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Abstract

This paper discusses memory consistency models and their influence on software in the context of parallel

machines. In the first part we review previous work on memory consistency models. The second part

discusses the issues that arise due to weakening memory consistency. We are especially interested in the

influence that weakened consistency models have on language, compiler, and runtime system design. We

conclude that tighter interaction between those parts and the memory system might improve performance

considerably.
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1 Introduction

Traditionally, memory consistency models were of in-

terest only to computer architects designing parallel ma-

chines. The goal was to present a model as close as

possible to the model exhibited by sequential machines.

The model of choice was sequential consistency (SC).

Sequential consistency guarantees that the result of any

execution of n processors is the same as if the opera-

tions of all processors were executed in some sequential

order, and the operations of each individual processor

appear in this sequence in the order specified by the

program. However, this model severely restricts the set

of possible optimizations. For example, in an architec-

ture with a high-latency memory, it would be benefi-

cial to pipeline write accesses and to use write buffers.

None of these optimizations is possible with the strict

SC model. Simulations have shown that weaker models

allowingsuch optimizationscould improve performance

on the order of 10 to 40 percent over a strictly sequential

model [GGH91, ZB92]. However, weakening the mem-

ory consistency model goes hand in hand with a change

in the programming model. In general, the program-

ming model becomes more restricted (and complicated)

as the consistency model becomes weaker. That is, an

architecture can employ a weaker memory model only

if the software using it is prepared to deal with the new

programming model. Consequently, memory consis-

tency models are now of concern to operating system

and language designers too.

We can also turn the coin around. A compiler nor-

mally considers memory accesses to be expensive and

therefore tries to replace them by accesses to registers.

In terms of a memory consistency model, this means that

certain accesses suddenly are not observable any more.

In effect, compilers implicitly generate weak memory

consistency. This is possible because a compiler knows

exactly (or estimates conservatively) the points where

memory has to be consistent. For example, compilers

typically write back register values before a function

call, thus ensuring consistency. It is only natural to at-

tempt to make this implicit weakening explicit in order

to let the memory system take advantage too. In fact,

it is anticipated that software could gain from a weak

model to a much higher degree than hardware [GGH91]

by enabling optimizations such as code scheduling or

delaying updates that are not legal under SC.

In short, weaker memory consistency models can have

a positive effect on the performance of parallel shared

memory machines. The benefit increases as memory

latency increases. In recent years, processor perfor-

mance has increased significantly faster than memory

system performance. In addition to that, memory la-

tency increases as the number of processors in a system

increases.

Shared memory can be implemented at the hardware

or software level. In the latter case it is usually called

DistributedShared Memory (DSM). At both levels work

has been done to reap the benefits of weaker models. We

conjecture that in the near future most parallel machines

will be based on consistency models significantly weaker

than SC [LLG+92, Sit92, BZ91, CBZ91, KCZ92].

The rest of this paper is organized as follows. In

section 2 we discuss issues characteristic to memory

consistency models. In the following section we present

several consistency models and their implications on the

programming model. We then take a look at implemen-

tation options in section 4. Finally, section 5 discusses

the influence of weakened memory consistency models

on software. In particular, we discuss the interactions

between a weakened memory system and the software

using it.

2 Consistency Model Issues

Choosing an appropriate memory consistency model

(MCM) is a tradeoff between minimizing memory ac-

cess order constraints and the complexity of the pro-

gramming model as well as of the complexity of the

memory model itself. The weakest possible memory is

one returning for a read access some previously writ-

ten value or a value that will be written in the future.

Thus, the memory system could choose to return any

of those values. While minimizing ordering constraints

perfectly, it is not useful as a programming model. Im-

plementing weaker models is also often more complex

as it is necessary to keep track of outstanding accesses

and restrict the order of execution of two accesses when

necessary. It is therefore not surprising that many differ-

ent MCM’s have been proposed and new models are to

be expected in the future. Unfortunately, there is no sin-

gle hierarchy that could be used to classify the strictness

of a consistency model. Below, we define the design

space for consistency models. This allows us to classify

the various models more easily.

Memory consistency models impose ordering restric-

tions on accesses depending on a number of attributes.

In general, the more attributes a model distinguishes,

the weaker the model is. Some attributes a model could

distinguish are listed below:

� location of access

� direction of access (read, write, or both)

� value transmitted in access

� causality of access
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memory access

shared private

competing non−competing

synchronizing non−synchronizing

acquire release

exclusive non−exclusive

Figure 1: Access Categories

� category of access

The causality attribute is a relation that tells if two

accesses a

1

and a

2

are (potentially) causally related

[Lam78] and if so, whether a
1

occurred before a

2

or

vice versa.

The access category is a static property of accesses. A

useful (but by no means the only possible) categorization

is shown in Figure 1. It is an extension of the catego-

rization used in [GLL+90]. A memory access is either

shared or private. Private accesses are easy to deal with,

so we don’t discuss them further. Shared accesses can be

divided into competing and non-competing accesses. A

pair of accesses is competing if they access the same lo-

cation, at least one of them is a write access, and they are

not ordered. For example, accesses to shared variables

within a critical section are non-competing because mu-

tual exclusion guarantees ordering1. A competing ac-

cess can be either synchronizing or non-synchronizing.

Synchronizingaccesses are used to enforce order, for ex-

ample by delaying an access until all previous accesses

are performed. However, not all competing access are

synchronizing accesses. Chaotic relaxation algorithms,

for example, use competing accesses without imposing

ordering constraints. Such algorithms work even if some

read accesses do not return the most recent value.

Synchronizing accesses can be divided further into

acquire or release accesses. An acquire is always asso-

ciated with a read synchronizingaccess while a release is

always a write synchronizing access. Atomic fetch-and-

� operations can usually be treated as an acquiring read

access followed by a non-synchronizing write access.

Finally, an acquire operation can be either exclusive or

non-exclusive. Multiple non-exclusive acquire accesses

can be granted, but an exclusive acquire access is de-

layed until all previous acquisitions have been released.

1Assuming accesses by a single processor appear sequentially

consistent

For example, if a critical region has only read accesses

to shared variables, then acquiring the lock can be done

non-exclusively.

Consistency models that distinguish access categories

employ different ordering constraints depending on the

access category. We therefore call such models hybrid.

In contrast, models that do not distinguish access cat-

egories are called uniform. The motivation for hybrid

models is engendered in Adve and Hill’s definition for

weak ordering [AH90]:

Hardware is weakly ordered with respect to

a synchronization model if and only if it ap-

pears sequentially consistent to all software

that obey the synchronization model.

That is, as long as the synchronization model is re-

spected, the memory system appears to be sequentially

consistent. This allows the definition of almost arbi-

trarily weak consistency models while still presenting

a reasonable programming model. All that changes is

the number or severity of constraints imposed by the

synchronization model.

3 Proposed Models

We now proceed to define some of the consistency mod-

els that have previously been proposed. We do not give

formal definitions for the presented models as they do

not help much to understand a model’s implications on

the programming model. More formal descriptions can

be found for example in Ahamad et al. [ABJ+92] and

Gharachorloo et al. [GLL+90]. We first discuss uni-

form models and then hybrid models. Figure 2 gives an

overview of the relationships among the uniform mod-

els. An arrow from model A to B indicates that A is

more strict than B. Each model is labeled with the sub-

section it is described in. Hybrid models are described

roughly in decreasing order of strictness.

We use triplets of the form a(l)v to denote a memory

access, where a is either R for read access or W for

write access, l denotes the accessed location, and v the

transmitted value. In our examples, a triplet identifies

an access uniquely. Memory locations are assumed to

have an initial value of zero.

Execution histories are presented as diagrams with

one line per processor. Time corresponds to the horizon-

tal axis and increases to the right. For write accesses, a

triplet in a diagram marks the time when it was issued,

while for read accesses it denotes the time of comple-

tion. This asymmetry exists because a program can only

“know” about these events. It does not know at which

point in time a write performed or at which point in time

a read was issued (there may be prefetching hardware,
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3.1 Atomic Consistency (AC)

3.4 PRAM

3.7 Slow Memory

3.2 Sequential Consistency (SC)

3.3 Causal Consistency (CC)

3.5 Cache Consistency
       (coherence)

3.6 Processor Consistency (PC)

Figure 2: Structure of Uniform Models

for example). The following diagram is an example

execution history:

P

1

: W (x)1

P

2

: R(x)1

Processor P
1

writes 1 to location x and processor P
2

subsequently observes this write by reading 1 from x.

This implies that the write access completed (performed)

some time between being issued by P

1

and being ob-

served by P

2

.

In the followingdiscussion we use the word processor

to refer to the entities performing memory accesses. In

most cases it could be replaced by the word process as

processes are simply a software abstraction of physical

processors.

3.1 Atomic Consistency (AC)

This is the strictest of all consistency models. With

atomic consistency, operations take effect at some point

in an operation interval. It is easiest to think of op-

eration intervals as dividing time into non-overlapping,

consecutive slots. For example, the clock cycle of a

memory bus could serve as an operation interval. Mul-

tiple accesses during the same operation interval are

allowed, which causes a problem if reads and writes

to the same location occur in the same operation inter-

val. One solution is to define read operations to take

effect at read-begin time and write operations to take

effect at write-end time. This is called static atomic

consistency[HA90]. With dynamic AC, operations can

take effect at any point in the operation interval, as long

as the resulting history is equivalent to some serial exe-

cution.

Atomic consistency is often used as a base model

when evaluating the performance of an MCM.

3.2 Sequential Consistency (SC)

Sequential consistency was first defined by Lamport in

1979 [Lam79]. He defined a memory system to be

sequentially consistent if

: : : the result of any execution is the same as

if the operations of all the processors were

executed in some sequential order, and the op-

erations of each individual processor appear

in this sequence in the order specified by its

program.

This is equivalent to the one-copy serializability concept

found in work on concurrency control for database sys-

tems [BHG87]. In a sequentially consistent system, all

processors must agree on the order of observed effects.

The following is a legal execution history for SC but not

for AC:

P

1

: W (x)1

P

2

: W (y)2

P

3

: R(y)2 R(x)0 R(x)1

Note that R(y)2 by processor P
3

reads a value that has

not been written yet! Of course, this is not possible in

any real physical system. However, it shows a surprising

flexibility of the SC model. Another reason why this is

not a legal history for atomic consistency is that the

write operations W (x)1 and W (y)2 appear commuted

at processor P
3

.

Sequential consistency has been the canonical mem-

ory consistency model for a long time. However, many

multi-processor machines actually implement a slightly

weaker model called processor consistency (see below).

3.3 Causal Consistency

Hutto and Ahamad [HA90] introduced causal consis-

tency. Lamport [Lam78] defined the notion of potential

causality to capture the flow of information in a dis-

tributed system. This notion can be applied to a mem-

ory system by interpreting a write as a message-send

event and a read as a message-read event. A memory is

causally consistent if all processors agree on the order

of causally related events. Causally unrelated events

(concurrent events) can be observed in different orders.

For example, the following is a legal execution history

under CC but not under SC:
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P

1

: W (x)1 W (x)3

P

2

: R(x)1 W (x)2

P

3

: R(x)1 R(x)3 R(x)2

P

4

: R(x)1 R(x)2 R(x)3

Note that W (x)1 and W (x)2 are causally related as P
2

observed the first write by P

1

. Furthermore, P
3

and

P

4

observe the accesses W (x)2 and W (x)3 in different

orders, which would not be legal under SC.

Among the uniform models, CC appears to be one

of the more difficult to implement in hardware. This

can probably be explained by the fact that most other

models have been designed with a hardware implemen-

tation in mind. However, this does not imply that a

CC implementation necessarily performs worse than an

implementation of one of the simpler uniform models.

3.4 Pipelined RAM (PRAM)

Lipton and Sandberg [LS88] defined the Pipelined RAM

(PRAM) consistency model. The reader should be aware

that the acronym PRAM is often used as a shorthand for

Parallel Random Access Machine which has nothing in

common with the Pipelined RAM consistency model.

The reasoning that led to this model was as follows:

consider a multi-processor where each processor has a

local copy of the shared memory. For the memory to

be scalable, an access should be independent of the time

it takes to access the other processors’ memories. They

proposed that on a read, a PRAM would simply return the

value stored in the local copy of the memory. On a write,

it would update the local copy first and broadcast the new

value to the other processors. Assuming a constant time

for initiating a broadcast operation, the goal of making

the cost for a read or write constant is thus achieved.

In terms of ordering constraints, this is equivalent to

requiring that all processors observe the writes from

a single processor in the same order while they may

disagree on the order of writes by different processors.

The following execution history is legal under PRAM

but not under CC:

P

1

: W (x)1

P

2

: R(x)1 W (x)2

P

3

: R(x)1 R(x)2

P

4

: R(x)2 R(x)1

P

3

and P

4

observe the writes by P

1

and P

2

in differ-

ent orders, although W (x)1 and W (x)2 are potentially

causally related. Thus, this would not be a legal history

for CC.

3.5 Cache Consistency (Coherence)

Cache consistency [Goo89] and coherence [GLL+90]

are synonymous and to avoid confusion with causal con-

sistency, we will use the term coherence in this paper.

Coherence is a location-relativeweakening of SC. Re-

call that under SC, all processors have to agree on some

sequential order of execution for all accesses. Coher-

ence only requires that accesses are sequentially con-

sistent on a per-location basis. Clearly, SC implies co-

herence but not vice versa. Thus, coherence is strictly

weaker than SC. The example below is a history that is

coherent but not sequentially consistent:

P

1

: W (x)1 R(y)0

P

2

: W (y)1 R(x)0

Clearly, any serial execution that respects program order

starts with writing 1 into either x or y. It is therefore

impossible that both read accesses return 0. However,

the accesses to x can be linearized into R(x)0, W (x)1

and so can the accesses to y: R(y)0, W (y)1. The

history is therefore coherent, but not SC. In essence,

coherence removes the ordering constraints that program

order imposes on accesses to different memory locations.

3.6 Processor Consistency (PC)

Goodman proposed processor consistency in [Goo89].

Unfortunately, his definition is informal and caused a

controversy as to what exactly PC refers to. Ahamad

et al. [ABJ+92] give a formal definition of PC which

removes all ambiguity and appears to be a faithful trans-

lation of Goodman’s definition. They also show that

PC as defined by the DASH group in [GLL+90] is not

comparable to Goodman’s definition (i.e., it is neither

weaker nor stronger). We will not discuss the DASH

version of PC except in the context of release consis-

tency (RC) and hence will use PC to refer to Goodman’s

version and PCD to refer to the DASH version.

Goodman defined PC to be stronger than coherence

but weaker than SC. PC can be interpreted as a combi-

nation of coherence and PRAM. Thus, every PC history

is also coherent and PRAM. However, for a history to be

PC it not only has to be coherent and PRAM but those

two conditions also must be satisfiable in a mutually

consistent way. It is easiest to think of PC as a consis-

tency model that requires a history to be coherent and

PRAM simultaneously, rather than individually. That is,

processors must agree on the order of writes from each

processor but can disagree on the order of writes by dif-

ferent processors, as long as those writes are to different

locations. The example given for coherence is also PC

so we give here a history that fails to be PC (this and the

previous example are from [Goo89]):
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P

1

: W (x)1 W (c)1 R(y)0

P

2

: W (y)1 W (c)2 R(x)0

Notice that P
1

observes accesses in the order:

W (x)1;W (c)1; R(y)0;W (y)1;W (c)2;

while P
2

observes accesses in the order:

W (y)1;W (c)2; R(x)0;W (x)1;W (c)1:

That is, P
1

and P

2

disagree on the order of writes to

location c. As there is no consistent ordering that would

remove this disagreement, the history fails to be PC.

The differences between PC and SC are subtle enough

that Goodman claims most applications give the same

results under these two models. He also says that many

existing multiprocessors (e.g., VAX 8800) satisfy PC,

but not sequential consistency [Goo89]. Ahamad et

al. prove that the Tie-Breaker algorithm executes cor-

rectly under PC while the Bakery algorithmdoes not (see

[And91] for a description of those algorithms). Bershad

and Zekauskas [BZ91] mention that processor consistent

machines are easier to build than sequentially consistent

systems.

3.7 Slow Memory

Slow memory is a location relative weakening of PRAM

[HA90]. It requires that all processors agree on the order

of observed writes to each locationby a single processor.

Furthermore, local writes must be visible immediately

(as in the PRAM model). The name for this model

was chosen because writes propagate slowly through the

system. Slow memory is probably one of the weakest

uniform consistency models that can still be used for

interprocess communication. Hutto and Ahamad present

a mutual exclusion algorithm in [HA90]. However, this

algorithm guarantees physical exclusion only. There is

no guarantee of logical exclusion. For example, after

two processes P

1

and P

2

were subsequently granted

access to a critical section and both wrote two variables a

and b, then a third processP
3

may enter the critical region

and read the value of a as written by P

1

and the value

of b as written by P

2

. Thus, for P
3

it looks like P
1

and

P

2

had had simultaneous access to the critical section.

This problem is inherent to slow memory because the

knowledge that an access to one location has performed

cannot be used to infer that accesses to other locations

have also performed. Slow memory does not appear to

be of any practical significance.

3.8 Weak Consistency (WC)

Weak consistency is the first and most strict hybrid model

we discuss. The model was originally proposed by

Dubois et al. [DSB86]. A memory system is weakly

consistent if it enforces the following restrictions:

1. accesses to synchronization variables are sequen-

tially consistent and

2. no access to a synchronization variable is issued in

a processor before all previous data accesses have

been performed and

3. no access is issued by a processor before a previ-

ous access to a synchronization variable has been

performed

Notice that the meaning of “previous” is well-defined

because it refers to program order. That is, an access

A precedes access B if and only if the processor that

executed access B has previously executed access A.

Synchronizing accesses work as fences. At the time

a synchronizing access performs, all previous accesses

by that processor are guaranteed to have performed and

all future accesses by that processor are guaranteed not

to have performed. The synchronization model corre-

sponding to these access order constraints is relatively

simple. A program executing on a weakly consistent

system appears sequentially consistent if the following

two constraints are observed [AH90, ZB92]:

1. there are no data races (i.e., no competing accesses)

2. synchronization is visible to the memory system

Note that WC does not allow for chaotic accesses as

found in chaotic relaxation algorithms. Such algorithms

would either have to be changed to avoid data races or it

would be necessary to mask chaotic accesses as synchro-

nizing accesses. The latter would be overly restrictive.

3.9 Release Consistency (RC)

Release consistency as defined by Gharachorloo et al.

[GLL+90] is a refinement of WC in the sense that

competing accesses are divided into acquire, release,

and non-synchronizing accesses. Competing accesses

are also called special to distinguish them from non-

competing, ordinary accesses. Non-synchronizing ac-

cesses are competing accesses that do not serve a syn-

chronization purpose. This type of access was intro-

duced to be able to handle chaotic relaxation algorithms.

An acquire access works like a synchronizing access

under WC, except that the fence delays future accesses

only. Similarly, a release works like a synchronizing ac-

cess under WC, except that the fence delays until all pre-

vious accesses have been performed. This, for example,
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worker[p : 1..N] :

arrived[p] := true [release]

do not go[p] ! skip od [acquire]

go[p] := false [ordinary]

coordinator :

fa i := 1 to N !

do not arrived[i] ! [nsync]

skip

od

arrived[i] := false [nsync]

af

fa i := 1 to N !

go[i] := true [nsync]

af

Figure 3: Barrier Under Release Consistency

allows (limited) overlap in executing critical sections,

which is not possible under WC. Another, more subtle,

change is that special accesses are executed under PCD

only (not under SC, as in WC).

To make the model more concrete, we give an exam-

ple of how a critical section and a coordinator barrier

could be programmed under RC (see [And91], for ex-

ample). Below we show how a critical section could be

implemented under this model:

do test and set(locked) ! [rd :acquire;wr :nsync]

skip

od

: : :critical section: : :

locked := false [release]

Note the labeling of the read-modify-write operation

test and set(). The read is labeled acquire, while

the write is labeled nsync, which stands for non-

synchronizing access. The acquire label ensures that

no future access is performed before the read has com-

pleted and the nsync label ensures that the write occurs

under PCD. Note that it would be legal but unnecessarily

restrictive to mark the write access release. The release

label for the write access resetting the locked flag ensures

that all accesses in the critical sections are performed by

the time the flag is actually reset.

The coordinator barrier is considerably more compli-

cated. The important thing however is that the heart

of the barrier is realized by a release followed by an

acquire, while the critical section does just the oppo-

site. Pseudo-code for the barrier is shown in Figure 3.

From these examples it should be clear that it is not at

all straight forward to write synchronization primitives

under RC. However, it is important to realize that such

primitives are often written “once-and-forever.” That is,

the typical programmer doesn’t need to worry about la-

beling accesses correctly as high-level synchronization

primitives would be provided by a language or operating

system. Also, it is always safe to label a program con-

servatively. For example, if a compiler has incomplete

information available, it could always revert to label

reads with acquire and writes with release.

3.10 Entry Consistency (EC)

The entry consistency model is even weaker than RC

[BZ91]. However, it imposes more restrictions on the

programming model. EC is like RC except that every

shared variable needs to be associated with a synchro-

nization variable. A synchronizing variable is either a

lock or a barrier. The association between a variable and

its synchronization variable can change dynamically un-

der program control. Note that this, like slow memory,

is a location relative weakening of a consistency model.

This has the effect that accesses to different critical sec-

tions can proceed concurrently, which would not be pos-

sible under RC. Another feature of EC is that it refines

acquire accesses intoexclusive and non-exclusive acqui-

sitions. This, again, increases potential concurrency as

non-exclusive acquisitions to the same synchronization

variable can be granted concurrently. However, unlike

RC, entry consistency is not prepared to handle chaotic

accesses. This model is the first that was specifically de-

signed to be implemented as a software shared memory

system.

4 Implementations of Memory

Consistency Models

An implementation of a memory consistency model is

often stricter than the model would allow. For example,

SC allows the possibility of a read returning a value that

hasn’t been written yet (see example discussed under

3.2 Sequential Consistency). Clearly, no implementa-

tion will ever exhibit an execution with such a history.

In general, it is often simpler to implement a slightly

stricter model than its definition would require. This is

especially true for hardware realizations of shared mem-

ories [AHJ91, GLL+90].

For each consistency model there are a number of im-

plementation issues. Some of the more general questions

are:

� What is the consistency unit?

� Enforce eager or lazy consistency?

� Use update or invalidation protocol to maintain

consistency?
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In hardware implementations the consistency unit is typ-

ically a word or a cache line. In software shared mem-

ories, the overhead per consistency unit is much higher

in absolute terms, so that a memory page or a shared

object (structured variable, segment) is often chosen as

the consistency unit.

The notion of eager versus lazy maintenance of mem-

ory consistency appears to have been invented indepen-

dently by Borrmann/Herdieckerhoff [BH90] and Ber-

shad/Zekauskas [BZ91]. This notion is based on the

observation that the consistency protocol can either be

invoked each time an inconsistency arises or only when

an inconsistency could be detected. Eager implementa-

tions do the former, lazy the latter. The expected ben-

efit of lazy implementations is that if a process has a

cached copy of a shared variable but doesn’t access it

anymore, then this process does not have to participate in

maintaining consistency for this variable. Lazy release

consistency [KCZ92] and Midway [BZ91] are two ex-

amples of lazy implementations. No performance data

is yet available.

5 Influence of Consistency Model

on Software

As mentioned earlier, choosing a memory consistency

model is a tradeoff between increasing concurrency by

decreasing ordering constraints and implementation and

programming model complexity. With hybrid models,

the memory system is sequentially consistent as long as

its synchronization model is respected. That is, the soft-

ware executing on such a memory system has to provide

information about synchronization events to the mem-

ory system and its synchronization model must match

the memory system’s model. Synchronization informa-

tion is provided by either a programmer in a explicitly

concurrent language2 or by a compiler or its runtime

system in a high-level language. Thus, software run-

ning on a hybrid memory system has to provide infor-

mation to execute correctly. However, it is possible and

beneficial to go beyond that point. If the software can

provide information on the expected access pattern to

a shared variable, optimizations for each particular ac-

cess pattern could be enabled resulting in substantially

improved performance. Munin [CBZ91] does this by

providing a fixed set of sharing annotations. Each anno-

tation corresponds to a consistency protocol optimized

for a particular access pattern. A similar approach was

taken by Chiba et al. [CKM92] where they annotate

Linda programs in order to select an optimized protocol

2By “explicitly concurrent language” we mean a language in which

it is possible to program synchronization operations.

for in operations if they are used with certain restric-

tions. For example, the weakest and most efficient pro-

tocol can be used only if, for a tuple with tag t, there

is at most one process performing in operations and no

process performing read operations. Unfortunately,

so far no performance study of the advantage of such

“guided” memory systems has been reported. Carter

[CBZ91] indicates that Munin performs well for matrix

multiplicationand SOR when compared to a hand-coded

message passing algorithm, but no comparison with a

single-protocol DSM or a strict DSM was reported.

Also note that a change in the consistency model of

a memory system can lead to quite subtle changes. For

example, Zucker and Baer note that

the analysis of Relax [a benchmark program]

made us realize that how the program is writ-

ten or compiled for peak performance depends

upon the memory model to be used.

In their example, under SC it was more efficient to sched-

ule a read access causing a cache-miss at the end of a

sequence of eight read accesses hitting the cache, while

under WC and RC the same access had to be scheduled

at the beginning of the read-sequence.

5.1 Chaotic Accesses

Another issue raised by the introduction of weaker

consistency models is chaotic accesses (i.e., non-

synchronizing competing accesses). Current DSM sys-

tems do not handle them well. Neither Munin nor Mid-

way have special provisions for chaotic accesses. Note

that algorithms using such accesses often depend on

having a “fairly recent” value available. That is, if ac-

cesses to variable x are unsynchronized, then reading x

must not return any previously written value but a “re-

cent” one. For example, the LocusRoute application of

the SPLASH benchmark does not perform well if non-

synchronizing competing accesses return very old val-

ues [Rin92, SWG91]. RC maintains such accesses under

PCD (which is safe but conservative in many cases). An-

other type of algorithm using non-synchronizing com-

peting accesses is of the kind where a process needs some

of the neighbor’s data, but instead of synchronizing with

its neighbor, the process computes the value itself and

stores it in the neighbors data field. In effect, this type of

algorithm trades synchronization with (re-)computation.

We would expect having specialized consistency proto-

cols for chaotic accesses could improve the performance

of such algorithms.
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5.2 Annotating Compilers

Only very little work has been done on annotating par-

allel programs automatically. In the general case, deter-

mining the access patterns to a shared variable is unde-

cidable. It is also unclear exactly what access patterns

are useful to distinguish (some work in this direction

was done for Munin). However, a language could be

designed such that it becomes easier to infer certain

aspects of an access pattern. A simple example is a

constant object. As there are no write accesses, such ob-

jects can be replicated among processes without needing

any consistency protocol. Another example is determin-

ing whether a critical region contains no write accesses

to shared variables. Under EC, this information de-

termines whether a lock can be acquired in exclusive

or non-exclusive mode. As critical regions are typically

short and do not contain any function calls or unbounded

loops, this problem could be decided in most cases.

5.3 Explicitly Parallel Languages

As mentioned above, in an explicitly parallel language

the MCM defines the allowable memory-access opti-

mizations. Such a language depends very directly on

the memory consistency model as it allows the imple-

mentation of synchronization operations. For AC, SC,

and PC no special constructs must be available. For WC

a memory-barrier (or full fence) operation would be suf-

ficient. A memory-barrier would have to be inserted in a

program wherever consistency of the memory has to be

enforced. For RC things become even more complex.

Every access would have to be labeled according to its

category. With EC, synchronization operations can be

implemented based on the locks and barriers provided

by the system only. This shows clearly that it is not a

good idea to allow a programmer to implement his or

her own synchronization primitives based on individ-

ual memory accesses. Instead, a language should pro-

vide efficient and primitive operations which can then be

used to implement higher-level synchronization opera-

tions. Maybe locks and barriers as provided under EC

would be sufficient. However, for barriers it is not clear

whether a single implementation would be sufficient for

all possible applications. For example, sometimes it is

useful to do some work at the time all processes have

joined at a barrier but before releasing them. Under EC,

such a construct would have to be implemented with two

barriers or in terms of locks; both methods would likely

be more inefficient than a direct implementation.

5.4 Implicitly Parallel Languages

Implicitly parallel languages do not have any notion of

concurrent execution at the language level. Concurrency

control is typically implemented by compiler-generated

calls to a the runtime system. Therefore all that needs to

be done to adapt to a new MCM is to change the runtime

system. As mentioned above, it is still advantageous to

integrate the consistency model with the compiler and

runtime system more tightly. As the compiler already

has information on synchronization and the concurrency

structure of the program, it might as well make this infor-

mation available to the memory system. Jade [RSL92] is

a step in this direction. Its runtime system has for each

process precise information on the accessed locations

and whether a location is only read or also modified.

The language also allows one to express that some data

will not be accessed anymore in the future.

It is unclear at this point exactly which information

can and should be provided to the memory system. It is

equally open what information the memory system could

provide to the runtime system. The latter, for example,

could be useful to guide a runtime system’s scheduler

based on what data is cheaply available (cached) in the

memory system.

6 Conclusions

The central theme of this work is that being memory-

model conscious is a good thing. This applies to dis-

tributed shared memories, runtime systems, and com-

pilers, as well as languages. We have argued that con-

sistency models are important and that weaker models

are beneficial to performance. While there are weakened

models that are uniform, they appear to be less promising

than hybrid models. Most current work seems to con-

centrate on the latter. While quite some work has been

done in this area, the lack of meaningful performance

data is surprising. Also, it appears that in the language,

compiler, and runtime-system realms there are still a lot

of open questions that could warrant further research.

We expect that a tighter coupling between the memory

system and the software using it could result in consid-

erable performance improvements.
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