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Abstract

This paper discusses call forwarding, a simple interprocedural optimization technique for

dynamically typed languages. The basic idea behind the optimization is straightforward: �nd

an ordering for the \entry actions" of a procedure, and generate multiple entry points for the

procedure, such that the savings realized from di�erent call sites bypassing di�erent sets of

entry actions, weighted by their estimated execution frequencies, is as large as possible. We

show that the problem of computing optimal solutions to arbitrary call forwarding problems is

NP-complete, and describe e�cient heuristics for the problem. Experimental results indicate

that (i) the heuristics are e�ective, in that the solutions produced are generally optimal or

close to optimal; and (ii) the resulting optimization is e�ective, in that it leads to signi�cant

performance improvements for a number of benchmarks tested.
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1 Introduction

The code generated for a function or procedure in a dynamically typed language typically has to

carry out various type and range checks on its arguments before it can operate on them. These

runtime tests can incur a signi�cant performance overhead. As a very simple example, consider the

following function to compute the average of a list of numbers:

ave(L, Sum, Count) =

if null(L) then Sum/Count else ave(tail(L), Sum+head(L), Count+1)

In a straightforward implementation of this function, the code generated checks the type of each of

its arguments each time around the loop: the �rst argument must be a (empty or non-empty) list,

while the second and third arguments must be numbers.

1

Notice, however, that some of this type

checking is unnecessary: the expression Sum+head(L) evaluates correctly only if Sum is a number,

in which case its value is also a number; similarly, Count+1 evaluates correctly only if Count is a

number, and in that case it also evaluates to a number. Thus, once the types of Sum and Count have

been checked at the entry to the loop, further type checks on the second and third arguments are

not necessary.

The function in this example is tail recursive, making it easy to recognize the iterative nature

of its computation and use some form of code motion to move the type check out of the loop. In

general, however, such redundant type checks may be encountered where the de�nitions are not tail

recursive and where the loop structure is not as easy to recognize. An alternative approach, which

works in general, is to generate multiple entry points for the function ave, so that a particular call

site can enter at the \appropriate" entry point, bypassing any code it does not need to execute. In

the example above, this would give exactly the desired result: tail call optimization would compile

the recursive call to ave into a jump instruction, and noticing that the recursive call does not need

to test the types of its second and third arguments, the target of this jump would be chosen to

bypass these tests.

However, notice that in the example above, even if we generate multiple entry points for ave,

the optimization works only if the tests are generated in the right order : since it is necessary to

test the type of the �rst argument each time around the loop, the tests on the second and third

arguments cannot be bypassed if the type test on the �rst argument precedes those on the other

two arguments. As this example illustrates, the order in which the tests are generated inuences

the amount of unnecessary code that can be bypassed at runtime, and therefore the performance of

the program.

In general, functions and procedures in dynamically typed languages contain a set of actions,

such as type tests and initialization actions, that are executed at entry and can be carried out in

any order. There are a number of di�erent call sites for each function, and at each call site we have

some information about the actual parameters at that call site, allowing that call to skip some of

these \entry actions". Moreover, each call site has a di�erent execution frequency (estimated, for

example, from pro�le information or from the structure of the call graph). Now an order for the

entry actions that is good for one call site, in terms of the number of unnecessary entry actions

that can be skipped, may not be as good for another call site, since in general, di�erent call sites

1

In reality, the generated code would distinguish between the numeric types int and float, e.g., using \message

splitting" techniques as in [4, 5]|the distinction is not important here, and we assume a single numeric type for

simplicity of exposition.
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have di�erent information available about the actual parameters. A good compiler should therefore

attempt to �nd an ordering on the entry actions that maximizes the bene�ts, over all call sites, due

to bypassing unnecessary code. We refer to determining such an order for the entry actions and

then \forwarding" the branch instructions at di�erent call sites so as to bypass unnecessary code as

\call forwarding".

While many systems compile functions with multiple entry points, we do not know of any that

attempt to order the entry actions carefully in order to exploit this to the fullest. In this paper,

we address the problem of determining a \good" order for the set of tests a function or procedure

has to carry out. We show that generating an optimal order is NP-complete in general, and give

e�cient polynomial-time heuristics for selecting an ordering. The result generalizes a number of

optimizations for traditional compilers, such as jump chain collapsing and invariant code motion out

of loops. Experimental results indicate that (i) our heuristics are good, in that the orderings they

generate are usually not far from the optimal; and (ii) the resulting optimization is e�ective, in the

sense that it typically leads to signi�cant speed improvements.

The issues and optimizations discussed in this paper are primarily at the intermediate code,

or virtual machine instruction, level: for this reason, we do not make many assumptions about

the source language, except that it is dynamically typed. This covers a wide variety of languages,

e.g., functional programming languages such as Lisp and Scheme (e.g., see [18]), logic programming

languages such as Prolog [3], Strand [6], GHC [19] and Janus [11, 15], imperative languages such

as Icon [10] and SETL [16], and object-oriented languages such as Smalltalk [9] and SELF [5]. The

optimization we discuss is likely to be most bene�cial for languages and programs where procedure

calls are common, and which are therefore liable to bene�t signi�cantly from reducing the cost of

procedure calls. The assumption of dynamic typing implies that the code generated for a function

or procedure will contain type tests, initialization actions (especially for variadic procedures), etc.

Such tests on the parameters to a procedure are typically carried out at the entry to the procedure.

Moreover, they can typically be carried out in any of a number of di�erent \legal" orders (in general,

not all orderings of entry actions may be legal, since some actions may depend on the outcomes of

others|for example, the type of an expression head(x) cannot be checked until x has been veri�ed

to be of type list). The code generated for a procedure therefore consists of a set of entry actions in

some order, followed by code for its body. For simplicity in the discussion that follows, we assume

that each entry action corresponds to a single virtual machine instruction.

2 The Call Forwarding Problem

As discussed in the previous section, the code generated for a procedure consists of a set of entry

actions, which can be carried out in a number of di�erent legal orders, followed by the code for its

body. Each procedure has a number of call sites, and at each call site there is some information

about the actual parameters for calls issued from that site, specifying which entry actions must be

executed and which may be skipped.

2

This is modelled by associating, with each call site, a set of

entry actions that must be executed by that call site. Moreover, each call site has associated with

it an estimate of its execution frequency: such estimates can be obtained from pro�le information,

or from the structure of the call graph of the program [2, 13, 14, 21]. Finally, di�erent entry actions

may require a di�erent number of machine instructions to execute, and therefore have a di�erent

cost.

2

The precise mechanism by which this information is obtained, e.g., dataow analysis, user declarations, etc., is

orthogonal to the issues discussed in this paper, and so is not addressed here.
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The call forwarding problem is the problem of determining a \good" order for the entry actions

of a procedure so that the savings accruing from bypassing unnecessary entry actions over all call

sites for that procedure, weighted by execution frequency, is as large as possible. This problem can

be formulated in the abstract as follows:

De�nition 2.1 A call forwarding problem is a 4-tuple hE;C;w; costi, where:

{ E is a �nite set (corresponding to the entry actions);

{ C is a collection of subsets of E (corresponding to the entry actions that each call site must

execute);

{ w : C �! N , where N is the set of natural numbers, is a function that maps each call site to

its \weight", i.e., execution frequency; and

{ cost : E �! N represents the cost, in machine instructions, of each element of E.

A solution to a call forwarding problem hE;C;w; costi is a permutation � of E, i.e., a 1-1 function

� : E �! f1; : : : ; jEjg. The cost of a solution � is, intuitively, the total number of machine

instructions executed, over all call sites, given that the entry actions are generated in the order �:

De�nition 2.2 Given a call forwarding problem hE;C;w; costi and a solution � for it, let

Not Skipped

�

(c) denote the set of instructions that must be executed by a call site c 2 C under the

solution �:

Not Skipped

�

(c) = fI 2 E j 9I

0

2 E : �(I

0

) � �(I) ^ I

0

2 cg.

Then, the cost of the solution � is given by cost(�) =

P

c2C

fw(c) � cost(I) j I 2 Not Skipped

�

(c)g.

The problem can be generalized by allowing code to be copied from a procedure to the call sites

for that procedure. As an example, suppose we have a procedure with entry actions a and b, and

two call sites: A, which can skip a but must execute b; and B, which can skip b but must execute a.

Suppose the entry actions are generated in the order ha; bi, then call site A can skip a, but B cannot

skip b and therefore executes unnecessary code (a symmetric problem arises if the other possible

order is chosen). A solution is to copy the entry action a at the call site B, i.e., execute the entry

action at B before jumping to the callee.

If we allow arbitrarily many entry actions to be copied to call sites in this manner, then it is

trivial to generate an optimal solution to any call forwarding problem: simply copy to each call site

the entry actions that call site must execute, then branch into the callee bypassing all entry actions

at the callee. This obviously produces an optimal solution, since each call site executes exactly those

entry actions that it must execute, and can be done e�ciently in polynomial time. However, it has

the problem that such unrestricted copying can lead to code bloat, since there may be many call

sites for a procedure, each of them getting a copy of most of the entry actions for that procedure.

A reasonable solution to this problem is to impose a bound on the number of entry actions that
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can be copied to any particular call site. To simplify the discussion that follows, we will restrict

our attention to the case where this bound is zero, i.e., no copying of code to call sites is allowed.

However, our results generalize without di�culty to the more general case where copying of code is

allowed.

This generalization also presents a dual view of the problem. The discussion above has been in

terms of choosing an entry point for each call site, possibly after copying some entry actions to the

call site before actually jumping to the callee. In this view, each time an action is copied to a call

site, the space cost of the program increases, presumably accompanied by a decrease in the time

cost. A dual view would be to start with each call site executing each and only those entry actions

that it needs to before branching to the callee (a situation that is optimal in terms of the number

of instructions executed but which may be expensive in terms of code space), and \moving actions

back" from the call sites to the callee. Intuitively, these two approaches reect the manner in which

we choose to approach the tradeo� between code size and speed.

3 Algorithmic Issues

We �rst consider the complexity of determining optimal solutions to call forwarding problems. The

following result shows that the existence of e�cient algorithms for this is unlikely:

Theorem 3.1 The determination of an optimal solution to a call forwarding problem is NP-

complete. It remains NP-complete even if every entry action has equal cost.

Proof By reduction from the Optimal Linear Arrangement problem, which is known to be NP-

complete [7, 8]. See the Appendix for details.

We therefore seek polynomial time heuristics for call forwarding that are e�cient and achieve

good solutions for common cases.

3.1 Heuristic 1: Partition-and-Sort

The �rst heuristic we consider is an intuitively obvious one: for each procedure, use the weights of

its di�erent call sites to compute the cumulative weight of each entry action, then sort the entry

actions so that those with smaller weight|representing actions that need not be executed by the

\important" call sites, i.e., the majority of the call sites or the most frequently executed ones|are

generated �rst, and can therefore be skipped by them. There is one point that has to be taken

into account: it may happen that two di�erent entry actions have the same cumulative weight even

though the call sites that need to execute them are very di�erent. If the entry actions are simply

sorted by cumulative weight, either of these instructions may be generated �rst. However, this can

sometimes produce poor orderings, because when choosing an ordering for a group of entry actions

with the same cumulative weight, this simple heuristic does not group together those actions that

can all be skipped by a set of call sites. This can be recti�ed by grouping together sets of entry

actions, as follows:

1. Partition the entry actions of a procedure so that each partition is a maximal set of instructions

that have to be executed by some set of call sites, then sort these partitions by cumulative

weight. Given a call forwarding problem hE;C;w; costi, the partitions S can be computed

as follows: starting with S = C, repeatedly consider pairs of distinct elements c; c

0

in S that

overlap, i.e., c \ c

0

6= ;, and replace each such pair in S by fc \ c

0

; c n c

0

; c

0

n cg, until no two

distinct elements of S overlap. This can be implemented e�ciently using bit-vector operations.

4



2. Compute the cumulative weight of each partition is its total execution frequency multiplied

by the sum of the costs of the actions in it.

3. Sort the partitions by cumulative weight and emit the actions in the partitions in this sorted

order. The actions within a partition can be generated in any order, since every action within

any particular partition must be executed by the same set of call sites, so their relative ordering

is not important.

While this algorithm is very simple, both conceptually and for implementation purposes, it has

some drawbacks arising from the way cumulative weights are computed. These are illustrated by

the following examples:

Example 3.1 Suppose we have three call sites: A, which has weight 10 and must execute the actions

fa1; a2; a3; a4; a5g; B, which also has weight 10 and must execute the actions fa3; a4; a5; a6; a7g;

and C, which has weight 15 and must execute the actions fa8; a9g. The partitions computed by

the partition-and-sort heuristic are fa1; a2g, fa3; a4; a5g, fa6; a7g, and fa8; a9g, with cumulative

weights 20, 60, 20, and 30 respectively. Sorted by cumulative weight and linearized, this produces

the solution ha1; a2; a6; a7; a8; a9; a3; a4; a5i. The problem with this is that the combined weight of

call sites A and B cause the partition fa3; a4; a5g to have a high cumulative weight, and as a result

C is forced to execute these actions even though it does not need to. The cost of this solution is

235. A considerably better solution, with weight 190, is ha1; a2; a3; a4; a5; a6; a7; a8; a9i. 2

A more serious drawback, illustrating how cumulative weight computations can sometimes pro-

duce poor results, is illustrated by the following example.

Example 3.2 Suppose we have two call sites, each with weight 10: A must execute the actions

fa; b; c; d; eg, while B has to execute only ffg. The partitions in this case are fa; b; c; d; eg and ffg,

with cumulative weights 50 and 10 respectively. The solution produced by the partition-and-sort

heuristic, therefore, is hf; a; b; c; d; ei, which has a cost of 50 + 60 = 110. Unfortunately, this is

precisely the wrong order: a much better solution is ha; b; c; d; e; fi, whose cost is 60 + 10 = 70. 2

These problems are addressed by the greedy algorithm described in the next section.

3.2 Heuristic 2: Greedy Choice of Actions

The next heuristic we consider is a greedy one: the general idea is to pick actions one at a time,

at each step choosing an action that minimizes the cost to be paid at that step. The algorithm

maintains a list of call sites that have not been \hit" upto that point, i.e., call sites that do not

need to execute any of the actions chosen upto that point|such call sites are said to be active. The

weight of an action, at any point in the algorithm, is computed as the sum of the weights of the

active call sites that need to execute that action. The algorithm is simple: it repeatedly picks an

action of least weight, then updates the list of active call sites and the weights of the other actions,

until all actions have been enumerated. The algorithm is described in Figure 1.

It is straightforward to extend this algorithm to the more general situation where we are willing

to copy upto k instructions from the procedure to each of the call sites: we simply rede�ne the

notion of \active call site," so that a call site remains active until k actions that it needs to execute

have been chosen. After more than k actions have been encountered from a particular call site, it

ceases to be active.
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Input: A call forwarding problem I = hE;C;w; costi.

Output: A solution to I, i.e., a permutation � of E.

Method:

begin

Active Sites := C;

Instrs := E;

� := "; /* the empty sequence */

while Instrs 6= ; do

for each I 2 Instrs do

compute the weight of I as (

P

fw(c) j c 2 Active Sites ^ I 2 cg)=cost(I);

od;

I := an element of Instrs with the least weight so computed;

� := append I to the end of �;

Instrs := Instrs n fIg;

Active Sites := Active Sites n fc 2 C j I 2 cg;

od;

return �;

end

Figure 1: The Greedy Choice of Actions Heuristic for Call Forwarding

The working of this algorithm is illustrated by the following example.

Example 3.3 Consider again the call forwarding problem of Example 3.1. There are three call

sites: A, which has weight 10 and must execute the actions fa1; a2; a3; a4; a5g; B, which also has

weight 10 and must execute the actions fa3; a4; a5; a6; a7g; and C, which has weight 15 and must

execute the actions fa8; a9g. Assume, for the sake of simplicity, that each action has cost 1.

Initially, all call sites are active, so the weights computed for the actions are as follows: a1 : 10;

a2 : 10; a3 : 20; a4 : 20; a5 : 20; a6 : 10; a7 : 10; a8 : 15; a9 : 15. The algorithm picks one of the

actions with the smallest weight, say a7.

At this point, because a7 was picked, the call site B becomes inactive, so the set of active sites

now is fA;Cg. The weights for the remaining actions therefore change to the following: a1 : 10;

a2 : 10; a3 : 10; a4 : 10; a5 : 10, a6 : 0; a8 : 15; a9 : 15. Note that since a6 does not need to be

executed by either active site, its weight has gone to 0. The least weight action now is a6, which is

picked next. This does not change the set of active sites.

At the next step, there are �ve actions that have least cost, namely, fa1; a2; a3; a4; a5g, and one

of these|say, a2, is picked. Because of this, call site A becomes inactive, so the weights of the

remaining actions become: a1 : 0; a3 : 0; a4 : 0; a5 : 0; a8 : 15; a9 : 15. The actions fa1; a3; a4; a5g

are therefore picked after this in some order, after which a8 and a9 are selected. The solution that

is eventually produced is ha7; a6; a2; a1; a3; a4; a5; a8; a9i. The cost of this solution is 190, compared

to the solution of cost 235 produced by the partition-and-sort heuristic. 2
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3.3 A Hybrid Strategy

Experimental results suggest that in most cases, the information that is known about the actual

parameters at the di�erent call sites for a procedure in a program tends to be similar, and that in

most cases, the number of partitions obtained in the partition-and-sort heuristic is not very large.

3

A simple strategy, then, is to partition the entry actions as in the partition-and-sort heuristic to

determine how many partitions there are: if this number is less than some predetermined thresh-

old, say 5, then an optimal solution can be obtained by considering all possible permutations of

these partitions (recall that the ordering of actions within a partition does not a�ect the cost of a

solution)|because the number of partitions is small, this should not take much time. If the number

of partitions exceeds the threshold, then we can use one of the heuristics discussed earlier.

4 An Example

In this section we consider in more detail the ave function from Section 1 to see the e�ect of call

forwarding on the code generated. The function is de�ned as follows:

ave(L, Sum, Count) =

if null(L) then Sum/Count else ave(tail(L), Sum+head(L), Count+1)

Assume that, as in many modern Lisp and Prolog implementations, parameters are passed in (virtual

machine) registers, so that the �rst parameter is in register Arg1, the second parameter in register

Arg2, and so on. Figure 2(a) gives the intermediate code that might be generated in a straightforward

way. (In reality, the generated code would distinguish between the numeric types int and float,

e.g., using \message splitting" techniques as in [4, 5]|the distinction is not important here, and we

assume a single numeric type for simplicity of exposition.) The �rst three instructions of ave are

entry actions that can be executed in any order. Moreover, at the (recursive) call site for ave, we

know from the semantics of the add instruction that Arg1 and Arg2 are both numbers, so that the

second and third entry action may be bypassed by each of these call sites. Call forwarding therefore

orders the entry actions so that the tests on Arg2 and Arg3 come �rst, and can be skipped by the

recursive call to ave, resulting in the code of Figure 2(b).

Notice that the type tests on the second and third arguments have e�ectively been \hoisted"

out of the loop. Moreover, this has been accomplished, not by recognizing and dealing with loops

in some special way, but simply by using the information available at the call sites. It is applicable,

therefore, even to computations that are not iterative (i.e., tail recursive). Notice also that if we

know that the second and third parameter to ave is a number at every call site for the function,

e.g., if ave is an auxiliary function called from a \top level" function average, de�ned as

average(L) = ave(L, 0, 0)

then the code for the type tests on the second and third arguments is dead, and can be discarded

during dead code elimination.

3

In our experiments, the number of di�erent partitions was rarely larger than 3 or 4. This allowed us to compute

the instruction counts for optimal solutions in Table 1 in a reasonable amount of time|otherwise, considering all

possible permutations of actions would have been prohibitively expensive, even for programs of modest size.
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ave: if !List(Arg1) goto Err ave: if !Number(Arg2) goto Err

if !Number(Arg2) goto Err if !Number(Arg3) goto Err

if !Number(Arg3) goto Err L0 : if !List(Arg1) goto Err

if Arg1 == NIL goto L1 if Arg1 == NIL goto L1

t1 := head(Arg1) t1 := head(Arg1)

Arg1 := tail(Arg1) Arg1 := tail(Arg1)

Arg2 := add(Arg2, t1) Arg2 := add(Arg2, t1)

Arg3 := add(Arg3, 1) Arg3 := add(Arg3, 1)

goto ave goto L0

L1 : t1 := div(Arg2, Arg3) L1 : t1 := div(Arg2, Arg3)

return t1 return t1

(a) Before Call Forwarding (b) After Call Forwarding

Figure 2: The E�ect of Call Forwarding on Intermediate Code for the ave function

5 Experimental Results

We ran experiments on a number of small benchmarks to gauge (i) the e�cacy of our heuristics, i.e.,

the quality of their solutions compared to the optimal; and (ii) the e�cacy of the optimization, i.e.,

the performance improvements resulting from it. The numbers presented reect the performance of

jc [11], an implementation of a logic programming language called Janus [15] on a Sparcstation-1.

4

This system is currently available by anonymous FTP from cs.arizona.edu.

Table 1 gives, for each benchmark, the number of machine instructions that would be executed

over all call sites for the entry actions in the procedures only, using (i) no call forwarding; (ii)

call forwarding using the partition-and-sort heuristic; (iii) call forwarding using the greedy choice of

instructions heuristic; and (iv) optimal call forwarding. The weights for the call sites were estimated

using the structure of the call graph: we assumed that on the average, each loop iterates about 10

times, and the branches of a conditional are taken with equal frequency. While the optimizations

were carried out at the intermediate code level, we used counts of the number of Sparc assembly

instructions for each intermediate code instruction, together with the execution frequencies estimated

from the call graph structure, to estimate the runtime cost of the di�erent solutions. The results

indicate that in most cases, our heuristics produce results that are optimal or close to optimal:

the partition-and-sort heuristic does poorly on some benchmarks, e.g., tak and pi, but the greedy

heuristic has uniformly good performance.

Table 2 gives the improvements in speed resulting from our optimizations, and serves to evaluate

the e�cacy of call forwarding . The time reported for each benchmark, in milliseconds, is the time

taken to execute the program once. This time was obtained by iterating the program long enough to

eliminate most e�ects due to multiprogramming and clock granularity, then dividing the total time

taken by the number of iterations. The experiments were repeated 20 times for each benchmark,

and the average time taken in each case. Call forwarding accounts for improvements ranging from

about 12% to over 45%. Most of this improvement comes from code motion out of inner loops: the

vast majority of type tests etc. in a procedure appear as entry actions that are bypassed in recursive

4

Our implementation uses a variant of call forwarding where entry actions are copied from the callee to the call

sites as long as this will allow a later action to be skipped.
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calls due to call forwarding, e�ectively \hoisting" such tests out of inner loops. As a result, much of

the runtime overhead from dynamic type checking is optimized away. When combined with other

optimizations, such as inlining of arithmetic operations, environment allocation optimization, etc.,

the combined optimizations give rise to speed improvements typically ranging from 27% to almost

70%.

Table 3 puts these numbers in perspective by comparing the performance of jc to Quintus

and Sicstus Prolog, two widely used commercial Prolog systems. On comparing the performance

numbers from Table 2 for jc before and after optimization, it can be seen that the performance of

jc is competitive with these systems even before the application of the optimizations discussed in

this paper. It is easy to take a poorly engineered system with a lot of ine�ciencies and get huge

performance improvements by eliminating some of these ine�ciencies. The point of this table is that

when evaluating the e�cacy of our optimizations, we were careful to begin with a system with good

performance, so as to avoid drawing overly optimistic conclusions.

Finally, Table 4 compares the performance of our Janus system with C code for some small

benchmarks.

5

Again, these were run on a Sparcstation 1, with cc as the C compiler. The programs

were written in the style one would expect of a competent C programmer: no recursion (except in

tak and nrev, where it is hard to avoid), destructive updates, and the use of arrays rather than

linked lists (except in nrev). It can be seen that even without any global dataow analysis, jc is

not very far from the performance of the C code, attaining approximately the same performance

as unoptimized C code, and being a factor of between 3 and 4 slower than the code produced by

optimizing at level -O4, on most benchmarks. On some benchmarks, such as nrev (an O(n

2

) \naive

reverse" program for reversing a linked list of integers), jc outperforms unoptimized C and is not

much slower than optimized C, even though the C program uses destructive assignment and does

not allocate new cons cells, while Janus is a single assignment language where the program allocates

new cons cells at each iteration|its performance can be attributed at least in part to the bene�ts

of call forwarding.

6 Related Work

The optimizations described here can be seen as generalizing some optimizations for traditional im-

perative languages [1]. In the special case of a (conditional or unconditional) jump whose target is a

(conditional or unconditional) jump instruction, call forwarding generalizes the ow-of-control opti-

mization that collapses chains of jump instructions. Call forwarding is able to deal with conditional

jumps to conditional jumps (this turns out to be an important source of performance improvement in

practice), while traditional compilers for imperative languages such as C and Fortran typically deal

only with jump chains where there is at most one conditional jump (see, for example, [1], p. 556).

When we consider call forwarding for the last call in a recursive clause, what we get is essentially

a generalization of code motion out of loops (e.g., see Section 4). The reason it is a generalization is

that the code that is bypassed due to call forwarding at a particular call site need not be invariant

with respect to the entire loop, as is required in traditional algorithms for invariant code motion out

of loops. The point is best illustrated by an example: consider a function

f(x) = if x = 0 then 1

5

The Janus version of qsort used in this table is slightly di�erent from that of Table 3: in this case there are

explicit integer type tests in the program source, to be consistent with int declarations in the C program and allow

a fair comparison between the two programs. The presence of these tests provides additional information to the jc

compiler and allows some additional optimizations.

9



else if p(x) then f( g(x-1) ) /* Call Site 1 */

else f( h(x-1) ) /* Call Site 2 */

Assume that the entry actions for this function include a test that its argument is an integer, and

suppose that we know, from dataow analysis, that g() returns an integer, but do not know anything

about the return type of h(). From the conventional de�nition of a \loop" in a ow graph (see,

for example, [1]), there is one loop in the ow graph of this function that includes both the tail

recursive call sites for f(). Because of our lack of knowledge about the return type of h(), we

cannot claim that \the argument to f() is an integer" is an invariant for the entire loop. However,

using call forwarding we can bypass the integer test in the portion of the loop arising from call site

1. E�ectively, this moves some code out of \part of" a loop. Moreover, our algorithm implements

interprocedural optimization and can deal with both direct and mutual recursion, as well as non-

tail-recursive code, without having to do anything special, while traditional code motion algorithms

handle only the intra-procedural case.

The idea of compiling functions with multiple entry points is not new: many Lisp systems do this,

Yale Haskell generates dual entry points for its functions, and Aquarius Prolog generates multiple

entry points for primitive operations [20]. However, we do not know of any system that attempts to

order the entry actions carefully in order to maximize the savings from bypassing entry actions.

Chambers and Ungar consider compile-time optimization techniques to reduce runtime type

checking in dynamically typed object-oriented languages [4, 5]. Their approach uses type analy-

sis to generate multiple copies of program fragments, in particular loop bodies, where each copy

is specialized to a particular type and therefore can omit some type tests. Some of the e�ects of

the optimization we discuss, e.g., \hoisting" type tests out of loops (see Section 4), are similar to

e�ects achieved by the optimization of Chambers and Ungar. In general, however, it is essentially

orthogonal to the work described here, in that it is concerned primarily with type inference and

code specialization rather than with code ordering. Because of this, the two optimizations are com-

plementary: even if the body of a procedure has been optimized using the techniques of Chambers

and Ungar, it may contain type tests etc. at the entry, which are candidates for the optimization

we discuss; conversely, the \message splitting" optimization of Chambers and Ungar can enhance

the e�ects of call forwarding considerably.

7 Conclusions

This paper discusses call forwarding, a simple interprocedural optimization technique for dynamically

typed languages. The basic idea behind the optimization is extremely straightforward: �nd an

ordering for the \entry actions" of a procedure such that the savings realized from di�erent call sites

bypassing di�erent sets of entry actions, weighted by their estimated execution frequencies, is as

large as possible. It turns out, however, to be quite e�ective for improving program performance.

We show that the problem of computing optimal solutions to arbitrary call forwarding problems

is NP-complete, and describe e�cient heuristics for the problems. Experimental results indicate

that (i) the heuristics are e�ective, in that the solutions produced are generally optimal or close to

optimal; and (ii) the resulting optimization is e�ective, in that it leads to signi�cant performance

improvements for a number of benchmarks tested. A variant of these ideas has been implemented

in jc, a logic programming system that is available by anonymous FTP from cs.arizona.edu.
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Program no optimization partition-&-sort greedy optimal

hanoi 492 225 225 225

tak 574 451 172 172

nrev 726 360 360 360

qsort 1776 453 450 450

factorial 129 24 24 24

merge 720 330 330 330

dnf 124 25 25 25

pi 306 272 30 30

binomial 5963 1304 1304 1304

Table 1: E�cacy of di�erent Call Forwarding heuristics (in Sparc assembly instructions)

Program w/o forwarding (ms) with forwarding (ms) % improvement

binomial 5.95 5.14 13.6

hanoi 186 163 12.4

tak 299 207 30.8

nrev 1.17 0.716 38.8

qsort 2.31 1.87 19.0

merge 0.745 0.613 17.7

dnf 0.356 0.191 46.3

Table 2: Performance Improvement due to Call Forwarding

Program jc (J) (ms) Sicstus (S) (ms) S/J Quintus (Q) (ms) Q/J

hanoi 163 300 1.84 690 4.2

tak 207 730 3.5 2200 10.6

nrev 0.716 1.8 2.5 7.9 11.0

qsort 1.87 5.1 2.7 9.4 5.0

factorial 0.049 0.44 8.9 0.27 5.5

Table 3: The Performance of jc, compared with Sicstus and Quintus Prolog

Program jc (J) (ms) C (unopt) (ms) C (opt: -O4) J/C-unopt J/C-opt

nrev 0.716 0.89 0.52 0.80 1.38

binomial 5.14 4.76 3.17 1.08 1.62

dnf 0.191 0.191 0.061 1.00 3.13

qsort 1.33 1.25 0.34 1.06 3.91

tak 207 208 72 1.00 2.88

factorial 0.049 0.049 0.036 1.00 1.36

Table 4: The performance of jc compared to C
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A Appendix: Proof of NP-Completeness

The following problem is useful in discussing the complexity of optimal call forwarding:

De�nition A.1 The Optimal Linear Arrangement problem (OLA) is de�ned as follows: Given a

graph G = (V;E) and an integer k, �nd a permutation, f , from the vertices in V to 1; : : : ; n such

that de�ning the length of edge (i; j) to be jf(i) � f(j)j, the total length of all edges is less than or

equal to k.

The following result is due to Garey, Johnson, and Stockmeyer [7, 8]:

Theorem A.1 The Optimal Linear Arrangement problem is NP-complete.

The following result gives the complexity of optimal call forwarding:

Theorem 3.1 The determination of an optimal solution to a call forwarding problem is NP-complete.

It remains NP-complete even if every entry action has equal cost.

Proof: We �rst formulate optimal call forwarding as a decision problem, as follows: \Given a call

forwarding problem I and an integer K � 0, is there a solution to I with cost no greater than

K?" We refer to this problem as CF. The proof is by reduction from Optimal Linear Arrangement

problem, which, from Theorem A.1, is NP-complete. Let G = (V;E); k be a particular instance of

OLA. We make the following transformation to an instance hA;C;w; costi of CF, where:

{ A is the set of vertices 1; : : : ; n in V along with two dummy vertices s and t;

{ The elements of C are all doubleton sets:

{ corresponding to each edge (u; v) 2 E, there is an element fu; vg in C with weight 1:

for terminological simplicity in the discussion that follows, we refer to these elements as

normal sets;

{ let � be the maximumdegree of any vertex in G, then corresponding to each vertex i 2 G

of degree d

i

, there is an element fi; sg in C with weight

1

2

(� � d

i

) (some of these sets

could have zero weight, in which case they can e�ectively be removed): we refer to these

elements as special sets;

{ �nally, there is an element fs; tg in C of weight M , where M is large enough to ensure

that s and t have to be the last two elements in any optimal ordering of the vertices (M

can be chosen to be n

3

or greater): we refer to this element as a heavy set.

{ cost(I) = 1 for every I 2 A.

We also have to de�ne the number K that is to bound the cost of the call forwarding problem so

constructed. Let K =

1

4

n(n+ 5)�+ 3M + k=2. We claim that the instance of CF so de�ned has a

solution with cost no greater than K if and only if the given instance of OLA has a solution.

Consider any proposed order of elements in a solution to the instance of CF de�ned above. The

cost of this solution can be decomposed as follows:
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As we march along the list of elements, at each point we charge �=2 to each of the elements we

have seen so far but not to either of the special elements. If vertex i 2 G is encountered, the charge

of �=2 on vertex i from then on can be thought of as paying 1/2 towards each of the normal sets

that contain i and paying the entire cost of the special set that contains i. Now if both elements

of a normal set have been encountered, the total cost of the set will from then on be picked up by

these charges to the vertices. For a normal set fi; jg, after i has been encountered and before j has

been encountered the extra charge of 1/2 at each stage will be charged to the edge (i; j). Breaking

up the charges as above, one �nds that for any order in which s and t �nish last, the charge to

the vertices is a constant independent of the order and is equal to

1

4

(n(n+ 5)�) and the charge for

the heavy set is �xed at 3M . The only variable is the charge to the edges and this charge will be

exactly half the total length of the edges, since an edge gets charged only after one of its endpoints

has been encountered and before the other endpoint has been encountered, i.e. for the \duration"

of its length.

Thus there is a YES answer to the instance of CF created if and only if the total length of all

\normal" edges is kept to k or less, or, in other words, if and only if the instance of OLA is a

YES-instance. (Note that since the cost of the special sets is entirely picked up by the vertices, the

lengths of the special edges do not matter.)
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