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Abstract

This paper discusses memory consistency models and their influence on software in the context of parallel
machines. In the first part we review previous work on memory consistency models. The second part
discusses the issues that arise due to weakening memory consistency. We are especialy interested in the
influence that weakened consistency models have on language, compiler, and runtime system design. We

conclude that tighter interaction between those parts and the memory system might improve performance
considerably.
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1 Introduction

Traditionally, memory consistency models were of in-
terest only to computer architectsdesigning parallel ma
chines. The goa was to present a model as close as
possibleto the model exhibited by sequential machines.
The model of choice was sequential consistency (SC).
Sequentia consistency guarantees that the result of any
execution of n processors is the same as if the opera-
tionsof all processorswere executed in some sequential
order, and the operations of each individual processor
appear in this sequence in the order specified by the
program. However, thismodel severely restricts the set
of possible optimizations. For example, in an architec-
ture with a high-latency memory, it would be benefi-
cia to pipeline write accesses and to use write buffers.
None of these optimizations is possible with the strict
SC model. Simulationshave shown that weaker models
allowing such optimizationscouldimproveperformance
on the order of 10to 40 percent over astrictly sequential
model [GGH91, ZB92]. However, weakening the mem-
ory consistency model goes hand in hand with a change
in the programming moddl. In general, the program-
ming model becomes more restricted (and complicated)
as the consistency model becomes weaker. That is, an
architecture can employ a weaker memory model only
if the software using it is prepared to dea with the new
programming model. Consequently, memory consis-
tency models are now of concern to operating system
and language designerstoo.

We can aso turn the coin around. A compiler nor-
mally considers memory accesses to be expensive and
therefore tries to replace them by accesses to registers.
Interms of amemory consi stency model, thismeansthat
certain accesses suddenly are not observable any more.
In effect, compilers implicitly generate weak memory
consistency. Thisis possible because a compiler knows
exactly (or estimates conservatively) the points where
memory has to be consistent. For example, compilers
typically write back register values before a function
cal, thus ensuring consistency. It isonly natural to at-
tempt to make thisimplicit weakening explicit in order
to let the memory system take advantage too. In fact,
it is anticipated that software could gain from a weak
model to amuch higher degree than hardware [GGH91]
by enabling optimizations such as code scheduling or
delaying updates that are not legal under SC.

Inshort, weaker memory consistency model scan have
a positive effect on the performance of paralle shared
memory machines. The benefit increases as memory
latency increases. In recent years, processor perfor-
mance has increased significantly faster than memory
system performance. In addition to that, memory la
tency increases as the number of processorsin a system

increases.

Shared memory can be implemented at the hardware
or software level. In the latter case it is usually called
Distributed Shared Memory (DSM). At bothlevel swork
has been doneto reap the benefits of weaker models. We
conjecture that inthe near future most parallel machines
will bebased on consi stency model ssignificantly weaker
than SC [LLG* 92, Sit92, BZ91, CBZ91, KCZ92].

The rest of this paper is organized as follows. In
section 2 we discuss issues characteristic to memory
consistency models. Inthefollowing section we present
severa consistency modelsand their implicationson the
programming model. We then take alook at implemen-
tation optionsin section 4. Finally, section 5 discusses
the influence of weakened memory consistency models
on software. In particular, we discuss the interactions
between a weakened memory system and the software
usingit.

2 Consistency Model Issues

Choosing an appropriate memory consistency model
(MCM) is a tradeoff between minimizing memory ac-
cess order constraints and the complexity of the pro-
gramming model as well as of the complexity of the
memory model itself. The weakest possible memory is
one returning for a read access some previously writ-
ten value or a value that will be written in the future.
Thus, the memory system could choose to return any
of those values. While minimizing ordering constraints
perfectly, it is not useful as a programming modd. Im-
plementing weaker models is also often more complex
asit is necessary to keep track of outstanding accesses
and restrict the order of execution of two accesses when
necessary. It isthereforenot surprisingthat many differ-
ent MCM'’s have been proposed and new models are to
be expected in the future. Unfortunately, thereisno sin-
glehierarchy that could be used to classify the strictness
of a consistency model. Below, we define the design
space for consistency models. Thisalowsusto classify
the various models more easily.

Memory consistency modelsimpose ordering restric-
tions on accesses depending on a number of attributes.
In general, the more attributes a model distinguishes,
the weaker the model is. Some attributesa model could
distinguish are listed bel ow:

o |ocation of access
o direction of access (read, write, or both)
o vauetransmitted in access

o causality of access
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The causality attribute is a relation that tells if two
accesses a; and a, are (potentially) causally related
[Lam78] and if so, whether a; occurred before as or
viceversa

Theaccess categoryisastatic property of accesses. A
useful (but by no meanstheonly possible) categorization
is shown in Figure 1. It is an extension of the catego-
rization used in [GLLT90]. A memory access is either
shared or private. Privateaccesses are easy to deal with,
sowedon't discussthem further. Shared accesses can be
divided into competing and non-competing accesses. A
pair of accesses is competing if they access the same lo-
cation, at least one of themisawrite access, and they are
not ordered. For example, accesses to shared variables
withinacritical section are non-competing because mu-
tual exclusion guarantees ordering'. A competing ac-
cess can be either synchronizing or non-synchronizing.
Synchronizing accesses are used to enforce order, for ex-
ample by delaying an access until al previous accesses
are performed. However, not all competing access are
synchronizing accesses. Chaotic relaxation algorithms,
for example, use competing accesses without imposing
ordering congtraints. Such agorithmswork evenif some
read accesses do not return the most recent value.

Synchronizing accesses can be divided further into
acquire or release accesses. An acquire is aways asso-
ciated with aread synchronizingaccess whileareleaseis
alwaysawrite synchronizing access. Atomic fetch-and-
& operations can usually be treated as an acquiring read
access followed by a non-synchronizing write access.
Finally, an acquire operation can be either exclusive or
non-exclusive. Multiplenon-exclusive acquire accesses
can be granted, but an exclusive acquire access is de-
layed until al previous acquisitions have been rel eased.

I Assuming accesses by a single processor appear sequentially
consistent

For example, if a critical region has only read accesses
to shared variables, then acquiring the lock can be done
non-exclusively.

Consistency model sthat distingui sh access categories
employ different ordering constraints depending on the
access category. We therefore call such models hybrid.
In contrast, models that do not distinguish access cat-
egories are called uniform. The motivation for hybrid
models is engendered in Adve and Hill’s definition for
weak ordering [AH90]:

Hardware is weakly ordered with respect to
a synchronization model if and only if it ap-
pears sequentially consistent to all software
that obey the synchronization model.

That is, as long as the synchronization model is re-
spected, the memory system appears to be sequentially
consistent. This alows the definition of almost arbi-
trarily weak consistency models while still presenting
a reasonable programming model. All that changes is
the number or severity of constraints imposed by the
synchronization model.

3 Proposed Models

We now proceed to define some of the consistency mod-
els that have previously been proposed. We do not give
formal definitions for the presented models as they do
not help much to understand a model’s implications on
the programming model. More formal descriptions can
be found for example in Ahamad et al. [ABJt92] and
Gharachorloo et a. [GLL*T90]. We first discuss uni-
form models and then hybrid models. Figure 2 givesan
overview of the relationships among the uniform mod-
es. An arrow from model A to B indicatesthat A is
more strict than B. Each model islabeled with the sub-
section it is described in. Hybrid models are described
roughly in decreasing order of strictness.

We use triplets of theform «(/)v to denote a memory
access, where « is either R for read access or W for
write access, [ denotes the accessed location, and v the
transmitted value. In our examples, a triplet identifies
an access uniquely. Memory locations are assumed to
have an initial value of zero.

Execution histories are presented as diagrams with
onelineper processor. Time correspondsto thehorizon-
tal axis and increases to theright. For write accesses, a
triplet in a diagram marks the time when it was issued,
while for read accesses it denotes the time of comple-
tion. Thisasymmetry exists because a program can only
“know” about these events. It does not know at which
point intime awrite performed or at which pointintime
aread was issued (there may be prefetching hardware,
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for example). The following diagram is an example
execution history:

Processor P; writes 1 to location » and processor P»
subsequently observes this write by reading 1 from «.
Thisimpliesthat thewrite access compl eted (performed)
some time between being issued by P, and being ob-
served by Ps.

Inthefollowing discussionwe usetheword processor
to refer to the entities performing memory accesses. In
most cases it could be replaced by the word process as
processes are simply a software abstraction of physical
processors.

3.1 Atomic Consistency (AC)

This is the grictest of all consistency models. With
atomic consi stency, operationstake effect at some point
in an operation interval. It is easiest to think of op-
eration intervals as dividing time into non-overlapping,
consecutive dots. For example, the clock cycle of a
memory bus could serve as an operation interval. Mul-
tiple accesses during the same operation interval are
allowed, which causes a problem if reads and writes
to the same location occur in the same operation inter-
val. One solution is to define read operations to take
effect at read-begin time and write operations to take
effect at write-end time. This is called static atomic
consistency[HA90]. With dynamic AC, operations can
take effect at any pointin the operationinterval, aslong

as the resulting history is equivalent to some serial exe-
cution.

Atomic consistency is often used as a base model
when evaluating the performance of an MCM.

3.2 Sequential Consistency (SC)

Sequentia consistency was first defined by Lamport in
1979 [Lam79]. He defined a memory system to be
sequentially consistent if

.. .the result of any execution is the same as
if the operations of all the processors were
executed in some sequential order, and the op-
erations of each individual processor appear
in this sequence in the order specified by its
program.

Thisisequivalent to theone-copy serializability concept
found in work on concurrency control for database sys-
tems [BHG87]. In a sequentially consistent system, all
processors must agree on the order of observed effects.
Thefollowingisalega execution history for SC but not
for AC:

R(z)0 R(x)1

Note that R(y)2 by processor P5 reads a vaue that has
not been written yet! Of course, thisis not possiblein
any real physical system. However, it showsasurprising
flexibility of the SC model. Another reason why thisis
not a legal history for atomic consistency is that the
write operations W ()1 and W (y)2 appear commuted
at processor Ps.

Sequentia consistency has been the canonical mem-
ory consistency model for along time. However, many
multi-processor machines actually implement a dightly
weaker model called processor consistency (see below).

3.3 Causal Consistency

Hutto and Ahamad [HA90] introduced causal consis-
tency. Lamport [Lam78] defined the notion of potential
causality to capture the flow of information in a dis-
tributed system. This notion can be applied to a mem-
ory system by interpreting a write as a message-send
event and aread as a message-read event. A memory is
causally consistent if all processors agree on the order
of causaly related events. Causdly unrelated events
(concurrent events) can be observed in different orders.
For example, the following is alega execution history
under CC but not under SC:



P W(e)l Wi(z)3

Py R(x)l W(x)2

Ps: R(x)1 R(x)3 R(x)2
Py R(x)1 R(x)2 R(x)3

Notethat 17 (x)1 and W («)2 are causally related as P,
observed the first write by P;. Furthermore, Ps and
P, observethe accesses TV ()2 and W ()3 in different
orders, which would not be legal under SC.

Among the uniform models, CC appears to be one
of the more difficult to implement in hardware. This
can probably be explained by the fact that most other
models have been designed with a hardware implemen-
tation in mind. However, this does not imply that a
CC implementation necessarily performs worse than an
implementation of one of the simpler uniform models.

34 Pipelined RAM (PRAM)

Liptonand Sandberg [L S88] defined the Pipelined RAM
(PRAM) consistency model. Thereader should beaware
that the acronym PRAM is often used as a shorthand for
Parallel Random Access Machine which has nothingin
common with the Pipelined RAM consistency model.

The reasoning that led to this model was as follows:
consider a multi-processor where each processor has a
local copy of the shared memory. For the memory to
be scalable, an access should be independent of thetime
it takes to access the other processors memories. They
proposedthat onaread, aPRAM would simply returnthe
valuestoredinthelocal copy of thememory. Onawrite,
itwould updatethelocal copy first and broadcast the new
valueto the other processors. Assuming aconstant time
for initiating a broadcast operation, the goal of making
the cost for a read or write constant is thus achieved.
In terms of ordering congtraints, this is equivaent to
requiring that all processors observe the writes from
a single processor in the same order while they may
disagree on the order of writes by different processors.
The following execution history is legal under PRAM
but not under CC:

P W(e)l

Py R(x)l W(x)2

Ps: R(x)l R(x)2
Py R(x)2 R(x)1

Ps and P, observe the writes by P, and P, in differ-
ent orders, athough W (x)1 and W (x)2 are potentially
causally related. Thus, thiswould not be alegal history
for CC.

3.5 CacheConsistency (Coherence)

Cache consistency [Goo89] and coherence [GLL*90]
are synonymousand to avoid confusion with causal con-
sistency, we will use the term coherence in this paper.

Coherenceisalocation-relativeweskening of SC. Re-
cal that under SC, all processors have to agree on some
sequential order of execution for all accesses. Coher-
ence only requires that accesses are sequentially con-
sistent on a per-location basis. Clearly, SC implies co-
herence but not vice versa. Thus, coherence is strictly
weaker than SC. The example below isahistory that is
coherent but not sequentially consi stent:

P W(x)l R(y)0
Py Wyl R(x)0

Clearly, any seria execution that respects program order
starts with writing 1 into either = or y. It istherefore
impossible that both read accesses return 0. However,
the accesses to  can be linearized into R(z)0, W (z)1
and so can the accesses to y: R(y)0, W(y)l. The
history is therefore coherent, but not SC. In essence,
coherenceremovestheordering constrai ntsthat program
order imposeson accessesto different memory locations.

3.6 Processor Consistency (PC)

Goodman proposed processor consistency in [Goo89)].
Unfortunately, his definition is informal and caused a
controversy as to what exactly PC refers to. Ahamad
et d. [ABJT92] give aforma definition of PC which
removesall ambiguity and appearsto be afaithful trans-
lation of Goodman's definition. They aso show that
PC as defined by the DASH group in [GLL*90] is not
comparable to Goodman’s definition (i.e, it is neither
weaker nor stronger). We will not discuss the DASH
version of PC except in the context of release consis-
tency (RC) and hence will use PCto refer to Goodman's
version and PCD to refer to the DASH version.

Goodman defined PC to be stronger than coherence
but weaker than SC. PC can be interpreted as a combi-
nation of coherence and PRAM. Thus, every PC history
isalso coherent and PRAM. However, for ahistory to be
PC it not only has to be coherent and PRAM but those
two conditions also must be satisfiable in a mutually
consistent way. It iseasiest to think of PC as aconsis-
tency model that requires a history to be coherent and
PRAM simultaneoudly, rather thanindividualy. That is,
processors must agree on the order of writes from each
processor but can disagree on the order of writes by dif-
ferent processors, aslong asthose writesare to different
locations. The example given for coherence isaso PC
so we give here a history that failsto be PC (thisand the
previous example are from [Goo89]):



Noticethat P; observes accesses in the order:
W (@)1, ()1, R(y)0, W (1)1, W ()2

while P, observes accesses in the order:
Wi(y)l, W(c)2, R(x)0, W (z)1, W(c)1.

That is, P, and P- disagree on the order of writes to
location ¢. Asthereisno consistent ordering that would
remove this disagreement, the history failsto be PC.

Thedifferences between PC and SC are subtleenough
that Goodman claims most applications give the same
results under these two models. He also says that many
existing multiprocessors (e.g., VAX 8800) satisfy PC,
but not sequential consistency [Goo89]. Ahamad et
al. prove that the Tie-Breaker agorithm executes cor-
rectly under PC whilethe Bakery a gorithmdoesnot (see
[And91] for adescription of those agorithms). Bershad
and Zekauskas [BZ91] mentionthat processor consi stent
machines are easier to build than sequentially consistent
systems.

3.7 Slow Memory

Slow memory isalocation rel ativeweakening of PRAM
[HAQQ]. It requiresthat all processorsagree onthe order
of observed writesto each location by asingleprocessor.
Furthermore, local writes must be visible immediately
(as in the PRAM model). The name for this model
was chosen because writes propagate sl owly throughthe
system. Slow memory is probably one of the weakest
uniform consistency models that can till be used for
interprocesscommunication. Hutto and Ahamad present
amutual exclusion algorithmin [HA90]. However, this
algorithm guarantees physica exclusion only. Thereis
no guarantee of logical exclusion. For example, after
two processes P, and P, were subsequently granted
accessto acritical section and bothwrotetwovariablesa
and b, then athird process P; may enter thecritical region
and read the value of a as written by P, and the value
of b aswritten by P,. Thus, for Ps it lookslike P, and
P> had had simultaneous access to the critica section.
This problem is inherent to low memory because the
knowledge that an access to one location has performed
cannot be used to infer that accesses to other locations
have also performed. Slow memory does not appear to
be of any practical significance.

3.8 Weak Consistency (WC)

Wesak consistency isthefirst and most strict hybrid model
we discuss. The model was originaly proposed by
Dubois et al. [DSB86]. A memory system is weakly
consistent if it enforces the following restrictions:

1. accesses to synchronization variables are sequen-
tially consistent and

2. no access to a synchronization variableisissued in
a processor before al previous data accesses have
been performed and

3. no access is issued by a processor before a previ-
0us access to a synchronization variable has been
performed

Notice that the meaning of “previous’ is well-defined
because it refers to program order. That is, an access
A precedes access B if and only if the processor that
executed access B has previoudly executed access A.
Synchronizing accesses work as fences. At the time
a synchronizing access performs, all previous accesses
by that processor are guaranteed to have performed and
all future accesses by that processor are guaranteed not
to have performed. The synchronization model corre-
sponding to these access order constraints is relatively
simple. A program executing on a weakly consistent
system appears sequentialy consistent if the following
two constraints are observed [AH90, ZB92]:

1. therearenodataraces(i.e., no competing accesses)
2. synchronizationis visibleto the memory system

Note that WC does not alow for chaotic accesses as
found in chaotic rel axation algorithms. Such algorithms
would either have to be changed to avoid dataraces or it
would be necessary to mask chaotic accesses as synchro-
nizing accesses. The latter would be overly restrictive.

3.9 Reease Consstency (RC)

Release consistency as defined by Gharachorloo et al.
[GLL*9Q] is a refinement of WC in the sense that
competing accesses are divided into acquire, release,
and non-synchronizing accesses. Competing accesses
are also called special to distinguish them from non-
competing, ordinary accesses. Non-synchronizing ac-
cesses are competing accesses that do not serve a syn-
chronization purpose. This type of access was intro-
duced to be able to handl e chaotic rel axation algorithms.
An acquire access works like a synchronizing access
under WC, except that the fence delays future accesses
only. Similarly, arelease workslike a synchronizing ac-
cess under WC, except that thefence delaysuntil all pre-
vious accesses have been performed. This, for example,



worker[p: 1..N] :
arrived[p] := true [release]
do not go[p] — skip od [acquire]
go[p] := false [ordinary]
coordinator :
fai:=1toN —
do not arrived[i] — [nsync]
sKip
od
arrived(i] := false [nsync]
af
fai:=1toN —
go[i] := true [nsync]
af

Figure 3: Barrier Under Release Consistency

allows (limited) overlap in executing critical sections,
which is not possible under WC. Another, more subtle,
change is that special accesses are executed under PCD
only (not under SC, asin WC).

To make the model more concrete, we give an exam-
ple of how a critical section and a coordinator barrier
could be programmed under RC (see [And9]], for ex-
ample). Below we show how acritical section could be
implemented under thismode!:

do test_and_set(locked) — [rd:acquire;wr :nsync]
sKip

od

...critical section. . .

locked := false [release]

Note the labeling of the read-modify-write operation
test_and_set(). The read is labeled acquire, while
the write is labeled nsync, which stands for non-
synchronizing access. The acquire label ensures that
no future access is performed before the read has com-
pleted and the nsync label ensures that the write occurs
under PCD. Notethat it would belegal but unnecessarily
restrictiveto mark thewrite access release. The release
label for thewriteaccess resetting thel ocked flag ensures
that all accesses inthe critical sections are performed by
thetimetheflag is actually reset.

The coordinator barrier is considerably more compli-
cated. The important thing however is that the heart
of the barrier is redlized by a release followed by an
acquire, while the critical section does just the oppo-
site. Pseudo-code for the barrier is shown in Figure 3.
From these examples it should be clear that it is not at
all straight forward to write synchronization primitives
under RC. However, it isimportant to realize that such

primitivesare often written “once-and-forever.” That is,
thetypical programmer doesn’t need to worry about la
beling accesses correctly as high-level synchronization
primitiveswould be provided by alanguage or operating
system. Also, it isaways safe to label a program con-
servatively. For example, if acompiler has incomplete
information available, it could always revert to label
reads with acquire and writes with release.

3.10 Entry Consistency (EC)

The entry consistency model is even weaker than RC
[BZ91]. However, it imposes more restrictions on the
programming model. EC is like RC except that every
shared variable needs to be associated with a synchro-
nization variable. A synchronizing variable is either a
lock or abarrier. The association between avariableand
itssynchronization variabl e can change dynamically un-
der program control. Note that this, like Slow memory,
isalocation relative weakening of a consistency model.
This hasthe effect that accesses to different critical sec-
tionscan proceed concurrently, which would not be pos-
sible under RC. Another feature of EC is that it refines
acquire accesses into exclusiveand non-exclusiveacqui-
sitions. This, again, increases potential concurrency as
non-exclusive acquisitionsto the same synchronization
variable can be granted concurrently. However, unlike
RC, entry consistency is not prepared to handle chaotic
accesses. Thismodd isthefirst that was specifically de-
signed to be implemented as a software shared memory
system.

4 Implementations of
Consistency Models

Memory

An implementation of a memory consistency model is
often stricter than the model would alow. For example,
SC alowsthe possibility of aread returning a value that
hasn't been written yet (see example discussed under
3.2 Sequential Consistency). Clearly, no implementa-
tion will ever exhibit an execution with such a history.
In genera, it is often simpler to implement a dightly
stricter model than its definition would require. Thisis
especialy truefor hardware realizations of shared mem-
ories[AHJ91, GLL+90].

For each consistency model there are anumber of im-
plementationissues. Someof themoregeneral questions
are

¢ What isthe consistency unit?
o Enforce eager or lazy consistency?

¢ Use update or invalidation protocol to maintain
consistency?



In hardwareimplementationsthe consistency unitistyp-
ically aword or a cache line. In software shared mem-
ories, the overhead per consistency unit is much higher
in absolute terms, so that a memory page or a shared
object (structured variable, segment) is often chosen as
the consistency unit.

The notion of eager versuslazy maintenance of mem-
ory consistency appears to have been invented indepen-
dently by Borrmann/Herdieckerhoff [BH90] and Ber-
shad/Zekauskas [BZ91]. This notion is based on the
observation that the consistency protocol can either be
invoked each time an inconsi stency arises or only when
an inconsistency could be detected. Eager implementa-
tions do the former, lazy the latter. The expected ben-
efit of lazy implementations is that if a process has a
cached copy of a shared variable but doesn’t access it
anymore, then thisprocess does not haveto participatein
maintaining consistency for thisvariable. Lazy release
consistency [KCZ92] and Midway [BZ91] are two ex-
amples of lazy implementations. No performance data
isyet available.

5 Influence of Consistency Model
on Software

As mentioned earlier, choosing a memory consistency
model is a tradeoff between increasing concurrency by
decreasing ordering constraints and implementation and
programming model complexity. With hybrid models,
the memory system is sequentially consistent aslong as
itssynchronization model isrespected. That is, the soft-
ware executing on such amemory system hasto provide
information about synchronization events to the mem-
ory system and its synchronization model must match
the memory system’s model. Synchronization informa-
tion is provided by either a programmer in a explicitly
concurrent language” or by a compiler or its runtime
system in a high-level language. Thus, software run-
ning on a hybrid memory system has to provide infor-
mation to execute correctly. However, it is possibleand
beneficia to go beyond that point. If the software can
provide information on the expected access pattern to
a shared variable, optimizations for each particular ac-
cess pattern could be enabled resulting in substantially
improved performance. Munin [CBZ91] does this by
providing afixed set of sharing annotations. Each anno-
tation corresponds to a consistency protocol optimized
for a particular access pattern. A similar approach was
taken by Chiba et a. [CKM92] where they annotate
Linda programsin order to select an optimized protocol

2By “explicitly concurrentlanguage” we mean alanguagein which
it is possible to program synchronization operations.

for i n operationsif they are used with certain restric-
tions. For example, the weakest and most efficient pro-
tocol can be used only if, for a tuple with tag ¢, there
isat most one process performing i n operations and no
process performing r ead operations. Unfortunately,
so far no performance study of the advantage of such
“guided” memory systems has been reported. Carter
[CBZ91] indicates that Munin performswell for matrix
multiplicationand SOR when compared to ahand-coded
message passing algorithm, but no comparison with a
single-protocol DSM or a strict DSM was reported.

Also note that a change in the consistency model of
amemory system can lead to quite subtle changes. For
example, Zucker and Baer note that

the analysis of Relax [a benchmark program|
made us realize that how the programiswrit-
ten or compiled for peak performancedepends
upon the memory model to be used.

Intheir example, under SCit wasmoreefficient to sched-
ule a read access causing a cache-miss at the end of a
sequence of eight read accesses hitting the cache, while
under WC and RC the same access had to be scheduled
at the beginning of the read-sequence.

5.1 Chaotic Accesses

Another issue raised by the introduction of weaker
consistency models is chaotic accesses (i.e, non-
synchronizing competing accesses). Current DSM sys-
tems do not handle them well. Neither Munin nor Mid-
way have specia provisionsfor chaotic accesses. Note
that algorithms using such accesses often depend on
having a “fairly recent” value available. That is, if ac-
cesses to variable x are unsynchronized, then reading «
must not return any previously written value but a “re-
cent” one. For example, the LocusRoute application of
the SPLASH benchmark does not perform well if non-
synchronizing competing accesses return very old val-
ues[Rin92, SWG91]. RC maintainssuch accesses under
PCD (whichissafebut conservativein many cases). An-
other type of agorithm using non-synchronizing com-
peting accessesisof thekind whereaprocessneedssome
of the neighbor’sdata, but instead of synchronizingwith
its neighbor, the process computes the value itself and
storesitintheneighborsdatafield. In effect, thistypeof
algorithmtrades synchronization with (re-)computation.
We would expect having specialized consistency proto-
colsfor chaotic accesses could improvethe performance
of such algorithms.



5.2 Annotating Compilers

Only very littlework has been done on annotating par-
allel programs automatically. In the general case, deter-
mining the access patterns to a shared variable is unde-
cidable. It is aso unclear exactly what access patterns
are useful to distinguish (some work in this direction
was done for Munin). However, a language could be
designed such that it becomes easier to infer certain
aspects of an access pattern. A simple example is a
constant object. Asthere are no write accesses, such ob-
jects can be replicated among processes without needing
any consistency protocol. Another exampleisdetermin-
ing whether a critical region contains no write accesses
to shared variables. Under EC, this information de-
termines whether a lock can be acquired in exclusive
or non-exclusive mode. Ascritical regionsaretypically
short and do not contain any function callsor unbounded
loops, this problem could be decided in most cases.

5.3 Explicitly Parallel Languages

As mentioned above, in an explicitly pardle language
the MCM defines the alowable memory-access opti-
mizations. Such a language depends very directly on
the memory consistency model as it alows the imple-
mentation of synchronization operations. For AC, SC,
and PC no specia constructsmust be available. For WC
amemory-barrier (or full fence) operation would be suf-
ficient. A memory-barrier would haveto beinsertedina
program wherever consistency of the memory hasto be
enforced. For RC things become even more complex.
Every access would have to be labeled according to its
category. With EC, synchronization operations can be
implemented based on the locks and barriers provided
by the system only. This shows clearly that it is not a
good idea to alow a programmer to implement his or
her own synchronization primitives based on individ-
ual memory accesses. Instead, a language should pro-
videefficient and primitiveoperationswhich can then be
used to implement higher-level synchronization opera-
tions. Maybe locks and barriers as provided under EC
would be sufficient. However, for barriersit isnot clear
whether a singleimplementation would be sufficient for
all possible applications. For example, sometimes it is
useful to do some work at the time all processes have
joined at abarrier but before rel easing them. Under EC,
such aconstruct would haveto beimplemented with two
barriers or in terms of locks; both methods would likely
be more inefficient than a direct implementation.

54 Implicitly Parallel Languages

Implicitly paralel languages do not have any notion of
concurrent execution at thelanguagelevel . Concurrency

control istypically implemented by compiler-generated
calstoatheruntimesystem. Therefore all that needsto
be doneto adapt to anew MCM isto change theruntime
system. As mentioned above, it is till advantageousto
integrate the consistency model with the compiler and
runtime system more tightly. As the compiler aready
hasinformation on synchronization and the concurrency
structureof the program, it might aswell makethisinfor-
mation availableto thememory system. Jade[RSL92] is
astep in thisdirection. Its runtime system has for each
process precise information on the accessed locations
and whether a location is only read or also modified.
The language a so allows one to express that some data
will not be accessed anymore in the future.

It is unclear at this point exactly which information
can and should be provided to the memory system. Itis
equally open what information the memory system could
provide to the runtime system. The latter, for example,
could be useful to guide a runtime system’s scheduler
based on what datais cheaply available (cached) in the
memory system.

6 Conclusions

The centra theme of this work is that being memory-
model conscious is a good thing. This applies to dis-
tributed shared memories, runtime systems, and com-
pilers, as well as languages. We have argued that con-
sistency models are important and that weaker models
arebeneficia to performance. Whilethereareweakened
model sthat areuniform, they appear to belesspromising
than hybrid models. Most current work seems to con-
centrate on the latter. While quite some work has been
done in this area, the lack of meaningful performance
datais surprising. Also, it appears that in the language,
compiler, and runtime-system realms there are still alot
of open questions that could warrant further research.
We expect that a tighter coupling between the memory
system and the software using it could result in consid-
erable performance improvements.
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