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Abstract

Joins are arguably the most important relational operators. Poor implementations are tan-

tamount to computing the Cartesian product of the input relations. In a temporal database,

the problem is more acute for two reasons. First, conventional techniques are designed for

the optimization of joins with equality predicates, rather than inequality predicates which are

prevalent in valid-time queries. Second, the presence of temporally-varying data dramatically

increases the size of the database. These factors require new techniques to e�ciently evaluate

valid-time joins.

We address this need for e�cient join evaluation in databases supporting valid-time. A

new temporal-join algorithm based on tuple partitioning is introduced. This algorithm avoids

the quadratic cost of nested-loop evaluation methods; it also avoids sorting. The algorithm is

then adapted to an incremental mode of operation, which is especially appropriate for temporal

query evaluation. Performance comparisons between the recomputation algorithm and other

evaluation methods are provided. While we focus on the important valid-time natural join, the

techniques presented are also applicable to other valid-time joins.
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1 Introduction

Time is an attribute of all real-world phenomena. Consequently, e�orts to incorporate the temporal

domain into database management systems (DBMSs) have been on-going for more than a decade

[Soo91, Sno90, Sno92]. The potential bene�ts of this research include enhanced data modeling

capabilities and more conveniently expressed and e�ciently processed queries over time.

Whereas past work in temporal databases has concentrated on conceptual issues such as data

modeling and query languages, recent attention has focused on implementation-related issues,

most notably indexing and query processing strategies. We consider in this paper an important

subproblem of temporal query processing, the evaluation of temporal join operations.

Joins are arguably the most important relational operators. They occur frequently due to

database normalization and are potentially expensive to compute. Poor implementations are tan-

tamount to computing the Cartesian product of the input relations. In a temporal database, the

problem is more acute. Conventional techniques are aimed towards the optimization of joins with

equality predicates, rather than the inequality predicates prevalent in temporal queries [LM90].

Secondly, the introduction of a time dimension is likely to signi�cantly increase the size of the

database. These factors require new techniques to e�ciently evaluate valid-time joins.

Valid-time databases support valid-time, the time when facts were true in the real-world

[JCG

+

92, SA86]. In this paper, we consider strategies for evaluating the valid-time natural join

[LM92, CC87], which matches tuples with identical attribute values during coincident time in-

tervals. Like its snapshot counterpart, the valid-time natural join supports the reconstruction of

normalized data [JSS92a]. E�cient processing of this operation can greatly improve the perfor-

mance of a database management system.

Join evaluation algorithms fall into three categories, nested-loop, sort-merge, or partition-

based [ME92]. The majority of previous work in temporal join evaluation has concentrated on

re�nements of nested-loop [GS90, SG89] and sort-merge algorithms [LM90]. Comparatively little

attention has been paid to partition-based evaluation of temporal joins, the notable exception

being Leung and Muntz who considered such algorithms in a multiprocessor setting [LM91b].

In this paper, we present a partition-based evaluation algorithm for valid-time joins that

clusters tuples with similar validity intervals. If the number of disk pages occupied by the input

relations is n then, in most situations, our algorithm allows an O(n) evaluation cost, thereby

improving on the O(n

2

) cost of nested-loop evaluation and the O(nlog(n)) cost of sort-merge

evaluation. We then adapt the algorithm to an incremental mode of computation [Han87, Rou87,

Hor86], where the join is materialized and updated incrementally as the base relations change. We

motivate why incremental evaluation is an appropriate strategy for valid-time join evaluation.

The paper is organized as follows. Section 2 formally de�nes the valid-time natural join

in the valid-time conceptual data model (VCDM), a special case of the Bitemporal Conceptual

Data Model [JSS93]. A new, partition-based algorithm for computing the valid-time natural join

is presented in Section 3. Performance comparisons between the partition-based algorithm and

previous valid-time join evaluation algorithms are made in Section 4. Section 5 adapts the partition-

based algorithm to an incremental framework, and conclusions and future work are detailed in

Section 6.

2 Valid-Time Natural Join

In this section, we de�ne the valid-time natural join using the tuple relational calculus. Two

de�nitions are provided. The �rst uses the valid-time conceptual data model [JSS93]. The second

is an equivalent de�nition in a common representational model.
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2.1 Valid-Time Conceptual Data Model

The valid-time conceptual data model employs tuple timestamping. Each tuple in a valid-time

relation consists of a set of �rst normal form attribute values and a timestamp. The timestamp,

termed a valid-time element and denoted V, is a set of chronons [DS93] representing a set of time

intervals.

Example: We de�ne two valid-time relation schemas EmpSal = (Emp; Sal j V) and EmpDep =

(Emp;Dep j V). Instances empSal(EmpSal) and empDep(EmpDep) follow.

empSal: Emp Sal V

Al 10 f30,31,33,: : :,40g

Al 11 f32,41,42,: : :,48g

empDep: Emp Dep V

Al Ship f30,: : : ,35g

Al Load f36,: : : ,48g

The relation empSal shows Al's salary history. Between times 30 to 31 inclusive, Al's salary

was 10. This is shown by the �rst tuple in the relation. At time 32, Al received a raise. His new

salary, 11, is shown in the second tuple. At time 33, Al's raise is revoked, perhaps due to the

present economic unrest, and his salary remains at 10 until time 40. This is shown in the �rst

tuple. Finally, at time 41, Al receives the raise once again.

Note that the timestamps are truly sets of chronons rather than contiguous intervals of time,

and that the timestamps e�ectively represent sets of intervals. For example, the timestamp of the

�rst tuple is equivalent to the two intervals [30,31] and [33,40]. ut

Let R and S be valid-time relation schemas

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

m

j V)

S = (A

1

; : : : ; A

n

; C

1

; : : : ; C

k

j V)

where the A

i

represent explicit join attributes, the B

i

and C

i

are additional attributes, and V is

the valid timestamp. Also, let r and s be instances of R and S, respectively.

In the valid-time natural join, two tuples x and y join if they match on the explicit join

attributes and they have overlapping valid timestamps. The attribute values of the resulting tuple

z are as in the snapshot natural join, with the addition that the valid timestamp is the intersection

of the valid timestamps of x and y.

Definition: The valid-time natural join of r and s, r 1

V

s, is de�ned as

r 1

V

s = fz

(n+m+k+1)

j 9x 2 r 9y 2 s(x[A] = y[A] ^ x[V] \ y[V] 6= ;^

z[A] = x[A] ^ z[B] = x[B] ^ z[C] = y[C]^

z[V] = x[V] \ y[V])g. 2

Example: De�ne emp = empSal 1

V

empDep with schema Emp = (Emp; Sal;Dep j V).

emp: Emp Sal Dep V

Al 10 Ship f30,31,33,34,35g

Al 10 Load f36,: : : ,40g

Al 11 Ship f32g

Al 11 Load f41,: : : ,48g

ut

Other terms for the valid-time natural join include the natural time-join [CC87] and the time-

equijoin (TE-join) [GS90].
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2.2 A Tuple-Timestamped Representation

The valid-time conceptual data model provides an intuitive and simple way to express temporally

varying information. However, it is not a convenient vehicle for implementation due to its non-�rst

normal form timestamp. Therefore, we de�ne a representation for valid-time relations more suited

for query evaluation, and de�ne the valid-time natural join over this representation. It can be

shown that relations in this representation have snapshot equivalents in the VCDM [JSS93].

Like the VCDM, the representation we choose uses tuple-timestamping. The timestamp,

rather than being a set of chronons, is restricted to be a single interval of time denoted by inclusive

starting and ending chronons.

Let R and S be valid-time relation schemas

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

m

;V

s

;V

e

)

S = (A

1

; : : : ; A

n

; C

1

; : : : ; C

k

;V

s

;V

e

)

where the A

i

represent the joining attributes, the B

i

and C

i

are additional attributes, and V

s

and

V

e

are the valid time start and end attributes. We use V to denote the interval [V

s

;V

e

]. Also, we

de�ne r and s to be instances of R and S, respectively.

Example: We de�ne two valid-time relation schemasEmpSal = (Emp; Sal;V

s

;V

e

) and EmpDep =

(Emp;Dep;V

s

;V

e

). Relations empSal(EmpSal) and empDep(EmpDep), which are snapshot

equivalent to the VCDM relations of the previous example follow.

empSal: Emp Sal V

s

V

e

Al 10 30 31

Al 11 32 32

Al 10 33 40

Al 11 41 48

empDep: Emp Dep V

s

V

e

Al Ship 30 35

Al Load 36 48

This representation encodes the same information as the VCDM versions given earlier. ut

In the valid-time natural join, two tuples x and y join if they meet the snapshot equi-join

condition (i.e., they match on the explicit join attributes), and if they have overlapping valid time

intervals. The attribute values of the resulting tuple z are as in the snapshot natural join, with

the addition that the valid time interval is the maximal overlap of the valid time intervals of x and

y. We formalize this with the following de�nitions.

Definition: The function overlap(x[V]; y[V]) returns the maximal interval contained in both

intervals x[V] and y[V].

overlap(x[V]; y[V]) = [i,j] where 8t(x[V

s

] � t � x[V

e

] ^ y[V

s

] � t � y[V

e

]! i � t � j 2

Definition: The valid-time natural join of r and s, r 1

V

s, is de�ned as follows.

r 1

V

s = fz

(n+m+k+2)

j 9x 2 r 9y 2 s(x[A] = y[A] ^ z[A] = x[A] ^ z[B] = x[B] ^ z[C] = y[C]^

z[V ] = overlap(x[V]; y[V])^ z[V ] 6= ; g 2

Example: Let empSal and empDep be as in the previous example, and let emp = empSal 1

V

empDep.

Then emp, with schema Emp = (Emp; Sal;Dep;V

s

;V

e

), is given by
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Figure 1: Partition join of r 1 s

emp: Emp Sal Dep V

s

V

e

Al 10 Ship 30 31

Al 10 Ship 33 35

Al 11 Ship 32 32

Al 10 Load 36 40

Al 11 Load 41 48

This clearly has the same information content as the previous VCDM instance. ut

3 Valid-Time Partition Join

Partition joins cluster tuples with similar attribute values, thereby reducing the amount of un-

necessary comparison needed to �nd matching tuples [ME92]. Both input relations are divided

into partitions where tuples in a particular partition can only match with tuples in a correspond-

ing partition of the other relation, and joins between corresponding partitions can be e�ciently

evaluated.

Partition join evaluation consists of three phases. First, the attribute values delimiting par-

tition boundaries are determined. The partition boundaries are chosen to minimize the evaluation

cost|disk I/O is usually the dominant cost factor. Second, these attribute values are used to phys-

ically partition the input relations. In the ideal case, this involves linearly scanning both input

relations and placing the tuples into the appropriate partition. Lastly, the joins of corresponding

partitions of the input relations are computed. In the ideal case, the partitions are small enough

to �t in the available main memory and can be accessed with a single random disk seek followed

relatively inexpensive sequential reads. Any simple evaluation algorithm such as nested loops or

sort-merge can be used to join the partitions once in memory. If the partitioning satis�es the given

bu�er constraints, the join can be computed with a linear I/O cost, thereby avoiding the quadratic

complexity of the brute force implementation.

Figure 1 shows how partitioning is used to compute r 1 s for two snapshot relations r and

s. Relations r and s are initially scanned and tuples are placed into partitions r

i

and s

i

1 � i � n

depending on their joining attribute values. The partitioning is performed to guarantee that, for

any tuple x 2 r

i

, x can only join with tuples in s

i

. The join r 1 s is computed by unioning the

joins r

i

1 s

i

.

Suppose that buffSize pages of bu�er space are available in main memory. If a partition r

i
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occupies buffSize �2 pages or less, then it is possible to compute r

i

1 s

i

by reading r

i

into main

memory and joining it with each page of s

i

one at a time. (The remaining page of main memory

is used to hold result tuples.) Therefore, a single linear scan of r and s su�ces to compute r 1 s.

Also, the partitioning provides a natural clustering mechanism on tuples with similar attribute

values. If partitions are stored on consecutive disk pages then, after an initial disk seek to the

�rst page of a partition, its remaining pages are read sequentially. Last, it is easy to see how the

algorithm can be adapted to an incremental mode of operation. For example, suppose that r 1 s

is materialized as a view, and an update happens to r in partition r

i

. As tuples in r

i

can only join

with tuples in s

i

, the consistency of the view is insured by recomputing only r

i

1 s

i

.

3.1 Supporting Valid-Time

We now present a partition join algorithm to compute the valid-time natural join r 1

V

s of two

valid time relations r and s in the interval timestamped representation presented in Section 2.2.

Our approach is to partition the input relations using a tuple's interval of validity. For the

corresponding partitions r

i

and s

i

, the partitioning guarantees that for each x 2 r

i

, x can only join

with tuples in s

i

, and, similarly, y 2 s

i

can join only with tuples in r

i

.

Tuple timestamping with intervals adds an interesting complication to the partitioning prob-

lem. Since tuples can conceivably overlap multiple partitions these tuples, termed long-lived tuples ,

must be present in each partition they overlap when the join of that partition is being computed.

That is, the tuple must be present in main memory when the join of an overlapping partition is

being computed. Notice that this problem does not occur in the partition join of snapshot relations

since, in general, the joining attributes are not range values such as intervals.

A straightforward solution to this problem simply replicates the tuple across all overlapping

partitions [LM91b]. However, the disadvantages of this include additional secondary storage space

to hold the replicated tuples and complications in update for incremental evaluation.

We propose a di�erent solution that guarantees the presence of the tuple in each overlapping

partition when the join of that partition is computed, while avoiding replication of the tuple in

secondary storage. Simply, we choose a single overlapping partition to contain the tuple on disk

and dynamically migrate the tuple to the remaining partitions as the join is being evaluated.

The evaluation algorithm is shown in Figure 2. As with partition-join algorithms for conven-

tional databases, three steps are performed. First, the attributes values that determine partition

boundaries are determined. This is performed by procedure determinePartitions. Next the rela-

tions are partitioned by procedure createPartitions, and lastly, the partitioned relations are joined

by procedure joinPartitions.

partitionJoin(r; s):

partitions  determinePartitions(buffSize,jrj,jsj)

r  createPartitions(r,partitions)

s createPartitions(s,partitions)

joinPartitions(r,s,partitions)

Figure 2: Evaluation of r 1

V

s

We assume that Grace partitioning [KTMo83, ME92] is used in procedure createPartitions.

The available bu�er space is divided among the partitions. Each tuple in r and s is examined

and placed in a page belonging to the appropriate partition; when the pages for a given partition

become �lled they are ushed to disk. We assume that the number of partitions is small, and

therefore, that su�cient main memory is available to perform the partitioning. This assumption

5
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Figure 3: Partition-join of r 1

V

s

held true for all experiments we performed. As partitioning is straightforward, we concentrate on

the remaining algorithms. The following section describes how two partitioned relations are joined

in procedure joinPartitions. For the time being, we assume that r and s are divided into n equal

sized partitions and postpone until Section 3.3 the details of procedure determinePartitions.

3.2 Joining Partitions

Let P be a partitioning of valid time, i.e., P is a set of n non-overlapping intervals p

i

, 1 � i � n,

that completely covers the valid time line. We assume, for the purposes of this section, that each

p

i

has approximately the same number of tuples.

Figure 3 shows our approach. We assume that a tuple x is in the partition r

i

if and only if

overlap(x[V]; p

i

) 6= ;, and similarly for y 2 s

i

. Tuples are physically stored in the last partition

they overlap, that is, a tuple x is physically stored in partition r

i

if overlap(x[V]; p

i

) 6= ; and

:9j such that j > i and overlap(x[V]; p

j

) 6= ;.

1

The computation proceeds from r

n

1

V

s

n

to

r

1

1

V

s

1

. For a given r

i

, all tuples x 2 r

i

that overlap r

i�1

are retained and added to r

i�1

prior to

computing r

i�1

1

V

s

i�1

, and similarly for s

i�1

. As tuples are initially placed in their last overlapping

partition, this algorithm ensures that tuples are present in each partition they overlap, and does

so without introducing unnecessary redundancy in secondary storage. Notice also that if a given

tuple x overlaps partitions p

i

, p

i+1

, : : : , p

j

then x must be present in r

i

, r

i+1

, : : : , r

j

when their

corresponding join is computed. Hence, no unnecessary comparisons are performed.

The bu�er allocation strategy used in this algorithm is shown in Figure 4. Space is allocated

to hold an entire partition r

i

of the outer relation r, a page of the corresponding partition s

i

of the

inner relation, a page, the tuple cache, to hold the long-lived tuples of s, and a page to hold the

result tuples.

Figure 5 provides the algorithm to compute r 1

V

s. For each i, 1 � i � n, the algorithm

constructs the next outer relation partition r

i

by purging tuples in the outer relation partition

bu�er that do not overlap p

i

and reading in the physical partition r

i

from disk. r

i

is then joined

with the long-lived tuple cache. Tuples in the tuple cache that do not overlap p

i�1

are purged

1

An equivalent strategy is to place tuples in their �rst partition and propagate long-lived tuples towards the last

partition during evaluation. We chose the given strategy with consideration for the incremental modi�cations to be

described in Section 5.
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partition

Tuple cache

s

Inner relation
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Tuple cache
page

Result relationResult relation
page

Main memory

Figure 4: Bu�er Allocation Strategy for r 1

V

s Evaluation

after r

i

and the tuple cache are joined. We check this by comparing a tuple's validity interval

with the partition boundary timestamps. Finally, r

i

is then joined with each page of s

i

. Tuples

in the current page of s

i

that overlap p

i�1

are inserted into the tuple cache to be available for the

computation of r

i�1

1

V

s

i�1

. In preparation for the next partition, tuples in r

i

that overlap p

i�1

are retained in the outer relation partition for the subsequent computation of r

i�1

1

V

s

i�1

. We

assume that the tuple cache is paged in and out of memory as necessary to compute the join.

The ordering of operations in algorithm joinPartitions attempts to minimize the amount of

I/O, both random and sequential, performed during the evaluation. Each partition fetch of the

outer relation requires a random seek, but subsequent pages are read with sequentially. Similarly,

each page of the tuple cache and the inner partition are, after an initial seek, read nearly sequentially

except when the result bu�er requires ushing. The result bu�er requires random writes in most

cases. In all cases, reading of either the outer relation partition, inner relation partition, or the

tuple cache normally requires only a single random seek followed by i� 1 sequential reads, where

i is the number of pages in the item of interest.

Di�erent orderings of the operations in Figure 5 are possible, but either result in higher

evaluation cost through more random access, rereading of pages, or more complex bookkeeping.

For example, prior to joining r

i

with the tuple cache, we could join each r

i

with each page of s

i

,

moving long-lived tuples in s

i

to the tuple cache as pages of s

i

are brought into main memory.

Since r

i

1

V

s

i

is computed prior to the join of r

i

and the tuple cache, the tuple cache contains

tuples from s

i

that have already been processed and, to prevent recomputation, more complex

tuple management is required.

Other variations include migrating long-lived tuples from s

i

to the tuple cache prior to per-

forming any joins, and purging \dead" tuples from the tuple cache prior to joining it with the

r

i

. Both of these variants su�er from repeated reading of tuples. The former requires that s

i

be

read twice, �rst to migrate live tuples, then to join the remaining tuples with r

i

. This requires

an additional random access and jsj � 1 sequential reads. The latter requires that the tuple cache

be read twice for each partition. While reading the tuple cache is not as expensive as reading a

partition, this is unnecessary and should be avoided.

7



joinPartitions(r,s,partitions):

cache page ;

outer partition ;

tuple cache ;

for i from n to 1 do

for each tuple x in outer partition do

if overlap(x; p

i

) = ; then

outer partition outer partition - fxg

outer partition outer partition [ fread(r

i

)g

result

i

 result

i

[ fouter partition 1

V

cache pageg

for each tuple x 2 cache page do

if overlap(x; p

i�1

) 6= ; then

new cache page new cache page [ fxg

if filled(new cache page) then

write(new cache page)

for each flushed page c of tuple cache do

cache page read(c)

result

i

 result

i

[ fouter partition 1

V

cache pageg

for each tuple x 2 cache page do

if overlap(x; p

i�1

) 6= ; then

new cache page new cache page [ fxg

if filled(new cache page) then

write(new cache page)

for each tuple x 2 c do

if overlap(x; p

i�1

) 6= ; then

new cache page new cache page - fxg

if filled(new cache page) then

write(new cache page)

for each page o of s

i

do

inner page read(o)

result page  result page [ fouter partition 1

V

og

if filled(result page) then

write(result page)

for each tuple x 2 o do

if overlap(x; p

i�1

) then

cache page  cache page [ fxg

Figure 5: Joining Partitions
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3.3 Partitioning Strategies

In the previous section, we described how the join of two partitioned relations was computed,

assuming that the partitions contained approximately equal numbers of tuples. We show in this

section how to determine a partitioning of the input relations that satis�es this property with

relative small I/O cost. Our method is inspired by the partition size estimation technique originally

developed for evaluation of band-joins [DNS91].

In Figure 4, a single bu�er page is allocated to each of the inner relation bu�er, tuple cache

and result relation, and buffSize pages are allocated to hold a partition of the outer relation.

Our goal is to ensure that each r

i

�ts in the available buffSize pages with high probability, while

minimizing the I/O cost of ensuring that this is the case.

The task at hand is to construct a set of partitioning intervals that covers the valid-time line.

Tuples belong to a partition if they overlap, in valid time, the corresponding partitioning interval.

A simple strategy would be to sort r and perform a linear scan of the sorted relation, choosing

the chronons that delimit the partitioning intervals. While this allows us to exactly choose the

partitioning intervals, it is expensive since it requires sorting.

A better solution is to choose partitioning intervals that with high probability are close to

those that would have been chosen with the exact method. To do this, we randomly sample

tuples from r, and, based on this sample set, choose a set of partitioning chronons, from which the

partitioning intervals are constructed. As our partitioning is only approximate, some portion of

the buffSize pages must be reserved for overow, that is, to handle errors in the chronon choices

that would likely result in overow of the bu�er space. We note that should such errors occur, that

is, a partition is created that is bigger than buffSize pages, the correctness of the join algorithm

is not a�ected|only performance will su�er due to bu�er thrashing. We make the simplifying

assumption that the distribution of tuples over valid time is similar for both the inner and outer

relations, and so sampling is required of only one relation. We arbitrarily choose to sample the

outer relation.

The cost of evaluating r 1

V

s has the following three components (c.f., Figure 2).

� C

sample

|the cost of sampling r,

� C

partition

|the cost of creating the partitions r

i

and s

i

, 1 � i � n, and

� C

join

|the cost of joining the partitions r

i

and s

i

, 1 � i � n.

The total I/O cost C

total

is the sum of these,

C

total

= C

partition

+ C

sample

+ C

join

.

The choice of partitioning intervals a�ects both C

sample

and C

join

. We note that the cost

of performing Grace partitioning is dependent only main memory bu�er size, and is independent

of partition size. Let partSize � buffSize be the estimated size of an outer relation partition.

Then errorSize = buffSize � partSize is the amount of bu�er space available to handle overow

if a partition exceeds the estimated size. If partSize is large then the amount of error space is

small, implying that the accuracy of our choice of partitioning intervals must be high to avoid

overow. A larger number of samples must be taken to ensure higher accuracy, and therefore

C

sample

increases as partSize increases. However, tuples are less likely to overlap multiple partitions

if the partitioning intervals are large, hence a large partSize is likely to result in fewer long-lived

tuples. Consequently, paging of the tuple cache is less likely to occur thereby decreasing C

join

.

In summary, a cost tradeo� is present between the amount of sampling performed on the outer

relation and the amount of paging performed on the tuple cache. The optimal solution minimizes

the sum C

sample

+ C

join

.
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Figure 6: I/O Cost for Partition Size

Figure 6 plots sampling and tuple-cache paging costs for increasing partition sizes. As seen

from the �gure, as the expected partition size partSize increases, sampling costs (C

sample

) increase

monotonically and tuple-cache paging costs (and hence C

join

) decrease monotonically. In order to

minimize the evaluation cost, the sum of the sampling cost and the tuple-cache paging cost (shown

as a dotted line in the �gure) must be minimized.

The algorithm of Figure 7 determines, for a given buffSize, the partSize and errorSize that

minimize C

sample

+ C

join

. The set of partitioning intervals is returned as its result.

The algorithm simply examines possible partition sizes partSize given the bu�er constraint

buffSize and estimates the evaluation cost for partSize. For a given partSize, and hence

errorSize, the cost of sampling is computed using the Kolmogorov test statistic [Con71, DNS91].

The Kolmogorov test statistic is a non-parametric test which makes no assumptions about the

underlying distribution of tuples. With 99% certainty, the percentile of each chosen partitioning

chronon will di�er from an exactly chosen partitioning chronon by at most 1:63=

p

m, where m

is the number of samples drawn from r [Con71]. Since 1:63=

p

m represents a percentage di�er-

ence from an exact partitioning, we know that (1:63� jrj)=

p

m is the number of necessary error

pages should a partition overow the allotted partSize pages. Hence, we must have errorSize

� (1:63� jrj)=

p

m which implies that m � ((1:63� jrj)=j)

2

samples must be drawn.

2

The algorithm di�erentiates between the higher cost of random disk access, as incurred during

sampling, and sequential disk access, as incurred while reading the second to last pages of an

outer relation partition. We note that, for a given partition size partSize, C

sample

is �xed and

independent of the contents of r. However, the tuple-cache paging costs are dependent on the

contents of r. If few long-lived tuples are present in r then the tuple-cache paging cost will

decrease very quickly, and the minimal cost will be obtained at a larger partition size. Conversely,

if many long-lived tuples are present in r then the tuple-cache paging cost will decrease slowly, and

the minimal cost will be obtained at smaller partition sizes than in the former case.

As the number of samples increases with partition size, we incrementally draw samples from

r and add them to the sample set for increasing partSize. We assume that a random disk access is

required for each sample, that is, only one sample tuple is drawn for each page randomly read from

memory. We make the simplifying assumption that sampling is done without replacement, so that

each tuple in the relation is equally likely to be drawn, and at most one time. The samples are

used to determining the partitioning intervals and estimate the tuple cache size for each partition.

2

It is interesting to note that the number of samples required is independent of jrj. Since errorSize is some number

of pages we can express errorSize as a percentage of jrj, errorSize= jrj=l, where l is some integer. Substituting this

expression for errorSize into the formula for m yields an expression independent of jrj.
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determinePartitions(buffSize,|r|,|s|):

mincost  1

oldSampleCount  0

chrononCount  ;

samples  ;

for each partSize from 1 to buffSize do

errorSize  buffSize - partSize

newSampleCount  (1:63�jrj=errorSize)

2

C

sample

 newSampleCount * IO

random

numPartitions  |r|/partSize

samples  samples [ drawSamples(newSampleCount - oldSampleCount)

partitions  determinePartitioning(samples,partSize,jrj,numberOfPartitions)

cachePagesPerPartition  estimateCacheSizes(samples,|r|,partitions,numberOfPartitions)

C

join

 numPartitions*IO

random

+ (partSize-1)*IO

seq

+ |s|*IO

seq

+

(numPartitions-1)*IO

random

+ numPartitions*IO

random

for each m in cachePagesPerPartition do

C

join

 C

join

+ 2*(IO

random

+ IO

seq

*(m-1))

cost  C

sample

+ C

partition

+ C

join

if cost � cost

min

cost

min

 cost

result  partitions

return result

Figure 7: Determining Partitioning Chronons

These estimates are components of C

join

, the cost of joining partitions. The partitioning cost,

C

partition

, includes sequentially reading r and s and randomly writing pages of r and s to disk as

partition pages become full. The cost of writing the result relation is omitted since this cost is

incurred by all evaluation algorithms.

With the set of sampled tuples, we are able to determine a set of partitioning intervals used

in the partitioning of r and s. This is the function of procedure determinePartitioning, shown

in Figure 8. For a given sample set, the chronons covered by any tuple in the sample set are

collected,

3

and the range of time covered by the sample set is computed. If numberOfPartitions is

the computed number of partitions then the chosen chronons are those that appear in a sorting of

the sample set at every numberOfPartitions position. Adjacent pairs of the chosen chronons are

then used to construct the partitioning intervals.

Having determined the partitioning of the input relations, we are able to estimate the size of

the tuple cache for each partition s

i

of s. This is the function of procedure estimateCacheSizes,

shown in Figure 9. Using the sampled tuples and the set of partitioning chronons, we can determine

how many of these tuples overlap the given partition boundaries. For any partition, its estimated

tuple cache size is simply the number of sampled tuples that overlap that partition with a scaling

factor to account for the percentage of the relation sampled. The functions earliestOverlap and

latestOverlap simply return the indexes of the earliest and latest partitions, respectively, that

3

In the algorithm, chronons is a multiset. Hence the union operation used to add chronons to the multiset is not

strict set union.
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determinePartitioning(samples,partSize,|r|,numberOfPartitions):

chronons  ;

for each tuple x 2 samples do

for each chronon t 2 x[V] do

chronons  chronons [ t

range  max(chronons) - min(chronons)

chronons  sort(chronons)

partitioningChronons  ;

m  range / numberOfPartitions

while m � range do

partitioningChronons  partitioningChronons [ chronon

m

m  m + (range / numberOfPartitions)

partitioningIntervals  ;

for partSize from 1 to |partitionChronons| - 1 do

partitioningIntervals  partitioningIntervals [ f[partitionChronons

i

; partitioningChronons

i+1

]g

return partitioningIntervals

Figure 8: Determining Partition Intervals

overlap the given tuple.

We note that accurately estimating the amount of tuple cache paging is not as performance-

critical as estimating the size of the outer relation partition. We assume that partitions are large;

therefore, rereading partitions will incur a large expense. However, for any given partition, the

size of its tuple cache is bounded by the number of tuples in the partition|for many applications

the tuple cache will contain a relatively small percentage of the partition. Hence, rereading of

the tuple cache will not impact performance as severely as rereading of a partition. This provides

justi�cation for the simple strategy of Figure 9, which does not employ a sophisticated technique

such as the Kolmogorov test, or even incur the expense of sampling the inner relation itself.

3.4 Summary

We have presented a partition-join algorithm to compute r 1

V

s, the valid-time natural join of two

valid-time relations r and s. The key aspect of the algorithm is that tuples valid simultaneously

are clustered into partitions, allowing, in most cases, an O(n) evaluation cost.

Another advantage is that this algorithm is easily adapted to incrementally evaluate r 1

V

s

as updates occur to r or s, as will be seen in Section 5.

4 Performance

A wide variety of valid-time joins have been de�ned, including the time-join, event-join, TE-

outerjoin [SG89], contain-join, contain-semijoin, intersect-join, overlap-join [LM91a], and contain-

semijoin [LM92]. Re�nements to the nested loops algorithm were proposed by Gunadhi and Segev

to evaluate several temporal join variants [SG89, GS91]. This work assumed that temporal data was

\append-only," i.e., tuples are inserted in timestamp order into a relation, and once inserted into a

relation are never deleted. With the append-only assumption, a new access path, the append-only

12



estimateCacheSizes(samples,|r|,partitions,numberOfPartitions):

for each partition p from 1 to numberOfPartitions do

count

p

 0

for each tuple x 2 samples do

min  earliestOverlap(partitions, x[V])

max  latestOverlap(partitions, x[V])

for each partition p from p

min

to p

max

-1 do

count

p

 count

p

+ 1

for each partition p 2 partitions do

cachePages

p

 count

p

* (|samples| / |r|)

return cachePages

Figure 9: Tuple Cache Size Estimation

tree, was developed that provides a temporal index on the relation. Simple extensions to sort-merge

were also considered where again tuples were assumed to be inserted into a relation in timestamp

order [SG89, GS91]. Leung and Muntz extended this work to accommodate additional temporal

join predicates, mainly those de�ned by Allen [All83], and to incorporate various ascending and

descending sort orders on either valid start or valid end time [LM90].

Simply stated, our work di�ers from most previous work in that we adapt the third and

remaining join evaluation strategy, partitioning, to the evaluation of valid-time joins. Leung and

Muntz investigated partition-based valid-time joins in the context of parallel join evaluation, but

their strategy required the replication of tuples across processors. We avoided replication for two

reasons: to save on secondary storage costs and to easily adapt the algorithm to an incremental

framework.

In order to evaluate the relative performance of our algorithm, we implemented main memory

simulations of the partition join along with sort-merge join and conducted a series of experiments.

In addition, analytical results were calculated for nested-loops join. To obtain a fair comparison,

we made the weakest assumptions possible about the input relations. That is, we do not assume

any sort ordering of input tuples, nor the presence of additional data structures or access paths,

where the incremental cost of maintaining a sort order or an access path is hidden from the query

evaluation. However, the sort-merge algorithm was optimized to make best use of the available

main memory size, and similar remarks apply to the analytical results generated for nested loops.

We measured cost as the number of I/O operations performed by an algorithm, distinguishing

between the higher cost of random access and the lower cost of sequential access. The global

parameters used in all of the experiments is shown in Figure 10.

Parameter Value

Page size 4K bytes

Tuple size 128 bytes

Tuples per relation 262,144 tuples

Size of inner relation jrj 8192 pages (32 Mb)

Size of outer relation jsj 8192 pages (32 Mb)

Relation lifespan 1 million chronons

Figure 10: Global Parameter Values
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We have attempted to choose realistic values for the example databases. If ten tuples are

present for each object in the database, that is, ten pieces of historical information are recorded for

each real-world entity, then the database contains approximately 26,000 objects, a reasonably large

number. For most of the experiments, we are concerned more with ratios of certain parameters as

opposed to their absolute values, and so choosing realistic values is less critical.

4.1 Sensitivity to Main Memory Bu�er Size

In Section 3.3, we analytically showed that the performance of the partition join algorithm was

dependent on the ratio of main memory bu�er size to database size. That is, we expected that

with larger memory sizes the performance of the partition-join algorithm would improve. We

designed an experiment to empirically investigate this tradeo�, and to simultaneously compare the

performance of sort-merge join at equivalent main memory allocations.

The tuples in the database were randomly distributed over the lifetime of the relation. In

order to evaluate only the e�ect of memory size on the join evaluation, we eliminated the possibility

of long-lived tuples by having each tuple's valid time interval be exactly one chronon long. The

presence of long-lived tuples causes paging of the tuple cache for the partition join algorithm and

\backing-up" of the sort-merge algorithm. In addition, we were interested in the relative cost of

random access versus sequential access since this varies among di�erent hardware devices.

The allotted main memory was varied from 1 megabyte to 32 megabytes, and three trials

were run for each of the join algorithms where the cost ratio between random and sequential access

was varied from 2:1, 5:1, and 10:1. The results of the experiments are shown in Figure 11. Each

curve in the �gure represents the evaluation cost of an algorithm, either sort-merge, partition join,

or nested loops, for a given random/sequential cost ratio over varying main memory sizes.
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Figure 11: Performance E�ects of Main Memory

The graph shows an interesting property of the algorithm. In contrast to nested loops and

sort-merge, the partition join algorithm shows relatively good performance at all memory sizes,

and, as expected, the performance of the algorithm improves as memory increases. Nested loops

performs quite poorly at small memory allocations since few pages of the outer relation can be

stored in memory, requiring many scans of the inner relation. At large memory allocations, e.g. 32

megabytes, the performance of nested loops is quite good since a large portion of the outer relation
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remains resident in memory reducing the number of scans of the inner relation. We note also that

the cost of reading the outer relation is quite low since if i pages of the outer relation are read,

this requires a single random read followed by a i� 1 sequential reads.

Comparing the partition join to sort-merge, we see that the partition join is approximately

twice as fast as sort-merge at all memory sizes. As no backing up is performed by the sort-merge

algorithm we attribute this to the cost of sorting. At small memory sizes, the sort-merge algorithm

must use more runs with fewer pages in each run, with a random access required by each run.

Similarly, when little main memory is available, partition sizes are necessarily small, and

higher random access cost is incurred by the partition join algorithm during both the sampling and

partitioning phases. That is, not only are more samples required when the partitioning intervals

are being determined, but more random I/O is being performed during partitioning since less bu�er

space is available and the in-memory \buckets" must be ushed more often. However, the e�ects

are not as drastic since the partitioning phase requires only one pass through the relations, and

we discovered an optimization that can reduce sampling costs.

We initially assumed that a random access is required for each sample. At large partition

sizes, the e�ect is to perform a large number of random accesses during sampling, sometimes

exceeding the number of pages in the outer relation. The algorithm instead sequentially scans

the outer relation, drawing samples randomly when a page of the relation is brought into main

memory. For example, at a random/sequential cost ratio of 10:1, only 819 random samples (3%

of the relation) must be drawn before the entire outer relation can be scanned for the same cost.

This requires only a single random access to read �rst page of the relation, followed by sequential

reads of the remaining pages of the relation. The sampling cost is therefore proportional to the

number of pages of the outer relation, as opposed to the number of sampled tuples which may be

quite large.

4.2 E�ects of Long-Lived Tuples

The presence of long-lived tuples adds another cost dimension to both the partition join and sort-

merge algorithms. The partition join algorithm may incur paging of the tuple cache when many

long-lived tuples are present and the sort-merge algorithm may back-up to previously processed

pages of the input relations to match overlapping tuples. Long-lived tuples do not a�ect the

performance of the nested loops algorithm, but it is included here for completeness.

We designed an experiment to empirically investigate the cost e�ect that long-lived tuples

have on both strategies. A series of databases were generated with increasing numbers of long-lived

tuples. These databases each contained 32 megabytes (262144 tuples), but varied the number of

long-lived tuples in each from 8000 to 128,000 in 8000 tuple steps. Non-long-lived tuples were

randomly distributed throughout the relation lifespan with a one chronon long validity interval.

Long lived tuples had their starting chronon randomly distributed over the �rst 1/2 of the relation

lifespan, and their ending chronon equal to the starting chronon plus 1/2 of the relation lifespan.

To not inuence the performance of the algorithms via main memory e�ects, we �xed the main

memory allocation at 8 megabytes, the memory size at which all three algorithms performed most

closely in the previous experiment. Additionally, the random to sequential I/O cost ratio was �xed

at 5:1. The results of the experiment are shown in Figure 12.

As can be seen from the �gure, the partition join algorithm outperformed the sort-merge

algorithm at all long-lived tuple densities. We expected this result. The tuple caching cost incurred

by the partition join algorithm is relatively low|the tuple cache size is small (it cannot exceed the

size of a partition), and it is fairly inexpensive to read or write (a random access for the �rst page

followed by sequential accesses for the remaining pages). Furthermore, many long-lived tuples do

not signi�cantly increase this cost since they merely cause additional pages to be appended to the
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Figure 12: Performance E�ects of Long-Lived Tuples

tuple cache, and these pages incur an inexpensive sequential I/O cost.

In contrast, the presence of long-lived tuples greatly increases the cost of the sort-merge

algorithm. To see this, consider what happens when a long-lived tuple is encountered during the

matching phase. The tuple must be joined with all tuples that overlap it, some of these tuples

may, unfortunately, have already been read, requiring the algorithm to re-read these pages. For

tuples with lifespans of 1/2 the relation lifespan, this incurs a signi�cant cost. Furthermore, the

number of long-lived tuples is less signi�cant to the sort-merge algorithm. While a higher density

of long-lived tuples may require the algorithm to back-up more often, the presence of only a single

long-lived tuple will still cause the sort-merge algorithm to back-up.

4.3 Main Memory vs. Long-Lived Tuples

The previous two experiments showed that the partition join exhibits better performance when

more main memory is available, and incurs a performance penalty at increasing densities of long-

lived tuples.

We desired to determine whether the allotted main memory size or the density of long-lived

tuples played a larger e�ect on the performance of the partition join algorithm, and designed

an experiment to investigate this. Eight 262,144 tuple databases were generated with increasing

numbers of long-lived tuples, from 16,000 to 128,000 in 16,000 tuple steps. A trial was run for

each database at 1, 2, 4, 16, and 32 megabyte main memory allocations. The results are shown in

Figure 13.

The graph shows that at large memory sizes (16 and 32 megabytes) the evaluation cost for

all databases becomes fairly equal, hence the relative cost of tuple caching is small due to the large

memory size. At smaller memory sizes, there is a fairly large di�erence between the evaluation

costs over the di�erent databases. This was to be expected also. When the allotted memory sizes

are small the cost of tuple caching is signi�cant since partition sizes are necessarily smaller and

more tuples are likely to overlap multiple partitions. Again, the conclusion to be drawn is that

main memory availability is necessary for the paritition join to be e�cient. When su�cient main

memory is available, the e�ects of tuple caching become insigni�cant, but when insu�cient main

memory is available, the performance impact of tuple caching is signi�cant.
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4.4 Summary

We expected that the partition join algorithm would be sensitive to the amount of main memory

available during evaluation. These experiments bear out this hypothesis. Relative to the sort-merge

algorithm, the partition join algorithm compares favorably. The partition join outperforms sort

merge signi�cantly, especially in the presence of long-lived tuples. Tuple caching in the partition

join incurs a relatively low cost relative to the high cost of backing-up in sort-merge. Finally, when

comparing the cost of tuple caching versus the amount of main memory available, we conclude

that the density of long-lived tuples does not greatly increase the evaluation cost when su�cient

main memory is available. Furthermore, the partition join shows uniformly good performance at

all memory sizes, unlike nested loops which performs well at large memory sizes, but quite poorly

at small memory sizes. Of the three algorithms, the partition join shows the best performance over

all memory bu�er sizes and in the presence of long-lived tuples.

5 Incremental Evaluation

Incremental query evaluation attempts to reduce the amount of recomputation performed by the

DBMS. In this strategy, a query is materialized as a view, and once computed, it is stored back

in the database for later use [Rou87, BCL86, SRMF87, Han87]. When an update occurs to a base

relation, di�erentials are propagated to the views that depend on that base relation, incrementally

ensuring the consistency of the view. Applications of incremental query evaluation have been

found in the areas of smart editing [HT86], mainframe-workstation database architectures [RK86b,

RK86a, Rou91], and monitoring [Sno88].

Hanson and Roussopolous independently showed that incremental view materialization o�ers

superior performance over recomputation if �ve conditions are simultaneously satis�ed [Han87,

Han88, Rou87].

1. The number of queries on the view is su�ciently higher than the number of updates to the

underlying base relations.

2. The sizes of the underlying base relations are su�ciently large.
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3. The selectivity factor of the view predicate is su�ciently low.

4. The percentage of the view retrieved by queries is su�ciently high.

5. The volatility of the underlying base relations is su�ciently low.

The justi�cation for incremental query processing in the valid-time setting depends, to a large

extent, on the semantics of valid time. As real-world objects evolve, their changes are appended to

the valid-time database with the result that the eventual size of valid-time relations will be quite

large as historical information accumulates. Furthermore, it is reasonable to expect most queries

to involve current data, that is, the same queries that would be posed to a snapshot database

are likely to be asked of the valid-time database. Furthermore, as a percentage of the size of the

database, we expect the current states to be relatively small, especially after some time has passed

and historical information has accumulated in the database. Finally, one may assume a query mix,

that is, updates vs. retrievals, that approximates that of a snapshot database since, for current

data, identical ratios exist independent of the temporal support provided and corrections to past

states of the database are expected to be infrequent.

Hence, valid-time databases satisfy all �ve conditions, and thus are excellent candidates for

incremental evaluation. This section addresses a small but critical aspect of this problem, the

incremental evaluation of the valid-time natural join.

5.1 Overview

We assume that the outer relation r and the inner relation s have been partitioned and r 1

V

s has

been computed by joining the corresponding partitions of r and s. Furthermore, we assume that

r 1

V

s is physically stored as the collection of partitioned results r

i

1

V

s

i

, 1 � i � n, and pages of

a partition r

i

, 1 � i � n, are stored contiguously on disk, but separate partitions r

i

, r

j

, i 6= j, are

not. Similar assumptions are made for s and r 1

V

s.

We examine the problem of reecting updates to r or s into incremental changes in the

materialized result, r 1

V

s. As shown in Figure 14, there are six cases to consider depending on

the type of update and whether the update occurs to r or s.

8

<

:

insert

delete

update

9

=

;

�

�

outer relation r

inner relation s

�

Figure 14: Cases for Incremental Evaluation

As shown in the �gure, three types of changes can occur to the base relations. A tuple can

either be inserted, deleted, or updated. Each of these changes can be applied to either the outer

relation r or the inner relation s resulting in six di�erent situations where the result may require

updating.

Note that an update operation is logically equivalent to deleting an existing tuple and inserting

a new one. As such, for either the outer or inner relations, the update operation can be implemented

by performing a deletion followed by a subsequent insertion, or more e�ciently, an algorithm that

performs both operations concurrently. For this reason, we omit further discussion of the update

operation and concentrate on the insertion and deletion operations.
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5.2 Outer Relation Operations

As described in Section 3.2, when a tuple x is inserted into the outer relation r, it is physically

stored in the last partition that it overlaps. New tuples may result in r 1

V

s due to the insertion

of this tuple. Clearly, these new result tuples can only be produced by joins involving x.

The tuples y 2 s that can join with x are those that can overlap x in valid time. Let the given

partitioning be p

1

, p

2

, : : : , p

n

, and suppose that x[V

s

] 2 p

min

and x[V

e

] 2 p

max

. Then the only

tuples in s that can overlap x must belong to one of the partitions s

min

, : : : , s

max

. As tuples are

physically stored in their last overlapping partition, it is possible that long-lived tuples overlapping

p

min

, : : : , p

max

are stored in s

j

, max < j � n. We therefore must scan the partitions s

max+1

, : : : ,

s

n

to collect long-lived tuples overlapping p

max

. The result is then brought up to date by simply

joining x with the tuple cache and each partition s

i

, min � i � max, with the resulting tuples

placed in the partitioned results r

i

1

V

s

i

as appropriate. We note that only three pages of main

memory are required|one to hold a page of s, one for the tuple cache, and one to hold result

tuples. The algorithm is shown in Figure 15.

insertOuter(x,s,partitions):

min earliestOverlap(partitions; x[V])

max latestOverlap(partitions; x[V])

for each i from n to max do

for each page p of s

i

do

inner page read(p)

for each tuple y 2 inner page do

if overlap(y; x[V]) 6= ; then

cache page cache page [ fyg

for each page c of tuple cache do

cache page read(c)

result

i

 result

i

[ ffxg 1

V

cache pageg

for each i from max to min do

for each page p of s

i

do

inner page read(p)

result

i

 result

i

[ ffxg 1

V

inner pageg

Figure 15: Incremental Evaluation on Outer Relation Insert

Deletion of a tuple x from r causes result tuples in r 1

V

s to be deleted, if there were any tuples

y 2 s that joined with x. Deletion therefore involves determining the tuples in r 1

V

s produced by

x and removing them from the result.

The deletion algorithm is shown in Figure 16. As in algorithm insertOuter we compute the

set of result tuples by �rst collecting all long-lived tuples of s overlapping x[V] into the tuple cache.

The result tuples for each partition of s overlapped by x[V] is then computed and deleted from the

result.

5.3 Inner Relation Operations

As with insertion into the outer relation, the insertion of a tuple y into the inner relation s may

generate additional result tuples, and the tuples x 2 r that can join with y are those that overlap

y in valid time. Again assume that the given partitioning is p

1

, p

2

, : : : , p

n

, and suppose that
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deleteOuter(x,s,partitions):

min earliestOverlap(partitions; x[V])

max latestOverlap(partitions; x[V])

for each i from n to max do

for each page o of s

i

do

inner page read(o)

for each tuple y 2 inner page do

if overlap(y; x[V]) 6= ; then

cache page cache page [ fyg

for each page c of tuple cache do

cache page read(c)

delete page delete page [ ffxg 1

V

cg

for each i from max to min do

for each page o of s

i

do

inner page read(o)

delete page delete page [ ffxg 1

V

inner pageg

for each page q of result

i

do

result page read(q)

for each tuple d 2 delete page do

if d 2 result page then

result page result page - fdg

Figure 16: Incremental Evaluation on Outer Relation Delete

y[V

s

] 2 p

min

and y[V

e

] 2 p

max

. We must join y with all tuples x in r

min

, : : : , r

max

, and in

particular, we must ensure that long-lived tuples overlapping p

min

, : : : , p

max

are present in the

outer relation partition bu�er when the join of that partition with y is computed.

We can ensure this by scanning all partitions r

i

, max < i � n, and retaining all long-

lived tuples in the outer relation partition bu�er. Since the outer relation partition size has been

estimated to �t in the available bu�er space, we are assured that the partitions r

min

, : : : , r

max

will

not overow the bu�er space. The join can then proceed as in the manner of Figure 5. Bu�er space

is required for the outer relation partition and a page to hold result tuples. The actual algorithm

is shown in Figure 17.

Deletion of a tuple y from s causes result tuples in r 1

V

s to be deleted, if there were any tuples

x 2 s that joined with y. Deletion therefore involves determining the tuples in r 1

V

s produced by

y and removing them from the result.

The deletion algorithm is shown in Figure 18. The set of result tuples is computed by joining

y with all partitions of r that overlap in valid time. The result tuples for each partition are then

deleted from the result.

5.4 Summary

We expect incremental query evaluation to be an important feature of temporal database manage-

ment systems. A partition-based approach is especially well-suited to incremental evaluation since

partitioning provides a natural mechanism for limiting the amount of recomputation necessary

when base relation updates occur. Also, the particular evaluation algorithm we have presented

does not require replication of tuples on secondary storage, thereby simplifying base relation up-
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insertInner(x,s,partitions):

min earliestOverlap(partitions; x[V])

max latestOverlap(partitions; x[V])

for each i from n to max do

outer partition outer partition [ fread(r

i

)g

for each tuple x 2 outer partition do

if overlap(x; y[V]) 6= ; then

outer partition outer partition � fxg

result

max

 result

max

[ ffxg 1

V

outer partition

for each i from max to min do

outer partition read(r

i

)

result

i

 result

i

[ ffxg 1

V

outer partition

Figure 17: Incremental Evaluation on Inner Relation Insert

date.

The storage of long-lived tuples in their latest overlapping partition leads to an interesting

performance related observation. If we assume that corrections to information already present

in the database are rare, then most updates to r and s will be the insertion of tuples into the

currently valid partition, that is, the partition overlapping NOW . In such situations, only the last

result partition must be recomputed. Of course, this is an application dependent situation, but

it is expected that application semantics such as these are commonly found and can be exploited

during query evaluation [JS92].

Furthermore, as another performance relation observation, we note most disk reads will be se-

quential rather than random. By organizing all pages of a partition contigously on disk, we are able

to read a partition by performing a single random seek to the start of the partition then sequentially

reading the remaining pages. Further performance improvement could be obtained by storing the

partitions themselves contiguously, though this may increase the amount of reorganization needed

by the database.

6 Conclusions and Future Work

The contributions of this work are summarized as follows.

� We formally de�ned the valid-time natural join, the operator used to reconstruct normalized

valid-time databases.

� We presented a linear time algorithm for valid-time join evaluation, improving on the O(n

2

)

cost of nested loop join while avoiding the O(nlog(n)) cost of sorting.

� Our approach is based on tuple partitioning, but still avoids replication of tuples in multiple

partitions, thereby allowing simple base relation updates.

� We compared the performance of our algorithm with the nested loop and sort-merge algo-

rithms, and showed that with adequate main memory, especially when long-lived tuples are

present, our algorithm exhibits uniformly better performance.
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deleteInner(x,s,partitions):

min earliestOverlap(partitions; x[V])

max latestOverlap(partitions; x[V])

for each i from n to max do

outer partition outer partition [ fread(r

i

)g

for each tuple x 2 outer partition do

if overlap(x; y[V]) 6= ; then

outer partition outer partition � fxg

delete page delete page [ ffxg 1

V

outer partition

for each i from max to min do

outer partition read(r

i

)

delete page delete page [ ffxg 1

V

outer partition

for each page q of result

i

do

result page read(q)

for each tuple d 2 delete page do

if d 2 result page then

result page result page - fdg

Figure 18: Incremental Evaluation on Inner Relation Delete

� We motivated the importance of incremental evaluation to temporal database management

systems and showed how our partition-based approach is easily adapted to incremental eval-

uation.

As relatively little work has appeared on temporal query evaluation, there are many directions

in which this work can be expanded. First, many important problems remain to be solved with

valid-time natural join evaluation. We made the simplifying assumption in Section 3.3 that the

distribution of tuples over valid time was approximately the same for both the inner and outer

relations. Obviously, this assumption may not be valid for many applications; gross mis-estimation

of tuple caching costs may result. It is therefore necessary to also sample the inner relation

to more accurately estimate evaluation costs. While tuple caching is a relatively inexpensive

operation, the paging cost associated with it can be reduced if su�cient bu�er space is allocated

to retain, with high probability, the entire tuple cache in main memory. Trading o� outer relation

partition space for tuple cache space is a possible solution to this problem. Lastly, while we have

distinguished between the higher cost of random access and the lower cost of sequential access, we

have ignored the cost of main memory operations. Incorporating main memory operations into

the cost model would allow us to more accurately choose partitioning intervals through better

estimates of evaluation costs.

More globally, this work can be considered as the �rst step towards the construction of an in-

cremental evaluation system for a bitemporal database management system, that is, a DBMS that

supports both valid and transaction time [JCG

+

92, SA86]. Our colleagues previously de�ned in-

cremental semantics for both valid-time databases [McK88, MS91] and transaction time databases

[JMRS92]. This work did not address evaluation-level issues, rather they concentrated on the

semantics of incremental valid-time and transaction-time operators. In this paper, we presented

the underlying implementation of a single valid-time operator, the valid-time natural join; future

work will address the implementation of the remaining incremental valid-time operators. With

techniques in hand for the incremental evaluation of valid-time databases, we plan to adapt tech-

niques for incremental transaction-time query evaluation resulting in an incremental bitemporal
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query evaluation system.
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