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ABSTRACT

When an average is taken over any completely monotone function using Poisson
weights, the result is asymptotically equal to the completely monotone function
evaluated at the Poisson mean. Let N be a Poisson random variable with rate EN.
Then if f is any function completely monotone on [0, ∞), we show that

E[f(N)] = f(EN) + O(EN.f ′′(EN)) EN → ∞ .

For completely monotone functions that do not decay too rapidly (e.g., regularly vary-
ing functions), the error term will be of the order of f (EN)/EN. An application is
given to the expectation of random extremes. Let Z (n) denote the maximum of n
independent random variables each with the distribution of Z. Since it can be shown
that EZ (n) /n is completely monotone for any random variable Z with finite expecta-
tion, it follows that

EN[EZZ (N)] = EZ (EN) + o(1) EN → ∞ ,

where EN and EZ represent expectations with respect to the d.f. of N and Z respec-
tively.
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An Abelian Theorem for Completely

Monotone Functions

1. Introduction

Results which allow us to infer the properties of an average of a function f from some property of
f are called Abelian theorems in honor of Abel’s contributions to the theory of series summability.

One may view Jensen’s inequality as Abelian: if f is assumed convex, then E[f(X)] ≥ f(EX),
whenever the expectations are defined. Additional assumptions about f allow us to make a stronger
assertion, namely that the inequality can be replaced by asymptotic equality. We show that if f is com-
pletely monotone and regularly varying, and if X is a Poisson variate, then
E[f(X)] = f(EX) + O(f(EX)/EX) as EX → ∞. If we assume only that f is completely monotone, then
the result is that E[f(X)] = f(EX) + O(EX .f′′(EX)) as EX → ∞.

Extending a result of Teugels [Teu77], Bingham and Hawkes [Bin83] showed that if f is regularly
varying of index α ≤ 0, and X is a Poisson variate, then E[f(X)] is a regularly varying function of EX
of index α and E[f(X)] ∼ f(EX) as EX → ∞. Our result is analogous under the stronger hypothesis of
both regular variation and complete monotonicity, and provides an estimate of the error term.

An application of our result to the theory of extremes is given in Section 3.

1.1. Complete Monotonicity

Let f (n)(x) or Dn f (x) represent n-fold differentiation with respect to real argument x.

DEFINITION [Wid71]. A real function f(x) is completely monotone in argument x on the interval (a, ∞),
written f ∈ c.m.(a, ∞), if it is infinitely differentiable on (a, ∞) and for all k ≥ 0

(−1)k f (k)(x) ≥ 0 ,

for all x ∈ (a, ∞). If in addition f (a +) < ∞, then f ∈ c.m.[a, ∞).

A major representation theorem by Bernstein [Ber28] states that completely monotone functions
are exactly the Laplace transforms of monotone and bounded functions. A complete proof may be
found in [Wid71].

PROPOSITION (Bernstein’s Theorem).

f ∈ c.m.[a, ∞) ⇔ f (x) =
0
∫
∞

e −xs dµ(s) , x ∈ [a, ∞) , (1.1)

where µ is monotone nondecreasing and bounded on [0, ∞) with µ(0) = 0 and µ(∞) = f(a+) < ∞.

1.2. Regular Variation

Regularly varying functions are those that scale homogeneously for large argument.

DEFINITION. A positive measurable function f : (0, ∞) → (0, ∞) is regularly varying at infinity if for all
λ > 1, the limit

x → ∞
lim

f(x)
f(λx)hhhhh (1.2)

exists and is in (0, ∞). f is rapidly varying if the limit exists and is 0 or ∞.

The fundamental result about regular variation [Bin87] is that if the (finite or infinite) limit (1.2)
exists for all λ > 1, then there is an extended real number α, −∞ ≤ α ≤ ∞ such that

∀ λ > 1
x → ∞
lim

f(x)
f(λx)hhhhh = λα . (1.3)
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This α is called the exponent or index of variation. If (1.3) holds, we write f ∈ R α. Thus with the
understanding λ−∞ = 0 and λ∞ = ∞, R −∞ and R ∞ are the rapidly varying functions.

Functions like x a + sin x where a > 0 are in Ra. Functions like exp( −x k), k > 0 belong to R −∞
and their reciprocals belong to R ∞ .

Functions that fail to have a well-defined limit (finite or infinite) in (1.3) are neither regularly
varying nor rapidly varying. Examples are sin x and e − Qx P.

By historical convention, the class R 0 is called the slowly varying functions. It includes, for
example functions like ( ln x)α for any α ≥ 0. From the results above, it is evident that f ∈ R α if and
only if there is some slowly varying function l such that f(x) = x α.l(x).

It is easy to see that if f ∈ R α and g ∼ f then g ∈ R α. Thus asymptotic equality ∼ is the natural
equivalence relation on the class of regularly varying functions.

Regularly varying functions need not be smooth. However, if such functions are suitably smooth,
their derivatives also vary regularly. A number of useful results are cited here.

PROPOSITION (Monotone Density Theorem) [Bin87, p. 39]. Suppose f(x) = x αl (x) where l ∈ R 0. If f
is absolutely continuous with density f′, and f′ is eventually monotone, then

(a) If α ≠ 0 then f′ ∈ R α−1 and f′(x) ∼ αx α−1l (x) as x → ∞.

(b) If α = 0 then f′(x) = o(l (x)/x) as x → ∞.

Remark: When f ∈ R 0, we cannot conclude that f′ ∈ R −1, as shown by the example f (x) = exp[−x −a].
The monotonicity assumption on f′ is essential, as shown by the example f (x) = exp[−sin(x 2)/x], which
is a slowly varying function whose derivative is neither regularly nor rapidly varying.

The following result is due to Lamperti [Lam58, Theorem 2], although the first part of the result
goes back to Von Mises [Mis36]. Proofs may also be found in [Haa70, p. 23, 109] and [Sen73, p.
1057].

PROPOSITION (Lamperti’s Theorem). Let f be positive and absolutely continuous with density f′.
(a) If

x → ∞
lim

f (x)
xf′(x)hhhhhh = α (1.4)

then f ∈ R α; i.e.,

f (x) = x αl(x) (1.5)

where l ∈ R 0.

(b) Conversely, if (1.5) holds and f′ is eventually monotone, then (1.4) holds, and

(i) if α ≠ 0 then (sgn α)f′(x) ∈ R α − 1;

(ii) If α = 0 then f′(x) = o(l (x)/x).

A smooth class of regularly varying functions is given by the following definition. Let αni denote
the falling factorial α(α − 1) . . . (α − n + 1).

DEFINITION. A positive function f that is infinitely differentiable in some neighborhood of infinity is
said to be smoothly varying with index α, written f ∈ SR α, if

f (x)
x n f (n)(x)hhhhhhhh → αni x → ∞ (n = 1, 2, . . . ) . (1.6)

Smoothly varying functions are discussed in [Bin87, §1.8]. We have the following connection to com-
plete monotonicity.

THEOREM 1.1. If f ∈ c.m.[a, ∞) and f ∈ R α, for some finite α (necessarily α ≤ 0), then f ∈ SR α.

Proof: Consider first the case α < 0. Suppose f (x) = x αl (x) for slowly varying l. Since f is c.m., f′ is
monotone and so by Lamperti’s Theorem,

xf (1)(x)/ f (x) → α . (1.7)
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establishing (1.6) for n = 1. Furthermore −f′(x) ∈ R α − 1. Since −f′(x) is again a c.m. function, the
argument is repeated to arrive at

x(−f (2)(x)) /(−f (1)(x)) → α − 1 ,

and together with (1.7), this yields (1.6) for n = 2. Induction following this line yields the result for all
n.

In the case α = 0, we need to show that for all n ≥ 1

f (n −1)(x)/x

f (n)(x)hhhhhhhhhh → 0 , f (n)(x) → 0 , and f (n −1)(x)/x → 0 ,

which is equivalent in this case to (1.6). The basis for n = 1 is just Lamperti’s Theorem. The induction
step follows by L’Hôpital’s rule and the fact that for any c.m. function f, f (n)(x) → 0 for n ≥ 1 [Fel71,
XIII.4, Theorem 2]. `

The above results show that higher derivatives of a completely monotone and regular function
decay ever more quickly for large x.

COROLLARY 1.2. If f is a c.m. and is regularly varying with finite index α ≤ 0, then
f (n)(x) ∼ αni f (x)x −n. When α = 0, this is interpreted as f (n)(x) = o(f (x)x −n).

Not all completely monotone functions are regularly varying. If f is given by the Bernstein
representation (1.1), then it follows from Karamata’s Tauberian Theorem [Bin87, Theorem 1.7.1; Fel71,
XIII.5, Theorem 2] that f ∈ R α for some α ≤ 0 if and only if µ(1/s) ∈ R −α (i.e., µ(s) is regularly vary-
ing as s → 0.) Since increasing bounded α may easily be constructed that fail to vary regularly or even
rapidly at zero, the c.m. transform f yielded by (1.1) will fail to regularly or rapidly vary for large x.

1.3. Random Variables

Unless otherwise indicated, all random variables are non-negative. If random variables X and Y
are identically distributed, we write X =d Y. Similarly, we use the shorthand X =d F to mean that X has
distribution function F. The complementary distribution function 1 − F(x) is denoted F

hh
(x).

Expectations are denoted E. For a non-negative random variable X =d F

EX p =
0
∫
∞

x p dF(x) = p
0
∫
∞

x p −1F
hh

(x)dx .

When it is necessary to emphasize the d.f. with respect to which an expectation is taken, a subscript is
employed. For example, EZ(X + Z) is equivalent to the random variable EZ + X.

The Poisson random variable N with expected value ρ is the discrete random variable with the
probability mass function P[N = n] = e −ρρn /n !.

2. An Abelian Theorem

Let N have a Poisson distribution. We will show that when f is completely monotone, then
E[f(N)] ∼ f(EN) for large mean and will give an estimate for the error term.

THEOREM 2.1. Let f ∈ c.m.[0, ∞). Define the average

I(ρ) :=
n =0
Σ
∞

e −ρ
n !
ρn
hhh f(n) , (2.1)

so that I(ρ) = EN[f(N)] where N is a Poisson random variable with mean ρ. Then

(a) I (ρ) is completely monotone, strictly decreasing in ρ (unless f is identically constant) and

∀ ρ ≥ 0 I(ρ) ≥ f(ρ) . (2.2)

(b) As ρ → ∞,

I(ρ) = f(ρ) + O(ρf ′′(ρ)) . (2.3)
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Proof:

(a). Since f is completely monotone it is convex. Jensen’s Inequality yields

I(ρ) = EN[f(N)] ≥ f(EN) = f(ρ) ,

establishing the lower bound of (2.2).

Directly differentiating the series (2.1) with respect to ρ results in

(−1)kI (k)(ρ) =
n =0
Σ
∞

e −ρ
n !
ρn
hhh (−1)k∆k f (n) .

Since f is completely monotone, each term is non-negative, showing that I(ρ) is completely monotone.
Unless f(x) ≡ c for some constant c, there is at least one n such that ∆1 f(n) < 0, so that I ′(ρ) < 0, and
I is strictly decreasing.

(b). Since f is completely monotone on [0, ∞), Bernstein’s Theorem guarantees that there is a nonde-
creasing and bounded µ(s) on [0, ∞) with µ(0) = 0 and µ(∞) = f(0+) < ∞ such that

f(x) =
0
∫
∞

e −sx dµ(s) . (2.4)

Putting this integral into the sum (2.1) and interchanging provides an integral representation for I:

I(ρ) =
n =0
Σ
∞

e −ρ
n !
ρn
hhh

0
∫
∞

e −sn dµ(s) =
0
∫
∞

e −ρ

n =0
Σ
∞

n !
(ρe −s)n
hhhhhhh dµ(s) =

0
∫
∞

e −ρ(1 − e−s) dµ(s) . (2.5)

We now proceed to asymptotically estimate the latter integral for large ρ. This is an integral of Laplace
type, with the major contribution of the integrand near s = 0. However, standard methods for expansion
of Laplace integrals [Olv74] do not directly apply here, since µ does not necessarily have a series
expansion near the origin.

Call a function g (ρ) subdominant if, for every k ≥ 0, g(ρ) = o(1/ρk) as ρ → ∞. For convenience we
denote the class of subdominant functions by oo (ρ).

As a preliminary, we prove that certain tail integrals are subdominant:

LEMMA 2.1.

1/ √dρ
∫
∞

e −ρ(1 − e−s) dµ(s) = oo (ρ) ρ → ∞ . (2.6)

Proof of Lemma 2.1: Suppose s ≥ 1/√dρ. For this region we have e −s ≤ e −1/ √dρ , and thus
1 − e −s ≥ ρ−1⁄2 − 1⁄2ρ−1, where we have made use of the inequality

∀ x ≥ 0 e −x ≤ 1 − x +
2
x 2
hhh . (2.7)

This yields ρ(1 − e −s) ≥ √dρ and so

e −ρ(1 − e−s) ≤ e −√dρ .

Using this bound in the integral results in

1/ √dρ
∫
∞

e −ρ(1 − e−s) dµ(s) ≤ e −√dρ

0
∫
∞

dµ(s) = µ(∞)e −√dρ = oo (ρ) .`

LEMMA 2.2. For all k ≥ 0:

1/ √dρ
∫
∞

e −ρss k dµ(s) = oo (ρ) ρ → ∞ . (2.8)

- 4 -



---

Proof of Lemma 2.2: When integrated by parts, (2.8) is equivalent to

1/ √dρ
∫
∞

e −ρss k dµ(s) = ρ
1/ √dρ
∫
∞

µ(s)e −ρss kds − k
1/ √dρ
∫
∞

µ(s)e −ρss k −1ds + oo (ρ)

Thus we are done if we can establish that for each k both integrals in the right side above are subdom-
inant, i.e., that

1/ √dρ
∫
∞

µ(s)e −ρss kds = oo (ρ) .

But the previous integral is dominated by a constant µ(∞) times

1/ √dρ
∫
∞

e −ρss kds = ρ−(k +1)

√dρ
∫
∞

e −zz kdz .

This last integral is just an instance of the incomplete gamma function Γ(k + 1; √dρ), and it is well-
known [Spa87, p. 440] that Γ(k + 1; x) ∼ x k .e −x as x → ∞. Thus the tail integrals a all oo (ρ). `

We return now to the main theorem. Using (2.6) in (2.5) results in

I(ρ) =
0
∫

1/ √dρ
e −ρ(1 − e−s) dµ(s) + oo (ρ) . (2.9)

Using inequality (2.7) provides the bound

I(ρ) ≤
0
∫

1/ √dρ
e −ρse

1⁄2ρs 2

dµ(s) + oo (ρ) . (2.10)

Now when x < 1, e x ≤ 1 + ex. Since when s ≤ 1/√dρ we have 1⁄2ρs 2 ≤ 1⁄2, this bound can be applied to
yield

I(ρ) ≤
0
∫

1/ √dρ
e −ρs(1 + 1⁄2eρs 2) dµ(s) + oo (ρ) =

0
∫

1/ √dρ
e −ρs dµ(s) +

2
eρhhh

0
∫

1/ √dρ
e −ρss 2 dµ(s) + oo (ρ) .(2.11)

If we add to the bound in (2.11) the tail integrals that are known by Lemma 2.2 to be subdominant, we
have the result

I(ρ) ≤
0
∫
∞

e −ρs dµ(s) +
2

eρhhh
0
∫
∞

e −ρss 2 dµ(s) + oo (ρ) = f(ρ) +
2

eρhhh f (2)(ρ) + oo (ρ) . (2.12)

Using (2.2), we conclude that I(ρ) is trapped between the lower bound f (ρ) and the upper bound
(2.12). The theorem follows. `

EXAMPLE 1:. Let a ≥ 0 and define f (x) = 1/x a. Then f (2)(x) = a(a + 1)x −(a + 2). The theorem yields the
estimate

n =0
Σ
∞

e −ρ
n !
ρn
hhh

n a

1hhh =
ρa

1hhh + O(
ρa + 1

1hhhhh ) ρ → ∞ .

EXAMPLE 2:. Take f (x) = 1/ ln (x + e). Then f (2)(x) = (x + e)−2 f 2(x)[1 + 2f (x)]. The theorem yields
the estimate

n =0
Σ
∞

e −ρ
n !
ρn
hhh

ln (n + e)
1hhhhhhhhh =

ln (ρ + e)
1hhhhhhhhh + O(

ρ.( ln ρ)2

1hhhhhhhh ) =
ln ρ
1hhhh + O(

ρ.( ln ρ)2

1hhhhhhhh ) ρ → ∞ .

Remarks:

(1) When f(ρ) is itself a subdominant function, the estimate (2.3) is correct but useless. In this case
the error terms are of the same order as, or of higher order than, the leading term. In addition, all
terms are in the subdominant class oo (ρ). For example, when f(n) = exp[−cn], direct summation of the
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series yields I(ρ) = exp[−ρ(1 − e −c)], which is an exponential multiple of f(ρ). In this case the error
term ρf′′(ρ) is c 2ρ.exp[−cρ], so the error term actually dominates f(ρ). All terms are oo (ρ).

(2) Higher order terms in the expansion of I(ρ) are available by using more terms in the expansion of
1 − e −s in the proof. By methods similar to those of the proof, one obtains

I(ρ) = f(ρ) + ρ
2!

f (2)(ρ)hhhhhh − ρ
3!

f (3)(ρ)hhhhhh + O(ρ2 f (4)(ρ)) ρ → ∞ .

When f is additionally assumed to vary regularly, we can conclude that the error term is asymp-
totically smaller than f:

THEOREM 2.2. If in the hypothesis of Theorem 2.1 we additionally assume that f ∈ R α for some
α ≤ 0, then I(ρ) is both c.m. and R α and (2.3) can be strengthened to

I(ρ) = f(ρ) + O(f(ρ)/ρ) ρ → ∞. (2.13)

Proof: From Corollary 1.2, f (2)(ρ) = O(ρ−2 f(ρ)) if f is regularly varying. Putting this into (2.3) yields
(2.13). Since I(ρ) ∼ f(ρ) and f is regularly varying, so is I(ρ). `

3. An Extreme Application

Let X 1, . . . , Xn be independent and identically distributed random variables each with d.f. F.
The extreme

X (n) = max(X 1, . . . , Xn)

has the d.f. F(x)n, and EX (n) is finite if EX is finite. We will assume here that F has a finite mean.

In several applications, the following problem of "random maxima" arises. If N has a Poisson
distribution, what is the the expected value of the maximum of N values X 1, . . . , XN chosen indepen-
dently from a population with d.f. F? In this section we provide an estimate for this expected max-
imum EN[EXX (N)] when the Poisson mean EN is large. We do this by recourse to Theorem 2.1, after
first explaining the relevance of complete monotonicity to the subject of expected extremes (Lemma
3.2).

The above problem has arisen in studying the resequencing delay for the M /G /∞ queueing sys-
tem [Har82, Bac84] and in the performance of parallel processing [Dow93]. It also has the following
simple interpretation. Suppose customers arrive from an external source according to a Poisson process
of rate λ. These customers accumulate for a time interval t during which the server is absent. At time
t service begins, and all all customers are served simultaneously. The server is freed only when all cus-
tomers have completed service. If customer service intervals are independent and described by a vari-
ate X =d F, then the expected time during which the server is busy is EN[EXX (N)] for N a Poisson dis-
tributed variate having mean λt. Our result below shows that for large t, the busy time is EX (λt) + o(1)
under the assumption that EX is finite.

Since

EX (n) =
0
∫
∞

(1 − F(x)n) dx = n
0
∫
∞

F (x)n −1 dF (x) ,

we may readily extend this sequence to a function g(ν) of real argument ν ≥ 1 by defining:

g(ν) =
0
∫
∞

(1 − F(x)ν) dx = ν
0
∫
∞

xF (x)ν−1 dF (x) . (3.1)

An important question in the study of extremes is the rate at which EX (n) grows as a function of
n [Dow90, Dow91]. A partial result on the rate of growth of g(ν) = EX (ν) is provided by

LEMMA 3.1. If EX < ∞ then for k = 0, 1, 2, . . .

(−1)kD(k +1)g(ν) = o(ν−k) ν → ∞ (3.2)

and
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(−1)kD(k)
I
J
L ν
g(ν)hhhhh

M
J
O

= o(ν−k) ν → ∞ (3.3)

Proof: Differentiating under the first integral in (3.1) results in

(−1)kD(k +1)g(ν) =
0
∫
∞

F ν(− ln F)k +1 dx, (3.4)

for ν ≥ 1. The equality is valid provided we establish that the integral on the right—call it Ik +1(0, ∞]—
is uniformly convergent for ν ≥ 1.

Break the range of integration of Ik +1(0, ∞) into two parts so that
Ik +1(0, ∞) = Ik +1(0, R] + Ik +1(R, ∞). We bound each of these integrals in turn.

Since for all u ≥ 0

e −uu k ≤ e −kk k , (3.5)

we obtain F ν(− ln F)k +1 ≤ C 1ν−(k +1) and

Ik +1(0, R] ≤ C 1ν−(k +1)

0
∫
R

dx = C 1Rν−(k +1) .

Also since for all u in (0, 1] we have u.(− ln u) ≤ 1 − u, it follows that since ν ≥ 1

Ik +1(R, ∞) =
R
∫
∞

F ν−1(− ln F)kF(− ln F) dx ≤
R
∫
∞

F ν−1(− ln F)kF
hh

dx ≤ C 2ν−k

R
∫
∞

F
hh

dx .

Since EX =
0
∫
∞

F
hh

dx < ∞, it follows that the last integral → 0 as R → ∞, which establishes that all of

the integrals Ik +1(0, ∞) are uniformly convergent for ν ≥ 1, and hence that the derivatives (3.4) are valid.
Furthermore, setting R := ln ν in the above two bounds results in

Ik +1(0, ∞) ≤ C 1ν−(k +1) ln ν + C 2ν−ko (1) = o(ν−k) .

This establishes (3.2).

To obtain the bounds in (3.3), differentiate ν.
ν

g(ν)hhhhh a total of k + 1 times to get that for k ≥ 0

Dk +1
I
J
L ν
g(ν)hhhhh

M
J
O

=
ν
1hhDk +1g (ν) −

ν
k +1hhhhDk

I
J
L ν
g(ν)hhhhh

M
J
O

. (3.6)

In [Dow90] it is shown that if EX < ∞, then g (ν) = o (ν); this establishes (3.3) for k = 0. For the
induction step, assume (3.3) is true at k ≥ 0, and apply this hypothesis along with (3.2) in the identity
(3.6) to get

Dk +1
I
J
L ν
g(ν)hhhhh

M
J
O

=
ν
1hh .o(ν−k) −

ν
k +1hhhh.o(ν−k) = o(ν−(k +1)) .

`.

EXAMPLE. For the Weibull distribution F (x) = 1 − e −√ddx , direct calculation establishes that
g (ν) ∼ ( ln ν)2 and that (−1)k +1g (k)(ν) ∼ 2k ! ln ν/νk .

The next result shows that EX (ν) /ν is completely monotone for ν ≥ 1.

LEMMA 3.2. g(ν)/ν ∈ c.m.[1, ∞).

Proof: By the second integral in (3.1)

ν
g (ν)hhhhh =

0
∫
∞

xF ν−1 dF .

Differentiating, we have for k = 1,2, . . .
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(−1)kDk
I
J
L ν
g(ν)hhhhh

M
J
O

=
0
∫
∞

x(− ln F)kF ν−1 dF , (3.7)

provided the integral is uniformly convergent for ν ≥ 1. Uniform convergence is easily shown via the

bound (3.5) and the fact that
R
∫
∞

x dF → 0 as R → ∞. Finally, F ν−1 is c.m.[1, ∞) and hence

(− ln F)kF ν−1 ≥ 0; from this and (3.7) it follows that g(ν)/ν is also in c.m.[1, ∞). `

Using the Abelian theorem of the last section, we can now estimate the following expectation of a
random Poisson-weighted maximum.

THEOREM 3.1. Let N be a Poisson random variable, and denote its mean EN by ρ. Let random vari-
ables Xi be i.i.d. with d.f. F and assume EX < ∞. Then

EN[EX (N)] = EX (ρ) + o (1) ρ → ∞ . (3.8)

Proof: Write g (ν) for the expected extreme as in (3.1), and define

f(ν) =
ν + 1

g(ν + 1)hhhhhhh .

By Lemma 3.2, we have that f(ν) ∈ c.m.[0,∞).

Define I(ρ) := EN[EX (N)]. Then by definition (since EX (0) = 0)

I(ρ) =
n =1
Σ
∞

e −ρ
n !
ρn
hhhEX (n) =

n =1
Σ
∞

e −ρ
(n − 1)!

ρn
hhhhhhh

n
g(n)hhhhh =

j =0
Σ
∞

e −ρ
j !

ρj +1
hhhhh

j +1
g(j +1)hhhhhhh = ρ

j =0
Σ
∞

e −ρ
j !
ρj
hhh f(j) .

The last sum is of the form (2.1) where f is c.m.[0, ∞), and so invoking Theorem 2.1 yields

I(ρ) = ρf(ρ) + O(ρ2 f (2)(ρ)) ρ → ∞ .

Now by Lemma 3.1, D2[g(ν)/ν] = o(ν−2), and so D2 f(ν) = o(ν−2) as well. Therefore

I(ρ) = ρf(ρ) + o(1) ρ → ∞ . (3.9)

By Taylor’s theorem, for some θ in [0, 1] we have

f (ρ) = f(ρ − 1) + f′(ρ − θ).

By Lemma 3.1 again, Df(ν) = o(ν−1) and so f′(ρ − θ) = o(ρ−1) as ρ → ∞. Thus

f(ρ) = f(ρ − 1) + o(ρ−1) =
ρ

g(ρ)hhhhh + o(ρ−1) ρ → ∞ .

Putting this into (3.9) yields

I(ρ) = g(ρ) + o(1) ρ → ∞ ,

which is the desired conclusion. `
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