
A Functional and Attribute Based Computational Model for

Fault-Tolerant Software

Masato Suzuki, Takuya Katayama,1 and Richard D. Schlichting

TR 93-8

Abstract

Programs constructed using techniques that allow software or operational faults to be tolerated are

typically written using an imperative computational model. Here, an alternative is described in which

such programs are written using a functional and attribute based model called FTAG. This approach

offers several advantages, including a declarative style, separation of semantic and syntactic definitions,

and the simplicity of a functional foundation. While important for any type of programming, these

advantages are especially pronounced for writing fault-tolerant programs that involve the use of state

rollback, including the recovery block technique for software faults and checkpointing for operational

faults. A pure value reference model is described in which redoing is introduced as a fundamental

operation. A formal description of the model is also given, together with an outline of how this model

can be implemented in a computer system containing multiple processors. Several rollback-oriented

examples are used to illustrate the model.

March 8, 1993

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1The first two authors are affiliated with the School of Information Science, Japan Adv. Inst. of Sci. and Tech., 15

Asahidai, Tatsunokuchi, Ishikawa, 923-12, Japan.

1 Introduction

Fault-tolerant software is software that is constructed to continue providing service despite the existence

of software faults (i.e., program bugs) and/or operational faults (i.e., faults in the underlying computing

platform.) Over the years, a variety of techniques, mechanisms, and structuring paradigms have been

developed for building software of this type. These include such things as recovery blocks [Ran75] and N-

version programming [Avi85] for dealing with software faults, and checkpointing [BHG87], atomic actions

[Lis85], and the replicated state machine approach [Sch90] for dealing with operational faults. All of

these simplify the problems associated with faults by providing the programmer with higher-level models or

abstractions.

Despite the inherent differences in these approaches, one common thread is that they all have typically

been conceived and expressed using an imperative computational model. In this paper, we describe FTAG,

an alternative in which fault-tolerant software is written using a functional and attribute based model. The

model is derived from an existing collection of models that use an attribute grammar formalism [Knu68] for

such diverse purposes as functional programming [Kat81, SK88], object-oriented programming [SK90a], and

modeling of the software development process [Kat89]. This approach offers several advantages, including

a declarative style, separation of semantic and syntactic definitions, and the simplicity of a functional

foundation. While important for any type of programming, these advantages are especially pronounced for

writing fault-tolerant programs that involve the use of state rollback, such as those that use recovery blocks

or checkpointing. The experience modeling the software process cited above is especially relevant in this

regard, since many of the characteristics of higher level software development—for example, the possibility

of incomplete or incorrect execution of a development step due to human error—have natural analogues in

fault-tolerant software.

This paper is organized as follows. In Section 2, a pure value reference model for FTAG is described in

which redoing [SK90b] is introduced as a fundamental operation; this operation, together with the functional

characteristic of the model, provide the fundamental requirements for performing state rollback and recovery.

This is followed in Section 3 by a description of how this model can be used for fault-tolerance; several

rollback-oriented examples are given to illustrate the process. Section 4 then gives a formal description of

the FTAG model. An outline of how this model can be realized as a practical programming system is given

in Section 5; this includes describing a system model involving multiple processors and an object base, and

giving a mapping from the reference model to the system model. Finally, Section 6 contains conclusions

and directions for future work.

2 Value Reference Model

In this section, we introduce the FTAG computational model. The model is based on the HFP (Hierarchical

and Functional Process) model [Kat81], which is in turn derived from attribute grammars [Knu68]. The

basics of the model are outlined first, followed by a description of redoing.

2.1 The FTAG Computational Model

In FTAG, every computation consists of a collection of pure mathematical functions called modules. Each

module has multiple inputs and outputs. A module M with inputs x
1

; : : : ; x

n

and outputs y
1

; : : : ; y

m

is

denoted by

M(x

1

; : : : ; x

n

j y

1

; : : : ; y

m

)

1

We call x
1

; : : : ; x

n

,y
1

; : : : ; y

m

the attributes of M , where x

1

; : : : ; x

n

are inherited attributes and

y

1

; : : : ; y

m

are synthesized attributes.

When M is simple enough to be performed directly, we call it a primitive module and denote it by

M(x

1

; : : : ; x

n

j y

1

; : : : ; y

m

)) return where E

where E is a collection of equations by which y
1

; : : : ; y

m

are calculated from x

1

; : : : ; x

n

. Otherwise, M is

decomposed into submodules. To do this, the way in which M is decomposed into submodules M
1

; ::;M

k

,

and the relationship among inputs and outputs of M and M
i

are specified as follows:

M(x

1

; : : : ; x

n

j y

1

; : : : ; y

m

)) M

1

: : :M

k

where E

Here, E is a collection of equations that denotes the relationship among the inherited attributes ofM
i

and the

synthesized attributes of M . This explicit definition of E is sometimes omitted, in which case the following

convention is used: when an output y of the function M

i

is transferred to M

j

as one of its inputs, say

x, we omit the definition x = y and simply put y for x in M

j

. A pair of M
1

: : :M

k

and E are called a

decomposition and denoted by D hereafter.

Sometimes a module decomposition is specified with a conditionC controlling when this decomposition

is to be applied, leading to the following general form.

M(x

1

; : : : ; x

n

jy

1

; : : : ; y

m

))

case

C

1

) D

1

...

C

n

) D

n

otherwise) D

def

end

The conditions C
1

; : : : ; C

n

are tested sequentially with the decomposition D

i

being applied when C

i

is

satisfied. If none of C
1

; : : : ; C

n

are satisfied, the default decompositionD
def

is selected and performed.

Execution of an FTAG program is performed by successively applying the above module decomposition

process until every module is decomposed into primitive modules. The synthesized attributes are then

calculated based on the given equations and returned. Hence, the resulting execution takes the form of a

computation tree in which inherited attributes flow down the tree and synthesized attributes up.

Figure 1 shows how quicksort might be expressed using FTAG, with Figure 2 being the corresponding

computation tree. In Figure 1, ^seq is used to denote the first value of the sequence seq, ~seq the sequence

except the first value, and seq:1 + seq:2 the concatenation of sequences.

The order in which modules are decomposed is determined solely by attribute dependencies among

submodules, making this model highly amenable to parallel execution. As an example, consider the

otherwise clause in the qsort module of Figure 1. There are only two dependencies among the submodules

labeled (1),(2),(3) and (4): between (1) and (3) due to seq:less, and between (2) and (4) due to seq:grtr.

Thus, in this case, it is guaranteed only that (3) is executed after (1), and (4) after (2); the execution order of

(1) and (2), and (3) and (4) is indeterminate.

Besides this implicit ordering, FTAG has features for explicitly ordering module decomposition. For

example, we can enforce the execution of M
1

before M

2

by using the sequencing operator ‘;’ and the

grouping construct fg, as in fM
1

;M

2

g. Thus, to force (2) to execute after (1) in Figure 1, we could change

the otherwise clause as follows:

2

type

seq = sequence of x

x = anytype

qsort(seq:injseq:out))

case

when (seq:in ==<>) or

(~seq:in ==<>))

return

where

seq:out = seq:in

otherwise)

less half(^seq:in; ~seq:injseq:less) (1)

grtr half(^seq:in; ~seq:injseq:grtr) (2)

qsort(seq:lessjseq:lessout) (3)

qsort(seq:grtrjseq:grtrout) (4)

where

seq:out = seq:lessout

+ < ^seq:in > +seq:grtrout

end

less half(x:ref; seq:injseq:out))

case

when seq:in ==<>)

return

where

seq:out = seq:in

when^seq:in >= x:ref)

less half(x:ref; ~seq:injseq:out)

where

(� No attribute equations �)

when^seq:in < x:ref)

less half(x:ref; ~seq:injseq:subout)

where

seq:out =< ^seq:in > +seq:subout

otherwise)

return

where

seq:out = seq:in

end

grtr half(x:ref; seq:injseq:out))

case

when seq:in ==<>)

return

where

seq:out = seq:in

when^seq:in < x:ref)

grtr half(x:ref; ~seq:injseq:out)

where

(� No attribute equations �)

when^seq:in >= x:ref)

grtr half(x:ref; ~seq:injseq:subout)

where

seq:out =< ^seq:in > +seq:subout

otherwise)

return

where

seq:out = seq:in

end

Figure 1: Quicksort in FTAG

otherwise)

fless half(^seq:in; ~seq:injseq:less);

grtr half(^seq:in; ~seq:injseq:grtr)g (1; 2)

qsort(seq:lessjseq:lessout) (3)

qsort(seq:grtrjseq:grtrout) (4)

Submodules (1) and (2) are now combined into (1;2) and executed sequentially, with the combination being

treated as a single module with input seq:in and outputs seq:less and seq:grtr. The execution order of (3)

and (4) is still indeterminate due to lack of dependencies.

There are several advantages to the functional approach used in FTAG as opposed to traditional imperative

styles. One is that it is static and declarative. This makes reading and understanding the description easier,

and simplifies incremental creation and evolution of the program. The separation of syntactic and semantic

definitions also contributes to the readability of the program. Another is that a module decomposition only

represents the structure of the computation and relationships among the attributes, rather than the way the

computation is performed. Finally, the program exhibits a high degree of locality; information is only passed

3

qsort

less_half qsort qsortgrtr_half

less_half qsort qsortgrtr_half

• • •

Figure 2: Quicksort Computation Tree

between functions using attributes, and only then between functions that have a parent/child relationship.

As a result, it is easy to determine attribute dependencies, facilitating, for example, parallel execution as

noted above.

2.2 Redoing

In this section, we introduce the notion of redoing, in which a portion of the computation tree is replaced by

a new computation. Although redoing has many uses, here we focus on its use as a mechanism for replacing

a part of the computation that has failed—that is, generated incorrect results or no results at all—with a new

computation. Here, we assume that all failures of interest are manifested by incorrect attribute values that

can be tested by a conditional. Such an assumption is common for software faults [Ran75], while operational

faults such as crashed processors can be translated into a distinguished value ? (“bottom”) that is assigned

to the appropriate attribute values by the underlying system. Such a facility for operational faults is outlined

in Section 5.

The simplest case of redoing is illustrated in Figure 3. Here, a module M is decomposed into M
1

;M

2

;

and M

3

, with a failure being detected at some point during the execution of M
3

. Assume that an analysis

determines that the failure has been introduced during the execution of M
1

. Then, the whole computation

starting at M
1

is discarded, and M
1

and the successive computations M
2

and M
3

are reexecuted.1 We call

this kind of special decomposition a redoing decomposition. After the new computation has completed

successfully, it is regarded as a part of current active computation history. The type of redoing decomposition

shown in Figure 3 would be written in a program as follows:

M(x j y))

M

1

(x

1

j y

1

) M

2

(x

2

j y

2

) M

3

(x

3

j y

3

)

where

...

M

3

(x j y))

case

notfail(x))M

3

body(x j y)

otherwise) redoM

end

In M
3

, the condition notfail tests the value of the input attributes x to verify that a failure has not occurred.

1 In this simple case, of course, we are assuming that the failure was transient, so that executing it a second time will produce

the correct value.

4

M1 M2 M3

M2 M3

Current Active Computation History

Redo

Contaminated Activities

M

M1

Figure 3: Redoing

M1

M

M2 M3

Mx y

x y

Tnew

Tleft

Tsub

Tsub

M1

M

M2 M3

Tleft

M1

M

M2 M3

Figure 4: A Computation Tree when Redoing Occurs

If true, M
3

is decomposed intoM
3

body, which performs the actual function. Otherwise, M
3

is decomposed

into M using the redoing operator in order to replace the previous execution of M .

Figure 4 illustrates the effect of a redoing operation on the computation tree corresponding to this

example. The redoing operation starts by deleting the subtree T

sub

, which contains improper attribute

values, and produces T
left

as the rest of the computation tree. A new tree T
new

whose root is a new instance

of the module M is then created. T

new

is grafted to T

left

at the appropriate place, with the inputs of M

in T

left

being passed to the new M in T

new

. After the redoing operation has completed successfully, the

results of M in T
new

are passed to M in T
left

as if they were the correct results of the original computation.

Sometimes there are many instances of M in the computation tree. The particular one replaced by the

reexecution is determined by an analysis on the computation tree. In this example, the target of redoing is

the most recent execution of M , defined as the first instance on the path from M

3

to the root.

5

A module M can also be replaced by another module M 0 during redoing using the with clause.

M

3

(x j y))

case

notfail(x))M

3

body(x j y)

otherwise) redoM withM

0

end

In this case, M 0 is instantiated as the root of T
new

in place of M . Of course, the number and types of the

inherited and synthesized attributes of M and M 0 must be identical for proper grafting.

In general, redoing decompositions are useful for checking input values before the invocation of a module

to guarantee that the operation is meaningful, and the output values after the invocation to guarantee that

the proper operation has been performed. We can describe the combination of pre- and post-checking by a

nested case-structure as follows:

M

3

(x j y))

case

:C

pre

(x)) redoM

pre

otherwise) fM

3

body(x j y);

case

:C

post

(y)) redoM

post

otherwise) return

end g

end

M

pre

and M

post

are modules with which we begin the recomputation when C
pre

or C
post

are not satisfied,

respectively. In the event that input x contains errors and does not satisfy C

pre

, M
3

is decomposed into

M

pre

. Otherwise,M
3

body is executed and the output y produced. If y, in turn, does not satisfy the condition

C

post

, we assume that an error has occurred and reexecute starting at M
post

.

3 Using FTAG for Fault-Tolerance

The functional model of FTAG together with redoing capabilities make it well-suited for many types of

fault-tolerance. The advantage of the functional approach is that the computation is performed by the

growth of the tree using no other global information, so that a program’s entire execution status and history

is available within the tree. Redoing, of course, captures the state rollback aspect used in various fault-

tolerance techniques; the first step prunes the subtree containing the modules that failed, while the second

does the appropriate recovery action. The state rollback is implicit and automatic since the remaining parts of

the tree contain all the input values needed to redo the calculation. To illustrate these points, we now describe

how redoing can be used to implement recovery blocks, a technique used primarily to handle software faults

[Ran75], and checkpointing, a technique used to recover from operational faults [BHG87].

In the recovery block method, multiple implementations M
1

; : : : ;M

k

are prepared for a module M .

Execution of the multiple versions is done serially in such a way that if an acceptance test followingM
i

fails

due to a failure, the state is rolled back and the next implementation M
i+1

is performed. Such a construct

6

tryM1

M1

tryM2

M2

• • •

M

tryM3

M3

tryMi

Mi

M

C1 C2 C3

Figure 5: Computation Tree for Recovery Blocks

can be realized using redoing in FTAG as follows:

M(x j y)) try M

1

(x j y)

try M

1

(x j y))

fM

1

(x j y);

case

when AT

1

(y)) return

otherwise) redo try M

1

with try M

2

end g

try M

2

(x j y))

fM

2

(x j y);

case

when AT

2

(y)) return

otherwise) redo try M

2

with try M

3

end g

...

try M

k

(x j y))

M

k

(x j y)

Here, try M

1

; : : : ; try M

k

are used to encapsulate the k different implementations of M , and

AT

1

; : : : ; AT

k�1

are conditionals that serve as the acceptance tests. Figure 5 shows the corresponding

computation tree. The net result is that try M

1

through try M

k

are attempted until one passes its accep-

tance test, with failed modules being replaced in succession using redoing decompositions. We emphasize

again that no explicit state saving or restoration is needed here given the functional nature of the model. To

7

type seq = seqence of x

sort(seq:in j seq:out))

ensure

sorted?(seq:out) by quick(seq:in j seq:out)

sorted?(seq:out) by linear(seq:in j seq:out)

end

sorted?(seq:outjbool))

for i = 1::N � 1 do

return

where

bool = conjunction of seq:out[i+ 1] > seq:out[i]

end

quick(seq:injseq:out)) :::(� quick sort �)

linear(seq:injseq:out)) :::(� linear sort �)

Figure 6: Using Recovery Blocks for Sorting

improve readability, the following syntax can also be used:

M(x j y))

ensure

AT

1

(y) by M

1

(x j y)

AT

2

(y) by M

2

(x j y)

...

otherwise M

k

(x j y)

end

As a more concrete example, consider using recovery blocks to sort numbers into ascending order, as

shown Figure 6. The first implementation uses quicksort, which is faster, while the second uses linear sort,

which is less complex. Suppose further that quicksort is incorrectly implemented as follows:

grtr half(x:ref; seq:injseq:out))

case

when seq:in ==<>)

return

where

seq:out = seq:in

when^seq:in < x:ref)

grtr half(x:ref; ~seq:injseq:out)

where

(�No attribute equations �)

when^seq:in > x:ref) (�Error !! �)

grtr half(x:ref; ~seq:injseq:subout)

where

seq:out =< ^seq:in > +seq:subout

otherwise)

return

where

seq:out = seq:in

end

The output value seq:out is incorrect whenever the first element of the sequence seq:in is equal to the

reference value x:ref . In this case, the acceptance test sorted? rejects the erroneous result and uses redoing

8

to invoke the linear sort. Note that no explicit rollback mechanism is needed here: the values as they existed

before sorting are automatically available where the new subtree is grafted into the original computation

tree.

Checkpointing to recover from operational faults can also be implicitly implemented using the redoing

mechanism, since every state of the computation is captured by a node in the computation tree. Consider

the following program:

M(x j y)) M

1

(x j u) M

2

(u j y)

M

2

(x j u)) M

21

(x j v) M

22

(v j u)

The node in the tree corresponding to M

2

captures the status just after the execution of M
1

, while M
22

similarly captures the status just afterM
21

. Hence, M
21

can be made a restartable action [Lam81] as follows

by having M
22

check its input attribute and redo M
2

should it have the value ?.

M

22

(v j u))

case

when v 6= ?) redoM

2

otherwise) M

22

body(v j u)

end

To illustrate this use of FTAG further, consider the outline of a long running scientific application shown

in Figure 7. This program calculates a large table of numbers, where the cost of calculating each V [i] is

const N = 1000000 (�a large number�)

type V = array 1::N of v

calc(i j v)) ::: (�an expensive calculation�)

main(j V))

for i = 1::N do calc(i j v)

where V [i] = v

end

Figure 7: An Expensive Calculation without Redoing

assumed to be non-trivial. With this organization, should an operational failure such as a crash occur during

its calculation, the entire program would need to be reexecuted. Such an expensive proposition can be

avoided by using the redoing capability of FTAG, as shown in Figure 8. In this case, if a failure occurs

during the execution of a particular iteration, execution is rolled back only to the beginning of that iteration.

This is achieved by changing calc to Calc, which does the calculation and then checks for failure and

executes a redoing decomposition if necessary. While again no explicit state saving or restoration is needed,

this use of redoing does imply that the attribute values needed to reexecute Calc are stored in stable storage

to guarantee persistence across operational failures [Lam81]; in Section 5, we outline a stable object base

abstraction that serves this purpose for FTAG. Note also that it would be possible to structure this calculation

so that rollback points are established every i iterations to minimize use of this stable object base rather than

every iteration as done here.

9

main(j V))

for i = 1::N do Calc(i j v)

where V [i] = v

end

Calc(i j v))

fcalc(i j v);

case

when v = ?) redo Calc

otherwise) return

end g

Figure 8: An Expensive Calculation Using Redoing

4 Formal Description

In this section, we provide a formal description of the FTAG value reference model outlined in the previous

sections. The following notation will be used in this description:

1. Classes and Instances: In the following definitions, every data object has a class to which it belongs.

a : A denotes that a data object a is a member of a class A, where a is called an instance of A.

2. Powersets: A set of all subsets of a set A is called a powerset of A and is denoted by P(A). An

element of P(A) is denoted by f a
1

; : : : ; a

k

g, where a
i

2 A.

3. Tuples: A tuple with components t
1

; : : : ; t

n

is denoted by (t

1

; : : : ; t

n

). When t

i

: T

i

, then t =

(t

1

; : : : ; t

n

) : T

1

� : : :� T

n

.

4. Composition of Mappings: For two mappingsM
1

;M

2

: A! B such that dom(M

1

)\dom(M

2

) = �,

the composed mapping that has all images of any elements M
1

and M
2

is denoted by M
1

[M

2

. More

precisely, for a : A;M = M

1

[M

2

,

M(a) =

(

M

1

(a) if a 2 dom(M

1

)

M

2

(a) if a 2 dom(M

2

)

Program Description. In FTAG, a program is described as a collection of module definitions and decom-

positions. Each such decomposition has the name of the module and the patterns into which the module is

decomposed.

Definition 4.1 The class ActDef of activity definitions is defined by

Program = P(Mdef)

Mdef =

(

M) D

case C

1

) D

1

: : : otherwise) D

def

end

M is a module, including its inherited and synthesized attributes,C
i

is a condition, andD
i

is a decomposition.

The attributes of M are denoted by Inh(M) and Syn(M), respectively.

10

Definition 4.2 The class D of decomposition patterns is one of the following

D =

8

>

<

>

:

return where E

M

1

: : :M

k

where E

redo M with M

0

E is a collection of expressions e that define the relationship among attributes of M and M

1

; : : : ;M

k

. It

consists of the name of the defined attribute, a simple function for calculating the attribute and one or more

attributes that are used as arguments:

e = (atr; func; args)

atr : Atr is an attribute name, func is a predefined function and args are its arguments. The class of func

and args are omitted when obvious from context.

Tree Structure. A tree structure is represented by a 3-tuple consisting of a root node, a set of nodes, and

a mapping function.

Definition 4.3 The class Tree of generic trees is defined by

Tree = (r;N; C)

r : Node

N : P(Node)

C : Node� int! Node

r is a name of root node, N is a set of nodes, and C is a partial function that takes a node n and a

number i indicating the ordering number of children, and returns the ith child of n. If i 6= j, then, of course

C(n; i) 6= C(n; j). If n has no children, the value ofC(n; i) is not defined; this is described byC(n; i) = ?.

Node is a generic class of nodes and is treated as a primitive.

Computation Tree. The class of computation trees is a subclass of Tree, which is formalized as the

following 9-tuple.

Definition 4.4 The class CT of computation tree is defined by

CompTree = (r;N; C;A;M; I; S;P; V)

r : Node

N : P(Node)

C : Node� int! Node

A : P(Atr)

M : Node!Module

I; S : Node! P(Atr)

P : P(p) where p = (atr; func; args)

V : P(v)where v = (atr; value); atr : Atr

A is a set of attribute names; M is a function that maps a node n to the module name indicated by n; I and

S are functions that map a node n to the set of its inherited and synthesized attributes, respectively; P is a

collection of relationships among attributes; and V is a set of tuples consisting of an attribute name and its

value. If no value has yet been calculated for atr, there is no corresponding tuple in V . Atr andModule are

the class of attribute and module names, respectively, and are treated as primitives. atr : Atr is an instance

of an attribute for which atr 2 A must be satisfied. func and args are also primitives, and are identical to

those defined above.

11

Growth of a Computation Tree. A computation tree changes whenever a module decomposition is

performed, with new nodes being added based on the particular decomposition. To do this, new nodes

corresponding to the submodules are first created from the module decomposition. Each node has inherited

and synthesized attributes, which are instantiated from the program script in order to make the name of the

nodes and attributes unique in a given computation tree.

Definition 4.5 For CT = (r;N; C;A;M; I; S; P; V) : CompTree; n

0

2 N; 8iC(n

0

; i) = ?,

Grow(CT; n

0

; fM

1

; : : : ;M

k

g) =

(r;N [NewNode(M

1

; : : : ;M

k

); C

0

; A [NewAttr(M

1

; : : : ;M

k

);M

0

; I

0

; S

0

; P; V)

where

C

0

(n; i) =

(

n

i

if n = n

0

C(n; i) otherwise

M

0

(n) =

(

M

i

if n 2 NewNode(M

1

; : : : ;M

k

)

M(n) otherwise

I

0

(n) =

(

Inh

i

if n 2 NewNode(M

1

; : : : ;M

k

)

I(n) otherwise

S

0

(n) =

(

Syn

i

if n 2 NewNode(M

1

; : : : ;M

k

)

S(n) otherwise

NewNode(M

1

; : : : ;M

k

) = fn

1

; : : : ; n

k

g is a set of new nodes instantiated from M

1

; : : : ;M

k

. For each

n

i

, new attribute instances Inh
i

and Syn

i

are created, and NewAttr(M

1

; : : : ;M

k

) =

S

i

Inh

i

[Syn

i

,

M(n

i

) = M

i

, I(n
i

) = Inh

i

,S(n
i

) = Syn

i

are added to A;M; I; S, respectively.

Attribute Calculation. After new nodes and attributes are added to the computation tree, the new attribute

values are calculated through the evaluation of the attribute equation. This operation is formally described

by a function Calculate : CompTree�Node�E ! CompTree.

Definition 4.6 For CT = (r;N; C;A;M; I; S; P; V) : CompTree; n

0

2 N , a functionCalculate is

defined by

Calculate(CT; n

0

; E) = (r;N; C;A;M; I; S;P [NewProduction(E); V [NewAtrV alue(E))

where

NewProduction(E) =

S

e2E

fp j p = (atr; func; args)g

NewAtrV alue(E) =

S

e2E

f(atr; val) j evaluable(atr)g

For each attribute equation e = (atr; func; args) 2 E, the equationp = instance(e), made by instantiating

atr and args in e with corresponding attributes from A, is added to P . When p is ready to be evaluated, the

value of atr is computed and the new tuple v = (atr; val) is added to V .

Pruning a Computation Tree for Redoing. As long as only normal decompositions are performed, the

computation tree grows monotonically. Redoing, however, reduces the tree by discarding some existing

nodes. When a redoing decomposition has a with clause, which means a module M 0 different from M is to

be executed, M is replaced by M 0. Hence, redoing is realized by the following operations: (1) Pruning the

subtree that contains the computation to be discarded, and (2) replacing the node if a with clause is specified.

12

Definition 4.7 For CT = (r;N; C;A;M; I; S;P; V) : CompTree; n

0

2 N , a function Prune :

CompTree�Node! CompTree is defined by

Prune(CT; n

0

) = CT

0

= (n;N � descendant(n

0

); C

0

; A�Attrof(descendant(n

0

));M

0

; I

0

; S

0

;

P � fp = (atr; func; args) j atr 2 Attrof(descendant(n

0

))g;

V � fv = (atr; val) j atr 2 Attrof(descendant(n

0

))g)

where

C

0

(n; i) =

8

>

<

>

:

? if n 2 descendant(n

0

)

? if n = n

0

C(n; i) otherwise

M

0

(n) =

(

? if n 2 descendant(n

0

)

M(n) otherwise

I

0

(n) =

(

? if n 2 descendant(n

0

)

I(n; i) otherwise

S

0

(n) =

(

? if n 2 descendant(n

0

)

S(n; i) otherwise

Attrof(ns) =

S

n2ns

(S(n)[I(n))

descendant(n) denotes a set ofn’s descendant nodes; more precisely, descendant(n) = fm j 9i;C(n; i) =

m _ 9i;m` 2 descendant(n);C(m

0

; i) = mg. Note that n
0

62 descendant(n

0

). CT 0 is a tree in which

all nodes under n
0

(except n
0

) have been removed.

Definition 4.8 For CT = (r;N; C;A;Mod; I; S; P; V) : CompTree; n

0

2 Node;M

0

2 Module, a

functionReplace : CompTree�Node�Node�Module, which replaces the node and module with

another node and module, is defined by

Replace(CT; n

0

; n

0

0

;M

0

) = (r;N; C

0

; A;Mod

0

; I; S; P; V)

where

C

0

(n; i) =

(

n

0

0

if C(n; i) = n

0

C(n; i) otherwise

Mod

0

(n) =

(

M

0

if n = n

0

Mod(n) otherwise

Recall that the number and type of n
0

and n

0

0

’s attributes must be identical, so there are no effects to any

attribute instances or values except the node name.

Execution Semantics. Execution is the process of transforming computation trees by decomposition and

attribute calculation. Each step of the transformation can be described formally as a transform function

Exec : CompTree � Node � D ! CompTree. D denotes the class of decompositions shown in

Definition 4.2. There are three cases to be considered.

Case (1): Normal Decomposition. If D is a normal decomposition,Exec is defined as follows:

Definition 4.9 For CT = (r;N; C;A;M; I; S; P; V) : CompTree; n

0

2 N; 8iC(n

0

; i) = ?,

Exec(CT; n

0

; freturnwhere Eg) = Calculate(CT; n

0

; E)

Exec(CT; n

0

; fM

1

; : : : ;M

k

where Eg) = Calculate(Grow(CT;n

0

; fM

1

; : : : ;M

k

g); n

0

; E)

13

Exec Exec Exec

Grow CalculateCalculate

n0 n0

Exec Exec

Figure 9: Execution by Series of Tree Transformations

If n
0

is a primitive, synthesized attribute values are calculated by the function Calculate; otherwise n
0

should be decomposed into submodules. The decomposition is performed by the function Grow, with

attributes being calculated by Calculate.

Case (2): Redoing Decomposition. When D is a redoing decomposition, it is performed by pruning the

computation tree. When a with clause is specified, a node replacement will also occur.

Definition 4.10 For CT = (r;N; C;A;Mod; I; S; P; V) : CompTree; n

0

2 N; 8iC(n

0

; i) = ?,

Exec(CT; n

0

; f redoM g) = Prune(CT;m)

Exec(CT; n

0

; f redoM withM

0

g) = Replace(Prune(CT;m);m;m

0

;M

0

)

m is the most recent occurrence of Mod(m) = M , determined statically by an analysis of the program. m0

is a new node corresponding to M 0.

Case (3): Execution Sequence. The program is executed by repeated applications of Exec, starting with an

initial tree containing only a root node. Figure 9 illustrates this process; Grow adds new nodes to the tree,

while Calculate determines the values associated with each node.

5 Implementing FTAG

In this section, we outline how the value reference model described in the previous sections can be im-

plemented in a standard computer system consisting of multiple processors and (logically) shared external

storage (e.g., disk). Specifically, we address the issues of processors and module allocation, and the use of

external storage to implement a stable object base for storing attribute values. Optimization issues are also

touched upon briefly.

5.1 Processors and Module Allocation

Each processor is assumed to consist of a computing engine and a mechanism for sending and receiving

messages. We abstract this message-passing mechanism as a port, where a port is a pair of synchronous

communication channels. Thus, a value written to a send port is read by another processor from the

corresponding receive port. Each processor has two sets of attributes that represent the send and receive

ports, respectively. Formally,

Proc = P(proc)

proc = (Send;Recv)

where Send;Recv : P(Atr)

14

Proc is a set of processors proc, while Send and Recv are each a set of attributes that are mapped to the

processor’s send and receive ports. A value assigned to a Send port attribute is sent automatically to the

Recv port on another processor to which the same attribute has been mapped.

Processors are assigned to each node in the computation tree, and are responsible for all the communica-

tion between the node and its children. Information is passed between processors using the port mechanism.

This process of assigningnodes to processors is described formally by partitioningN;A; P; V inCompTree.

Such a partition is defined by a total function that maps a processor to the set of nodes assigned to that pro-

cessor, Ass : proc ! P(Node). For simplicity, N
i

is taken to be synonymous with Ass(p

i

), that is, the

set of nodes assigned to the processor p
i

. Of course,
S

i

N

i

= N . A
i

= fInh(n) [Syn(n) j 8n;n 2 N

i

g

means the set of attribute instances assigned to p
i

. P
i

and V
i

are defined in the same manner.

A node is assigned to a processor when it is created. This is performed by changing the assignment

map Ass whenever Grow is applied. Attribute values may be passed between a node and its children

during an attribute calculation. Values destined for a node assigned to another processor must be passed to

appropriate processor. Such attributes must be connected to ports, and must be included in Send and Recv

of the appropriate processors. This is performed by changing the processor’s Send and Recv set during

the application of Calculate. Formally, assume p

i

; p

j

2 Proc; CT = (r;N; C;A;M; I; S;P; V); A

i

=

Ass(p

i

); A

j

= Ass(p

j

). Then, whenever Calculate(CT; n
0

; E) is applied, P
i;j

,Send
i;j

and Recv
i;j

must

be changed for each evaluation of e = (atr; func; args) 2 E according to the following rules:

(1) If atr 2 A

i

^ all args are in A
i

) add e to P
i

(2) If atr 2 A

j

^ all args are in A
j

) add e to P
j

(3) If atr 2 A

j

^ all args are in A
i

) add e to P
i

and atr to Send(p
i

) and Recv(p
j

)

(4) If atr 2 A

i

^ all args are in A
j

) add e to P
j

and atr to Send(p
j

) and Recv(p
i

)

Assignmentof? to attributes of modules that were being executed on processors that suffered operational

failures is done using the port mechanism. A timer is set when a reply from a module is expected, and its

attribute values set to ? should the expire with no reply being received. This technique is, of course, just

the standard use of timeouts for failure detection.

5.2 Stable Object Base

In the value reference model, no specific mention is made of where attribute values are actually stored during

a computation. One simple and efficient option is in primary memory, but this is appropriate only for those

programs for which the amount of space needed is relatively small. A more realistic choice is to store the

values on secondary storage using an abstraction that we will refer to as a stable object base. As a form of

stable storage, values stored in this object base are assumed to survive failures.

Given the greater access times for the object base relative to primary memory, it is important to store

only those values that are required to guarantee continued execution. For FTAG programs, there are two

such sets of values: (1) all inherited and synthesized attributes that are needed for the current calculation,

and (2) all inherited attributes that may be needed for redoing purposes. We call (1) the set of vital values.

Vital values change as the computation progresses; for example, if a module is decomposed and computation

is moved to submodules, the inherited attributes of the module are no longer vital. The set (2) includes

all inherited attributes of modules in recovery blocks or those that may be the target of rollbacks following

operational failures.

In order to formally characterize the set of vital values, we use
 : Atr ! Obj to describe the mapping

from attributes to the object base. The notation domain(
) is used to refer to the set of attributes stored

in the object base. Hence, the addition of an attribute to domain(
) implies the allocation of new storage

space for that attribute, while its deletion means destruction of the value and release of associated storage.

15

(a) (b)

becomes not vital

becomes vital

Syn(n0)n0

M

M1 M2

checkpoints

Inh(C(n0,i))

(c)

Inh(C(n0,i))

M

M1 M2

M

M1 M2

n0

n0 M

M

M1 M2

M3

m

Inh(n0)

n0

(d)

Figure 10: Rules for Storage Mapping

Changes to domain(
) can be defined step by step for each application of Grow or Calculate. The

actions taken, however, depend on whether a given module might be redone, so we first define M as the set

of such modules:

Definition 5.1 M contains all modules M that appear in fredo Mg decompositions.

Call such an M 2 M a checkpoint module. Note that such modules can be determined statically from the

text of the program.

When an attribute calculation is performed by calculate(CT; n
0

; E), the following rules are applied for

each e = (atr; func; args) 2 E,

(a) After all atr 2 Syn(n

0

) have been calculated, all Inh(n
0

) and Syn(C(n

0

; i)) used as

arguments are no longer vital.

(b) If atr 2 Inh(C(n

0

; i)) and n

0

62 M, all Inh(n
0

) and Syn(C(n

0

; j)) used as arguments

are no longer vital.

(c) If atr 2 Inh(C(n

0

; i)) and n
0

2 M, all Inh(n
0

) must be kept in the object base.

(d) If atr 2 Inh(n

0

), n
0

2 M and n
0

overrides m, Inh(n
0

) replaces Inh(m).

In (d), the node n
0

is said to override m if n
0

and m are instantiations of the same checkpoint module, and

m is an ancestor of n
0

.

Figure 10 illustrates these rules. (a) denotes the point at which computation is going upwards; in this

case, none of the attributes of n
0

’s children are needed unless one or both are checkpoint modules. (b),(c)

and (d) shows different situations when the computation is flowing down. If there are no checkpoint modules

among n
0

andC(n

0

; i), no special treatment is needed; otherwise, the appropriate values must be kept. Also,

note that in (d), m is overridden by n
0

because both are instantiations of M and m is an ancestor of n
0

.

Finally, we point out that it might be worthwhile to retain attribute values that would normally be over-

written in the object base. For example, this would allow failures to be handled even if they require that the

16

computation be rolled back further than the most recent instantiation of a checkpoint module. To do this

would require object versioning with the following characteristics:

(1) Whenever a new value is stored, it is checked in as a new version.

(2) Whenever redoing occurs, the most recent version is retrieved.

(3) Older versions are retrieved using an explicit mechanism.

With this scheme, only the most recent version is “visible” within the standard computation model, as

specified by (1) and (2). (3) allows divergence from this model when necessary to retrieve older versions

to cope with failures that require more extensive rollback. Work is just beginning on designing and

implementing a versioning object base along the lines of this design.

5.3 Optimizations

Redoing is inherently an expensive operation, but with a functional model such as FTAG, optimizations are

often possible based on module execution order. For example, consider the following:

M)M

1

(x j u) M

2

(x j v) M

3

(u; v j y)

M

3

(u; v j y)) : : :when fail(v)) redoM(x j u) : : :

Assume that a failure is detected during the execution of M
3

that requires redoingM . Since the bad value is

v, the failure must have occurred during the execution of module M
2

, which generates v. Hence, although

the target of redoing is M , only M

2

and M

3

need be redone. Such data dependencies can be determined

statically, so that it would be possible to keep an internal table listing exactly which modules need be redone

for each module that is used in a redoing decomposition.

Specification of an explicit computation order can also be exploited for optimization purposes in certain

cases. For example, assume thatM
2

is a checkpoint module in fM
1

;M

2

;M

3

g. This ordering means thatM
3

will be reexecuted if M
2

is ever redone, thereby allowing M
3

’s inherited attributes to be discarded to save

storage space. In contrast, if no ordering were specified here, the inherited attributes of all three modules

would have to be stored since they could potentially be needed for redoing. Of course, a dataflow analysis

of the program could expose this optimization in the implicit case as well, but only at significant cost.

6 Conclusions

FTAG is a computational model that is well-suited for writing fault-tolerant software due to its functional

nature and the inherent ease with which actions can be redone should failures occur. Although others

have noted similar advantages with respect to functional programming [HNS89, JA91], we believe that ours

represents one of the first attempts to develop a formal computational model based on these ideas. Moreover,

as noted in the Introduction, this model is derived from similar attribute based models that have proved useful

is other areas of computer science, such as object-oriented programming and the description of high-level

software design processes.

Future work will concentrate in two different areas. One is implementing a programming system that

will allow execution of programs based on the FTAG model. Such a realization will be based on either a

distributed or multiprocessor architecture. The other is extending the model to incorporate other common

fault-tolerance paradigms such as replication. The goal here would be to determine whether characteristics

of our model offer advantages for active redundancy similar to those illustrated here for rollback-oriented

techniques. In both cases, our efforts will include investigating realistic applications to test the true benefits

of this approach.

17

References

[Avi85] A. Avizienis. The N-Version approach to fault-tolerant software. IEEE Transactions on Software Engineer-

ing, SE-11(12):1491–1501, 1985.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.

Addison-Wesley Publishing Company, 1987.

[HNS89] R. Harper, , G. Nagle, and M. Serrano. Use of a functional programming model for fault tolerant parallel

programming. In Proceedings of the Nineteenth Symposium on Fault-Tolerant Computing, pages 20–26,

Chicago, IL, Jun 1989.

[JA91] R. Jagannathan and E. Ashcroft. Fault tolerance in parallel implementations of functional languages. In

Proceedings of the 21st Symposium on Fault Tolerant Computing, pages 256–263, Montreal, Canada, Jun

1991.

[Kat81] T. Katayama. HFP, a hierarchical and functional programming based on attribute grammars. In Proceedings

of the Fifth International Conference on Software Engineering, pages 343–353, 1981.

[Kat89] T. Katayama. A hierarchical and functional software process description and its enaction. In Proceedings

of the Eleventh International Conference on Software Engineering, pages 343–352, 1989.

[Knu68] D. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–145, 1968.

[Lam81] B. Lampson. Atomic transactions. In Distributed Systems—Architecture and Implementation, pages 246–

265. Springer-Verlag, Berlin, 1981.

[Lis85] B. Liskov. The Argus language and system. In M. Paul and H.J. Siegert, editors, Distributed Systems:

Methods and Tools for Specification, Lecture Notes in Computer Science, Volume 190, chapter 7, pages

343–430. Springer-Verlag, Berlin, 1985.

[Ran75] B. Randell. System structure for software fault tolerance. IEEE Transactions on Software Engineering,

SE-1(2):220–232, Jun 1975.

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Computing Surveys, 22(4):299–319, Dec 1990.

[SK88] Y. Shinoda and T. Katayama. Attribute grammar based programming and its environment. In Proceedings

of the 21st Hawaii International Conference on System Sciences, pages 612–620, Kailu-Kona, Jan 1988.

[SK90a] Y. Shinoda and T. Katayama. OOAG: An object-oriented extension of attribute grammar and its implemen-

tation using distributed attribute evaluation algorithm. In Proceedings of WAGA, International Workshop

on Attribute Grammar and its Application, volume 461, pages 177–191. LNCS Springer-Verlag, 1990.

[SK90b] M. Suzuki and T. Katayama. Redoing: A mechanism for dynamics and flexibility of software processes. In

Proceedings of InfoJapan ’90, pages 151–160, Tokyo, Japan, 1990.

18

