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ABSTRACT

This thesis explores two strategies for supporting the development of network com-
munication software: imposing constraints on protocol design at the specification level,
and using a special-purpose language for protocol implementation. It presents a protocol
implementation language called Morpheus. Morpheus utilizes the new strategies to pro-
vide a higher level of abstraction, finer grain modularity, and greater software reusability
than previous approaches.

Morpheusis ableto provide ahigh level of abstraction because of built-in knowledge
about its problem domain. It has a narrow problem domain—network protocols—that
is further narrowed by the application of specification-level constraints. One particular
constraint—the shapes constraint, which partitions protocols into three basic kinds—is
particularly effectivein raising the level of abstraction.

Morpheus's support for modularity and, indirectly, software reuse hinges on reducing
the performance penalty for layering. When protocol layering entails a high performance
cost, devel opers are motivated to build complex monolithic implementationsthat are hard
to design, implement, debug, modify, and maintain. Morpheus reduces the performance
costs of layering by applying optimizations based on common patterns of protocol exe-
cution. If the degree of modularity is held fixed, then the optimizations ssimply improve
performance. An optimization based on Integrated Layer Processing is particularly note-
worthy for its dramatic contribution to network throughput while preserving modularity.






CHAPTER 1
INTRODUCTION

Computer networks are systems of interconnected computers. Interconnecting com-
puters makes it possible to share resources such as data, programs, and specialized hard-
ware. Communicating data between programs and between people has grown to riva
computation as the primary function of computing systems. Computer networks also
offer increased reliability, through redundant hardware and replicated data and programs,
and price advantages relative to large mainframe computers of comparable computing
power.

The computers in a network are connected by software as well as hardware. Just as
an operating systems provides a virtual machine built on top of araw physical machine,
network software builds sophisticated communication services on top of the primitive
communication provided by network hardware. This software is quite complex because
of its explicitly distributed nature with the potential for partial failures, because of the
heterogeneity of the hardware technologies used to interconnect computers (even within
a single network), and because of the variety of distributed applications that must be
efficiently supported. Network software is also frequently revised as aresult of changing
hardware technology, new applications with new communication service requirements,
the integration of communications services, and the exponential growth in the number of
computersthat are networked together.

This dissertation introduces a new approach that supports the development of this
complex, performance-critical, frequently revised software.

1.1 Introduction to Networ k Software

Network software is responsible for data communication and synchronization between
processors connected by hardwarelinks. Inthe context of networking, such processorsare
referred to as hosts. A hardware network typically provides a primitive communication
service that is subject to data corruption or loss, and connects only a modest number of
hosts. Network software builds more sophisticated communication services on top of the
hardware, with better failure characteristics and extended connectivity.

Communi cation servicesare most of ten one-to-one or unicast services, communication
is from one entity to another. There are also multicast or group communication services
in which communication from one member of a group goes to all the other members of
the group.

Communication services sometimes implement a Remote Procedure Call (RPC) or
Request-Reply service in which the initiator of a peer-to-peer communication is blocked



until it receives areply message, thereby providing a procedure call model for communi-
cation. More often, communication services provide sSimple message passing servicesin
which each one-way communication is independent.

Network software is generally structured as a hierarchy of layers. Each layer buildsa
more sophisticated communi cation service on top of the communication service provided
by the lower layers. Layering is a technique for managing the complexity of network
software, and aso exposes intermediate communication services for direct use.

Each layer representsanetwork protocol. A protocol isaconvention for the exchange
of messages. Abstractly, a message is a finite series of bits. Messages can contain data
which is relayed on behalf of higher protocol layers or applications, as well as control
information meaningful to the current layer.

The implementation of a protocol on a host, called a protocol entity, follows the
protocol’ s message exchange convention to exchange messages with entities of the same
protocol on other hosts, called peers. Collectively, the entities of a given protocol
implement aprotocol layer. One-way communication isimplemented using an asymmetric
protocol, in which there are two kinds of entities, sending entities and receiving entities.
Two-way communication is implemented using a symmetric protocol, in which all the
entitiesimplement thesamefunctionality. Symmetric entitiesareby far themore common.

Each layer transmits its messages via a lower level communication service. The
composition of a protocol layer on top of a communication service results in a new
communication service. Underneath the lowest protocol layer is a network hardware
which providesthe lowest level communication service.

Thehierarchy of protocol layersneed not belinear. A given protocol layer may support
multiplehigher-level protocols, each of which providesadifferent communication service.
Furthermore, agiven protocol layer may use several |lower-level communication services,
such as when the lower-level services correspond to different local area networks. Hence
the protocols on a host form a protocol graph as depicted in Figure 1.1.

Protocols are defined by specifications. A specification prescribes the format or
syntax of a protocol’s messages. Messages generaly include control information that
is interpreted by the receiving peer, and often include data from higher level protocols
or applications. The message syntax determines the layout of these elements. Control
information is generally affixed at the beginning of higher level data and called a header;
occasionally itisaffixed at theend and called atrailer. The specification also prescribesthe
behavior of an entity in responseto events such asthereception of agiven type of message,
or arequest from a higher level layer to transmit a message. Protocol specifications are
critical for interoperability—correct interaction between peers—because peers may be
implemented on different host machine architectures, in the context of different operating
systems, in different languages, by different organizations, and by different programmers.

The two primary metrics of network performance are latency and throughput. These
have somewhat different meanings depending whether they are applied to the hardware
level, or the protocol level.

At the hardware level, a message is a series of uninterpreted bits. Latency isthetime
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Figure 1.1: A Protocol Graph

elapsed from the sending of amessage until the arrival of thefirst bit of the message at its
destination. Intuitively, latency represents a notion of distance, the length of the “pipe”
between the source and the destination. Throughput (or, at this level, bandwidth) is the
rate at which the bits of a message arrive once the first bit has arrived. If latency is the
length of a communication pipe, then throughput is the bore or caliber of the pipe.

Still at the hardware level, the time to transfer a complete message involves both
latency and throughput: how long doesit take for thefirst bit to arrive (latency), plus how
long doesit take for the remaining bits to arrive (the length of the message divided by the
throughput). Hence either latency or throughput may dominate depending on the size of
the message, latency dominating for short messages, and throughput dominating for long
messages.

Latency and throughput have different though analogous meanings at the protocol
level. Unlike hardware, protocols distinguish between the different bits of a message,
taking different amounts of time to process each of itsdifferent parts. Thetimetaken by a
protocol to process a message may be modeled as consisting of two components: timeto
process the header, which may be treated as constant; and time to process the data, which
may be treated as linear in the amount of data (the factor is zero for protocols that do not
process the data).

At the protocol level, latency is the time elapsed from the sending of a message
consisting solely of headersuntil thearrival of themessage at itsdestination; it capturesthe
component of message transfer time that is independent of message length. Throughput
is the average rate at which the bits of long messages arrive; it captures the message



length dependent component of message transfer time. In this dissertation, latency and
throughput are used in their protocol level senses.
More specialized computer network concepts will be introduced in Chapter 2.

1.2 Network Softwareis Evolving

Network software is changing in response to new network hardware, new application
requirements, the integration of previoudy digoint communication systems, and the
changing scale of networks.

¢ Changing network hardware changes the communication services at the foundation
of a network architecture. The new hardware may have different failure character-
istics, different performance, or a different addressing scheme. It may or may not
support different communication modelsmuch as multicast. Changing the hardware
characteristics generally changes the implementation tradeoffs in higher network
software, even in cases where it is possible to nominally provide the same com-
munication services while confining software changes to the software that directly
interfaces with the network hardware. For example, a reduction in the rate of bit
errors in messages may make it more efficient to check for such errorsonly in the
host for which a message is ultimately destined, rather than checking at each inter-
mediate host that relays the message. Hence, changing the hardware can directly
motivate changing the software.

e New applications such as multimedia motivate changes in network software by
introducing new communication service requirements. Again network software
tradeoffs would change even in cases where it might be possible to confine the
software changes outside the network software by building new communication
functionality into the application. Hence, network software must adapt to provide
the appropriate services.

¢ Voice and data communication, which were previously provided by digoint net-
works, are in the process of being integrated. Network software must change to
reconcile these two dissimilar styles of networking.

e The number of networksin existence continues to grow. Many small scale homo-
geneous networks are interconnected to form internetworks which are themselves
networks, but large scale and heterogeneous. The foremost internetwork isaglobal
internetwork known as the Internet [Com88]. The Internet is experiencing expo-
nential growth that will require network software changesin addressing and routing
algorithms.

Thus, developing and modifying network software is an ongoing process. For this
reason, and because of the complex, performance-critical nature of the software, thereisa



potentially large payoff for investing in tools to support protocol development. The goal
of thisresearch isto make it easier to develop high performance network software.

1.3 Existing Support for Network Softwar e Development

Network software is usually developed with little or no networking-specific program
development support, but this is changing. The two forms of protocol development
support that have been explored are protocol frameworks and formal techniques.

1.3.1 Protocol Frameworks

One form of support for protocol development is the protocol framework. According to
[GNI92], a protocol framework

defines an implementation and execution environment for communication
protocols. There are two parts to the service provided by the framework.
The first part is a set of structural guidelines which determine protocol im-
plementation details. [...] Common examplesof structural guidelinesinclude
the format of communication between protocol modules or layers, and the
structure of the protocol state machines. The second part of any protocol
framework service is a set of library routines to perform common protocol
functions.

System V Streams|[TT87] was perhapsthefirst protocol framework, athough it lacks
the library routines for common protocol functions. Streams was originaly designed to
support character 1/0, and later extended to support protocols. All protocols provide the
same interface to adjacent protocols. This interface is block-oriented: all parameters of
an operation, including the identity of the operation itself, are buffered in a block that
is passed to the protocol module. The parameters to some operations can include user
data, in which case ablock correspondsto amessage. Each protocol moduleincludestwo
queues for outstanding blocks, one queue for blocks from higher protocols, and one for
blocks from lower protocols. Normally, blocks are queued before being processed by a
protocol, but agiven protocol may process blockswithout any queueing. The arrangement
of adjacent protocolsis established, and can be modified, at runtime.

The z-kernel [HP91] isafull-fledged protocol framework. 1t beganlifeasan operating
system, but isnow anetworking subsystem that can beinstalled in other operating systems.
Asopposed to Streams sblock-oriented protocol interface, the z-kernel’suniform protocol



interface is call-oriented: an operation is invoked by calling the corresponding function
with appropriate parameters. Operationsinvolving message transfer take amessage asone
of the parameters. Messages are represented by an abstract datatype whose operationsare
library routines or macros provided as part of the x-kernel. Also provided are countdown
timers, which are used to determine whether a message has been lost, and hash tables,
which are used to demultiplex message streams.

Avoca[OMa90] isavariant of the z:-kernel. The most significant differenceisanovel
multiplexing scheme to which al Avoca protocols must adhere, which is discussed in
Chapter 2.

The Parallel Protocol Framework [GNI192] emphasizes support for parallel protocol
execution. In addition to a framework like that of the =-kernel, it provides routines for
mutual exclusion management of critical sections, ordering mechanismsfor protocol sthat
expect implicit event ordering, and sequence number generation routines to support the

ordering mechanisms.
The advantages of a protocol framework are:

Codereuse. This takes two forms. The first is reuse of the support routines, which are
used by many or al protocols in the framework. The second is reuse of a given
protocol implementation, since auniform protocol interface allowsit to be flexibly
composed with different adjacent protocolsin different contexts.

Consistency. The consistent structure imposed on protocols makes it easier to develop
new protocols and maintain or modify existing protocols.

Performance. Performance of protocols in the framework is promoted by a protocol
structure designed for efficiency and use of carefully designed and tuned support
routines.

Protocol portability. If all protocol accessto operating system functionsismediated by the
framework, then al the protocols are portable to any system where the framework
has been installed.

1.3.2 Formal Techniques

Formal techniques aso offer some support for protocol development. However, these
mainly focus on aspects of protocol specification. Specifications are expressed using
Formal Description Techniques (FDTs) such as Estelle, LOTOS, or SDL [vB87]. For-
mal specification of protocols is desirable because it makes requirements precise and
unambiguous for everyone involved in the design and implementation process, includ-
ing automated tools. It also makes it possible to manipulate, analyze, and predict the



behavior of the system during the design stage and prior to implementation. FDTs fall
into two general categories, state models and sequence models [Pia83]. In state model
FDTs, the input/output behavior of a system is defined indirectly by specifying a state
machine with input and output. In sequence model FDTS, the input/output behavior of a
system is defined directly. Most FDTs cannot fully specify a protocol, so usually some
of the specification is informal, and sometimes multiple FDTs are used. The form of the
specification determines what formal techniques are applicable in subsequent phases.

A protocol specification may be checked for two kinds of correctness properties.
General properties are properties that are desirable for every protocol, such as being
deadlock-free and not having unexecutable code. Specific properties are properties that
arerelated to the functional objective of aparticular protocol, such as delivering messages
inorder. Thereareavariety of techniques (Protocol Verification Techniques) for checking
correctness of a specification. Some are fully or partially automated. In general, agiven
technique is only applicable to certain FDTs, and can only be used to check certain kinds
of properties[Saj85].

There are techniques for estimating the performance of a protocol based on its spec-
ification. These are based on simulation models generated from the specification, and
gueuing theory analysis driven by the specification [Rud85].

Compared with protocol specification and verification, there hasbeen lessinvestigation
of formal techniquesto support protocol implementation [Cho85]. However, some FDTS,
particularly state model FDTSs, give strong guidance to implementation. Certain FDTs
have associated automatic synthesizers that can output part of a protocol implementation
based on the specification. These arerelatively low level, implementation-oriented FDTS,
and the generated implementation takes the form of a skeleton which must be completed
with programmer code.

RTAG [And85] represents adifferent sort of formal technique. In RTAG, protocolsare
specified using an attributed grammar. The grammar is directly executable viaan RTAG
parser, resulting in the appropriate behavior for the protocol. Again, some explicit code
isneeded. RTAG's performance is not competitive with conventional implementations.

1.4 New Strategiesfor Supporting Protocol Development

This dissertation proposes two new strategies for supporting protocol development: con-
straining protocol specifications, and using a special-purpose programming language.



1.4.1 Simplifying Protocol Development by Imposing Constraints

| view protocol frameworks as deriving their power from constraints. They constrain
the structure and interfaces of protocols, and in effect constrain many of the low-level
implementation details by providing support routines. They preempt aclass of implemen-
tation decisions from the implementer—those decisions that can be based on knowledge
of protocolsin general, and do not depend on the particular protocol. Constraining proto-
cols to advantage is possible because of the underlying regularity in the problem domain.
Theoretically, a protocol could have an arbitrary structure, use arbitrary interfaces, and
apply arbitrary algorithms; but in practice, and with experience, patterns and consensus
have emerged regarding good solutions that hold across protocols.

Stated another way, there are two motivationsfor the constraints imposed by protocol
frameworks. Firgt, they are intended to enforce a good design discipline. It has been
argued that the development of a new engineering discipline often happens in two phases
[Hol91]. Inthefirst phase, the capabilities of tools are expanded to cope with the growing
set of problems. In the second phase, tools impose a carefully selected set of constraints
on the engineer in order to enforce a design discipline based on accumulated experience.
Protocol frameworksreflect their designers' ideasof agood design disciplinefor protocols.

The second motivation for protocol framework constraintsis that it makes possible a
more powerful tool. In effect, the more the user is constrained, the more the framework
knows about what the user wants to do, and can help the user do it with support routines,
for example.

A framework could derive more power by imposing more fundamental constraints,
constraints that apply to protocol specifications. Doing so would further narrow the
design space, thereby ssimplifying the problem domain. One example of such a constraint
would be a constraint on message header formats. Header formatsare not implementation
decisions; they must be given in a specification because different implementations of a
given protocol must agree on the header format in order to interoperate.

Specification-level constraints preempt design choices not only from the final im-
plementors of protocols, but also from designers and standards committees. Thus, a
constraint imposed at the specification level might exclude some existing protocols, even
standardized protocols. Note however that excluding a particular specification need
not mean excluding the equival ent functionality—constraints should allow the equivalent
functionality to be realized in the form of other protocols or collections of protocols.

Existing protocol frameworks restrict their constraints to implementation internals,



thereby limiting their power, in order to support existing and conventional protocol spec-
ifications. Avoca [OMa9Q] is an exception; all Avoca protocols must adhere to a novel
multiplexing scheme that impacts protocol specifications. Avoca does not, however, use
specification-level constraints as ageneral strategy.

Imposing constraints on protocol specifications is one of the two high-level strategies
explored in this dissertation.

1.4.2 Language Support for Protocol Development

The second new strategy explored in this dissertation is the use of a special-purpose
language for implementing protocols. This research focuses not on language design
and implementation, but rather on protocol abstractions and protocol-oriented compiler
optimizations.

This strategy essentially embeds a protocol framework in alanguage. Protocol frame-
works support protocol development through support for code consistency, performance,
code reuse, and portability. A protocol implementation language can potentially extend
and add to those advantages in the following ways:

A high level of abstraction. A language can present a seamless, high-level model ap-
propriate for thinking about and concisely expressing protocols. In a protocol
framework, much of the implementation detail is exposed and must be specified by
the programmer.

Protocol-oriented compiler optimizations. A compiler can perform optimizations based
on specific common behaviors of protocols.

Fine-granularity integrated support routines. The support routines that are imple-
mented as functions and macros in protocol frameworks can be an integral part
of alanguage. They can be implemented as language primitives, or in some cases,
not visible at the source code level but instead automatically applied where needed.
They can have agranularity asfine as an assembler instruction.

Constraint enforcement. A language is the perfect medium for enforcing constraints:
satisfying the constraints is equivalent to being a legal protocol program, and any
implementation choices below the source language level are in the hands of the
compiler. In contrast, the user of a protocol framework can circumvent itsimplicit
constraints, for example by using his or her own algorithm in the place of a support
routine.

Portability. Portability of protocolsimplemented in a protocol framework depend on the
programmer adhering to the discipline of allowing all system support to be mediated



by theframework. A compiler can ensure that protocolsnever directly make system
calls, they just use the language’s runtime system. A compiler and runtime system
is provided for each system.

Language-level debugging. Protocol-oriented debugging support can be incorporatedin
the compiler.

Transparent multiprocessing. A compiler for a protocol implementation language might
be able to generate the appropriate locking transparently, so that protocol source
code is independent of the degree and style of multiprocessing.

Protection. The boundaries between protocol modules can be enforced using techniques
such as static analysis and runtime type checking. This would afford greater flex-
ibility to the mapping of protocols onto address spaces, since arbitrary protocols
could be co-located in privileged address spaces. This could in turn lead to higher
performance by reducing the frequency with which messages must cross address
space boundaries.

1.5 Morpheus

This dissertation presents Morpheus, amodel for protocol implementationthat isintended
to be redlized as a programming language. My thesis is that the combination of the
two novel strategies employed by Morpheus—constraining protocol specifications, and
using a specia-purpose language—provides powerful program devel opment support for
network software. As evidence, this dissertation will show how these strategies allow
Morpheus to support three well-established principles of software development: abstrac-
tion, modularity, and software reuse.

15.1 Abstraction

Morpheus provides high level abstractions for protocols. A high level of abstraction
makes it easier to develop protocolsin the following ways.

e Thereisaseamless model for thinking about protocols. The fundamental network
abstractions such as messages and connections are an integral part of the language.
In protocol frameworks, many low level implementation details are visible, making
it difficult to design at ahigh level.

e The programmer has fewer implementation details to specify. Morpheus hides the
implementationsof theabstractions. Inaprotocol framework, the programmer must
make more low level implementation decisions.



e The protocol abstractions embody adesign discipline. The programmer is protected
from hanging himself or herself with bad implementation choices because those
choices are preempted by Morpheus. Protocol frameworks are more limited in
terms of the implementation choices they can preempt, and the programmer has
more latitude to reject the provided implementations and use his or her own.

e The programs implementing protocols are concise in the sense that protocols are
expressed with fewer statements and declarations. This notational economy makes
protocol programseasier to understand, write, debug, and modify. Unlike adensely
coded APL program, which is hard to understand, Morpheus reduces verbiage by
hiding implementation details, which makes a program easier to understand. In
a protocol framework much implementation detail is an explicit, visible part of a
protocol program.

e The decomposition of functionality into simpler protocols is encouraged by the
elimination of redundant programming at eachlayer. Any protocol behavior that can
predictably associated with every protocol is provided by the protocol abstractions
instead of being specified by the programmer.

152 Modularity

A softwaresystemismodular if it isstructured asacollection of parts, called modules, that
interact only through well-defined interfaces. The advantages of modularity derive from
the high degree of independence of the modules. Individual modules can be designed,
implemented, and modified independently of each other, possibly in parallel by different
people. The software can be better understood, and consequently better designed, because
it can be understood one module at atime.

Unfortunately, protocol modules entail performance costs. One source of overhead is
control transfer between protocols. For example, if each protocol were implemented as
a process, passing a message from one layer to the next would involve a context switch.
The protocol frameworks described above all use an upcall structure [Cla85] in which
layers interface to each other via function calls within a common address space. While
much more efficient than a context switch, this still entails some overhead.

A less obvious but more significant source of performance cost isinformation hiding.
The best criterion for the decomposition of software systemsinto modulesis the hiding of
design decisions [Par72]. Unfortunately, this has two potential pitfalls for performance.
First, potentially useful globa information may not be available to any of the protocol
modules. For example, each protocol might have to test whether there is enough space
left in a message data structure for the protocol to add its header. If instead all the



protocolswere combined into a single protocol with asingle large header, thistest would
be performed only once, or perhaps avoided atogether by allocating sufficient header
space. Second, one layer may have information that could be useful at another, but
the second layer must do without, or perhaps recompute the information, because the
information that can be passed between layersis restricted by an interface. For example,
two adjacent protocols may both manipulate message data, iterating through the datain a
message performing some computation. If one protocol knew what data manipulation the
other needed to perform, it could combine it with its own data manipulation, eliminating
redundant memory accesses and loop overhead.

Conventiona network software is limited to coarse-grain modularity because of the
performance penalties for layering. Performance costs discourage the hiding of design
decisionsin separate protocols. Instead, design decisions are combined in large, complex
protocolsthat are hard to design, implement, debug, modify, and maintain.

Clark hasargued for even lessmodularity in network software[Cla82, CT90]. Because
protocol specifications leave flexible the exact nature of the interface between adjacent
protocols, itisentirely feasibleto combinetheimplementation of adjacent protocolsinto a
single module, aslong astheir behavior is consistent with the layered specification. Clark
has advocated the use of this technique to improve performance.

In theory, the performance penaltiesfor layering should make highly modular network
software slower than less modular software; in practice, however, highly modular network
software has performed comparably with less modular software [HPAO89, OP92]. What
this demonstrates is that the software development support provided by protocol frame-
works buys enough performanceto compensate for performancelosses due to modularity.
In other words, there are two main factors determining performance: the performancethat
could potentially be obtained given a particul ar degree of modularity, and the devel opment
support (increasing with modularity) that determineshow close the programmer will come
to an implementation that achieves the theoretical potential. Low-modularity software
tends to fall far short of its potential due to the difficulty of developing the software;
but highly modular, framework-supported software comes much closer to attaining its
somewhat lower potential. In summary, modularity seems to pay back part of its own
performance cost by contributing to better implementations.

Morpheus promotes modul arity of network software by using constraintsand compiler
optimizations to reduce the performance penalty for protocol layering.



153 Software Reuse

Morpheus supportstwo forms of software reuse. Thefirst isthe reuse of system-provided
software in the form of object code that a Morpheus compiler generates beyond the
behavior explicitly specified by the programmer. This is the Morpheus equivalent of
protocol framework utility routines, but makes up more of the low-level implementation
of aprotocol than can be supplied by utility routines. Thisreused softwareisaconsequence
of Morpheus's high level of abstraction; the higher the level of abstraction, the greater
the portion of the executable implementation is implicitly provided by the compiler, and
hence reused in different protocols.

Morpheus also supports reuse of individual protocol implementations. Morpheus
protocol modules may be flexibly composed with different adjacent protocolsin different
contexts, allowing them to be reused in different protocol graphs. This is made possible
by Morpheus's uniform protocol interface (UPI) and its support for a high degree of
modularity.

Protocol reuserequiresa UPI so that arbitrary protocols are syntactically composable.
The x-kernel on which Morpheusis based imposesa UPI, but thisinterface admitsanum-
ber of loopholesthat interfere with syntactic composability. The AvocaUPI [OMa90] isa
revision of the x-kernel UPI that increases the likelihood of syntactic composability. The
MorpheusUPI islikewisearevision of the z-kernel UPI, in part to increase composability,
but it incorporates different solutionsto the z-kernel’s composability problems.

Protocol reuse also requiresahigh degree of modularity. If aprotocol module performs
a combination of functionalities motivated by a particular context of adjacent protocols,
that module is not likely to be appropriate in other contexts. If, on the other hand, a
protocol module encapsulates asingle, “atomic” function, then that moduleismorelikely
to beuseful in other protocol graphs. Asdescribed above, Morpheus promotes modul arity
by using constraints and compiler optimizations to reduce the performance penalty for
protocol layering.

Fine granularity of reusable modules has an additiona requirement beyond a low
performance penalty: the uniform interface must accommodate fine grain decomposition.
If reusability were not a concern, each interface between modules could be customized to
the particular decomposition; but where reusability isarequirement, all the modules have
identical interfaces. The design of this interface determines the kinds of decompositions
that are possible. For example, if the uniform protocol interface does not support the
sharing of flow control information, then flow control cannot be encapsulated in separate



protocol modules, and instead each protocol must implement its own flow control or
do without. By accommodating sharing of flow and congestion control information,
Morpheus's uniform protocol interface supports finer grain decomposition than the -
kernel or Avoca.

| refer to the decomposition of network softwareinto simple, reusable protocol modules
as the building-blocks approach to devel oping network software. Such protocol modules
can be used as building-blocks, composed to implement the same communication services
that might have been implemented using a few, large protocols. This approach has been
advocated previoudy [HRPAO89, OMa90, OP92], but Morpheus contributes new support
through its reduction of the performance penalty for layering and its protocol interface.

154 Performance

From the point of view of supporting network software development, Morpheus's perfor-
mance optimizations reduce the performance penalty for layering. Since the performance
cost per moduleisless, itispractical to decompose network softwareinto finer-grain mod-
ules. Thisincreased modularity makesit easier to develop and reuse network software.

There is an equally valid alternative view of Morpheus's optimizations: that they
simply improve performance. If applied to a given protocol design with a fixed number
of protocol modules, they will result in improved performance over an unoptimized
implementation.

In other words, the performance payoff of Morpheus's optimizationsislike money; it
can beinvested in greater modularity, or it can be banked as a performance improvement.

155 Scopeand Limitations

The research presented in thisdissertation is exploratory. It exploresthe potential of some
new strategies for supporting the development of network software. It does not address a
neatly circumscribed problem or provide a complete solution. In order to better focus on
the potential of Morpheus's strategies, tangential concerns have been left incompl ete.
The Morpheus problem domain has been limited to the asynchronous, one-to-one
(unicast) protocols. This is the primary class of network communication, and includes
TCPR, IP, and UDP, as well as the low-level protocols that underlie other varieties of
communication service. Synchronous communication (such as Remote Procedure Call)
and multicast communication, while clearly important, are not addressed in this research.
The design and implementation of Morpheus has been left incomplete wherever it



is not directly related to support for protocols. Consequently, there is no compiler, no
formal semantics, and no grammar. The focus of this research is not language design
and implementation, but rather on protocol abstractions and protocol-oriented compiler
optimizations. The syntax and semantics of Morpheus protocol abstractions are presented
informally, and the feasibility and performance of a compiler, including the optimization
techniques, isargued indirectly.

Morpheus is designed for uniprocessor execution. Multiprocessing might well moti-
vate different protocol abstractions and performance optimizations.

The use of specification-level constraints effectively limits Morpheus to supporting
future protocols. Future protocols may be specified within the new constraints, but it is
too late to constrain existing protocols. The particular constraints imposed by Morpheus
areidentified in the course of this dissertation and summarized in Chapter 5.

1.6 Dissertation Overview

Chapter 2 shows how Morpheus provides a high level of abstraction. The Morpheus
uniform protocol interface is presented in that chapter. Chapter 3 shows how Morpheus
reduces the latency penalty for layering, and Chapter 4 shows how Morpheus reduces
the throughput penalty for layering. Chapter 5 summarizes Morpheus's constraints and
makes some concluding remarks.






CHAPTER 2

MORPHEUSPROTOCOL ABSTRACTIONS

Morpheus's protocol abstractions support protocol development in two ways. First,
they provideahigh level of abstraction. This supports protocol development by providing
a seamless model for thinking about protocols and relieving the programmer of making
and expressing low-level design decisions. Second, these abstractions present a uniform
protocol interface well-suited to decomposition. This permits reuse of simple protocol
modules, the building-blocks approach.

This chapter begins by presenting the protocol abstractions, which are represented as
objects. The high level of these abstractions is demonstrated by comparison with their
low-level implementation. The uniform protocol interface is presented in the course of
describing the protocol abstractions. A case is then made for the feasibility of imple-
menting a Morpheus compiler. Finally, the protocol interface is contrasted with that of
the x-kernel Uniform Protocol Interface on which it is based. The Morpheus protocol
interfaceis shown to have greater syntactic composability and support a greater degree of
decomposition.

2.1 Morpheus Objects

Morpheus represents the fundamental protocol abstractions as objects. The Morpheus
model of protocolspartitions state information such that each action operates on a specific
body of state information. Object-oriented programming fosters this way of thinking by
packaging data together with related procedures.

Morpheus provides two kinds of pre-defined objects. Utility objects are instantiated
directly to provide services of use to many protocols. Protocol component objects are
refined by the programmer to derive objects specific to a given protocol.

It isirrelevant to this research whether or not programmers can also define their own
completely new objects. In the examplesthat appear in thisdissertationit will be assumed
that M orpheus does not support user-defined objects. Rather, objectsrepresenting protocol
abstractions are embedded in an otherwise C-like language.



2.1.1 Utility Objects

Morpheus provides utility objects to perform some common services for protocols. In
protocol frameworks, such utilitiesareimplemented aslibrary routines. The utility objects
are Messages, Maps, and Events [HMPT89].

Maps provide a generic mapping service, mapping values of one type into values of
another (possibly identical) type. They provide operations for entering, looking up, and
deleting mappings from one value to another. They are useful for mapping from onetype
of address into another. A Map isimplemented as a hash table.

Eventsprovideamechanism for scheduling thefuture execution of aspecified function.
Events may be scheduled or cancelled. Protocols can use them to send periodic “I am
alive” messages, or to take recovery actionsif a message is not acknowledged within the
expected interval, for example. Events are implemented in the Morpheus runtime system,
using operating system timing support.

Messages are Morpheus' s most interesting utility object due to several novel features.
First, header fields are dways word aligned, making access more efficient. Thisis made
possible by a constraint on protocol specificationsthat requiresthat headers and data each
be an integral number of words and that individual header fields be word aligned relative
to the start of the header.

Second, byte ordering conversionsfor header fieldsare performed automatically. Byte
ordering of datais handled differently; thisis discussed in Chapter 4. The byte ordering
supported by a host machine may not match the byte ordering that a protocol specifies
for its message header. Morpheus smplifies programming and increases portability
by transparently resolving the potential mismatch. The byte ordering specified by the
protocol is explicitly declared in a Morpheus protocol program. Hence, a Morpheus
compiler knows both the protocol’s byte order and the byte order for the compiler’starget
machine, so it can generate the appropriate object code for accessing header fields.

The last novel aspect of Messages is the segregated message abstraction. Segregated
messages expose some message structurethat is not exposed by the conventional message
abstraction. Segregated messages are motivated and discussed in Chapter 4.

2.1.2 Protocol Component Objects

TheMorpheusprogrammer implementsaprotocol by refining built-in base classes, thereby
deriving subclasses that are specific to the protocol, asillustrated in Figure2.1. A subclass
isderived from abase class by adding new state information (declaring additional instance



variables) and extending the base class behavior (defining additional procedure code that
augments the base class procedures). A protocol implementation consists of object
subclasses rather than object instances because a protocol entity generally comprises
multiple instances of its objects; each instance of a protocol (each entity) is made up of
objects that are instances of that protocol’s subclasses. Furthermore, there can be more
than one instance of a given protocol within the protocol graph of asingle host.

a subclass a subclass
used in protocol A used in protocol B

a base class

Figure 2.1: Protocols as Refinements

Morpheus defines base classes corresponding to the fundamental elements of Mor-
pheus's model of protocols. These base classes—Protocol, Over Sap, Under Sap, Over-
Session, and Under Session—are schematically depicted in Figure 2.2. OverSaps and
Under Saps are components of Protocols, and Over Sessions are components of OverSaps,
while UnderSessions are components of UnderSaps.

A protocol entity isan instance of aprotocol implementation. In Morpheus, a protocol
entity is represented by a Protocol object.

A Service Access Point (SAP) is an interface between a communication service and a
user of that service—it istheinterface by which a service user accesses a communication
service. Theusersof acommunication service may betreated as protocols, and oftenarein
fact higher level protocolsimplementing higher level communication services. Likewise,
a communication service consists of a protocol at the top of a directed graph of lower
level protocols. Thus, since a SAPis an interface between a communication service and
auser of that service, it is also, more concretely, an interface between protocol entities.
The using protocol isreferedto as being on top of, or being a higher level protocol of, the
the top protocol of the communication service. The top protocol of the communication
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Figure 2.2: The Base Classes

serviceisrefered to as underlying, or being a lower level protocol of, the using protocol.

An entity associates a unique address with each SAP to a higher level entity. There
may be multiple such SAPsbecause an entity may serve more than one higher level entity.
This address or multiplexing key associated with a SAP is used to tag messages so that
outgoing messages from multiple higher level protocol entities can be multiplexed and
arriving messages can be demultiplexed to the corresponding destination entities. An
entity may aso have multiple SAPs to lower level entities in order to use the different
communication services (such as access to different local area networks) represented by
the different lower level entities.

In Morpheus, a SAP is represented by a pair of objects, with one of the objects
belonging to one of the involved Protocols, and one belonging to the other. An OverSap
object represents a SAP shared with a higher level Protocol, and an UnderSap object
represents a SAP shared with a lower level Protocol (an object is “over” or “under”
with respect to the Protocol of which it is a component). The operations provided by
an OverSap or UnderSap are invoked by the adjacent Protocol. For each OverSap or
UnderSap object belonging to a Protocol, the other Protocol sharing the object has a
corresponding object, an UnderSap or OverSap respectively, which provides operations
invoked by thefirst Protocol. Thusa SAP, which isatwo-way interface, is represented as
an OverSap-UnderSap pair, asillustrated in Figure 2.3.

A conversationisthe exchange of logically related messages between apair of SAPs—
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Figure 2.3: Sap and Session Objects

effectively, between a pair of peers. (In amulticast model, a conversation would involve
agroup of SAPs) The interfaces to different conversations are treated as distinct from
the SAP interface. The interface at one end of a particular conversation is a session.
Operations on a session do not specify the pertinent conversation because that isimplicit
in the session. There are two addresses associated with a session: the address of the SAP
at “thisend” of the conversation, and the address of the SAP at “the other end.”

There is an dternative to the session approach, which treats distinct conversations
as having distinct interfaces. Instead, the sending and receiving of messages at one end
of a conversation could be considered as part of the overal SAP interface. Operations
involving a conversation would specify the pertinent conversation as an argument to the
operation.

Morpheustakesthe session approach, distinguishing theinterfacesto different conver-
sations. Thisissimpler and more efficient since it avoids specifying the pertinent conver-
sation with every operation on the conversation. Since sessions, like SAPs, are two-way
interfaces, Morpheus again uses a pair of objects to represent a session. OverSession-
UnderSession pairs areillustrated in Figure 2.4.

The complexity of OverSap-UnderSap and OverSession-UnderSession pairs is con-
cealed by Morpheus. For the programmer it is as if a pair were combined into a single
object, with some of its operations implemented by one protocol and some implemented
by the other. For example, instead of invoking an operation on a lower level protocol’s
OverSap, a protocol invokes the operation on its own corresponding UnderSap. The
Over/Under distinction is maintained, however, since the operations a protocol provides
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Figure2.4: Sessions

for its OverSaps and OverSessions are different from those it provides for its UnderSaps
and UnderSessions.

The operations supported by Morpheus objects make up the Morpheus protocol in-
terface. These operations are not the same as the operations programmed by the object
implementor. The operations supported by an object—the operationsthat one protocol in-
vokesto get another protocol to do something—are called external operations. In contrast,
internal operations are the operations programmed by the object implementor.

The gap between the external operations and the internal operationsis both syntactic
and semantic. There is a syntactic gap because one protocol has no way to invoke
operations on, or even refer directly to, Sap or Session objects belonging to another
protocol. Instead it invokes an operation on one of its own objects, which results in
the operation being performed by the corresponding object with which it is transparently
paired. For example, an external operation on an UnderSap would be realized as an
internal operation on the corresponding OverSap.

There is also a semantic gap between some externa and internal operations because
the Morpheus implementation provides some of the semantics. The object implementor
programs internal operations that are specific to a particular protocol, and the Morpheus
compiler augments these internal operations with generic protocol behavior to make up
complete external operations. A compiler can implement external operations in terms
of the corresponding internal operations using a variety of techniques, including code
generation, inheritance, and shared infrastructure routines.

The object operations are summarized in Table 2.1. For purposes of research, | have
selected aminimal functional set of protocol operations; apractical system would require



some additional operations, such as for terminating conversations.

EXTERNALLY CORRESPONDING

INVOKED OPERATIONS INTERNAL OPERATIONS
createProtocol (protocol Class,links) protocol .addOver Sap(overSap)
protocol.initProtocol (under Saps)

under Sap.getL ocal Addr() overSap.getLoca Addr()

underSap.enableUpwardSessionCreate() | overSap.enableUpwardSessionCreate()
under Sap.createUnder Session(hostAddr) depends on the two shapes involved
overSap.createOver Session(hostAddr) depends on the two shapes involved

under Session.sendThruput(msg) overSession.sendThruput(msg)
under Session.sendL atency(msg) overSession.sendL atency(msg)
overSession.deliver Thruput(msg) under Session.deliverThruput(msg)
overSession.deliverLatency(msg) under Session.deliverL atency(msg)
over Session.grantSends(number) under Sessi on.grantSends(number)

under Session.grantDelivers(number) overSession.grantDelivers(number)
Table 2.1: Object Operations

These operations perform the following activities:

createProtocol ( protocolClass, links) This external operation isuniquein that it is not
an operation on an object, and it isnot invoked by aprotocol. It creates anew proto-
col entity that isan instance of the protocol implementation given by protocol Class.
The links arguments provide information for creating one or more UnderSaps, as
explained later in this chapter. An integral part of the identity of a protocol en-
tity is the set of underlying communication services to which it is attached via its
UnderSaps, since these (together with the protocol itself) determine the commu-
nication service provided by the protocol entity. This createProtocol operation is
used repeatedly to create Protocols on top of previously created Protocols, thereby
incrementally constructing the graph of protocols on a given system.

The internal operation protocol.initProtocol( under Saps ) initializes the newly
created Protocol. The internal operation protocol.addOver Sap( over Sap ) adds a
newly created OverSap (corresponding to the newly created Protocol) to the set of
OverSaps belonging to an existing Protocol.

under Sap.getL ocalAddr() This external operation returns the address of the host
on which this SAP resides. The corresponding internal operation over-
Sap.getL ocalAddr () implements the address |ookup.



under Sap.createUnder Session( hostAddr ), over Sap.createOver Session( hostAddr)
These external operations create an OverSession-UnderSession pair. The pair rep-
resents the local end of a conversation between the SAP specified by under Sap or
over Sap on which the operation isinvoked, and the corresponding remote SAP on
the host identified by hostAddr. The corresponding internal operations depend on
the shapes of the protocol involved.

under Sap.enableUpwar dSessionCreate() This externa operation grants permission
to the underlying protocol to open a conversation by creating an OverSession-
UnderSession pair between the invoker and the underlying protocol. The
corresponding internal operation over Sap.enableUpwar dSessionCreate() sm-
ply records that permisson was granted, in case a message arrives for the
specified SAP. The underlying protocol would then be allowed to invoke over-
Sap.createOver Session( addr ). Thismakesit possible for aremote peer toinitiate
a conversation. Without this permission, the local peer is not subject to uninvited
messages; a remote peer must wait until the local peer initiates a conversation via
under Sap.createUnder Session( addr ).

under Session.sendThruput( msg ), under Session.sendL atency( msg ) There are two
operationsfor sending messages because oneis optimized for latency and the other
for throughput, and the optimizations show through at the source code level. These
external operations pass a message to a lower level protocol to be transmitted to
the session at the remote end of the conversation whose local end is represented by
under Session. The corresponding internal operations, over Session.sendThruput(
msg ) and over Session.sendL atency( msg ) respectively, transmit the message in
accordance with their protocol. The two operations are semantically identical, but
differ in their syntax and implementation. SendL atency isstructured asan ordinary
function and optimized for latency. SendThruput is structured as a collection of
functionsthat share some datastructures; thisstructure providesthe necessary hooks
for Morpheus's throughput optimization. This Situation is motivated and discussed
in Chapters 3 and 4. The remainder of this chapter is presented as though there
were a single unified send in order to simplify the exposition.

over Session.deliver Thruput( msg ), over Session.deliver Latency( msg ) Aswasthe
case for sendThruput and sendL atency, there are two operations because one is
optimized for latency and the other for throughput, and the optimizations show
through at the source code level. These external operations deliver an arriving mes-
sage to a higher level protocol. The message is part of a conversation whose local
end is represented by over Session. Note that a lower protocol initiates delivery
of a message to a higher protocol, rather than a higher protocol initiating recep-
tion of a message from a lower protocol. The corresponding internal operations,
under Session.deliver Thruput( msg ) and under Session.deliver Latency( msg )
respectively, accept delivery of the message, possibly delivering it in turn to a yet



higher level protocol. This existence of two sets of delivery operationsis motivated
and discussed in Chapters 3 and 4. The remainder of this chapter is presented as
though there were asingle unified deliver in order to smplify the exposition.

over Session.grantSends( number ) This external operation grants permission to a
higher protocol to send some number of messages as part of the conversation
represented by over Session. Itisaprimitivefor implementing flow and congestion
control, which is discussed in greater detail below. The corresponding internal
operation under Session.grantSends( number ) records or acts on this permission.

under Session.grantDeliver s( number ) This external operation grants permission to a
lower protocol to deliver some number of messages as part of the conversation
represented by under Session. Itisaprimitivefor implementing flow and congestion
control, which is discussed in greater detail below. The corresponding internal
operation over Session.grantDeliver s( number ) recordsor acts on this permission.

2.2 Protocol Shapes

Morpheus supports three kinds, or shapes, of protocols. Morpheus partitions protocol
functionality into three categories, and each shape provides functionality from just the
corresponding category. For example, one shape isresponsible for any multiplexing. Ar-
bitrary protocol functionality isimplemented by composing protocol sof possibly different
shapes. Shapes constitute a constraint on protocol specifications; protocol specifications
are not alowed to mix functionality from more than one of the categories.

The benefit of shapes is that they are particularly effective in raising the level of
abstraction. In more concrete terms, they make it possible for a Morpheus compiler to
automatically supply more of the code and data structures that the programmer would
otherwise have to specify. A protocol’s shape is declared in its Morpheus program.
This declaration gives Morpheus extrainformation about a protocol because a protocol’s
shape determines much of what the protocol will do, and the data structuresit will need.
In contrast, much less can be inferred about the structure of a protocol of unrestricted
functionality.

Shape conveys so much information about a protocol because it captures several
characteristicsthat aretied together. The smplest explanation isthat the partition is based
on “plumbing:” does the protocol support multiple higher level protocols, or just one,
and doesit use multiple lower level protocols, or just one? The three shapes, multiplexor,
router, and worker, are schematically depicted in Figure 2.5.



iuu ﬁu T—‘UU i
multiplexor

oo

il
worker
| ool

il
router
L ]

L0 [ Lo T

Figure 2.5: The Shapes

Multiplexor protocols multiplex messages being sent from different sessions, and de-
multiplex those messages to the corresponding sessions when they are delivered. Router
protocols make runtime decisions regarding which lower level conversation (UnderSes-
sion) to use to send a message. The decision could be made on a per-message basis or
a per-OverSession (higher level conversation) basis. Hence, Morpheus routers are more
genera than is usually suggested by the term “router” (e.g. IP); they determine not only
the series of links that a message follows through a hardware network, but also the series
of protocol entities that a message traverses within the protocol graph on a host. Worker
protocols do what might be described as“the real work” such as error detection, buffering
for retransmission, and detecting lost, reordered, or duplicated messages. In particular,
any manipulations of message data are performed by workers.

2.2.1 Worker Protocols

A worker protocol is essentially a message filter. It has just one higher level protocol and
just one underlying protocol. The correspondence between OverSessions to the higher
protocol and UnderSessions to the underlying protocol is one-to-one and fixed. Hence,
a worker focuses on some message processing function without being encumbered by
routing, multiplexing, or the processing of any sort of addressing information.



The code in Figure 2.6 is the Morpheus program for a worker protocol called SE-
QUENCER. SEQUENCER’s function is to reject any duplicate or out-of-order packets.
SEQUENCER’s function does not include any guarantee that every message sent isdeliv-
ered; in the building-blocks approach fostered by Morpheus, that would be the function
of one or more other protocol layers.

Worker SEQUENCER * protocol SEQUENCER has shape “worker” */

LittleEndian Header { unsigned seqNum; }  /* declare header format */
Protocol { unsigned sendSegNum; } /* declare Protocol state variables */
UnderSession { unsigned receiveSegNum; } /* declare UnderSession state variables */

/* no programmer-declared state variables needed for the other classes */
initProtocol( underSaps ) { sendSeqNum =1; }

initUnderSession() { receiveSeqNum =0; }

send(msg)

/* header prepended implicitly */
msg.hdr.seqNum = sendSegqNum-++;
underSession.send(msg); /* underSession: inherited state variable */

}

deliver(msg)

if(msg.hdr.seqNum > receiveSeqNum){
receiveSeqNum = msg.hdr.segNum;
/* header stripped implicitly */
overSession.deliver(msg); /* overSession: inherited state variable */

}

lelse
grantDelivers(1); /* restore 1 credit since message dropped */

Figure 2.6: A worker protocol program

The primary point of this example is that SEQUENCER’s Morpheus program con-
sists exclusively of information that is specific to SEQUENCER. In contrast, the imple-
mentation of a protocol in a genera purpose language inevitably involves considerable
“boilerplate” code that isthe same for many or all protocols, because the general purpose
language does not know about protocols. For example, consider the C implementation
of SEQUENCER in Appendix A. It includes data structure declarations and code for
creating and assembling the component objects, connecting SEQUENCER to the adjacent
protocol layers, creating conversations, and adding and deleting message headers. Using
Morpheus, these routine aspects of aworker protocol are al implemented implicitly. The



SEQUENCER Morpheus program is succinct because one need express only those design
choices that are specific to SEQUENCER, not those that can be made in advance for
arbitrary worker protocols.

Morpheusimplicitly provides data structures such asthe state variables under Session
and over Session. To understand what they represent and why they should be implicitly
provided, consider the nature of aworker. Since aworker does no routing or multiplexing,
there is afixed, one-to-one correspondence between OverSessions to the higher protocol
and UnderSessions to the underlying protocol. Hence each OverSession uses the state
variable under Session to identify its corresponding UnderSession for use in relaying a
message; and similarly in the reverse direction.

Morpheus aso implicitly provides code, or behavior, such as the initialization of the
af orementioned state variables over Session and under Session. Morpheus provides other
data structures which are not explicit in worker protocol programs because they are used
exclusively by implicitly provided code.

SEQUENCER incidentally illustrates how message header byte order isspecified. The
keyword L ittleEndian indicatesthe byte order withwhich fieldsin the header (segNumin
this case) areto be represented. The Morpheus compiler uses thisinformation to generate
the appropriate code for accessing header fields, even though they might use a byte order
different from the native byte order of the host machine.

2.2.2 Multiplexor Protocols

A Multiplexor protocol implementsthe sharing of conversations. A multiplexor supports
a variable number of higher level protocols, represented by OverSaps, but uses just one
underlying protocol, represented by an UnderSap. It provides a potentially large number
of conversations from higher level protocols by combining, or multiplexing them in con-
versations provided by the underlying protocol. Incoming messages are demultiplexed,
or separated into the appropriate higher level conversations, on the basis of the messages
headers. A pair of multiplexing keys in the header identify each message's source and
destination. The source multiplexing key identifiesthe source SAPrelativeto its underly-
ing multiplexor entity, and the destination multiplexing key identifiesthe destination SAP
relative to its underlying multiplexor entity.

Since multiplexors implement the sharing of conversations, they must implement a
policy for sharing conversations. This amountsto apolicy for the scheduling of outgoing
messages from competing higher level conversations. Thisis the dimension along which
multiplexors vary. The ssimplest multiplexor transmits messages first-come-first-serve.



M ore sophisticated multiplexorstransmit messages in an order based on priority or quality
of service considerations, as permitted by flow control.

The Morpheus program for a multiplexor protocol expresses only the policy for
scheduling outgoing messages, Morpheus implicitly providesthe rest of the implementa
tion. Thisisillustrated by the multiplexor FCFS shown in Figure 2.7. FCFS stands for
First-Come-First-Serve, the simplest policy; when amessage is passed to FCFS via send,
it passes the message directly to the underlying protocol via send. Morpheus provides
FCFS with an implementation of the basic tasks performed by every multiplexor such as
creating connections, appending message headers that identify the source and destination
of amessage, and demultiplexing messages based on their headers. For comparison, one
C implementation of FCFS included over 180 lines of C source code, despite calling a
variety of library routines.

Multiplexor FCFS /* protocol FCFS has shape "multiplexor" */
send(msg)

underSession.send(msg);

}

Figure 2.7: A multiplexor protocol program

Onereason that Morpheusisableto provide so much of amultiplexor’simplementation
isthat amultiplexor’sfunction is narrowly defined. Multiplexorsvary in their scheduling
of outgoing messages, but otherwise they all do the same thing.

The other reason that Morpheusis able to provide so much of a multiplexor’simple-
mentation is that it eliminates gratuitous design alternatives by imposing constraints on
multiplexor protocol specifications. Potentially, each multiplexor protocol could use dif-
ferent typesfor its multiplexing keys. Morpheus mandates asingle, universal multiplexor
key type. Again potentially, a multiplexor could use a single multiplexing key that must
be the same for both source and destination. This is sufficient in the case where all the
peers that make up a protocol layer can use the identical multiplexing key. Morpheus
mandates independent source and destination multiplexing keys, which coversthe single
multiplexing key case as a degenerate case. Since the multiplexing key type is the same
for every multiplexor, and all multiplexorshave independent source and destination keys,
itiseasy for aMorpheus compiler to generate the object code that deal s with multiplexing
keys.



In Morpheus, themultiplexing key valuesused to i dentify specific SAPsaredetermined
when the protocols are composed into agraph; the key values are not hard-coded into any
protocol. When a higher level protocol is composed with a multiplexor, the SAP linking
them is labeled with the corresponding multiplexing keys. The keys are selected by
neither the higher level protocol nor the multiplexor; rather they are selected by whatever
software commanded the composition. The composition is specified by a command

createProtocol (protocol Class, linky, ... link,, )

Each link argument identifies a protocol entity and, if that entity is a multiplexor, a pair
of multiplexing keys. The information in each link is used to create an UnderSap for
the newly created protocol. The form of a link argument depends on the underlying
protocol’s shape. If the underlying protocol is a multiplexor, then the link argument is
a tuple of the form (theMultiplexorEntity, keyl, key2). If the underlying protocol is a
worker or router, the link argument consists solely of the underlying entity, without any
keys. Hence multiplexing keys are specified as part of the act of creating/composing the
protocol entities.

Morpheus is at odds with more traditional protocol models that assume that multi-
plexing is a basic part of every protocol. There are two strong justifications for dropping
this assumption. First, Morpheusis intended to support ssimple building-block protocols.
Functionality that would have been combined in asingle conventional protocol isinstead
decomposed into a collection of Morpheus protocols. To the extent that a single level
of multiplexing is appropriate for a conventional protocol, the equivaent collection of
Morpheus protocols need provide only asingle level of multiplexing.

The second reason that multiplexing is not abasic part of every Morpheus protocol is
that layered multiplexingis“considered harmful” [Fel90, Ten89]. Onelevel of multiplex-
ing per host is required to share the network hardware. Logical or layered multiplexing
at additional levels in the protocol graph is not strictly necessary and has significant
disadvantages, among them:

¢ Conversationsthat have been merged cannot be distinguished for purposesof quality
of service.

e Multiplexing at multiple layers hurts performance by duplicating effort.

e Multiplexingisabarrier to the propagation of flow and congestion control informa-
tion between protocol layers.



e Multiplexing complicates application of optimizations based on Integrated Layer
Processing [CT90].

Morpheus does not assume any logical multiplexing; a Morpheus protocol graph may
have a single multiplexor at the bottom. Furthermore, Morpheus's inclusion of a flow
control interface between layersis predicated on the assumption that relatively few layers
multiplex.

2.2.3 Router Protocols

Router protocols use multiple underlying communication services and make runtime
decisions regarding which one should be used to transmit a given message. The decision
may depend on either the individual message or the higher level conversation. Hence,
Morpheusroutersaremore general thanisusually suggested by theterm “router” (e.g. IP),
inthat itincludes not only determining a path through the hosts on ahardware network, but
also determining a path through the protocol graph on ahost, asillustrated in Figure 2.8.

O O

Q = a router protocol

O

\O} 1 = path traversed by message

Figure 2.8: Routersin a Protocol Graph

Router protocols can vary drastically, limiting the part of their implementation that
Morpheus can implicitly provide. Routers can vary even in their plumbing. For example,
the relationship between OverSessions and Under Sessions depends entirely on the partic-
ular router. Sinceroutersvary so significantly, Morpheus can predict only relatively little



of arouter’s structure; routers are the shape for which the programmer must specify the
most information.

The codein Figure 2.9 is the Morpheus program for a router protocol called SIZER.
SIZERisso called because it usesthe size of each outgoing messageto determine which of
two underlying communication services to use. SIZER could be used to build a protocol
graph in which messages requiring fragmentation and reassembly follow one path through
the graph (e.g., one which includes a fragmentation/reassembly protocol), while smaller
messages follow a different path, with the two paths rejoining viaa multiplexor at alower
level.

Router SIZER
/* SIZER is a "virtual protocol," i.e. it has no header */

Protocol{
UnderSap smallUnderSap;
UnderSap bigUnderSap;

hH

OverSession{
UnderSessn smallUnderSessn;
UnderSessn  bigUnderSessn;

h
#define MAX_SMALL_MSG_SZ 1000 /* max msg size accepted by small srvc*/

send(msg ){
if( msg.len <= MAX_SMALL_MSG_SZ ){
smallUnderSessn.send(msg );
Jelse{
bigUnderSessn.send( msg );

}
}

deliver(msg ){
overSession.deliver( msg );

}

initProtocol( underSaps ){
smallUnderSap = underSaps[0];
bigUnderSap = underSaps[1];

}

getLocalAddr(){
/* assumes both small and big srvcs use identical addr space */
return( bigUndrSap.getLocalAd() );



enableUpwardSessionCreate(){
bigUnderSap.enableUpwardSessionCreate();
smallUnderSap.enableUpwardSessionCreate();

}

initOverSessionDown( addr ){
bigUnderSessn = bigUnderSap.createUnderSession( addr );
bigUnderSessn.overSessn = self;
smallUnderSessn = smallUnderSap.createUnderSession( addr );
smallUnderSessn.overSessn = self;

}

initUnderSessionUp( addr ){

overSessn = overSap.createOverSession( addr );

if( underSap == bigUnderSap ){
overSessn.bigunderSessn = self;
overSessn.smallUnderSessn = smallUnderSap.createUnderSession( addr );
overSessn.smallUnderSessn.overSessn = overSessn;

Jelse{
overSessn.smallUnderSessn = self;
overSessn.bigUnderSessn = bigUnderSap.createUnderSession( addr );
overSessn.bigunderSessn.overSessn = overSessn;

Figure2.9: A Router Protocol Program

initOver SessionDown and initUnder SessionUp are internal operations provided by
router protocols corresponding to the external operationsunder Sap.createUnder Session
and over Sap.createOver Session respectively. initOver SessonDown isan OverSession
internal operation that is executed when a higher level protocol invokes the external
operation under Sap.createUnder Session on a SAP that it shares with SIZER. initUn-
der SessionUp is an UnderSession internal operation that is executed when alower level
protocol invokes the external operation over Sap.createOver Session on a SAP that it
shares with SIZER.

In contrast with previous examples, SIZER is dominated by plumbing code. The
plumbing for workers and multiplexors is more constrained, and hence more of it is
provided by Morpheus.

In general, a router protocol has to define its own space of host addresses (more
accurately, a space of identifiersfor the router and its peer entities) since the space of host
addresses provided by the underlying communication services may differ. SIZER is an



exception because it is designed for the case where the two underlying communication
services use the same addresses, and so SIZER can let the underlying space of host
addresses show through as itsown. A router that defines its own space of host addresses
must know how to trandate between its space and those implemented by the underlying
communication services, so that it knows which underlying service to use to reach a
destination host address. Knowing how to trandate addresses is also necessary for a
router entity to learn its own identity; it uses getLocalAddr to determine its address
with respect to an underlying communication service, which it must then trandate into an
address with respect to its own space.

To the extent that routers incorporate specific addressing information, they are less
reusable and more specific to a particular composition of protocols than are the other
shapes. Workers and multiplexors do not incorporate any specific addressing information
internally. Their only interaction with host addresses isto relay getL ocalAddr requests
to the next lower layer until it reaches arouter or the software that interfaces between the
Morpheus protocol subsystem and the underlying network hardware. Multiplexing keys
are not hard-coded into protocol code, but instead specified externally when protocols
are composed. In contrast, routers should perhaps be regarded as part of the information
that determinesthe composition of aprotocol graph; they have to incorporateinformation
about the host address spaces of the protocols with which they are composed.

2.3 Flow and Congestion Control

Flow and congestion control are common protocol functions. Flow control isresponsible
for ensuring that a protocol entity does not transmit messages to a peer faster than the
destination peer can process the incoming messages, flow control synchronizes the sender
with the receiver. One common approach to flow control involves a diding window, in
which thereceiving peer indicates, in theform of awindow of message sequence numbers,
how many messagesit iscurrently willing to accept fromthe sender. Congestion control is
responsiblefor avoiding situations in which the capacity of one hardwarelink is exceeded
by the aggregate message traffic from a collection of conversationsthat areall routed over
the same link. Congestion control can involve routing decisions as well as the throttling
of message transmission. The information on which it is based can take many forms, for
example the rate at which messages are lost, since thisis most often due to congestion.

If all protocolsin a protocol graph multiplex, then each protocol must implement its
own flow and congestion control or go without. The information on which control is



based cannot be shared between layers because control information applies to individual
conversations, and multiplexing combines multiple conversationsinto one (when sending)
and separates one conversation into many (when delivering).

In contrast, wherever layersdo not multiplex, thereisthe potential to encapsulate flow
or congestion control in a separate protocol module because the same conversations that
flow through that protocol a so flow through some number of adjacent protocols.

Morpheus supports the encapsulation of flow and congestion control in modules sep-
arate from other protocol functionality by providing a flow and congestion control inter-
face. The interface consists of the under Session.grantDeliver s(number Of M essages)
and over Session.grantSends(number Of M essages) operations. grantSends propagates
information to the next higher level protocol, and grantDeliver s to the next lower level
protocol. Both operations express control information in terms of permission to pass
the specified number of messages. Although control information is expressed in terms
of permission to pass messages, any enforcement is implemented by protocols, not by
the Morpheus language. In other words, Morpheus provides the mechanism for sharing
flow and congestion control information, but the flow and congestion control policies
are determined by the particular protocols. Different policies are appropriate in different
circumstances, and at different pointsin aprotocol graph. Furthermore, aprotocol’s send
policy may well differ from its deliver policy. The Morpheus approach is to implement
the policies as protocols, and reuse the protocols wherever the policies are appropriate.

Policiesfall intothreegenera categories. Thefirst two categoriesinclude policiesused
by protocolsthat are not actively involved in flow or congestion control. Thefirst category
consists of a single policy: the bypass policy. In this case, the protocol smply relays
the flow control information to the next protocol, and relies on that protocol to comply.
This is likely to be appropriate for protocols where there is a one-to-one relationship
between messages passed to the protocol and messages it passes on. The second category
of policieslikewise consists of asingle policy: the “no flow control” (or “infinite credit”)
policy. Under this policy, the protocol behavesasif it had infinite credit to pass messages.
Furthermore, it does not relay flow control information, nor does it expect to receive such
information. This policy makes sense for a protocol that relies on a subsequent protocol
to enforce flow control, e.g. by dropping messages when credit is unavailable.

The third category of policiesincludes al the “real” policies: those that receive flow
control information, and comply with it by either enforcing control on other layers or
propagating their own flow control informationto other layers. Since Morpheus protocols
are decomposed into the smplest possible elements, a protocol whose policy fallsin this



category should either have flow control as its sole function, or have a primary function
with which flow control is inherently intertwined, such as horizontal flow control, or
multiplexing on the basis of quality of service.

In conventional protocols, flow control is combined with many other functions in
a single protocol, and it provides synchronization between peer instances of only that
protocol. In Morpheus, a flow control protocol should perform no other function, and
it should propagate flow control information to provide flow control between peersin
higher layers. Suppose a protocol entity needs to control the flow of messages from a
peer. It uses grantDeliversto throttle the delivery of messages from lower layers. This
information propagates down to a flow control protocol, which trand ates the information
into a message that propagates the information to its peer. The flow control protocol peer
then uses grantSendsto propagate the information up to the peer of the original protocol.
Since this peer, the source of the messages, sends messages only after first receiving
credit to do so, flow control is achieved. Figure 2.10 shows the pertinent routines from
an example flow control worker protocol. This protocol is designed for the case where
the underlying service is reliable, so control information is transmitted in the form of a
number of message credits (as opposed to, for example, awindow of sequence numbers).

The vertical propagation of flow control in either direction cannot continue through a
multiplexing layer. This is because flow control information applies to one data stream,
and amultiplexor aways combines multiple streams into one (when sending) or separates
one stream into many (when delivering). Therefore a multiplexor must in effect grant
infinite credit in both directions; that is, the adjacent layers should assume that they have
infinite credit to pass messages to the multiplexor. Although a multiplexor does not
propagate flow controal, it is essentia that the multiplexor be informed of send credit.
This alows the multiplexor to block or discard sent messages when credit is lacking, and
resume blocked sends, distinguishing between messages on the basis of quality of service
requirements.

A multiplexor could comply with flow control information regarding deliveries by
blocking threads or dropping messages. This has the major drawback that all of the
component streams get the same delivery flow control policy. A better approach is for
each of the component streams to have its own delivery flow control policy implemented
at higher levels, while the multiplexor applies the “infinite credit” policy to deliveries.
This has the additional advantage of decoupling the deliver policy protocol from the
send policy protocol, so that they may be varied independently by composing different
protocols.



deliv(msg)
{

if( msg.hdr.msgKind == DATA_MSG ){
/* just pass it on up */
overSessn.deliv( msg );
}else if( msg.hdr.msgKind == CREDIT_MSG ){
/* propagate the credits as vertical flow control info */
overSessn.grantSends( msg.hdr.numCredits );
msg.destroy();
}else if( msg.hdr.msgKind == OPEN_MSG ){
/* msg already completed its mission
* when it caused sessns to be created
*/
msg.destroy();

}

}

grantDelivs( numCredits )

{

Msg msg;
/* create and send a credit msg */
msg.create();
msg.hdr.msgKind = CREDIT_MSG;
msg.hdr.numCredits = numCredits;
undrSessn.send(msg );
msg.destroy();

}

Figure 2.10: Flow Control Protocol Fragments

2.4 Feasbility of a Morpheus Compiler

| have not implemented a Morpheus compiler because that would involve a great deal of
effort only indirectly related to my thesis. The focus of thisresearch is not language de-
sign and implementation, but rather protocol abstractions and protocol-oriented compiler
optimizations.

However, Morpheus's protocol abstractions have naturally been designed to be com-
pilable. Compilability essentially means that there is enough information in a program
for a compiler to generate an object code implementation. Morpheus has been designed
to provide just enough expressiveness for the programmer to provide the information
that is unique to a given protocol. That information is sufficient, when combined with
a compiler’s built-in information about Morpheus's constrained variety of protocols, to
produce alow level implementation.

The gap between Morpheus source code and its object code implementation reflects



Morpheus's high level of abstraction, and arguments regarding the feasibility of imple-
menting the abstractions have been presented as they were introduced. To recapitul ate,
the parts of a low-level, object code implementation of a Morpheus protocol that are
not explicitly specified in the Morpheus source code are nonetheless determined, by the
following means:

Constraints. Constraints, both at the specification level and below, makeit possibleto pre-
determine specific implementations for many features, regardless of the particular
protocol.

Shape. Implementations can be predetermined for the features that are characteristic of
each shape, and each protocol program begins by declaring its shape.

Other declarations. Declarations such as the message header byte order result in addi-
tional object code that is not explicit in the Morpheus source code.

Morpheus'sdesign was guided by anon-compiler prototypeimplementation. First, the
Morpheus protocol interface was implemented in a protocol framework caled z-prime,
derived from the x-kernel. Support for shapes was then added in the form of source code
templates, with one template for each shape. Each template consisted of C source code
appropriate for the corresponding shape, except that a number of references to undefined
macros appeared in the text. Programming a protocol consisted of defining the macros
with data structures and code corresponding to the particular protocol. A template and
a particular set of macro definitions could then be compiled into the object code for a
protocol.

A Morpheus compiler could parallel this technique. The source program would be
analogous to the macros, but instead of explicit macro definitions, parsing allows the
information to be expressed in amore intuitive and flexible syntax. The compiler’s code
generation routines would be analogous to the templates and framework infrastructure,
completing implementation details not specific to a particular protocol. A compiler
only adds more options to the way in which various protocol features can be realized:
conventional code generation, shared routines, or even object inheritance.

The protocol-framework-and-templ ates approach can duplicate some Morpheus fea-
turesbut fallsshort of others. Itssyntax iscrudeand inflexible. 1t cannot mix programmer-
specified code with implicitly provided code at a fine granularity. Finally, it cannot use
compiler optimizationsto reduce the the performance penalty for layering. Reducing this
penalty isimportant for not only modularity, and through it reusability, but also abstrac-



tion, since Morpheus's high level of abstraction dependsin part on shapes, which in turn
require a high degree of decomposition.

Another approach that can duplicate some Morpheus features but falls short of others
is adding predefined object classes to a general purpose object oriented language (OOL)
such as C++ [Str86]. In this approach, an OOL would be augmented with a collection
of predefined object classes for Morpheus objects, and subclasses of those classes for
each shape. However, like frameworks, genera purpose OOLs would lack compiler
optimizations that reduce the performance penalty for layering. Since the predefined
classes would be written in the OOL source language just like any other classes, they
would be unable to perform actions below the source language level transparently. Since
the predefined classes would use the same general -purpose inheritance mechanism used
for any classes, they would be unable to support fine-granularity mixing of inherited code
with programmer-supplied code.

2.5 Comparison with the z-kernel Uniform Protocol I nterface

Morpheus's protocol abstractions are descended from the x-kernel protocol framework,
which has the basic goal of facilitating the development of high performance protocols.
Thus, Morpheus has a second-generation model of protocols, based on experience with
the z-kerndl.

The Morpheus Uniform Protocol | nterface supports agreater degree of decomposition
than the x-kernel UPI due to Morpheus's flow control interface, which permits flow and
congestion control to be encapsulated in their own protocol modules.

The Morpheus UPI aso eliminates some of the z-kernel UPI’s barriers to syntactic
composability. These are the x-kernel’s control operations and multiplexing scheme.

25.1 Control Operations

The z-kernel UPI’s control operation is an escape hatch, like Unix’sioctl, that allows un-
restricted interaction between protocols. One of itsargumentsis an opcode that identifies
the true operation, and another argument isa pointer to abuffer inwhich arequest or reply
of arbitrary type can be passed. The control operation’s purpose is to permit protocol
operations that are supported by some but not all protocols.

The Morpheus protocol interface does not include a control operation because control
operations limit syntactic composability. The problem is that a protocol that uses a



particular control operation can only be composed with protocols that implement that
particular control operation.

One use of the control operation is to set protocol options. This alows a single
protocol entity to provide different communication services. For example, the User
Datagram Protocol, UDP, can checksum the contents of its messages, or not, depending
on an option. Requiring asingle implementation to provide multiple services complicates
theimplementationand can adversely impact itsperformance. Each of the communication
services could be implemented more ssimply by its own protocol.

Morpheus prohibits options. This constitutes a constraint on protocol specifications.
Morpheus takes the position that, instead of one protocol with options, there should be
a distinct protocol for each value of the options—a different communication service is
implemented by adifferent protocol. The sharing of code between closely related variants
of a protocol should be managed at compile time, not implemented by sharing object
code at runtime. In those cases where the choice of appropriate variant depends on
runtime information, arouter protocol can be used to select the appropriate protocol on a
per-session basis at conversation open time, or a per-message basis at send time.

Morpheus aso eliminates the use of the x-kernel’s control operation to learn the
maximum packet size supported by theunderlying communication service. Thisoperation
is used by x-kernel fragmentation/reassembly protocols to determine the size of the
fragments into which outgoing messages must be fragmented. This situation is like
protocol optionsin that it can beresolved at compiletime, with each value of the maximum
packet size made a constant in a distinct protocol.

Morpheus eliminates another common use of the x-kernel control operation, that of
learning the addresses of the two ends of a conversation. In Morpheus, the address of
the local end of a conversation can be learned by invoking the explicit getL ocalAddr
operation. The address of the remote end of a conversation isreported to a protocol when
the conversation is created, and is easily recorded in a programmer-defined state variable
in the corresponding UnderSession, if needed. I1nthe x-kernel, asession is represented by
a single (informal) object that is a component of the lower level protocol, so the higher
level protocol does not have a convenient way to record the remote address.

Morpheus increases composability by eliminating control operations, but Avoca
[OMa90] uses a different approach called inherited controls. Avoca provides a con-
trol operation interface, and Avoca protocols are responsible for implementing a control
operation that, depending on the opcode of the particular operation, either performs the
itself, if possible, or in turn invokes the same control operation on lower level protocols.



Inherited controlsretaintheflexibility of control operationswhileincreasing thelikelihood
that a composition of protocols will be compatible, since the control operation used by
one need not be provided by animmediately adjacent lower level protocol. However, this
is still not as composable as Morpheus since there must still be some lower level protocol
that implements the control operation. Also, inherited controls require a mechanism for
assigning globally unique opcodes, so that control operations are not misinterpreted by
intervening protocols.

25.2 Multiplexing

Multiplexing involves the assignment of identifiers called multiplexing keys to SAPs. A
multiplexor marks each message with source and destination SAP multiplexing keys,
thereby identifying the higher level conversation of which the message is a part.! This
identification is the basis for demultiplexing received messages to the appropriate higher
level conversations. Hence, a multiplexor must know the multiplexing keys that identify
each of the higher level conversationsit supports. There are various schemes by which a
multiplexor might come to know these keys.

In the x-kernel design on which Morpheus is based (a newer x-kernel design is
discussed below), multiplexors learn keys by a scheme which limits the reusability of
protocols. The multiplexing key identifying a SAP is hardwired into the higher level
protocol, which it communicates to the underlying multiplexor when it opens a conver-
sation. This multiplexing key must be of atype determined by the multiplexor, and must
be different from all other keys used by the multiplexor. Hence the higher level protocol
cannot be reused in situations where the key type or assgnment of keys to protocolsis
different.

Morpheus avoids this problem by explicitly associating the multiplexing key with the
SAP that connects the two protocols, rather than having one protocol communicate it to
the other. The assignment of akey to a SAP is made in the composition specification, not
inany protocol. Each key isstored as state in the corresponding OverSap, so amultiplexor
learns multiplexing keys for each SAP when the SAPs are created and installed.

This addressing scheme is sufficient to increase composability by eliminating mul-
tiplexing key mismatches, but Morpheus goes further to ssmplify multiplexing. Some
protocols, such as IR, identify both ends of a conversation using the same multiplexing
key—in effect, limiting protocols to conversations with other instances of themselves.

1 Some non-Morpheus multiplexors require the SAPS at both ends of a conversation to have identical
multiplexing keys. Their use of a single value to identify both ends of a conversation isaspecia case.



Other protocols, such as TCP, require that multiplexing keys be specified for both ends
of a conversation, allowing clients to communicate with servers, for example. Morpheus
imposes the constraint that all multiplexors require distinct keys (with possibly identical
values) to be specified for each end of a conversation. This accommodates the shared
key situation as a special case, and ensures greater uniformity of Morpheus multiplexors.
Morpheus also constrains all multiplexors to use the same data type for multiplexing
keys, again for uniformity. These constraints contribute to the high level of abstraction
of Morpheus's multiplexor shape, by allowing Morpheus to implicitly provide more of a
multiplexor’simplementation with a minimum of programmer specification.

Avoca [OMa90] approaches the composability problems of «-kernel addressing in a
different way. Avoca assigns each protocol a globally unique multiplexing key which it
usesregardlessof theunderlying multiplexor. Thiseliminatesthe problemsof mismatched
key types, since all keys have the same type, and key clashes (except for one situation),
sincekeysareglobally unique. All implementationsof agiven protocol specification share
the same identifier. This approach has the awkward shortcoming that multiple instances
of the same protocol cannot be composed on top of the same multiplexing protocol since
their keyswould beidentical. Thiswould seem to support my contention that multiplexing
keys are properly thought of as an attribute of the composition, not the protocol.

In Avoca, the higher level protocol is responsible for some of the work normally
performed by the multiplexor. The higher level protocol marks outgoing messages with
the destination multiplexing key and removes the key from incoming messages. (It is
unclear which protocol is responsible for adding or removing source multiplexing keys.)
This seems to offer negligible advantage since it could as well be performed by the
multiplexor. Furthermore, it has the disadvantage that each protocol does the work of
adding and removing multiplexing keys evenif it is not on top of a multiplexing protocol.

| have pointed out two drawbacks of Avoca's multiplexing: multiple instances of
the same protocol cannot be composed over a given multiplexor, and protocols do the
work of adding and removing multiplexing keys even when they are not composed over a
multiplexor. If it were assumed that every protocol multiplexes, then these drawbacks do
not arise. However, this assumption limits decomposition into simple protocol modules,
which is central to Avoca's (and Morpheus's) support for protocol development. Fur-
thermore, as already discussed, there are strong arguments against layered multiplexing
[Fel90, Ten89].

Avoca imposes a constraint on protocol specifications. It requires al protocol head-
ers to begin with the destination multiplexing key and makes the higher level protocol



responsible for adding and removing the key. Starting each header with its multiplexing
key makes it possible to share that field with the multiplexor that uses it to demultiplex,
a dubious benefit. This constraint allegedly serves the additional purpose of supporting
protocol independent tools, such as a debugger perhaps; the protocol identifier is analo-
gous to the return address in an activation record. Note however that without additional
information, a tool would only be able to use the first such multiplexing key/protocol
identifier in a message, because it would be unable to locate the protocol identifiersin
higher level headers nested inside the message. A possible solution would be to constrain
all protocolsto aso include a header length field at a fixed offset from the start of their
headers. To continue the activation record analogy, this would be like a stack or frame
pointer.

This constraint in Avoca is the only case of which | am aware, outside of Morpheus,
of imposing specification-level constraints to support protocol development. However,
Avoca does not use specification-level constraints as a genera strategy.

A new version of the x-kernel, more recent than the design of Morpheus, uses a new
multiplexing scheme. Configuration information supplies each protocol instance with
a string identifier, although instances of the same protocol get the same identifier. A
higher level protocol passesitsidentifier to amultiplexor. The multiplexor accesses other
configuration information which maps the identifiers of the higher level protocol and the
multiplexor into integer identifiers en route to mapping the pair into a multiplexing key,
which isthen cast into the appropriate type by the multiplexor.

The net effect is that the multiplexing key is determined by the composition specifi-
cation, asin Morpheus. The indirection between protocol pairs and multiplexing keysis
intended to support two coexisting strategies for assigning multiplexing keys: either an
explicitly specified assignment, or, the default, the identify function applied to the higher
level protocol’s numeric identifier, as in Avoca. However, two anomalies follow from
assigning the same string identifier to instances of the same protocol. First, there cannot
be two instances of the same higher level protocol over the same multiplexor. Second, if
thereis more than one pair of instances of a given higher level protocol and multiplexor,
then each such pair must use the same multiplexing key, even if the key is not the integer
identifier of the higher level protocol.

In the x-kernel and in Avoca, the multiplexing key that identifies the remote end of a
conversation is supplied, unless it can be inferred from the local key, by an application
or high level protocol. The remote keys are passed to protocols along a path through
the graph when the application or higher level protocol creates a conversation that will



follow that path. The remote keys are not specified in the composition information; they
may be hardwired into the protocols and application, or obtained from name services, or
a combination of the two. In Morpheus, the multiplexing key that identifies the remote
end of a conversation is also specified in the composition information and used to label
the SAP. This is possible because within the protocol subsystem, the multiplexing keys
by which a protocol identifies its destinations do not to vary across conversations; an
entity always communicates with an identical peer or an opposite server/client aspect in
the case of an asymmetric protocol. Greater flexibility is needed only at the application
level, which is outside the protocol subsystem implemented by Morpheus. The interface
between applications and the protocol subsystem is not specified in this research.



CHAPTER 3
LATENCY OPTIMIZATIONS

Reducing the performance penalty for protocol layersis a cornerstone of Morpheus's
support for protocol development. Reducing this penalty makes fine-grain protocol mod-
ulespractical. When performance penaltiesfor layering are high, protocol developersare
motivated to write large, complex, multi-shape, non-reusabl e protocols like conventional
protocols.

Morpheus reduces the layering penalty by using compiler optimizations based on
common patterns of protocol execution. Protocol-oriented optimizations would not be
appropriate in general purpose languages, since those languages are intended for a much
wider variety of programsthat do not behave like protocols.

Latency and throughput are the coinsin which layer penalties are paid. Unfortunately,
Morpheus's throughput optimization tends to make latency worse. This seemsto reflect a
fundamental tension between latency and throughput. Morpheus resolves the competing
demands of throughput and latency by splitting the message path in two, one path for
throughput-dominant traffic and one for latency-dominant traffic. Messages are catego-
rized as one or the other based on their length, since message length independent costs
(latency) dominate for short messages, and message length dependent costs (throughput)
dominate for long messages. Since messages tend to be either fairly short or fairly long,
any reasonable choice of athreshold length for defining “short” versus “long” will work
well.

The Morpheus programmer codes distinct operations for the latency-dominant and
throughput-dominant paths. Send and deliver are split into two operations each: send-
Latency and deliverLatency process short messages, and sendThruput and deliver-
Thruput process long messages. The programmer must provide code for each path
because the optimizations show through at the source code level. Chapter 4, which
presents Morpheus's throughput optimization, concludes with a discussion of possible
aternativesto the two-path scheme described in the preceding paragraphs.

The latency optimizations presented in this chapter al support the dynamic config-
uration of a protocol suite at runtime. Fixing the protocol suite before runtime would



limit the extent to which communication services can be tailored to the needs of specific
applications, since those applications arise at runtime. Furthermore, runtime configura
tion opens the possibility of runtime negotiations between a client and a server to select,
from their local libraries of protocols, a set of protocolsthat both have available and that
satisfies their joint communication service requirements.

This chapter presents the latency optimizations, reports experimental resultsregarding
thelir effectiveness, and concludes with a discussion of aternative optimizations suitable
for compile-time configuration.

3.1 Specific Techniques

There are five latency optimization techniques employed by Morpheus. The first three
are compiler optimizations in the conventional sense. The fourth, while not a compiler
optimization, isadirect consequence of using adomain-specific compiler. Thefifth could
be performed at the source code level of agenera purpose language.

The latency optimizations are applied to sendLatency and deliverLatency. For
clarity, the techniques are described in terms of sendL atency; they apply equally to
deliverLatency.

Morpheus's latency optimizations are based on the common patterns of protocol
execution. Consider the characteristics of the sendL atency operation. SendL atency
takes a message asits argument. Since it is an operation on an OverSession object, there
are in effect two arguments, the message and the OverSession. The typical sendL atency
does some computation, accessing the object for state and other information, and using
the built-in utilities; prepends a header to the message; and passes the message to the next
lower layer via the sendL atency operation of another OverSession. Thisis repeated as
the message passes through “many” layers. Morpheus optimizes for this common case.

Now consider how sendL atencys of adjacent layersinteract at the object code level.
SendL atency isimplemented as a function at the object code level as well as the source
code level. Morpheus protocols share the same address space, and hence interact via
function calls. Function call conventions for modern RISC architectures are as follows!.
The caller function places the calling arguments in registers designated for that purpose.
If there are many arguments, the excess arguments are passed via the stack. The caller
then executes a jump-to-subroutine instruction, which moves the return address into a
designated register and transfers control to the callee function. The calleethen updatesthe

1 This assumes no register windows.



stack pointer to leave enough space on the stack for local variables, temporary variables,
registers saved by the callee, and arguments to be passed to procedures called by the
callee. Any registers that need to be saved, including the return address register, are then
saved on the stack. By convention, certain registers (callee save registers) must havetheir
contents saved and restored by the callee if it uses them; certain other registers (caller
save registers) may be used freely, but must be saved and restored around acall site by the
caller if they areto hold alive value acrossthecall. In preparation for returning, the callee
puts the result in a designated register. It then restores any saved registers, including the
return address register, restores the stack pointer, and jumps to the return address.

3.1.1 Dedicated Message Registers

SendL atency’smessage parameter fitsin aregister becauseit isimplemented asapointer.
If sendL atency callsany procedures, the message hasto be saved so that another argument
can be passed in the argument-passing registers (unless the called procedure takes the
message as an argument, and in the same order in the argument list). Ultimately it
must be restored to its original argument-passing register to be passed to the next layer’s
sendL atency. Morpheus modifies the parameter passing convention by setting aside a
register specifically to pass the message. Thisregister is selected from among the callee
save registers. This way it is efficiently accessible in a register, and furthermore, that
register need not be freed across subsequent calls to either the next layer’s sendL atency
or any other procedures.

The most heavily accessed part of a control message is its header. A pointer to the
message header is used to access or modify fields in the header, and is incremented or
decremented to prepend or strip headers. Morpheus optimizes for this by designating a
callee save register for passing the header pointer explicitly along with the message object
of which it isa part. This eliminates memory accesses otherwise necessary to read or
write the header pointer state variable in the message object, and does so using aregister
that need not be saved across calls.

Message and header registers are initialized when the message is created, either to be
sent or because it wasjust received viaanetwork device. Also, theoriginal contents of the
two registers used are saved at that same time, and restored upon return. This overhead
is amortized over the number of layersin the sendL atency, resulting in an insignificant
per-layer cost. The message and header registers can bereallocated within asendL atency
if registersarein sufficiently short supply or if a second message must be passed, but this
case isthe exception. This optimization could be described as a second procedure calling



convention that coexists with a primary calling convention.
All these implementation details are concealed from the Morpheus programmer, who
sees only operations on a Message object.

3.1.2 Short-Circuit Return

Most often, the last action taken in asendL atency is to invoke the next layer’s sendL a-
tency. When the lower sendL atency returns, the original sendL atency is done and aso
returns. Morpheus short-circuits such returns in a manner ssimilar to optimizations for
tail recursion, so that sendL atencys with no further work are bypassed in the sequence
of procedure returns. Before calling the lower sendL atency, the current sendL atency
restores al registersincluding the stack pointer. It then jumpsto the lower sendL atency,
but instead of giving a return address in the current sendL atency, it gives the return
address provided by the current sendL atency’s caller.

This short-circuit return optimization in itself saves relatively little—a single jump
assembler instruction per layer on atypical RISC processor. However, it contributes to
another, conventional optimization that ismore significant. If there are no procedure calls
in a sendL atency operation, then that function can omit saving and restoring the return
address register and updating and restoring the stack pointer. For this purpose, the short-
circuit return effectively eliminates a procedure call. After applying short-circuiting, a
significant number of sendL atency operations qualify as having no procedure calls. This
occurs frequently since the typical Morpheus protocol isrelatively smple.

This optimization is not implemented for general purpose languages because the
benefit for the average general purpose program is small. In contrast, the Morpheus
sendL atency and deliverLatency operations present a highly specialized domain, one
that can be expected to benefit significantly from this optimization.

A variation on this optimization takes advantage of knowledge about the likelihood
of executing various branches in object code that corresponds to a high level abstraction
rather than being specified by a programmer. Suppose a procedure call were part of a
branch that was known to be infrequently taken. Then instructions to manage the return
address and stack pointer registers—i.e. a “lazy stack”—could be inserted just in that
infrequent branch, so that they would be executed only if necessary.

3.1.3 Procedure Cloning

SendL atency nearly always accesses instance variables in its OverSession objects since



these hold connection state information and other information such as the appropriate
lower level UnderSession object. It also frequently accesses instance variables of the
Sap and Protocol objects to which the Session object belongs. Most of the instance
variables that are used internally are known to be constant because they have to do with
connecting layers together, e.g. the OverSap corresponding to a UnderSap, or the source
and destination host addresses in a multiplexor OverSession. User-declared instance
variables are often constant as well.

Morpheus optimizes for this by generating a customized version of the sendL atency
object code for each OverSession. At compile time, Morpheus generates a template for
each protocol’s sendL atency. When an OverSession object is created at runtime, a copy
of the templateis created and filled in—i.e. object codeis modified—using the addresses
of the Session, Sap, and Protocol objects and the values of those instance variables that
are known to be constant. User-declared instance variables can be flagged as constant
by a keyword. Chains of indirect pointers through memory are collapsed; for example,
the address of the next layer’s sendL atency replaces a chain of pointers that leads to it
through the current layer’s UnderSession and the next layer’'s OverSession. This also
eliminates the need to pass the OverSession object as a parameter.

The end result of the technique is that constants are hardwired into the code. The
constants could not be hardwired into an uncloned procedure because they are different
for each clone. This hardwiring reduces the number of instructions executed for each
clone, eliminating some memory accesses in the process.

This technique is a variation on procedure cloning [Coo83]. A procedure can be
cloned to partition calls to it based on interprocedural constants information, or more
generally, the solution to any forward interprocedural data-flow problem [Hal91]. Instead
of asingle procedurethat must satisfy all calls, each cloneisspecialized to moreefficiently
handle its subset of the calls. The cloning practiced by Morpheus could not be arrived
at by interprocedural analysis because the necessary information—the Session object for
which the procedureis being cloned—is not available at compile time, since Sessions are
created at runtime.

Morpheus' technique could also be classified as runtime code generation. The Synthe-
siskernel [PM188] achieves exceptional performanceusing asimilar technique. However,
in contrast to Synthesis, which generates specialized kernel code, Morpheus generates
specialized versions of protocol operations that are written by Morpheus programmers.

Morpheus' cloning has time and space costs. Thereis the time cost, paid at runtime,
of making a copy of the template and filling in the appropriate constants. Although



this occurs at runtime, it is part of communication channel creation—not in the time-
critical sendL atency path. The space cost is an extra copy of the sendL atency code for
each OverSession; that is, one for each communication channel currently provided by a
protocol. Thereisaready a space cost associated with each channel—a context-state. In
Morpheusthisisthe OverSession object. The corresponding sendL atency clone could be
considered a part of that state. Note also that each clone uses less space than an uncloned
version of a procedure because of the simplifications enabled by the cloning. Theincrease
in code space can be bounded by simply ceasing cloning once a code space threshold has
been reached, as proposed in [Hal91]. Thiswould require keeping one uncloned version
of each sendL atency procedure to operate on any OverSessions that were not allocated
their own clones.

The increased object code size due to cloning could conceivably have a negative
effect on caching and virtual memory. Inlining resultsin asimilar but greater increasein
object code size, but inlining apparently has little effect on caching and virtual memory.
[CHT91] found no obvious evidence of either thrashing or instruction cache overflow due
to inlining, and cited previous reports of similar results. While these studies involved
inlining, they suggest that increased object code size due to cloning would likewise be
free of significant performance penalties.

3.1.4 Language Constructsfor Frequent Tasks

Operations on Morpheus's built-in Message, Map, and Event objects are implemented as
inline object code. Thisis more efficient than implementing this support in the form of a
library of utility routines because procedure linkage code is eliminated and more context
is exposed for conventional optimization. While similar results could be obtained using
inline substitution of support routines (given a compiler which supported it), since these
operations arelanguage constructsin Morpheus, thereisgreater potential for optimization
because the compiler has more information about the code being optimized. The costs
of implementing support utilities as language constructs (as opposed to procedures) are
increased compile time and increased object code size. These costs are held to reasonable
limitsin Morpheus because the set of utilitiesisfixed and small.

3.1.5 Eliminating Header Bounds Checking

The most frequent utility operations are pushing (prepending) and popping (stripping)
headers. Although pushing a header usually amounts to incrementing a pointer, it can



involve considerable bounds checking even in the case where no bounds are exceeded.
Morpheus optimizesthis away by allocating sufficient header space to each message asit
is created, thereby ensuring that the header will not overflow. Thisis possible because the
runtime system can determine the largest combined header that can possibly to prepended
to amessage based on the headers declared by the protocolsin the current protocol graph.

3.2 Experimental Results

To study theimpact of these latency optimizationsin the absence of acompiler, | smulated
generation of object code. This was accomplished by writing protocolsin C according to
the structure of Morpheus protocols; then compiling the C code using gcc into assembler
language for the MIPS R3000 architecture; and finally applying the optimizationsby hand
at the assembler language level. | then performed two experiments to quantify the effect
of Morpheus optimization strategy: counting instructions and measuring end-to-end
latency.

3.2.1 Instruction Counts

The effect of a given optimization depends on both the particular procedure and the
other optimizations present. Therefore | have selected a particular protocol to use as an
example, and report the effects as each optimizationisapplied inturn. The protocol is SE-
QUENCER, which was presented in Chapter 2. | focus on SEQUENCER’s sendL atency
operation. When SEQUENCER's sendL atency is invoked, it pushes a header onto the
message. The header isfilled in with a sequence number obtained from a Protocol state
variable, which is then incremented. The message is then passed to the next protocol’s
sendL atency.

Theresults of the optimizationsare summarizedin Table 3.1. Thefirst row of thetable
refers to the original, unoptimized version of the code, which consists of 45 assembler
instructions. The final, optimized version consists of seven instructions.

Replacing the header push procedure with inline code reduces the common path by
seven instructions—essentially the code for procedure linkage with the header push pro-
cedure. Eliminating header bounds checking eliminates an additional fifteen instructions.
It also eliminates all conditional branches, so the common path is aso the only path.

Dedicating registers for passing the message and its header eliminates an additional
four instructions. This optimization generally gives agreater benefit in cases where there
are procedure calls before calling the next layer’s sendL atency (SEQUENCER has no



CUMULATIVE | INSTRUCTIONS REMAINING
OPTIMIZATIONS ELIMINATED | INSTRUCTIONS
ORIGINAL VERSION - 45
INLINE UTILITIES 7 38
ELIM BOUNDS CHECK 15 23
DEDICATED REGS 4 19
CLONING 7 12
SHORT-CIRCUIT 5 7

Table 3.1: Instruction Counts

such intermediate calls after applying the preceding optimizations); intermediate calls
prohibit the message from remaining in an argument-passing register because that register
is also used to pass arguments at the intermediate calls.

Cloning sendL atency eliminates another seven instructions. Several pointer indirec-
tions are short-circuited, and one less parameter is passed to the next sendL atency (i.e,,
its OverSession). Cloning and dedicated registers also each owe some of their benefit in
this case to reducing by one the number of callee save registers needed.

Short-circuiting the return from the subsequent sendL atency resultsinthe elimination
of five more instructions. Short-circuiting the return makes it unnecessary to save the
return address, which in turn makes it unnecessary to allocate stack storage.

Thefully optimized SEQUENCER sendL atency consists of seven instructions: oneto
increment the header pointer, five to do “the real work” (increment the sequence number
for outgoing messages and write it into the header of this message), and one to jump
to the next layer. But not al assembler instructions are equal. Loads and stores can
take much more than the single cycle used by other instructions, just how much time
being determined by the current state of the cache. The original, unoptimized version of
SEQUENCER's send includes 12 |oads and seven stores; the optimized version has one
load and two stores, al in “the real work”. This reduction in the number of loads and
stores is roughly proportionate to the overall reduction in the number of instructions, a
factor of about six.

3.2.2 Timing M easurements

| dso compared the performance of an implementation of UDP in the x-kernel with
an equivalent protocol stack in Morpheus. Because UDP cannot be implemented in



Morpheus—it performsfunctionsbel onging to two different shapes—the Morpheusequiv-
alent consists of two protocols: amultiplexor performing first-come-first-servemultiplex-
ing, and aworker that recordsin the message header the length of a sent message and trims
each received messageto thelength recorded initsheader. Omission of the checksumming
function is discussed below.

The purpose of this experiment was to verify whether Morpheus's purported perfor-
mance advantages would result in measurably high performance. The z-kernel was used
as the standard for comparison because | could obtain timing measurements for the -
kernel’s UDP on the same processor (Decstation 5000/200), and because the x-kernel is
known to support high performance protocol implementations [HP91]. UDP was used as
the basisfor comparison because, whilefairly ssimple, it qualifiesasa“real protocol,” and
because it has a clear Morpheus equivalent.

| measured the end-to-end latency contribution of the two versions of UDP—the
time it takes UDP to send and receive one message, independent of all other protocol or
hardwarelayers. Themeasurement wasmade by sending and receiving ten million, 1-word
messages, and dividing the elapsed time by ten million. The x-kernel implementation
took 24.57 microseconds, while the Morpheus equivalent took only 1.48 microseconds, a
factor of 16 difference.

Two qualifications apply to this result. First, there is the issue of the accuracy of
microbenchmarks and their susceptibility to cache effects. In these experiments, all
messages were transmitted over the same data stream with no intervening messages, with
source and destination sharing the same processor, and no flushing of the cache. This
should represent a best case performance, with very little data cache effect.

Second, the figure quoted for the x-kernel is not strictly latency but also includes
the time to return control through the protocol graph on both the receiving and sending
sides. This returning of control would normally occur either in parallel with message
transmission, or after the message has been received, but took place serially in my
experiment because source and destination shared the same processor. In this particular
experiment, the additional timeisrelatively insignificant becauseit only involvesatotal of
three procedure returns. Thiswas not afactor for the Morpheus time because Morpheus's
short-circuit return optimization avoidsthe cost of returning for thelayersbeing measured.

Despite these qualifications, the magnitude of the difference argues strongly for a
Morpheus performance advantage. The differenceis not attributable solely to Morpheus
optimizations, however; two other aspects of Morpheus also figure prominently.

First, even though UDP's checksum option was not used in the test, the x-kernel



version still set the checksum field to zero on the sending side, and tested it for equality
to zero on the receiving side. The Morpheus equivalent did not have this overhead.
This is a legitimate advantage, attributable to building-blocks protocols approach used
by Morpheus. In a protocol graph composed of many, ssimple protocols, the option of
having a checksum is implemented by having two paths through the graph, one with the
checksumming layer and one without it.

Second, accessing message headers is a far more elaborate process for the x-kernel
than for Morpheus. Because compound data types such as C structures conform to
alignment restrictionsthat may not be satisfied by the space alocated to amessage header,
x-kernel protocols read and write from temporary headers that are copied to and from
messages by protocol-specific functions that account for potential alignment differences.
Byte swapping, if necessary, is performed at the same time. Header manipulations in
Morpheus are more efficient for two reasons. First, Morpheus ensures that header fields
in messages satisfy its alignment restrictions. This is accomplished by padding a header
internally so that individual fields are aligned with respect to the start of the header, and
padding a header externally to maintain the invariant that each header starts on a word
boundary. Second, any byte-swapping is performed by in-line code generated by the
compiler for assignmentsthat appear in the source language program. Hence, no function
calls are required for either alignment or byte order; message headers may be read and
written directly asif they were ordinary records, with any necessary byte swapping taking
place invisbly and efficiently.

3.3 Discussion

Morpheus's dedicated message registers, short-circuit return, and procedure cloning op-
timizations are interprocedural in nature, but cannot be duplicated by interprocedural
optimization of a general purpose language. Since it is not determined until runtime
which protocol will be layered on top of which other protocol, it is unknown at com-
pile time which callee procedure corresponds to a call site. Even if these optimizations
could be duplicated using genera interprocedural optimization, it would involve con-
Siderable interprocedural analysis at compile time. Furthermore, if separate compilation
were to be supported, there would be additional compile time overhead to keep track of
interprocedural dependences between separately compiled modules. Morpheus's latency
optimizations, which supports separate compilation, avoid these compile time penalties.
In effect, the interprocedural analysis took place at language design time.



Suppose instead that the protocol configurationwere fixed at compiletime, as protocol
integration assumes. It would bepossibletoinlinesendL atencysor deliver L atencysfrom
a series of layersinto asingle function. A function call interface between layers would
be needed only at interfaces where the sequence of layersisnot fixed, e.g. demultiplexing
from a multiplexor to any one of a number of higher level protocols. The dedicated
message registersand short-circuit return optimi zationswould apply only at these function
call interfaces. Interprocedural analysis could conceivably arrive at similar optimization
of these function call interfaces, but would require compile time analysis. Morpheus's
procedure cloning optimization would still not be duplicatableby interprocedural analysis,
since the Sessions on which the clones are based are created at runtime.






CHAPTER 4
THROUGHPUT OPTIMIZATION

This chapter presents Morpheus's sole throughput optimization. Combining this
optimization with Morpheus'slatency optimizations makesfine-grain protocol modularity
practical by reducing the performance penalty for protocol layers.

Morpheus's throughput optimization is applied only to sendThruput and deliver-
Thruput, not the latency-optimized operations sendL atency and deliverLatency. The
conclusion of this chapter discusses the possible alternativesto having distinct operations
optimized for latency versus throughput.

Morpheus's throughput optimization is a compile time optimization that utilizes pro-
tocol configuration information, so it requiresthat the protocol configuration be bound at
compiletime. This contrastswith Morpheus's latency optimizations, all of which support
runtime configuration. One way to obtain most of the benefits of both runtime configu-
ration and optimizing throughput would be to configure at compile time a core protocol
graph which could be optimized for throughput, and configure any additional protocols
needed at runtime without the benefit of the throughput optimization.

4.1 Integrated Layer Processing

Data manipulation—e.g., encryption, presentation formatting, compression, computing
checksums—is one of the costliest aspects of data transfer [CIRS89, CT90, DAPP93].
This is because reading, and possibly writing, each byte of data in a message involves
memory loads or stores, which are relatively slow operations on modern RISC architec-
tures. Load and store operations typically ranged from 8 to 32 clock cycles per memory
access in 1990 [HPOO], in contrast to other operations that complete in a single cycle
on modern RISC architectures. Furthermore, the discrepancy between processor and
memory performanceis expected to get worse.

Caches offer only apartial solution to this problem. While caches are very effectivein
reducing memory accesses for many computations, the characteristics of strictly layered
message processing are such that caching is not as effective [DAPPO3]. Furthermore,
thereis still acost for accessing the cache—typically 1 to 4 clock cyclesin 1990 [HP90].



This cost must be paid by every data manipulation protocol, for every word of data. In
addition, there are delay dots following each read access which may not all befillable.
Clark and Tennenhouse [CT90] suggest a strategy called Integrated Layer Processing
(ILP) for optimizing data manipulation. In this dissertation, | refer to ILP as protocol
integration, or simply integration. Integration generalizes the compiler optimization
known as loop fusion, as illustrated in Figure 4.1. The for-loopsin Figure 4.1(a) model
a strictly layered, serial implementation of two data manipulations, and the for-loop in
Figure 4.1(b) models an integrated implementation of the same two data manipulations.

for(i=0;i<10000; i++)
msgData]i]++; /* LOAD, ADD, STORE */

for(i=0;i<10000; i++)
msgData[i] = ~msgDatali]; /* LOAD, COMPLEMENT, STORE */

(a) Two For-Loops

for(i=0;1<10000; i++ ){

temp = msgDatali; /* LOAD */

temp++; /* ADD */

temp = ~temp; /* COMPLEMENT */
msgDatali] = temp; /* STORE */

(b) Integrated For—-Loops

Figure4.1: For-Loops

When the C code in the examples is compiled to run on a RISC architecture, the data
manipulation steps result in the machine instructions noted in the comments (assuming
the variable temp isimplemented as a register). In the serial for-loops, each time aword
of datais manipulated, it isloaded and stored. In the integrated for loop, in contrast, each
word isloaded and stored only once, even though it is manipulated twice. Thisispossible
because the data word remains in aregister between the two data manipulations. Hence,
integrating the for-loops results in the elimination of one load and one store per word of



data.

Abstractly, this situation can be described as follows. Memory hierarchies are opti-
mized for locality of reference. Integration restructures acomputation with poor temporal
locality of data reference into one with good locality. The compiler takes advantage of
thisincreased locality by leaving the data word in aregister between manipulations.

Clark and Tennenhouse [CT90] quantify the potential advantage of this technique
by fusing some simple data manipulation loops. They report a 48% improvement in
throughput when combining checksum and copy, and a 7% improvement when combining
ASN.1 integer conversion and checksum. These results must be qualified by noting that
first, the measurements represent i solated data mani pulations and not compl ete protocaols,
second, they assume, unredlistically, that no data is cached between manipulationsin the
serial case; and third, they measured unrolled [oops.

411 Four ILP Problems

As described, ILP is more an implementation strategy than an applicable technique.
Applying ILP to a protocol suite involves solving a number of implementation problems.
| have identified four basic problems, although a particular protocol suite need not present
al four. The problems are:

Accommodating awkward data manipulations. Some protocol data manipulations may
not fit the for-loop model. Different manipulationsmay require different sized units
of data, and some can change the quantity of data.

Reconciling different views of data. A single message looks different at different layers
in aseriesof protocols, aslayersadd or remove headers. Hence, adjacent protocols
do not share a common definition of what data to manipul ate—one protocol’s data
isanother protocol’s header, and is nonexistent to a third protocol.

Satisfying ordering constraints. Protocol processing includes tasks other than data ma-
nipulations. These include reading and writing headers, updating connection state,
and sending control messages. There are constraints on the ordering of these tasks
relative to data manipulation that rule out ssimply extracting the data manipulations
and integrating them.

Preserving modularity. Mixing code from different protocol layers compromises the
modularity of protocol implementations. This makes it harder to design, imple-
ment, modify, maintain, debug, and reuse protocol implementations.



412 Reated Work

The obvious approach to applying ILP is to customize an implementation for each par-
ticular suite of protocols, perhaps with different implementations for different types of
machine. Solutions to the four ILP problems can be based on the characteristics of the
particular protocolsand machine, and, in particular, protocol modularity can be sacrificed.
Beforethisresearch, thefour general ILP problemshad not been identified as such because
researchersthought in terms of the particular form taken by those problemsin the context
of particular protocol suites.

In several working TCP/IP implementations, checksumming and copying have been
integrated [CJRS89]. This is a degenerate case of ILP in that the two data manipula
tions belong to the same protocol. Hence the problems of reconciling different views of
messages, satisfying ordering constraints, and preserving modularity do not arise. Fur-
thermore, the particular data manipulationsinvolved are regular enough to allow them to
be combined in asimple for-loop.

Gunningberg, et a. [GPSV91] investigated integrating some more interesting data
manipulations, and incorporated message header writing. The three data manipulations
they considered were a smple presentation encoding, checksumming, and DES (Data
Encryption Standard) encryption [Tan88]. These data manipulations offer some compli-
cations: the presentation encoding increases the quantity of data by inserting bytes, and
DES inherently processes eight byte units. In the integrated form, the first layer (the
presentation encoding) reads from a message buffer until it can output eight bytes; the
datais subsequently passed between layers eight bytes at atime, in apair of registers. A
message header was generated by a technique customized to these particular data manip-
ulations. The integrated version was compared with a strictly layered version in which
the cache was flushed between data manipulations. The integrated version gave only a
0.5% increase in bandwidth over the strictly layered version on a Sun SPARC station. The
authors reason that the relative improvement was small because the DES algorithm is so
slow (less than 1% of the bandwidth of each of the other two data manipulations) that it
dominated the overall bandwidth.!

The performance comparisonsin the Gunningberg et a. paper, aswell asthosereported
in [CT90], assume that no message data remains cached between data manipulationsin
the strictly layered case. In practice however, while caches are not highly effective for

!Unlike DES, most data manipulations have a low processing-to-memory ratio. Furthermore, compu-
tationally intensive data manipulations such as DES can be expected to benefit more from integration as
processor speeds increase rel ative to memory speeds.



message processing, neither are they completely ineffective. To account for a range of
possible cache effectiveness, my performance experiments consider integration at both of
the extremes: when all the data remains cached, and when none remains cached.

The generality of the above techniques is very limited since they are tailored to
particular protocol suites. Morpheus incorporates ageneral |LP technique.

413 MorpheuslILP

If one's goal were to apply ILP to a particular suite of protocols on a particular type of
machine, then one could use customized solutions to the four ILP problems based on the
characteristics of the particular protocols and machine. In contrast, the building-blocks
approach supported by Morpheus requires very general solutions to these problems. If
protocol implementations are to be reusable in different contexts, the solutions to the
four ILP problems must work in the different contexts. Morpheus's solutions, briefly
described, are asfollows:

Accommodating inconvenient data manipulations. Each datamanipulationisexpressed
as afunction called a word filter which manipulates a single machine word. Word
filters use state variables and control constructs to accommodate non-word units
and changes in the quantity of data. For performance reasons, word filters are not
implemented as functions at the object code level, but are instead combined in a
single function.

Reconciling different views of data. Morpheus integrates the manipulation of just that
datathat all the layers agree is data—application data. Protocol layers can identify
the application data portion of a message because it is exposed by a new abstract
datatype for messages called a segregated message.

Satisfying ordering constraints. Each message processing operation is executed in three
stages. an initial stage, a data manipulation stage, and a final stage. The initial
stages of a series of layers are executed in sequence, then the integrated data
mani pul ations take place in one shared stage, and then the final stages are executed
in sequence. Theordering constraints are satisfied by executing the various message
processing tasks in the appropriate stages.

Preserving modularity. Morpheus preserves modularity by automating the integration
process. Morpheus protocol programs are independent of each other, but combined
by the compiler intoasingleobject codelevel implementation. Thisallowsprotocols
to be designed, implemented, modified, and maintained independently of each other.
Protocols may be reused by configuring them in different combinations, and a
protocol may be debugged by integrating it “ by itself.”



The generality of this integration technique involves a trade-off with performance:
for a given protocol suite and machine, it is probably possible to customize ILP for that
suite and machine in such away as to outperform the technique presented in this chapter.
This is the same trade-off that exists between programming in a high-level language and
programming in assembler language: the code generated by a compiler is generally not
as efficient as the code that could be directly programmed in assembler language, but the
small performance loss is more than offset by the advantages of high-level languages.

Part of the M orpheusintegrationtechniqueinvol vesamore complicated representation
of the internal sendThruput and deliver Thruput operations than the one described in
Chapter 2 for send and deliver. Instead each is expressed as a set of functions with
some shared data structures. The individua functions are presented as they arise in the
presentation of the Morpheus integration technique, and summarized after they have all
been introduced.

4.2 Accommodating Awkward Data M anipulations

The example in the introduction to this chapter models data manipulations as for-1oops,
combining two for-loops into a single integrated for-loop. This is possible because the
two artificial data manipulationsinvolved both operate on the same sized unit of data, and
both process datain a one-in-one-out fashion.

Datamanipulationsare not always so regular. Data manipulations may process differ-
ent units. DES, for example, processes 64 bits at atime—it is not defined for any smaller
guantity. On the other hand, TCP checksumming is based on 16-bit units.

A thornier problem isthat datamanipul ations such asdata compression or presentation
formatting can changethetotal quantity of data. Moregenerally, adatamanipulationcould
produce data at arate different from that at which it consumesit, even if the total quantity
of dataremains constant. This rules out the for-loop approach.

The requirement to support differing consumption and production rates is suggestive
of Unix pipes, but thisis mideading. The primary purpose of pipesisto decoupletherate
of production at one end of a pipe from the rate of consumption at the other end. Thisis
the opposite of what iswanted for integrated data manipulations. Intermsof pipes, | want
to use a very small pipe buffer—just one word—so that the buffer can be implemented
as aregister. Moreover, the output rate of one data manipulation must be coupled to the
input rate of the next to avoid any synchronization cost.



421 Word Filters

My solution involves expressing each data manipulation as afunction called aword filter
that processes a single machine word of data, commonly 32 bits, each timeit isinvoked.
(For performance reasons, word filters are not implemented as conventional functions;
their implementation is described below.) A word filter isinvoked repeatedly to process
the data in a message one word at a time. In the common case, a word filter outputs
one word each time aword is input, but it could instead output zero or multiple words.
“Outputting” a word consists of invoking the next data manipulation’s word filter with
that output word asitsinput. Figure 4.2 shows aword filter for computing a checksum.

filterData(dataWord)

{
sum += (dataWord & OxO000FFFF) + (dataWord >> 16);

output( dataWord );

Figure 4.2: Checksum Word Filter

Word filters accommodate data unit discrepancies and data rate changes by using
control constructs and state variables. This is illustrated in Figure 4.3 using a data
manipulation called PES as an example. PES (for Pseudo Encryption Standard) is an
artificial data manipulation based on DES. DES exhibits interesting data manipulation
characteristics but is so dow that, unlike other data manipulations, the time to perform
the data manipulation itself dominates the data access time. PES is my vehicle for
investigating the data access characteristics of DES without the extensive computation.
PES replaces DES's extensive computation with a simple transformation of the data.

PESislike DESin that it must have 64 bits—two 32-bit machine words—at atime to
perform its manipulation. The PES word filter uses a state variable as a flag to indicate
whether the next word will be the first or the second of a pair. It uses a control construct,
an if-statement, to vary its behavior based on the flag. When it is invoked with a first
word, it does not output any words, but instead saves the input word in a state variable,
and toggles the flag so that it will recognize the next input word as the second of a pair.
When it isinvoked with a second word, it encrypts that word together with the first word,
outputs the two resulting encrypted words, and toggles the flag so that it will recognize
the next input word as the first of a pair.



filterData(dataWord)

if( ! awaitingSecondWordOfPair ){
/* dataWord IS THE FIRST WORD OF A PAIR */
firstWord = dataWord;
/* DON'T OUTPUT ANYTHING */
awaitingSecondWordOfPair = TRUE;
Jelse{
[* dataWord IS THE SECOND WORD OF A PAIR */
output( (firstWord & 0xFOFOFOFO) | (dataWord & OXxOFOFOFOF) );
output( (firstWord & 0xOFOFOFOF) | (dataWord & OxFOFOFOFO) );
awaitingSecondWordOfPair = FALSE;

Figure4.3: PES Word Filter

The use of internal state by a word filter has the consequence that a filter may end
up with some output implicit in its state when there is no more input. For example, if
the PES word filter is given an odd number of data words, it will not produce any output
corresponding to its last input word. To handle this, such data manipulations must also
have a flush function that outputs any output left implicit in state variables. This flush
function is invoked when there is no more input data. Figure 4.4 shows how this might
be implemented for PES.

flush()

if( awaitingSecondWordOfPair ){
/* EXPECTED A SECOND WORD WE NEVER GOT; USE A BOGUS VALUE */
output( (firstWord & 0xFOFOFOFO) | (0x12345678 & 0xOFOFOFOF) );
output( (firstWord & 0xOFOFOFOF) | (0x12345678 & OxFOFOFOFO) );

Figure 4.4: PES Flush

Each word filter invokes the next filter when it has a word to output. The first filter
getsitsinput from aloop that reads the data from a message data structure, invoking the
filter once per word. The last filter in the series outputsits datato a routine that lookslike
afilter, but smply writesits input into an output message data structure.

Note that although different units of data are optimal for different data manipulations,
the word filter approach compromises by imposing a single fixed unit—the machine
word—for passing databetween layers. Thishastheadvantage of smplifyingtheinterface



between protocols and avoids any runtime interpretation entailed by passing variable
units. The resulting common interface for data manipulations makes it straightforward to
automatically combinecodefromdifferent protocols, asexplainedlater inthischapter. The
machine word is the obvious choice for the fixed unit, both because machine architectures
are optimized for words, and because most data manipulations can efficiently process
words. By processing aword at atime, a data manipulation whose natural unit is a byte
or half-word effectively processes multiple unitsin paralel.

This design imposes the specification-level constraint that the data being manipulated
always consists of an integra number of words. One alternative design would accommo-
date fractions of aword by adding “byte filters’ that would be invoked on the odd bytes
at the end of the data. This alternative is analogous to bcopy implementations.

Host machines on anetwork may unfortunately have different word sizes. Inthiscase,
each host would till manipulate data in units of its own native word size, but message
datawould be constrained to consist of an integral number of units whose size isthe least
common multiple of the host word sizes. If thisleast common multiple were excessively
large (e.g. if word sizeswere not all powers of two), then the alternative design using byte
filters should be used.

4.2.2 Word Filter Implementation

Logically, word filters are functions, and are expressed as functions in the Morpheus
source code, but implementing them as functions at the object code level would have two
performance problems. The first is function call overhead: afunction call istoo high a
price to pay each time aword of data is passed from one data manipulation to the next.

Thesecond problem hasto do withimplementing wordfilter statevariables. Ingeneral,
afilter’'s state must persist across the invocations corresponding to a particular message.
For example, a checksum’s partial sum must be accumulated across invocations of the
checksum filter until an entire message has been processed. Variables that persist across
invocations of a function—globals, or statics—are invariably implemented in memory
instead of registers. Implementing such state variables as registers would make word
filters more efficient.

Morpheus solves these problems by merging adjacent word filtersinto a single object
code level function. This is like inlining, except that inlining would not implement
static local variables as registers. This avoids function call overhead, and it permits the
implementation of state variables as registers since those variables are now all local to a
single object code level function.



Filters are merged into a single function at the object code level, not the source code
level, but | illustrate the effect of merging by presenting an analogous source code level
merging in Figure 4.5. This example uses three data manipulations:. BSWAP, PES, and
CKSUM. BSWAP reverses byte ordering, and CKSUM computes a checksum. Note that
the combined filters would be embedded in afor-loop or other iterative construct.

/* READ A WORD OF INPUT */
DataWord = *inputBuffer++;

/* BSWAP */
DataWord = ((DataWord & 0xO0FFOOFF) << 8) | ((DataWord & 0xFFOOFF00) >> 8);

/* PES */
if(! awaitingSecondWord ){  /* DataWord is first word of a pair */

firstWord = DataWord;
awaintingSecondWord = TRUE;

lelse{ /* DataWord is second word of a pair */

secondWord = DataWord;
awaitingSecondWord = FALSE;
DataWord = (firstWord & 0xFOFOFOFO) | (secondWord & 0xOFOFOFOF);

/* CKSUM */
sum += (DataWord & OxFFFF) + (DataWord >> 16);

/* WRITE A WORD OF OUTPUT */
*outputBuffer++ = DataWord,;

DataWord = (firstWord & 0xOFOFOFOF) | (secondWord & 0xFOFOFOFO);

/* CKSUM */
sum += (DataWord & OxFFFF) + (DataWord >> 16);

/* WRITE A WORD OF OUTPUT */
*outputBuffer++ = DataWord,;

Figure 4.5: Combined Filters

The common case for data manipulations is the one-word-in, one-word-out behavior
required by afor-loop. Asmore of the data manipulationsin aseriesfit thiscommon case,
the implementation of the integrated word filters comes to more closely approximate a
basic for-loop. The integrated word filter implementation isin some sense a generalized
for-loop. It has the performance of afor-loop in the common case, but is flexible enough
to accommodate more awkward data manipulations.



4.3 Measurementsand Analysis

This section reports the results of experiments comparing serial data manipulations to
data manipulations integrated using word filters, and investigates the limits of integra-
tion. These experimentsinvolve only isolated data manipulations; experimentsinvolving
complete protocols are reported | ater in this chapter.

The following experiments are based on data manipulations written in C. To smulate
a Morpheus compiler’s merging of word filters at the object code level, the integrated
implementations consist of word filters merged into asingle function at the C source code
level. A data word is passed from one filter to the next at the C level by leaving it in
avariable that is shared by the filters, and the C compiler implements the variable as a
register. It also implementstheword filter state variables, which arelocal to the combined
function, as registers. Hence the object code generated for integrated data manipulations
by a C compiler gives a close approximation to the object code that would be generated
by a Morpheus compiler.

Data manipulation performance depends heavily on cache effects, i.e. whether or not
the loads and stores actually result in memory accesses. My experiments accounted for
this by measuring performance at each of the two extremes. when all the message data
is in the cache, and when none is in the cache. Thus, the actual performance in any
particular situation must be within the range specified by the pair of measurements. To
obtain cache hits, the data was accessed before beginning data manipul ations, and the data
manipulations were run back-to-back with no concurrent processing, using buffers sized
and situated so asto avoid collisionsin the cache. Notethat in thiscache hit case, even the
first data manipulation of a series found all the datain cache. To obtain cache misses the
pertinent part of the cache was flushed between data manipulations, and the time to flush
was subtracted out. Cache behavior aso depends on the particular data manipul ations, so
| have measured several combinations of data manipulations.

431 Experimental Platforms

Cache behavior also depends on the particular machine architecture. Each experiment
was conducted on three different machines—the DecStation 5000/200, the HP 720, and
the SPARCstation 1—to verify that the word filter techniqueis not specific to a particular
machine or cache design. On all three machines, the experiments used the native C
compiler with the highest level of optimization.

The MIPS R3000-based DecStation 5000/200 has separate 64-KByte instruction and



data caches. The caches are direct mapped using physical addresses, and cache lines are
16 bytes. Loading a word from cache costs one cycle, and entails a one cycle delay dot.
Storing aword normally takes a single cycle since the data cache is write-through, with a
write buffer that can buffer storesfor up to six pending writes and retire writes within the
same page once per cycle. It takes 13 cyclesto load a cache line from memory, but the
processor can access thefirst word after ten cycles.

The HP 720 hasa 128-K Byteinstruction cache, and a256-K Byte copyback datacache.
The caches aredirect mapped and virtually addressed, and cachelinesare 32 bytes. Filling
acacheline takes 18 cyclesif the replaced lineis clean, 23 cyclesif it isdirty. Storing to
an uncached location takes 23 cycles if the replaced line is clean, 27 cyclesif it is dirty.
Loads or stores of cached words execute in asingle cycle.

The SPARCstation 1 has a 64-KByte combined write-through cache. It is virtualy
addressed, with aline size of 16 bytes. If the referenced lineisin cache, loading asingle
word takes two cycles, and storing a single word takes three cycles. Several stores in
succession will cause astall once the memory writebuffersfill, even if thetarget addresses
are al cached. If the referenced word is not in cache, a single word load takes 14 cycles,
and a single word store takes six cycles.

432 Case Study

| timed three combinations of CKSUM, BSWAP, and PES. These data manipulationswere
chosen because they are representative of actual protocols, and they provide examples
of both read-only and read-write data manipulations, and of both smple and convoluted
filters.

Tables 4.1 and 4.2 give the results when the data is and is not cached, respectively.
These tables show, for example, that on the DecStation 5000, integrating CKSUM and
BSWAP increases bandwidth from 44.7 Mbpsto 54.4 Mbpsif it is cached, and from 29.3
Mbpsto 39.6 Mbpsif al message data is uncached.

DS5000 HP720 Sparcl
Serial | Integrated Serial | Integrated Serial | Integrated
(Mbps) (Mbps) || (Mbps) (Mbps) || (Mbps) (Mbps)

CKSUM+BSWAP 447 54.4 84.2 101.0 24.0 30.0
BSWAP+PES 33.9 43.5 72.1 101.0 171 25.0
BSWAP+PES+CKSUM 25.8 35.4 54.1 79.7 13.6 211

Table4.1: Serial vsIntegrated When Datain Cache.

Thethroughput improvementsresulting fromintegration aresummarizedin Figure4.3.
Thetable shows, for example, that theintegrated implementation of CKSUM and BSWAP



DS5000 HP720 Sparcl
Serial | Integrated Serial | Integrated Serial | Integrated
(Mbps) (Mbps) || (Mbps) (Mbps) || (Mbps) (Mbps)
CKSUM+BSWAP 29.3 39.6 424 55.8 19.3 26.1
BSWAP+PES 234 34.0 33.1 56.2 14.6 22.2
BSWAP+PES+CKSUM 17.5 29.0 26.2 48.9 11.3 19.0

Table 4.2: Serid vs Integrated When Data Not in Cache.

on the DecStation has 22% to 35% higher bandwidth than the serial implementation. The
low end of each range (22% in this example) applies when al of the message data is
cached, while the high end applies when none is cached. The improvement achieved in
any particular situation would necessarily fall between these two numbers.

DS5000 | HP720 | Sparcl

(percent) | (percent) | (percent)

CKSUM+BSWAP 22-35| 20-32| 25-35
BSWAP+PES 28—45| 40-70| 46-52
BSWAP+PES+CKSUM | 37-66 | 47-87| 55-68

Table 4.3: Bandwidth Improvement due to Integration.

Several factors contribute to integration improving throughput. Most obvioudly, inte-
gration eliminates theload and store instructionsthemselves. Thisnot only savesthetime
to transfer data between memory and the cache, but also saves the time to load the data
from the cache and store data to the cache or awrite buffer. Another magjor factor isthe
reduced loop overhead, since integrated data manipulations share a single loop through
the data instead of iterating through the message data once for each data manipulation.
Sincetherearefewer load and store instructionsand they occur in aninner loop containing
moreinstructions, the delay dots after loads are more likely to befilled, and on machines
with write-through caches and write buffers, stores are less likely to fill a write buffer.
Finally, integration eliminates some buffer allocations and deall ocations since data which
would have been buffered between data manipulationsis now streamed directly from one
to the next.

To verify that the most important factors have been accounted for, | compared thetime
saved by integrating to the time taken by loops that smply load and/or store one word of
dataper iteration. Table4.4 presentstheresultsfor the DecStation. The measurementsare
givenin unitsof seconds per MByte. These particular combinationsof data manipulations
give one example each of eliminating aload, aload and a store, and two loads and a store.
The table shows, for example, that integrating CKSUM and BSWA P reduces the time to



process one MByte of data by about 0.071 seconds if none of the data is cached, which
is roughly equal to the 0.082 seconds it takes to load one MByte of data from main
memory. Context-dependent factors, such as unfilled delay dots, could account for the
small discrepancy.

Cache Hit

Improvement Comparison

(sec/MB) (sec/MB)

CKSUM+BSWAP .032 Load=.042
BSWAP+PES .052 L oad+Store=.053
BSWAP+PES+CKSUM .084 | 2xLoad+Store=.095

Cache Miss

Improvement Comparison

(sec/MB) (sec/MB)

CKSUM+BSWAP 071 Load=.082
BSWAP+PES 107 L oad+Store=.097
BSWAP+PES+CK SUM 180 | 2xLoad+Store=.179

Table 4.4: Comparison of Integration Savings.

433 Scalability

The preceding experimentsshow the effects of integrating two or three datamanipulations.
When greater numbersof layersareintegrated, register pressure becomes afactor because
combining multiple data manipulations in a single function increases the demand for the
registers for heavily accessed variables and constants. Consequently, integrating many
layers may spill registers more than serial implementationswhere each data manipulation
has the entire register set to itself.

| investigated how integration scales by combining varying numbers of layers, where
each layer performed the identical data manipulation but used its own two local variables.
The data manipulation isintended to represent a“typical” data manipulation. The results
for the DecStation are presented in Figure 4.6.

The vertical dimension is in units of seconds per MByte instead of Mbps in order to
expose linear behavior; Mbps would result in exponential decay curves, obscuring the
knee in the integrated implementation plots. The plots are otherwise linear because each
additional layer adds the same amount of time to the processing of a MByte of data.
The knees in the integrated implementation plots occur at the point where the number
of variables exceeds the available registers. Each layer of data manipulation uses its



1.6

12
sec/MByte
0.8

04

0.0

24

20

1.6
sec/MByte
12
0.8
0.4
0.0

serial <©o— 4

CACHE HIT CASE integrated +—
| | | | | | |
1 3 5 7 9 11 13 15
Number of Layers
| |
) seriéaé =
CACHE MISS CASE Integrated +— |
| | | | | | |
1 3 5 1 13 15

7 9
Number of Layers

Figure 4.6: Incremental Performance On DecStation



own two local variables. When only a few layers are integrated, these variables are all
implemented as registers. As additional layers are integrated, the additional variables
must be implemented on the stack. Hence, the cost of an additional layer is smaller when
there are still registers available for variables, and greater when there are more variables
than usable registers.

At the knee in the DecStation case (eight layers), the integrated version runs 2.2
times faster than the serial in the cached case, and 3.0 times faster in the uncached case.
Table 4.5 reports where the knee occurs and the associated improvements factors for the
three machines| tested. Noticethat the differencein theimprovement factor in the cached
and uncached case becomes more dramatic as the processor becomes faster—in this case,
the HP720 is faster than the DS5000, which is faster than the Sparcl.

DS5000 | HP720 | Sparcl
Knee (number of layers) 8 7 5
Improvement (x faster) | 22—-3.0| 20-38 | 26-28

Table 4.5: Improvement Factor at Knee of the Integration Curve.

The location of the knee, and the dope beyond the knee, both depend on the ratio of
local variables to layers. Given a high ratio and large number of layers, an integrated
implementation could perform worse than a serial implementation. However, one would
not integrate this many layers al in one series; instead one would break off integration
whenever the knee is reached, and start a new integrated series, resulting in smaller
integrated series that do not exhaust the register set. This results in performance that
isinvariably better that serial implementations. Nonetheless, a larger register set would
support even better performance by alowing more layers to be integrated before hitting
the knee. As the discrepancy between processor and memory performance widens, even
applications may recast an increasing number of their data transformations into a form
that can be integrated.

434 Performance Prediction Mode

Having reported the performance of integration on existing machines, | now present a
model for predicting its performance on future machines. The potential performance of
integration on future machineswill depend not only on processor and memory speeds, but
also on the sizes, speeds, and number of caches. Processor and memory speeds of the near
future are reasonably predictable because they tend to improve at fairly constant rates, but



caches are more difficult to predict, in part because they change in response to changes
in the ratio of processor speed to memory speed. Any model predicated on a particular
cache design would be highly questionable. Therefore the model presented here does not
predict cache performance, but instead captures it in a variable parameter, allowing the
reader to make performance projections based on his or her own best guess about future
hardware.

The model counts the cycles taken by the three components of a data manipulation:

Loop overhead. Loop overhead istheincrementing and branching instructionsthat make
aloop. The model assumes that a loop takes three cycles independent of the
particular machine: oneto increment the pointer to thelocation to load from, oneto
increment the store pointer (assuming for smplicity that each data manipulation is
read-write), and oneto branch. Thus, anintegrated implementationuses 3 cyclesper
dataword for loop overhead. Sinceaserial implementation pays thisloop overhead
at each layer, it uses 3 x num _layers cycles per dataword, where num layers 1S
the number of data manipulation layers.

Computation. Computation is the manipulation of the datawhile it isin registers. The
model assumes that the number of cycles for the computation part of a particular
data manipul ation remains constant independently of the particular machine. It also
assumes that local variables are implemented as registers, so the only data being
loaded or stored is the data being manipulated. The cycles spent on computation
are the same in both the integrated and serial cases. The number of cycles spent on
computation is represented in the model by the parameter computation.

Data access. Dataaccessistheload and storeinstructions. The average number of cycles
taken by theseis captured inaparameter called data_access_cycles. For ssimplicity,
|loads and stores are model ed astaking the same number of cycleson average. Thus,
data_access_cycles combines memory and cache speeds and cache hit/miss ratios
into one parameter. For example, on amachinethat takesten cyclesto go to memory
and two cycles to go to cache, if one were to assume a 50% cache hit rate, then one
would use (0.5 x 10) + (0.5 x 2) =6 astheestimated data_access_cycles.

The number of data access cycles per dataword for a serial implementationis
data_access_cyclesx (num_layers + num_writers),

where num _writers is the number of layers that modify the data (all layers read
the data, but not all layers modify the data since some are read-only). Since an
integrated implementation only |oads the data once and stores it once regardless of
the number of layers, it uses data_access_cycles x 2 cycles per word.



Loop Overhead +Computation +Data Access
Serial | 3 x num_ayers +computation +data_access_cycles X (numdayers + num_writers)
Integrated | 3 +computation +data_access_cycles x 2

Table 4.6: Estimated Cyclesto Manipulate One Data Word

Thus, the model estimates the number of cycles per data word according to the formulas
in Table 4.6.
The relative increase in throughput due to integration is

serial _cycleshntegrated_cycles — 1.

Figure 4.7 plots relative increase as a function of data_access_cycles for the three com-
binations of data manipulations measured earlier.
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Figure4.7: Relative Increase in Throughput due to Integration

Notice that as data_access_cycles increases, the relative increase asymptotically ap-
proaches (num_layers + num_writers)/2 — 1. Thus, for example, integrating CKSUM
and BSWAP involvestwo layers (num _layers = 2), and one of the layerswrites the data
(num_writers = 1), so it can achieve no better than a (2+1)/2 - 1 = 50% improvement in
throughput, regardless of the number of cyclesit takesto go to memory.

435 Code Space

Combining filters into a single object code level function raises the concern of using
excessive space. The object code space could potentially be exponential in the number



of integrated data manipulations because each filter’s object code may be duplicated in
more than one place in the code of the preceding filter. Thisisunlikely to be aproblemin
practice, however, since most filters are invoked in only one place in the preceding filter,
the number of integrated datamanipulationswill be modest, and filtersarerelatively small
bodies of code. If it wereto become a problem, space consumption could be reduced by
breaking along series of integrated data manipulations into multiple shorter series.

Conceivably, combining code from several data manipulations could have a negative
effect on caching due to the decreased locality of reference to instructions. Integration
leads to iterating through the code belonging to a whole series of data manipulations,
instead of iterating through the smaller bodies of code representing an individual data
manipulations. Instruction locality may be further reduced by duplicating a data manip-
ulation inline a multiple points in the program text. To some extent, integration trades
locality of instruction references for locality of data references. Yet, this larger working
set of instructionsisstill very small compared to current cache sizes such asthe DecStation
5000/200's 64-KByte instruction cache, the HP 720’'s 128-KByte instruction cache, and
the Sparcl’s 64-KByte combined cache.

| have not observed any degradation attributable to combining filters into a single
function in experiments integrating up to 15 (smple) layers. Combining filters in a
function is similar to inlining, and in general, inlining seems to have little effect on
caching and virtual memory. Experiments reported in [CHT91] showed no obvious
evidence of ether instruction cache overflow or thrashing, and the previous reports they
cited showed similar results.

4.4 Reconciling Different Views of Data

The preceding section addressed the problem of integrating arbitrary datamanipulationsin
isolation, outside the context of protocols. This section addresses a problem that emerges
when the data to be manipulated is part of a message.

When datamanipulationsareintegrated in the context of aprotocol, thedataispart of a
message, not just an array. Messages change asthey passthrough different protocol layers.
When a protocol sends amessage, it generally prepends a header which itsreceiving peer
knows how to interpret. That receiving peer deletes the header before delivering the
message to a higher level protocol. Lower protocol layers cannot distinguish that header
fromtherest of the data—it isall opaque data (Figure4.8a). Thisisaform of hierarchical
encapsulation. The purpose of hierarchical encapsulation is modularity, i.e., avoiding
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Figure 4.8: Message Abstractions

dependencies between protocols.

Hierarchical encapsulation complicates integration. The problem is that even though
adjacent layers are to collaborate in the manipulation of data, they disagree on what part
of amessage is the data to be manipulated. One layer’s word of data may be viewed as
part of aheader at another layer, and at yet another layer, it may not be part of the message
at al.

Consider two particular situations. First, asending protocol may not be abletowriteits
header until its data manipulation is complete (e.g., CKSUM). Thisis a problem because
any lower layer integrated with that protocol must manipulate its data in lock step with
the layer in question, even though that layer’s headers are not available until afterward.
Second, areceiving protocol may not know what to do with its data, or even what portion
of themessageisitsdata(e.g., because of variablelength headers), until it readsits header.
This is a problem because that protocol must manipulate its data in lock step with any
lower layer with which it is integrated, even though its header is part of the data to be
manipulated by the lower layer.

One solution would be for protocolsto use trailersinstead of headers on the sending
side, sothat each protocol’s* header” information would be available bef ore the subsequent



layer needs to manipulate it. Receiving side protocols would then process a message
“backwards,” withtrailerseffectively becoming headers, so that receiving protocolswould
have their header information available before performing data manipul ation.

Despite its simplicity, this approach is inefficient because, on the receiving side, a
protocol would have to distinguish words of data from words of header. This entails the
execution of a conditional by every layer for every input word, i.e. testing a flag that
indicates whether all of the header has been processed. This approach also complicates
programming, since headers must be generated and consumed serially.

Morpheus's solution is to integrate manipulation of just that data that al the layers
agree is data—the application data. By application data | mean the part of the message
that corresponds to data being transmitted by an application, i.e. the part that does not
include any protocol headers. This allows use of the word filter approach to integrating
datamanipul ation without adding any complication due to headers. Protocolscan identify
the application data portion of a message becauseit isexposed by a new abstract datatype
for messages called a segregated message (Figure 4.8b).

Manipulating higher level headers separately, unintegrated, does not affect perfor-
mance and it simplifies programming. Messages in throughput-dominant traffic are large,
with very small headersrelative to the size of the application data, so the potential benefit
of integrating manipulation of headers is insignificant. Header fields can be randomly
accessed in the familiar, convenient manner since their manipulation is not integrated.

The disadvantage of thisapproach isthat if higher level headers are to be manipul ated,
they must be manipul ated separately from the integrated manipulation of application data.
This could result in additional programmer effort if the same data manipulation must be
coded twice, once for application data and once for higher level headers. On the other
hand, decoupling the two manipulations can be advantageous. It may be more appropriate
for agiven protocol to manipulate either only the application data (e.g. datacompression),
or only the combined headers (e.g. checksum), or perhaps both but with two different
mani pul ations.

Protocols are able to identify the application data part of a message because Mor-
pheus represents messages using a hew abstract data type called segregated messages
(Figure 4.8b). The only difference between a segregated message and the conventional
encapsulated message is that the start of the application dataisvisible. This represents a
relaxation of strict hierarchical encapsulation, but still preserves modularity by avoiding
dependencies between specific protocols because the contents of the two parts remain
opague to lower level protocols.



The implementation of the segregated message abstract data type is like that of en-
capsulated messages except that it adds a pointer to the start of the application data. This
requires determining the start of the application data when a network device delivers
a message, since the hardware represents a message as an undifferentiated sequence of
bytes. Elevating that sequence of bytes into a segregated message requires rediscovering
the start of the application data. Network device drivers accomplish this by adding a
header that records where the application data starts.

Segregated messages involve a constraint on protocol specifications. a specification
must alow application data to be manipulated independently of higher level headers.
Without this constraint a protocol specification could define a data manipulation that
spanned the boundary between headers and application data, requiring some bytes from
each to compute the manipulation.

4.5 Satisfying Ordering Constraints

The preceding sections have shown how to integrate manipulations of message data by
using segregated messages to establish a common definition of the data, and word filters
to perform the actual data manipulation. However, to integrate complete sendThruput
or deliver Thruput operationsit is not sufficient to Ssimply extract and integrate the data
manipulation code, leaving the rest of the code unchanged. For example, suppose there
were aprotocol that keepstrack of the sequence numbers of received messages, on top of
aprotocol that discards messages whose checksum is not correct. The danger that arises
when these protocols are integrated is that the checksum protocol will end up rejecting
a corrupted message (based on a checksum computed in its data manipulation), but the
sequence number protocol will update its state (independent of any data manipulation)
asif it had received the message. This would result in incorrect behavior, i.e. behavior
inconsistent with a serial implementation.

In genera there are ordering constraints between the various tasks performed by a
sendThruput or deliver Thruput. Violating ordering constraints can result in incorrect
behavior, as in the above example; or it could cause protocols to fail immediately, e.g.,
if one layer interpreted another layer’s header as its own, because the previous layer had
not yet removed its header. These congtraints are trivially satisfied by serially executed
layers; they only come into play because integration involves overlapping the execution
of different protocols, alimited form of concurrency.



451 Ordering Constraintson Tasks

SendThruput and deliver Thruput operations perform tasks other than data manipula-
tion. These include reading and writing headers; initializing data manipulation variables,
updating protocol state; setting and clearing timers; sending control messages; passing
non-message information (such as flow control) to adjacent layers; demultiplexing or
making routing decisions, and (assuming segregated messages) performing data manip-
ulation on the combined higher level headers. Of course, a given protocol might not
involve all of these. | combine message processing tasks into the following categories:

Data manipulation. Reading and writing application data.

Header processing. Thisincludes reading and writing headers, and manipulating higher
level headers.

External behavior. This includes externally visible actions such as passing messages
to adjacent layers, initiating messages such as acknowledgements, and invoking
non-message operations on other layers, for example to pass congestion control
information. It also includes updating protocol state such as updating the sequence
number associated with a connection to reflect that a message with the previous
number has been received. Updating state is included in the external behavior
category because it can influence future external behavior.

Tasks within a protocol are subject to internal ordering constraints. For example, a
checksum protocol cannot writethe checksuminto the message header (header processing)
until after it has computed a checksum on the data (data manipulation). These are the
sort of ordering constraints that are so basic to a computation that they are not normally
thought of as constraints.

There are also ordering constraints between layers. For example, an encryption pro-
tocol must decrypt higher level headers (header processing) in areceived message before
the next layer can read its header (header processing). Particular ordering constraints are
not normally distinguished since they are all automatically satisfied by the serial execu-
tion of layers. The danger that arises when layers are integrated is that there may be
conflicts between aprotocol’sinternal constraints, and the external constraints determined
by adjacent protocols.

Consider ordering constraintson header processing. On the sending side, aheader may
depend on the results of data manipulation (e.g., checksum), in which case it cannot be
written until after data manipulation. A layer cannot perform data manipulation of higher
level headers until they have been written. Assuming headers are stacked in contiguous



memory, a protocol cannot know where to write its own header until the previous header
has been written and possibly manipulated.

Analogous conditions hold on the receiving side. A protocol may not be able to
manipulate the data in a message without having first read its header from the message.
A protocol cannot read its header until the previous protocols have performed any data
manipulations on the combined headers. A protocol cannot even determine where its
header starts until the previous protocols have al consumed their headers if consecutive
headers are stacked in contiguous memory.

Now consider ordering constraints on externa behavior. These follow from the
possibility of rejecting amessage. A message may be rejected by a protocol for a variety
of reasons; for example, it may beaduplicate, haveanillega format, or requireunavailable
resources. Message rejection is more common on the receiving side, but may also occur
on the sending side, for example as aresult of congestion control.

Message rejection is a potential problem for protocol integration because a message
may be regjected “in the middle” of an integrated series of protocols. Layers which
are logically subsequent to the rejecting layer may have aready begun processing the
message. Furthermore, layers which logically precede the rejecting layer may not have
completed processing the message; in particular, it may be that in aseria implementation,
a preceding layer would have regjected the message before it ever arrived at the current
rejecting layer! The requirement to behave consistently with serial implementations
imposes ordering constraints on the message rej ection and message acceptance code—i..e.
external behavior—of different layers.

452 A Task Ordering Discipline

In effect, serial implementations adhereto an unnecessarily restrictive but smple ordering
discipline: sendThruputs or deliver Thruputs must be executed serially. Serial order
is guaranteed to satisfy all the specific lowest level ordering constraints that represent
the data dependencies resulting from a layered specification, as long as each protocol
IS written to satisfy its own internal ordering constraints. Integration requires finding
a replacement ordering discipline that similarly satisfies all data dependencies required
for alayered behavior, but nonetheless permits layers to be overlapped to the extent of
combining data manipulations.

Morpheusreplacesserial order with atask-level ordering discipline. Itislessrestrictive
than serial order, but more complex. However, the complexity is limited by expressing
the discipline in terms of the three message processing tasks, rather than more primitive



operations.

Morpheus' sordering disciplineisexpressed in termsof an ass gnment of tasksto stages
in an execution model. In this execution model, sendThruputs and deliver Thruputs
are executed in three stages. an initial stage, a data manipulation stage, and a final
stage. The initial stages of a series of layers are executed seriadly, then the integrated
data manipulations take place in one shared stage, and then the final stages are executed
seriadly. The relationship between the three stagesisillustrated in Figure 4.9.

¢ INTEGRATED ¢
¢ MANIPULATION \L

Figure 4.9: Execution Sequence of Integrated Protocol Stages

The tasks are assigned to the stages as listed in Table 4.7. Within a stage, a protocol
is free to perform the tasks of that stage in any way and in any order consistent with its
internal constraints. Executing the tasks in the appropriate stages ensures that the external
constraints protocols impose on each other cannot conflict with their internal constraints.

TASK STAGE
Header processing (delivering) | Initia
Data manipulation Integrated
Header processing (sending) Final
Externa behavior Final

Table 4.7: Each Task Must Be Executed In The Corresponding Stage

An operation’s initial and final stages are represented as functions. Initial and fina
stages for a checksum protocol’s sendThruput areillustrated in Figures 4.10 and 4.11.

Thisordering disciplineresol vesthe message rejection problem by serializing message
acceptances and regjections. Message acceptance/regjection is deferred to the final stage,
which represents a sort of “commit stage.” Deferring message rejection gives logically



initialStage()

sum = msg.hdr.chksum;
nextlnitialStage();

}
Figure 4.10: Checksum deliver Thruput Initial Stage
finalStage()
while( sum & OxFFFF0000 )
sum = (sum & 0X0000FFFF) + (sum >> 16);
if(sum==0)
nextFinalStage();
else
nextAbort();
}

Figure 4.11: Checksum deliver Thruput Final Stage

preceding layers the opportunity to reject the message first. The final stages execute
seridly, so the regjecting layer that islogically earliest will be the layer that actually ends
up rejecting the message. Intuitively, the assignment of external behavior to thefinal stage
treatstheinitial and data manipulation stages asif they were merely peeking at amessage
that is not really passed until the final stage.

Rejecting messages in an integrated implementation admits another complication.
When a message is rejected by a layer, the final stages of subsequent layers are not
executed. Therefore, a protocol that allocates a data structure in its initial stage, and
normally deallocates it in its final stage, would not have the opportunity to deallocate.
The solution is to introduce an abort stage that is an aternative to the final stage—if a
message is rejected by a preceding layer, the abort stage is executed instead of the final
stage, providing the opportunity to deallocate data structures.

45.3 Performance of Integrated Protocols

Earlier, thischapter reported perf ormance measurementsfor i sol ated datamani pul ations—
mani pulationsthat operated on an array instead of amessage, outsidethe context of aproto-
col operation. Now performance measurements are reported for complete sendThruputs
and deliver Thruputs, where the integrated implementations use segregated messages



and the three-stage execution model. These measurements confirm that the Morpheus
technique for integrating complete operations conserves most of the performance benefit
of integrating isolated data manipulations.

| measured the throughput of integrated sendThruputs through three different com-
binations of protocols. The individual protocols were based on the CKSUM, BSWAP,
and PES data manipulations. The measurements were made on the DecStation 5000/200,
and | did not coerce the cache behavior. Table 4.8 compares serial and integrated imple-
mentations. For example, integrating the CKSUM, BSWAP, and PES protocols increased
throughput from 18.8 Mbps to 25.6 Mbps, an improvement of about 36%. By way of
comparison, integrating the corresponding three data manipulations gave a 37% to 66%
improvement, as reported earlier.

DATA MANIPULATIONS | SERIAL | INTEGRATED | IMPROVEMENT

(Mbps) (Mbps) (% of serid)

CKSUM+BSWAP 34.6 40.6 17%
BSWAP+PES 22.9 29.5 29%
BSWAP+PES+CK SUM 18.8 25.6 36%

Table 4.8: Serial vsIntegrated sendThruputs.

These measurements represent an unrealistically high percentage of cache hits since
the message size was modest (one page) and there were no concurrent processes, so
the performance gap between seria and integrated implementations would normally be
somewhat greater. Despitethe high percentage of cache hits, the throughputsreported here
tend to be somewhat low—roughly the cache miss case throughputs of the corresponding
isolated data manipulations. Thisis due to the overhead of the protocol tasks other than
the data manipulation, and the use of a different compiler, the GNU C compiler (gcc),
which generates | ess efficient code for these particular data manipulations.

These measurements provide arough estimate of theincrease in end-to-end throughput
that can be expected to result from integration. Protocol stack throughput is the primary
determiner of end-to-end throughput because the throughput of high performance network
hardware is higher than protocol stack throughput. The difference between end-to-end
throughput and protocol stack throughput is due to synchronization overhead between a
protocol stack and anetwork devicein theform of interrupt handling and contentionfor the
memory system. Integration should reduce thissynchronization overhead aswell, because
it reduces contention for memory, and because interrupt handling is more expensive for
seria implementations, since they have more context (i.e. cached message data) to lose.



4.6 Integration by Compiler

The solutions presented thus far—word filters, segregated messages, and the task-level
ordering discipline—constitute a complete integration technique. However, direct appli-
cation of thistechnique by a programmer would sacrifice protocol modularity by mixing
code from different protocolsin a single function. This would make it difficult to design,
implement, modify, maintain, debug, and reuse protocol implementations.

Using Morpheus, integration is applied by the compiler rather than the programmer.
This preserves modularity by adding a level of indirection to the integration technique:
protocolsare modular at the source code level—the programmer |evel—even though they
are combined at the object code level—the performance level. Protocols are expressed
independently of each other, and the compiler automatically combinesthemintointegrated
implementations. This situation is analogousto functioninlining: an inlined functionisa
distinct function at the source code level, but it iscompiled into code that is not afunction
at the object code level.

The Morpheus source code for a sendThruput or deliver Thruput consists of a
complete set of the componentsthat have beenintroduced in the course of thischapter. The
Morpheus code for a checksum protocol’sdeliver Thruput isillustrated in Figure 4.12.

Corresponding components from different protocols conform to a common interface,
e.g. al word filters have the same interface. In effect, the standard sendThruput and
deliver Thruput interfaceshave been replaced by new interfaces consisting of the union of
theinterfacesbetween corresponding parts. Sincethe partsconformto standard interfaces,
protocols can be designed, implemented, modified, and maintained independently of each
other. Theprotocolscanbefreely configured in different combinations, allowing protocols
to be added or deleted from protocol suites, or reused in different protocol suites. A given
protocol could be configured as either integrated with other protocols, or integrated “by
itself”, so it can be debugged as a separate, unintegrated layer.

The standardized interfaces makeit straightforward to generate integrated object code
from the source code components by concatenating the object code corresponding to the
components in the proper order along with the necessary infrastructure code, as depicted
in Figure 4.13.

| devised a prototype integration tool that accepts protocols represented as fragments
of C code and outputs integrated implementationsin C. Thistool was used to synthesize
the integrated sendThruputs whose performance was reported above. Using a high-
level target language isolates integration from other language implementation issues. The



deliverThruput{
unsigned sum;
initialStage()
{

sum = msg.hdr.chksum;
nextlnitialStage();

}

filterData(dataWord)
{

sum += (dataWord & OxO000FFFF) + (dataWord >> 16);
output( dataWord );
/* checksum has no flush */

finalStage()

while( sum & OxFFFF0000 )
sum = (sum & OxO0000FFFF) + (sum >> 16);

if(sum==0)
nextFinalStage();
else
nextAbort();
}
/* checksum has no abort */

Figure4.12: Checksum deliver Thruput

target language’s compiler then hasthe responsibility for exploiting the greater locality of
referenceexhibited by theintegrated protocols, e.g. by using registersto hold message data
between datamanipulations. 1n my experiments, the compilershave done so successfully,
utilizing registers as expected.

Specifically, the prototypeintegrator issimply the macro processor m4 [KR86] applied
to appropriate input and includefiles. A protocol’s sendThruput or deliver Thruput op-
eration isinput as seven code fragments. To illustrate this, the CKSUM deliver Thruput
shown in Figure 4.12 is rewritten as the C code fragments in Table 4.9. The INCLU-
SIONS fragment is for including header files and making type or macro definitions; the
DECLARATIONS fragment isfor declaring local variables; and the INITIAL and FINAL
fragmentscorrespond to theinitial and final stages, respectively. The ABORT fragment is
used in the event of an earlier layer rgecting a message to deallocate data structures that



A AND B INTEGRATED

PROTOCOL A ‘ A'S INITIAL ‘
‘ A'S INITIAL ‘ ‘ B'S INITIAL ‘
‘ A'S FILTER ‘
READ DATA
‘ A'S FINAL ‘
A'S FILTER
SYNTHESIS
B'S FILTER
PROTOCOL B WRITE DATA
‘ B'S INITIAL ‘
‘ B'S FILTER ‘ A'S FINAL
‘ B'S FINAL ‘ B'S FINAL

Figure4.13: Integrated Protocol Synthesis

may have allocated by the INITIAL fragment. The two remaining fragments correspond
tothedatamanipulationitself: FILTER isthedatafilter invoked by the preceding protocol
when it passes aword of data, and FLUSH provides away to flush data saved in thelocal
state to subsequent layers once there is no more data forthcoming from preceding layers.
In the case of CKSUM, thereis no code to execute for a flush or abort.

The prototype integrator inserts additional code, e.g. for reading the data from the
message buffer and feeding it to thefirst layer’sword filter. Thisinfrastructureservesasa
framework in which all the protocol fragments are embedded inline, thereby establishing
the sequencing of stages.

Combining programmer code verbatim, as the prototype does, has several shortcom-
ings. The source syntax is unintuitive and inflexible. The programmer must be careful
to use names that do not clash with those used in other protocols. This includes not only
variable names, but also names of types, defined constants, macros, functions, and labels.
The brute-force strategy | used in prototyping was to assign a globally unique name to
each protocol (e.g. “cs.” for CKSUM), and prefix that name to every name used by the
protocol. Another problemisthat it isdifficult to determinewhich protocol isresponsible
for aruntime error because there is no way to associate an object code instruction with
the protocol from which it is derived.

Morpheus avoids these problems by incorporating integration in its design. The parts



FRAGMENT CHECKSUM EXAMPLE

INCLUSIONS #include "chksum.h"

DECLARATIONS | cs_Session ¢s_session;

cs_Hdr cs_hdr;

register unsigned cs_sum;

INITIAL €S_Session = (Ccs_Session) next_session;

next_session = (GenericSession) ¢s_session->nextSession;
¢s_hdr = (cs_ Hdr) msgPush( hdrMsgP, cs HDR_SZ);
cs.sum = ¢s_hdr->chksum;

include(CS_NEXT/initia Stage)

FILTER cs.sum += (currwd & 0xO000FFFF) + (currwd >> 16);
include(CS_NEXT/filter)

FLUSH /* checksum has no flush */

FINAL while( cs.sum & OxFFFF0000)

cs.sum = (cs_sum & O0x0000FFFF) + (cs.sum >> 16);
if(cssum==0)

include(CS_NEXT/final Stage)
else

include(CS_NEXT/abort)
ABORT [* checksum has no abort */

Table 4.9: CKSUM déeliver Thruput C Code Fragments

of sendThruput and deliver Thruput are expressed using intuitive, familiar constructs
such as functions, with name scope rules that eliminate the danger of name clashes. A
compiler could save information for attributing aruntime error to the particular offending
protocol.

Note that the prototype integrator, while not a compiler, still defines and trandates
a new language. It accepts collections of fragments of C code that must follow certain
hard to formulate rules, which it then trandlatesinto C, but it does not accept C programs.
Whether integration is performed by acompiler or by asimpler tool such asmy prototype
integrator, a new language is defined, and compilers can support better |languages.

4.7 Barriersto Integration

There are Situationsin which integration is either not possible or not advantageous. Some
are inherent to particular protocol functionalities, and some derive from the mapping of
protocols onto system components such as address spaces. | have identified the following
classes of barriersto integration:



Control Transfer If adjacent protocol layers are in different address spaces or different
processors, transferring control between them istoo slow for integration.

Message Reassembly Lost or out-of-order message fragments makeit difficult for proto-
cols above areassembly layer to process isolated fragments.

Random Access Some protocols need random access to message data. They find the
sequential access provided by adata stream too inefficient.

Retransmission In some cases a new physical copy of a message must be buffered, but
whenever possible it is better to share a message buffer associated with a different
protocol layer.

Runtime Protocol Path For someprotocols, thereismorethan one possiblenext protocol,
such as when demultiplexing.

There are strategies for minimizing barriers. The basic strategy is of course to avoid
protocols (and protection domain boundaries) that are barriers. Granted that this is not
always possible, barriers may be further minimized by a careful ordering of protocolsin
the protocol graph, and a careful mapping of protocols onto protection domains. The
key observation isthat barriers are only barriersif they occur between data manipulation
protocols, since the performance advantage comes from integrating data manipulations,
not arbitrary protocols. Protocols that do not manipulate data are only integrated when
they are between data manipulation protocols. Henceif abarrier islocated either above or
below any datamanipulations, then it does not prevent any integration. Also, if integration
between two data manipulations has already been blocked by a barrier, then it does not
matter if addition barriers are located between those two data manipulations; in effect,
adjacent barriers coalesce into asingle barrier.

471 Control Transfer Barriers

Seria and integrated implementations represent different tradeoffs between memory
access and control transfer. Serial implementations minimize the number of control
transfers—just one per message per layer—at the expense of the many memory accesses
necessary to passalargeamount of dataall at once. Integrated implementationsattempt to
minimize the number of memory accesses at the expense of frequent control transfers—in
Morpheus, one for every data word (plus a few more) per layer. If control transfer is
very sow, the optimal tradeoff is the purely serial implementation. Transferring control
between protection domains (address spaces) is far ower than afunction call, which is
aready much slower than the instruction sequencing we use to transfer control between



integrated protocols when they pass words of data. Hence, a serial implementation is
more efficient than integration across protection boundaries.

If part of aprotocol stack isimplemented on an outboard processor, integration between
thehost and outboard processor issimilarly impractical, asisintegrating asending protocol
stack on one host with a receiving protocol stack on another host. The problem is not
strictly speaking control transfer, but rather synchronization; the synchronization overhead
of passing datain small unitsis prohibitive.

Although it is inefficient to integrate protocols across such boundaries, it can be
advantageous to integrate boundary crossing mechanisms with protocols on one side of
the boundary. For example, the writing of a message into a buffer (or the reading of a
message from a buffer) in a user address space can be integrated with protocols in the
kernel address space. For another example, if a network device or outboard processor
interface uses Programmed 1/O, reading from or writing to those devices can beintegrated
with protocols (instead of using Programmed 1/0 to copy messages between devices and
memory).

Control transfer barriers can be minimized by limiting the number of protection do-
mainsinto which datamanipulation protocol s (and any system induced datamanipul ations
such as copying across protection boundaries) are mapped. If all the data manipulations
can be mapped into a single protection domain, then there is no control transfer barrier to
prevent their integration.

Certain protocols may be pinned to particular protection domains due to their func-
tionality or trust level. For example, the information necessary to perform a presentation
formatting may be specific to an application, hence be pinned to the same user address
space as the application. This could be accommodated by putting all the data manipula
tion protocolsin that user address space. Any data manipulation protocols which would
otherwise have been in the kernel address space, so as to be shared by the messages of
applications in different user address spaces, would be migrated into the user address
gpaces. They would be either shared via shared libraries, or duplicated. Protocols below
the first data manipulation protocol could remain in the kernel.

Onthe other hand, access to network devices must be restricted to the kernel to prevent
unsafe access. Thus messages will still cross protection boundaries (at least logically),
leaving the potential problem of boundary crossings themsel ves being data manipulations.
For example, if arecelved message has to be transferred via DMA into memory for the
kernel to determine the destination address space, then copying amessage from the kernel
address space into the destination address space would itself be a data manipulation.



This copy could not be integrated with the protocols in the user address space because
it would require kernel privileges to access the message in kernel data space. Possible
solutions include using copy-free techniques to logically move messages from one space
to another, or using specialized network hardware to demultiplex messages directly to
their destination address spaces [DAPP93]. If the data manipulation protocols must be
distributed across kernel and user spaces, then copying messages across the user-kernel
boundary can be integrated with kernel data manipulations at no additional cost.

4.7.2 Reassembly Barrier

From the perspective of higher layers, amessage that isdelivered to areassembly protocol
layer is not a message, but only a fragment of a message. It does not even contain the
higher level headers unless the fragment is the first of a composite message. In general,
protocols cannot process part of a message without having previously processed all the
preceding parts of the message. Even if one could guarantee that fragments would
awaysarrivein order and unduplicated, there would remain problems due to the possibly
interleaved arrival of fragments of different messages. Higher level protocols would
have to maintain state information for each composite message being processed, saving
it between fragments and applying the corresponding state information to each fragment.
It isnot clear whether this can be accomplished while still supporting the efficient control
transfers necessary for protocol integration. Gunningberg et a [GPSV91] report that
whenthey attempted to integrate fragmentati on/reassembly, their implementation schemes
lost the layer abstraction. A genera technique for integrating across reassembly layers
independent of the particular protocols would be even more difficult to devise, if it is
possible at al.

Fortunately, fragmentation/reassembly can be exiled to the bottom of the protocol
graph, if it is needed at al. Gunningberg et al [GPSV91] believe that “for multimedia
applications and gigabit networks we will see fragmentation only at the lowest layers or
not at all,” and Clark and Tennenhouse's Application Level Framing [CT90] aso places
fragmentation/reassembly at the bottom of the protocol graph. Application Level Framing
proposes that a single notion of message framing—an Application Data Unit, essentially
aunit of datathat an application can process independently of other such units—be used
throughout the protocol graph. Only at the bottom of the protocol graph are Application
Data Unitsfragmented into, or reassembled from, the Transmission Data Units supported
by the network.



4.7.3 Random AccessBarriers

Somedatamanipulationsinvolve essentially random accessto messagedata. Oneexample
is the image transfer protocol described in [TP92]. This protocol’s data manipulation
reorders data to spread apart pixels that are adjacent in the original data, an image. The
objectiveisto makeit likely that if apixel islost, the adjacent pixels are not lost, and can
therefore be used to compute an approximation to the value of thelost pixel. Consecutive
pixels in the original image are far apart after the sending side data manipulation, and
consecutive pixels in the incoming message are far apart in the resulting image after
the recelving side data manipulation. Hence neither the sending nor receiving side of
this protocol can efficiently manipulate data in a stream. (This particular example could
however be implemented to accept a data structure message and output a stream, or vice
versa)

Another way of looking at random access barriersis that such protocols have a very
large natural unit and cannot process anything smaller. The technique of accumulating
input datain local state until a protocol’s natural unit is available decreases in efficiency
asthe size of the natural unit increases. Clearly, for anatural unit on the order of the size
of an entire message, a seria implementation would have better performance.

Protocols which utilize certain message editing operations may aso be regarded as
random access barriers. These operations are splitting a message into fragments, and
clipping (discarding) part of amessagefromthetail end, aswhen stripping padding. A data
structureimplementati on of messages can support these operationsvery efficiently without
ever accessing the actual contents of messages [HMPT89, DAPP93], yet implementing
such operationsin terms of a data stream requires counting units of data to recognize the
point in the message where the operation is to be applied.

4.74 Bufferingfor Retransmission

A protocol which buffers copies of messages for possible retransmission presents severd
problems. First consider retransmission. A retransmitted message can contain data, but
originates, in effect, at aprotocol layer, not an application. Thisisaproblem becausethere
could be data manipulations both above and below the retransmitting layer, but it is not
possibleto integrate the retransmission layer with preceding data manipul ations since they
should not process the retransmitted message. A Morpheus compiler could accommodate
this by generating multiple integrated series of sendThruputs, one that starts above the
retransmission layer to handle origina transmissions, and one the starts just below the



retransmission layer to handle retransmissions. The compiler would recognize the need
to generate an extra integrated sub-series of protocols whenever it found asendThruput
in code other than the body of asendThruput.

Buffering a copy of a message presents a more serious problem. Making a physical
copy of amessage, even if integrated, still entails writing the copy into memory. Also,
unlike retransmission, which occurs only when a message is lost or late, buffering must
take place for every message that is sent via aretransmission layer.

Buffering aphysical copy of amessage can often be avoided in serial implementations
by retaining or sharing a preexisting copy of the message data structure. In the integrated
case, one would likewise prefer to make a logical, or copy-on-write, copy whenever
possible, i.e., whenever the buffering layer is situated relative to other layers such that
the correct version of the message data was buffered for some other reason. These
conditions hold except when the retransmission layer is included in an integrated series
with read-write data manipulations both before and after it; otherwise, thereis amessage
buffer (either the input or the output message) with the data in the correct form. These
circumstances are determined at composition time, but that is too late since one needs
to know at protocol design time because a single implementation of the retransmission
protocol isnot capabl e of supporting bothlogical and physical copying. Also, itisnot clear
how a retransmission protocol would obtain a reference to a message buffer associated
with a layer that may precede or follow it by severa layers. Solving these problems
would likely complicate not only the compiler and the configuration software, but also
the Morpheus source language.

Clearly retransmission layers complicate integration. |If instead retransmission is
treated asabarrier, it may be possibleto smply avoidit. For example, it seems reasonable
tolocate any retransmission layersin the protocol graph so that they are above or below all
data manipulations. A retransmission protocol located at the bottom of a protocol graph
might be an appropriate optimization for a link known to have a high error rate. End-to-
end retransmission at the application level might be appropriate because of the possibility
of aprotocol rejecting amessage, and because alternativesto buffering and retransmission
such as regenerating the data or just skipping the message may be appropriate depending
on the application [SRC84].

475 RuntimeProtocol Path Barriers

The protocol to which a given protocol will next pass a message might not be fixed
at composition time. For example, demultiplexing determines at runtime which higher



level protocol is to receive an incoming message. On the sending side, routing behaves
similarly. Another example is message forwarding, sSince a message can either continue
up the protocol graph if its destination is local, or be sent back down the protocol graph
if it should be forwarded. Flow control in which amessage can be blocked temporarily is
another example, since a message may either continue through more layers or terminate,
for the time being, at the flow control layer.

Determining a message’s path through the protocol graph at runtime poses a problem
for integration, at least for the implementation of integration thus far presented. This
implementation combines al three stages of each protocol’s sendThruput or deliver-
Thruput in asingle function. Thisimplementation is*hard-wired” in the sense that, for
a given operation and a given first protocol, the set of protocols that are integrated with
it is fixed. Hence, this implementation can only integrate series of protocols which are
known at compile time to be involved in processing any message received by thefirst in
the series.

Oneresponseisto generate such integrated implementationsfor all the possible series
of protocols that a message might traverse, and then select the correct one for a given
message at runtime. This might use a mechanism such as the Packet Filter [MRA87] to
determine the correct series of protocols. A packet filter is software can be programmed
at runtimeto interpret the combined protocol headers on an arriving message to determine
themessage’'s eventual destination. Thisapproach could be used to anticipate the path that
aparticular message will follow through the protocol graph, and select the corresponding
integrated groups of protocols. However, it does not address the generalized routing case
or the flow control case. Furthermore, it adds redundant processing of message headers,
and complicates protocols with the requirement to program the packet filter at runtime.

| propose a technique called lazy messages ?. Essentialy, it allows initial stages to
be executed before binding a message to a particular integrated series of protocols. Each
protocol’s initial stage is implemented as a separate function. The initial stage must
include any determination of the subsequent protocol. Each protocol’s initial stage tags
the message with theidentity of that protocol, and attaches any information needed by the
data manipulation or final stages of the same protocol, e.g. a checksum on an incoming
message. When, in the serial execution of initial stages, a layer representing a barrier
is reached, the protocol identifier tags on the message are used to select the function
containing the corresponding integrated series of data manipulation and final stages. Such
functions are constructed at compile time for each possible integrated series of protocols.

2The lazy message technique is based on a suggestionin [OP92].



These integrated series functions also include, for each layer, some initialization
code which is responsible for initializing data manipulation filter variables. This may
involve unpacking information attached to the message by theinitial stage. Thisvariable
initialization code is executed in layer sequence before the combined data manipulation
stage. Hence, in the lazy messages technique there are two “initial” stages, call them
initial-1 and initial-2. The bulk of the initial stage work is performed during theinitial-1
stage, in particular the determination of the path through the protocol graph. The initial-2
stageis responsible for any initialization of data manipulation variables, such as the sum
accumulated by a checksum.

The greater flexibility afforded by the lazy-message technique entails some costs.
There isthe increased complexity of separateinitial-1 and initial-2 stages for the protocol
programmer to deal with. Also, there is the extra space used by overlapping integrated
series of protocols, since a function is constructed for each possible integrated series.
However, the increased time to transfer control between stages of different layers and
communicate information between stages of a given layer is not a significant cost, com-
pared to the time to manipul ate any significant amount of data.

Because of these costs, it might be better to ssimply use the hard-wired technique and
attempt to minimize the instances of such barriers. The most common of these potential
barriers is demultiplexing. Multiplexing at multiple levels in a protocol graph has other
significant disadvantages unrelated to protocol integration, and therefore there should be
only one multiplexing layer, at the bottom of the protocol graph [Ten89, Fel90]. This
would have the side-effect of eliminating demultiplexing as a barrier. Similarly, any
message forwarding could be performed at the bottom of the protocol graph, below any
data manipulations.

4.8 TradeoffsBetween Perfor manceand Abstraction

Morpheus's design for optimization makes tradeoffs of abstraction to gain performance.
This tradeoff arises in two contexts. in protocol integration by itself, and in the existence
of separate throughput-optimized and | atency-optimized operations.

481 Trading Abstraction for Performance in Protocol Integration

The Morpheustechniquefor integrating protocol scompromises clean abstractionto obtain
low layering penalties; the optimization shows through at the source code level. 1deally,
acompiler would automatically integrate operations expressed in the familiar seria style,



but this seems to be considerably beyond current technology.

Morpheus supportsintegration in order to reduce the throughput penalty for layering.
Integrationin Morpheus could beregarded as ssmply improving performance, but | choose
toview it asreducing aperformance penalty for protocol modularity; since anon-modular,
or monolithic, implementation of a protocol suite is in theory free to integrate protocols
without concern for module boundaries, any inability to integrate in alayered implemen-
tation may be regarded as a penalty for layering. A reduced penalty for layering makesit
practical to decompose network softwareinto building blocks protocols, and al so supports
ahigh level of abstraction by permitting decomposition to the granularity required by the
shapes constraint. Thus protocol integration in Morpheus supports protocol development.

Unfortunately, M orpheusintegration al so compromisesabstraction, thereby undermin-
ing support for protocol devel opment to some extent. Without integration, the programmer
would implement asendThruput or adeliver Thruput as asingle intuitive function; but
with integration, there are distinct operations for control and data messages, and the
sendThruput and deliver Thruput operations are programmed as sets of functions with
relatively unintuitive purposes and interrelationships.

This design choice in Morpheus—to favor performance at the expense of clean
abstraction—is based on the principle that performance is the overriding concern for
network software designers. If there is a significant performance cost for some other
benefit, then they will sacrifice that benefit in favor of performance.

482 SeparateLatency-Optimized and Throughput-Optimized Oper ations

Morpheus imposes on the programmer the burden of coding separate latency-optimized
and throughput-optimized operations. Thisrepresentsanother tradeoff of clean abstraction
in favor of performance. There are anumber of possible alternatives to this design.

The first alternative to consider isthat a single operation might be optimized for both
latency and throughput— that all the optimizations could be combined in one send and
one deliver. Suppose an operation supported the protocol integration (throughput) opti-
mization. Thelatency optimizationsof generating utility operationsinlineand eliminating
header bounds checking can also be applied (and are applied to both sets of operations
in the current design). However, the remaining latency operations are not appropriate.
Dedicated message registers and short-circuit return apply to function calls between lay-
ers (since they are designed to support runtime configuration), but protocol integration
combines operations from adjacent protocolsinto a single function. They could however
be applied at protocol boundarieswherelazy messages are used to determinethe sequence



of protocols. The remaining latency optimization, procedure cloning, could be applied
to this operation, but space costs argue against it. Both procedure cloning and protocol
integration multiply space costs by duplicating code. Supporting them in separate op-
erations results in space usage equal to the sum of their individual space usages, while
providing the appropriate optimization to each message; while combining them in the
same operation resultsin space usage which isthe product of their individual usages, even
though each message only benefits from one or the other optimization.

One might ask whether athroughput-optimized operation al so hasgood latency despite
the limited applicability of the latency optimizations, especially since protocol integration
combines operations from adjacent layers into a single function. Unfortunately, for some
protocolslatency would be hurt by thetask-level ordering discipline, e.g. deferring external
behavior to the final stage, or by the requirement to structure data manipulations as word
filters. Latency would be even more harmed anywhere lazy messages are used due to
traversing layerstwice (oncefor theinitial stage, and once for the remainder), marshalling
and demarshalling any information that must be attached to the message to communicate
it from the initial stage to the subsequent stages (e.g. the checksum from a received
message), and using protocol tags on messages to ook up the function corresponding to
the remaining stages of the correct protocols.

If asingle operation cannot be effectively optimized for both latency and throughput,
the next question to ask is whether separate operations might be generated from the same
source code. Unfortunately, that shared source code would need an awkward syntax
like that of the current throughput-optimized operations to support protocol integration.
Furthermore, the control message path could suffer some increased latency due to the
requirement to structure the source code to support word filtersand the task-level ordering
discipline.

A number of reasonable compromisesto simplify programming are possible:

¢ Integration-oriented source code could be used to generate both operations by
default, with the programmer having the option of providing separate source code
for the latency-optimized operation if desired.

e The programmer could opt to provide source code only for the latency-optimized
operation, making that layer into abarrier to integration.

¢ Both operations could optionally share a single source code level expression of a
data manipulation as aword filter.

e Where the data manipulation applied to the higher level headers isthe same as that



applied to the application data, both manipulations could optionally be generated
from a single source code word filter.

e The programmer could be relieved of having to code any data manipulation for
latency-optimized operations by applying the latency-optimized operations only to
messages which contain no application data. This would have the performance
disadvantage of optimizing messages with small amounts of data for throughput
when they should be optimized for latency.






CHAPTERS
CONCLUSIONS

My thesisisthat the combination of two novel strategies, constraining protocol speci-
fications and using a special-purpose language, provides powerful program development
support for network software. In support of thisthesis, | have shown that these strategies
enable Morpheus to achieve three well-established principles of software development:
abstraction, modularity, and software reuse. A key intermediate step is Morpheus's
optimizationsthat reduce the performance penalty for protocol layering.

This chapter summarizes the specification-level constraints that have been proposed
asaresult of thiswork, summarizesthe contributionsof thisresearch, and discusses future
work.

5.1 Summary of Constraints
Morpheus imposes the following constraints on protocol specifications:

e Message headers and application data must each use an integral number of words,
and header fields must be word-aligned relative to the start of their headers. This
ensures that all header fields can be word-aligned in memory for efficient access
(Chapter 2), and that application data can be manipulated using word filters (Chap-
ter 4). Headers and application data can be padded to satisfy this constraint.

e Protocols must not support runtime options (Chapter 2). Eliminating runtime op-
tions increases reusability of protocol implementations since otherwise protocols
could be composed only if each protocol that invoked an option were paired with
aprotocol that implemented the option. Different options should instead be imple-
mented as distinct protocols. Where the correct option would depend on runtime
information, arouter can be used to route messages through the appropriate protocol .

e Protocols must not provide functionality corresponding to more than one shape
(Chapter 2). This allows Morpheusto automatically provide the aspects of a proto-
col’s implementation that are determined by a protocol’s declared shape. Protocol
functionality that spans more than one shape can be implemented asthe composition
of multiple protocols.



e Multiplexing must use two multiplexing keys, and their types must be Morpheus's
standard multiplexing key type (Chapter 2). ThisallowsMorpheusto automatically
providetheimplementation of multiplexing and demultiplexing, and smplifiescon-
figuring multiplexorsin a protocol suite. To behave like conventional multiplexing
based a single key, a multiplexor can be configured so that the local and remote
multiplexing keys areidentical.

e Protocols must be able to manipulate higher level headers and application data
separately, and network drivers (or software between the Morpheus protocol sub-
system and the network drivers) must support the segregated message abstraction
(Chapter 4). This alows efficient protocol integration by providing protocols with
a common definition of the data they are to manipulate together. This constraint
rules out only those protocols that apply a single manipulation to both higher level
headers and application data, and define that manipulation in terms of a unit that
could span the boundary between the two.

5.2 Contributions

The main contributions of this research are the protocol abstractions and the optimization
techniques.

Morpheus's protocol abstractions provide a high level of abstraction that supports
protocol development by providing a seamless model for thinking about protocols and
relieving the programmer of making and expressing low-level design decisions that are
unnecessary and may introduce errors or poor performance. Protocol shapes provide a
prescription for decomposing network softwarewhileraising thelevel of abstraction. The
abstractions also present astandardized protocol interface that is well-suited to decompo-
sition, thereby supporting protocol development through the building-blocks approach.

Morpheus's procedure cloning technique uses knowledge of a restricted domain to
extend apowerful compile-timeinterprocedural optimizationto aruntime situation, while
simultaneoudly avoiding the overhead of interprocedural analysis. Morpheus's dedicated
message registers and short-circuit return techniques support runtime configuration of
protocol suites by improving performance in contexts where compile-time techniques
cannot be applied.

Morpheus contributes a protocol integration technique that is very genera and pre-
serves modularity. The same basic technique can be used to integrate not only reusable
building-blocks protocols, but also more conventional protocols. Even when protocol im-
plementations are not expected to be reused, the modularity supported by this technique
is a considerable advantage. Even if implementors choose to dispense with modularity,



word filters, segregated messages, and the task-level ordering discipline provide a very
genera technigue for implementing integrated protocols. And even if implementorsin-
tend to customize an implementation in order to obtain the greatest possible performance,
this technique can serve asthe basis for the customized implementation.

Identifying the four protocol integration problems is a contribution. Researchers in
search of better general solutionscan usethem asastarting point. |mplementorsof custom
integrated protocol suites can use them to better understand the specific problems they
encounter in the context of particular suites.

Finally, the experiments and analysis of Morpheus's integration technique quantify
I LP behavior and potential, and provide alower bound on the performance benefit that can
be obtained. If improvementsin processor performance continue to outpace improvement
in memory performance as expected, the performance benefit of integration will only
increase relative to measurements on current machines.

5.3 FutureWork

The research presented in this dissertation is highly exploratory. A great deal of work
could be invested smply to complete the realization of Morpheus. a complete language
design, with fully-specified syntax and at least afairly rigorous semantics, if not aformal
semantics; working compilersfor one or moretarget machines; and thorough performance
measurements based on compiler-generated code. Other language environment work
would include support for protocol-oriented debugging.

The Morpheus design presented here supports only the asynchronous, peer-to-peer
(unicast) protocols. It should be extended to such other forms of communication as
Remote Procedure Call and multicast communication.

There isthe potential to improve throughput significantly by integrating data manipu-
lations performed by applications with those performed by protocols. It is not clear how
to achieve thisin Morpheus since Morpheus can only express protocols.

A protocol implementation language would seem to be well-suited to support mul-
tiprocessing implementation of protocols. It may be possible for a compiler for such a
specialized language to transparently generate the appropriate locking, so that protocol
source code isindependent of the degree and style of multiprocessing. A compiler would
know the target multiprocessing system, have access to information about which datais
shared, and have the ability to interject locking code at arbitrary points. If this is not
possible—if it were to turn out that the programmer must be aware of multiprocessing—



there remainsthe potential to provide protocol -oriented multiprocessi ng abstractions of a
higher level than the basic lock.

54 Concluding Remarks

The underlying theme of this research is that the building-blocks approach to building
network software works. Decomposing network software into small, reusable protocols
makes it easier to understand and develop, especially when combined with the strategies
employed by Morpheus. Protocol-oriented optimizations give building-block protocols
apotential performance nearly that of more monolithic implementations, and the ease of
development allows programmersto come closer to achieving this potential performance
than their counterparts who build monolithic implementations.

The main impediment to the building-blocks approach is the continued dominance of
such current network architectures as TCP/IP. However, factors discussed in Chapter 1
are leading to the obsolescence of these architectures. My hopeisthat the work presented
in this dissertation will influence the design and implementation of the network software
that supersedes them.



APPENDIX A
C VERSION OF SEQUENCER PROTOCOL

This is a C implementation of the protocol SEQUENCER. It illustrates the level
of detail that is necessary for a complete protocol implementation in a general purpose
language.

#include "bunchOfStuff.h"

/* Header */
typedef struct{
int  seqNum;
}*Hdr;
#define NET_BYTE_ORDER LITTLE_ENDIAN

/* Protocol */

typedef struct{
String name;
ProtlOps ops;

Sap undrSap;

Sap overSap;

int sendSegNum;
}*Protl;

/* OverSessn */

typedef struct{

GenericUndrSessn otherSide;

Sap sap;

Protl protl;

Pfv send;

Pfv grantDelivs;

struct undrSessnStruct* undrSessn;
}*OverSessn;

/* UndrSessn */
typedef struct undrSessnStruct{
GenericOverSessn otherSide;

Sap sap;

Protl protl;

Pfv deliv;

Pfv grantSends;

OverSessn overSessn;
int rcvSegNum;



}*UndrSessn;

static void send( overSessn, msg )
OverSessn overSessn;

Msg* msg;

{

Hdr hdr;

int seqNuminNetByteOrder;

hdr = (Hdr) msgPush( msg, sizeof( Hdr* ) );
seqNuminNetByteOrder =
hostToNetInt( NET_-BYTE_ORDER, overSessn->protl->sendSeqNum++ );
bcopy( &segNuminNetByteOrder, &header->seqNum, sizeof(int) );
overSessn->undrSessn->otherSide->send(
overSessn->undrSessn->otherSide, msg ) );

}

static void deliv( undrSessn, msg )
UndrSessn undrSessn;

Msg* msg;

{

Hdr hdr;

int seqNuminNetByteOrder;
int seqNuminHostByteOrder;

hdr = (Hdr) msgTop( msg, sizeof( Hdr* );

bcopy( &header->seqNum, &segNumInNetByteOrder, sizeof(int) );

seqNuminHostByteOrder =
netToHostIint( NET_BYTE_ORDER, segNumInNetByteOrder );

if( seqNumInHostByteOrder > undrSessn->rcvSeqNum ){
undrSessn->rcvSeqNum = segNuminHostByteOrder;
msgPop( msg, sizeof( Hdr*) );
undrSessn->overSessn->otherSide->deliv(
undrSessn->overSessn->otherSide, msg ) );

Jelse{
undrSessn->otherSide->grantDelivs( undrSessn->otherSide, 1 );

}

}

static void grantSends( overSessn, numCredits )
OverSessn overSessn;
int numCredits;
{
overSessn->undrSessn->otherSide->grantSends(
overSessn->undrSessn->otherSide, numCredits );

}

static void grantDelivs( undrSessn, numCredits )
UndrSessn undrSessn;
int numCredits;



undrSessn->overSessn->otherSide->grantDelivs(
undrSessn->overSessn->otherSide, numCredits );

static void createOverSessnDown( overSap, higherUndrSessn, addr )

Sap

overSap;

GenericUndrSessn higherUndrSessn;
GenericAddr addr;

{

OverSessn overSessn;
UndrSessn undrSessn;

}

/* create a sequencer overSessn and glue to the higher level undrSessn */
overSessn = (OverSessn) malloc( sizeof(OverSessn*) );

overSessn->sap = overSap;

overSessn->send = send;

overSessn->grantDelivs = grantDelivs;

overSessn->otherSide = higherUndrSessn;

higherUndrSessn->otherSide = overSessn;

/* set up the corresponding sequencer underSessn */

undrSessn = (UndrSessn) malloc( sizeof(UndrSessn*) );

((Protl)overSap->lowerProtl)->undrSap->createOverSessnDown(
((Protl)overSap->lowerProtl)->undrSap, undrSessn, addr );

undrSessn->rcvSeqNum = 0O;

/* link corresponding sequencer overSessn and undrSessn */
undrSessn->overSessn = overSessn;
overSessn->undrSessn = undrSessn;

static void enableUpwardSessnCreate( overSap )

Sap
{

}

overSap;

((Protl)overSap->lowerProtl)->undrSap->enableUpwardSessnCreate(
((Protl)overSap->lowerProtl)->undrSap );

static void createUndrSessnUp( undrSap, lowerOverSessn, addr )

Sap

undrSap;

GenericOverSessn lowerOverSessn;
GenericAddr addr;

{

UndrSessn undrSessn;
OverSessn overSessn;

/* create a sequencer undrSessn and glue to the lower level overSessn */



undrSessn = (UndrSessn) malloc( sizeof(UndrSessn*) );
undrSessn->sap = undrSap;

undrSessn->deliv = deliv;

undrSessn->grantSends = grantSends;
undrSessn->otherSide = lowerOverSessn;
lowerOverSessn->otherSide = undrSessn;
undrSessn->rcvSeqNum = 0;

/* set up the corresponding sequencer overSessn */

overSessn = (OverSessn) malloc( sizeof(OverSessn*) );

((Protl)undrSap->higherProtl)->overSap->createUndrSessnUp(
((ProtljundrSap->higherProtl)->overSap, overSessn, addr );

/* link corresponding sequencer overSessn and undrSessn */
overSessn->undrSessn = undrSessn;
undrSessn->overSessn = overSessn;

}

static GenericAddr getLocalAd( overSap )
Sap overSap;

{

return( ((Protl)overSap->lowerProtl)->undrSap->getLocalAd(
((Protl)overSap->lowerProtl)->undrSap ) );

}

static void addOverSap( protl, overSap )
Protl protl;

Sap overSap;

{

protl->overSap = overSap;

overSap->createOverSessnDown = createOverSessnDown;
overSap->enableUpwardSessnCreate = enableUpwardSessnCreate;
overSap->getLocalAd = getLocalAd;

}

GenericProtl sequencerlnitProtl( undrSaps )
Saps undrSaps;
{

Protl protl;

protl = (Protl) malloc( sizeof( *Protl ) );

protl->undrSap = undrSaps[0];

protl->undrSap->higherProtl = (GenericProtl) protl;
protl->undrSap->createUndrSessnUp = createUndrSessnUp;
protl->sendSeqNum = 1;

return( (GenericProtl) protl );
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