulation:

Loop overhead. Loop overhead is the incrementing and branching instructions that make
a loop. The model assumes that a loop takes three cycles independent of the
particular machine: one to increment the pointer to the location to load from, one to
increment the store pointer (assuming for simplicity that each data manipulation is
read-write), and one to branch. Thus, an integrated implementation uses 3 cycles per
data word for loop overhead. Since a serial implementation pays this loop overhead
at each layer, it uses 3 � num layers cycles per data word, where num layers is
the number of data manipulation layers.

Computation. Computation is the manipulation of the data while it is in registers. The
model assumes that the number of cycles for the computation part of a particular
data manipulation remains constant independently of the particular machine. It also
assumes that local variables are implemented as registers, so the only data being
loaded or stored is the data being manipulated. The cycles spent on computation
are the same in both the integrated and serial cases. The number of cycles spent on
computation is represented in the model by the parameter computation.

Data access. Data access is the load and store instructions. The average number of cycles
taken by these is captured in a parameter called data access cycles. For simplicity,
loads and stores are modeled as taking the same number of cycles on average. Thus,
data access cycles combines memory and cache speeds and cache hit/miss ratios
into one parameter. For example, on a machine that takes ten cycles to go to memory
and two cycles to go to cache, if one were to assume a 50% cache hit rate, then one
would use (0.5 � 10) + (0.5 � 2) = 6 as the estimated data access cycles.

The number of data access cycles per data word for a serial implementation is

data access cycles� (num layers+ num writers),

where num writers is the number of layers that modify the data (all layers read
the data, but not all layers modify the data since some are read-only). Since an
integrated implementation only loads the data once and stores it once regardless of
the number of layers, it uses data access cycles� 2 cycles per word.

Loop Overhead +Computation +Data Access
Serial 3� num layers +computation +data access cycles� (num layers + num writers)

Integrated 3 +computation +data access cycles� 2

Table 4.6: Estimated Cycles to Manipulate One Data Word

Thus, the model estimates the number of cycles per data word according to the formulas

in Table 4.6.

The relative increase in throughput due to integration is

serial cycles/integrated cycles� 1.

Figure 4.7 plots relative increase as a function of data access cycles for the three com-

binations of data manipulations measured earlier.

0%

25%

50%

75%

100%

125%

150%

1 5 10 15 20 25

relative increase

cycles per data access

CKSUM+BSWAP
BSWAP+PES

CKSUM+BSWAP+PES

Figure 4.7: Relative Increase in Throughput due to Integration

Notice that as data access cycles increases, the relative increase asymptotically ap-

proaches (num layers+ num writers)/2� 1. Thus, for example, integrating CKSUM

and BSWAP involves two layers (num layers = 2), and one of the layers writes the data

(num writers = 1), so it can achieve no better than a (2+1)/2 - 1 = 50% improvement in

throughput, regardless of the number of cycles it takes to go to memory.

4.3.5 Code Space

Combining filters into a single object code level function raises the concern of using

excessive space. The object code space could potentially be exponential in the number

of integrated data manipulations because each filter’s object code may be duplicated in

more than one place in the code of the preceding filter. This is unlikely to be a problem in

practice, however, since most filters are invoked in only one place in the preceding filter,

the number of integrated data manipulations will be modest, and filters are relatively small

bodies of code. If it were to become a problem, space consumption could be reduced by

breaking a long series of integrated data manipulations into multiple shorter series.

Conceivably, combining code from several data manipulations could have a negative

effect on caching due to the decreased locality of reference to instructions. Integration

leads to iterating through the code belonging to a whole series of data manipulations,

instead of iterating through the smaller bodies of code representing an individual data

manipulations. Instruction locality may be further reduced by duplicating a data manip-

ulation inline at multiple points in the program text. To some extent, integration trades

locality of instruction references for locality of data references. Yet, this larger working

set of instructions is still very small compared to current cache sizes such as the DecStation

5000/200’s 64-KByte instruction cache, the HP 720’s 128-KByte instruction cache, and

the Sparc1’s 64-KByte combined cache.

I have not observed any degradation attributable to combining filters into a single

function in experiments integrating up to 15 (simple) layers. Combining filters in a

function is similar to inlining, and in general, inlining seems to have little effect on

caching and virtual memory. Experiments reported in [CHT91] showed no obvious

evidence of either instruction cache overflow or thrashing, and the previous reports they

cited showed similar results.

4.4 Reconciling Different Views of Data

The preceding section addressed the problem of integrating arbitrary data manipulations in

isolation, outside the context of protocols. This section addresses a problem that emerges

when the data to be manipulated is part of a message.

When data manipulations are integrated in the context of a protocol, the data is part of a

message, not just an array. Messages change as they pass through different protocol layers.

When a protocol sends a message, it generally prepends a header which its receiving peer

knows how to interpret. That receiving peer deletes the header before delivering the

message to a higher level protocol. Lower protocol layers cannot distinguish that header

from the rest of the data—it is all opaque data (Figure 4.8a). This is a form of hierarchical

encapsulation. The purpose of hierarchical encapsulation is modularity, i.e., avoiding

DATA

DATA

DATA

HDR

HDR

HDR

LEVEL N

LEVEL N−1

LEVEL N−2

HDR

HDR

HDR

LEVEL N

LEVEL N−1

LEVEL N−2

HIGHER HDRS

HIGHER HDRS

HIGHER HDRS

APPLICATION DATA

APPLICATION DATA

APPLICATION DATA

(a) Encapsulated Message Abstraction

(b) Segregated Message Abstraction

Figure 4.8: Message Abstractions

dependencies between protocols.

Hierarchical encapsulation complicates integration. The problem is that even though

adjacent layers are to collaborate in the manipulation of data, they disagree on what part

of a message is the data to be manipulated. One layer’s word of data may be viewed as

part of a header at another layer, and at yet another layer, it may not be part of the message

at all.

Consider two particular situations. First, a sending protocol may not be able to write its

header until its data manipulation is complete (e.g., CKSUM). This is a problem because

any lower layer integrated with that protocol must manipulate its data in lock step with

the layer in question, even though that layer’s headers are not available until afterward.

Second, a receiving protocol may not know what to do with its data, or even what portion

of the message is its data (e.g., because of variable length headers), until it reads its header.

This is a problem because that protocol must manipulate its data in lock step with any

lower layer with which it is integrated, even though its header is part of the data to be

manipulated by the lower layer.

One solution would be for protocols to use trailers instead of headers on the sending

side, so that each protocol’s “header” information would be available before the subsequent

layer needs to manipulate it. Receiving side protocols would then process a message

“backwards,” with trailers effectively becoming headers, so that receiving protocols would

have their header information available before performing data manipulation.

Despite its simplicity, this approach is inefficient because, on the receiving side, a

protocol would have to distinguish words of data from words of header. This entails the

execution of a conditional by every layer for every input word, i.e. testing a flag that

indicates whether all of the header has been processed. This approach also complicates

programming, since headers must be generated and consumed serially.

Morpheus’s solution is to integrate manipulation of just that data that all the layers

agree is data—the application data. By application data I mean the part of the message

that corresponds to data being transmitted by an application, i.e. the part that does not

include any protocol headers. This allows use of the word filter approach to integrating

data manipulation without adding any complication due to headers. Protocols can identify

the application data portion of a message because it is exposed by a new abstract data type

for messages called a segregated message (Figure 4.8b).

Manipulating higher level headers separately, unintegrated, does not affect perfor-

mance and it simplifies programming. Messages in throughput-dominant traffic are large,

with very small headers relative to the size of the application data, so the potential benefit

of integrating manipulation of headers is insignificant. Header fields can be randomly

accessed in the familiar, convenient manner since their manipulation is not integrated.

The disadvantage of this approach is that if higher level headers are to be manipulated,

they must be manipulated separately from the integrated manipulation of application data.

This could result in additional programmer effort if the same data manipulation must be

coded twice, once for application data and once for higher level headers. On the other

hand, decoupling the two manipulations can be advantageous. It may be more appropriate

for a given protocol to manipulate either only the application data (e.g. data compression),

or only the combined headers (e.g. checksum), or perhaps both but with two different

manipulations.

Protocols are able to identify the application data part of a message because Mor-

pheus represents messages using a new abstract data type called segregated messages

(Figure 4.8b). The only difference between a segregated message and the conventional

encapsulated message is that the start of the application data is visible. This represents a

relaxation of strict hierarchical encapsulation, but still preserves modularity by avoiding

dependencies between specific protocols because the contents of the two parts remain

opaque to lower level protocols.

The implementation of the segregated message abstract data type is like that of en-

capsulated messages except that it adds a pointer to the start of the application data. This

requires determining the start of the application data when a network device delivers

a message, since the hardware represents a message as an undifferentiated sequence of

bytes. Elevating that sequence of bytes into a segregated message requires rediscovering

the start of the application data. Network device drivers accomplish this by adding a

header that records where the application data starts.

Segregated messages involve a constraint on protocol specifications: a specification

must allow application data to be manipulated independently of higher level headers.

Without this constraint a protocol specification could define a data manipulation that

spanned the boundary between headers and application data, requiring some bytes from

each to compute the manipulation.

4.5 Satisfying Ordering Constraints

The preceding sections have shown how to integrate manipulations of message data by

using segregated messages to establish a common definition of the data, and word filters

to perform the actual data manipulation. However, to integrate complete sendThruput
or deliverThruput operations it is not sufficient to simply extract and integrate the data

manipulation code, leaving the rest of the code unchanged. For example, suppose there

were a protocol that keeps track of the sequence numbers of received messages, on top of

a protocol that discards messages whose checksum is not correct. The danger that arises

when these protocols are integrated is that the checksum protocol will end up rejecting

a corrupted message (based on a checksum computed in its data manipulation), but the

sequence number protocol will update its state (independent of any data manipulation)

as if it had received the message. This would result in incorrect behavior, i.e. behavior

inconsistent with a serial implementation.

In general there are ordering constraints between the various tasks performed by a

sendThruput or deliverThruput. Violating ordering constraints can result in incorrect

behavior, as in the above example; or it could cause protocols to fail immediately, e.g.,

if one layer interpreted another layer’s header as its own, because the previous layer had

not yet removed its header. These constraints are trivially satisfied by serially executed

layers; they only come into play because integration involves overlapping the execution

of different protocols, a limited form of concurrency.

4.5.1 Ordering Constraints on Tasks

SendThruput and deliverThruput operations perform tasks other than data manipula-

tion. These include reading and writing headers; initializing data manipulation variables;

updating protocol state; setting and clearing timers; sending control messages; passing

non-message information (such as flow control) to adjacent layers; demultiplexing or

making routing decisions, and (assuming segregated messages) performing data manip-

ulation on the combined higher level headers. Of course, a given protocol might not

involve all of these. I combine message processing tasks into the following categories:

Data manipulation. Reading and writing application data.

Header processing. This includes reading and writing headers, and manipulating higher
level headers.

External behavior. This includes externally visible actions such as passing messages
to adjacent layers, initiating messages such as acknowledgements, and invoking
non-message operations on other layers, for example to pass congestion control
information. It also includes updating protocol state such as updating the sequence
number associated with a connection to reflect that a message with the previous
number has been received. Updating state is included in the external behavior
category because it can influence future external behavior.

Tasks within a protocol are subject to internal ordering constraints. For example, a

checksum protocol cannot write the checksum into the message header (header processing)

until after it has computed a checksum on the data (data manipulation). These are the

sort of ordering constraints that are so basic to a computation that they are not normally

thought of as constraints.

There are also ordering constraints between layers. For example, an encryption pro-

tocol must decrypt higher level headers (header processing) in a received message before

the next layer can read its header (header processing). Particular ordering constraints are

not normally distinguished since they are all automatically satisfied by the serial execu-

tion of layers. The danger that arises when layers are integrated is that there may be

conflicts between a protocol’s internal constraints, and the external constraints determined

by adjacent protocols.

Consider ordering constraints on header processing. On the sending side, a header may

depend on the results of data manipulation (e.g., checksum), in which case it cannot be

written until after data manipulation. A layer cannot perform data manipulation of higher

level headers until they have been written. Assuming headers are stacked in contiguous

memory, a protocol cannot know where to write its own header until the previous header

has been written and possibly manipulated.

Analogous conditions hold on the receiving side. A protocol may not be able to

manipulate the data in a message without having first read its header from the message.

A protocol cannot read its header until the previous protocols have performed any data

manipulations on the combined headers. A protocol cannot even determine where its

header starts until the previous protocols have all consumed their headers if consecutive

headers are stacked in contiguous memory.

Now consider ordering constraints on external behavior. These follow from the

possibility of rejecting a message. A message may be rejected by a protocol for a variety

of reasons; for example, it may be a duplicate, have an illegal format, or require unavailable

resources. Message rejection is more common on the receiving side, but may also occur

on the sending side, for example as a result of congestion control.

Message rejection is a potential problem for protocol integration because a message

may be rejected “in the middle” of an integrated series of protocols. Layers which

are logically subsequent to the rejecting layer may have already begun processing the

message. Furthermore, layers which logically precede the rejecting layer may not have

completed processing the message; in particular, it may be that in a serial implementation,

a preceding layer would have rejected the message before it ever arrived at the current

rejecting layer! The requirement to behave consistently with serial implementations

imposes ordering constraints on the message rejection and message acceptance code—i.e.

external behavior—of different layers.

4.5.2 A Task Ordering Discipline

In effect, serial implementations adhere to an unnecessarily restrictive but simple ordering

discipline: sendThruputs or deliverThruputs must be executed serially. Serial order

is guaranteed to satisfy all the specific lowest level ordering constraints that represent

the data dependencies resulting from a layered specification, as long as each protocol

is written to satisfy its own internal ordering constraints. Integration requires finding

a replacement ordering discipline that similarly satisfies all data dependencies required

for a layered behavior, but nonetheless permits layers to be overlapped to the extent of

combining data manipulations.

Morpheus replaces serial order with a task-level ordering discipline. It is less restrictive

than serial order, but more complex. However, the complexity is limited by expressing

the discipline in terms of the three message processing tasks, rather than more primitive

operations.

Morpheus’s ordering discipline is expressed in terms of an assignment of tasks to stages

in an execution model. In this execution model, sendThruputs and deliverThruputs
are executed in three stages: an initial stage, a data manipulation stage, and a final

stage. The initial stages of a series of layers are executed serially, then the integrated

data manipulations take place in one shared stage, and then the final stages are executed

serially. The relationship between the three stages is illustrated in Figure 4.9.

INITIAL

INITIAL

INITIAL

FINAL

FINAL

FINAL

INTEGRATED

DATA

MANIPULATION

LEVEL N

LEVEL N−1

LEVEL N−2

Figure 4.9: Execution Sequence of Integrated Protocol Stages

The tasks are assigned to the stages as listed in Table 4.7. Within a stage, a protocol

is free to perform the tasks of that stage in any way and in any order consistent with its

internal constraints. Executing the tasks in the appropriate stages ensures that the external

constraints protocols impose on each other cannot conflict with their internal constraints.

TASK STAGE
Header processing (delivering) Initial
Data manipulation Integrated
Header processing (sending) Final
External behavior Final

Table 4.7: Each Task Must Be Executed In The Corresponding Stage

An operation’s initial and final stages are represented as functions. Initial and final

stages for a checksum protocol’s sendThruput are illustrated in Figures 4.10 and 4.11.

This ordering discipline resolves the message rejection problem by serializing message

acceptances and rejections. Message acceptance/rejection is deferred to the final stage,

which represents a sort of “commit stage.” Deferring message rejection gives logically

initialStage()
f

sum = msg.hdr.chksum;
nextInitialStage();

g

Figure 4.10: Checksum deliverThruput Initial Stage

finalStage()
f

while(sum & 0xFFFF0000)
sum = (sum & 0x0000FFFF) + (sum >> 16);

if(sum == 0)
nextFinalStage();

else
nextAbort();

g

Figure 4.11: Checksum deliverThruput Final Stage

preceding layers the opportunity to reject the message first. The final stages execute

serially, so the rejecting layer that is logically earliest will be the layer that actually ends

up rejecting the message. Intuitively, the assignment of external behavior to the final stage

treats the initial and data manipulation stages as if they were merely peeking at a message

that is not really passed until the final stage.

Rejecting messages in an integrated implementation admits another complication.

When a message is rejected by a layer, the final stages of subsequent layers are not

executed. Therefore, a protocol that allocates a data structure in its initial stage, and

normally deallocates it in its final stage, would not have the opportunity to deallocate.

The solution is to introduce an abort stage that is an alternative to the final stage—if a

message is rejected by a preceding layer, the abort stage is executed instead of the final

stage, providing the opportunity to deallocate data structures.

4.5.3 Performance of Integrated Protocols

Earlier, this chapter reported performance measurements for isolated data manipulations—

manipulations that operated on an array instead of a message, outside the context of a proto-

col operation. Now performance measurements are reported for complete sendThruputs
and deliverThruputs, where the integrated implementations use segregated messages

and the three-stage execution model. These measurements confirm that the Morpheus

technique for integrating complete operations conserves most of the performance benefit

of integrating isolated data manipulations.

I measured the throughput of integrated sendThruputs through three different com-

binations of protocols. The individual protocols were based on the CKSUM, BSWAP,

and PES data manipulations. The measurements were made on the DecStation 5000/200,

and I did not coerce the cache behavior. Table 4.8 compares serial and integrated imple-

mentations. For example, integrating the CKSUM, BSWAP, and PES protocols increased

throughput from 18.8 Mbps to 25.6 Mbps, an improvement of about 36%. By way of

comparison, integrating the corresponding three data manipulations gave a 37% to 66%

improvement, as reported earlier.

DATA MANIPULATIONS SERIAL INTEGRATED IMPROVEMENT
(Mbps) (Mbps) (% of serial)

CKSUM+BSWAP 34.6 40.6 17%
BSWAP+PES 22.9 29.5 29%
BSWAP+PES+CKSUM 18.8 25.6 36%

Table 4.8: Serial vs Integrated sendThruputs.

These measurements represent an unrealistically high percentage of cache hits since

the message size was modest (one page) and there were no concurrent processes, so

the performance gap between serial and integrated implementations would normally be

somewhat greater. Despite the high percentage of cache hits, the throughputs reported here

tend to be somewhat low—roughly the cache miss case throughputs of the corresponding

isolated data manipulations. This is due to the overhead of the protocol tasks other than

the data manipulation, and the use of a different compiler, the GNU C compiler (gcc),

which generates less efficient code for these particular data manipulations.

These measurements provide a rough estimate of the increase in end-to-end throughput

that can be expected to result from integration. Protocol stack throughput is the primary

determiner of end-to-end throughput because the throughput of high performance network

hardware is higher than protocol stack throughput. The difference between end-to-end

throughput and protocol stack throughput is due to synchronization overhead between a

protocol stack and a network device in the form of interrupt handling and contention for the

memory system. Integration should reduce this synchronization overhead as well, because

it reduces contention for memory, and because interrupt handling is more expensive for

serial implementations, since they have more context (i.e. cached message data) to lose.

4.6 Integration by Compiler

The solutions presented thus far—word filters, segregated messages, and the task-level

ordering discipline—constitute a complete integration technique. However, direct appli-

cation of this technique by a programmer would sacrifice protocol modularity by mixing

code from different protocols in a single function. This would make it difficult to design,

implement, modify, maintain, debug, and reuse protocol implementations.

Using Morpheus, integration is applied by the compiler rather than the programmer.

This preserves modularity by adding a level of indirection to the integration technique:

protocols are modular at the source code level—the programmer level—even though they

are combined at the object code level—the performance level. Protocols are expressed

independently of each other, and the compiler automatically combines them into integrated

implementations. This situation is analogous to function inlining: an inlined function is a

distinct function at the source code level, but it is compiled into code that is not a function

at the object code level.

The Morpheus source code for a sendThruput or deliverThruput consists of a

complete set of the components that have been introduced in the course of this chapter. The

Morpheus code for a checksum protocol’s deliverThruput is illustrated in Figure 4.12.

Corresponding components from different protocols conform to a common interface,

e.g. all word filters have the same interface. In effect, the standard sendThruput and

deliverThruput interfaces have been replaced by new interfaces consisting of the union of

the interfaces between corresponding parts. Since the parts conform to standard interfaces,

protocols can be designed, implemented, modified, and maintained independently of each

other. The protocols can be freely configured in different combinations, allowing protocols

to be added or deleted from protocol suites, or reused in different protocol suites. A given

protocol could be configured as either integrated with other protocols, or integrated “by

itself”, so it can be debugged as a separate, unintegrated layer.

The standardized interfaces make it straightforward to generate integrated object code

from the source code components by concatenating the object code corresponding to the

components in the proper order along with the necessary infrastructure code, as depicted

in Figure 4.13.

I devised a prototype integration tool that accepts protocols represented as fragments

of C code and outputs integrated implementations in C. This tool was used to synthesize

the integrated sendThruputs whose performance was reported above. Using a high-

level target language isolates integration from other language implementation issues. The

deliverThruputf

unsigned sum;

initialStage()
f

sum = msg.hdr.chksum;
nextInitialStage();

g

filterData(dataWord)
f

sum += (dataWord & 0x0000FFFF) + (dataWord >> 16);
output(dataWord);

g

/* checksum has no flush */

finalStage()
f

while(sum & 0xFFFF0000)
sum = (sum & 0x0000FFFF) + (sum >> 16);

if(sum == 0)
nextFinalStage();

else
nextAbort();

g

/* checksum has no abort */

g

Figure 4.12: Checksum deliverThruput

target language’s compiler then has the responsibility for exploiting the greater locality of

reference exhibited by the integrated protocols, e.g. by using registers to hold message data

between data manipulations. In my experiments, the compilers have done so successfully,

utilizing registers as expected.

Specifically, the prototype integrator is simply the macro processor m4 [KR86] applied

to appropriate input and include files. A protocol’s sendThruput or deliverThruput op-

eration is input as seven code fragments. To illustrate this, the CKSUM deliverThruput
shown in Figure 4.12 is rewritten as the C code fragments in Table 4.9. The INCLU-

SIONS fragment is for including header files and making type or macro definitions; the

DECLARATIONS fragment is for declaring local variables; and the INITIAL and FINAL

fragments correspond to the initial and final stages, respectively. The ABORT fragment is

used in the event of an earlier layer rejecting a message to deallocate data structures that

A’S FILTER

A’S FINAL

B’S INITIAL

A’S INITIAL

B’S FILTER

B’S FINAL

A’S INITIAL

B’S INITIAL

A’S FINAL

B’S FINAL

WRITE DATA

B’S FILTER

A’S FILTER

READ DATA

PROTOCOL A

PROTOCOL B

A AND B INTEGRATED

SYNTHESIS

Figure 4.13: Integrated Protocol Synthesis

may have allocated by the INITIAL fragment. The two remaining fragments correspond

to the data manipulation itself: FILTER is the data filter invoked by the preceding protocol

when it passes a word of data, and FLUSH provides a way to flush data saved in the local

state to subsequent layers once there is no more data forthcoming from preceding layers.

In the case of CKSUM, there is no code to execute for a flush or abort.

The prototype integrator inserts additional code, e.g. for reading the data from the

message buffer and feeding it to the first layer’s word filter. This infrastructure serves as a

framework in which all the protocol fragments are embedded inline, thereby establishing

the sequencing of stages.

Combining programmer code verbatim, as the prototype does, has several shortcom-

ings. The source syntax is unintuitive and inflexible. The programmer must be careful

to use names that do not clash with those used in other protocols. This includes not only

variable names, but also names of types, defined constants, macros, functions, and labels.

The brute-force strategy I used in prototyping was to assign a globally unique name to

each protocol (e.g. “cs ” for CKSUM), and prefix that name to every name used by the

protocol. Another problem is that it is difficult to determine which protocol is responsible

for a runtime error because there is no way to associate an object code instruction with

the protocol from which it is derived.

Morpheus avoids these problems by incorporating integration in its design. The parts

FRAGMENT CHECKSUM EXAMPLE
INCLUSIONS #include "chksum.h"
DECLARATIONS cs Session cs session;

cs Hdr cs hdr;
register unsigned cs sum;

INITIAL cs session = (cs Session) next session;
next session = (GenericSession) cs session->nextSession;
cs hdr = (cs Hdr) msgPush(hdrMsgP, cs HDR SZ);
cs sum = cs hdr->chksum;
include(CS NEXT/initialStage)

FILTER cs sum += (currWd & 0x0000FFFF) + (currWd >> 16);
include(CS NEXT/filter)

FLUSH /* checksum has no flush */
FINAL while(cs sum & 0xFFFF0000)

cs sum = (cs sum & 0x0000FFFF) + (cs sum >> 16);
if(cs sum == 0)

include(CS NEXT/finalStage)
else

include(CS NEXT/abort)
ABORT /* checksum has no abort */

Table 4.9: CKSUM deliverThruput C Code Fragments

of sendThruput and deliverThruput are expressed using intuitive, familiar constructs

such as functions, with name scope rules that eliminate the danger of name clashes. A

compiler could save information for attributing a runtime error to the particular offending

protocol.

Note that the prototype integrator, while not a compiler, still defines and translates

a new language. It accepts collections of fragments of C code that must follow certain

hard to formulate rules, which it then translates into C, but it does not accept C programs.

Whether integration is performed by a compiler or by a simpler tool such as my prototype

integrator, a new language is defined, and compilers can support better languages.

4.7 Barriers to Integration

There are situations in which integration is either not possible or not advantageous. Some
are inherent to particular protocol functionalities, and some derive from the mapping of
protocols onto system components such as address spaces. I have identified the following
classes of barriers to integration:

Control Transfer If adjacent protocol layers are in different address spaces or different
processors, transferring control between them is too slow for integration.

Message Reassembly Lost or out-of-order message fragments make it difficult for proto-
cols above a reassembly layer to process isolated fragments.

Random Access Some protocols need random access to message data. They find the
sequential access provided by a data stream too inefficient.

Retransmission In some cases a new physical copy of a message must be buffered, but
whenever possible it is better to share a message buffer associated with a different
protocol layer.

Runtime Protocol Path For some protocols, there is more than one possible next protocol,
such as when demultiplexing.

There are strategies for minimizing barriers. The basic strategy is of course to avoid

protocols (and protection domain boundaries) that are barriers. Granted that this is not

always possible, barriers may be further minimized by a careful ordering of protocols in

the protocol graph, and a careful mapping of protocols onto protection domains. The

key observation is that barriers are only barriers if they occur between data manipulation

protocols, since the performance advantage comes from integrating data manipulations,

not arbitrary protocols. Protocols that do not manipulate data are only integrated when

they are between data manipulation protocols. Hence if a barrier is located either above or

below any data manipulations, then it does not prevent any integration. Also, if integration

between two data manipulations has already been blocked by a barrier, then it does not

matter if addition barriers are located between those two data manipulations; in effect,

adjacent barriers coalesce into a single barrier.

4.7.1 Control Transfer Barriers

Serial and integrated implementations represent different tradeoffs between memory

access and control transfer. Serial implementations minimize the number of control

transfers—just one per message per layer—at the expense of the many memory accesses

necessary to pass a large amount of data all at once. Integrated implementations attempt to

minimize the number of memory accesses at the expense of frequent control transfers—in

Morpheus, one for every data word (plus a few more) per layer. If control transfer is

very slow, the optimal tradeoff is the purely serial implementation. Transferring control

between protection domains (address spaces) is far slower than a function call, which is

already much slower than the instruction sequencing we use to transfer control between

integrated protocols when they pass words of data. Hence, a serial implementation is

more efficient than integration across protection boundaries.

If part of a protocol stack is implemented on an outboard processor, integration between

the host and outboard processor is similarly impractical, as is integrating a sending protocol

stack on one host with a receiving protocol stack on another host. The problem is not

strictly speaking control transfer, but rather synchronization; the synchronization overhead

of passing data in small units is prohibitive.

Although it is inefficient to integrate protocols across such boundaries, it can be

advantageous to integrate boundary crossing mechanisms with protocols on one side of

the boundary. For example, the writing of a message into a buffer (or the reading of a

message from a buffer) in a user address space can be integrated with protocols in the

kernel address space. For another example, if a network device or outboard processor

interface uses Programmed I/O, reading from or writing to those devices can be integrated

with protocols (instead of using Programmed I/O to copy messages between devices and

memory).

Control transfer barriers can be minimized by limiting the number of protection do-

mains into which data manipulation protocols (and any system induced data manipulations

such as copying across protection boundaries) are mapped. If all the data manipulations

can be mapped into a single protection domain, then there is no control transfer barrier to

prevent their integration.

Certain protocols may be pinned to particular protection domains due to their func-

tionality or trust level. For example, the information necessary to perform a presentation

formatting may be specific to an application, hence be pinned to the same user address

space as the application. This could be accommodated by putting all the data manipula-

tion protocols in that user address space. Any data manipulation protocols which would

otherwise have been in the kernel address space, so as to be shared by the messages of

applications in different user address spaces, would be migrated into the user address

spaces. They would be either shared via shared libraries, or duplicated. Protocols below

the first data manipulation protocol could remain in the kernel.

On the other hand, access to network devices must be restricted to the kernel to prevent

unsafe access. Thus messages will still cross protection boundaries (at least logically),

leaving the potential problem of boundary crossings themselves being data manipulations.

For example, if a received message has to be transferred via DMA into memory for the

kernel to determine the destination address space, then copying a message from the kernel

address space into the destination address space would itself be a data manipulation.

This copy could not be integrated with the protocols in the user address space because

it would require kernel privileges to access the message in kernel data space. Possible

solutions include using copy-free techniques to logically move messages from one space

to another, or using specialized network hardware to demultiplex messages directly to

their destination address spaces [DAPP93]. If the data manipulation protocols must be

distributed across kernel and user spaces, then copying messages across the user-kernel

boundary can be integrated with kernel data manipulations at no additional cost.

4.7.2 Reassembly Barrier

From the perspective of higher layers, a message that is delivered to a reassembly protocol

layer is not a message, but only a fragment of a message. It does not even contain the

higher level headers unless the fragment is the first of a composite message. In general,

protocols cannot process part of a message without having previously processed all the

preceding parts of the message. Even if one could guarantee that fragments would

always arrive in order and unduplicated, there would remain problems due to the possibly

interleaved arrival of fragments of different messages. Higher level protocols would

have to maintain state information for each composite message being processed, saving

it between fragments and applying the corresponding state information to each fragment.

It is not clear whether this can be accomplished while still supporting the efficient control

transfers necessary for protocol integration. Gunningberg et al [GPSV91] report that

when they attempted to integrate fragmentation/reassembly, their implementation schemes

lost the layer abstraction. A general technique for integrating across reassembly layers

independent of the particular protocols would be even more difficult to devise, if it is

possible at all.

Fortunately, fragmentation/reassembly can be exiled to the bottom of the protocol

graph, if it is needed at all. Gunningberg et al [GPSV91] believe that “for multimedia

applications and gigabit networks we will see fragmentation only at the lowest layers or

not at all,” and Clark and Tennenhouse’s Application Level Framing [CT90] also places

fragmentation/reassembly at the bottom of the protocol graph. Application Level Framing

proposes that a single notion of message framing—an Application Data Unit, essentially

a unit of data that an application can process independently of other such units—be used

throughout the protocol graph. Only at the bottom of the protocol graph are Application

Data Units fragmented into, or reassembled from, the Transmission Data Units supported

by the network.

4.7.3 Random Access Barriers

Some data manipulations involve essentially random access to message data. One example

is the image transfer protocol described in [TP92]. This protocol’s data manipulation

reorders data to spread apart pixels that are adjacent in the original data, an image. The

objective is to make it likely that if a pixel is lost, the adjacent pixels are not lost, and can

therefore be used to compute an approximation to the value of the lost pixel. Consecutive

pixels in the original image are far apart after the sending side data manipulation, and

consecutive pixels in the incoming message are far apart in the resulting image after

the receiving side data manipulation. Hence neither the sending nor receiving side of

this protocol can efficiently manipulate data in a stream. (This particular example could

however be implemented to accept a data structure message and output a stream, or vice

versa.)

Another way of looking at random access barriers is that such protocols have a very

large natural unit and cannot process anything smaller. The technique of accumulating

input data in local state until a protocol’s natural unit is available decreases in efficiency

as the size of the natural unit increases. Clearly, for a natural unit on the order of the size

of an entire message, a serial implementation would have better performance.

Protocols which utilize certain message editing operations may also be regarded as

random access barriers. These operations are splitting a message into fragments, and

clipping (discarding) part of a message from the tail end, as when stripping padding. A data

structure implementation of messages can support these operations very efficiently without

ever accessing the actual contents of messages [HMPT89, DAPP93], yet implementing

such operations in terms of a data stream requires counting units of data to recognize the

point in the message where the operation is to be applied.

4.7.4 Buffering for Retransmission

A protocol which buffers copies of messages for possible retransmission presents several

problems. First consider retransmission. A retransmitted message can contain data, but

originates, in effect, at a protocol layer, not an application. This is a problem because there

could be data manipulations both above and below the retransmitting layer, but it is not

possible to integrate the retransmission layer with preceding data manipulations since they

should not process the retransmitted message. A Morpheus compiler could accommodate

this by generating multiple integrated series of sendThruputs, one that starts above the

retransmission layer to handle original transmissions, and one the starts just below the

retransmission layer to handle retransmissions. The compiler would recognize the need

to generate an extra integrated sub-series of protocols whenever it found a sendThruput
in code other than the body of a sendThruput.

Buffering a copy of a message presents a more serious problem. Making a physical

copy of a message, even if integrated, still entails writing the copy into memory. Also,

unlike retransmission, which occurs only when a message is lost or late, buffering must

take place for every message that is sent via a retransmission layer.

Buffering a physical copy of a message can often be avoided in serial implementations

by retaining or sharing a preexisting copy of the message data structure. In the integrated

case, one would likewise prefer to make a logical, or copy-on-write, copy whenever

possible, i.e., whenever the buffering layer is situated relative to other layers such that

the correct version of the message data was buffered for some other reason. These

conditions hold except when the retransmission layer is included in an integrated series

with read-write data manipulations both before and after it; otherwise, there is a message

buffer (either the input or the output message) with the data in the correct form. These

circumstances are determined at composition time, but that is too late since one needs

to know at protocol design time because a single implementation of the retransmission

protocol is not capable of supporting both logical and physical copying. Also, it is not clear

how a retransmission protocol would obtain a reference to a message buffer associated

with a layer that may precede or follow it by several layers. Solving these problems

would likely complicate not only the compiler and the configuration software, but also

the Morpheus source language.

Clearly retransmission layers complicate integration. If instead retransmission is

treated as a barrier, it may be possible to simply avoid it. For example, it seems reasonable

to locate any retransmission layers in the protocol graph so that they are above or below all

data manipulations. A retransmission protocol located at the bottom of a protocol graph

might be an appropriate optimization for a link known to have a high error rate. End-to-

end retransmission at the application level might be appropriate because of the possibility

of a protocol rejecting a message, and because alternatives to buffering and retransmission

such as regenerating the data or just skipping the message may be appropriate depending

on the application [SRC84].

4.7.5 Runtime Protocol Path Barriers

The protocol to which a given protocol will next pass a message might not be fixed

at composition time. For example, demultiplexing determines at runtime which higher

level protocol is to receive an incoming message. On the sending side, routing behaves

similarly. Another example is message forwarding, since a message can either continue

up the protocol graph if its destination is local, or be sent back down the protocol graph

if it should be forwarded. Flow control in which a message can be blocked temporarily is

another example, since a message may either continue through more layers or terminate,

for the time being, at the flow control layer.

Determining a message’s path through the protocol graph at runtime poses a problem

for integration, at least for the implementation of integration thus far presented. This

implementation combines all three stages of each protocol’s sendThruput or deliver-

Thruput in a single function. This implementation is “hard-wired” in the sense that, for

a given operation and a given first protocol, the set of protocols that are integrated with

it is fixed. Hence, this implementation can only integrate series of protocols which are

known at compile time to be involved in processing any message received by the first in

the series.

One response is to generate such integrated implementations for all the possible series

of protocols that a message might traverse, and then select the correct one for a given

message at runtime. This might use a mechanism such as the Packet Filter [MRA87] to

determine the correct series of protocols. A packet filter is software can be programmed

at runtime to interpret the combined protocol headers on an arriving message to determine

the message’s eventual destination. This approach could be used to anticipate the path that

a particular message will follow through the protocol graph, and select the corresponding

integrated groups of protocols. However, it does not address the generalized routing case

or the flow control case. Furthermore, it adds redundant processing of message headers,

and complicates protocols with the requirement to program the packet filter at runtime.

I propose a technique called lazy messages 2. Essentially, it allows initial stages to

be executed before binding a message to a particular integrated series of protocols. Each

protocol’s initial stage is implemented as a separate function. The initial stage must

include any determination of the subsequent protocol. Each protocol’s initial stage tags

the message with the identity of that protocol, and attaches any information needed by the

data manipulation or final stages of the same protocol, e.g. a checksum on an incoming

message. When, in the serial execution of initial stages, a layer representing a barrier

is reached, the protocol identifier tags on the message are used to select the function

containing the corresponding integrated series of data manipulation and final stages. Such

functions are constructed at compile time for each possible integrated series of protocols.

2The lazy message technique is based on a suggestion in [OP92].

These integrated series functions also include, for each layer, some initialization

code which is responsible for initializing data manipulation filter variables. This may

involve unpacking information attached to the message by the initial stage. This variable

initialization code is executed in layer sequence before the combined data manipulation

stage. Hence, in the lazy messages technique there are two “initial” stages, call them

initial-1 and initial-2. The bulk of the initial stage work is performed during the initial-1

stage, in particular the determination of the path through the protocol graph. The initial-2

stage is responsible for any initialization of data manipulation variables, such as the sum

accumulated by a checksum.

The greater flexibility afforded by the lazy-message technique entails some costs.

There is the increased complexity of separate initial-1 and initial-2 stages for the protocol

programmer to deal with. Also, there is the extra space used by overlapping integrated

series of protocols, since a function is constructed for each possible integrated series.

However, the increased time to transfer control between stages of different layers and

communicate information between stages of a given layer is not a significant cost, com-

pared to the time to manipulate any significant amount of data.

Because of these costs, it might be better to simply use the hard-wired technique and

attempt to minimize the instances of such barriers. The most common of these potential

barriers is demultiplexing. Multiplexing at multiple levels in a protocol graph has other

significant disadvantages unrelated to protocol integration, and therefore there should be

only one multiplexing layer, at the bottom of the protocol graph [Ten89, Fel90]. This

would have the side-effect of eliminating demultiplexing as a barrier. Similarly, any

message forwarding could be performed at the bottom of the protocol graph, below any

data manipulations.

4.8 Tradeoffs Between Performance and Abstraction

Morpheus’s design for optimization makes tradeoffs of abstraction to gain performance.

This tradeoff arises in two contexts: in protocol integration by itself, and in the existence

of separate throughput-optimized and latency-optimized operations.

4.8.1 Trading Abstraction for Performance in Protocol Integration

The Morpheus technique for integrating protocols compromises clean abstraction to obtain

low layering penalties; the optimization shows through at the source code level. Ideally,

a compiler would automatically integrate operations expressed in the familiar serial style,

but this seems to be considerably beyond current technology.

Morpheus supports integration in order to reduce the throughput penalty for layering.

Integration in Morpheus could be regarded as simply improving performance, but I choose

to view it as reducing a performance penalty for protocol modularity; since a non-modular,

or monolithic, implementation of a protocol suite is in theory free to integrate protocols

without concern for module boundaries, any inability to integrate in a layered implemen-

tation may be regarded as a penalty for layering. A reduced penalty for layering makes it

practical to decompose network software into building blocks protocols, and also supports

a high level of abstraction by permitting decomposition to the granularity required by the

shapes constraint. Thus protocol integration in Morpheus supports protocol development.

Unfortunately, Morpheus integration also compromises abstraction, thereby undermin-

ing support for protocol development to some extent. Without integration, the programmer

would implement a sendThruput or a deliverThruput as a single intuitive function; but

with integration, there are distinct operations for control and data messages, and the

sendThruput and deliverThruput operations are programmed as sets of functions with

relatively unintuitive purposes and interrelationships.

This design choice in Morpheus—to favor performance at the expense of clean

abstraction—is based on the principle that performance is the overriding concern for

network software designers. If there is a significant performance cost for some other

benefit, then they will sacrifice that benefit in favor of performance.

4.8.2 Separate Latency-Optimized and Throughput-Optimized Operations

Morpheus imposes on the programmer the burden of coding separate latency-optimized

and throughput-optimized operations. This represents another tradeoff of clean abstraction

in favor of performance. There are a number of possible alternatives to this design.

The first alternative to consider is that a single operation might be optimized for both

latency and throughput— that all the optimizations could be combined in one send and

one deliver. Suppose an operation supported the protocol integration (throughput) opti-

mization. The latency optimizations of generating utility operations inline and eliminating

header bounds checking can also be applied (and are applied to both sets of operations

in the current design). However, the remaining latency operations are not appropriate.

Dedicated message registers and short-circuit return apply to function calls between lay-

ers (since they are designed to support runtime configuration), but protocol integration

combines operations from adjacent protocols into a single function. They could however

be applied at protocol boundaries where lazy messages are used to determine the sequence

of protocols. The remaining latency optimization, procedure cloning, could be applied

to this operation, but space costs argue against it. Both procedure cloning and protocol

integration multiply space costs by duplicating code. Supporting them in separate op-

erations results in space usage equal to the sum of their individual space usages, while

providing the appropriate optimization to each message; while combining them in the

same operation results in space usage which is the product of their individual usages, even

though each message only benefits from one or the other optimization.

One might ask whether a throughput-optimized operation also has good latency despite

the limited applicability of the latency optimizations, especially since protocol integration

combines operations from adjacent layers into a single function. Unfortunately, for some

protocols latency would be hurt by the task-level ordering discipline,e.g. deferring external

behavior to the final stage, or by the requirement to structure data manipulations as word

filters. Latency would be even more harmed anywhere lazy messages are used due to

traversing layers twice (once for the initial stage, and once for the remainder), marshalling

and demarshalling any information that must be attached to the message to communicate

it from the initial stage to the subsequent stages (e.g. the checksum from a received

message), and using protocol tags on messages to look up the function corresponding to

the remaining stages of the correct protocols.

If a single operation cannot be effectively optimized for both latency and throughput,

the next question to ask is whether separate operations might be generated from the same

source code. Unfortunately, that shared source code would need an awkward syntax

like that of the current throughput-optimized operations to support protocol integration.

Furthermore, the control message path could suffer some increased latency due to the

requirement to structure the source code to support word filters and the task-level ordering

discipline.
A number of reasonable compromises to simplify programming are possible:

� Integration-oriented source code could be used to generate both operations by
default, with the programmer having the option of providing separate source code
for the latency-optimized operation if desired.

� The programmer could opt to provide source code only for the latency-optimized
operation, making that layer into a barrier to integration.

� Both operations could optionally share a single source code level expression of a
data manipulation as a word filter.

� Where the data manipulation applied to the higher level headers is the same as that

applied to the application data, both manipulations could optionally be generated
from a single source code word filter.

� The programmer could be relieved of having to code any data manipulation for
latency-optimized operations by applying the latency-optimized operations only to
messages which contain no application data. This would have the performance
disadvantage of optimizing messages with small amounts of data for throughput
when they should be optimized for latency.

CHAPTER 5

CONCLUSIONS

My thesis is that the combination of two novel strategies, constraining protocol speci-

fications and using a special-purpose language, provides powerful program development

support for network software. In support of this thesis, I have shown that these strategies

enable Morpheus to achieve three well-established principles of software development:

abstraction, modularity, and software reuse. A key intermediate step is Morpheus’s

optimizations that reduce the performance penalty for protocol layering.

This chapter summarizes the specification-level constraints that have been proposed

as a result of this work, summarizes the contributions of this research, and discusses future

work.

5.1 Summary of Constraints

Morpheus imposes the following constraints on protocol specifications:

� Message headers and application data must each use an integral number of words,
and header fields must be word-aligned relative to the start of their headers. This
ensures that all header fields can be word-aligned in memory for efficient access
(Chapter 2), and that application data can be manipulated using word filters (Chap-
ter 4). Headers and application data can be padded to satisfy this constraint.

� Protocols must not support runtime options (Chapter 2). Eliminating runtime op-
tions increases reusability of protocol implementations since otherwise protocols
could be composed only if each protocol that invoked an option were paired with
a protocol that implemented the option. Different options should instead be imple-
mented as distinct protocols. Where the correct option would depend on runtime
information, a router can be used to route messages through the appropriate protocol.

� Protocols must not provide functionality corresponding to more than one shape
(Chapter 2). This allows Morpheus to automatically provide the aspects of a proto-
col’s implementation that are determined by a protocol’s declared shape. Protocol
functionality that spans more than one shape can be implemented as the composition
of multiple protocols.

� Multiplexing must use two multiplexing keys, and their types must be Morpheus’s
standard multiplexing key type (Chapter 2). This allows Morpheus to automatically
provide the implementation of multiplexing and demultiplexing, and simplifies con-
figuring multiplexors in a protocol suite. To behave like conventional multiplexing
based a single key, a multiplexor can be configured so that the local and remote
multiplexing keys are identical.

� Protocols must be able to manipulate higher level headers and application data
separately, and network drivers (or software between the Morpheus protocol sub-
system and the network drivers) must support the segregated message abstraction
(Chapter 4). This allows efficient protocol integration by providing protocols with
a common definition of the data they are to manipulate together. This constraint
rules out only those protocols that apply a single manipulation to both higher level
headers and application data, and define that manipulation in terms of a unit that
could span the boundary between the two.

5.2 Contributions

The main contributions of this research are the protocol abstractions and the optimization

techniques.

Morpheus’s protocol abstractions provide a high level of abstraction that supports

protocol development by providing a seamless model for thinking about protocols and

relieving the programmer of making and expressing low-level design decisions that are

unnecessary and may introduce errors or poor performance. Protocol shapes provide a

prescription for decomposing network software while raising the level of abstraction. The

abstractions also present a standardized protocol interface that is well-suited to decompo-

sition, thereby supporting protocol development through the building-blocks approach.

Morpheus’s procedure cloning technique uses knowledge of a restricted domain to

extend a powerful compile-time interprocedural optimization to a runtime situation, while

simultaneously avoiding the overhead of interprocedural analysis. Morpheus’s dedicated

message registers and short-circuit return techniques support runtime configuration of

protocol suites by improving performance in contexts where compile-time techniques

cannot be applied.

Morpheus contributes a protocol integration technique that is very general and pre-

serves modularity. The same basic technique can be used to integrate not only reusable

building-blocks protocols, but also more conventional protocols. Even when protocol im-

plementations are not expected to be reused, the modularity supported by this technique

is a considerable advantage. Even if implementors choose to dispense with modularity,

word filters, segregated messages, and the task-level ordering discipline provide a very

general technique for implementing integrated protocols. And even if implementors in-

tend to customize an implementation in order to obtain the greatest possible performance,

this technique can serve as the basis for the customized implementation.

Identifying the four protocol integration problems is a contribution. Researchers in

search of better general solutions can use them as a starting point. Implementors of custom

integrated protocol suites can use them to better understand the specific problems they

encounter in the context of particular suites.

Finally, the experiments and analysis of Morpheus’s integration technique quantify

ILP behavior and potential, and provide a lower bound on the performance benefit that can

be obtained. If improvements in processor performance continue to outpace improvement

in memory performance as expected, the performance benefit of integration will only

increase relative to measurements on current machines.

5.3 Future Work

The research presented in this dissertation is highly exploratory. A great deal of work

could be invested simply to complete the realization of Morpheus: a complete language

design, with fully-specified syntax and at least a fairly rigorous semantics, if not a formal

semantics; working compilers for one or more target machines; and thorough performance

measurements based on compiler-generated code. Other language environment work

would include support for protocol-oriented debugging.

The Morpheus design presented here supports only the asynchronous, peer-to-peer

(unicast) protocols. It should be extended to such other forms of communication as

Remote Procedure Call and multicast communication.

There is the potential to improve throughput significantly by integrating data manipu-

lations performed by applications with those performed by protocols. It is not clear how

to achieve this in Morpheus since Morpheus can only express protocols.

A protocol implementation language would seem to be well-suited to support mul-

tiprocessing implementation of protocols. It may be possible for a compiler for such a

specialized language to transparently generate the appropriate locking, so that protocol

source code is independent of the degree and style of multiprocessing. A compiler would

know the target multiprocessing system, have access to information about which data is

shared, and have the ability to interject locking code at arbitrary points. If this is not

possible—if it were to turn out that the programmer must be aware of multiprocessing—

there remains the potential to provide protocol-oriented multiprocessing abstractions of a

higher level than the basic lock.

5.4 Concluding Remarks

The underlying theme of this research is that the building-blocks approach to building

network software works. Decomposing network software into small, reusable protocols

makes it easier to understand and develop, especially when combined with the strategies

employed by Morpheus. Protocol-oriented optimizations give building-block protocols

a potential performance nearly that of more monolithic implementations, and the ease of

development allows programmers to come closer to achieving this potential performance

than their counterparts who build monolithic implementations.

The main impediment to the building-blocks approach is the continued dominance of

such current network architectures as TCP/IP. However, factors discussed in Chapter 1

are leading to the obsolescence of these architectures. My hope is that the work presented

in this dissertation will influence the design and implementation of the network software

that supersedes them.

APPENDIX A

C VERSION OF SEQUENCER PROTOCOL

This is a C implementation of the protocol SEQUENCER. It illustrates the level

of detail that is necessary for a complete protocol implementation in a general purpose

language.

#include "bunchOfStuff.h"

/* Header */
typedef structf

int seqNum;
g*Hdr;
#define NET BYTE ORDER LITTLE ENDIAN

/* Protocol */
typedef structf

String name;
ProtlOps ops;
Sap undrSap;
Sap overSap;
int sendSeqNum;

g*Protl;

/* OverSessn */
typedef structf

GenericUndrSessn otherSide;
Sap sap;
Protl protl;
Pfv send;
Pfv grantDelivs;
struct undrSessnStruct* undrSessn;

g*OverSessn;

/* UndrSessn */
typedef struct undrSessnStructf

GenericOverSessn otherSide;
Sap sap;
Protl protl;
Pfv deliv;
Pfv grantSends;
OverSessn overSessn;
int rcvSeqNum;

g*UndrSessn;

static void send(overSessn, msg)
OverSessn overSessn;
Msg* msg;
f

Hdr hdr;
int seqNumInNetByteOrder;

hdr = (Hdr) msgPush(msg, sizeof(Hdr*));
seqNumInNetByteOrder =

hostToNetInt(NET BYTE ORDER, overSessn->protl->sendSeqNum++);
bcopy(&seqNumInNetByteOrder, &header->seqNum, sizeof(int));
overSessn->undrSessn->otherSide->send(

overSessn->undrSessn->otherSide, msg));
g

static void deliv(undrSessn, msg)
UndrSessn undrSessn;
Msg* msg;
f

Hdr hdr;
int seqNumInNetByteOrder;
int seqNumInHostByteOrder;

hdr = (Hdr) msgTop(msg, sizeof(Hdr*);
bcopy(&header->seqNum, &seqNumInNetByteOrder, sizeof(int));
seqNumInHostByteOrder =

netToHostInt(NET BYTE ORDER, seqNumInNetByteOrder);
if(seqNumInHostByteOrder > undrSessn->rcvSeqNum)f

undrSessn->rcvSeqNum = seqNumInHostByteOrder;
msgPop(msg, sizeof(Hdr*));
undrSessn->overSessn->otherSide->deliv(
undrSessn->overSessn->otherSide, msg));

gelsef
undrSessn->otherSide->grantDelivs(undrSessn->otherSide, 1);

g

g

static void grantSends(overSessn, numCredits)
OverSessn overSessn;
int numCredits;
f

overSessn->undrSessn->otherSide->grantSends(
overSessn->undrSessn->otherSide, numCredits);

g

static void grantDelivs(undrSessn, numCredits)
UndrSessn undrSessn;
int numCredits;

f

undrSessn->overSessn->otherSide->grantDelivs(
undrSessn->overSessn->otherSide, numCredits);

g

static void createOverSessnDown(overSap, higherUndrSessn, addr)
Sap overSap;
GenericUndrSessn higherUndrSessn;
GenericAddr addr;
f

OverSessn overSessn;
UndrSessn undrSessn;

/* create a sequencer overSessn and glue to the higher level undrSessn */
overSessn = (OverSessn) malloc(sizeof(OverSessn*));
overSessn->sap = overSap;
overSessn->send = send;
overSessn->grantDelivs = grantDelivs;
overSessn->otherSide = higherUndrSessn;
higherUndrSessn->otherSide = overSessn;

/* set up the corresponding sequencer underSessn */
undrSessn = (UndrSessn) malloc(sizeof(UndrSessn*));
((Protl)overSap->lowerProtl)->undrSap->createOverSessnDown(

((Protl)overSap->lowerProtl)->undrSap, undrSessn, addr);
undrSessn->rcvSeqNum = 0;

/* link corresponding sequencer overSessn and undrSessn */
undrSessn->overSessn = overSessn;
overSessn->undrSessn = undrSessn;

g

static void enableUpwardSessnCreate(overSap)
Sap overSap;
f

((Protl)overSap->lowerProtl)->undrSap->enableUpwardSessnCreate(
((Protl)overSap->lowerProtl)->undrSap);

g

static void createUndrSessnUp(undrSap, lowerOverSessn, addr)
Sap undrSap;
GenericOverSessn lowerOverSessn;
GenericAddr addr;
f

UndrSessn undrSessn;
OverSessn overSessn;

/* create a sequencer undrSessn and glue to the lower level overSessn */

undrSessn = (UndrSessn) malloc(sizeof(UndrSessn*));
undrSessn->sap = undrSap;
undrSessn->deliv = deliv;
undrSessn->grantSends = grantSends;
undrSessn->otherSide = lowerOverSessn;
lowerOverSessn->otherSide = undrSessn;
undrSessn->rcvSeqNum = 0;

/* set up the corresponding sequencer overSessn */
overSessn = (OverSessn) malloc(sizeof(OverSessn*));
((Protl)undrSap->higherProtl)->overSap->createUndrSessnUp(

((Protl)undrSap->higherProtl)->overSap, overSessn, addr);

/* link corresponding sequencer overSessn and undrSessn */
overSessn->undrSessn = undrSessn;
undrSessn->overSessn = overSessn;

g

static GenericAddr getLocalAd(overSap)
Sap overSap;
f

return(((Protl)overSap->lowerProtl)->undrSap->getLocalAd(
((Protl)overSap->lowerProtl)->undrSap));

g

static void addOverSap(protl, overSap)
Protl protl;
Sap overSap;
f

protl->overSap = overSap;
overSap->createOverSessnDown = createOverSessnDown;
overSap->enableUpwardSessnCreate = enableUpwardSessnCreate;
overSap->getLocalAd = getLocalAd;

g

GenericProtl sequencerInitProtl(undrSaps)
Saps undrSaps;
f

Protl protl;

protl = (Protl) malloc(sizeof(*Protl));
protl->undrSap = undrSaps[0];
protl->undrSap->higherProtl = (GenericProtl) protl;
protl->undrSap->createUndrSessnUp = createUndrSessnUp;
protl->sendSeqNum = 1;
return((GenericProtl) protl);

g

REFERENCES

[And85] David Anderson. A Grammar-Based Methodolody for Protocol Specifica-
tion and Implementation. PhD thesis, University of Wisconsin - Madison,
August 1985.

[Cho85] T. Y. Choi. Formal techniques for the specification, verification and con-
struction of communication protocols. IEEE Communications, October
1985.

[CHT91] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with in-
line substitution. Software—Practice and Experience, 21(6):581–601, June
91.

[CJRS89] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An
analysis of TCP processing overhead. IEEE Communications Magazine,
27(6):23–29, June 1989.

[Cla82] David D. Clark. Modularity and efficiency in protocol implementation.
Request for Comments 817, MIT Laboratory for Computer Science, Com-
puter Systems and Communications Group, July 1982.

[Cla85] David D. Clark. The structuring of systems using upcalls. In Proceedings
of the Tenth ACM Symposium on Operating System Principles, pages 171–
180, December 1985.

[Com88] Douglas Comer. Internetworking with TCP/IP. Prentice Hall, Englewood
Cliffs, NJ, 1988.

[Coo83] Keith D. Cooper. Interprocedural Data Flow Analysis in a Programming
Environment. PhD thesis, Rice University, April 1983.

[CT90] David D. Clark and David L. Tennenhouse. Architectural considerations
for a new generation of protocols. In Proceedings of the SIGCOMM ’90
Symposium, pages 200–208, September 1990.

[DAPP93] Peter Druschel, Mark B. Abbott, Michael A. Pagels, and Larry L. Peter-
son. Network subsystem design: A case for an integrated data path. IEEE
Network Magazine, July 1993.

[Fel90] David C. Feldmeier. Multiplexing issues in communication system design.
In Proceedings of the SIGCOMM ’90 Symposium, 1990.

[GNI92] Murray W. Goldberg, Gerald W. Neufeld, and Mabo R. Ito. The parallel
protocol framework. Technical Report 92-16, Department of Computer
Science Department, University of British Columbia, August 1992.

[GPSV91] Per Gunningberg, Craig Partridge, Teet Sirotkin, and Bjorn Victor. Delayed
evaluation of gigabit protocols. In Proceedings of the 2nd MultiG Workshop,
1991.

[Hal91] Mary W. Hall. Managing Interprocedural Optimization. PhD thesis, Rice
University, April 1991.

[HMPT89] Norman C. Hutchinson, Shivakant Mishra, Larry L. Peterson, and Vicraj T.
Thomas. Tools for implementing network protocols. Software—Practice
and Experience, 19(9):895–916, September 1989.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols. Pren-
tice Hall, Englewood Cliffs, NJ, 1991.

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture A Quan-
titative Approach. Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1990.

[HP91] Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An architec-
ture for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, January 1991.

[HPAO89] Norman C. Hutchinson, Larry L. Peterson, Mark Abbott, and Sean O’Malley.
RPC in the x-Kernel: Evaluating new design techniques. In Proceedings of
the Twelfth ACM Symposium on Operating System Principles, pages 91–101,
December 1989.

[KR86] Brian W. Kernighan and Dennis M. Ritchie. The m4 macro processor.
In Unix Programmer’s Supplementary Documents Volume 1. University of
California at Berkeley, April 1986.

[MRA87] Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta. The packet
filter: An efficient mechanism for user-level network code. In Proceedings
of the Eleventh ACM Symposium on Operating System Principles, pages
39–51, November 1987.

[OMa90] Sean W. OMalley. Avoca: An Environment for Programming with Proto-
cols. PhD thesis, University of Arizona, August 1990.

[OP92] Sean W. O’Malley and Larry L. Peterson. A dynamic network architecture.
ACM Transactions on Computer Systems, 10(2):110–143, May 1992.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM, 15(12):1053–1058, December 1972.

[Pia83] T. F. Piatkowski. Protocol engineering. In Proceedings of 1983 Interna-
tional Communications Conference, June 1983.

[PMI88] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing
Systems, 1(1):11–32, winter 1988.

[Rud85] H. Rudin. An informal overview of formal protocol specification. IEEE
Communications, March 1985.

[Saj85] M. Sajkowski. Protocol verification techniques: Status quo and perspec-
tives. In Protocol Specification, Testing, and Verification, IV, 1985.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4):277–288, November
1984.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley,
Reading, MA, 1986.

[Tan88] Andrew S. Tannenbaum. Computer Networks. Prentice Hall, Englewood
Cliffs, NJ, 1988.

[Ten89] David L. Tennenhouse. Layered multiplexing considered harmful. In Pro-
ceedings of the 1st International Workshop on High-Speed Networks, Novem-
ber 1989.

[TP92] Charles J. Turner and Larry L. Peterson. Image transfer: An end-to-end
design. In Proceedings of the SIGCOMM ’92 Symposium, Baltimore, Mary-
land, August 1992.

[TT87] American Telephone and Inc. Telegraph. Unix System V Streams Program-
mer’s Guide. Prentice Hall, Englewood Cliffs, NJ, 1987.

[vB87] Gregor v. Bochmann. Usage of protocol development tools: The results of
a survey. In Protocol Specification, Testing, and Verification, VII, 1987.

