
- 20 -

end

##########
var got, tmp : int
do true ->
in ec(ev) ->
if (ev.event_type = Ev_KeyUp) ->

var ch := char(ev.data)
if ch = ’q’ | ch = ’Q’ | ch = ’\177’ | ch = ’\003’ ->
stop

[] ch = ’ ’ ->
if not started ->
started := true
WinClearArea(mainwin, winRectangle(0, 0, SIZE, SIZE+DOT))
banner(textw, MSG_RUNNING)
got := 0
send job(1, NP)

[] else ->
WinBell(mainwin, 0);

fi
[] ch = ’-’ ->
slp +:= 5

[] ch = ’+’ ->
slp := max(slp - 5, 0)

[] ch = ’r’ ->
if not started ->
regenerate()
banner(textw, MSG_READY)

[] else ->
WinBell(mainwin, 0)

fi
fi

[] ev.event_type = Ev_DeleteWindow ->
stop

fi

[] done(tmp) -> # in
got +:= tmp
if got >= NP ->
banner(textw, MSG_DONE)
started := false

fi
ni

od

Final
final
WinClose(mainwin)

end

end qsort

- 19 -

###
open main window
mainwin := WinOpen("", "Quick Sort", ec, UseDefault, SIZE, SIZE+OFF)
if mainwin = null ->
write("Ouch, can’t open window")
stop(1)

fi
WinSetEventMask(mainwin, Ev_KeyUp)
ww := WinNewContext(mainwin)
boxw := WinNewContext(mainwin)
textw := WinNewContext(mainwin)
fa i:= 1 to JS ->
cwins[i] := WinNewContext(mainwin)
WinSetForeground(cwins[i], colors[i])

af
WinSetForeground(mainwin, "black")
WinSetForeground(boxw, "orange")
WinSetForeground(textw, "lightyellow")
WinSetLineAttr(boxw, 0, LineDoubleDash, CapButt, JoinMiter)

a taste of flavor
seed(0)

sorting control
regenerate()
banner(textw, MSG_READY)
slp := 40

workers, get job from bag...
process worker(id := 1 to JS)
var lo, mid, hi: int
var x, y, w, h: int
var mywork: int := 0

receive job(lo, hi)
do true ->
mid := part(id, lo, hi, x, y, w, h)
WinDrawRectangle(boxw, winRectangle(x, y, w, h))
if lo < mid - 1 ->
if mid + 1 < hi ->
send job(mid+1, hi)

[] else ->
mywork +:= hi - mid + 1

fi
hi := mid -1

[] else ->
mywork +:= mid - lo + 1
if mid + 1 < hi ->
lo := mid + 1

[] else ->
mywork +:= hi - mid + 1
if lo = hi -> mywork -- fi # one work counted twice
send done(mywork)
mywork := 0
receive job(lo, hi)

fi
fi

od

- 18 -

fa i:= 1 to NP ->
numbers[i] := int(random(SIZE)+1)
drawDot(ww, i, numbers[i], 0)

af
end

Draw a box stands for a point being sorted
proc drawDot(win, idx, value, slp)
if slp > 0 -> nap(slp) fi
WinDrawRectangle(win,
winRectangle(int(SCALE*(idx-1)), SIZE-value-DOT2, DOT, DOT))

end

###
Partition
proc part(id, left, right, x, y, w, h) returns mid
var minv := SIZE+1, maxv := -1
var i : int
fa i := left to right ->
minv := min(minv, numbers[i])
maxv := max(maxv, numbers[i])

af
x := int((left-1) * SCALE + DOT2)
h := maxv - minv + 1
y := SIZE - minv - h
w := int((right-left) * SCALE)
#
WinDrawRectangle(boxw, winRectangle(x, y, w, h))
recolor to my color
fa i:= left to right ->
drawDot(cwins[id], i, numbers[i], 0)

af
WinSync(mainwin, false) # intended to slow things down
#
var pivot := numbers[left]
var lx := left+1, rx := right
do lx <= rx ->
if numbers[lx] <= pivot -> lx++
[] numbers[lx] > pivot ->
drawDot(mainwin, lx, numbers[lx], 0)
drawDot(mainwin, rx, numbers[rx], 0)
numbers[lx] :=: numbers[rx]
drawDot(cwins[id], lx, numbers[lx], slp)
drawDot(cwins[id], rx, numbers[rx], slp)
WinSync(mainwin, false) # intended to slow things down
rx--

fi
od
if rx > left ->
drawDot(mainwin, left, numbers[left], 0)
drawDot(mainwin, rx, numbers[rx], 0)
numbers[rx] :=: numbers[left]
drawDot(cwins[id], left, numbers[left], slp)
drawDot(cwins[id], rx, numbers[rx], slp)

fi
#
mid := rx
return

end

- 17 -

Appendix C. Sample Program - Quick Sort

Quick Sort
#
Qiang A. Zhao, October 92
#
Usage: qsort WindowSize Points DotSize

resource qsort()

const JS := 4 # number of job servers
import SRWin

op banner(win: winWindow; str: string[*])
op regenerate()
op drawDot(win: winWindow; idx, value, slp: int)
op part(id, left, right: int; var x, y, w, h: int) returns mid:int
op job(left, right: int)
op done(int)

var SIZE := 500; getarg(1, SIZE)
var NP := SIZE/2; getarg(2, NP)
var DOT := 6; getarg(3, DOT)

if (SIZE < 100) or (NP < 10) ->
write("Invalid Value, sorry...")
stop(1)

fi

const OFF := 40
const DOT2 : int := DOT/2
const SCALE : real := real(SIZE-DOT)/real(NP-1)

const MSG_READY := "Press ’SPACE’ to go"
const MSG_RUNNING := "Running: ’+’/’-’ to adjust speed"
const MSG_DONE := "Done, ’r’ to regenerate numbers"

var numbers[NP] : int
var mainwin, ww, boxw, textw: winWindow
var cwins[1:JS] :winWindow
var colors[1:JS] : string[6]

colors[1] := "red"
colors[2] := "yellow"
colors[3] := "green"
colors[4] := "cyan"

op ec : winEventChannel
var ev: winEvent
var slp: int := 0
var started := false

Draw a string at the bottom
proc banner(win, str)
WinClearArea(mainwin, winRectangle(0, SIZE+DOT, SIZE, OFF-DOT))
WinDrawString(win, winPoint(OFF, SIZE+30), str)

end

Generate random numbers
proc regenerate()
WinClearArea(mainwin, winRectangle(0, 0, SIZE, SIZE+DOT))

- 16 -

var pressed : bool := false
do true ->
var ev: winEvent
receive evchan(ev)

if ev.event_type = Ev_ButtonDown ->
pressed := true
WinSetBorder(mywin, but.border, borderColor)
WinEraseArea(revw, winRectangle(0, 0, w, h))
WinDrawString(revw, winPoint(labx, laby), labelString)

[] ev.event_type = Ev_ButtonUp ->
WinSetBorder(mywin, but.border, borderColor)
WinEraseArea(normalw, winRectangle(0, 0, w, h))
WinDrawString(normalw, winPoint(labx, laby), labelString)
if pressed ->
cb(but, labelString)

fi
pressed := false

[] ev.event_type = Ev_EnterWindow ->
WinSetBorder(mywin, but.border, borderColor)

[] ev.event_type = Ev_ExitWindow ->
pressed := false
WinSetBorder(normalw, but.border, buttonColor)
WinEraseArea(normalw, winRectangle(0, 0, w, h))
WinDrawString(normalw, winPoint(labx, laby), labelString)

fi

WinFlush(mywin)
od

end
end Button ### global

resource ButtonTest()
import SRWin, Button

op cb1, cb2: buttonCallBack

proc cb1(b, str)
write("Hello")

end

proc cb2(b, str)
write("Quit"); stop(0)

end

var mywin: winWindow := WinOpen("", "Button Test", null, UseDefault, 130, 80)
WinFlush(mywin)
send button(buttonRec(mywin, 10, 10, 50, 40, 2),

"red", "white", "blue", "Hello", cb1)
send button(buttonRec(mywin, 70, 10, 50, 40, 2),

"green", "blue", "white", "Quit", cb2)

final
WinClose(mywin)

end
end ButtonTest

- 15 -

Appendix B. Sample Program - Button

“button.sr” Q. A. Zhao, March 93

global Button

import SRWin

type buttonRec = rec (
window : winWindow
x, y, w, h, border : int

)

optype buttonCallBack(buttonRec; string[*])

op button(but: buttonRec;
borderColor, buttonColor, labelColor : winColor;
labelString: string[*];
cb: cap buttonCallBack)

body Button

import SRWin

A button
proc button(but, borderColor, buttonColor, labelColor, labelString, cb)
var labelFont : winFont := WinDefaultFont(but.window)

var x := but.x + but.border
var y := but.y + but.border
var w := but.w - but.border * 2
var h := but.h - but.border * 2
var labx := (w - WinTextWidth(labelFont, labelString)) / 2
var laby := (h + WinFontAscent(labelFont) - WinFontDescent(labelFont)) / 2

var mywin: winWindow
op evchan: winEventChannel
mywin := WinCreateSubwindow(but.window, evchan, OffScreen, x, y, w, h)
if mywin = null ->
write(stderr, "Button: ’", labelString, "’ cannot be created")
return

fi

WinSetEventMask(mywin, Ev_ButtonDown | Ev_ButtonUp |
Ev_EnterWindow | Ev_ExitWindow)

var normalw : winWindow := WinNewContext(mywin)
WinSetForeground(normalw, labelColor)
WinSetBackground(normalw, buttonColor)

var revw : winWindow := WinNewContext(mywin)
WinSetForeground(revw, buttonColor)
WinSetBackground(revw, labelColor)

WinSetBorder(normalw, but.border, buttonColor)
WinEraseArea(normalw, winRectangle(0, 0, w, h))
WinDrawString(normalw, winPoint(labx, laby), labelString)
WinMapWindow(normalw) # same as mapping ’mywin’

- 14 -

Icon, but that have not yet been implemented. These include mutable color cells, reading and writing

images from and to files, etc.

While providing more user interface features is an important development direction, tuning

SRWin for better performance is also essential. One possible thread of revising SRWin is to rewrite

the locking scheme after the multi-threaded Xlib is available [Gild93]. For example, based on the new

Xlib, SRWin would no longer need to lock Xlib data structures and functions entries. Only data struc-

tures created and used by SRWin must be protected by locking. The semaphore could be made on a

per-connection basis to further relieve processes working on one display from competing for locks with

those working on other displays.

- 13 -

Function WinOpen() creates the display record and the first context window record.

WinCreateSubwindow() inserts a subwindow into the subwindow list and creates a new context

window record. WinNewContext() only creates a context window record. All three functions return

pointers to the context window records they create.

However, SRWin doesn’t keep track of every context window record it creates. When a function

like WinDestroyWindow() is called, it walks the list of subwindows and destroys those required, but it

cannot destroy other context window records not passed in the list of arguments. After destroying a

window, other context window handles still referring to the old window should not be used.

Concurrency Issues

A semaphore in SRWin serializes calls to Xlib. Whenever a function is about to change something, for

example load a font or draw a line, it does a P operation on that semaphore; afterwards it does a V

operation on the semaphore. The operations provided without this mutual exclusion scheme include,

partly because of performance concerns, WinTextWidth(), WinFontAscent(), WinFontDescent(),

WinGetPixel(), WinPutPixel(), and WinAddPixel(). The first four functions read information in the

memory space of the application program. They are safe as long as the subject of the operation is

valid. When using the last two functions, the application program must ensure that there is no simul-

taneous access to the same row in the image.

When WinOpen() is called and succeeds in creating the window, it does a reply so it gets detached

and becomes a separate process, the event handler. This process periodically checks whether there is

an event pending from the X server. If there is any, it retrieves the event from Xlib, and calls a C func-

tion to find out which subwindow the event should be in. Then the event is dispatched to the regis-

tered event channel, if there is one. The delay between two checking iterations of the event handler is

controlled by WinSetPoll(); the minimum delay value is set to 1 millisecond.

WinClose() destroys the windows and closes the connection to the X server. It resets a flag field in

the display record so the event handler, which also periodically checks this field, can exit.

Future Development

SRWin has borrowed a lot of ideas from X-Icon [Jeff92] on providing user interface primitives. At the

time this document was written, there are still a lot of nice features that SRWin can learn from X-

Display Record

Context Window Record Context Window Record

Window Handle Window Handle

Subwindow list

Xlib data structures

Figure 7. Objects in SRWin

- 12 -

Appendix A. The Implementation of SRWin

A basic knowledge of the X Window System is very helpful in understanding the implementation of

SRWin. Various books and articles listed in the Reference section describe the X Window System and

Xlib.

The Client-Server Model

Like many other X-based systems, SRWin follows and benefits from the client-server computing

model. Conceptually, what WinOpen() establishes is a full-duplex connection between the X server and

the client program. This allows outputs flow from the client to the server, and inputs flow from the

server to the client:

In a virtual machine running a client program, SRWin acts as a global embedded with Xlib. Appli-

cation processes, which may be in one or more resources, communicate with each other to accomplish

some computation tasks. They call SRWin primitives in order to display some data or manipulate the

windows. These calls are serialized by SRWin to prevent them from simultaneous access to shared

critical data structures in Xlib, and they are turned into X requests by Xlib and sent to the X server.

Inputs from various windows, on the other hand, are delivered to the event handler. The event han-

dler responds to the exposure events by sending back redrawing information to the server, and for-

wards other events to the appropriate event channel (denoted by a little circle in the above figure) by

asynchronous message passing.

Manipulating Window Objects

The implementation of SRWin includes two parts: an SR global SRWin and a set of C functions. The C

functions are called as externals from the SR global. There are a few type of data objects that hold

state information of context windows and displays (connections to X server). Both the SR part and C

part can access these objects (see Figure 7).

Virtual Machine

Application Code

SRWin

Xlib

event handler

Application Processes

Input FlowOutput Flow

Figure 6. SRWin Internal Layout

- 11 -

References

[AnOl93] Andrews, G. R., and Olsson, R. A. The SR Programming Language: Concurrency in

Practice. Benjamin/Cummings Publishing Company, Inc., Redwood City, California, 1993.

[Brow91] Brown, M. H., editor. An Anthology of Algorithm Animations using Zeus. TR 76b

(videotape). Digital Equipment Corporation, Systems Research Center, Palo Alto,

California, August 1991.

[Gild93] Gildea, S. Multi-Threaded Xlib. The X Resource, Issue Five – Proceedings of the 7th

Annual X Technical Conference, pages 159-166. O’Reilly & Associates, Inc., Sebastopol,

California, 1993.

[Huds93] Hudson, S. Winpack – Minimal Retargetable Window Package. GVU Center, College of

Computing, Georgia Institute of Technology, 1993.

[Jeff92] Jeffrey, C. L. X-Icon: An Icon Window Interface, Version 2. TR 92-26. Dept. of Computer

Science, The University of Arizona.

[OlAn92] Olsson, R. A., Andrews, G. R., Coffin, M. H., and Townsend, G. M. SR, A Language for

Parallel and Distributed Programming. TR 92-09, Dept. of Computer Science, The

University of Arizona, March 1992.

[NyeA92] Nye, A., editor. Xlib Programming Manual, for Version 11 of the X Window System; 3rd ed.

O’Reilly & Associates, Inc., Sebastopol, California, 1992.

[ScGe86] Scheifler, R. W. and Gettys, J. The X Window System. ACM Transactions on Graphics, Vol.

5, No. 2, April 1986, pages 79-109.

[ScGe92] Scheifler, R. W., and Gettys, J., with Flowers, J. and Rosenthal D. X Window System - The

Complete Reference to Xlib, X Protocol, ICCCM, XLFD; 3rd ed. Digital Press, Burlington,

Massachusetts, 1992.

[Zhao93] Zhao, Q. A. SRWin Manual Page. Dept. of Computer Science, The University of Arizona,

May 1993.

- 10 -

var i: int
fa i := 0 to 199 -> # a horizontal red line
WinPutPixel(im, winPoint(i, 50), p)

af

Calling WinPutImage() copies a rectangular area in the image to a window:

copies the image to (20, 10) on window “mywin”
WinPutImage(mywin, im, winRectangle(0, 0, 199, 99), winPoint(20, 10))

Unlike windows and their backup copies, an image is kept in the memory area of the application

program, not the X server. Primitives like WinPutPixel() operate locally without generating any net-

work traffic. On a shared memory parallel machine, processes on different processors can actually

manipulate a shared image concurrently, resulting in faster program execution.

9. Conclusions

Building on top of Xlib, SRWin is a quite simple graphics library for SR. Like Xlib, SRWin provides

graphics and windowing mechanisms without enforcing any particular policy, user interface, or look-

and-feel. SRWin provides a few higher-level abstractions consistent with the rest of the SR language.

Many interactive programs are event driven, meaning that they follow a paradigm in which an

event-reading loop is the primary control pattern driving the program. If a program must be prepared

to respond to user input, it cannot compute for long periods without checking for window events.

SRWin, however, supports a multi-paradigm programming model. Some of the processes in an

interactive system can be totally unaware that the system as a whole is interacting with the user.

Other process can be solely devoted to processing user commands. This modularity greatly reduces

the burden on the programmer.

Multiple processes and event channels help make programming in SRWin easy and efficient. The

message passing and operation invocation methods in SR makes those abstractions feasible. The con-

currency in SR gives SRWin the power of implementing retained windows, where window redrawing

is handled automatically. Given the primitives presented in SRWin, advanced user interface features

can be written in SR.

This document gives many examples of using SRWin. The SRWin reference manual in the SR dis-

tribution provides a complete list of SRWin operations with syntax and semantics explanations

[Zhao93]. Many programming details, such as shapes of standard cursors, can be found in various X

Window System books and articles listed in the “Reference” section below.

Acknowledgments

SRWin was inspired by X-Icon, an X interface developed by Clint Jeffery for the Icon language

[Jeff92]. Many useful ideas came from the Winpack graphics library created by Scott Hudson

[Huds93]. Gregory Andrews and Gregg Townsend provided a lot of guidance on designing, implement-

ing, and documenting the library.

- 9 -

Binding Context Information With Windows

Usually a graphics primitive does not contain all the information needed to draw a particular thing.

The X server maintains resources called graphics contexts that specify many attributes that apply to

each graphic request.

Different graphics contexts can be used to write to the same window. An SRWin window handle is

actually a binding of a window on the screen with a particular graphics context. Function WinOpen()

creates both a system window and a graphics context, and binds them together, producing the binding

(context window) as its return value.

Function WinNewContext() creates a new graphics context, binds it with the old window, and

returns the new context window. The new and old window handles can write to the same system win-

dow. Closing either of those window handles removes the window.

Graphics contexts reduce the traffic between the X server and the application programs. The con-

text information is maintained by the X server and only needs to be sent once, and that information is

automatically applied to later drawing requests specifying the id of the graphics context. In the case

of changes, only the required few fields need to be sent. For example, when setting foreground, only

the foreground field needs to be sent; when setting the font, only the font field needs to be sent.

Multiple graphics contexts can be created so application programs can switch among different

graphic bindings with ease. A common practice is to create all required context windows at the begin-

ning of resources or processes, set desired attributes for each context window, then use them wherever

appropriate. Two examples of the use of graphics contexts and context windows are the button pro-

gram and Quicksort program discussed earlier, and shown in Appendices B and C.

Enabling and Disabling On-screen Outputs

SRWin maintains a backup copy of window contents. When a drawing primitive is called, it draws to

the backup copy first, then draws to the system window. Both copies are stored in the X server.

To further reduce the communication traffic between the X server and the application program,

on-screen drawing can be temporarily disabled by a call to WinDisableOutput(). This is done on a per

top-level window basis. One call on any of the subwindows or context windows will disable on-screen

output for the whole window tree. Subsequent drawing will only affect the backup copy. When it is

desired the window can be updated by calling WinUpdateWindow(), which copies the backup copy to

the system window on screen. To enable drawing, use WinEnableOutput().

Using Images

For an application that operates on the pixel level, using images could greatly improve performance.

Function WinCreateImage() creates a memory area for storing an image of specified depth and

size. The following code fragment creates an image of size 200 by 100 in pixels using the default depth

of the window:

var im: winImage := WinCreateImage(mywin, UseDefault, 200, 100)
if im = null ->
write("Cannot create image")
stop

fi

WinPutPixel() writes a pixel value to the image. Pixel values can be pre-calculated using

WinSetForeground(), which returns an integer value representing the specified color:

var p: winPixel := WinSetForeground(mywin, "red")
other processing

- 8 -

data array has been sorted, the administrator process prompts the user for generating a new set of

data and starting over again.

The complete program is listed in Appendix C.

8. Speeding Up the Program

Transmitting messages over the network takes time and slows down the program. Thus, calls to

SRWin that generate network traffic are expensive. This section describes ways to reduce network

traffic.

To prevent multiple access to shared X data structures, SRWin employs low-level locking in many

function calls. Calling those routines prevents the program from gaining better parallelism. Even if

there is another implementation based on a Multi-threaded Xlib [Gild93] available, which can elimi-

nate much locking, the application must not abuse the input and output flows. Keeping these in mind

often helps in developing a fast application.

Reducing Unnecessary Input Events

When an event happens on a window, it is checked against the event mask of the window. If this event

is among the selected types, it is passed to SRWin for processing. If it is not, it is passed to the parent

window to be checked. By registering only the required event types, an SRWin program can reduce

the traffic on the network and, hence, improve performance.

Figure 5. Screen dump of the Quicksort program

- 7 -

record type buttonRec to characterize a button, an operation type buttonCallBack for declaring call-

back functions, and an operation button() for creating a button. An application program usually

“sends” to operation button(), and the registered call-back function is invoked when the user clicks

on the button.

7. Visualizing a Quicksort Algorithm

In this section, a Quicksort visualization program, which was inspired by [Brow91], is presented as an

example of a larger program.

The Quicksort algorithm uses a few worker processes that run in parallel with a bag of tasks to

assign work to processes dynamically. Initially, an administrator process generates an array of ran-

dom data points and it puts the initial task, which is denoted by a pair of indices (1, n) for all the

points, in the bag. Worker processes then remove tasks one at a time for processing. When a process

gets a task (l, h), which marks the region the worker should work on in the data array, it partitions

the region according to the traditional Quicksort algorithm. If the partition results in one or more new

tasks, the worker process gives itself the first new task for further processing and puts the remaining

tasks back in the bag. If the partition results in no new tasks, the worker process tries to get another

task from the bag.

 The data points are drawn as little boxes on screen. The data array lies horizontally, so that for

each data box, its x coordinate corresponds to its index or position in the array and its y coordinate

corresponds to the value of the data. When the array is sorted the boxes should line up from lower-left

to upper-right corner.

Each worker process is assigned a unique color. When a worker gets a new task, it changes the

color of all points in that region. This makes it easy to distinguish when different processes work on

different regions of the data array.

To make the data manipulation more obvious, each worker draws a dashed box around the area it

will work on when it gets a new task. This clearly marks each partition (as in Figure 5), and also

shows how bad the situation can be when the algorithm chooses a bad pivot point.

The administrator process which initializes the bag of tasks also interacts with the user. For

example, the computer would be too fast for human eyes to catch any details of the changes on the

data. Thus, there are places where the program delays for a certain amount of time. When the sorting

is in progress, the administrator accepts user input to adjust the delay time. In order to detect termi-

nation of a sort, the administrator process gathers information about what has been done. When the

width

h
e
ig

h
t

border width

x, y position of

child relative to

parent origin

child origin

Figure 4. Window Configuration

- 6 -

subw := WinCreateSubwindow(mywin, evchan, UseDefault, 10, 20, 300, 400)

The subwindow begins at (x, y) relative to its parent’s top-left corner. The subwindow can use its

parent’s event channel, or it may register a new one, or not use any. Subwindows can help a program-

mer implement common user interface objects such as dialog boxes, buttons, and menus.

Windows do not need to be visible. If OffScreen is used instead of UseDefault when creating a

window, the window is initially kept off-screen. When it is necessary the window can be “mapped” to

be displayed. For example, subwindows used as dialog boxes are not always displayed. When the pro-

gram needs some specific input from the user, a dialog box can be popped up, and after the user has

finished input, the dialog box can be hidden away:

var dbox: winWindow := WinCreateSubwindow(mywin, evchan,
OffScreen, 10, 10, 100, 100)

some processing ...
WinMapWindow(dbox)
asks user input, read, some processing ...
WinUnmapWindow(dbox)

However, some other things need to be done to make this code work. For each window, there is an

event mask attribute that tells what kind of events this window is expecting. When an event is gener-

ated, it is tested against the event mask of the window. If the event is of selected type, it is sent to the

registered event channel. Otherwise the event is passed to the parent of the window and checked

again. When a window is created initially off-screen, the event mask is empty. If afterwards input on

this window is desired, SRWin routine WinSetEventMask() can be used to select events of interest:

WinSetEventMask(dbox, Ev_KeyDown | Ev_ButtonDown)

The event mask is set to a bitwise or’ed list of event types. In the above example, future key and

mouse button press events will be delivered to the event channel for that window.

Take a button as another example. A software button may look like a rectangular box. It may

change its appearance when the user presses a mouse button within it.

open subwindow

set initial border and event mask, write label

map window

do true ->
get event

if button pressed ->
change to reverse video

[] button released ->
change to normal display with highlighted border

invoke the user specified call-back function

[] enter window ->
highlight border

[] exit window ->
back to normal display

fi
od

When mapped on screen, a window may have a border surrounding it. The window border may be

used for drawing attention to a special area, for example a button. However the border is different

from the decoration that a window manager would put for each window. When creating a window, the

width of the border is not included in the size of the window. When placing a subwindow, its border

needs to be taken into consideration (see Figure 4).

SRWin function WinSetBorder() sets the border width and border color of a window, e.g.:

WinSetBorder(mywin, 3, "red")

A sample program that implements buttons as described above is listed in Appendix B. It includes

a global Button and a test resource that shows how to create a button. The global Button exports a

- 5 -

Another common programming model is the de-coupled programming model, where some pro-

cesses do the computation while a coordinator process communicates with the computing processes

and interacts with the user. It is best illustrated in Section 7 (“Visualizing a Quicksort Algorithm”).

6. Advanced Window Management

Windows created by WinOpen() are often called top-level or application level windows. They are man-

aged by a special program, the window manager. SRWin supports yet another kind of windows, sub-

windows. Hierarchically, a subwindow is a child of another window, which is referred to as its parent.

When displayed, a subwindow is placed on top of its parent and clipped inside its parent. Subwindows

share a single network connection to the display with their parents. A top-level window may have sev-

eral subwindows as its children. A subwindow may also have its own subwindows.

Function WinCreateSubwindow() creates a subwindow as a child of an existing window:

var subw: winWindow
starts at (x, y) = (10, 20) in the parent window, width 300, height 400

resource pointer()
import SRWin # first thing
const W := 500
const H := 300
open window and load font
op evchan: winEventChannel
var mywin: winWindow := WinOpen("", "Pointer", evchan, UseDefault, W, H)
if mywin = null ->
write("Sorry, cannot open a window")
stop(1)

fi
var ft: winFont := WinLoadFont(mywin, "lucidasanstypewriter-14")
if ft = null ->
ft := WinDefaultFont(mywin)

[] else ->
WinSetFont(mywin, ft)

fi
interact with the user
do true ->
var ev: winEvent
receive evchan(ev)
if ev.event_type = Ev_PointerMove or ev.event_type = Ev_EnterWindow ->
var str: string[100]
sprintf(str, " Pointer is at: (%3d, %3d) ", ev.x, ev.y)
var strWidth: int := WinTextWidth(ft, str)
WinDrawImageString(mywin, winPoint((W - strWidth) / 2, H / 2), str)

[] ev.event_type = Ev_ExitWindow ->
WinEraseArea(mywin, winRectangle(0, 0, W, H))

[] ev.event_type = Ev_DeleteWindow or
(ev.event_type = Ev_KeyUp and char(ev.data) = ’q’) ->

exit
fi
WinFlush(mywin)

od
WinClose(mywin)

end pointer

Figure 3. The Pointer Tracking Example

- 4 -

The goal of the program is to keep track of the pointer position in a window it opens and let the

user know where the pointer points to. This can be outlined as:

open window

do true ->
read event

if pointer enters the window or pointer moves ->
write the coordinates of the pointer in the center of the window

[] pointer leaves the window ->
clear the window

[] should quit ->
exit

fi
od
close the window

Opening a window, reading events, and closing the window are similar to those in the previous

sections.

Event types Ev_PointerMove, Ev_EnterWindow, and Ev_ExitWindow indicate state changes of the

pointer. The x and y fields in the event record give the coordinates of the pointer at the time the event

occurs:

var ev: winEvent
read event ... it is Ev_PointerMove or Ev_EnterWindow
var str: string[100]
sprintf(str, "Pointer is at: (%d, %d)", ev.x, ev.y)
write string “str” in the center of the window ...

One way to center the string in the window is to compute the width in pixels of the string, then

calculate how far the string would be from the left edge of the window – that is, where the string

should start. The width of the string depends on the window’s current font. The same string displayed

in different fonts may have different widths.

Fonts are usually represented by bitmap data stored in files. A program may have several fonts

loaded, so that when it needs a particular font for displaying characters, it can quickly switch to that

font. There are some standard X Window utilities, such as xlsfonts, xfontsel, etc., which list or view

various fonts. The SRWin function WinLoadFont() loads a font:

var ft: winFont := WinLoadFont(mywin, "lucidasanstypewriter-14")

If the specified font cannot be loaded, WinLoadFont() returns null. Since a window starts up with

a default font, a program can always use WinDefaultFont() to find out the default font:

if ft = null ->
ft := WinDefaultFont(mywin) # will always get the font

fi

To set a font on a window for subsequent text output, a program calls WinSetFont():

WinSetFont(mywin, ft)

Once a font is loaded, WinTextWidth() will give the width of a string in a specific font, which will

help, for example, to center a string:

var strWidth: int := WinTextWidth(ft, str)
suppose “W” is the width of the window, “H” is the height of the window
WinDrawString(mywin, winPoint((W - strWidth) / 2, H / 2), str)

The complete program for the “pointer tracking” example is listed in Figure 3. On some configura-

tions of the X Window System, an Ev_DeleteWindow event is generated when the user chooses “Close”

or “Quit” entry from a window manager menu. The example program presented here uses this infor-

mation with keyboard input “q” to decide when it is about to exit.

- 3 -

op evchan: winEventChannel
var mywin: winWindow := WinOpen("", "Test", evchan, UseDefault, 100, 50)

Upon successful creation of a window, a process is set up to poll and dispatch window events to the

message channel using asynchronous message passing. The event polling process is called an event

handler. The message channel is called an event channel. An event is represented by a record

winEvent. A program can determine whether there is an event pending by checking the number of

messages in the event channel:

if ?evchan > 0 ->
write("Something happened on that window")

fi

Or the program can wait on the event channel until an event happens:

var ev: winEvent
receive evchan(ev)

Upon receiving an event, a program can check the event_type field of the event record to see what

kind of event has just happened. For example, there are event types Ev_KeyDown and Ev_KeyUp, which

stand for key press and key release events respectively. In these cases the data field of the event

record is the ASCII code of the key:

var ev: winEvent
... get event ...
if ev.event_type = Ev_KeyDown ->
write("Key pressed: ", char(ev.data))

[] ev.event_type = Ev_KeyUp ->
write("Key released: ", char(ev.data))

fi

More uses of event channels are shown in the next section with an example program.

5. Programming Models

One common way to build an interactive graphics program is the event-driven programming model.

An event-reading loop is the primary control mechanism driving the program – the program reads

some input, does some processing and drawing, then comes back to read input. It can be illustrated by

the following example program.

Rg
Figure 2. Position of a string drawn at (x, y) in a window

x

descent

ascent

baseline

y

- 2 -

and the Y axis pointing down. The WinDrawString() statement draws the string close to the bottom-

left corner of the window.

After the program finishes processing, it calls WinClose() to clean up. This concludes this small

working SRWin program.

3. Output

The “Hello World” program illustrates the SRWin conventions for naming and syntax of its data struc-

tures and routines. All SRWin functions begin with “Win” followed by compound words constructed by

capitalizing the first letter of each word (e.g. WinOpen(), WinFlush()); data types are constructed sim-

ilarly except that they begin with “win” (e.g. winWindow, winPoint).

Usually, WinOpen() is the first SRWin routine that a program invokes. It returns a window han-

dle, which then can be used as the first argument to many drawing routines. A program calls those

drawing routines to display information on the window. For example, a statement that draws a line

would look like:

WinDrawLine(mywin, winPoint(0, 100), winPoint(100, 0))

The type winPoint converts the x and y coordinates to a point.

SRWin provides a set of routines to draw lines, ellipses, texts, and individual pixels inside a win-

dow. Some routines can do filling. Multiple characteristics of drawing and filling, such as line width

and fill style, can be controlled. Taking lines as an example, line style specifies whether a line should

be drawn solid or dotted, etc. Cap style tells whether the endings of a line should be rounded or not.

Join style sets whether the joint of two segments in a polyline should be rounded or not. The following

two statements draw a 20 by 10 rectangle with dashed lines:

WinSetLineAttr(mywin, 0, LineDoubleDash, CapButt, JoinMiter)
WinDrawRectangle(mywin, winRectangle(1, 1, 20, 10))

Here the line width is set to zero in order to use a fast algorithm for line drawing, while the line

actually being drawn has width 1 in pixels. If the line width is greater than zero, a more general,

hence slower, algorithm will be used.

Drawing is not limited to only one window for a program. Multiple windows can be created using

WinOpen(). Windows can be opened on different machines by explicitly specifying the machine as the

host part of the display parameter:

var mywin1: winWindow := WinOpen("can:0", "1", null, UseDefault, 100, 50)
var mywin2: winWindow := WinOpen("gly:0", "2", null, UseDefault, 100, 50)

 A string of characters is positioned as depicted in Figure 2. WinDrawString() draws the charac-

ters. WinDrawImageString() clears the extent of the string first, then draws it. In this way the string

will not be cluttered by previous drawing at the same location.

Sometimes when a region of a window becomes obscured by other windows, the contents inside

that region are lost. When the obscured region becomes visible again, the X application must redraw

that part of the window. SRWin, however, handles this automatically, refreshing the display from a

backup copy of window contents.

4. Input

A window is not only capable of displaying output, it is also capable of reading input. Inputs from a

window are modeled as events. The SRWin global exports an optype winEventChannel which is used by

an application program to declare a message channel for accepting events. The SR program passes

this when opening the window:

- 1 -

1. Introduction

This document is intended for programmers writing graphics programs using SRWin, a library of

graphics facilities for the SR programming language [AnOl93]. It describes the library and presents

some examples of its use. Appendix A gives some details about the implementation of SRWin and

some thoughts for further development. Appendix B gives a program that demonstrates window but-

tons. Appendix C lists a program that visualizes a parallel Quicksort algorithm.

SRWin adds an interface to graphics primitives provided by the X Window System [ScGe86]. It is

based on Xlib [NyeA92, ScGe92], the low-level C interface for X Window programming. Given the

availability of the underlying X Window System, SRWin can run on many platforms. Given the SR

concurrent programming environment, and a few abstractions for user-computer interaction, SRWin

becomes simple, easy to program, and effective in the sense that even naive programmers may

develop fairly efficient graphics applications.

2. A “Hello World” Program

Writing graphics programs in SR is not too complex. A simple SRWin program might look like this:

This program imports a global SRWin and is linked with a file of associated C functions and the X

library. During execution, it simply opens a window on the default display, writes “Hello World” in yel-

low, waits for ten seconds, then exits.

There is an analogy between a window in SRWin and a file in SR. SRWin uses WinOpen() to open

a window, which in turn returns a window handle. SR uses open() to open a file, which returns a file

handle. Like its counterpart for file access, WinOpen() returns null if the window cannot be opened.

SRWin also uses buffered I/O. While WinDrawString() writes to the window just as write() writes to

a file, the result may not appear immediately in the window. WinFlush() acts similarly to flush(): it

flushes the output buffers of the window. Finally, WinClose() closes a window just as close() does for

a file.

Specifically, WinOpen() first tries to establish a connection to the display named by its first argu-

ment. In the above example the display parameter is an empty string, so the default specification

stored in UNIX environment variable DISPLAY is used. Then the function opens a window and uses

the second argument as its title. The width and height of the window must be provided as the last two

parameters. The other parameters will be discussed later.

Once the window is created, the program can call SRWin functions to draw on the window. There

is an integer coordinate system on each window with the origin at the top-left corner of the window

resource hello()
import SRWin
var mywin: winWindow := WinOpen("", "Hello", null, UseDefault, 100, 30)
if mywin = null ->
write("Sorry, no window.")
stop(1)

fi
WinSetForeground(mywin, "yellow")
WinDrawString(mywin, winPoint(10, 20), "Hello World")
WinFlush(mywin)
nap(10000)
WinClose(mywin)

end hello

Figure 1. The “Hello World” Program

SRWin
A Graphics Library for SR

Qiang Alex Zhao

TR-93-14

Abstract

This document describes the calling interface and usage conventions of SRWin, a
graphics library for the SR concurrent programming language. SRWin provides a
simple environment for building interactive graphics system. It currently runs on
UNIX under Version 11 of the X Window System.

May 1, 1993

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

DEPARTMENT OF COMPUTER SCIENCE

SRWin

A Graphics Library for SR

Qiang Alex Zhao

TR 93-14

